WO2024099181A1 - 上行传输时间的确定方法、终端及网络侧设备 - Google Patents

上行传输时间的确定方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2024099181A1
WO2024099181A1 PCT/CN2023/128589 CN2023128589W WO2024099181A1 WO 2024099181 A1 WO2024099181 A1 WO 2024099181A1 CN 2023128589 W CN2023128589 W CN 2023128589W WO 2024099181 A1 WO2024099181 A1 WO 2024099181A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
target
transmission
uplink
transmission object
Prior art date
Application number
PCT/CN2023/128589
Other languages
English (en)
French (fr)
Inventor
孙荣荣
拉盖施塔玛拉卡
刘昊
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024099181A1 publication Critical patent/WO2024099181A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a method for determining uplink transmission time, a terminal, and a network-side device.
  • TRP transmission and reception point
  • the base station In order to ensure the orthogonality of uplink transmission and avoid intra-cell interference, the base station requires that the time when the signals from different terminals (User Equipment, UE) in the same subframe but different frequency domain resources arrive at the base station is basically aligned. As long as the base station receives the uplink data sent by the UE within the cyclic prefix (CP) range, it can correctly decode the uplink data. Therefore, uplink synchronization requires that the time when the signals from different UEs in the same subframe arrive at the base station falls within the CP.
  • CP cyclic prefix
  • Timing Advance is used for UE uplink transmission to ensure that the UE uplink data packet arrives at the base station within the desired time.
  • the specific implementation can be simply summarized as the base station measures the uplink signal, estimates the delay in RF transmission time caused by distance, and sends a timing advance command (TAC) to the UE to notify the UE to send the uplink transmission in advance by a corresponding amount of time.
  • TAC timing advance command
  • the uplink transmissions sent to different TRPs use the same TA.
  • sharing an uplink transmission time may cause the uplink transmission time difference of different users reaching one TRP to exceed the CP, thereby causing interference between users, and further reducing the performance of uplink transmission, and failing to achieve the purpose of improving throughput by multi-TRP transmission.
  • the embodiments of the present application provide a method for determining the uplink transmission time, a terminal, and a network-side device, which can solve the problem in the prior art that uplink transmissions sent to different TRPs in a multi-TRP scenario use the same TA, resulting in poor uplink transmission performance.
  • a method for determining an uplink transmission time is provided, which is applied to a terminal, and the method includes:
  • Receive parameter configuration information corresponding to one or more service cells from a network side device includes A timing advance group TAG identifier, wherein the TAG identifier is associated with a respective transmission object;
  • An uplink transmission time of the target transmission object is determined according to a target TAG identifier associated with the target transmission object.
  • a method for determining an uplink transmission time is provided, which is applied to a network side device, and the method includes:
  • Parameter configuration information corresponding to one or more serving cells is sent to the terminal; the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a respective transmission object; the parameter configuration information is used to determine the uplink transmission time of the target transmission object corresponding to the target serving cell.
  • a terminal including:
  • a first receiving module configured to receive parameter configuration information corresponding to one or more serving cells from a network side device;
  • the parameter configuration information includes a timing advance group TAG identifier, and the TAG identifier is associated with a respective transmission object;
  • a first determination module configured to determine, according to the parameter configuration information, a target transmission object corresponding to a target serving cell where the terminal is located among the transmission objects corresponding to the one or more serving cells;
  • the second determining module is used to determine the uplink transmission time of the target transmission object according to the target TAG identifier associated with the target transmission object.
  • a network side device including:
  • the first sending module is used to send parameter configuration information corresponding to one or more service cells to the terminal; the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a respective transmission object; the parameter configuration information is used to determine the uplink transmission time of the target transmission object corresponding to the target service cell.
  • a terminal comprising a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
  • a terminal comprising a processor and a communication interface, wherein the communication interface is used to receive parameter configuration information corresponding to one or more service cells from a network side device; the parameter configuration information includes a timing advance group TAG identifier, and the TAG identifier is associated with a respective transmission object; the processor is used to determine, according to the parameter configuration information, a target transmission object corresponding to a target service cell where the terminal is located among the transmission objects corresponding to the one or more service cells; and determine the uplink transmission time of the target transmission object according to the target TAG identifier associated with the target transmission object.
  • the communication interface is used to receive parameter configuration information corresponding to one or more service cells from a network side device
  • the parameter configuration information includes a timing advance group TAG identifier, and the TAG identifier is associated with a respective transmission object
  • the processor is used to determine, according to the parameter configuration information, a target transmission object corresponding to a target service cell where the terminal is located among the transmission objects corresponding to the one or more service cells;
  • a network side device which includes a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the steps of the method described in the second aspect are implemented.
  • a network side device including a processor and a communication interface, wherein the processor is used to configure parameter configuration information corresponding to one or more serving cells; the communication interface is used to send the parameter configuration information to a terminal; the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a respective transmission object; the The parameter configuration information is used to determine the uplink transmission time of the target transmission object corresponding to the target serving cell.
  • a system for determining an uplink transmission time comprising: a terminal and a network side device, wherein the terminal can be used to execute the steps of the method for determining the uplink transmission time as described in the first aspect, and the network side device can be used to execute the steps of the method for determining the uplink transmission time as described in the second aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the steps of the method for determining the uplink transmission time as described in the first aspect are implemented, or the steps of the method for determining the uplink transmission time as described in the second aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method for determining the uplink transmission time as described in the first aspect, or to implement the method for determining the uplink transmission time as described in the second aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method for determining the uplink transmission time as described in the first aspect, or to implement the steps of the method for determining the uplink transmission time as described in the second aspect.
  • parameter configuration information corresponding to one or more service cells is received from a network side device, the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a respective transmission object.
  • the target transmission object corresponding to the target server cell where the terminal is located is determined in the transmission objects corresponding to the one or more service cells, and then the uplink transmission time of the target transmission object is determined according to the target TAG identifier associated with the target transmission object.
  • the technical solution can pre-configure the parameter configuration information corresponding to one or more service cells by the network side device and send it to the terminal, so that the terminal can dynamically determine the uplink transmission time of the target transmission object according to the TAG identifier corresponding to the target service cell, and not all transmission objects use the same uplink transmission time, and can ensure the accuracy of the uplink transmission time of multiple TRPs, thereby improving the performance of uplink transmission.
  • FIG1 is a block diagram of a wireless communication system according to an embodiment of the present application.
  • FIG2 is a schematic diagram of an association relationship between a TAG and a cell according to an embodiment of the present application
  • FIG3 is a schematic flow chart of a method for determining an uplink transmission time according to an embodiment of the present application
  • FIGS. 4(a)-4(c) are schematic diagrams of an association relationship between a TAG and a transmission object according to an embodiment of the present application.
  • FIG5 is a schematic flow chart of a method for determining an uplink transmission time according to another embodiment of the present application.
  • FIG6 is a schematic flow chart of a method for determining an uplink transmission time according to yet another embodiment of the present application.
  • FIG7 is a schematic block diagram of a terminal according to an embodiment of the present application.
  • FIG8 is a schematic block diagram of a network side device according to an embodiment of the present application.
  • FIG9 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG10 is a schematic block diagram of a terminal according to another embodiment of the present application.
  • FIG11 is a schematic block diagram of a network-side device according to another embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, a robot, a wearable device (Wearable Device), a vehicle-mounted device (VehicleUser Equipment, VUE), a pedestrian terminal (PedestrianUserEquipment, PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer,
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
  • the access network device may include a base station, a wireless local area network (WLAN) access point or a wireless fidelity (WiFi) node, etc.
  • WLAN wireless local area network
  • WiFi wireless fidelity
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home B node, a home evolved B node, a transmission reception point (TRP) or other appropriate terms in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • TAG time advance group
  • TAG is applied to carrier aggregation scenarios.
  • the delays introduced by multiple carriers are different, or the positions of the primary cells (PCell) and secondary cells (SCell) of different carriers are quite different.
  • PCell primary cells
  • SCell secondary cells
  • a unified TA cannot be used for processing. Therefore, the concept of TAG is introduced.
  • the TA corresponding to the same TAG is the same, and different TAGs correspond to different TA values.
  • FIG 2 is a schematic diagram of the association relationship between a TAG and a cell according to an embodiment of the present application.
  • the master cell group (MCG) includes the main cell PCell, the secondary cell SCell1, the secondary cell SCell2 and the secondary cell SCell3.
  • the secondary cell group includes the main and secondary cells PSCell, the secondary cell SCell4, the secondary cell SCell5 and the secondary cell Scell6.
  • the primary cell timing advance group (PCell TAG, PTAG) is a TAG including the primary cell
  • the secondary cell timing advance group (SCell TAG, STAG) is a TAG including the secondary cell.
  • PTAG associates the primary cell Pcell with the secondary cell SCell1
  • STAG associates the secondary cells SCell2 and SCell3.
  • PTAG associates the primary and secondary cells PScell with the secondary cell Scell4, and STAG associates the secondary cells Scell5 and Scell6.
  • FIG3 is a schematic flow chart of a method for determining uplink transmission time according to an embodiment of the present application. As shown in FIG3, the method is applied to a terminal and includes the following steps S302-S306:
  • the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a respective transmission object.
  • each service cell is configured with one or more TRPs.
  • Each TAG identifier is associated with one or more transmission objects sent to the TRP.
  • the association between the TAG identifier and the transmission object can be clarified in the following ways.
  • the parameter configuration information corresponding to the service cell only includes the TAG identifier, and each TAG identifier is agreed upon in the communication protocol between the network-side device and the terminal.
  • the transmission object associated with the TAG identifier can be used to clarify the association relationship between the TAG identifier and the transmission object, which is not limited in the embodiment of the present application.
  • the transmission object may include at least one of the following: a control resource set pool index (such as coresetpoolindex0, coresetpoolindex1), a channel sounding reference signal (Sounding Reference Signal, SRS) resource set, a transmission configuration indication (Transmission Configuration Indicator, TCI) status, a TCI status pool, a synchronization signal block (Synchronization Signaling Block, SSB) group, a physical cell identifier (Physical Cell ID, PCI), and an antenna port group.
  • a control resource set pool index such as coresetpoolindex0, coresetpoolindex1
  • SRS Sounding Reference Signal
  • the parameter configuration information for each service cell may include the following situations: the parameter configuration information includes two TAG identifiers, each TAG identifier is associated with an uplink transmission object; or, the parameter configuration information includes one TAG identifier, and the TAG identifier is associated with two transmission objects; or, the parameter configuration information includes one TAG identifier, and the TAG identifier is associated with one transmission object.
  • the association relationship between the TAG identifier and the transmission object may include any one of the following a1-a3:
  • parameter configuration information includes two TAG identifiers and two transmission objects, wherein each TAG identifier is associated with an uplink transmission object.
  • the parameter configuration information of a certain service cell includes two TAG identifiers, namely TAG0 and TAG1 , and each TAG identifier is associated with a transmission object, wherein TAG0 is associated with coresetpoolindex0 , and TAG1 is associated with coresetpoolindex1 .
  • Parameter configuration information includes a TAG identifier and two associated transmission objects.
  • the parameter configuration information of a certain serving cell includes a TAG identifier, namely, TAG0 , and TAG0 is associated with two transmission objects, namely, coresetpoolindex0 and coresetpoolindex1 .
  • parameter configuration information includes a TAG identifier and a transmission object associated with it.
  • the parameter configuration information of a certain serving cell includes a TAG identifier, namely, TAG2 , and TAG2 is associated with only one transmission object, namely, coresetpoolindex1 .
  • multiple serving cells are configured with the same TAG identifier, and the same TAG identifier is associated with the same transmission object.
  • the transmission objects associated with TAG0 all include coresetpoolindex0.
  • S304 Determine, according to the parameter configuration information, a target transmission object corresponding to the target serving cell where the terminal is located from the transmission objects corresponding to one or more serving cells.
  • the target transmission object corresponding to the target serving cell may include one or more. After determining the target transmission object corresponding to the target serving cell, the uplink transmission time of the target transmission object is determined for each target transmission object.
  • S306 Determine the uplink transmission time of the target transmission object according to the target TAG identifier associated with the target transmission object.
  • the parameter configuration information includes a TAG identifier, each TAG identifier is associated with its own transmission object, and according to the parameter configuration information, the target transmission object corresponding to the target server cell where the terminal is located is determined from the transmission objects corresponding to one or more service cells, and then the uplink transmission time of the target transmission object is determined according to the target TAG identifier associated with the target transmission object.
  • the technical solution can pre-configure the parameter configuration information corresponding to one or more service cells by the network side device and send it to the terminal, so that the terminal can dynamically determine the uplink transmission time of the target transmission object according to the TAG identifier corresponding to the target service cell, instead of all transmission objects using the same uplink transmission time, and can ensure the accuracy of the uplink transmission time of multiple TRPs, thereby improving the performance of uplink transmission.
  • each TAG identifier is associated with a downlink frame time.
  • the following steps A1-A3 may be performed:
  • Step A1 determine the uplink time adjustment amount corresponding to the target TAG identifier.
  • Step A2 Determine the uplink reference time corresponding to the target TAG identifier according to the downlink frame time corresponding to the target TAG identifier.
