WO2018228243A1 - 一种发送解调参考信号的方法和装置、解调方法和装置 - Google Patents

一种发送解调参考信号的方法和装置、解调方法和装置 Download PDF

Info

Publication number
WO2018228243A1
WO2018228243A1 PCT/CN2018/089992 CN2018089992W WO2018228243A1 WO 2018228243 A1 WO2018228243 A1 WO 2018228243A1 CN 2018089992 W CN2018089992 W CN 2018089992W WO 2018228243 A1 WO2018228243 A1 WO 2018228243A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
demodulation reference
sequence
demodulation
resource
Prior art date
Application number
PCT/CN2018/089992
Other languages
English (en)
French (fr)
Inventor
刘永
任翔
武露
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18817946.9A priority Critical patent/EP3595223B1/en
Publication of WO2018228243A1 publication Critical patent/WO2018228243A1/zh
Priority to US16/676,906 priority patent/US11165606B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and apparatus for transmitting a demodulation reference signal, a demodulation method, and an apparatus.
  • 5G communication systems have diverse transmission requirements, such as high and low frequency coexistence, multiple numerology and so on.
  • the 5G communication system is in the stage of R&D design.
  • the related design of the sequence of demodulation reference signal (DMRS) has not been determined.
  • the present application provides a method and apparatus for transmitting a demodulation reference signal, a demodulation method and apparatus, and in particular, a related design of a sequence of demodulation reference signals.
  • the present application provides a method of transmitting a demodulation reference signal.
  • the executor of the method may be a transmitting device.
  • the transmitting device may be a terminal.
  • the transmitting device may be a base station.
  • the method can include generating a demodulation reference signal, wherein a length of a sequence of the demodulation reference signal is related to an attribute of the demodulation reference signal; and then transmitting the demodulation reference signal.
  • the length of the sequence of the demodulation reference signal is related to the attribute of the demodulation reference signal.
  • the demodulation reference signal may be, for example but not limited to, at least one of the following: demodulating a pattern corresponding to the reference signal, and demodulating The density of the reference signal, etc. Therefore, the technical solution can be applied to a scene in which the density of the demodulation reference signal can be configured and/or the DMRS corresponding pattern can be configured, so that it can be applied to a 5G communication system.
  • the present application provides a demodulation method.
  • the executor of the method may be a receiving end device.
  • the receiving end device may be a base station; in a downlink transmission scenario, the receiving end device may be a terminal.
  • the method can include receiving a demodulation reference signal, the length of the sequence of the demodulated reference signal being related to an attribute of the demodulation reference signal, and then demodulating the data signal based on the demodulation reference signal.
  • the demodulation reference signal may be, for example but not limited to, at least one of: demodulating a pattern corresponding to the reference signal, demodulating a density of the reference signal, and the like.
  • the sequence of demodulation reference signals includes K identical basic sequences, each basic sequence corresponding to a time-frequency resource carrying a demodulation reference signal, where K Is an integer greater than or equal to 2.
  • each time-frequency resource includes one of the following in the time domain: one or more symbols, one or more time slots, and one or more subframes.
  • the K time-frequency resources include 1 pre-resource and K-1 additional resources.
  • the preamble resource can be understood as a time-frequency resource that carries a demodulation reference signal and is a preamble in the time domain.
  • the additional resources are time-frequency resources other than the pre-resources that carry the demodulation reference signal.
  • the method may include: transmitting indication information, wherein the indication information is used to indicate a length of the basic sequence. Subsequently, after receiving the indication information, the terminal may generate a sequence of demodulation reference signals according to the indication information.
  • the method may include: receiving indication information, wherein the indication information is used to indicate a length of the basic sequence. Subsequently, the terminal may generate a sequence of demodulation reference signals according to the indication information.
  • the foregoing provides a technical solution for indicating the length of the basic sequence by the indication information, and the present application is not limited thereto.
  • the length of the basic sequence may be pre-agreed by both the transmitting and receiving parties.
  • the indication information may include, for example but not limited to, at least one of the following: a length of the basic sequence, an index of the length of the basic sequence, a value of N, and the like.
  • the present application provides an apparatus for transmitting a demodulation reference signal, which apparatus can implement the method of transmitting a demodulation reference signal according to the first aspect.
  • the device may be a transmitting device (such as a base station or a terminal), which may implement the above method by software, hardware, or by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the first aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit is configured to generate a demodulation reference signal, wherein a length of the sequence of the demodulation reference signal is related to an attribute of the demodulation reference signal.
  • the transceiver unit is configured to send the demodulation reference signal.
  • the present application provides a demodulation device that can implement the demodulation method described in the second aspect.
  • the device may be a receiving device (such as a base station or a terminal), which may implement the above method by software, hardware, or by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the second aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a processing unit and a transceiver unit.
  • the transceiver unit is configured to receive a demodulation reference signal, wherein a length of the sequence of the demodulation reference signal is related to an attribute of the demodulation reference signal.
  • the processing unit is configured to demodulate the data signal based on the demodulation reference signal.
  • the sequence of the demodulation reference signal includes K identical basic sequences, each basic sequence corresponding to a time-frequency resource carrying the demodulation reference signal, where K Is an integer greater than or equal to 2.
  • each time-frequency resource includes one of the following in the time domain: one or more symbols, one or more time slots, and one or more subframes.
  • the K time-frequency resources include 1 pre-resource and K-1 additional resources.
  • the preamble resource can also be understood as a time-frequency resource that carries the demodulation reference signal and is a preamble in the time domain.
  • the additional resources are time-frequency resources other than the pre-resources that carry the demodulation reference signal.
  • the transceiver unit when the device is a base station, the transceiver unit may be further configured to: send indication information, where the indication information is used to indicate a length of the basic sequence. Subsequently, after receiving the indication information, the terminal may generate a sequence of demodulation reference signals according to the indication information.
  • the transceiver unit may be further configured to: receive indication information, wherein the indication information is used to indicate a length of the basic sequence. Subsequently, the terminal may generate a sequence of demodulation reference signals according to the indication information.
  • the application also provides a computer storage medium having stored thereon a computer program (instructions) that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • the application also provides a computer program product, when run on a computer, causing the computer to perform the method of any of the above aspects.
  • any of the devices or computer storage media or computer program products provided above are used to perform the corresponding methods provided above, and therefore, the beneficial effects that can be achieved can be referred to the beneficial effects in the corresponding methods. , will not repeat them here.
  • FIG. 1 is a schematic diagram of a communication system to which the technical solution provided by the embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of interaction of a method for transmitting a demodulation reference signal according to an embodiment of the present disclosure
  • FIG. 3 is a diagram of a system supporting a 2-port transmission demodulation reference signal according to an embodiment of the present disclosure
  • FIG. 4 is a diagram of a system supporting an 8-port transmission demodulation reference signal according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an apparatus for transmitting a demodulation reference signal according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of another apparatus for transmitting a demodulation reference signal according to an embodiment of the present disclosure.
  • a demodulation reference signal (DMRS) and a port are in one-to-one correspondence.
  • the density of the DMRS is fixed, and the length of the sequence of the DMRS corresponding to the fixed port number is fixed.
  • the length of the sequence of the DMRS corresponding to the port 5 is 12*X, that is, the number of resource elements (RE elements) of the DMRS corresponding to the port 5 is 12 in one resource block (RB).
  • RB resource block
  • the 5G communication system has diverse transmission requirements, such as high and low frequency coexistence, multiple numerology, etc., so the RAN1#89 conference has agreed that the DMRS density configurability and the DMRS corresponding pattern can be configured, which leads to the definition of "fixed” in LTE.
  • the length of the sequence of the DMRS corresponding to the port number is fixed does not apply to the 5G communication system.
  • the present application provides a method and apparatus, a demodulation method and a device for transmitting a demodulation reference signal.
  • the technical solution provided by the present application can be applied to various communication systems that transmit demodulation reference signals, such as existing communication systems, 5G communication systems, future evolution systems, or multiple communication fusion systems, and the like.
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • uRLLC ultra high reliability and ultra low latency communication
  • mMTC massive machine type communication
  • These scenarios may include, but are not limited to, a communication scenario between the terminal and the terminal, a communication scenario between the base station and the base station, a communication scenario between the base station and the terminal, and the like.
  • the technical solution provided by the present application can also be applied to a scenario between a terminal and a terminal in a 5G communication system, or a communication between a base station and a base station.
  • FIG. 1 shows a schematic diagram of a communication system that can include at least one base station 100 (only one shown) and one or more terminals 200 connected to base station 100.
  • Base station 100 can be a device that can communicate with terminal 200.
  • the base station 100 can be a relay station or an access point or the like.
  • the base station 100 may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network, or may be a wideband code.
  • the NB (NodeB) in the wideband code division multiple access (WCDMA) may also be an eNB or an eNodeB (evolutional NodeB) in LTE.
  • the base station 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the base station 100 may also be a network device in a 5G network or a network device in a future evolved network; it may also be a wearable device or an in-vehicle device or the like.
  • the terminal 200 may be a user equipment (UE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a terminal, a wireless communication device, a UE proxy, or UE device, etc.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • the demodulation reference signal refers to a reference signal that is pre-agreed by the transmitting and receiving parties and used to assist the data signal for demodulation.
  • the demodulation reference signal in the present application may be, for example but not limited to, a DMRS or a cell-specific reference signal (CRS) or the like.
