WO2023138456A1 - 信号处理方法、装置及通信设备 - Google Patents

信号处理方法、装置及通信设备 Download PDF

Info

Publication number
WO2023138456A1
WO2023138456A1 PCT/CN2023/071787 CN2023071787W WO2023138456A1 WO 2023138456 A1 WO2023138456 A1 WO 2023138456A1 CN 2023071787 W CN2023071787 W CN 2023071787W WO 2023138456 A1 WO2023138456 A1 WO 2023138456A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
communication
chirp
synaesthesia
communication signal
Prior art date
Application number
PCT/CN2023/071787
Other languages
English (en)
French (fr)
Inventor
姚健
姜大洁
丁圣利
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023138456A1 publication Critical patent/WO2023138456A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/103Chirp modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a signal processing method, device and communication equipment.
  • time division multiplexing, frequency division multiplexing, and space division multiplexing are used in the integrated design of communication and perception.
  • the resource utilization rate of these methods is not high, and for communication-based synaesthesia integration systems, the commonly used shared waveform design may have an impact on communication performance.
  • Embodiments of the present application provide a signal processing method, device, and communication device, which can solve the problem of low resource utilization and greater impact on communication performance in existing communication and perception integration design schemes.
  • a signal processing method including:
  • the first device processes the communication signal and the chirp signal according to the target calculation to obtain a synesthesia-integrated signal, and the synaesthesia-integrated signal is a signal that can be used for communication and perception;
  • the target operation includes at least one of the following:
  • a signal processing device including:
  • the first processing module is configured to process the communication signal and the chirp signal according to the target calculation to obtain a synaesthesia integrated signal, and the synaesthesia integrated signal is a signal that can be used for communication and perception;
  • the target operation includes at least one of the following:
  • a communication device in a third aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the steps of the method described in the first aspect are implemented.
  • a communication device including a processor and a communication interface, wherein the processor is used to process the communication signal and the chirp signal according to the target calculation to obtain a synaesthesia integrated signal, and the synaesthesia integrated signal is a signal that can be used for communication and perception;
  • the target operation includes at least one of the following:
  • a readable storage medium on which a program or an instruction is stored, and the program When the program or instructions are executed by the processor, the steps of the method as described in the first aspect are implemented.
  • a chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method as described in the first aspect.
  • a computer program product is provided, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the steps of the method described in the first aspect.
  • the chirp signal is a signal that can be used for perception.
  • the communication signal and the chirp signal are processed according to the target calculation to obtain a synaesthesia integrated signal.
  • the synaesthesia integrated signal can be used for both communication transmission and perception.
  • the communication signal and the chirp signal are fused through time-domain circular convolution operation or frequency-domain multiplication operation, occupying the same time-frequency resources, improving resource utilization, and using chirp signals and communication signals.
  • the synaesthesia-integrated signal obtained by the time-domain cyclic convolution operation or the frequency-domain multiplication operation enables the receiving end to eliminate the chirp signal through simple frequency-domain division, or the receiving end can directly perform channel estimation based on the synaesthesia-integrated signal, effectively reducing the impact of the synaesthesia-integrated signal on communication performance.
  • FIG. 1 shows a structural diagram of a communication system applicable to an embodiment of the present application
  • FIG. 2 shows a schematic flow chart of a signal processing method in an embodiment of the present application
  • FIG. 3 shows a schematic diagram of modules of a signal processing device according to an embodiment of the present application
  • FIG. 4 shows a structural block diagram of a communication device in an embodiment of the present application
  • FIG. 5 shows a structural block diagram of a terminal in an embodiment of the present application
  • FIG. 6 shows one of the structural block diagrams of the network side device in the embodiment of the present application.
  • FIG. 7 shows the second structural block diagram of the network side device according to the embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It should be understood that the terms used in this way can be interchanged under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by "first” and “second” are usually of one type, and the number of objects is not limited. For example, there can be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution-Advanced, LTE-A
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • O FDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for exemplary purposes, and uses NR terminology in most of the following descriptions, but these technologies can also be applied to applications other than NR system applications, such as the 6th generation ( 6th Generation, 6G) communication system.
  • NR New Radio
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and network side equipment.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer, TPC), a laptop computer (Laptop Computer, LC) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, an ultra-mobile personal computer (Ultra-Mobile Personal Computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), augmented reality (Augmented Reality, AR)/Virtual Reality (Virtual Reality, VR) equipment, robots, wearable devices (Wearable Device, WD), vehicle-mounted equipment (Vehicle User Equipment, VUE), pedestrian terminals (Pedestrian User Equipment, PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (Personal Computer, PC
  • the network side equipment may include access network equipment or core network equipment, wherein the access network equipment 12 may also be called radio access network equipment, radio access network (Radio Access Network, RAN), radio access network function or radio access network unit.
  • the access network equipment 12 may also be called radio access network equipment, radio access network (Radio Access Network, RAN), radio access network function or radio access network unit.
  • RAN Radio Access Network
  • the access network device 12 may include a base station, a wireless local area network (Wireless Local Area Networks, WLAN) access point or a wireless fidelity (Wireless Fidelity, WiFi) node, etc., and the base station may be called a node B, an evolved node B (eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), an extended service set (Extended Service Set, ESS), Home Node B, Home Evolved Node B, Transmission Reception Point (Transmission Reception Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary.
  • the core network equipment may include but not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and Charging Rules Function (Policy and Charging Rules Function, PCRF), Edge Application Server Discovery Function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), Centralized Network Configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), local NEF ( Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), Application Function
  • the integration of communication and perception refers to the integrated design of communication and perception functions through spectrum sharing and hardware sharing in the same system. While transmitting information, the system can perceive information such as orientation, distance, and speed, and detect, track, and identify target objects or events.
  • the communication system and the perception system complement each other to improve overall performance and bring better service experience.
  • Future mobile communication systems such as Beyond 5th Generation (B5G) mobile communication systems or 6G systems will not only have communication capabilities, but will also have perception capabilities.
  • Perception capability that is, one or more devices with perception capability, which can perceive the orientation, distance, speed and other information of the target object through the transmission and reception of wireless signals, or detect, track, identify, and image the target object, event or environment.
  • the resolution of perception will be significantly improved compared with centimeter waves, so that 6G networks can provide more refined perception services.
  • radar system and communication system were strictly distinguished due to different research objects and focuses. In most scenarios, the two systems were distributed for research. In fact, radar and communication systems are also typical ways of sending, acquiring, processing and exchanging information. There are many similarities in terms of working principle, system architecture and frequency band.
  • the design of communication and radar integration has great feasibility, which is mainly reflected in the following aspects:
  • the communication system and the perception system are based on the theory of electromagnetic waves, and use the emission and reception of electromagnetic waves to complete the acquisition and transmission of information;
  • the communication system and the perception system both have structures such as antennas, transmitters, receivers, and signal processors, and there is a large overlap in hardware resources; with the development of technology, there are more and more overlaps in the working frequency bands between the two; in addition, there are similarities in key technologies such as signal modulation, reception detection, and waveform design.
  • the integration of communication and radar systems can bring many advantages, such as saving costs, reducing size, reducing power consumption, improving spectral efficiency, reducing mutual interference, etc., thereby improving the overall system performance.
  • the typical joint design includes spectrum coexistence, that is, the two systems work independently, allowing information exchange to reduce mutual interference; receiving-end sharing, at this time, the two systems send their own signal waveforms, and the waveforms of the two systems need to be orthogonal, so as not to affect their respective reception and detection;
  • the key to integrated waveform design is to minimize the interference between communication signals and sensing signals, meet the needs of communication and sensing functions, and improve spectrum efficiency while ensuring system performance.
  • the integrated waveform can be multiplexed, including time division multiplexing, frequency division Multiplexing and space division multiplexing can also be shared, that is, to design a new fusion waveform.
  • Common fusion waveforms are mainly divided into single-carrier waveforms and multi-carrier waveforms.
  • Single-carrier waveform design is usually combined with spread spectrum techniques, such as Direct-Sequence Spread Spectrum (DSSS) and Chirp Spread Spectrum (CSS).
  • DSSS Direct-Sequence Spread Spectrum
  • SCS Chirp Spread Spectrum
  • Chirp signals are also called linear frequency modulation (Linear Frequency Modulation, LFM), which is a signal whose frequency changes linearly with time. It is often used in radar systems to help improve resolution and maximum search range.
  • LFM Linear Frequency Modulation
  • the balance between is a common radar modulation signal.
  • Chirp signal is also a kind of spread spectrum signal, which has strong anti-interference characteristics and robustness.
  • the typical multi-carrier integrated waveform is the Orthogonal Frequency Division Multiplexing (OFDM) waveform.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Sensing can be based on a single-station mode, that is, co-location of sending and receiving.
  • the sending end transmits a signal for sensing, and then receives and analyzes the echo signal by itself, and extracts sensing parameters.
  • the base station is used as the sending end and receiving end of the signal for sensing, and the terminal or other objects are used as the sensing target; it can also be based on dual-station/multi-station mode. signal receiving end.
  • the transmitting end of single-station or multi-station mode sensing may also be a terminal.
  • the communication system needs to jointly send the modulation symbols carrying the information and the pilot symbols used for channel estimation, and focus on decoding performance. Its channel estimation algorithm only needs to estimate the composite channel with limited unknown parameters, usually to improve the throughput and transmission reliability. Bit Error Rate (BER), Block Error Rate (Block Error Rate, BLER) and Symbol Error Rate (Symbol Error Rate, SER), etc.
  • BER Bit Error Rate
  • BLER Block Error Rate
  • Symbol Error Rate Symbol Error Rate
  • SER Symbol Error Rate
  • the embodiment of the present application provides a signal processing method, including:
  • Step 201 The first device processes the communication signal and the chirp signal according to the target calculation to obtain a synesthesia-integrated signal, and the synaesthesia-integrated signal is a signal that can be used for communication and perception.
  • the target operation includes at least one of the following:
  • the communication signal includes at least one of the following:
  • the waveform of the communication signal includes at least one of the following:
  • W-OFDM Wideband Orthogonal Frequency Division Multiplexing
  • FBMC Filter Bank Based Multicarrier
  • GFDM Generalized Frequency Division Multiplexing