  • step A1 and step A2 is not limited.
  • the uplink reference time may be determined first and then the uplink time adjustment amount may be determined.
  • the uplink reference time and the uplink time adjustment amount may be determined simultaneously.
  • Step A3 determining the uplink transmission time of the target transmission object according to the uplink reference time and the uplink time adjustment amount.
  • the following describes in detail how to determine the uplink reference time corresponding to the target TAG identifier and the uplink time adjustment amount.
  • step A2 when executing step A2, i.e. determining the uplink reference time, first determine the reference cell in the first service cell according to the target TAG identifier; then determine the downlink frame time of the transmission object corresponding to the reference cell as the uplink reference time corresponding to the target TAG identifier.
  • the target TAG indicated by the target TAG identifier corresponds to multiple first service cells. This ensures that the TAG corresponding to the TAG identifier determines the accurate uplink reference time corresponding to the target transmission object.
  • a first service cell configured with two TAG identifiers, each of which is associated with a transmission object is determined as a reference cell.
  • a first service cell configured with only one TAG identifier is determined as a reference cell. In this way, the terminal only needs to measure the downlink time corresponding to the service cell (i.e., the reference cell) as the uplink reference time, without distinguishing the target object and then determining the uplink reference time, thereby reducing the complexity of terminal implementation.
  • the downlink frame time of the transmission object corresponding to the first service cell is obtained based on the downlink (DL) reference signal or DL channel measurement of the transmission object corresponding to the first service cell.
  • the DL reference signal or DL channel of the transmission object corresponding to the first service cell can be configured or indicated by the network side device. Based on this, the terminal can determine the DL reference signal or DL channel of the transmission object corresponding to the first service cell based on the configuration information or indication information of the network side device.
  • the terminal receives the Radio Resource Control (RRC) configuration information sent by the network side device, and the RRC configuration information carries the DL reference signal or DL channel information of the transmission object corresponding to each service cell.
  • the terminal can determine the first service cell based on the RRC configuration information.
  • the DL reference signal or DL channel of the transmission object corresponding to the cell can be configured or indicated by the network side device.
  • the terminal can determine the DL reference signal or DL channel of the transmission object corresponding to the first service cell based on the configuration information or indication information of the network side device.
  • RRC Radio Resource Control
  • the target service cell is a primary cell configured with two TAG identifiers.
  • the TAG corresponding to each TAG identifier is configured as a first-class TAG, or the TAG corresponding to one of the TAG identifiers is configured as a first-class TAG.
  • the first-class TAG can be a PTAG, that is, a TAG including the primary cell.
  • the TAG corresponding to each TAG identifier is a first-class TAG
  • the uplink transmission of the transmission object associated with the first-class TAG is released.
  • the TAG corresponding to one of the TAG identifiers is configured as a first-class TAG
  • all uplink transmissions corresponding to the terminal are released.
  • each TAG is configured with a time alignment timer (TAT) to control the synchronization time length of the service cell within the TAG.
  • TAT time alignment timer
  • the terminal receives the TAC, the TAT is started.
  • the terminal expires, the terminal cannot perform uplink transmission.
  • the "loss of synchronization" mentioned in this embodiment can be understood as the expiration of the corresponding TAT.
  • the first type of TAG loses synchronization, that is, the TAT corresponding to the first type of TAG expires.
  • the TAG corresponding to the TAG identifier whose associated transmission object is coresetpoolindex 0 is a first-class TAG.
  • the network side device may configure the first type of TAG, and the terminal may determine which of the two TAG identifiers corresponds to the TAG of the first type of TAG according to the configuration information of the network side device. Based on this, the terminal may receive RRC configuration information sent by the network side device, and the RRC configuration information carries TAG identifier information corresponding to the first type of TAG. The terminal may determine that the TAG corresponding to one of the two TAG identifiers is the first type of TAG according to the RRC configuration information sent by the network side device.
  • the target service cell where the terminal is located is a primary cell configured with two TAG identifiers.
  • the terminal can determine that the TAG corresponding to the TAG identifier associated with the target transmission object (that is, the transmission object corresponding to the target service cell where the terminal is located) is a first-class TAG, and the first-class TAG is a TAG including the primary cell.
  • the transmission object of the target service cell is not associated with the PCI identifier.
  • the first type TAG loses synchronization, all uplink transmissions corresponding to the terminal are released.
  • the first type TAG loses synchronization, that is, the TAT corresponding to the first type TAG expires.
  • the following steps B1-B3 may be executed:
  • Step B1 receiving a physical downlink control channel (PDCCH) associated with a target transmission object, where the PDCCH carries an object identifier of the target transmission object and/or a target TAG identifier associated with the target transmission object.
  • PDCCH physical downlink control channel
  • the terminal When the terminal receives the PDCCH, it triggers the Random Access CHannel (RACH) process, thereby receiving the uplink time adjustment amount configured by the terminal side device during the RACH process.
  • RACH Random Access CHannel
  • Step B2 Based on the PDCCH, first information corresponding to the target transmission object is sent to the network side device. The first information is used to determine the uplink timing adjustment amount corresponding to the target transmission object.
  • the network side device determines the uplink timing adjustment amount corresponding to the target transmission object based on the first information, and carries the uplink timing adjustment amount in a random access response (Random Access Response, RAR) and sends it to the terminal.
  • RAR Random Access Response
  • the first information can be a random signal preamble.
  • the network side device can determine the uplink time adjustment amount by measuring the preamble.
  • the first information sent by the terminal to the network side device is not limited to the preamble, but can also be any other type of information.
  • any signal sent by the terminal can be used to measure the uplink time adjustment amount, such as the Sounding Reference Signal (SRS), the Demodulation Reference Signal (DM-RS), the Channel Quality Indicator (CQI), the Acknowledgement (ACK), the Negative Acknowledgement (NACK), the Physical Uplink Shared Channel (PUSCH), etc.
  • SRS Sounding Reference Signal
  • DM-RS Demodulation Reference Signal
  • CQI Channel Quality Indicator
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • PUSCH Physical Uplink Shared Channel
  • Step B3 receiving the RAR sent by the network side device, and determining the uplink timing adjustment amount based on the RAR.
  • the quasi co-location (QCL) relationship corresponding to the PDCCH is determined based on the QCL relationship of the type 1 common search space (CSS), or based on the PDCCH associated with the same transmission object as the first type 1 CSS.
  • the QCL relationship of the PDCCH is determined based on the QCL relationship of the type 1 CSS corresponding to the PDCCH.
  • the first condition includes: the PDCCH comes from a second serving cell that does not belong to the primary cell, or the PDCCH comes from a third serving cell corresponding to the associated PCI of the primary cell.
  • the terminal discards the uplink transmission of the first transmission object of the two target transmission objects.
  • the uplink transmission of the first transmission object may include at least one of the following: uplink transmission associated with a specific control resource set pool index (such as coresetpoolindex0), and uplink transmission with a later uplink transmission time.
  • a specific control resource set pool index such as coresetpoolindex0
  • the terminal may report to the network side device that the terminal has the capability to discard the uplink transmission of the first transmission object.
  • the network-side device can ensure that uplink transmissions associated with different TAG identifiers do not overlap through network scheduling.
  • the network-side device ensures that uplink transmissions associated with different TAG identifiers are separated by a certain time through network scheduling. For example, the interval between uplink transmissions associated with different TAG identifiers is greater than or equal to a preset threshold, which can be reported by the terminal to the network-side device, or configured by the network-side device in the RRC, or can also be predefined based on a protocol between the terminal and the network-side device.
  • the interval between the uplink transmissions of the two target transmission objects is greater than or equal to a preset threshold.
  • the preset threshold can be reported by the terminal to the network side device, or configured by the network side device in the RRC, or can also be predefined based on the protocol between the terminal and the network side device.
  • Table 1 below schematically lists several preset thresholds under subcarrier spacing.
  • FR1 Frequency range 1
  • FR2 Frequency range 2
  • NR 5G New Radio
  • the preset threshold can also be an orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • FIG5 is a schematic flow chart of a method for determining uplink transmission time according to another embodiment of the present application. As shown in FIG5, the method is applied to a network side device and includes the following steps S502:
  • the parameter configuration information including a TAG identifier
  • the TAG identifier is associated with a respective transmission object
  • the parameter configuration information is used to determine an uplink transmission time of a target transmission object corresponding to a target serving cell.
  • each TAG identifier is associated with one or more transmission objects sent to the TRP.
  • the association relationship between the TAG identifier and the transmission object can be clarified in the following ways.
  • the parameter configuration information corresponding to the service cell only includes the TAG identifier, and the network side device configures the transmission object associated with each TAG identifier through other configuration information, wherein the configuration information of the other configuration information is not limited.
  • the parameter configuration information corresponding to the service cell only includes the TAG identifier, and the transmission object associated with each TAG identifier is agreed upon in the communication protocol between the network side device and the terminal.
  • other methods can also be used to clarify the association relationship between the TAG identifier and the transmission object, and the embodiments of the present application do not limit this.
  • the network side device pre-configures parameter configuration information corresponding to one or more service cells, and sends the parameter configuration information corresponding to one or more service cells to the terminal.
  • the parameter configuration information includes a TAG identifier, and each TAG identifier is associated with its own transmission object, so that the terminal can dynamically determine the uplink transmission time of the target transmission object according to the TAG identifier corresponding to the target service cell, instead of all transmission objects using the same uplink transmission time, and can ensure the uplink transmission time of multiple TRPs is accurate, thereby improving the performance of uplink transmission.
  • the transmission object includes at least one of the following: a resource set pool index (such as coresetpoolindex 0, coresetpoolindex 1), an SRS resource set, a TCI status, a TCI status pool, an SSB group, a PCI, and an antenna port group.
  • a resource set pool index such as coresetpoolindex 0, coresetpoolindex 1
  • the parameter configuration information for each service cell may include the following situations: the parameter configuration information includes two TAG identifiers, and each TAG identifier is associated with an uplink transmission object; or, the parameter configuration information includes one TAG identifier, and the TAG identifier is associated with two transmission objects; or, the parameter configuration information includes one TAG identifier, and the TAG identifier is associated with one transmission object.
  • the association relationship between the TAG identifier and the transmission object may include: Any of a1-a3:
  • parameter configuration information includes two TAG identifiers and two transmission objects, wherein each TAG identifier is associated with an uplink transmission object.
  • the parameter configuration information of a certain service cell includes two TAG identifiers, namely TAG0 and TAG1 , and each TAG identifier is associated with a transmission object, wherein TAG0 is associated with coresetpoolindex0 , and TAG1 is associated with coresetpoolindex1 .
  • Parameter configuration information includes a TAG identifier and two associated transmission objects.
  • the parameter configuration information of a certain serving cell includes a TAG identifier, namely, TAG0 , and TAG0 is associated with two transmission objects, namely, coresetpoolindex0 and coresetpoolindex1 .
  • parameter configuration information includes a TAG identifier and a transmission object associated with it.
  • multiple serving cells are configured with the same TAG identifier, and the same TAG identifier is associated with the same transmission object.
  • each TAG identifier is associated with a downlink frame time.
  • the network side device indicates that the TAG corresponding to one of the two TAG identifiers is a first-category TAG; the first-category TAG is a TAG including a primary cell.
  • the network side device when the network side device indicates that the TAG corresponding to one of the two TAG identifiers is a first-category TAG, if the transmission object is coresetpoolindex 0, it indicates that the TAG corresponding to the TAG identifier associated with the transmission object is a first-category TAG.
  • the network side device sends RRC configuration information to the terminal, and the RRC configuration information carries at least one of the following information: a DL reference signal or DL channel of a transmission object corresponding to each service cell; indication information of the first type of TAG (i.e., indicating which TAG identifier corresponds to the TAG of the first type of TAG); and a minimum threshold value for the interval between uplink transmissions of two transmission objects corresponding to the same service cell, i.e., ensuring that the uplink transmissions of two transmission objects corresponding to the same service cell do not overlap.
  • indication information of the first type of TAG i.e., indicating which TAG identifier corresponds to the TAG of the first type of TAG
  • a minimum threshold value for the interval between uplink transmissions of two transmission objects corresponding to the same service cell i.e., ensuring that the uplink transmissions of two transmission objects corresponding to the same service cell do not overlap.
  • the network side device configures an associated uplink time adjustment amount for each TAG identifier. Specifically, first, the network side device sends a PDCCH associated with a target transmission object to the terminal, the PDCCH carries the object identifier of the target transmission object and/or the target TAG identifier associated with the target transmission object, then the network side device receives the first information corresponding to the target transmission object sent by the terminal, and then determines the uplink time adjustment amount corresponding to the target transmission object according to the first information, and carries the uplink time adjustment amount in the RAR and sends it to the terminal.
  • the first information may be a preamble.
  • the network side device may determine the uplink timing adjustment amount by measuring the preamble. It should be noted that the first information sent by the terminal to the network side device is not limited to the preamble, but may also be any other type of information. Theoretically, any signal sent by the terminal may be used to measure the uplink timing adjustment amount, such as SRS, DM-RS, CQI, ACK, NACK, PUSCH, etc.