  • the demodulation reference signal is sent on a scheduled resource unit.
  • the present application does not limit the number of resource units that are scheduled at one time.
  • the resource unit can be used as a basic unit for resource allocation by the scheduling terminal, and can also be used to describe the arrangement manner of multiple reference signals.
  • the resource unit may be composed of a plurality of consecutive subcarriers in the frequency domain and a fixed number of time intervals (TI) in the time domain.
  • the TI may be a transmission time interval (TTI) in the LTE system, or may be a short TTI at the symbol level, or a short TTI at a large subcarrier interval in the high frequency system, or may be a time in the 5G system. Slot or mini-slot, etc.
  • one resource unit may include but is not limited to any one of the following: one or more RBs, one or more RB pairs (RB pairs), one or more RB groups (RBGs, etc.), and It can be half RB or the like.
  • other time-frequency resources may also be used, which is not limited in this application.
  • An RB pair refers to two RBs adjacent in the time domain.
  • the RBG is a time-frequency resource composed of one TI or multiple RBs in the frequency domain in the time domain.
  • one resource unit is an RB pair, and one RB pair is composed of 12 consecutive subcarriers (numbered from 0 to 11) in the frequency domain and 14 symbols in the time domain (numbered from 0 to 13).
  • the composition is explained as an example.
  • the number of demodulation reference signals transmitted by the transmitting device is related to the number of data streams (ie, the number of layers), and corresponds to the antenna ports one by one.
  • the antenna port is a logical concept, which is different from the physical port.
  • the antenna port and the physical port are related to each other through layer mapping and precoding.
  • the related process may refer to the prior art, and details are not described herein.
  • "port" as used in this application refers to a logical antenna port. It can be understood that, in a scheduling period (ie, one TI), the scheduled port may be part or all of the ports supported by the system, and the scheduled ports may be the same or different in different scheduling periods.
  • the density of the demodulation reference signals corresponding to the scheduled ports may be the same or different.
  • the density and/or the corresponding pattern of the demodulation reference signals corresponding to the same port being scheduled may be the same or different in different scheduling periods.
  • the number of ports for transmitting and demodulating reference signals supported by the system is not limited, for example, but not limited to, supporting 2, 4, 6, 8, or 12 port transmission demodulation reference signals.
  • the system can simultaneously support multiple ports for transmitting demodulation reference signals, such as 8-port transmit demodulation reference signals and 12-port transmit demodulation reference signals.
  • the demodulation reference signal that is pre-agreed by the transmitting and receiving parties is generally a sequence of modulation symbols, which is a sequence of demodulation reference signals.
  • the modulation mode of the demodulation reference signal may be, for example but not limited to, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 16 positive Quadrature amplitude modulation (QAM), etc.
  • the sequence of demodulation reference signals includes one or more modulation symbols. For example, if the modulation scheme is BPSK, the modulation symbol is a BPSK symbol; if the modulation scheme is QPSK, the modulation symbol is a QPSK symbol. In different modulation modes, the generation formula of the sequence for generating the demodulation reference signal is different.
  • the modulation method is QPSK as an example.
  • the term "plurality” as used herein refers to two or more.
  • the terms "first”, “second”, etc. are used herein to distinguish different objects and are not intended to limit the order.
  • the first indication information and the second indication information are only for distinguishing different indication information, and the sequence thereof is not limited.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character “/" in this article generally indicates that the contextual object is an "or” relationship; in the formula, the character "/" indicates that the contextual object is a "divide” relationship.
  • the technical solution provided by the present application can be applied to an uplink transmission scenario, and can also be applied to a downlink transmission scenario.
  • the transmitting device is a terminal
  • the receiving device is a base station.
  • the transmitting device is a base station
  • the receiving device is a terminal.
  • FIG. 2 is a schematic flowchart of a method for transmitting a demodulation reference signal provided by the present application, including a method for transmitting a demodulation reference signal and a demodulation method.
  • the method shown in Figure 2 can include:
  • the transmitting end device generates a demodulation reference signal, wherein a length of the sequence of the demodulation reference signal is related to an attribute of the demodulation reference signal.
  • the demodulation reference signal may be a demodulation reference signal corresponding to any port supported by the system.
  • the attributes of the demodulation reference signal are, for example but not limited to, at least one of: demodulating a pattern corresponding to the reference signal, demodulating the density of the reference signal, and the like.
  • the density of the demodulation reference signal may include at least one of demodulating a time-frequency density of the reference signal, demodulating a frequency domain density of the reference signal, and demodulating a time domain density of the reference signal.
  • the attributes of the demodulation reference signal may further include a transmission mode of the terminal, an identifier of a cell where the terminal is located, and the like. The present application does not limit how the transmitting end device obtains the attributes of the demodulation reference signal. For example, reference may be made to the prior art.
  • FIG. 3 shows several patterns when the system supports 2-port transmit demodulation reference signals.
  • Figure 4 shows several patterns when the system supports 8-port transmit demodulation reference signals.
  • each small square in FIG. 3 and FIG. 4 represents an RE, and the small square of the shadow is used to carry the demodulation reference signal, and the information carried in the blank small squares in FIG. 3 and FIG. 4 is not performed. limited. Of course, this application is not limited to this.
  • the transmitting end device and the receiving end device may configure the modulation mode of the demodulation reference signal according to a protocol agreement or a signaling manner.
  • the transmitting end device can obtain a sequence of demodulation reference signals according to a generation formula of a sequence of demodulation reference signals.
  • the generation formula of the sequence of the demodulation reference signal can be as follows:
  • r(m) represents the mth modulation symbol in the sequence of the demodulation reference signal.
  • a*N is the length of the sequence of the demodulation reference signal.
  • a is the number of REs occupied by the demodulation reference signal in one resource unit.
  • N is the number of resource units carrying the demodulation reference signal in the full bandwidth.
  • the number of resource units carrying the demodulation reference signal is the physical downlink shared channel (physical downlink shared channel, which is allocated to the receiving device). The number of resource units included in PDSCH).
  • the initial value of c(2m) is related to the transport mode (TM) of the terminal.
  • TM transport mode
  • the initial value c init of c(2m) can be expressed. for: among them, Indicates rounding down, n s is the slot number, Indicates the cell ID.
  • n The RNTI is related to the radio network tempory identity (RNIT) of the scheduled terminal. If the terminal is not assigned an RNIT, the n RNTI is 0.
  • the demodulation reference signal is a CRS
  • the initial value c init of c(2m) is related to the cell identity.
  • the transmitting end device sends a demodulation reference signal.
  • the receiving device receives the demodulation reference signal.
  • the transmitting end device performs resource mapping, inverse fast fourier transform (IFFT), and the like on the demodulation reference signal, and then sends out.
  • the receiving end device receives the signal, and performs fast Fourier transform (FFT) and resource inverse mapping on the signal to obtain a demodulation reference signal.
  • FFT fast Fourier transform
  • the processing of uplink transmission and downlink transmission may be different.
  • the demodulation reference signal obtained by the receiving end device can be understood as a signal obtained after the demodulation reference signal transmitted by the transmitting end device is transmitted through the channel.
  • the demodulation reference signal transmitted by the transmitting end device is often different from the demodulation reference signal obtained by the receiving end device.
  • S103 The receiving end device demodulates the data signal according to the demodulation reference signal.
  • the length of the sequence of the demodulation reference signal is related to the attribute of the demodulation reference signal, wherein the attribute of the demodulation reference signal includes at least one of the following: a demodulation reference signal corresponding to The pattern demodulates the density of the reference signal, and thus can be applied to a scene in which the density of the demodulation reference signal can be configured and/or demodulated corresponding to the pattern configurable, thereby being applicable to a 5G communication system.
  • the sequence of demodulation reference signals includes K identical base sequences, each base sequence corresponding to a time-frequency resource carrying a demodulation reference signal, where K is an integer greater than or equal to two.
  • each time-frequency resource includes one of the following in the time domain: one or more symbols, one or more time slots, one or more subframes, and the like.
  • each time-frequency resource may also be one or more mini-slots and the like in the time domain.
  • each time-frequency resource includes one symbol and the resource unit is one RB pair
  • each of the symbols 2, 6, 10 carries a basic sequence, and the three basic sequences are the same, wherein the length of the basic sequence is 8N, wherein, as described above, N is a carrier in the frequency domain.
  • symbols 2, 3 carry a basic sequence
  • a basic sequence carried on symbols 8, 9 and the two basic sequences are identical, wherein the length of the basic sequence is 12N, wherein, as described above, N The number of resource units carrying the demodulation reference signal in the frequency domain.
  • the length of one basic sequence is 24N, where N is a resource unit carrying the demodulation reference signal in the frequency domain. Number.
  • the length of one basic sequence is 24N, where N is a resource unit carrying the demodulation reference signal in the frequency domain. Number.
  • the basic sequence generation formula can be as follows:
  • the length of the base sequence is related to the time domain density and frequency domain density of the demodulation reference signal.
  • the transmitting device knows the frequency domain density of the demodulation reference signal to generate a basic sequence, and thus the implementation is simple.
  • the method may further include: the base station sending the indication information to the terminal, where the indication information is used to indicate the length of the basic sequence.
  • the indication information may be semi-static configuration signaling, such as radio resource control (RRC) signaling, medium access control (MAC) signaling, or dynamic indication signaling.
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • the indication information may include, for example but not limited to, at least one of the following: a length of the basic sequence, an index of the length of the basic sequence, a value of N, and the like.
  • the base station indicates the value of N to the terminal. Thereafter, the terminal can learn the basic sequence according to the pattern corresponding to N and the demodulation reference signal.
  • This embodiment can be applied to an uplink transmission scenario, and can also be applied to a downlink transmission scenario.
  • this embodiment is described by using the base station to indicate the length of the basic sequence to the terminal by using the signaling.