  • UFMC Universal Filter Multicarrier
  • F-OFDM Filtered Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Zero Tailing DFT-s-OFDM (ZT DFT-s-OFDM) waveforms, Unique word DFT-s-OFDM (UW DFT-s-OFDM) waveforms, etc.;
  • ZT DFT-s-OFDM Zero Tailing DFT-s-OFDM
  • UW DFT-s-OFDM Unique word DFT-s-OFDM
  • SC-FDE Single Carrier Frequency Domain Equalization
  • OTFS Orthogonal Time Frequency Space
  • the chirp signal is a signal that can be used for perception.
  • the communication signal and the chirp signal are processed according to the time-domain circular convolution operation or the frequency-domain multiplication operation to obtain a synaesthesia integrated signal.
  • the synaesthesia integrated signal can be used for both communication transmission and perception.
  • the communication signal and the chirp signal are fused by time-domain circular convolution operation or frequency-domain multiplication operation, occupying the same time-frequency resources, and improving resource utilization.
  • the receiving end can eliminate the chirp signal through simple frequency-domain division, or the receiving end can directly perform channel estimation based on the synaesthesia integrated signal, effectively reducing the Reduce the influence of synaesthesia integration signal on communication performance.
  • the communication signal has the same bandwidth and frequency domain sampling format as the chirp signal.
  • a communication signal has a total of n subcarriers in the frequency domain, and the center frequencies of the subcarriers are f 1 ,...,f n , corresponding to frequency domain resources RE1 ⁇ REn, and the frequency domain sampling positions of Chirp signals are f 1 ,...,f n , corresponding to frequency domain resources RE1 ⁇ REn, where RE1 ⁇ REn may be continuous or discontinuous.
  • T C T o +T CP , where T CP represents the duration of the cyclic prefix CP of the communication signal.
  • the start time of the communication signal is the same as the start time of the chirp signal
  • the end time of the communication signal is the same as the end time of the chirp signal.
  • the first device processes the communication signal and the chirp signal according to the target operation to obtain the synaesthesia integrated signal, including:
  • the processed communication signal and chirp signal are processed according to the target operation to obtain a synesthesia-integrated signal.
  • the first device processes the communication signal and the chirp signal according to the target calculation, and after obtaining the synesthesia integration signal, further includes:
  • a normalization process is performed on the synesthesia integration signal to obtain a processed synaesthesia integration signal.
  • the communication signal and the chirp signal can be normalized first, and then processed according to the target operation to obtain the synesthesia integrated signal, or the communication signal and the chirp signal can be processed according to the target operation, and then the processed signal can be normalized to obtain the final synaesthesia integrated signal.
  • the first device processes the communication signal and the chirp signal according to the target operation, and obtains a synaesthesia integrated signal, including:
  • the first device performs power adjustment processing on the communication signal and the chirp signal respectively according to the power adjustment information, and obtains the communication signal and the chirp signal after the power adjustment processing;
  • the communication signal and the chirp signal after the power adjustment are processed according to the target operation to obtain the integrated signal of synaesthesia.
  • the normalized communication signal and the chirp information can be subjected to power adjustment processing, and then the signal after power adjustment is processed according to the target operation; in the implementation method of first processing the communication signal and the chirp signal according to the target operation, and then performing normalization processing on the processed signal to obtain the final synaesthesia integration signal, the communication signal and the chirp signal are first adjusted for power, and then The power-adjusted communication signal and chirp signal are processed according to the target operation, and finally normalized.
  • the foregoing normalization processing includes frequency domain normalization processing.
  • S'(k) represents the target signal after processing
  • S(k) represents the target signal before processing
  • Norm_factor represents the normalization factor
  • n represents the total number of sampling points
  • the target signal is the communication signal, the chirp signal or the synesthesia integration signal.
  • the normalization factor satisfies at least one of the following formulas:
  • the first device processes the communication signal and the chirp signal according to the target operation to obtain the synaesthesia integrated signal, including:
  • K1 -K2
  • K1 represents the slope of the first chirp signal
  • K2 represents the slope of the second chirp signal
  • the above-mentioned first synaesthesia-integrated signal and the second synaesthesia-integrated signal have the same time-frequency resource, and the above-mentioned first chirp signal and the second chirp signal have the same parameters (such as starting frequency, bandwidth, duration, sampling rate, etc.) except for the slope difference.
  • the synesthesia processes the communication signal and the chirp signal according to the target calculation, and obtains two integrated synaesthesia signals (also described as code-division-synthesia-integrated signals), that is, two approximately orthogonal synaesthesia-integrated signals, which can be used by multiple users or multiple ports.
  • two integrated synaesthesia signals also described as code-division-synthesia-integrated signals
  • two approximately orthogonal synaesthesia-integrated signals which can be used by multiple users or multiple ports.
  • the method of the embodiment of the present application further includes:
  • configuration information of the synesthesia integration signal to the second device, where the configuration information includes at least one of the following:
  • Identification information of the synaesthesia integrated signal where the identification information is used to indicate that the signal is a synesthesia integrated signal, or used to indicate the communication signal and/or chirp signal that generates the synaesthesia integrated signal;
  • Synaesthesia integration signal generation method information that is, target operation information, for example, circular convolution in time domain or multiplication in frequency domain;
  • the time-frequency resource information of the synaesthesia-integrated signal at least includes: at least one of starting frequency point (or starting radio bearer (Radio Bearer, RB) or subcarrier index), bandwidth (or occupied RB or subcarrier number), occupied frequency range (or occupied RB or subcarrier index) and frequency domain sampling interval;
  • the time-frequency resource information of at least one of the communication signal and the chirp signal corresponding to the synaesthesia integrated signal at least includes: a starting time domain position (or a starting symbol index or a time slot index), a time domain duration (or the number of symbols or the number of time slots occupied) and an occupied time domain position (or an occupied symbol index or a time slot index or a half-frame number or wireless At least one of frame number or other time unit label);
  • the slope information of the linear frequency modulation signal corresponding to the integrated synaesthesia signal can be the specific value of the frequency modulation slope, or the positive and negative information of the frequency modulation slope and/or the magnitude (absolute value) of the frequency modulation slope;
  • the power adjustment information of at least one of the communication signal and the chirp signal corresponding to the synaesthesia integrated signal is provided.
  • the power adjustment information includes at least one of the following:
  • the power factor or amplitude factor of the chirp signal (that is, the weight factor for weighted combination).
  • the Chirp signal and the OFDM symbol are multiplied in the frequency domain to generate a synesthesia-integrated signal.
  • the Chirp signal and the OFDM symbol have the same bandwidth.
  • the OFDM symbol can be an OFDM pilot symbol (using a pseudo-random (Pseudo Noise, PN) sequence), and the Chirp signal and the OFDM pilot symbol (without a prefix (Cyclic Prefix, CP)) have the same duration.
  • PN pseudo-random
  • CP Cyclic Prefix
  • a 0 is the amplitude
  • f 0 is the starting frequency
  • B is the bandwidth, which is the same as the bandwidth of the OFDM pilot symbol
  • the subcarrier spacing is ⁇ f
  • the length of the Inverse Fast Fourier Transform (IFFT) is N
  • the sampling rate of the Chirp signal is f s same as that of the OFDM pilot symbol
  • the Chirp signal and the OFDM symbol generate synesthesia through time-domain circular convolution
  • the bandwidth of the Chirp signal is the same as that of the OFDM symbol
  • the duration of the Chirp signal is the same as that of the OFDM symbol (including CP).
  • the OFDM symbol can be an OFDM pilot symbol (using a PN sequence).
  • the Chirp signal satisfies the following formula:
  • a 0 is the amplitude
  • f 0 is the starting frequency
  • B is the bandwidth, which is the same as the bandwidth of the OFDM pilot symbol
  • the subcarrier spacing is ⁇ f
  • the IFFT length is N
  • t k in this embodiment represents the serial number of the sampling point.
  • the chirp signal is a signal that can be used for perception.
  • the communication signal and the chirp signal are processed according to the target operation to obtain a synaesthesia integrated signal.
  • the synaesthesia integrated signal can be used for both communication transmission and perception.
  • the communication signal and the chirp signal are fused through time-domain circular convolution operations or frequency-domain multiplication operations, occupying the same time-frequency resources, improving resource utilization, and using chirp signals and communication signals for time division or frequency division processing.
  • the synaesthesia integrated signal obtained by the domain circular convolution operation or the frequency domain multiplication operation enables the receiving end to eliminate the chirp signal through simple frequency domain division, or the receiving end can directly perform channel estimation based on the synaesthesia integrated signal, effectively reducing the impact of the synaesthesia integrated signal on communication performance.
  • the signal processing method provided in the embodiment of the present application may be executed by a signal processing device.
  • the signal processing device provided in the embodiment of the present application is described by taking the signal processing device executing the signal processing method as an example.
  • the embodiment of the present application also provides a signal processing device 300, including:
  • the first processing module 301 is configured to process the communication signal and the chirp signal according to the target calculation to obtain a synesthesia integrated signal, and the synaesthesia integrated signal is a signal that can be used for communication and perception;
  • the target operation includes at least one of the following:
  • the device in this embodiment of the present application further includes: a determining module, configured to determine a target operation.
  • the first processing module includes:
  • the first processing submodule is configured to perform normalization processing on the communication signal and the chirp signal to obtain the processed communication signal and the chirp signal;
  • the second processing sub-module is used to process the processed communication signal and the chirp signal according to the target operation to obtain the synaesthesia integrated signal.
  • the device of the embodiment of the present application further includes:
  • the second processing module is configured to perform normalization processing on the integrated synaesthesia signal after the first processing module processes the communication signal and the chirp signal according to the target operation to obtain the integrated synaesthesia signal.
  • S'(k) represents the target signal after processing
  • S(k) represents the target signal before processing
  • Norm_factor represents a normalization factor
  • k 1,...,n
  • n represents the total number of sampling points
  • the target signal is the communication signal, the chirp signal or the synesthesia integration signal.
  • the normalization factor satisfies at least one of the following formulas:
  • the first processing module includes:
  • the third processing sub-module is used to process the communication signal and the first chirp signal according to the target operation to obtain the first synaesthesia integrated signal;
  • the fourth processing sub-module is used to process the communication signal and the second chirp signal according to the target operation to obtain the second synaesthesia integrated signal;
  • K1 -K2
  • K1 represents the slope of the first chirp signal
  • K2 represents the slope of the second chirp signal
  • the first processing module includes:
  • the power adjustment sub-module is used to perform power adjustment processing on the communication signal and the chirp signal respectively according to the power adjustment information, and obtain the communication signal and the chirp signal after the power adjustment processing;
  • the fifth processing sub-module is used to process the power-adjusted communication signal and the chirp signal according to the target calculation to obtain a synaesthesia integrated signal.
  • the device of the embodiment of the present application further includes:
  • a transmission module configured to send configuration information of the synesthesia-integrated signal to the second device, where the configuration information includes at least one of the following:
  • the power adjustment information of at least one of the communication signal and the chirp signal corresponding to the synaesthesia integrated signal is provided.
  • the power adjustment information includes at least one of the following:
  • the power factor or magnitude factor of the chirp signal is the power factor or magnitude factor of the chirp signal.
  • the communication signal includes at least one of the following:
  • the waveform of the communication signal includes at least one of the following:
  • Orthogonal time-frequency-space OTFS waveform Orthogonal time-frequency-space OTFS waveform.
  • the communication signal and the chirp signal have the same bandwidth and frequency-domain sampling format.
  • T C T o +T CP , where T CP represents the duration of the cyclic prefix CP of the communication signal.
  • the start time of the communication signal is the same as the start time of the chirp signal
  • the end time of the communication signal is the same as the end time of the chirp signal.
  • the chirp signal is a signal that can be used for perception.
  • the communication signal and the chirp signal are processed according to the target operation to obtain a synaesthesia integrated signal.
  • the synaesthesia integrated signal can be used for both communication transmission and perception.
  • the communication signal and the chirp signal are fused through time-domain circular convolution operations or frequency-domain multiplication operations, occupying the same time-frequency resources, improving resource utilization, and using chirp signals and communication signals for time division or frequency division processing.
  • the synaesthesia integrated signal obtained by the domain circular convolution operation or the frequency domain multiplication operation enables the receiving end to eliminate the chirp signal through simple frequency domain division, or the receiving end can directly perform channel estimation based on the synaesthesia integrated signal, effectively reducing the impact of the synaesthesia integrated signal on communication performance.
  • the signal processing apparatus in this embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the signal processing device provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device 400, including a processor 401 and a memory 402.
  • the memory 402 stores programs or instructions that can run on the processor 401.
  • the program or instructions are executed by the processor 401, each step of the above signal processing method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device, including a processor and a communication interface.
  • the processor is used to process the communication signal and the chirp signal according to the target calculation to obtain a synaesthesia integrated signal.
  • the synesthesia integrated signal is a signal that can be used for communication and perception; the power adjustment information includes at least one of the following:
  • the power factor or magnitude factor of the chirp signal is the power factor or magnitude factor of the chirp signal.
  • the first device may be a terminal.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 500 includes but not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input At least some of the components in the unit 504 , the sensor 505 , the display unit 506 , the user input unit 507 , the interface unit 508 , the memory 509 , and the processor 510 .
  • the terminal 500 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 510 through the power management system, so as to implement functions such as management of charging, discharging, and power consumption management through the power management system.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 504 may include a graphics processing unit (Graphics Processing Unit, GPU) 5041 and a microphone 5042, and the graphics processor 5041 processes image data of still pictures or videos obtained by an image capture device (such as a camera) in the video capture mode or image capture mode.
  • the display unit 506 may include a display panel 5061, and the display panel 5061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes at least one of a touch panel 5071 and other input devices 5072 .
  • the touch panel 5071 is also called a touch screen.
  • the touch panel 5071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 501 may transmit the downlink data from the network side device to the processor 510 for processing after receiving it; in addition, the radio frequency unit 501 may send uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 509 can be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • memory 509 may include volatile memory or nonvolatile memory, or, memory 509 may include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or a flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM) RAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • Enhanced SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory 509 in the embodiment of the present application includes but is not limited to these
  • the processor 510 may include one or more processing units; optionally, the processor 510 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to operating systems, user interfaces, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It can be understood that the foregoing modem processor may not be integrated into the processor 510 .
  • the processor 510 is configured to process the communication signal and the chirp signal according to the target calculation to obtain a synaesthesia integrated signal, and the synaesthesia integrated signal is a signal that can be used for communication and perception;
  • the target operation includes at least one of the following:
  • the chirp signal is a signal that can be used for perception.
  • the communication signal and the chirp signal are processed according to the target operation to obtain a synaesthesia integrated signal.
  • the synaesthesia integrated signal can be used for both communication transmission and perception.
  • the communication signal and the chirp signal are fused through time-domain circular convolution operations or frequency-domain multiplication operations, occupying the same time-frequency resources, improving resource utilization, and using chirp signals and communication signals for time division or frequency division processing.
  • the synaesthesia integrated signal obtained by the domain circular convolution operation or the frequency domain multiplication operation enables the receiving end to eliminate the chirp signal through simple frequency domain division, or the receiving end can directly perform channel estimation based on the synaesthesia integrated signal, effectively reducing the impact of the synaesthesia integrated signal on communication performance.
  • the processor 510 is configured to perform normalization processing on the communication signal and the chirp signal to obtain the processed communication signal and the chirp signal;
  • the processed communication signal and chirp signal are processed according to the target operation to obtain a synesthesia-integrated signal.
  • the processor 510 is configured to perform normalization processing on the synesthesia integration signal to obtain a processed synaesthesia integration signal.
  • S'(k) represents the target signal after processing
  • S(k) represents the target signal before processing
  • Norm_factor represents the normalization factor
  • n represents the total number of sampling points
  • the target signal is the communication signal, the chirp signal or the synesthesia integration signal.
  • the normalization factor satisfies at least one of the following formulas:
  • the processor 510 is configured to perform power adjustment processing on the communication signal and the chirp signal respectively according to the power adjustment information to obtain the communication signal and the chirp signal after the power adjustment processing; and process the communication signal and the chirp signal after the power adjustment processing according to the target operation to obtain a synesthesia integrated signal.
  • the processor 510 is configured to process the communication signal and the first chirp signal according to a target operation to obtain a first synesthesia integration signal;
  • K1 -K2
  • K1 represents the slope of the first chirp signal
  • K2 represents the slope of the second chirp signal
  • the radio frequency unit 501 is configured to send configuration information of the synesthesia integrated signal to the second device, where the configuration information includes at least one of the following:
  • the power adjustment information of at least one of the communication signal and the chirp signal corresponding to the synaesthesia integrated signal is provided.
  • the power adjustment information includes at least one of the following:
  • the power factor or magnitude factor of the chirp signal is the power factor or magnitude factor of the chirp signal.
  • the communication signal includes at least one of the following:
  • the waveform of the communication signal includes at least one of the following:
  • Orthogonal time-frequency-space OTFS waveform Orthogonal time-frequency-space OTFS waveform.
  • the communication signal and the chirp signal have the same bandwidth and frequency-domain sampling format.
  • T C T o +T CP , where T CP represents the duration of the cyclic prefix CP of the communication signal.
  • the start time of the communication signal is the same as the start time of the chirp signal
  • the end time of the communication signal is the same as the end time of the chirp signal.
  • the chirp signal is a signal that can be used for perception.
  • the communication signal and the chirp signal are processed according to the target operation to obtain a synaesthesia integrated signal.
  • the synaesthesia integrated signal can be used for both communication transmission and perception.
  • the communication signal and the chirp signal are fused through time-domain circular convolution operations or frequency-domain multiplication operations, occupying the same time-frequency resources, improving resource utilization, and using chirp signals and communication signals for time division or frequency division processing.
  • the synaesthesia integrated signal obtained by the domain circular convolution operation or the frequency domain multiplication operation enables the receiving end to eliminate the chirp signal through simple frequency domain division, or the receiving end can directly perform channel estimation based on the synaesthesia integrated signal, effectively reducing the impact of the synaesthesia integrated signal on communication performance.
  • the first device in the embodiment of the present application may also be a network side device, and specifically, the embodiment of the present application further provides a network side device.
  • the network side device 600 includes: an antenna 61 , a radio frequency device 62 , a baseband device 63 , a processor 64 and a memory 65 .
  • the antenna 61 is connected to the radio frequency device 62 .
  • the radio frequency device 62 receives information through the antenna 61, and sends the received information to the baseband device 63 for processing.
  • the baseband device 63 processes the information to be sent and sends it to the radio frequency device 62
  • the radio frequency device 62 processes the received information and sends it out through the antenna 61 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 63, where the baseband device 63 includes a baseband processor.
  • the baseband device 63 can include at least one baseband board, on which a plurality of chips are arranged, as shown in FIG.
  • the network side device may also include a network interface 66, such as a common public radio interface (Common Public Radio Interface, CPRI).
  • a network interface 66 such as a common public radio interface (Common Public Radio Interface, CPRI).
  • CPRI Common Public Radio Interface
  • the network-side device 600 in the embodiment of the present invention further includes: instructions or programs stored in the memory 65 and operable on the processor 64.
  • the processor 64 invokes the instructions or programs in the memory 65 to execute the methods performed by the modules shown in FIG.
  • the embodiment of the present application also provides a network side device.
  • the network side device 700 packs Including: processor 701, network interface 702 and memory 703.
  • the network interface 702 is, for example, a common public radio interface (Common Public Radio Interface, CPRI).
  • CPRI Common Public Radio Interface
  • the network-side device 700 in the embodiment of the present invention further includes: instructions or programs stored in the memory 703 and operable on the processor 701.
  • the processor 701 calls the instructions or programs in the memory 703 to execute the methods performed by each module shown in FIG. 3 and achieves the same technical effect.
  • the embodiment of the present application also provides a readable storage medium.
  • the readable storage medium stores a program or an instruction.
  • the program or instruction is executed by a processor, each process of the above embodiment of the signal processing method can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement each process of the above signal processing method embodiment, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement each process of the above-mentioned signal processing method embodiment, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is a better implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product in essence or the part that contributes to the prior art.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk), and includes several instructions to make a terminal (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.) execute the method described in each embodiment of the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Near-Field Transmission Systems (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号处理方法、装置及通信设备,属于通信技术领域,本申请实施例的信号处理方法包括:第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,所述通感一体化信号为能够用于通信和感知的信号。