  • the network side device receives a capability reported by the terminal, the capability including: when the serving cell includes two transmission objects and the uplink transmission times of the two transmission objects overlap, the capability of discarding the uplink transmission of the first transmission object.
  • the uplink transmission of the first transmission object is the uplink transmission that meets the discard condition.
  • the discarding condition includes at least one of the following: being associated with a specific control resource set pool index (such as coresetpoolindex 0) and a late uplink transmission time.
  • FIG6 is a schematic flow chart of a method for determining uplink transmission time according to another embodiment of the present application. As shown in FIG6 , the method is applied to a system for determining uplink transmission time, the system including a terminal and a network side device, and including the following steps S602-S610:
  • the network side device sends parameter configuration information corresponding to one or more serving cells to the terminal, where the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a respective transmission object.
  • S604 The terminal receives parameter configuration information corresponding to one or more service cells sent by the network side device.
  • the terminal determines, according to the parameter configuration information, a target transmission object corresponding to the target serving cell where the terminal is located from the transmission objects corresponding to one or more serving cells.
  • the terminal determines the uplink transmission time of the target transmission object according to the target TAG identifier associated with the target transmission object.
  • the terminal transmits the target transmission object to the corresponding TRP according to the uplink transmission time of the target transmission object.
  • the network side device pre-configures parameter configuration information corresponding to one or more service cells and sends it to the terminal.
  • the terminal receives the parameter configuration information corresponding to one or more service cells, and determines the TAG identifier corresponding to the target service cell where the terminal is located according to the parameter configuration information, and then dynamically determines the uplink transmission time of the target transmission object according to the TAG identifier corresponding to the target service cell. Not all transmission objects use the same uplink transmission time, and the uplink transmission time of multiple TRPs can be ensured to be accurate, thereby improving the performance of uplink transmission.
  • the method for determining the uplink transmission time provided in the embodiment of the present application may be executed by a terminal.
  • the embodiment of the present application takes the method for determining the uplink transmission time performed by a terminal as an example to illustrate the terminal provided in the embodiment of the present application.
  • FIG7 is a schematic block diagram of a terminal according to an embodiment of the present application. As shown in FIG7 , it includes:
  • a first receiving module 71 is configured to receive parameter configuration information corresponding to one or more serving cells from a network side device; the parameter configuration information includes a timing advance group TAG identifier, and the TAG identifier is associated with a respective transmission object;
  • a first determining module 72 configured to determine, according to the parameter configuration information, a target transmission object corresponding to a target serving cell where the terminal is located from among the transmission objects corresponding to the one or more serving cells;
  • the second determining module 73 is configured to determine the uplink transmission time of the target transmission object according to the target TAG identifier associated with the target transmission object.
  • the transmission object includes at least one of the following: a control resource set pool index, a channel sounding reference signal SRS resource set, a transmission configuration indication TCI state, a TCI state pool, a synchronization signal block SSB grouping, and a physical cell identifier PCI.
  • the parameter configuration information includes two TAG identifiers, each of which is associated with one uplink transmission object; or,
  • the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with two transmission objects; or,
  • the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a transmission object.
  • the multiple serving cells are configured with the same TAG identifier, and the same TAG identifier is associated with the same transmission object.
  • each TAG identifier is associated with a downlink frame time
  • the second determining module 73 includes:
  • a first determining unit configured to determine an uplink reference time corresponding to the target TAG identifier according to a downlink frame time corresponding to the target TAG identifier
  • a second determining unit configured to determine an uplink timing adjustment amount corresponding to the target TAG identifier
  • a third determining unit is configured to determine the uplink transmission time of the target transmission object according to the uplink reference time and the uplink time adjustment amount.
  • the first determining unit is further configured to:
  • the downlink frame time of the transmission object corresponding to the reference cell is determined as the uplink reference time corresponding to the target TAG identifier.
  • the first determining unit is further configured to:
  • the first serving cell configured with only one TAG identifier is determined as the reference cell.
  • a plurality of transmission objects are configured in the target serving cell;
  • the target serving cell is a primary cell configured with two TAG identifiers;
  • the TAG corresponding to each of the TAG identifiers is configured as a first-type TAG, or the TAG corresponding to one of the TAG identifiers is configured as the first-type TAG; the first-type TAG is a TAG including a primary cell.
  • the TAG corresponding to each of the TAG identifiers is a first-category TAG; and the terminal further includes:
  • the first releasing module is used to release the uplink transmission of the transmission object associated with the first type TAG if the first type TAG loses synchronization.
  • a TAG corresponding to one of the TAG identifiers is configured as the first type of TAG; and the terminal further includes:
  • the second release module is used to release all uplink transmissions corresponding to the terminal if the first type TAG loses synchronization.
  • the terminal further includes:
  • the fourth determination module is used to determine, according to the RRC configuration information sent by the network side device, that the TAG corresponding to one of the two TAG identifiers is the first type of TAG.
  • a plurality of TRPs are configured between the serving cells;
  • the target serving cell is a primary cell configured with two TAG identifiers;
  • the terminal further includes:
  • the fifth determination module is used to determine that the TAG corresponding to the TAG identifier associated with the target transmission object is a first-type TAG; the first-type TAG is a TAG including a primary cell.
  • the terminal further includes:
  • the third release module is used to release all uplink transmissions corresponding to the terminal if the first type TAG loses synchronization.
  • the first determining unit is further configured to:
  • the PDCCH receives a physical downlink control channel PDCCH associated with the target transmission object; the PDCCH carries an object identifier of the target transmission object and/or the target TAG identifier;
  • first information corresponding to the target transmission object is sent to the network side device; the first information is used to determine the uplink time adjustment amount corresponding to the target transmission object;
  • a random access response RAR sent by the network side device is received, and the RAR is determined to carry the uplink timing adjustment amount.
  • the quasi co-site QCL relationship of the PDCCH is determined based on the QCL relationship of the type 1 common search space CSS corresponding to the PDCCH, or based on the PDCCH associated with the same transmission object as the type 1 CSS.
  • the QCL relationship of the PDCCH is determined based on the QCL relationship of the type 1 CSS corresponding to the PDCCH;
  • the first condition includes: the PDCCH comes from a second serving cell that does not belong to the primary cell, or the PDCCH comes from a third serving cell corresponding to an associated PCI of the primary cell.
  • the terminal further includes:
  • the uplink transmission of the first transmission object of the two target transmission objects is discarded.
  • the uplink transmission of the first transmission object includes at least one of the following:
  • the terminal further includes:
  • the reporting module is used for reporting to the network side device that the terminal has the capability to discard the uplink transmission of the first transmission object among the two target transmission objects before discarding the uplink transmission of the first transmission object.
  • an interval between uplink transmissions of the two target transmission objects is greater than or equal to a preset threshold
  • the preset threshold is reported by the terminal to the network side device, or the preset threshold is configured by RRC, or the preset threshold is predefined based on a protocol between the terminal and the network side device.
  • parameter configuration information corresponding to one or more service cells is received from a network side device, the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a respective transmission object.
  • the target transmission object corresponding to the target server cell where the terminal is located is determined in the transmission objects corresponding to the one or more service cells, and then the uplink transmission time of the target transmission object is determined according to the target TAG identifier associated with the target transmission object.
  • the technical solution can pre-configure the parameter configuration information corresponding to one or more service cells by the network side device and send it to the terminal, so that the terminal can dynamically determine the uplink transmission time of the target transmission object according to the TAG identifier corresponding to the target service cell, and not all transmission objects use the same uplink transmission time, and can ensure the accuracy of the uplink transmission time of multiple TRPs, thereby improving the performance of uplink transmission.
  • the terminal in the embodiments of the present application may be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or may be another device other than a terminal.
  • the terminal may include but is not limited to the types of terminals listed above, and other devices may be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiments of the present application.
  • NAS network attached storage
  • the terminal provided in the embodiment of the present application can implement each process implemented in the method embodiment of Figure 3 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • FIG8 is a schematic block diagram of a network side device according to an embodiment of the present application. As shown in FIG8 , it includes:
  • the first sending module 81 is used to send parameter configuration information corresponding to one or more service cells to the terminal; the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a respective transmission object; the parameter configuration information is used to determine the uplink transmission time of the target transmission object corresponding to the target service cell.
  • the transmission object includes at least one of the following: a resource set pool index, an SRS resource set, a TCI state, a TCI state pool, an SSB group, and a PCI.
  • the parameter configuration information includes two TAG identifiers, each of which is associated with one uplink transmission object; or,
  • the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with two transmission objects; or,
  • the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a transmission object.
  • the multiple serving cells are configured with the same TAG identifier, and the same TAG identifier is associated with the same transmission object.
  • each TAG identifier is associated with a downlink frame time.
  • the network side device further includes:
  • the indication module is used to indicate, for the serving cell configured with two TAG identifiers, that the TAG corresponding to one of the two TAG identifiers is a first-category TAG; the first-category TAG is a TAG including a primary cell.
  • the network side device further includes:
  • a second sending module used to send RRC configuration information to the terminal
  • the RRC configuration information carries at least one of the following:
  • the indication information of the first type of TAG is the indication information of the first type of TAG.
  • the minimum threshold for the interval between uplink transmissions of two transmission objects corresponding to the same serving cell is the minimum threshold for the interval between uplink transmissions of two transmission objects corresponding to the same serving cell.
  • the network side device further includes:
  • a third sending module is used to send a PDCCH associated with a target transmission object to the terminal;
  • the PDCCH carries an object identifier of the target transmission object and/or a target TAG identifier associated with the target transmission object;
  • a second receiving module used to receive first information corresponding to the target transmission object sent by the terminal
  • the sixth determination module is used to determine the uplink timing adjustment amount corresponding to the target transmission object according to the first information, and carry the uplink timing adjustment amount in the RAR to send it to the terminal.
  • the network side device further includes:
  • a third receiving module is used to receive the capabilities reported by the terminal; the capabilities include: when the transmission objects corresponding to the serving cell include two and the uplink transmission times of the two transmission objects overlap, the uplink transmission capability for the first transmission object is discarded; the uplink transmission of the first transmission object is the uplink transmission that meets the discard condition;
  • the discarding condition includes at least one of the following: an associated specific control resource set pool index and a late uplink transmission time.
  • the network side device pre-configures parameter configuration information corresponding to one or more service cells, and sends the parameter configuration information corresponding to one or more service cells to the terminal.
  • the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with each transmission object, so that the terminal can dynamically determine the uplink transmission time of the target transmission object according to the TAG identifier corresponding to the target service cell, instead of all transmission objects using the same uplink transmission time, and can ensure the uplink transmission time of multiple TRPs is accurate, thereby improving the performance of uplink transmission.
  • the network side device in the embodiments of the present application may be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a network side device, or may be other devices other than a terminal.
  • the network side device may include but is not limited to the types of network side devices listed above, and other devices may be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiments of the present application.
  • the network side device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 5 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a communication device 900, including a processor 901 and a memory 902, wherein the memory 902 stores a program or instruction that can be run on the processor 901.
  • the communication device 900 is a terminal
  • the program or instruction is executed by the processor 901 to implement the various steps of the embodiment of the method for determining the uplink transmission time, and can achieve the same technical effect.
  • the communication device 900 is a network side device
  • the program When the or instruction is executed by the processor 901 the various steps of the above-mentioned method for determining the uplink transmission time are implemented, and the same technical effect can be achieved. To avoid repetition, they are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the communication interface is used to receive parameter configuration information corresponding to one or more service cells sent by a network side device; the parameter configuration information includes mutually related timing advance group TAG identifiers and transmission objects; the processor is used to determine the target transmission object corresponding to the target service cell where the terminal is located according to the parameter configuration information; according to the target TAG identifier associated with the target transmission object, determine the uplink transmission time of the target transmission object.
  • This terminal embodiment corresponds to the above-mentioned terminal side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to the terminal embodiment, and can achieve the same technical effect.
  • Figure 10 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009 and at least some of the components of a processor 1010.
  • the terminal 1000 can also include a power supply (such as a battery) for supplying power to each component, and the power supply can be logically connected to the processor 1010 through a power management system, so as to implement functions such as charging, discharging, and power consumption management through the power management system.
  • a power supply such as a battery
  • the terminal structure shown in FIG10 does not constitute a limitation on the terminal, and the terminal can include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1004 may include a graphics processing unit (GPU) 10041 and a microphone 10042, and the graphics processing unit 10041 processes the image data of a static picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1007 includes a touch panel 10071 and at least one of other input devices 10072.
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 1001 can transmit the data to the processor 1010 for processing; in addition, the RF unit 1001 can send uplink data to the network side device.
  • the RF unit 1001 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1009 can be used to store software programs or instructions and various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1009 may include a volatile memory or a non-volatile memory, or the memory 1009 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or an electrically erasable programmable read-only memory (EEPROM). Or flash memory.
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synchlink DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1010.
  • the radio frequency unit 1001 is used to receive parameter configuration information corresponding to one or more service cells from a network side device; the parameter configuration information includes a timing advance group TAG identifier, and the TAG identifier is associated with a respective transmission object.