  • the application is not limited thereto.
  • the basic sequence corresponding to each pattern may be pre-defined according to the protocol between the base station and the terminal. length.
  • the N time-frequency resources include 1 pre-resource and N-1 additional resources.
  • the preamble resource can be understood as a time-frequency resource that carries a demodulation reference signal and is a preamble in the time domain.
  • the preamble refers to the symbol in the top position of a TI.
  • the additional resources are time-frequency resources other than the pre-resources that carry the demodulation reference signal.
  • the preamble may be a symbol numbered 2 and/or a symbol numbered 3 in one subframe in the LTE system, or the like.
  • the preamble which is specifically defined as which symbol or symbols in a sub-frame, the present application is not limited.
  • the demodulation reference signal is generally carried on the preamble, for example, the demodulation reference signal is set by default on the preamble, but is not limited to a scene where the low delay transmission requirement is not strong, or a medium and high speed scene, or Doppler frequency. Move in the scene.
  • the demodulation reference signal may be additionally carried in a non-pre-position of TI. On the symbol. For example, in the pattern shown in (b) of Fig. 3, the number of preambles is 1, and the two other symbols carrying the demodulation reference signal are non-preamble symbols.
  • the number of preambles is 2, and the two other symbols carrying the demodulation reference signal are non-preamble symbols. It can be seen that the demodulation reference signal can be carried only on the preamble or on both the preamble and the non-preamble.
  • the process of acquiring the sequence of each demodulation reference signal by the transmitting end device and/or the receiving end device may include: acquiring a basic sequence according to a generating formula of the basic sequence, and then obtaining a sequence of the demodulated reference signal according to the basic sequence. Also, the processes for obtaining sequences of different demodulation reference signals may be independent.
  • the present application also provides another method for obtaining a basic sequence, specifically: selecting (a*N)/K values from the first preset sequence to obtain a basic sequence.
  • the length of the first preset sequence is the number of REs in a time-frequency resource.
  • the time-frequency resource is a symbol occupied by a basic sequence in the time domain, and is a full bandwidth in the frequency domain.
  • the time-frequency resource is a symbol occupied by a basic sequence in the time domain, and is a resource unit that can transmit PDSCH information allocated to the receiving end device in the full bandwidth in the frequency domain.
  • a basic sequence thereof may be obtained by selecting (a*N)/K values from the first preset sequence.
  • a calculation formula such as Equation 2
  • each time-frequency resource is a symbol in the time domain, and the full bandwidth includes 20 RB pairs (each RB pair is a resource unit).
  • the formula for generating the first preset sequence can be as follows:
  • X is the number of available resource units in the full bandwidth, or the number of resource units in the full bandwidth that can transmit PDSCH information.
  • the full bandwidth is 20M (megabytes) and the resource unit is an RB pair
  • the number of available RB pairs in the full bandwidth is 110
  • the number of RB pairs that can transmit PDSCH information may be 100.
  • the number of RB pairs of the demodulation reference signal is less than or equal to 100.
  • Equation 3 For the explanation of other contents in Equation 3, reference may be made to the explanation of Equation 1 above, and details are not described herein again.
  • the present application does not limit how to select this (a*N)/K values from the first preset sequence.
  • the selection is as follows:
  • Method 1 (a*N)/K values are sequentially selected from the first preset sequence.
  • the first 160 modulation symbols of the 240 modulation symbols can be used as the basic sequence corresponding to a demodulation reference signal.
  • Manner 2 Select (a*N)/K values from the first preset sequence according to the index of the scheduling resource unit.
  • each of the first preset sequences may be followed.
  • the order of the modulation symbols treats each of the 12 modulation symbols as a group, and acquires 8 modulation symbols in each group, thereby obtaining 160 modulation symbols, which are the basic sequences corresponding to the demodulation reference signals. .
  • the pattern shown in (b) of FIG. 3 assuming that the resource unit is an RB pair, and a demodulation reference signal is carried on each RB pair of the full bandwidth.
  • the base station schedules the demodulation reference signal on the RB pair 1 to 5 and the RB pair 16 to 20 of the full bandwidth, and the base station may follow the first pre- Let the order of each modulation symbol in the sequence be regarded as a group of 12 modulation symbols, and obtain 8 modulation symbols in each of the groups 1 to 5 and 16 to 20, thereby obtaining 80 modulation symbols.
  • the modulation symbols can be used as the basic sequence corresponding to the demodulation reference signal. Among them, the present application does not limit which eight modulation symbols are acquired in each group.
  • Manner 3 Select (a*N)/K values from the first preset sequence according to the time-frequency resource position of the demodulation reference signal.
  • each of the first preset sequences may be followed.
  • the order of modulation symbols treats each 12 modulation symbols as a group, and then acquires 0, 1, 3, 4, 6, 7, 9, 10 modulation symbols in each group to obtain 160 modulation symbols.
  • the modulation symbols can be used as the basic sequence corresponding to the port 0 or/or port 1 demodulation reference signal.
  • the transmitting device and the receiving device obtain the (a*N)/K values in a specific manner, which may be agreed by the transmitting and receiving parties through a protocol in advance, or may be configured by the base station to be configured by using a signaling manner. Specifically, it may be a semi-static configuration (for example, configured by RRC signaling or MAC signaling) or a dynamic indication configuration (for example, by DCI configuration). In addition, some of the features of any of the various embodiments provided in the present application may be reorganized to form a new technical solution without conflict.
  • the base station may configure, by using a signaling manner, a length of a sequence of demodulation reference signals to the terminal.
  • the base station sends the indication information to the terminal, where the indication information is used to indicate that the length of the sequence of the demodulation reference signal is a multiple of the length of the second preset sequence.
  • the terminal receives the indication information, and determines a length of the sequence of the demodulation reference signal according to the indication information.
  • the length of the second preset sequence may be, for example but not limited to, a maximum or minimum value of the lengths of all sequences supported by the system, and the like.
  • the length of the second preset sequence may be set to 160 or may be set to 480. If the second preset sequence is 160, when the pattern corresponding to the demodulation reference signal is as shown in (a) of FIG. 3, the multiple is 1; when the demodulation reference signal corresponds to the pattern as shown in (b) of FIG. Show that the multiple is 3. If the length of the second preset sequence is 480, when the pattern corresponding to the demodulation reference signal is as shown in (a) of FIG. 3, the multiple is 1/3; when the demodulation reference signal corresponds to the pattern as shown in FIG. (b), the multiple is 1.
  • each network element such as a base station or a terminal.
  • each network element such as a base station or a terminal.
  • each network element includes hardware structures and/or software modules corresponding to the execution of the respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide a function module into a base station or a terminal according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions.
  • the embodiment of the present application further provides an apparatus for transmitting a demodulation reference signal, which may be a chip (such as a baseband chip, or a communication chip, etc.), or may be a terminal.
  • the apparatus can be used to perform any of the steps of Figure 2.
  • the device is a terminal.
  • Figure 5 shows a simplified schematic diagram of the terminal structure. It is convenient for understanding and illustration.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminals, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminals may not have input and output devices.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit having the transceiving function can be regarded as the transceiving unit of the terminal, and the processor having the processing function can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 501 and a processing unit 502.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, or the like.
  • the device for implementing the receiving function in the transceiver unit 501 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 501 is regarded as a sending unit, that is, the transceiver unit 501 includes a receiving unit and a sending unit.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • the transmitting device may be a terminal.
  • processing unit 502 is configured to perform S101 in FIG. 2, and/or other steps in the present application.
  • the transceiver unit 501 is configured to perform the steps performed by the transmitting device in S102 of FIG. 2, and/or other steps in the present application.
  • the receiving device may be a terminal.
  • processing unit 502 is configured to perform S103 in FIG. 2, and/or other steps in the present application.
  • the transceiver unit 501 is configured to perform the steps performed by the receiving device in S102 of FIG. 2, and/or other steps in the present application.
  • the embodiment of the present application further provides an apparatus for transmitting a demodulation reference signal, which may be a chip (such as a baseband chip, or a communication chip, etc.), or may be a base station.
  • a demodulation reference signal which may be a chip (such as a baseband chip, or a communication chip, etc.), or may be a base station.
  • the apparatus can be used to perform any of the steps of Figure 2.
  • the following is an example in which the device is a base station.
  • Figure 6 shows a schematic diagram of a simplified base station structure.
  • the base station includes a 601 part and a 602 part. Section 601 is mainly used for transmitting and receiving RF signals and conversion of RF signals and baseband signals; Section 602 is mainly used for baseband processing and base station control.
  • Section 61 can be generally referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • Section 602 is typically the control center of the base station and may be referred to as a processing unit for controlling the base station to perform any of the steps of FIG. 3 above. For details, please refer to the description of the relevant part above.
  • the transceiver unit of the 601 part which may also be called a transceiver, or a transceiver, etc., includes an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in the 601 part may be regarded as the receiving unit, and the device for implementing the sending function is regarded as the sending unit, that is, the 601 part includes the receiving unit and the sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • Section 602 can include one or more boards, each board can include one or more processors and one or more memories for reading and executing programs in memory to implement baseband processing functions and to base stations control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time. Device.
  • the receiving device may be a base station.
  • the processing unit is operative to perform S103 in FIG. 2, and/or other steps in the application.
  • the transceiver unit is configured to perform the steps performed by the receiving device in S102 of FIG. 2, and/or other steps in the application.
  • the transmitting device may be a base station.
  • the processing unit is operative to perform S101 in FIG. 2, and/or other steps in the application.
  • the transceiver unit is operative to perform the steps performed by the transmitting device in S102 of FIG. 2, and/or other steps in the application.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种发送解调参考信号的方法和装置、解调方法和装置,涉及通信技术领域。发送解调参考信号的方法可以包括:生成解调参考信号,其中,该解调参考信号的序列的长度与该解调参考信号的属性相关;然后,发送该解调参考信号。该技术方案支持解调参考信号的密度可配置和/或解调参考信号对应的图样可配置,可以应用于5G通信系统中。