Description

信号处理方法、装置及通信设备
相关申请的交叉引用
本申请主张在2022年01月18日在中国提交的中国专利申请No.202210055042.X的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信号处理方法、装置及通信设备。
背景技术
相关技术中,在进行通信与感知一体化设计时,采用时分复用、频分复用、空分复用等方式,但这些方式的资源利用率不高,且对于以通信为主的通感一体化系统,常用的共用波形设计可能会对通信性能产生影响。
发明内容
本申请实施例提供一种信号处理方法、装置及通信设备,能够解决现有通信与感知一体化设计方案中资源利用率低,且对通信性能影响较大的问题。
第一方面,提供了一种信号处理方法,包括:
第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,所述通感一体化信号为能够用于通信和感知的信号;
其中,所述目标运算包括以下至少一项:
频域相乘运算;
时域循环卷积运算;
时域相乘运算;
频域循环卷积运算;
时域共轭乘运算;
频域共轭乘运算;
时域相除运算;
频域相除运算;
时域叠加运算;
时域相减运算;
频域叠加运算;
频域相减运算。
第二方面,提供了一种信号处理装置,包括:
第一处理模块,用于对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,所述通感一体化信号为能够用于通信和感知的信号;
其中,所述目标运算包括以下至少一项:
频域相乘运算;
时域循环卷积运算;
时域相乘运算;
频域循环卷积运算;
时域共轭乘运算;
频域共轭乘运算;
时域相除运算;
频域相除运算;
时域叠加运算;
时域相减运算;
频域叠加运算;
频域相减运算。
第三方面,提供了一种通信设备,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种通信设备,包括处理器及通信接口,其中,所述处理器用于对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,所述通感一体化信号为能够用于通信和感知的信号;
其中,所述目标运算包括以下至少一项:
频域相乘运算;
时域循环卷积运算;
时域相乘运算;
频域循环卷积运算;
时域共轭乘运算;
频域共轭乘运算;
时域相除运算;
频域相除运算;
时域叠加运算;
时域相减运算;
频域叠加运算;
频域相减运算。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程 序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,线性调频信号为可用于感知的信号,这里,对通信信号和该线性调频信号按照目标运算进行处理,得到通感一体化信号,该通感一体化信号既可用于通信传输又可用于感知,相比于通信信号和线性调频信号采用时分或频分的处理方式,通信信号和线性调频信号通过时域循环卷积运算或频域相乘运算进行了融合,占用相同的时频资源,提高了资源利用率,且采用线性调频信号与通信信号进行时域循环卷积运算或频域相乘运算得到的通感一体化信号,使得接收端可以通过简单的频域相除消除线性调频信号,或者,接收端可直接基于该通感一体化信号进行信道估计,有效降低了通感一体化信号对通信性能的影响。
附图说明
图1表示本申请实施例可应用的一种通信系统的结构图;
图2表示本申请实施例的信号处理方法的流程示意图;
图3表示本申请实施例的信号处理装置的模块示意图;
图4表示本申请实施例的通信设备的结构框图;
图5表示本申请实施例的终端的结构框图;
图6表示本申请实施例的网络侧设备的结构框图之一;
图7表示本申请实施例的网络侧设备的结构框图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution, LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备。其中,终端11可以是手机、平板电脑(Tablet Personal Computer,TPC)、膝上型电脑(Laptop Computer,LC)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)设备、机器人、可穿戴式设备(Wearable Device,WD)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(Personal Computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网络(Wireless Local Area Networks,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function, EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized Network Configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为使本领域技术人员能够更好地理解本申请实施例,先进行如下说明。
通信感知一体化即在同一系统中通过频谱共享与硬件共享,实现通信、感知功能一体化设计,系统在进行信息传递的同时,能够感知方位、距离、速度等信息,对目标物体或事件进行检测、跟踪、识别,通信系统与感知系统相辅相成,实现整体性能上的提升并带来更好的服务体验。
未来移动通信系统例如超五代(Beyound 5th Generation,B5G)移动通信系统或6G系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。
通信与雷达的一体化属于典型的通信感知融合应用,在过去,雷达系统与通信系统由于研究对象与关注重点不同而被严格地区分,大部分场景下两系统被分发研究。事实上,雷达与通信系统同样作为信息发送、获取、处理和交换的典型方式,不论工作原理还是系统架构以及频段上存在着不少相似之处。通信与雷达一体化的设计具有较大的可行性,主要体现在以下几个方面:首先,通信系统与感知系统均基于电磁波理论,利用电磁波的发射和接收来完成信息的获取和传递;其次,通信系统与感知系统均具备天线、发送端、接收端、信号处理器等结构,在硬件资源上有很大重叠;随着技术的发展,两者在工作频段上也有越来越多的重合;另外,在信号调制与接收检测、波形设计等关键技术上存在相似性。通信与雷达系统融合能够带来许多优势,例如节约成本、减小尺寸、降低功耗、提升频谱效率、减小互干扰等,从而提升系统整体性能。
目前,对于雷达和通信系统的一体化设计已经有不少相关研究,典型的联合设计包括频谱共存,即两系统独立工作,可以允许信息交换以降低互相之间的干扰;收端共享,此时两系统发端发送各自的信号波形,两系统的波形需要具备正交性,从而不影响各自的接收检测;发端共享,即发送端发射雷达与通信的联合波形;以及收发端共享,即两系统收发两侧进行资源共享,同样需要使用联合波形或者存在正交关系的波形。一体化波形设计的关键在于尽量减小通信信号与感知信号间的干扰,满足通信、感知功能的需求,在保证系统性能的前提下提高频谱效率。一体化波形可以采取复用的方式,包括时分复用、频分 复用、空分复用,也可以采取共用的方式,即设计新的融合波形,设计时需要考虑一体化波形要以通信功能为主还是雷达探测功能为主,寻找性能上的平衡点。常见的融合波形主要分为单载波波形与多载波波形,单载波波形设计通常与扩频技术相结合,例如直接序列扩频(Direct-Sequence Spread Spectrum,DSSS)、啁啾扩频(Chirp Spread Spectrum,CSS),其中Chirp信号也被称为线性调频信号(Linear Frequency Modulation,LFM),是频率随时间线性变化的信号,常用于雷达系统,帮助改善分辨率和最大搜索范围之间的平衡,是一种常见的雷达调制信号。Chirp信号也是一种扩频信号,具有很强的抗干扰特性和鲁棒性。多载波一体化波形较典型的是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM))波形,其相对于单载波扩频一体化波形存在一定优势,例如更高的频谱效率、灵活的带宽资源分配、无距离-多普勒耦合效应等,在设计时需要根据雷达检测需求,合理设计帧结构,例如子载波间隔以及循环前缀等均会对感知功能带来影响。
在进行感知时,可以是基于单站模式的感知,即收发共址,发送端发射用于感知的信号,然后自己接收回波信号并进行分析,提取感知参数,例如,基站作为用于感知的信号的发送端与接收端,终端或其他物体作为感知目标;也可以是基于双站/多站模式的感知,即收发不共址,发送端发射用于感知的信号,其他接收端进行接收并分析,提取感知参数,例如,基站1作为用于感知的信号发送端,终端或者基站2作为用于感知的信号接收端。同样地,单站或多站模式感知的发射端也可以是终端。
通信系统需要将承载信息的调制符号与用于信道估计的导频符号联合发送,重点关注译码性能,其信道估计算法仅需估计具有有限未知参数的复合信道,通常以提高吞吐量和传输可靠性为优化目标,关注的性能指标一般是频谱效率、信道容量、信噪比((Signal to Noise Ratio,SNR)、信号与干扰加噪声比(Signal-To-Noise And Interference Ratio,SINR)、误码率(Bit Error Rate,BER)、数据块差错率(Block Error Rate,BLER)以及误符号率(Symbol Error Rate,SER)等。而感知系统信号发送过程中无需考虑信息承载问题,通常使用优化或未经调制的发射信号,重点关注感知目标对发射信号带来的改变,即响应特性,通常以提高参数估计精度为优化目标,性能衡量指标可能是模糊函数、克拉美罗下界、均方根误差、互信息、率失真函数、雷达估计速率、韦尔奇下界以及一些与感知场景和需求相关联的指标。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号处理方法进行详细地说明。
如图2所示,本申请实施例提供了一种信号处理方法,包括:
步骤201:第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,所述通感一体化信号为能够用于通信和感知的信号。
其中,所述目标运算包括以下至少一项:
频域相乘运算;
时域循环卷积运算;
时域相乘运算;
频域循环卷积运算;
时域共轭乘运算;
频域共轭乘运算;
时域相除运算;
频域相除运算;
时域叠加运算;
时域相减运算;
频域叠加运算;
频域相减运算可选地,所述通信信号包括以下至少一项:
参考信号;
同步信号;
前导码;
数据信号。
可选地,所述通信信号的波形包括以下至少一项:
正交频分复用OFDM波形;
基于OFDM的改进波形,例如,宽带正交频分复用(Wideband Orthogonal Frequency Division Multiplexing,W-OFDM)、基于滤波组的多载波(Filter Bank Based Multicarrier,FBMC)、广义频分复用(Generalized Frequency Division Multiplexing,GFDM)、通用滤波多载波(Universal Filtered Multi-Carrier,UFMC)、滤波正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)等;
离散傅里叶变换-扩展-正交频分复用(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,DFT-s-OFDM)波形;
基于DFT-s-OFDM的改进波形,例如,零尾离散傅里叶变换扩展正交频分复用(Zero Tailing DFT-s-OFDM,ZT DFT-s-OFDM)波形,独特字离散傅里叶变换-扩展-正交频分复用(Unique word DFT-s-OFDM,UW DFT-s-OFDM)波形等;
单载波频域均衡(Single Carrier Frequency Domain Equalization,SC-FDE)波形;
正交时频空(Orthogonal Time Frequency Space,OTFS)波形。
本申请实施例中,线性调频信号为可用于感知的信号,这里,对通信信号和该线性调频信号按照时域循环卷积运算或频域相乘运算进行处理,得到通感一体化信号,该通感一体化信号既可用于通信传输又可用于感知,相比于通信信号和线性调频信号采用时分或频分的处理方式,通信信号和线性调频信号通过时域循环卷积运算或频域相乘运算进行了融合,占用相同的时频资源,提高了资源利用率,且采用线性调频信号与通信信号进行时域循环卷积运算或频域相乘运算得到的通感一体化信号,使得接收端可以通过简单的频域相除消除线性调频信号,或者,接收端可直接基于该通感一体化信号进行信道估计,有效降 低了通感一体化信号对通信性能的影响。所述通信信号与所述线性调频信号具有相同的带宽和频域采样格式。
例如,通信信号在频域上共有n个子载波,子载波中心频点分别为f1,…,fn,对应频域资源RE1~REn,则Chirp信号频域采样位置分别为f1,…,fn,对应频域资源RE1~REn,其中RE1~REn可以连续也可以不连续。
可选地,所述通信信号的持续时间To与所述线性调频信号的持续时间TC满足以下其中一项公式:
TC=To
TC=To+TCP,TCP表示所述通信信号的循环前缀CP的持续时间。
可选地,所述通信信号的开始时间与所述线性调频信号的开始时间相同;
所述通信信号的结束时间与所述线性调频信号的结束时间相同。
可选地,所述第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,包括:
对所述通信信号和所述线性调频信号进行归一化处理,得到处理后的通信信号和线性调频信号;
对处理后的通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号。
可选地,所述第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号之后,还包括:
对所述通感一体化信号进行归一化处理,得到处理后的通感一体化信号。
也就是说,本申请实施例中,可以先对通信信号和线性调频信号进行归一化处理,再按照目标运算进行处理,得到通感一体化信号,也可以先对通信信号和线性调频信号按照目标运算进行处理,再对处理后的信号进行归一化处理,得到最终的通感一体化信号。
所述第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,包括:
所述第一设备根据功率调整信息,对通信信号和线性调频信号分别进行功率调整处理,得到功率调整处理后的通信信号和线性调频信号;
对功率调整处理后的通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号。
在先对通信信号和线性调频信号进行归一化处理,再按照目标运算进行处理,得到通感一体化信号的实现方式中,可对归一化处理后的通信信号和线性调频信息进行功率调整处理,然后再对功率调整后的信号按照目标运算进行处理;在先对通信信号和线性调频信号按照目标运算进行处理,再对处理后的信号进行归一化处理,得到最终的通感一体化信号的实现方式中,先对通信信号和线性调频信号进行功率调整,然后再对功率调整后的通信信号和线性调频信号按照目标运算进行处理,最终再进行归一化处理。
本申请实施例中,上述归一化处理包括频域归一化处理。
可选地,处理后的目标信号满足以下公式:
S'(k)=S(k)÷Norm_factor;
其中,S'(k)表示处理后的目标信号,S(k)表示处理前的目标信号,Norm_factor表示归一化因子,k表示采样点的序号,k=1,……,n;n表示采样点的总数量,所述目标信号为所述通信信号、所述线性调频信号或所述通感一体化信号。
可选地,所述归一化因子满足以下至少一项公式:

可选地,所述第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,包括:
对所述通信信号和第一线性调频信号按照目标运行进行处理,得到第一通感一体化信号;
对所述通信信号和第二线性调频信号按照目标运算进行处理,得到第二通感一体化信号;
其中,K1=-K2,K1表示第一线性调频信号的斜率,K2表示第二线性调频信号的斜率。
本申请实施例中,上述第一通感一体化信号和第二通感一体化信号具有相同的时频资源,上述第一线性调频信号与第二线性调频信号除斜率不同之外,其余参数(如起始频率、带宽、持续时间、采样率等)相同。
这里,通感对通信信号和线性调频信号按照目标运算进行处理,得到两个通感一体化信号(也可描述为码分通感一体化信号),即近似正交的两个通感一体化信号,可以给多个用户或多个端口使用。
可选地,本申请实施例的方法,还包括:
向第二设备发送所述通感一体化信号的配置信息,所述配置信息包括以下至少一项:
通感一体化信号的标识信息,该标识信息用于指示该信号为通感一体化信号,或者,用于指示生成该通感一体化信号的通信信号和/或线性调频信号;
通感一体化信号的生成方式信息,即目标运算信息,例如,时域循环卷积或频域相乘;
通感一体化信号的时频资源信息,该时频资源信息至少包括:起始频点(或起始无线承载(Radio Bearer,RB)或子载波索引)、带宽(或所占RB或子载波个数)、所占频率范围(或所占RB或子载波索引)和频域采样间隔中的至少一项;
通感一体化信号对应的通信信号和线性调频信号中的至少一项的时频资源信息,该时频资源信息至少包括:起始时域位置(或起始符号索引或时隙索引)、时域持续时间(或所占符号个数或时隙个数)和所占时域位置(或所占符号索引或时隙索引或半帧号或无线 帧号或其他时间单元标号)中的至少一项;
通感一体化信号对应的线性调频信号的斜率信息,该斜率信息可以是调频斜率的具体值,也可以是调频斜率的正负信息和/或调频斜率的大小(绝对值);
所述通感一体化信号对应的通信信号和线性调频信号中的至少一项的功率调整信息。
可选地,所述功率调整信息包括以下至少一项:
所述通信信号与所述线性调频信号的功率比例信息;
所述通信信号与所述线性调频信号的幅度比例信息;
所述通信信号的功率因子或幅度因子;
所述线性调频信号的功率因子或幅度因子(即加权合并的权重因子)。
在本申请的一具体实施例中,Chirp信号与OFDM符号通过频域相乘生成通感一体化信号,Chirp信号与OFDM符号带宽相同,OFDM符号可以是OFDM导频符号(采用伪随机(Pseudo Noise,PN)序列),Chirp信号与OFDM导频符号(不含前缀(Cyclic Prefix,CP))持续时间相同。具体的,该Chirp信号满足以下公式:
其中,A0为幅度,f0为起始频率,k=B/TC为调频斜率,其中,B为带宽,与所述OFDM导频符号带宽相同,TC为Chirp持续时间,与所述OFDM导频符号持续时间相同,即TC=TO
对于OFDM导频符号,子载波间隔为Δf,反傅里叶变换(Inverse Fast Fourier Transform,IFFT)长度为N,则采样率为fs=NΔf,所述Chirp信号采样率与OFDM导频符号采样率相同为fs,采样间隔Ts=1/fs,经过采样后Chirp信号在T时间(对应一个符号)内样点个数为N,表示为s2(0),…,s2(N-1);
对所述采样后的Chirp信号进行N点傅里叶变换(Fast Fourier Transform,FFT)变换得到对应的频域Chirp信号,表示为S2(0),…,S2(N-1),然后根据OFDM导频符号的频域采样格式对所述频域Chirp信号进行采样,方法同本申请实施例的方案,即OFDM导频符号在频域上共有n(n≤N)个子载波,表示不同频域采样点,采样点的序号表示为f1,…,fn,对应频域资源RE1~REn,对应的OFDM信号表示为S1(f1),…,S1(fn),则Chirp信号频域采样点序号为f1,…,fn,对应频域资源RE1~REn,其中RE1~REn可以连续也可以不连续,对应的Chirp信号表示为S2(f1),…,S2(fn),即OFDM信号和Chirp信号的频域采样点f1,…,fn对应的频域位置/频点相同,所述通感一体化信号生成可以表示为:
对S2(f1),…,S2(fn)进行频域归一化处理,得到S2'(f1),…,S2'(fn),与OFDM导频符号进行频域相乘得到通感一体化信号:S'0(fk)=S1(fk)·S2'(fk),k=1,…,n;
或者,通过频域相乘得到S0(fk)=S1(fk)·S2(fk),k=1,…,n,然后对S0(fk)进行频域归一化处理,得到通感一体化信号S'0(fk),k=1,…,n。
在本发明的另一具体实施例中,Chirp信号与OFDM符号通过时域循环卷积生成通感 一体化信号,Chirp信号与OFDM符号带宽相同,Chirp信号与OFDM符号(含CP)持续时间相同,该OFDM符号可以是OFDM导频符号(采用PN序列)。具体的,该Chirp信号满足以下公式:
其中,A0为幅度,f0为起始频率,k=B/TC为调频斜率,其中,B为带宽,与所述OFDM导频符号带宽相同,TC为Chirp持续时间,与所述OFDM导频符号(含CP)持续时间相同,即TC=TO+TCP
对于OFDM导频符号,子载波间隔为Δf,IFFT长度为N,则采样率为fs=NΔf,经过IFFT变换并添加CP后表示为s1(0),…,s1(N+NCP-1),其中NCP=TCP·fs,NCP表示CP长度;
所述Chirp信号采样率与OFDM导频符号采样率相同为fs,采样间隔Ts=1/fs,经过采样后Chirp信号在TC=TO+TCP时间内样点个数为N+NCP,其中NCP=TCP·fs,采样后时域Chirp信号可以表示为:s2(0),…,s2(N+NCP-1);
对所述采样后的时域Chirp信号进行归一化处理,得到s2'(0),…,s2'(N+NCP-1),并将处理后的Chirp信号与经过IFFT变换并添加CP后的OFDM符号进行循环卷积得到通感一体化信号:
该实施例中的tk表示采
样点的序号。
本申请实施例中,线性调频信号为可用于感知的信号,这里,对通信信号和该线性调频信号按照目标运算进行处理,得到通感一体化信号,该通感一体化信号既可用于通信传输又可用于感知,相比于通信信号和线性调频信号采用时分或频分的处理方式,通信信号和线性调频信号通过时域循环卷积运算或频域相乘运算进行了融合,占用相同的时频资源,提高了资源利用率,且采用线性调频信号与通信信号进行时域循环卷积运算或频域相乘运算得到的通感一体化信号,使得接收端可以通过简单的频域相除消除线性调频信号,或者,接收端可直接基于该通感一体化信号进行信道估计,有效降低了通感一体化信号对通信性能的影响。
本申请实施例提供的信号处理方法,执行主体可以为信号处理装置。本申请实施例中以信号处理装置执行信号处理方法为例,说明本申请实施例提供的信号处理装置。
如图3所示,本申请实施例还提供了一种信号处理装置300,包括:
第一处理模块301,用于对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,所述通感一体化信号为能够用于通信和感知的信号;
其中,所述目标运算包括以下至少一项:
频域相乘运算;
时域循环卷积运算;
时域相乘运算;
频域循环卷积运算;
时域共轭乘运算;
频域共轭乘运算;
时域相除运算;
频域相除运算;
时域叠加运算;
时域相减运算;
频域叠加运算;
频域相减运算。
可选地,本申请实施例的装置,还包括:确定模块,用于确定目标运算。
可选地,所述第一处理模块包括:
第一处理子模块,用于对所述通信信号和所述线性调频信号进行归一化处理,得到处理后的通信信号和线性调频信号;
第二处理子模块,用于对处理后的通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号。
可选地,本申请实施例的装置,还包括:
第二处理模块,用于在第一处理模块对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号之后,对所述通感一体化信号进行归一化处理,得到处理后的通感一体化信号。