  • the processor 1010 is used to determine, according to the parameter configuration information, a target transmission object corresponding to the target service cell where the terminal is located in the transmission objects corresponding to the one or more service cells; and determine the uplink transmission time of the target transmission object according to the target TAG identifier associated with the target transmission object.
  • parameter configuration information corresponding to one or more service cells is received from a network side device, the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a respective transmission object.
  • the target transmission object corresponding to the target server cell where the terminal is located is determined in the transmission objects corresponding to the one or more service cells, and then the uplink transmission time of the target transmission object is determined according to the target TAG identifier associated with the target transmission object.
  • the technical solution can pre-configure the parameter configuration information corresponding to one or more service cells by the network side device and send it to the terminal, so that the terminal can dynamically determine the uplink transmission time of the target transmission object according to the TAG identifier corresponding to the target service cell, and not all transmission objects use the same uplink transmission time, and can ensure the accuracy of the uplink transmission time of multiple TRPs, thereby improving the performance of uplink transmission.
  • the transmission object includes at least one of the following: a control resource set pool index, a channel sounding reference signal SRS resource set, a transmission configuration indication TCI state, a TCI state pool, a synchronization signal block SSB grouping, and a physical cell identifier PCI.
  • the parameter configuration information includes two TAG identifiers, and each TAG identifier is associated with one uplink transmission object; or,
  • the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a transmission object.
  • the multiple serving cells are configured with the same TAG identifier, and the same TAG identifier is associated with the same transmission object.
  • each TAG identifier is associated with a downlink frame time
  • the processor 1010 is further configured to:
  • processor 1010 is further configured to:
  • the downlink frame time of the transmission object corresponding to the reference cell is determined as the uplink reference time corresponding to the target TAG identifier.
  • processor 1010 is further configured to:
  • the first serving cell configured with only one TAG identifier is determined as a reference cell.
  • a plurality of the transmission objects are configured in the target serving cell;
  • the target serving cell is a primary cell configured with two TAG identifiers;
  • the TAG corresponding to each of the TAG identifiers is configured as a first-type TAG, or the TAG corresponding to one of the TAG identifiers is configured as the first-type TAG; the first-type TAG is a TAG including a primary cell.
  • the TAG corresponding to each of the TAG identifiers is a first-category TAG; and the processor 1010 is further configured to:
  • the uplink transmission of the transmission object associated with the first type TAG is released.
  • a TAG corresponding to one of the TAG identifiers is configured as the first type of TAG; and the processor 1010 is further configured to:
  • processor 1010 is further configured to:
  • the TAG corresponding to one of the two TAG identifiers is the first type of TAG.
  • a plurality of TRPs are configured between the serving cells;
  • the target serving cell is a primary cell configured with two TAG identifiers;
  • the processor 1010 is further configured to:
  • the TAG corresponding to the TAG identifier associated with the target transmission object is a first-type TAG; the first-type TAG is a TAG including a primary cell.
  • processor 1010 is further configured to:
  • processor 1010 is further configured to:
  • the PDCCH receives a physical downlink control channel PDCCH associated with the target transmission object; the PDCCH carries an object identifier of the target transmission object and/or the target TAG identifier;
  • first information corresponding to the target transmission object is sent to the network side device; the first information is used to determine the uplink time adjustment amount corresponding to the target transmission object;
  • a random access response RAR sent by the network side device is received, where the RAR carries the uplink timing adjustment amount.
  • the quasi-co-site QCL relationship of the PDCCH is determined based on the QCL relationship of the type 1 common search space CSS corresponding to the PDCCH, or is determined based on the PDCCH associated with the same transmission object as the type 1 CSS.
  • the QCL relationship of the PDCCH is determined based on the QCL relationship of the type1CSS corresponding to the PDCCH;
  • the first condition includes: the PDCCH comes from a second serving cell that does not belong to the primary cell, or the PDCCH comes from a third serving cell corresponding to an associated PCI of the primary cell.
  • processor 1010 is further configured to:
  • the uplink transmission of the first transmission object of the two target transmission objects is discarded.
  • the uplink transmission of the first transmission object includes at least one of the following:
  • processor 1010 is further configured to:
  • the target serving cell corresponds to two target transmission objects, and an interval between uplink transmissions of the two target transmission objects is greater than or equal to a preset threshold;
  • the preset threshold is reported by the terminal to the network side device, or the preset threshold is configured by RRC, or the preset threshold is predefined based on a protocol between the terminal and the network side device.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the processor is used to configure parameter configuration information corresponding to one or more service cells; the communication interface is used to send the parameter configuration information to the terminal; the parameter configuration information includes a TAG identifier, and the TAG identifier is associated with a respective transmission object; the parameter configuration information is used to determine the uplink transmission time of the target transmission object corresponding to the target service cell.
  • This network side device embodiment corresponds to the above-mentioned network side device method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this network side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1100 includes: an antenna 111, a radio frequency device 112, a baseband device 113, a processor 114 and a memory 115.
  • the antenna 111 is connected to the radio frequency device 112.
  • the radio frequency device 112 receives information through the antenna 111 and sends the received information to the baseband device 113.
  • the baseband device 113 processes the information to be sent and sends it to the radio frequency device 112 .
  • the radio frequency device 112 processes the received information and sends it out through the antenna 111 .
  • the method executed by the network-side device in the above embodiment may be implemented in the baseband device 113, which includes a baseband processor.