Description

一种发送解调参考信号的方法和装置、解调方法和装置
本申请要求于2017年06月16日提交中国专利局、申请号为201710459720.8、申请名称为“一种发送解调参考信号的方法和装置、解调方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种发送解调参考信号的方法和装置、解调方法和装置。
背景技术
5G通信系统有多样性传输需求,如高低频共存,多numerology等。目前,5G通信系统正处于研发设计阶段,截止目前,有关解调参考信号(demodulation reference signal,DMRS)的序列的相关设计尚未确定。
发明内容
本申请提供了一种发送解调参考信号的方法和装置、解调方法和装置,具体的,提供了解调参考信号的序列的相关设计。
第一方面,本申请提供了一种发送解调参考信号的方法。该方法的执行主体可以是发射端设备,在上行传输场景中,发射端设备可以是终端;在下行传输场景中,发射端设备可以是基站。该方法可以包括:生成解调参考信号,其中,解调参考信号的序列的长度与解调参考信号的属性相关;然后,发送该解调参考信号。该技术方案中,解调参考信号的序列的长度与解调参考信号的属性相关,可选的,解调参考信号可以例如但不限于以下至少一种:解调参考信号对应的图样,解调参考信号的密度等。因此该技术方案能够适用于解调参考信号的密度可配置和/或DMRS对应的图样可配置的场景中,从而可以适用于5G通信系统中。
第二方面,本申请提供了一种解调方法。该方法的执行主体可以是接收端设备,在上行传输场景中,接收端设备可以是基站;在下行传输场景中,接收端设备可以是终端。该方法可以包括:接收解调参考信号,解调参考信号的序列的长度与解调参考信号的属性相关;然后根据解调参考信号解调数据信号。可选的,解调参考信号可以例如但不限于以下至少一种:解调参考信号对应的图样,解调参考信号的密度等。
基于第一方面或第二方面,在一种可能的设计中,解调参考信号的序列包括K个相同的基本序列,每一基本序列对应承载解调参考信号的一个时频资源,其中,K是大于或等于2的整数。可选的,每一时频资源在时域上包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。可选的,K个时频资源包括1个前置资源和K-1个额外资源。其中,前置资源可以理解为承载解调参考信号的且在时域上为前置符号的时频资源。额外资源是承载解调参考信号的除前置资源之外的时频资源。
基于第一方面或第二方面,在一种可能的设计中,当该方法的执行主体是基站,该方法可以包括:发送指示信息,其中,该指示信息用于指示基本序列的长度。后续, 终端接收到该指示信息后,可以根据该指示信息生成解调参考信号的序列。
基于第一方面或第二方面,在一种可能的设计中,当该方法的执行主体是终端,该方法可以包括:接收指示信息,其中,该指示信息用于指示基本序列的长度。后续,终端可以根据该指示信息生成解调参考信号的序列。
上述提供了通过指示信息指示基本序列的长度的技术方案,本申请不限于此,例如还可以是收发双方预先约定好基本序列的长度。另外,指示信息可以例如但不限于包括以下至少一种:基本序列的长度,基本序列的长度的索引,N的取值等。
第三方面,本申请提供了一种发送解调参考信号的装置,该装置可以实现第一方面所述的发送解调参考信号的方法。例如,该装置可以是发射端设备(例如基站或终端),其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第一方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括:处理单元和收发单元。其中,处理单元用于生成解调参考信号,其中,解调参考信号的序列的长度与解调参考信号的属性相关。收发单元用于发送该解调参考信号。
第四方面,本申请提供了一种解调装置,该装置可以实现第二方面所述的解调方法。例如,该装置可以是接收端设备(例如基站或终端),其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第二方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括:处理单元和收发单元。其中,收发单元用于接收解调参考信号,其中,解调参考信号的序列的长度与解调参考信号的属性相关。处理单元用于根据解调参考信号解调数据信号。
基于第三方面或第四方面,在一种可能的设计中,解调参考信号的序列包括K个相同的基本序列,每一基本序列对应承载解调参考信号的一个时频资源,其中,K是大于或等于2的整数。可选的,每一时频资源在时域上包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。可选的,K个时频资源包括1个前置资源和K-1个额外资源。其中,前置资源也可以理解为承载解调参考信号的且在时域上为前置符号的时频资源。额外资源是承载解调参考信号的除前置资源之外的时频资源。
在一种可能的设计中,当该装置是基站,收发单元还可以用于:发送指示信息,其中,该指示信息用于指示基本序列的长度。后续,终端接收到该指示信息后,可以根据该指示信息生成解调参考信号的序列。
在一种可能的设计中,当该装置是终端,收发单元还可以用于:接收指示信息,其中,该指示信息用于指示基本序列的长度。后续,终端可以根据该指示信息生成解调参考信号的序列。
本申请还提供了一种计算机存储介质,其上储存有计算机程序(指令),当该程序(指令)在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
可以理解地,上述提供的任一种装置或计算机存储介质或计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的技术方案所适用的一种通信系统示意图;
图2为本申请实施例提供的一种传输解调参考信号的方法的交互示意图;
图3为本申请实施例提供的一种系统支持2端口传输解调参考信号时的图样;
图4为本申请实施例提供的一种系统支持8端口传输解调参考信号时的图样;
图5为本申请实施例提供的一种传输解调参考信号的装置的结构示意图;
图6为本申请实施例提供的另一种传输解调参考信号的装置的结构示意图。
具体实施方式
长期演进(long term evolution,LTE)系统中,解调参考信号(demodulation reference signal,DMRS)与端口(即天线端口)是一一对应的。并且,DMRS的密度是固定的,固定端口号对应的DMRS的序列的长度是固定的。例如,port5对应的DMRS的序列的长度是12*X,即在一个资源块(resource block,RB)内,承载port5对应的DMRS的资源元素(resource element,RE)的个数是12。其中,X是全带宽内承载port5对应的DMRS的RB的个数。
5G通信系统有多样性传输需求,如高低频共存,多numerology等,因此RAN1#89会议已同意DMRS的密度可配置和DMRS对应的图样可配置这一观点,这会导致LTE中定义的“固定端口号对应的DMRS的序列的长度是固定的”不适用于5G通信系统。
基于此,本申请提供了一种发送解调参考信号的方法和装置、解调方法和装置。本申请提供的技术方案可以应用于各种传输解调参考信号的通信系统,例如,现有通信系统,5G通信系统,未来演进系统或者多种通信融合系统等等。可以包括多种应用场景,例如,机器对机器(machine to machine,M2M)、D2M、宏微通信、增强型移动互联网(enhance mobile broadband,eMBB)、超高可靠性与超低时延通信(ultra reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:终端与终端之间的通信场景,基站与基站之间的通信场景,基站与终端之间的通信场景等。本申请提供的技术方案也可以应用于5G通信系统中的终端与终端之间的通信,或基站与基站之间的通信等场景中。
图1给出了一种通信系统示意图,该通信系统可以包括至少一个基站100(仅示出1个)以及与基站100连接的一个或多个终端200。
基站100可以是能和终端200通信的设备。基站100可以是中继站或接入点等。基站100可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base  transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。基站100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。基站100还可以是5G网络中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。
终端200可以是用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN网络中的终端等。