可选地,处理后的目标信号满足以下公式:
S'(k)=S(k)÷Norm_factor;
其中,S'(k)表示处理后的目标信号,S(k)表示处理前的目标信号,Norm_factor表示归一化因子,k=1,……,n;n表示采样点的总数量,所述目标信号为所述通信信号、所述线性调频信号或所述通感一体化信号。
可选地,所述归一化因子满足以下至少一项公式:

可选地,所述第一处理模块包括:
第三处理子模块,用于对所述通信信号和第一线性调频信号按照目标运行进行处理,得到第一通感一体化信号;
第四处理子模块,用于对所述通信信号和第二线性调频信号按照目标运算进行处理,得到第二通感一体化信号;
其中,K1=-K2,K1表示第一线性调频信号的斜率,K2表示第二线性调频信号的斜率。
可选地,所述第一处理模块包括:
功率调整子模块,用于根据功率调整信息,对通信信号和线性调频信号分别进行功率调整处理,得到功率调整处理后的通信信号和线性调频信号;
第五处理子模块,用于对功率调整处理后的通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号。
可选地,本申请实施例的装置,还包括:
传输模块,用于向第二设备发送所述通感一体化信号的配置信息,所述配置信息包括以下至少一项:
通感一体化信号的标识信息;
通感一体化信号的生成方式信息;
通感一体化信号的时频资源信息;
通感一体化信号对应的通信信号和线性调频信号中的至少一项的时频资源信息;
通感一体化信号对应的线性调频信号的斜率信息;
所述通感一体化信号对应的通信信号和线性调频信号中的至少一项的功率调整信息。
可选地,所述功率调整信息包括以下至少一项:
所述通信信号与所述线性调频信号的功率比例信息;
所述通信信号与所述线性调频信号的幅度比例信息;
所述通信信号的功率因子或幅度因子;
所述线性调频信号的功率因子或幅度因子。
可选地,所述通信信号包括以下至少一项:
参考信号;
同步信号;
前导码;
数据信号。
可选地,所述通信信号的波形包括以下至少一项:
正交频分复用OFDM波形;
基于OFDM的改进波形;
离散傅里叶变换-扩展-正交频分复用DFT-s-OFDM波形;
基于DFT-s-OFDM的改进波形;
单载波频域均衡SC-FDE波形;
正交时频空OTFS波形。
可选地,所述通信信号与所述线性调频信号具有相同的带宽和频域采样格式。
可选地,所述通信信号的持续时间To与所述线性调频信号的持续时间TC满足以下其 中一项公式:
TC=To
TC=To+TCP,TCP表示所述通信信号的循环前缀CP的持续时间。
可选地,所述通信信号的开始时间与所述线性调频信号的开始时间相同;
所述通信信号的结束时间与所述线性调频信号的结束时间相同。
本申请实施例中,线性调频信号为可用于感知的信号,这里,对通信信号和该线性调频信号按照目标运算进行处理,得到通感一体化信号,该通感一体化信号既可用于通信传输又可用于感知,相比于通信信号和线性调频信号采用时分或频分的处理方式,通信信号和线性调频信号通过时域循环卷积运算或频域相乘运算进行了融合,占用相同的时频资源,提高了资源利用率,且采用线性调频信号与通信信号进行时域循环卷积运算或频域相乘运算得到的通感一体化信号,使得接收端可以通过简单的频域相除消除线性调频信号,或者,接收端可直接基于该通感一体化信号进行信道估计,有效降低了通感一体化信号对通信性能的影响。
本申请实施例中的信号处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信号处理装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图4所示,本申请实施例还提供一种通信设备400,包括处理器401和存储器402,存储器402上存储有可在所述处理器401上运行的程序或指令,该程序或指令被处理器401执行时实现上述信号处理方法实施例的各个步骤,且能达到相同的技术效果。为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,包括处理器和通信接口,处理器用于对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,所述通感一体化信号为能够用于通信和感知的信号;所述功率调整信息包括以下至少一项:
所述通信信号与所述线性调频信号的功率比例信息;
所述通信信号与所述线性调频信号的幅度比例信息;
所述通信信号的功率因子或幅度因子;
所述线性调频信号的功率因子或幅度因子。
该实施例与上述第一设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。该第一设备可为终端,具体地,图5为实现本申请实施例的一种终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入 单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509以及处理器510等中的至少部分部件。
本领域技术人员可以理解,终端500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理单元(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072中的至少一种。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501接收来自网络侧设备的下行数据后,可以传输给处理器510进行处理;另外,射频单元501可以向网络侧设备发送上行数据。通常,射频单元501包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器509可以包括易失性存储器或非易失性存储器,或者,存储器509可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器509包括但不限于这些和任意其它适合类型的存储器。
处理器510可包括一个或多个处理单元;可选的,处理器510集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
其中,处理器510,用于对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,所述通感一体化信号为能够用于通信和感知的信号;
其中,所述目标运算包括以下至少一项:
频域相乘运算;
时域循环卷积运算;
时域相乘运算;
频域循环卷积运算;
时域共轭乘运算;
频域共轭乘运算;
时域相除运算;
频域相除运算;
时域叠加运算;
时域相减运算;
频域叠加运算;
频域相减运算。
本申请实施例中,线性调频信号为可用于感知的信号,这里,对通信信号和该线性调频信号按照目标运算进行处理,得到通感一体化信号,该通感一体化信号既可用于通信传输又可用于感知,相比于通信信号和线性调频信号采用时分或频分的处理方式,通信信号和线性调频信号通过时域循环卷积运算或频域相乘运算进行了融合,占用相同的时频资源,提高了资源利用率,且采用线性调频信号与通信信号进行时域循环卷积运算或频域相乘运算得到的通感一体化信号,使得接收端可以通过简单的频域相除消除线性调频信号,或者,接收端可直接基于该通感一体化信号进行信道估计,有效降低了通感一体化信号对通信性能的影响。
可选地,处理器510,用于对所述通信信号和所述线性调频信号进行归一化处理,得到处理后的通信信号和线性调频信号;
对处理后的通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号。
可选地,处理器510,用于对所述通感一体化信号进行归一化处理,得到处理后的通感一体化信号。
可选地,处理后的目标信号满足以下公式:
S'(k)=S(k)÷Norm_factor;
其中,S'(k)表示处理后的目标信号,S(k)表示处理前的目标信号,Norm_factor表示归一化因子,k表示采样点的序号,k=1,……,n;n表示采样点的总数量,所述目标信号为所述通信信号、所述线性调频信号或所述通感一体化信号。
可选地,所述归一化因子满足以下至少一项公式:

可选地,处理器510,用于根据功率调整信息,对通信信号和线性调频信号分别进行功率调整处理,得到功率调整处理后的通信信号和线性调频信号;对功率调整处理后的通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号。
可选地,处理器510,用于对所述通信信号和第一线性调频信号按照目标运行进行处理,得到第一通感一体化信号;
对所述通信信号和第二线性调频信号按照目标运算进行处理,得到第二通感一体化信号;
其中,K1=-K2,K1表示第一线性调频信号的斜率,K2表示第二线性调频信号的斜率。
可选地,射频单元501,用于向第二设备发送所述通感一体化信号的配置信息,所述配置信息包括以下至少一项:
通感一体化信号的标识信息;
通感一体化信号的生成方式信息;
通感一体化信号的时频资源信息;
通感一体化信号对应的通信信号和线性调频信号中的至少一项的时频资源信息;
通感一体化信号对应的线性调频信号的斜率信息;
所述通感一体化信号对应的通信信号和线性调频信号中的至少一项的功率调整信息。
可选地,所述功率调整信息包括以下至少一项:
所述通信信号与所述线性调频信号的功率比例信息;
所述通信信号与所述线性调频信号的幅度比例信息;
所述通信信号的功率因子或幅度因子;
所述线性调频信号的功率因子或幅度因子。
可选地,所述通信信号包括以下至少一项:
参考信号;
同步信号;
前导码;
数据信号。
可选地,所述通信信号的波形包括以下至少一项:
正交频分复用OFDM波形;
基于OFDM的改进波形;
离散傅里叶变换-扩展-正交频分复用DFT-s-OFDM波形;
基于DFT-s-OFDM的改进波形;
单载波频域均衡SC-FDE波形;
正交时频空OTFS波形。
可选地,所述通信信号与所述线性调频信号具有相同的带宽和频域采样格式。
可选地,所述通信信号的持续时间To与所述线性调频信号的持续时间TC满足以下其中一项公式:
TC=To
TC=To+TCP,TCP表示所述通信信号的循环前缀CP的持续时间。
可选地,所述通信信号的开始时间与所述线性调频信号的开始时间相同;
所述通信信号的结束时间与所述线性调频信号的结束时间相同。
本申请实施例中,线性调频信号为可用于感知的信号,这里,对通信信号和该线性调频信号按照目标运算进行处理,得到通感一体化信号,该通感一体化信号既可用于通信传输又可用于感知,相比于通信信号和线性调频信号采用时分或频分的处理方式,通信信号和线性调频信号通过时域循环卷积运算或频域相乘运算进行了融合,占用相同的时频资源,提高了资源利用率,且采用线性调频信号与通信信号进行时域循环卷积运算或频域相乘运算得到的通感一体化信号,使得接收端可以通过简单的频域相除消除线性调频信号,或者,接收端可直接基于该通感一体化信号进行信道估计,有效降低了通感一体化信号对通信性能的影响。
本申请实施例的第一设备还可为网络侧设备,具体地,本申请实施例还提供了一种网络侧设备。如图6所示,该网络侧设备600包括:天线61、射频装置62、基带装置63、处理器64和存储器65。天线61与射频装置62连接。在上行方向上,射频装置62通过天线61接收信息,将接收的信息发送给基带装置63进行处理。在下行方向上,基带装置63对要发送的信息进行处理,并发送给射频装置62,射频装置62对收到的信息进行处理后经过天线61发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置63中实现,该基带装置63包括基带处理器。
基带装置63例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图6所示,其中一个芯片例如为基带处理器,通过总线接口与存储器65连接,以调用存储器65中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口66,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本发明实施例的网络侧设备600还包括:存储在存储器65上并可在处理器64上运行的指令或程序,处理器64调用存储器65中的指令或程序执行图3所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图7所示,该网络侧设备700包 括:处理器701、网络接口702和存储器703。其中,网络接口702例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本发明实施例的网络侧设备700还包括:存储在存储器703上并可在处理器701上运行的指令或程序,处理器701调用存储器703中的指令或程序执行图3所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施 方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (30)

  1. 一种信号处理方法,包括:
    第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,所述通感一体化信号为能够用于通信和感知的信号;
    其中,所述目标运算包括以下至少一项:
    频域相乘运算;
    时域循环卷积运算;
    时域相乘运算;
    频域循环卷积运算;
    时域共轭乘运算;
    频域共轭乘运算;
    时域相除运算;
    频域相除运算;
    时域叠加运算;
    时域相减运算;
    频域叠加运算;
    频域相减运算。
  2. 根据权利要求1所述的方法,其中,所述第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,包括:
    对所述通信信号和所述线性调频信号进行归一化处理,得到处理后的通信信号和线性调频信号;
    对处理后的通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号。
  3. 根据权利要求1所述的方法,其中,所述第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号之后,还包括:
    对所述通感一体化信号进行归一化处理,得到处理后的通感一体化信号。
  4. 根据权利要求2或3所述的方法,其中,处理后的目标信号满足以下公式:
    S'(k)=S(k)÷Norm_factor;
    其中,S'(k)表示处理后的目标信号,S(k)表示处理前的目标信号,Norm_factor表示归一化因子,k表示采样点的序号,k=1,……,n;n表示采样点的总数量,所述目标信号为所述通信信号、所述线性调频信号或所述通感一体化信号。
  5. 根据权利要求4所述的方法,其中,所述归一化因子满足以下至少一项公式:

  6. 根据权利要求1所述的方法,其中,所述第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,包括:
    对所述通信信号和第一线性调频信号按照目标运行进行处理,得到第一通感一体化信号;
    对所述通信信号和第二线性调频信号按照目标运算进行处理,得到第二通感一体化信号;
    其中,K1=-K2,K1表示第一线性调频信号的斜率,K2表示第二线性调频信号的斜率。
  7. 根据权利要求1所述的方法,其中,所述第一设备对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,包括:
    所述第一设备根据功率调整信息,对通信信号和线性调频信号分别进行功率调整处理,得到功率调整处理后的通信信号和线性调频信号;
    对功率调整处理后的通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号。
  8. 根据权利要求1所述的方法,其中,还包括:
    向第二设备发送所述通感一体化信号的配置信息,所述配置信息包括以下至少一项:
    所述通感一体化信号的标识信息;
    所述通感一体化信号的生成方式信息;
    所述通感一体化信号的时频资源信息;
    所述通感一体化信号对应的通信信号和线性调频信号中的至少一项的时频资源信息;
    所述通感一体化信号对应的线性调频信号的斜率信息;
    所述通感一体化信号对应的通信信号和线性调频信号中的至少一项的功率调整信息。
  9. 根据权利要求7或8所述的方法,其中,所述功率调整信息包括以下至少一项:
    所述通信信号与所述线性调频信号的功率比例信息;
    所述通信信号与所述线性调频信号的幅度比例信息;
    所述通信信号的功率因子或幅度因子;
    所述线性调频信号的功率因子或幅度因子。
  10. 根据权利要求1至9任一项所述的方法,其中,所述通信信号包括以下至少一项:
    参考信号;
    同步信号;
    前导码;
    数据信号。
  11. 根据权利要求1至9任一项所述的方法,其中,所述通信信号的波形包括以下至 少一项:
    正交频分复用OFDM波形;
    基于OFDM的改进波形;
    离散傅里叶变换-扩展-正交频分复用DFT-s-OFDM波形;
    基于DFT-s-OFDM的改进波形;
    单载波频域均衡SC-FDE波形;
    正交时频空OTFS波形。
  12. 根据权利要求1至9任一项所述的方法,其中,所述通信信号与所述线性调频信号具有相同的带宽和频域采样格式。
  13. 根据权利要求1至9任一项所述的方法,其中,所述通信信号的持续时间To与所述线性调频信号的持续时间TC满足以下其中一项公式:
    TC=To
    TC=To+TCP,TCP表示所述通信信号的循环前缀CP的持续时间。
  14. 根据权利要求1至9任一项所述的方法,其中,所述通信信号的开始时间与所述线性调频信号的开始时间相同;
    所述通信信号的结束时间与所述线性调频信号的结束时间相同。
  15. 一种信号处理装置,包括:
    第一处理模块,用于对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号,所述通感一体化信号为能够用于通信和感知的信号;
    其中,所述目标运算包括以下至少一项:
    频域相乘运算;
    时域循环卷积运算;
    时域相乘运算;
    频域循环卷积运算;
    时域共轭乘运算;
    频域共轭乘运算;
    时域相除运算;
    频域相除运算;
    时域叠加运算;
    时域相减运算;
    频域叠加运算;
    频域相减运算。
  16. 根据权利要求15所述的装置,其中,所述第一处理模块包括:
    第一处理子模块,用于对所述通信信号和所述线性调频信号进行归一化处理,得到处理后的通信信号和线性调频信号;
    第二处理子模块,用于对处理后的通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号。
  17. 根据权利要求15所述的装置,其中,还包括:
    第二处理模块,用于在第一处理模块对通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号之后,对所述通感一体化信号进行归一化处理,得到处理后的通感一体化信号。
  18. 根据权利要求16或17所述的装置,其中,处理后的目标信号满足以下公式:
    S'(k)=S(k)÷Norm_factor;
    其中,S'(k)表示处理后的目标信号,S(k)表示处理前的目标信号,Norm_factor表示归一化因子,k=1,……,n;n表示采样点的总数量,所述目标信号为所述通信信号、所述线性调频信号或所述通感一体化信号。
  19. 根据权利要求18所述的装置,其中,所述归一化因子满足以下至少一项公式:

  20. 根据权利要求15所述的装置,其中,所述第一处理模块包括:
    第三处理子模块,用于对所述通信信号和第一线性调频信号按照目标运行进行处理,得到第一通感一体化信号;
    第四处理子模块,用于对所述通信信号和第二线性调频信号按照目标运算进行处理,得到第二通感一体化信号;
    其中,K1=-K2,K1表示第一线性调频信号的斜率,K2表示第二线性调频信号的斜率。
  21. 根据权利要求15所述的装置,其中,所述第一处理模块包括:
    功率调整子模块,用于根据功率调整信息,对通信信号和线性调频信号分别进行功率调整处理,得到功率调整处理后的通信信号和线性调频信号;
    第五处理子模块,用于对功率调整处理后的通信信号和线性调频信号按照目标运算进行处理,得到通感一体化信号。
  22. 根据权利要求15所述的装置,其中,还包括:
    传输模块,用于向第二设备发送所述通感一体化信号的配置信息,所述配置信息包括以下至少一项:
    所述通感一体化信号的标识信息;
    所述通感一体化信号的生成方式信息;
    所述通感一体化信号的时频资源信息;
    所述通感一体化信号对应的通信信号和线性调频信号中的至少一项的时频资源信息;
    所述通感一体化信号对应的线性调频信号的斜率信息;
    所述通感一体化信号对应的通信信号和线性调频信号中的至少一项的功率调整信息。
  23. 根据权利要求21或22所述的装置,其中,所述功率调整信息包括以下至少一项:
    所述通信信号与所述线性调频信号的功率比例信息;
    所述通信信号与所述线性调频信号的幅度比例信息;
    所述通信信号的功率因子或幅度因子;
    所述线性调频信号的功率因子或幅度因子。
  24. 根据权利要求15至23任一项所述的装置,其中,所述通信信号包括以下至少一项:
    参考信号;
    同步信号;
    前导码;
    数据信号。
  25. 根据权利要求15至23任一项所述的装置,其中,所述通信信号的波形包括以下至少一项:
    正交频分复用OFDM波形;
    基于OFDM的改进波形;
    离散傅里叶变换-扩展-正交频分复用DFT-s-OFDM波形;
    基于DFT-s-OFDM的改进波形;
    单载波频域均衡SC-FDE波形;
    正交时频空OTFS波形。
  26. 根据权利要求15至23任一项所述的装置,其中,所述通信信号与所述线性调频信号具有相同的带宽和频域采样格式。
  27. 根据权利要求15至23任一项所述的装置,其中,所述通信信号的持续时间To与所述线性调频信号的持续时间TC满足以下其中一项公式:
    TC=To
    TC=To+TCP,TCP表示所述通信信号的循环前缀CP的持续时间。
  28. 根据权利要求15至23任一项所述的装置,其中,所述通信信号的开始时间与所述线性调频信号的开始时间相同;
    所述通信信号的结束时间与所述线性调频信号的结束时间相同。
  29. 一种通信设备,包括处理器和存储器,其中,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至14任一项所述的信号处理方法的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至14任一项所述的信号处理方法的步骤。
PCT/CN2023/071787 2022-01-18 2023-01-11 信号处理方法、装置及通信设备 WO2023138456A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210055042.X 2022-01-18
CN202210055042.XA CN116506271A (zh) 2022-01-18 2022-01-18 信号处理方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2023138456A1 true WO2023138456A1 (zh) 2023-07-27

Family

ID=87318871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071787 WO2023138456A1 (zh) 2022-01-18 2023-01-11 信号处理方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN116506271A (zh)
WO (1) WO2023138456A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3499262A1 (en) * 2013-11-21 2019-06-19 Tracewave GmbH Two-way ranging using chirp signals
CN112054803A (zh) * 2020-08-31 2020-12-08 昆明理工大学 一种基于压缩感知的通信信号的分选方法
CN113015148A (zh) * 2021-02-19 2021-06-22 深圳市海豚科技创新有限公司 智能设备近场感知方法、装置、计算机设备及存储介质
CN113328810A (zh) * 2021-06-01 2021-08-31 浙江大学 一种啁啾复用的太赫兹通信感知一体化系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3499262A1 (en) * 2013-11-21 2019-06-19 Tracewave GmbH Two-way ranging using chirp signals
CN112054803A (zh) * 2020-08-31 2020-12-08 昆明理工大学 一种基于压缩感知的通信信号的分选方法
CN113015148A (zh) * 2021-02-19 2021-06-22 深圳市海豚科技创新有限公司 智能设备近场感知方法、装置、计算机设备及存储介质
CN113328810A (zh) * 2021-06-01 2021-08-31 浙江大学 一种啁啾复用的太赫兹通信感知一体化系统

Also Published As

Publication number Publication date
CN116506271A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2022171084A1 (zh) 接入方法、装置、通信设备及可读存储介质
US20230208698A1 (en) Frame structure indication method, frame structure updating method, and related device
WO2022183979A1 (zh) 同步信号传输方法、装置、设备及存储介质
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2023138456A1 (zh) 信号处理方法、装置及通信设备
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
US11405255B2 (en) Data processing method and intelligent terminal based on orthogonal frequency division multiplexing (OFDM) system
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2023186158A1 (zh) 解调参考信号传输方法、装置、终端及网络侧设备
WO2024017025A1 (zh) 导频参数配置方法及设备
WO2023231924A1 (zh) 信号发送方法、发送设备及接收设备
WO2024099125A1 (zh) 测量信息反馈方法、接收方法及通信设备
WO2024061255A1 (zh) 信号发送方法、信号接收方法及设备
WO2024046195A1 (zh) 感知信号处理方法、装置及通信设备
WO2024022316A1 (zh) 下行参考信号发送方法、装置、终端及网络侧设备
WO2023116874A1 (zh) 通信资源确定方法、终端及网络侧设备
WO2023143428A1 (zh) 信息传输方法、设备、终端及网络侧设备
WO2023207976A1 (zh) 物理随机接入信道传输资源确定方法、装置、终端和设备
WO2024032607A1 (zh) 帧结构确定方法、装置、通信设备及存储介质
WO2023160546A1 (zh) 感知方法、装置及通信设备
WO2023131316A1 (zh) 探测参考信号的端口映射方法和终端
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2023198058A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2023025000A1 (zh) 扩频方法、装置、通信设备及可读存储介质
WO2023280094A1 (zh) 信号发送方法、接收方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742771

Country of ref document: EP

Kind code of ref document: A1