  • the baseband device 113 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG11 , wherein one of the chips is, for example, a baseband processor, which is connected to the memory 115 through a bus interface to call a program in the memory 115 and execute the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 116, which is, for example, a common public radio interface (CPRI).
  • a network interface 116 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1100 of the embodiment of the present application also includes: instructions or programs stored in the memory 115 and executable on the processor 114.
  • the processor 114 calls the instructions or programs in the memory 115 to execute the methods executed by the modules shown in Figure 6 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • each process of the embodiment of the method for determining the uplink transmission time described above is implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned embodiment of the method for determining the uplink transmission time, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • An embodiment of the present application further provides a computer program/program product, which is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the various processes of the above-mentioned embodiment of the method for determining the uplink transmission time, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a system for determining an uplink transmission time, comprising: a terminal and a network side device, wherein the terminal can be used to execute the steps of the method for determining the uplink transmission time applied to the terminal side as described above, and the network side device can be used to execute the steps of the method for determining the uplink transmission time applied to the network side device as described above.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行传输时间的确定方法、终端及网络侧设备,属于通信技术领域。所述方法包括:从网络侧设备接收一个或多个服务小区对应的参数配置信息;所述参数配置信息包括定时提前组TAG标识,所述TAG标识关联有各自的传输对象;根据所述参数配置信息,在所述一个或多个服务小区对应的传输对象中确定所述终端所在的目标服务小区对应的目标传输对象;根据与所述目标传输对象相关联的目标TAG标识,确定所述目标传输对象的上行传输时间。

Description

上行传输时间的确定方法、终端及网络侧设备
交叉引用
本申请要求在2022年11月07日提交中国专利局、申请号为202211385356.2、名称为“上行传输时间的确定方法、终端及网络侧设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种上行传输时间的确定方法、终端及网络侧设备。
背景技术
在第三代合作伙伴计划(Third Generation Partnership Project,3GPP)版本16(Release 16,R16)中引入了多发送和接收点(transmission and reception point,TRP)传输技术来提升数据传输的吞吐量。为了保证上行传输的正交性,避免小区内(intra-cell)干扰,基站要求来自同一子帧但不同频域资源的不同终端(User Equipment,UE)的信号到达基站的时间基本上是对齐的。基站只要在循环前缀(Cyclic Prefix,CP)范围内接收到UE所发送的上行数据,就能够正确地解码上行数据。因此,上行同步要求来自同一子帧的不同UE的信号到达基站的时间都落在CP之内。定时提前量(Timing Advance,TA)用于UE上行传输,目的是确保UE上行数据包在希望的时间内到达基站。具体的实现可以简单概括为基站测量上行信号,预估由于距离引起的射频传输时间的延迟,给UE发送定时提前命令(Timing Advance Command,TAC),通知UE上行传输提前发送相应的时间量。
相关技术中,在多TRP场景中,发往不同TRP的上行传输采用相同的TA。考虑到不同TRP的位置差异较大,共用一个上行传输时间可能使得不同用户到达一个TRP的上行传输时间差超出CP,从而造成用户间干扰,进而降低上行传输的性能,无法达到多TRP传输提升吞吐量的目的。
发明内容
本申请实施例提供一种上行传输时间的确定方法、终端及网络侧设备,能够解决现有技术中多TRP场景中发往不同TRP的上行传输采用相同的TA,从而导致上行传输性能较差的问题。
第一方面,提供了一种上行传输时间的确定方法,应用于终端,该方法包括:
从网络侧设备接收一个或多个服务小区对应的参数配置信息;所述参数配置信息包括 定时提前组TAG标识,所述TAG标识关联有各自的传输对象;
根据所述参数配置信息,在所述一个或多个服务小区对应的传输对象中确定所述终端所在的目标服务小区对应的目标传输对象;
根据与所述目标传输对象相关联的目标TAG标识,确定所述目标传输对象的上行传输时间。
第二方面,提供了一种上行传输时间的确定方法,应用于网络侧设备,该方法包括:
向终端发送一个或多个服务小区对应的参数配置信息;所述参数配置信息包括TAG标识,所述TAG标识关联有各自的传输对象;所述参数配置信息用于确定目标服务小区对应的目标传输对象的上行传输时间。
第三方面,提供了一种终端,包括:
第一接收模块,用于从网络侧设备接收一个或多个服务小区对应的参数配置信息;所述参数配置信息包括定时提前组TAG标识,所述TAG标识关联有各自的传输对象;
第一确定模块,用于根据所述参数配置信息,在所述一个或多个服务小区对应的传输对象中确定所述终端所在的目标服务小区对应的目标传输对象;
第二确定模块,用于根据与所述目标传输对象相关联的目标TAG标识,确定所述目标传输对象的上行传输时间。
第四方面,提供了一种网络侧设备,包括:
第一发送模块,用于向终端发送一个或多个服务小区对应的参数配置信息;所述参数配置信息包括TAG标识,所述TAG标识关联有各自的传输对象;所述参数配置信息用于确定目标服务小区对应的目标传输对象的上行传输时间。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于从网络侧设备接收一个或多个服务小区对应的参数配置信息;所述参数配置信息包括定时提前组TAG标识,所述TAG标识关联有各自的传输对象;所述处理器用于根据所述参数配置信息,在所述一个或多个服务小区对应的传输对象中确定所述终端所在的目标服务小区对应的目标传输对象;根据与所述目标传输对象相关联的目标TAG标识,确定所述目标传输对象的上行传输时间。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于配置一个或多个服务小区对应的参数配置信息;所述通信接口用于向终端发送所述参数配置信息;所述参数配置信息包括TAG标识,所述TAG标识关联有各自的传输对象;所述 参数配置信息用于确定目标服务小区对应的目标传输对象的上行传输时间。
第九方面,提供了一种上行传输时间的确定系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的上行传输时间的确定方法的步骤,所述网络侧设备可用于执行如第二方面所述的上行传输时间的确定方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的上行传输时间的确定方法的步骤,或者实现如第二方面所述的上行传输时间的确定方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的上行传输时间的确定方法,或实现如第二方面所述的上行传输时间的确定方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的上行传输时间的确定方法的步骤,或实现如第二方面所述的上行传输时间的确定方法的步骤。
在本申请实施例中,通过从网络侧设备接收一个或多个服务小区对应的参数配置信息,该参数配置信息包括TAG标识,TAG标识关联有各自的传输对象,根据参数配置信息,在一个或多个服务小区对应的传输对象中确定终端所在的目标服务器小区对应的目标传输对象,进而根据与目标传输对象相关联的目标TAG标识,确定目标传输对象的上行传输时间。可见,该技术方案能够由网络侧设备预先配置一个或多个服务小区对应的参数配置信息并发送给终端,从而使终端能够根据所在目标服务小区对应的TAG标识,动态确定目标传输对象的上行传输时间,而并非所有的传输对象都采用相同的上行传输时间,且能够确保多TRP的上行传输时间准确,提升上行传输的性能。
附图说明
图1是根据本申请一实施例的一种无线通信系统的框图;
图2是根据本申请一实施例的一种TAG和小区之间的关联关系示意图;
图3是根据本申请一实施例的一种上行传输时间的确定方法的示意性流程图;
图4(a)-4(c)是根据本申请一实施例的一种TAG和传输对象之间的关联关系示意图;
图5是根据本申请另一实施例的一种上行传输时间的确定方法的示意性流程图;
图6是根据本申请再一实施例的一种上行传输时间的确定方法的示意性流程图;
图7是根据本申请一实施例的一种终端的示意性框图;
图8是根据本申请一实施例的一种网络侧设备的示意性框图;
图9是根据本申请一实施例的一种通信设备的示意性框图;
图10是根据本申请另一实施例的一种终端的示意性框图;
图11是根据本申请另一实施例的一种网络侧设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VehicleUser Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请 实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所属领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的上行传输时间的确定方法进行详细地说明。
首先对定时提前组(time advance group,TAG)进行解释说明。
TAG应用于载波聚合场景,多个载波引入的时延不同,或者是不同载波的主小区(Primary Cell,PCell)和辅小区(Secondary Cell,SCell)的位置差异较大,此时不能用统一的TA来进行处理。因此引入TAG的概念,同一个TAG对应的TA相同,不同TAG对应不同的TA值。图2是根据本申请一实施例的一种TAG和小区之间的关联关系示意图。如图2所示,主小区组(Master Cell group,MCG)包括主小区PCell、辅小区SCell1、辅小区SCell2和辅小区SCell3。辅小区组(Secondary Cell group,SCG)包括主辅小区PSCell、辅小区SCell4、辅小区SCell5和辅小区Scell6。主小区定时提前量组(PCell TAG,PTAG)为包含主小区的TAG,辅小区定时提前量组(SCell TAG,STAG)为包含辅小区的TAG。在图2所示关联关系中,在MCG内,PTAG关联主小区Pcell和辅小区SCell1,STAG关联辅小区SCell2和辅小区SCell3。在SCG内,PTAG关联主辅小区PScell和辅小区Scell4,STAG关联辅小区Scell5和辅小区Scell6。
图3是根据本申请一实施例的一种上行传输时间的确定方法的示意性流程图。如图3所示,该方法应用于终端,包括以下步骤S302-S306:
S302,从网络侧设备接收一个或多个服务小区对应的参数配置信息;参数配置信息包括TAG标识,TAG标识关联有各自的传输对象。
其中,每个服务小区配置有一个或多个TRP。
每个TAG标识分别关联一个或多个发送至TRP的传输对象。TAG标识和传输对象之间的关联关系可通过以下几种方式明确。一种方式:在每个服务小区对应的参数配置信息中,每个TAG标识关联有一个或多个发送至TRP的传输对象。另一种方式:服务小区对应的参数配置信息中仅包括TAG标识,网络侧设备通过其它配置信息配置与每个TAG标识关联的传输对象,其中,其它配置信息的配置信息不做限定。再一种方式:服务小区对应的参数配置信息中仅包括TAG标识,并在网络侧设备和终端的通信协议中约定每个 TAG标识关联的传输对象。当然,除上述列举的几种方式之外,还可通过其它方式来明确TAG标识和传输对象之间的关联关系,本申请实施例对此不做限定。
可选地,传输对象可包括以下至少一项:控制资源集合池索引(如coresetpoolindex0、coresetpoolindex 1)、信道探测参考信号(Sounding Reference Signal,SRS)资源集、传输配置指示(Transmission Configuration Indicator,TCI)状态、TCI状态池、同步信号块(Synchronization Signaling Block,SSB)分组、物理小区标识(Physical Cell ID,PCI)、天线端口组。
可选地,针对每个服务小区的参数配置信息,可包括以下几种情况:参数配置信息包括两个TAG标识,每个TAG标识分别关联一个上行传输对象;或者,参数配置信息包括一个TAG标识,TAG标识关联两个传输对象;或者,参数配置信息包括一个TAG标识,TAG标识关联一个传输对象。
若网络侧设备配置的参数配置信息中配置了TAG标识与传输对象之间的关联关系,则针对每个服务小区的参数配置信息,TAG标识与传输对象之间的关联关系可以包括以下a1-a3中的任一种:
a1,参数配置信息包括两个TAG标识和两个传输对象,其中,每个TAG标识分别关联一个上行传输对象。
如图4(a)所示,某一服务小区的参数配置信息中包括两个TAG标识,即TAG0和TAG1,每个TAG标识分别关联一个传输对象,其中,TAG0关联coresetpoolindex0,TAG1关联coresetpoolindex1。
a2,参数配置信息包括一个TAG标识及其关联的两个传输对象。
如图4(b)所示,某一服务小区的参数配置信息中包括一个TAG标识,即TAG0,且TAG0关联两个传输对象,分别是coresetpoolindex0和coresetpoolindex1。
a3,参数配置信息包括一个TAG标识及其关联的一个传输对象。
如图4(c)所示,某一服务小区的参数配置信息中包括一个TAG标识,即TAG2,且TAG2仅关联一个传输对象,即coresetpoolindex1。
可选地,多个服务小区配置有相同的TAG标识,相同的TAG标识关联相同的传输对象相同。例如,从图4(a)-4(c)可看出,与TAG0关联的传输对象均包括coresetpoolindex0。
S304,根据参数配置信息,在一个或多个服务小区对应的传输对象中确定终端所在的目标服务小区对应的目标传输对象。
如上所述,目标服务小区对应的目标传输对象可包括一个或多个,在确定出目标服务小区对应的目标传输对象之后,针对每个目标传输对象,分别确定目标传输对象的上行传输时间。
S306,根据与目标传输对象相关联的目标TAG标识,确定目标传输对象的上行传输时间。
在本申请实施例中,通过从网络侧设备接收一个或多个服务小区对应的参数配置信息, 该参数配置信息包括TAG标识,各TAG标识关联有各自的传输对象,根据参数配置信息,在一个或多个服务小区对应的传输对象中确定终端所在的目标服务器小区对应的目标传输对象,进而根据与目标传输对象相关联的目标TAG标识,确定目标传输对象的上行传输时间。可见,该技术方案能够由网络侧设备预先配置一个或多个服务小区对应的参数配置信息并发送给终端,从而使终端能够根据所在目标服务小区对应的TAG标识,动态确定目标传输对象的上行传输时间,而并非所有的传输对象都采用相同的上行传输时间,且能够确保多TRP的上行传输时间准确,提升上行传输的性能。