解调参考信号是指收发双方预先约定好的,用于辅助数据信号进行解调的参考信号。本申请中的解调参考信号可以例如但不限于是DMRS或小区特定参考信号(cell-specific reference signals,CRS)等。解调参考信号是在被调度的资源单元(resource unit)上发送的,本申请对一次被调度的资源单元的个数不进行限定。其中,资源单元可以作为调度终端进行资源分配的基本单位,也可以用于描述多种参考信号的排布方式等。资源单元可以由频域上连续的多个子载波和时域上的固定个数的时间间隔(time interval,TI)组成。其中,TI可以是LTE系统中的传输时间间隔(transmission time interval,TTI),也可以是符号级短TTI,或高频系统中的大子载波间隔的短TTI,还可以是5G系统中的时隙(slot)或微型时隙(mini-slot)等。可选的,一个资源单元可以包括但不限于以下任一种:一个或多个RB,一个或多个RB pair(RB对),一个或多个RB组(RB group,RBG)等,另外还可以是半个RB等。另外还可以是其他的时频资源,本申请对此不进行限定。其中,一个RB pair是指时域上相邻的两个RB。RBG是时域上一个TI,频域上连续的一个或多个RB构成的时频资源。下文中均是以一个资源单元是一个RB pair,且一个RB pair是由频域上的12个连续的子载波(编号为0~11)和时域上的14个符号(编号为0~13)组成,为例进行说明。
发射端设备发送的解调参考信号的数量与数据流数(即层数)相关,与天线端口一一对应。其中天线端口是逻辑上的概念,其与物理端口不同,天线端口与物理端口通过层映射和预编码进行相关,其相关过程可参考现有技术,本文不再赘述。如果不加说明,本申请中描述的“端口”是指逻辑上的天线端口。可以理解的,一个调度周期(即一个TI)内,被调度的端口可以是系统所支持的端口中的部分或全部,不同调度周期内,被调度的端口可以相同也可以不同。一个调度周期中,被调度的各端口对应的解调参考信号的密度可以相同,也可以不同。不同调度周期内,被调度的同一端口对应的解调参考信号的密度和/或对应的图样可以相同也可以不同。其中,本申请对系统支持的传输解调参考信号的端口数不进行限定,例如但不限于支持2、4、6、8或12端口传输解调参考信号。另外,系统可同时支持多种传输解调参考信号的端口数,例如可同时支持8端口传输解调参考信号,以及12端口传输解调参考信号。
收发双方预先约定好的解调参考信号一般是调制符号序列,该符号序列即为“解调 参考信号的序列”。其中,解调参考信号的调制方式可以例如但不限于以下任一种:二进制相移键控(binary phase shift keying,BPSK),正交相移键控(quadrature phase shift keyin,QPSK),16正交幅度调制(quadrature amplitude modulation,QAM)等。解调参考信号的序列包括一个或多个调制符号。例如,若调制方式是BPSK,则调制符号是BPSK符号;若调制方式是QPSK,则调制符号是QPSK符号。不同调制方式下,生成解调参考信号的序列的生成公式不同。下文中均是以调制方式是QPSK为例进行说明的。
本文中的术语“多个”是指两个或两个以上。本文中的术语“第一”、“第二”等仅是为了区分不同的对象,并不对其顺序进行限定。例如,第一指示信息和第二指示信息仅仅是为了区分不同的指示信息,并不对其先后顺序进行限定。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
本申请提供的技术方案可以应用于上行传输场景中,也可以应用于下行传输场景中。在上行传输场景中,发射端设备是终端,接收端设备是基站。在下行传输场景中,发射端设备是基站,接收端设备是终端。
图2给出了本申请提供的一种传输解调参考信号的方法的流程示意图,其中包括发送解调参考信号的方法和解调方法。图2所示的方法可以包括:
S101:发射端设备生成解调参考信号,其中,解调参考信号的序列的长度与解调参考信号的属性相关。
该解调参考信号可以是系统支持的任一端口对应的解调参考信号。解调参考信号的属性例如但不限于以下至少一种:解调参考信号对应的图样(pattern),解调参考信号的密度等。其中,解调参考信号的密度可以包括以下至少一种:解调参考信号的时频密度,解调参考信号的频域密度,解调参考信号的时域密度。另外,解调参考信号的属性还可以包括终端的传输模式、终端所在的小区的标识等。本申请对发射端设备如何获取解调参考信号的属性的实现方式不进行限定,例如可以参考现有技术。
图3给出了系统支持2端口传输解调参考信号时的几种图样。图4给出了系统支持8端口传输解调参考信号时的几种图样。其中,图3和图4中的每个小方格表示一个RE,阴影小方格用于承载解调参考信号,本申请对图3和图4中的空白小方格中承载的信息不进行限定。当然本申请不限于此。
发射端设备和接收端设备可以预先根据协议约定或通过信令方式配置解调参考信号的调制方式。发射端设备根据解调参考信号的序列的生成公式,即可得到解调参考信号的序列。以调制方式是QPSK为例,解调参考信号的序列的生成公式可以如下:
Figure PCTCN2018089992-appb-000001
其中,r(m)表示解调参考信号的序列中的第m个调制符号。a*N为解调参考信号的序列的长度。a为解调参考信号在一个资源单元内所占的RE的个数。N为全带宽内承载解调参考信号的资源单元的个数,一般情况下,承载解调参考信号的资源单元的 个数,就是分配给接收端设备的物理下行共享信道(physical downlink shared channel,PDSCH)所包含的资源单元的个数。
若解调参考信号是DMRS,则c(2m)的初始值与终端的传输模式(transport mode,TM)相关,例如若终端的传输模式是TM7,则c(2m)的初始值c init可表示为:
Figure PCTCN2018089992-appb-000002
其中,
Figure PCTCN2018089992-appb-000003
表示向下取整,n s表示时隙号,
Figure PCTCN2018089992-appb-000004
表示小区标识。n RNTI与被调度的终端的无线网络临时标识(radio network tempory identity,RNIT)相关。如果没有为终端分配RNIT,则n RNTI是0。若解调参考信号是CRS,则c(2m)的初始值c init与小区标识相关。
示例的,假设全带宽内承载一解调参考信号的资源单元的个数是20(即N=20),那么,若该解调参考信号是图3中的(a)所示的任一解调参考信号,则该解调参考信号的序列的长度为8*20=160。若该解调参考信号是图3中的(b)所示的任一解调参考信号,则该解调参考信号的序列的长度是24*20=480。
示例的,假设全带宽内承载一解调参考信号的资源单元的个数是20(即N=20),那么,若该解调参考信号是图4中的(a)所示的任一解调参考信号,则该解调参考信号的序列的长度为12*20=240。若该解调参考信号是图4中的(b)所示的任一解调参考信号,则该解调参考信号的序列的长度是24*20=480。
S102:发射端设备发送解调参考信号。接收端设备接收解调参考信号。
例如,发射端设备对解调参考信号进行资源映射、快速傅里叶反变换(inverse fast fourier transform,IFFT)等操作后,发送出去。接收端设备接收信号,并对该信号进行快速傅里叶变换(fast fourier transform,FFT)、资源逆映射等操作后,得到解调参考信号。其中,上行传输与下行传输的处理过程可能有所不同。此外,接收端设备得到的解调参考信号可以理解为是发射端设备发送的解调参考信号经信道传输后得到的信号。其中,由于信号在信道传输过程中会受到噪声等因素的影响,因此发射端设备发送的解调参考信号与接收端设备得到的解调参考信号往往不同。上述处理过程在现有技术中已经进行了清楚的描述,因此此处不再赘述。
S103:接收端设备根据解调参考信号解调数据信号。
本申请对S104的具体实现过程不进行限定,例如可参考现有技术。
本申请提供的传输解调参考信号的方法中,解调参考信号的序列的长度与解调参考信号的属性相关,其中,解调参考信号的属性包括以下至少一种:解调参考信号对应的图样,解调参考信号的密度,因此能够适用于解调参考信号的密度可配置和/或解调参考信号对应的图样可配置的场景中,从而可以适用于5G通信系统中。
在本申请的一些实施例中,解调参考信号的序列包括K个相同的基本序列,每一基本序列对应承载解调参考信号的一个时频资源,其中,K是大于或等于2的整数。可选的,每一时频资源在时域上包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧等。另外每一时频资源在时域上还可以是一个或多个微型时隙等。
以每一时频资源包括1个符号,且资源单元是1个RB pair为例,若解调参考信号对应的图样如图3中的(b)所示,则K=3。该示例中,符号2、6、10中的每一符号上承载一个基本序列,且这3个基本序列相同,其中,基本序列的长度是8N,其中,如上文所述,N为频域内承载所述解调参考信号的资源单元的个数。以每一时频资源 包括2个符号为例,若解调参考信号对应的图样如图4中的(b)所示,则K=2。该示例中,符号2、3上承载一个基本序列,符号8、9上承载的一个基本序列,且这两个基本序列相同,其中,基本序列的长度是12N,其中,如上文所述,N为频域内承载所述解调参考信号的资源单元的个数。
以每一时频资源包括1个子帧,且资源单元是2个RB pair为例(即一个资源单元中的每个RB pair占用一个子帧,且该资源单元中的2个RB pair占用两个不同的子帧),则K=2。若解调参考信号在每一RB pair上对应的图样如图3中的(b)所示,则一个基本序列的长度是24N,其中N为频域内承载所述解调参考信号的资源单元的个数。若解调参考信号在每一RB pair上对应的图样如图4中的(b)所示,则一个基本序列的长度是24N,其中N为频域内承载所述解调参考信号的资源单元的个数。
以调制方式是QPSK为例,基本序列的生成公式可以如下:
Figure PCTCN2018089992-appb-000005
其中,公式2中相关内容的解释可以参考上文中对公式1的解释,此处不再赘述。
可以理解的,基本序列的长度与解调参考信号的时域密度和频域密度相关。该实施例中,基本序列对应的时域资源一旦确定,发射端设备知道解调参考信号的频域密度即可生成基本序列,因此实现简单。
在本申请的一些实施例中,该方法还可以包括:基站向终端发送指示信息,其中,该指示信息用于指示基本序列的长度。其中,该指示信息可以是半静态配置信令,例如无线资源控制(radio resource control,RRC)信令,媒体接入控制(medium access control,MAC)信令等,也可以是动态指示信令,例如下行控制信息(downlink control information,DCI)等。该指示信息中可以例如但不限于包括以下至少一种:基本序列的长度,基本序列的长度的索引,N的取值等。可以理解的,由于发射端设备和接收端设备均可获知解调参考信号对应的图样,以及全带宽内承载任一解调参考信号的资源单元的个数,因此基站向终端指示N的取值之后,终端可根据N以及解调参考信号对应的图样获知基本序列。该实施例可以应用于上行传输场景中,也可以应用于下行传输场景中。另外,该实施例是以基站通过信令向终端指示基本序列的长度为例进行说明的,本申请不限于此,例如基站和终端之间可以预先根据协议约定好每一图样对应的基本序列的长度。
在本申请的一些实施例中,N个时频资源包括1个前置资源和N-1个额外资源。其中,前置资源可以理解为承载解调参考信号的且在时域上为前置符号的时频资源。前置符号是指一个TI中位置靠前的符号。额外资源是承载解调参考信号的除前置资源之外的时频资源。例如,前置符号可以是LTE系统中一个子帧中的编号为2的符号和/或编号为3的符号等。至于前置符号具体被定义为一个子帧中的哪一个符号或哪几个符号,本申请不进行限定。解调参考信号一般承载在前置符号上,例如解调参考信号缺省设置在前置符号上,但不限于在低延迟传输需求并不强烈的场景,或中高速场景,或多普勒频移等场景中。为了提高信道估计的精确度,在一些场景下,例如但不限于高速场景等,除了在前置符号上设置解调参考信号,还可以额外的将解调参考信号承载在一个TI的非前置符号上。例如在如图3中的(b)所示的图样中,前置符号的个 数是1,承载解调参考信号的2个其他符号为非前置符号。在如图4中的(b)所示的图样,则前置符号的个数是2,承载解调参考信号的2个其他符号为非前置符号。由此可见,解调参考信号可以仅承载在前置符号上,也可以同时承载在前置符号和非前置符号上。
可以理解的,发射端设备和/或接收端设备获取每一解调参考信号的序列的过程可以包括:根据基本序列的生成公式获取基本序列,然后根据基本序列得到该解调参考信号的序列。并且,获取不同解调参考信号的序列的流程之间可以是独立的。本申请还提供了另一种获取基本序列的方法,具体的:从第一预设序列中选择(a*N)/K个值,得到基本序列。其中,第一预设序列的长度是一时频资源内的RE的个数。在一种实现方式中,该时频资源在时域上为一个基本序列所占的符号,在频域上为全带宽。在另一种实现方式中,该时频资源在时域上为一个基本序列所占的符号,在频域上为全带宽内为接收端设备分配的可传输PDSCH信息的资源单元。
可选的,对于每一解调参考信号来说,其基本序列均可以从该第一预设序列中选择(a*N)/K个值得到。这样,不需要根据计算公式(如公式2)得到每一解调参考信号对应的基本序列,因此实现简单。以每一时频资源在时域上是一个符号,全带宽包含20个RB pair(每个RB pair为一个资源单元)为例,第一预设序列的长度是12*20=240。基于此,在图3中的(b)所示的图样中,一个解调参考信号对应的基本序列的长度是(24*20)/3=160,其中,a=24,N=20,K=3。因此,从第一预设序列的240个调制符号中选择160个调制符号即可得到一个解调参考信号对应的基本序列。
以调制方式是QPSK为例,第一预设序列的生成公式可以如下:
Figure PCTCN2018089992-appb-000006
其中,X表示全带宽内可用资源单元的个数,或为全带宽内可传输PDSCH信息的资源单元的个数。例如,假设全带宽是20M(兆),资源单元是RB pair,则全带宽内可用RB pair的个数是110,可传输PDSCH信息的RB pair的个数可以是100,全带宽内承载任一解调参考信号的RB pair的个数小于或等于100。b表示一个资源单元中的子载波个数。假设资源单元是1个RB pair,则b=12。公式3中其他内容的解释可以参考上文中对公式1的解释,此处不再赘述。
本申请对如何从第一预设序列中选择这(a*N)/K个值不进行限定。例如但不限于通过如下方式进行选择:
方式1:从第一预设序列中顺序选择(a*N)/K个值。
例如,基于图3中的(b)所示的图样,可以将240个调制符号中的前160个调制符号作为一解调参考信号对应的基本序列。
方式2:按照调度资源单元的索引从第一预设序列中选择(a*N)/K个值。
例如,基于图3中的(b)所示的图样,假设资源单元是RB pair,一解调参考信号承载在全带宽的每一RB pair上,那么,可以按照第一预设序列中的各调制符号的先后顺序将每12个调制符号视作一组,并在每组中获取8个调制符号,从而得到160个调制符号,该160个调制符号即为该解调参考信号对应的基本序列。又如,基于图3中的(b)所示的图样,假设基站在全带宽的RB pair1~5,以及RB pair16~20这10 个RB pair上调度解调参考信号,则可以按照第一预设序列中的各调制符号的先后顺序将每12个调制符号视作一组,并在第1~5、16~20的每组中获取8个调制符号,从而得到80个调制符号,该80个调制符号可作为该解调参考信号对应的基本序列。其中,本申请对在每组中获取哪8个调制符号不进行限定。
方式3:按照解调参考信号的时频资源位置从第一预设序列中选择(a*N)/K个值。
例如,基于图3中的(b)所示的图样,假设资源单元是RB pair,一解调参考信号承载在全带宽的每一RB pair上,那么,可以按照第一预设序列中的各调制符号的先后顺序将每12个调制符号视作一组,然后获取每组中的第0、1、3、4、6、7、9、10个调制符号,得到160个调制符号,该160个调制符号可作为端口0或/或端口1解调参考信号对应的基本序列。
需要说明的是,发射端设备和接收端设备具体通过哪种方式获取(a*N)/K个值,可以是收发双方预先通过协议约定好的,也可以是基站通过信令方式配置给终端的,具体可以是半静态配置(例如通过RRC信令或MAC信令配置)或动态指示配置(例如通过DCI配置)。另外,在不冲突的情况下,本申请中提供的任意多个实施例中的部分特征可以进行重组,形成新的技术方案,此处不再一一列举。
可以理解的,上文中均是以K是大于或等于2为例进行说明的。该实施例同样适用于K=1的场景中,该情况下,基本序列即为解调参考信号的序列。
在本申请的一些实施例中,在上行传输场景和/或下行传输场景中,基站可以通过信令方式向终端配置解调参考信号的序列的长度。可选的,基站向终端发送指示信息,该指示信息用于指示解调参考信号的序列的长度占第二预设序列的长度的倍数。对应的,终端接收该指示信息,并根据该指示信息确定解调参考信号的序列的长度。其中,第二预设序列的长度可以例如但不限于是系统所支持的所有序列的长度中的最大值或最小值等。例如,系统支持图3所示的2种图样,这样,若全带宽内承载一个解调参考信号的RB pair的个数是20,则系统所支持的序列的长度为20*8=160和20*24=480两种。该情况下,第二预设序列的长度可以设置为160,也可以设置为480。若第二预设序列是160,则当解调参考信号对应的图样如图3中的(a)所示,倍数为1;当解调参考信号对应的图样如图3中的(b)所示,倍数为3。若第二预设序列的长度是480,则当解调参考信号对应的图样如图3中的(a)所示,倍数为1/3;当解调参考信号对应的图样如图3中的(b),倍数为1。