在一个实施例中,每个TAG标识关联一个下行帧时间。在根据与目标传输对象相关联的目标TAG标识,确定目标传输对象的上行传输时间时,可执行为以下步骤A1-A3:
步骤A1,确定目标TAG标识对应的上行时间调整量。
步骤A2,根据目标TAG标识对应的下行帧时间,确定目标TAG标识对应的上行参考时间。
其中,步骤A1和步骤A2的执行顺序不做限定。比如,除按照本实施例示出的先确定上行时间调整量、然后再确定上行参考时间的顺序之外,还可以先确定上行参考时间,然后再确定上行时间调整量。或者,可以同时确定上行参考时间和上行时间调整量。
步骤A3,根据上行参考时间和上行时间调整量,确定目标传输对象的上行传输时间。
下面详细说明如何确定目标TAG标识对应的上行参考时间以及上行时间调整量。
在一个实施例中,执行步骤A2,即确定上行参考时间时,首先根据目标TAG标识,在第一服务小区中确定参考小区;然后将参考小区对应的传输对象的下行帧时间确定为目标TAG标识对应的上行参考时间。其中,目标TAG标识指示的目标TAG对应多个第一服务小区。这样能确保TAG标识对应的TAG确定出准确的与目标传输对象对应的上行参考时间。
可选地,将配置有两个TAG标识、且每个TAG标识分别关联一个传输对象的第一服务小区确定为参考小区。或者,将仅配置有一个TAG标识的第一服务小区确定为参考小区。这样,终端只需要测量该服务小区(即参考小区)对应的下行时间作为上行参考时间,而不需要区分目标对象后再确定上行参考时间,从而降低终端实现复杂度。
可选地,将配置有两个TAG标识、且每个TAG标识分别关联一个传输对象的第一服务小区确定为参考小区时,第一服务小区(或参考小区)对应的传输对象的下行帧时间基于第一服务小区对应的传输对象的下行链路(Downlink,DL)参考信号或DL信道测量得到。
其中,第一服务小区对应的传输对象的DL参考信号或DL信道可由网络侧设备配置或指示。基于此,终端可基于网络侧设备的配置信息或指示信息确定第一服务小区对应的传输对象的DL参考信号或DL信道。可选地,终端接收网络侧设备发送的无线资源控制(Radio Resource Control,RRC)配置信息,RRC配置信息中携带有各服务小区对应的传输对象的DL参考信号或DL信道信息。终端根据RRC配置信息,即可确定出第一服务 小区对应的传输对象的DL参考信号或DL信道。
在一个实施例中,Intra-cell mTRP配置下,即服务小区内配置有多个TRP。若终端所在的目标服务小区内配置有多个TRP,目标服务小区为配置有两个TAG标识的主小区。这种情况下,目标服务小区配置的两个TAG标识中,每个TAG标识对应的TAG均被配置为第一类TAG,或者,其中一个TAG标识对应的TAG被配置为第一类TAG。第一类TAG可以是PTAG,即包括主小区的TAG。
可选地,目标服务小区对应的两个TAG标识中,在每个TAG标识对应的TAG均为第一类TAG的情况下,若第一类TAG失去同步,则释放与第一类TAG关联的传输对象的上行传输。在其中一个TAG标识对应的TAG被配置为第一类TAG的情况下,若第一类TAG失去同步,则释放终端对应的所有上行传输。
本实施例中,每个TAG都会配置一个时间同步计时器(Time Alignment Timer,TAT),用于控制TAG内服务小区的同步时间长度,当终端收到TAC时就会启动TAT,当TAT过期时终端不能进行上行传输。本实施例中所述的“失去同步”,可理解为对应的TAT过期。第一类TAG失去同步,即第一类TAG对应的TAT过期。
可选地,目标服务小区对应的两个TAG标识中,关联的传输对象为coresetpoolindex 0的TAG标识对应的TAG为第一类TAG。
可选地,网络侧设备可对第一类TAG进行配置,终端可根据网络侧设备的配置信息来确定两个TAG标识中哪个TAG标识对应的TAG为第一类TAG。基于此,终端可接收网络侧设备发送的RRC配置信息,RRC配置信息中携带有第一类TAG对应的TAG标识信息,终端可根据网络侧设备发送的RRC配置信息,确定两个TAG标识中的其中一个TAG标识对应的TAG为第一类TAG。
在一个实施例中,Inter-cell mTRP配置下,即服务小区之间配置有多个传输对象。终端所在的目标服务小区为配置有两个TAG标识的主小区。这种情况下,终端可确定与目标传输对象(即终端所在的目标服务小区对应的传输对象)相关联的TAG标识对应的TAG为第一类TAG,第一类TAG为包括主小区的TAG。目标服务小区的传输对象不关联PCI标识。
可选地,若第一类TAG失去同步,则释放终端对应的所有上行传输。第一类TAG失去同步,即第一类TAG对应的TAT过期。
在一个实施例中,终端确定目标TAG标识对应的上行时间调整量时,可执行为以下步骤B1-B3:
步骤B1,接收与目标传输对象关联的物理下行控制信道(Physical Downlink Control Channel,PDCCH),PDCCH携带目标传输对象的对象标识和/或与目标传输对象相关联的目标TAG标识。
终端接收到PDCCH,也就触发了随机接入信道(Random Access CHannel,RACH)流程,从而在RACH过程中接收终端侧设备配置的上行时间调整量。
步骤B2,基于PDCCH,向网络侧设备发送目标传输对象对应的第一信息。第一信息用于确定目标传输对象对应的上行时间调整量。
可选地,网络侧设备基于第一信息确定目标传输对象对应的上行时间调整量,并将上行时间调整量携带于随机接入响应(Random Access Response,RAR)中发送至终端。
其中,第一信息可以是随机信号前导码preamble。网络侧设备通过测量preamble即可确定上行时间调整量。需要说明的是,终端发送给网络侧设备的第一信息不仅仅局限于preamble,还可以是其它任何类型的信息。理论上讲,终端发送的任何信号都可用于测量上行时间调整量,例如信道探测参考信号(Sounding Reference Signal,SRS)、解调参考信号(Demodulation Reference Signal,DM-RS)、信道质量指示(Channel Quality Indicator,CQI)、确认(Acknowledgement,ACK)、非确认(Negative Acknowledgement,NACK)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)等。
步骤B3,接收网络侧设备发送的RAR,并基于RAR确定上行时间调整量。
在一个实施例中,PDCCH对应的准共址(Quasi Co-Location,QCL)关系基于type1公共搜索空间(Common Search Space,CSS)的QCL关系确定,或者,基于与第一type1CSS关联相同传输对象的PDCCH确定。
在一个实施例中,在第一条件下,PDCCH的QCL关系基于PDCCH对应的type1CSS的QCL关系确定。其中,第一条件包括:PDCCH来自不属于主小区的第二服务小区,或者,PDCCH来自主小区的关联PCI对应的第三服务小区。
在一个实施例中,若目标服务小区对应的目标传输对象包括两个,且两个目标传输对象的上行传输时间之间重叠,则终端丢弃两个目标传输对象中的第一传输对象的上行传输。
其中,第一传输对象的上行传输可包括以下至少一项:关联特定控制资源集合池索引(如coresetpoolindex0)的上行传输、上行传输时间较晚的上行传输。
在一个实施例中,终端在丢弃两个目标传输对象中的第一传输对象的上行传输之前,可向网络侧设备上报终端具备针对第一传输对象的上行传输的丢弃能力。
若终端未上报具备针对第一传输对象的上行传输的丢弃能力,则网络侧设备可通过网络调度保证关联不同TAG标识的上行传输不能重叠。可选地,网络侧设备通过网络调度保证关联不同TAG标识的上行传输之间间隔一定时间。例如,关联不同TAG标识的上行传输之间间隔大于或等于预设阈值,该预设阈值可由终端上报给网络侧设备,也可由网络侧设备配置在RRC中,或者还可以基于终端与网络侧设备之间的协议预定义。
本实施例中,若目标服务小区对应的目标传输对象包括两个,则两个目标传输对象的上行传输之间间隔大于或等于预设阈值,该预设阈值可由终端上报给网络侧设备,也可由网络侧设备配置在RRC中,或者还可以基于终端与网络侧设备之间的协议预定义。
下表1示意性地列举了几种子载波间隔下的预设阈值。
表1

其中,FR1(Frequency range 1)、FR2(Frequency range2)表示5G新无线(New Radio,NR)规定的两个频率范围。
可选地,预设阈值还可以是一个正交频分复用(Orthogonal frequency division multiplex,OFDM)符号。
图5是根据本申请另一实施例的一种上行传输时间的确定方法的示意性流程图。如图5所示,该方法应用于网络侧设备,包括以下步骤S502:
S502,向终端发送一个或多个服务小区对应的参数配置信息,参数配置信息包括TAG标识,TAG标识关联有各自的传输对象,参数配置信息用于确定目标服务小区对应的目标传输对象的上行传输时间。
其中,每个TAG标识分别关联一个或多个发送至TRP的传输对象。TAG标识和传输对象之间的关联关系可通过以下几种方式明确。一种方式:在每个服务小区对应的参数配置信息中,每个TAG标识关联有一个或多个发送至TRP的传输对象。另一种方式:服务小区对应的参数配置信息中仅包括TAG标识,网络侧设备通过其它配置信息配置与每个TAG标识关联的传输对象,其中,其它配置信息的配置信息不做限定。再一种方式:服务小区对应的参数配置信息中仅包括TAG标识,并在网络侧设备和终端的通信协议中约定每个TAG标识关联的传输对象。当然,除上述列举的几种方式之外,还可通过其它方式来明确TAG标识和传输对象之间的关联关系,本申请实施例对此不做限定。
本申请实施例中,网络侧设备通过预先配置一个或多个服务小区对应的参数配置信息,并将一个或多个服务小区对应的参数配置信息发送给终端,参数配置信息包括TAG标识,各TAG标识关联有各自的传输对象,使得终端能够根据所在目标服务小区对应的TAG标识,动态确定目标传输对象的上行传输时间,而并非所有的传输对象都采用相同的上行传输时间,且能够确保多TRP的上行传输时间准确,提升上行传输的性能。
在一个实施例中,传输对象包括以下至少一项:资源集合池索引(如coresetpoolindex 0、coresetpoolindex 1)、SRS资源集、TCI状态、TCI状态池、SSB分组、PCI、天线端口组。
在一个实施例中,针对每个服务小区的参数配置信息,可包括以下几种情况:参数配置信息包括两个TAG标识,每个TAG标识分别关联一个上行传输对象;或者,参数配置信息包括一个TAG标识,TAG标识关联两个传输对象;或者,参数配置信息包括一个TAG标识,TAG标识关联一个传输对象。
若网络侧设备配置的参数配置信息中配置了TAG标识与传输对象之间的关联关系,则针对每个服务小区的参数配置信息,TAG标识与传输对象之间的关联关系可以包括以 下a1-a3中的任一种:
a1,参数配置信息包括两个TAG标识和两个传输对象,其中,每个TAG标识分别关联一个上行传输对象。
如图4(a)所示,某一服务小区的参数配置信息中包括两个TAG标识,即TAG0和TAG1,每个TAG标识分别关联一个传输对象,其中,TAG0关联coresetpoolindex0,TAG1关联coresetpoolindex1。
a2,参数配置信息包括一个TAG标识及其关联的两个传输对象。
如图4(b)所示,某一服务小区的参数配置信息中包括一个TAG标识,即TAG0,且TAG0关联两个传输对象,分别是coresetpoolindex0和coresetpoolindex1。
a3,参数配置信息包括一个TAG标识及其关联的一个传输对象。
在一个实施例中,多个服务小区配置有相同的TAG标识,相同的TAG标识关联相同的传输对象相同。
在一个实施例中,每个TAG标识关联一个下行帧时间。
在一个实施例中,针对配置有两个TAG标识的服务小区,网络侧设备指示两个TAG标识中的其中一个TAG标识对应的TAG为第一类TAG;第一类TAG为包括主小区的TAG。
在一个实施例中,网络侧设备指示两个TAG标识中的其中一个TAG标识对应的TAG为第一类TAG时,若传输对象为coresetpoolindex 0,则指示传输对象关联的TAG标识对应的TAG为第一类TAG。
在一个实施例中,网络侧设备向终端发送RRC配置信息,该RRC配置信息携带以下至少一项信息:各服务小区对应的传输对象的DL参考信号或DL信道;第一类TAG的指示信息(即指示哪个TAG标识对应的TAG为第一类TAG);同一服务小区对应的两个传输对象的上行传输之间间隔的最小阈值,即保证同一服务小区对应的两个传输对象的上行传输之间不能重叠。
在一个实施例中,网络侧设备为每个TAG标识配置相关联的上行时间调整量。具体地,首先,网络侧设备向终端发送与目标传输对象关联的PDCCH,该PDCCH携带目标传输对象的对象标识和/或目标传输对象关联的目标TAG标识,然后,网络侧设备接收终端发送的目标传输对象对应的第一信息,进而根据第一信息确定目标传输对象对应的上行时间调整量,并将上行时间调整量携带于RAR中发送至终端。
其中,第一信息可以是preamble。网络侧设备通过测量preamble即可确定上行时间调整量。需要说明的是,终端发送给网络侧设备的第一信息不仅仅局限于preamble,还可以是其它任何类型的信息。理论上讲,终端发送的任何信号都可用于测量上行时间调整量,例如SRS、DM-RS、CQI、ACK、NACK、PUSCH等。
在一个实施例中,网络侧设备接收终端上报的能力,该能力包括:在服务小区对应的传输对象包括两个、且两个传输对象的上行传输时间之间重叠的情况下,针对第一传输对象的上行传输的丢弃能力。其中,第一传输对象的上行传输为满足丢弃条件的上行传输, 丢弃条件包括以下至少一项:关联特定控制资源集合池索引(如coresetpoolindex 0)、上行传输时间较晚。
图6是根据本申请再一实施例的一种上行传输时间的确定方法的示意性流程图。如图6所示,该方法应用于上行传输时间的确定系统中,该系统包括终端和网络侧设备,包括以下步骤S602-S610:
S602,网络侧设备向终端发送一个或多个服务小区对应的参数配置信息,参数配置信息包括TAG标识,TAG标识关联有各自的传输对象。
其中,TAG标识以及传输对象的关联关系以及明确方式已在上述实施例中详细说明,此处不再赘述。
S604,终端接收网络侧设备发送的一个或多个服务小区对应的参数配置信息。
S606,终端根据参数配置信息,在一个或多个服务小区对应的传输对象中确定终端所在的目标服务小区对应的目标传输对象。
S608,终端根据与目标传输对象相关联的目标TAG标识,确定目标传输对象的上行传输时间。
其中,上行传输时间的确定方式已在上述实施例中详细说明,此处不再赘述。
S610,终端根据目标传输对象的上行传输时间,将目标传输对象传输至对应的TRP。
在本申请实施例中,网络侧设备预先配置一个或多个服务小区对应的参数配置信息并发送给终端,终端通过接收一个或多个服务小区对应的参数配置信息,并根据参数配置信息确定终端所在目标服务小区对应的TAG标识,进而根据目标服务小区对应的TAG标识动态确定目标传输对象的上行传输时间,而并非所有的传输对象都采用相同的上行传输时间,且能够确保多TRP的上行传输时间准确,提升上行传输的性能。
本申请实施例提供的上行传输时间的确定方法,执行主体可以为终端。本申请实施例中以终端执行上行传输时间的确定方法为例,说明本申请实施例提供的终端。
图7是根据本申请一实施例的一种终端的示意性框图。如图7所示,包括:
第一接收模块71,用于从网络侧设备接收一个或多个服务小区对应的参数配置信息;所述参数配置信息包括定时提前组TAG标识,所述TAG标识关联有各自的传输对象;
第一确定模块72,用于根据所述参数配置信息,在所述一个或多个服务小区对应的传输对象中确定所述终端所在的目标服务小区对应的目标传输对象;
第二确定模块73,用于根据与所述目标传输对象相关联的目标TAG标识,确定所述目标传输对象的上行传输时间。
在一个实施例中,所述传输对象包括以下至少一项:控制资源集合池索引、信道探测参考信号SRS资源集、传输配置指示TCI状态、TCI状态池、同步信号块SSB分组、物理小区标识PCI。
在一个实施例中,所述参数配置信息包括两个所述TAG标识,每个所述TAG标识分别关联一个所述上行传输对象;或者,
所述参数配置信息包括一个所述TAG标识,所述TAG标识关联两个所述传输对象;或者,
所述参数配置信息包括一个所述TAG标识,所述TAG标识关联一个所述传输对象。
在一个实施例中,所述多个服务小区配置有相同的所述TAG标识,所述相同的所述TAG标识关联相同的所述传输对象。
在一个实施例中,每个TAG标识关联一个下行帧时间;
所述第二确定模块73包括:
第一确定单元,用于根据所述目标TAG标识对应的下行帧时间,确定所述目标TAG标识对应的上行参考时间;
第二确定单元,用于确定所述目标TAG标识对应的上行时间调整量;
第三确定单元,用于根据所述上行参考时间和所述上行时间调整量,确定所述目标传输对象的所述上行传输时间。
在一个实施例中,所述第一确定单元还用于:
根据所述目标TAG标识,在第一服务小区中确定参考小区;其中,所述目标TAG标识指示的目标TAG对应多个第一服务小区;
将所述参考小区对应的传输对象的下行帧时间确定为所述目标TAG标识对应的上行参考时间。
在一个实施例中,所述第一确定单元还用于:
将配置有两个所述TAG标识、且每个所述TAG标识分别关联一个所述传输对象的所述第一服务小区确定为所述参考小区;
或者,
将仅配置有一个所述TAG标识的所述第一服务小区确定为所述参考小区。
在一个实施例中,所述目标服务小区内配置有多个所述传输对象;所述目标服务小区为配置有两个所述TAG标识的主小区;
其中,每个所述TAG标识对应的TAG均被配置为第一类TAG,或者,其中一个所述TAG标识对应的TAG被配置为所述第一类TAG;所述第一类TAG为包括主小区的TAG。
在一个实施例中,所述目标服务小区对应的两个所述TAG标识中,每个所述TAG标识对应的TAG均为第一类TAG;所述终端还包括:
第一释放模块,用于若所述第一类TAG失去同步,则释放与所述第一类TAG关联的所述传输对象的上行传输。
在一个实施例中,所述目标服务小区对应的两个所述TAG标识中,其中一个所述TAG标识对应的TAG被配置为所述第一类TAG;所述终端还包括:
第二释放模块,用于若所述第一类TAG失去同步,则释放所述终端对应的所有上行传输。
在一个实施例中,所述终端还包括:
第四确定模块,用于根据所述网络侧设备发送的RRC配置信息,确定两个所述TAG标识中的其中一个TAG标识对应的TAG为所述第一类TAG。
在一个实施例中,各所述服务小区之间配置有多个TRP;所述目标服务小区为配置有两个所述TAG标识的主小区;
所述终端还包括:
第五确定模块,用于确定与目标传输对象相关联的所述TAG标识对应的TAG为第一类TAG;所述第一类TAG为包括主小区的TAG。
在一个实施例中,所述终端还包括:
第三释放模块,用于若所述第一类TAG失去同步,则释放所述终端对应的所有上行传输。
在一个实施例中,所述所述第一确定单元还用于:
接收与所述目标传输对象关联的物理下行控制信道PDCCH;所述PDCCH携带所述目标传输对象的对象标识和/或所述目标TAG标识;
基于所述PDCCH,向所述网络侧设备发送所述目标传输对象对应的第一信息;所述第一信息用于确定所述目标传输对象对应的所述上行时间调整量;
接收所述网络侧设备发送的随机接入响应RAR,所述RAR确定携带有所述上行时间调整量。
在一个实施例中,所述PDCCH的准共址QCL关系基于所述PDCCH对应的type1公共搜索空间CSS的QCL关系确定,或者,基于与所述type1CSS关联相同传输对象的PDCCH确定。
在一个实施例中,在第一条件下,所述PDCCH的QCL关系基于所述PDCCH对应的所述type1CSS的所述QCL关系确定;
所述第一条件包括:所述PDCCH来自不属于主小区的第二服务小区,或者,所述PDCCH来自所述主小区的关联PCI对应的第三服务小区。
在一个实施例中,所述终端还包括:
若所述目标服务小区对应的所述目标传输对象包括两个,且两个所述目标传输对象的上行传输时间之间重叠,则丢弃两个所述目标传输对象中的第一传输对象的上行传输。
在一个实施例中,所述第一传输对象的上行传输包括以下至少一项:
关联特定控制资源集合池索引的上行传输;
上行传输时间较晚的上行传输。
在一个实施例中,所述终端还包括:
上报模块,用于所述丢弃两个所述目标传输对象中的第一传输对象的上行传输之前,向所述网络侧设备上报所述终端具备针对所述第一传输对象的上行传输的丢弃能力。
在一个实施例中,若所述目标服务小区对应的所述目标传输对象包括两个,则两个所述目标传输对象的上行传输之间间隔大于或等于预设阈值;
所述预设阈值由所述终端上报给所述网络侧设备,或者,所述预设阈值由RRC配置,或者,所述预设阈值基于所述终端与所述网络侧设备之间的协议预定义。
在本申请实施例中,通过从网络侧设备接收一个或多个服务小区对应的参数配置信息,该参数配置信息包括TAG标识,TAG标识关联有各自的传输对象,根据参数配置信息,在一个或多个服务小区对应的传输对象中确定终端所在的目标服务器小区对应的目标传输对象,进而根据与目标传输对象相关联的目标TAG标识,确定目标传输对象的上行传输时间。可见,该技术方案能够由网络侧设备预先配置一个或多个服务小区对应的参数配置信息并发送给终端,从而使终端能够根据所在目标服务小区对应的TAG标识,动态确定目标传输对象的上行传输时间,而并非所有的传输对象都采用相同的上行传输时间,且能够确保多TRP的上行传输时间准确,提升上行传输的性能。
本申请实施例中的终端可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的终端能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图8是根据本申请一实施例的一种网络侧设备的示意性框图。如图8所示,包括:
第一发送模块81,用于向终端发送一个或多个服务小区对应的参数配置信息;所述参数配置信息包括TAG标识,所述TAG标识关联有各自的传输对象;所述参数配置信息用于确定目标服务小区对应的目标传输对象的上行传输时间。
在一个实施例中,所述传输对象包括以下至少一项:资源集合池索引、SRS资源集、TCI状态、TCI状态池、SSB分组、PCI。
在一个实施例中,所述参数配置信息包括两个所述TAG标识,每个所述TAG标识分别关联一个所述上行传输对象;或者,
所述参数配置信息包括一个所述TAG标识,所述TAG标识关联两个所述传输对象;或者,
所述参数配置信息包括一个所述TAG标识,所述TAG标识关联一个所述传输对象。
在一个实施例中,所述多个服务小区配置有相同的所述TAG标识,所述相同的所述TAG标识关联相同的所述传输对象。
在一个实施例中,每个TAG标识关联一个下行帧时间。
在一个实施例中,所述网络侧设备还包括:
指示模块,用于针对配置有两个所述TAG标识的所述服务小区,指示两个所述TAG标识中的其中一个所述TAG标识对应的TAG为第一类TAG;所述第一类TAG为包括主小区的TAG。
在一个实施例中,所述网络侧设备还包括:
第二发送模块,用于向所述终端发送RRC配置信息;
其中,所述RRC配置信息携带以下至少一项:
各所述服务小区对应的所述传输对象的DL参考信号或DL信道;
所述第一类TAG的指示信息;
同一服务小区对应的两个传输对象的上行传输之间间隔的最小阈值。
在一个实施例中,所述网络侧设备还包括:
第三发送模块,用于向所述终端发送与目标传输对象关联的PDCCH;所述PDCCH携带所述目标传输对象的对象标识和/或所述目标传输对象关联的目标TAG标识;
第二接收模块,用于接收所述终端发送的所述目标传输对象对应的第一信息;
第六确定模块,用于根据所述第一信息,确定所述目标传输对象对应的上行时间调整量,并将所述上行时间调整量携带于RAR中发送至所述终端。
在一个实施例中,所述网络侧设备还包括:
第三接收模块,用于接收所述终端上报的能力;所述能力包括:在所述服务小区对应的所述传输对象包括两个、且两个所述传输对象的上行传输时间之间重叠的情况下,针对第一传输对象的上行传输的丢弃能力;所述第一传输对象的上行传输为满足丢弃条件的上行传输;
其中,所述丢弃条件包括以下至少一项:关联特定控制资源集合池索引、上行传输时间较晚。
本申请实施例中,网络侧设备通过预先配置一个或多个服务小区对应的参数配置信息,并将一个或多个服务小区对应的参数配置信息发送给终端,参数配置信息包括TAG标识,TAG标识关联有各自的传输对象,使得终端能够根据所在目标服务小区对应的TAG标识,动态确定目标传输对象的上行传输时间,而并非所有的传输对象都采用相同的上行传输时间,且能够确保多TRP的上行传输时间准确,提升上行传输的性能。
本申请实施例中的网络侧设备可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是网络侧设备,也可以为除终端之外的其他设备。示例性的,网络侧设备可以包括但不限于上述所列举的网络侧设备的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的网络侧设备能够实现图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901和存储器902,存储器902上存储有可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述上行传输时间的确定方法实施例的各个步骤,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序 或指令被处理器901执行时实现上述上行传输时间的确定方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口用于接收网络侧设备发送的一个或多个服务小区对应的参数配置信息;所述参数配置信息包括相互关联的定时提前组TAG标识以及传输对象;所述处理器用于根据所述参数配置信息,确定所述终端所在的目标服务小区对应的目标传输对象;根据与所述目标传输对象相关联的目标TAG标识,确定所述目标传输对象的上行传输时间。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理单元10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001接收来自网络侧设备的下行数据后,可以传输给处理器1010进行处理;另外,射频单元1001可以向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM) 或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器。
处理器1010可包括一个或多个处理单元;可选的,处理器1010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,射频单元1001,用于从网络侧设备接收一个或多个服务小区对应的参数配置信息;所述参数配置信息包括定时提前组TAG标识,所述TAG标识关联有各自的传输对象。处理器1010,用于根据所述参数配置信息,在所述一个或多个服务小区对应的传输对象中确定所述终端所在的目标服务小区对应的目标传输对象;根据与所述目标传输对象相关联的目标TAG标识,确定所述目标传输对象的上行传输时间。
在本申请实施例中,通过从网络侧设备接收一个或多个服务小区对应的参数配置信息,该参数配置信息包括TAG标识,TAG标识关联有各自的传输对象,根据参数配置信息在一个或多个服务小区对应的传输对象中确定终端所在的目标服务器小区对应的目标传输对象,进而根据与目标传输对象相关联的目标TAG标识,确定目标传输对象的上行传输时间。可见,该技术方案能够由网络侧设备预先配置一个或多个服务小区对应的参数配置信息并发送给终端,从而使终端能够根据所在目标服务小区对应的TAG标识,动态确定目标传输对象的上行传输时间,而并非所有的传输对象都采用相同的上行传输时间,且能够确保多TRP的上行传输时间准确,提升上行传输的性能。
可选地,所述传输对象包括以下至少一项:控制资源集合池索引、信道探测参考信号SRS资源集、传输配置指示TCI状态、TCI状态池、同步信号块SSB分组、物理小区标识PCI。
可选地,所述参数配置信息包括两个所述TAG标识,每个所述TAG标识分别关联一个所述上行传输对象;或者,
所述参数配置信息包括一个所述TAG标识,所述TAG标识关联-=两个所述传输对象;或者,
所述参数配置信息包括一个所述TAG标识,所述TAG标识关联=一个所述传输对象。
可选地,所述多个服务小区配置有相同的所述TAG标识,所述相同的所述TAG标识关联相同的所述传输对象。
可选地,每个TAG标识关联一个下行帧时间;
所述处理器1010,还用于:
根据所述目标TAG标识对应的下行帧时间,确定所述目标TAG标识对应的上行参考时间;
确定所述目标TAG标识对应的上行时间调整量;根据所述上行参考时间和所述上行时间调整量,确定所述目标传输对象的所述上行传输时间。
可选地,所述处理器1010,还用于:
根据所述目标TAG标识,在第一服务小区中确定参考小区;其中,所述目标TAG标识指示的目标TAG对应多个第一服务小区;
将所述参考小区对应的传输对象的下行帧时间确定为所述目标TAG标识对应的上行参考时间。
可选地,所述处理器1010,还用于:
将配置有两个所述TAG标识、且每个所述TAG标识分别关联一个所述传输对象的所述第一服务小区确定为参考小区;
或者,
将仅配置有一个所述TAG标识的所述第一服务小区确定为参考小区。
可选地,所述目标服务小区内配置有多个所述传输对象;所述目标服务小区为配置有两个所述TAG标识的主小区;
其中,每个所述TAG标识对应的TAG均被配置为第一类TAG,或者,其中一个所述TAG标识对应的TAG被配置为所述第一类TAG;所述第一类TAG为包括主小区的TAG。
可选地,所述目标服务小区对应的两个所述TAG标识中,每个所述TAG标识对应的TAG均为第一类TAG;所述处理器1010,还用于:
若所述第一类TAG失去同步,则释放与所述第一类TAG关联的所述传输对象的上行传输。
可选地,所述目标服务小区对应的两个所述TAG标识中,其中一个所述TAG标识对应的TAG被配置为所述第一类TAG;所述处理器1010,还用于:
若所述第一类TAG失去同步,则释放所述终端对应的所有上行传输。
可选地,所述处理器1010,还用于:
根据所述网络侧设备发送的RRC配置信息,确定两个所述TAG标识中的其中一个TAG标识对应的TAG为所述第一类TAG。
可选地,各所述服务小区之间配置有多个TRP;所述目标服务小区为配置有两个所述TAG标识的主小区;
所述处理器1010,还用于:
确定与目标传输对象相关联的所述TAG标识对应的TAG为第一类TAG;所述第一类TAG为包括主小区的TAG。
可选地,所述处理器1010,还用于:
若所述第一类TAG失去同步,则释放所述终端对应的所有上行传输。
可选地,所述处理器1010,还用于:
接收与所述目标传输对象关联的物理下行控制信道PDCCH;所述PDCCH携带所述目标传输对象的对象标识和/或所述目标TAG标识;
基于所述PDCCH,向所述网络侧设备发送所述目标传输对象对应的第一信息;所述第一信息用于确定所述目标传输对象对应的所述上行时间调整量;
接收所述网络侧设备发送的随机接入响应RAR,所述RAR携带有所述上行时间调整量。
可选地,所述PDCCH的准共址QCL关系基于所述PDCCH对应的type1公共搜索空间CSS的QCL关系确定,或者,基于与所述type1CSS关联相同传输对象的PDCCH确定。
可选地,在第一条件下,所述PDCCH的QCL关系基于所述PDCCH对应的所述type1CSS的QCL关系确定;
所述第一条件包括:所述PDCCH来自不属于主小区的第二服务小区,或者,所述PDCCH来自所述主小区的关联PCI对应的第三服务小区。
可选地,所述处理器1010,还用于:
若所述目标服务小区对应的所述目标传输对象包括两个,且两个所述目标传输对象的上行传输时间之间重叠,则丢弃两个所述目标传输对象中的第一传输对象的上行传输。
可选地,所述第一传输对象的上行传输包括以下至少一项:
关联特定控制资源集合池索引的上行传输;
上行传输时间较晚的上行传输。
可选地,所述处理器1010,还用于:
向所述网络侧设备上报所述终端具备针对所述第一传输对象的上行传输的丢弃能力。
可选地,所述目标服务小区对应两个所述目标传输对象,两个所述目标传输对象的上行传输之间间隔大于或等于预设阈值;
所述预设阈值由所述终端上报给所述网络侧设备,或者,所述预设阈值由RRC配置,或者,所述预设阈值基于所述终端与所述网络侧设备之间的协议预定义。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述处理器用于配置一个或多个服务小区对应的参数配置信息;所述通信接口用于向终端发送所述参数配置信息;所述参数配置信息包括TAG标识,所述TAG标识关联有各自的传输对象;所述参数配置信息用于确定目标服务小区对应的目标传输对象的上行传输时间。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图11所示,该网络侧设备1100包括:天线111、射频装置112、基带装置113、处理器114和存储器115。天线111与射频装置112连接。在上行方向上,射频装置112通过天线111接收信息,将接收的信息发 送给基带装置113进行处理。在下行方向上,基带装置113对要发送的信息进行处理,并发送给射频装置112,射频装置112对收到的信息进行处理后经过天线111发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置113中实现,该基带装置113包括基带处理器。
基带装置113例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为基带处理器,通过总线接口与存储器115连接,以调用存储器115中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口116,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1100还包括:存储在存储器115上并可在处理器114上运行的指令或程序,处理器114调用存储器115中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述上行传输时间的确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述上行传输时间的确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述上行传输时间的确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种上行传输时间的确定系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的应用于终端侧的上行传输时间的确定方法的步骤,所述网络侧设备可用于执行如上所述的应用于网络侧设备的上行传输时间的确定方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包 括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (34)