上述主要从各个网元的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站或者终端。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对基站或者终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处 理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
本申请实施例还提供一种传输解调参考信号的装置,该装置可以是芯片(如基带芯片,或通信芯片等),也可以是终端。该装置可以用于执行图2中的任一步骤。下面以该装置是终端为例进行说明。图5示出了一种简化的终端结构示意图。便于理解和图示方便,图5中,终端以手机作为例子。如图5所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图5中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图5所示,终端包括收发单元501和处理单元502。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器、处理单板、处理模块、处理装置等。可选的,可以将收发单元501中用于实现接收功能的器件视为接收单元,收发单元501中用于实现发送功能的器件视为发送单元,即收发单元501包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在上行传输场景下,发射端设备可以是终端。在一种实现方式中,处理单元502用于执行图2中的S101,和/或本申请中的其他步骤。收发单元501用于执行图2中的S102中发射端设备所执行的步骤,和/或本申请中的其他步骤。
例如,在下行传输场景下,接收端设备可以是终端。在一种实现方式中,处理单元502用于执行图2中的S103,和/或本申请中的其他步骤。收发单元501用于执行图2中的S102中接收端设备所执行的步骤,和/或本申请中的其他步骤。
本申请实施例还提供一种传输解调参考信号的装置,该装置可以是芯片(如基带芯片,或通信芯片等),也可以是基站。该装置可以用于执行图2中的任一步骤。下面以该装置是基站为例进行说明。图6示出了一种简化基站结构示意图。基站包括601 部分以及602部分。601部分主要用于射频信号的收发以及射频信号与基带信号的转换;602部分主要用于基带处理,对基站进行控制等。61部分通常可以称为收发单元、收发机、收发电路、或者收发器等。602部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述图3中的任一步骤。具体可参见上述相关部分的描述。
601部分的收发单元,也可以称为收发机,或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将601部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即601部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
602部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在上行传输场景下,接收端设备可以是基站。在一种实现方式中,处理单元用于执行图2中的S103,和/或本申请中的其他步骤。收发单元用于执行图2中的S102中接收端设备所执行的步骤,和/或本申请中的其他步骤。
例如,在下行传输场景下,发射端设备可以是基站。在一种实现方式中,处理单元用于执行图2中的S101,和/或本申请中的其他步骤。收发单元用于执行图2中的S102中发射端设备所执行的步骤,和/或本申请中的其他步骤。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排 除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种发送解调参考信号的方法,其特征在于,所述方法包括:
    生成解调参考信号,其中,所述解调参考信号的序列的长度与所述解调参考信号的属性相关;
    发送所述解调参考信号。
  2. 一种解调方法,其特征在于,所述方法包括:
    接收解调参考信号,其中,所述解调参考信号的序列的长度与所述解调参考信号的属性相关;
    根据所述解调参考信号解调数据信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述解调参考信号的属性包括以下至少一种:所述解调参考信号对应的图样,所述解调参考信号的密度。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述解调参考信号的序列包括K个相同的基本序列,每一基本序列对应承载所述解调参考信号的一个时频资源,其中,所述K是大于或等于2的整数。
  5. 根据权利要求4所述的方法,其特征在于,每一时频资源在时域上包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
  6. 根据权利要求4或5所述的方法,其特征在于,所述K个相同的基本序列对应的K个时频资源包括1个前置资源和K-1个额外资源。
  7. 根据权利要求4至6任一项所述的方法,其特征在于,所述方法还包括:
    发送或接收指示信息,所述指示信息用于指示所述基本序列的长度。
  8. 一种发送解调参考信号的装置,其特征在于,所述装置包括:
    处理单元,用于生成解调参考信号,其中,所述解调参考信号的序列的长度与所述解调参考信号的属性相关;
    收发单元,用于发送所述解调参考信号。
  9. 一种解调装置,其特征在于,所述装置包括:
    收发单元,用于接收解调参考信号,其中,所述解调参考信号的序列的长度与所述解调参考信号的属性相关;
    处理单元,用于根据所述解调参考信号解调数据信号。
  10. 根据权利要求8或9所述的装置,其特征在于,所述解调参考信号的属性包括以下至少一种:所述解调参考信号对应的图样,所述解调参考信号的密度。
  11. 根据权利要求8至10任一项所述的装置,其特征在于,所述解调参考信号的序列包括K个相同的基本序列,每一基本序列对应承载所述解调参考信号的一个时频资源,其中,所述K是大于或等于2的整数。
  12. 根据权利要求11所述的装置,其特征在于,每一时频资源在时域上包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
  13. 根据权利要求11或12所述的装置,其特征在于,所述K个相同的基本序列对应的K个时频资源包括1个前置资源和K-1个额外资源。
  14. 根据权利要求11至13任一项所述的装置,其特征在于,
    所述收发单元还用于,发送或接收指示信息,所述指示信息用于指示所述基本序 列的长度。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时,使得如权利要求1至7任一项所述的方法被执行。
  16. 一种解调装置,其特征在于,包括:处理器和存储器;所述处理器被配置为支持所述装置执行上述权利要求1至7任一项所述的方法中相应的功能;所述存储器用于与处理器耦合,所述存储器中保存所述装置必要的程序和数据。
PCT/CN2018/089992 2017-06-16 2018-06-05 一种发送解调参考信号的方法和装置、解调方法和装置 WO2018228243A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18817946.9A EP3595223B1 (en) 2017-06-16 2018-06-05 Method and device for sending demodulation reference signal, demodulation method and device
US16/676,906 US11165606B2 (en) 2017-06-16 2019-11-07 Method and apparatus for sending demodulation reference signal, and demodulation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459720.8 2017-06-16
CN201710459720.8A CN109150461B (zh) 2017-06-16 2017-06-16 一种发送解调参考信号的方法和装置、解调方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/676,906 Continuation US11165606B2 (en) 2017-06-16 2019-11-07 Method and apparatus for sending demodulation reference signal, and demodulation method and apparatus