  1. 一种上行传输时间的确定方法,应用于终端,所述方法包括:
    从网络侧设备接收一个或多个服务小区对应的参数配置信息;所述参数配置信息包括定时提前组TAG标识,所述TAG标识关联有各自的传输对象;
    根据所述参数配置信息,在所述一个或多个服务小区对应的传输对象中确定所述终端所在的目标服务小区对应的目标传输对象;
    根据与所述目标传输对象相关联的目标TAG标识,确定所述目标传输对象的上行传输时间。
  2. 根据权利要求1所述的方法,其中,所述传输对象包括以下至少一项:控制资源集合池索引、信道探测参考信号SRS资源集、传输配置指示TCI状态、TCI状态池、同步信号块SSB分组、物理小区标识PCI。
  3. 根据权利要求1所述的方法,其中,所述参数配置信息包括两个所述TAG标识,每个所述TAG标识分别关联一个所述上行传输对象;或者,
    所述参数配置信息包括一个所述TAG标识,所述TAG标识关联两个所述传输对象;或者,
    所述参数配置信息包括一个所述TAG标识,所述TAG标识关联一个所述传输对象。
  4. 根据权利要求3所述的方法,其中,所述多个服务小区配置有相同的所述TAG标识,所述相同的所述TAG标识关联相同的所述传输对象。
  5. 根据权利要求3或4所述的方法,其中,每个TAG标识关联一个下行帧时间;
    所述根据与所述目标传输对象相关联的目标TAG标识,确定所述目标传输对象的上行传输时间,包括:
    根据所述目标TAG标识对应的下行帧时间,确定所述目标TAG标识对应的上行参考时间;
    确定所述目标TAG标识对应的上行时间调整量;
    根据所述上行参考时间和所述上行时间调整量,确定所述目标传输对象的所述上行传输时间。
  6. 根据权利要求5所述的方法,其中,所述根据所述目标TAG标识对应的下行帧时间,确定所述目标TAG标识对应的上行参考时间,包括:
    根据所述目标TAG标识,在第一服务小区中确定参考小区;其中,所述目标TAG标 识指示的目标TAG对应多个第一服务小区;
    将所述参考小区对应的传输对象的下行帧时间确定为所述目标TAG标识对应的上行参考时间。
  7. 根据权利要求6所述的方法,其中,所述根据所述目标TAG标识,在第一服务小区中确定参考小区,包括:
    将配置有两个所述TAG标识、且每个所述TAG标识分别关联一个所述传输对象的所述第一服务小区确定为所述参考小区;
    或者,
    将仅配置有一个所述TAG标识的所述第一服务小区确定为所述参考小区。
  8. 根据权利要求5所述的方法,其中,所述目标服务小区内配置有多个所述传输对象;所述目标服务小区为配置有两个所述TAG标识的主小区;
    其中,每个所述TAG标识对应的TAG均被配置为第一类TAG,或者,其中一个所述TAG标识对应的TAG被配置为所述第一类TAG;所述第一类TAG为包括主小区的TAG。
  9. 根据权利要求8所述的方法,其中,所述目标服务小区对应的两个所述TAG标识中,每个所述TAG标识对应的TAG均为第一类TAG;所述方法还包括:
    若所述第一类TAG失去同步,则释放与所述第一类TAG关联的所述传输对象的上行传输。
  10. 根据权利要求8所述的方法,其中,所述目标服务小区对应的两个所述TAG标识中,其中一个所述TAG标识对应的TAG被配置为所述第一类TAG;所述方法还包括:
    若所述第一类TAG失去同步,则释放所述终端对应的所有上行传输。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    根据所述网络侧设备发送的RRC配置信息,确定两个所述TAG标识中的其中一个TAG标识对应的TAG为所述第一类TAG。
  12. 根据权利要求5所述的方法,其中,各所述服务小区之间配置有多个TRP;所述目标服务小区为配置有两个所述TAG标识的主小区;
    所述方法还包括:
    确定与目标传输对象相关联的所述TAG标识对应的TAG为第一类TAG;所述第一类TAG为包括主小区的TAG。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:
    若所述第一类TAG失去同步,则释放所述终端对应的所有上行传输。
  14. 根据权利要求5所述的方法,其中,所述确定所述目标TAG标识对应的上行时间调整量,包括:
    接收与所述目标传输对象关联的物理下行控制信道PDCCH;所述PDCCH携带所述目标传输对象的对象标识和/或所述目标TAG标识;
    基于所述PDCCH,向所述网络侧设备发送所述目标传输对象对应的第一信息;所述第一信息用于确定所述目标传输对象对应的所述上行时间调整量;
    接收所述网络侧设备发送的随机接入响应RAR,所述RAR携带有所述上行时间调整量。
  15. 根据权利要求14所述的方法,其中,所述PDCCH的准共址QCL关系基于所述PDCCH对应的type1公共搜索空间CSS的QCL关系确定,或者,基于与所述type1CSS关联相同传输对象的PDCCH确定。
  16. 根据权利要求15所述的方法,其中,在第一条件下,所述PDCCH的QCL关系基于所述PDCCH对应的所述type1CSS的QCL关系确定;
    所述第一条件包括:所述PDCCH来自不属于主小区的第二服务小区,或者,所述PDCCH来自所述主小区的关联PCI对应的第三服务小区。
  17. 根据权利要求1所述的方法,其中,所述方法还包括:
    若所述目标服务小区对应的所述目标传输对象包括两个,且两个所述目标传输对象的上行传输时间之间重叠,则丢弃两个所述目标传输对象中的第一传输对象的上行传输。
  18. 根据权利要求17所述的方法,其中,所述第一传输对象的上行传输包括以下至少一项:
    关联特定控制资源集合池索引的上行传输;
    上行传输时间较晚的上行传输。
  19. 根据权利要求17所述的方法,其中,所述丢弃两个所述目标传输对象中的第一传输对象的上行传输之前,还包括:
    向所述网络侧设备上报所述终端具备针对所述第一传输对象的上行传输的丢弃能力。
  20. 根据权利要求1所述的方法,其中,所述目标服务小区对应两个所述目标传输对 象,两个所述目标传输对象的上行传输之间间隔大于或等于预设阈值;
    所述预设阈值由所述终端上报给所述网络侧设备,或者,所述预设阈值由RRC配置,或者,所述预设阈值基于所述终端与所述网络侧设备之间的协议预定义。
  21. 一种上行传输时间的确定方法,应用于网络侧设备,所述方法包括:
    向终端发送一个或多个服务小区对应的参数配置信息;所述参数配置信息包括TAG标识,所述TAG标识关联有各自的传输对象;所述参数配置信息用于确定目标服务小区对应的目标传输对象的上行传输时间。
  22. 根据权利要求21所述的方法,其中,所述传输对象包括以下至少一项:资源集合池索引、SRS资源集、TCI状态、TCI状态池、SSB分组、PCI。
  23. 根据权利要求21所述的方法,其中,所述参数配置信息包括两个所述TAG标识,每个所述TAG标识分别关联一个所述上行传输对象;或者,
    所述参数配置信息包括一个所述TAG标识,所述TAG标识关联两个所述传输对象;或者,
    所述参数配置信息包括一个所述TAG标识,所述TAG标识关联一个所述传输对象。
  24. 根据权利要求21所述的方法,其中,所述多个服务小区配置有相同的所述TAG标识,所述相同的所述TAG标识关联相同的所述传输对象。
  25. 根据权利要求21所述的方法,其中,每个TAG标识关联一个下行帧时间。
  26. 根据权利要求21所述的方法,其中,所述方法还包括:
    针对配置有两个所述TAG标识的所述服务小区,指示两个所述TAG标识中的其中一个所述TAG标识对应的TAG为第一类TAG;所述第一类TAG为包括主小区的TAG。
  27. 根据权利要求21所述的方法,其中,所述方法还包括:
    向所述终端发送RRC配置信息;
    其中,所述RRC配置信息携带以下至少一项:
    各所述服务小区对应的所述传输对象的下行链路DL参考信号或DL信道;
    所述第一类TAG的指示信息;
    同一服务小区对应的两个传输对象的上行传输之间间隔的最小阈值。
  28. 根据权利要求21所述的方法,其中,所述方法还包括:
    向所述终端发送与目标传输对象关联的PDCCH;所述PDCCH携带所述目标传输对象的对象标识和/或所述目标传输对象关联的目标TAG标识;
    接收所述终端发送的所述目标传输对象对应的第一信息;
    根据所述第一信息,确定所述目标传输对象对应的上行时间调整量,并将所述上行时间调整量携带于RAR中发送至所述终端。
  29. 根据权利要求21所述的方法,其中,所述方法还包括:
    接收所述终端上报的能力;所述能力包括:在所述服务小区对应的所述传输对象包括两个、且两个所述传输对象的上行传输时间之间重叠的情况下,针对第一传输对象的上行传输的丢弃能力;所述第一传输对象的上行传输为满足丢弃条件的上行传输;
    其中,所述丢弃条件包括以下至少一项:关联特定控制资源集合池索引、上行传输时间较晚。
  30. 一种终端,包括:
    第一接收模块,用于从网络侧设备接收一个或多个服务小区对应的参数配置信息;所述参数配置信息包括定时提前组TAG标识,所述TAG标识关联有各自的传输对象;
    第一确定模块,用于根据所述参数配置信息,在所述一个或多个服务小区对应的传输对象中确定所述终端所在的目标服务小区对应的目标传输对象;
    第二确定模块,用于根据与所述目标传输对象相关联的目标TAG标识,确定所述目标传输对象的上行传输时间。
  31. 一种网络侧设备,包括:
    第一发送模块,用于向终端发送一个或多个服务小区对应的参数配置信息;所述参数配置信息包括TAG标识,所述TAG标识关联有各自的传输对象;所述参数配置信息用于确定目标服务小区对应的目标传输对象的上行传输时间。
  32. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至20任一项所述的上行传输时间的确定方法的步骤。
  33. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求21至29任一项所述的上行传输时间的确定方法的步骤。
  34. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处 理器执行时实现如权利要求1-20任一项所述的上行传输时间的确定方法,或者实现如权利要求21至29任一项所述的上行传输时间的确定方法的步骤。
PCT/CN2023/128589 2022-11-07 2023-10-31 上行传输时间的确定方法、终端及网络侧设备 WO2024099181A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211385356.2A CN117998565A (zh) 2022-11-07 2022-11-07 上行传输时间的确定方法、终端及网络侧设备
CN202211385356.2 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024099181A1 true WO2024099181A1 (zh) 2024-05-16

Family

ID=90894152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128589 WO2024099181A1 (zh) 2022-11-07 2023-10-31 上行传输时间的确定方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN117998565A (zh)
WO (1) WO2024099181A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020215108A2 (en) * 2020-08-06 2020-10-22 Futurewei Technologies, Inc. System and method for uplink timing in multi-point communications
US20220210825A1 (en) * 2020-12-28 2022-06-30 Samsung Electronics Co., Ltd. Method and apparatus of uplink timing adjustment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020215108A2 (en) * 2020-08-06 2020-10-22 Futurewei Technologies, Inc. System and method for uplink timing in multi-point communications
US20220210825A1 (en) * 2020-12-28 2022-06-30 Samsung Electronics Co., Ltd. Method and apparatus of uplink timing adjustment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Two TAs for UL multi-DCI multi-TRP operation", 3GPP DRAFT; R1-2204539, vol. RAN WG1, 29 April 2022 (2022-04-29), pages 1 - 7, XP052153576 *
ZTE: "TA enhancement for multi-DCI", 3GPP DRAFT; R1-2203264, vol. RAN WG1, 29 April 2022 (2022-04-29), pages 1 - 9, XP052152900 *

Also Published As

Publication number Publication date
CN117998565A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
CN103220768A (zh) 一种载波聚合系统中上行信号功率削减方法及装置
WO2022194249A1 (zh) Harq ack反馈方法、装置、终端及存储介质
WO2022117021A1 (zh) 随机接入方法、装置、终端及网络侧设备
AU2013390061A1 (en) Communication method and user equipment in mixed cellular and D2D network
US20240340860A1 (en) Transmission determining method and apparatus, terminal, network-side device, and storage medium
US20240356692A1 (en) Frequency hopping method and apparatus for uplink transmission, indication method and apparatus, terminal, and network-side device
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
WO2024099181A1 (zh) 上行传输时间的确定方法、终端及网络侧设备
EP4149035A1 (en) Beam indication method and apparatus, and computer-readable storage medium
WO2024099132A1 (zh) 信息确定方法、装置及通信设备
WO2023198183A1 (zh) 信息获取方法、信息发送方法、装置、终端及网络侧设备
WO2024160109A1 (zh) Dci大小的确定方法、dci的发送方法、装置及相关设备
WO2024146482A1 (zh) 一种传输参数配置方法、装置及终端设备
WO2023207976A1 (zh) 物理随机接入信道传输资源确定方法、装置、终端和设备
WO2024022247A1 (zh) 定时提前ta的维护方法、装置、设备及介质
WO2023207785A1 (zh) 终端操作方法、装置、终端及网络侧设备
WO2024067277A1 (zh) 公共pucch重复传输方法、终端及网络侧设备
WO2024169890A1 (zh) 信道状态信息的获取方法、终端及网络侧设备
WO2024208294A1 (zh) 上行传输的方法、终端及网络侧设备
WO2024114492A1 (zh) 测量方法、装置、终端及网络侧设备
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质
WO2024022251A1 (zh) 上行传输方法、装置、终端及介质
WO2024164897A1 (zh) 处理探测参考信号的方法、终端及网络侧设备
WO2024160112A1 (zh) Bwp确定方法、传输方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887871

Country of ref document: EP

Kind code of ref document: A1