Publications (1)

Publication Number Publication Date
WO2018228243A1 true WO2018228243A1 (zh) 2018-12-20

Family

ID=64659848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089992 WO2018228243A1 (zh) 2017-06-16 2018-06-05 一种发送解调参考信号的方法和装置、解调方法和装置

Country Status (4)

Country Link
US (1) US11165606B2 (zh)
EP (1) EP3595223B1 (zh)
CN (1) CN109150461B (zh)
WO (1) WO2018228243A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502893B1 (en) 2021-06-14 2022-11-15 Ultralogic 6G, Llc Short-form 5G/6G pulse-amplitude demodulation references
US11418372B1 (en) 2021-06-14 2022-08-16 Ultralogic 6G, Llc Low-complexity demodulation of 5G and 6G messages
US11387961B2 (en) 2021-06-14 2022-07-12 Ultralogic 6G, Llc Short-form demodulation reference for improved reception in 5G and 6G
CN114500190B (zh) * 2022-01-29 2023-12-12 Oppo广东移动通信有限公司 数据处理方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088434A (zh) * 2009-12-04 2011-06-08 中兴通讯股份有限公司 解调参考信号发送方法、序列生成方法及发射、接收装置
CN102869096A (zh) * 2011-07-06 2013-01-09 上海贝尔股份有限公司 一种通信网络中用于传输解调参考信号的方法和装置
CN103944665A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 上行解调参考信号的发送方法、装置和系统
CN104125186A (zh) * 2013-04-28 2014-10-29 中兴通讯股份有限公司 一种解调参考信号图样信息的选取方法、系统及装置
WO2016048074A1 (ko) * 2014-09-24 2016-03-31 엘지전자 주식회사 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 이를 위한 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130294318A1 (en) * 2012-05-03 2013-11-07 Qualcomm Incorporated Efficient update of tmgi list in lte embms
EP2945443A4 (en) * 2013-01-08 2016-07-06 Fujitsu Ltd DEMODULATION REFERENCE SIGNAL CONFIGURATION AND MAPPING METHOD, CHANNEL ESTIMATION METHOD AND DEVICE
CN106105085A (zh) * 2014-03-19 2016-11-09 Lg电子株式会社 在无线通信系统中发送和接收设备到设备ue信号的方法及其装置
WO2016013826A1 (ko) * 2014-07-20 2016-01-28 엘지전자(주) 무선 통신 시스템에서 단말 조건 기반 d2d 통신 방법 및 이를 위한 장치
US10447445B2 (en) * 2016-01-11 2019-10-15 Electronics And Telecommunications Research Institute Device and method for transmitting reference signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088434A (zh) * 2009-12-04 2011-06-08 中兴通讯股份有限公司 解调参考信号发送方法、序列生成方法及发射、接收装置
CN102869096A (zh) * 2011-07-06 2013-01-09 上海贝尔股份有限公司 一种通信网络中用于传输解调参考信号的方法和装置
CN103944665A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 上行解调参考信号的发送方法、装置和系统
CN104125186A (zh) * 2013-04-28 2014-10-29 中兴通讯股份有限公司 一种解调参考信号图样信息的选取方法、系统及装置
WO2016048074A1 (ko) * 2014-09-24 2016-03-31 엘지전자 주식회사 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 이를 위한 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3595223A4

Also Published As

Publication number Publication date
EP3595223B1 (en) 2022-02-23
US20200076649A1 (en) 2020-03-05
EP3595223A1 (en) 2020-01-15
CN109150461A (zh) 2019-01-04
US11165606B2 (en) 2021-11-02
EP3595223A4 (en) 2020-04-01
CN109150461B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
US10912080B2 (en) Signal scrambling method and apparatus, and signal descrambling method and apparatus
US10764884B2 (en) Method for sending or receiving physical downlink control channel and device
US11777683B2 (en) Method and apparatus for transmitting DMRS
WO2018127202A1 (zh) 一种传输参考信号的方法以及设备
US8767641B2 (en) Carrier indication in a bandwidth aggregated wireless communications systems
WO2018210243A1 (zh) 一种通信方法和装置
WO2018201860A1 (zh) 上报端口信息的方法、终端设备和网络设备
US11165606B2 (en) Method and apparatus for sending demodulation reference signal, and demodulation method and apparatus
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
JP2019535186A (ja) データ通信方法、端末、および基地局
US10756861B2 (en) Communication method, and related device and system
WO2020030254A1 (en) Joint channel estimation
US10999108B2 (en) Wireless communication method, apparatus, and system
CN111726311B (zh) 数据信道的传输方法及装置
WO2018127180A1 (zh) 一种参考信号传输方法及装置
CN107306176B (zh) 一种参考信号的发送方法、接收方法及相关设备
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备
WO2022205236A1 (zh) 一种跳频间隔确定、指示方法及装置
EP4221110A1 (en) Symbol application method and communication apparatus
CN112398625B (zh) 一种通信方法及装置
WO2022041081A1 (zh) 通信方法及装置
WO2018219250A1 (zh) 扰码序列生成方法及装置
WO2017075905A1 (zh) 参考信号的发送方法及装置、接收方法及装置
WO2019047902A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018817946

Country of ref document: EP

Effective date: 20191009

NENP Non-entry into the national phase

Ref country code: DE