WO2017193867A1 - 传输信号的方法、发送端和接收端 - Google Patents

传输信号的方法、发送端和接收端 Download PDF

Info

Publication number
WO2017193867A1
WO2017193867A1 PCT/CN2017/083078 CN2017083078W WO2017193867A1 WO 2017193867 A1 WO2017193867 A1 WO 2017193867A1 CN 2017083078 W CN2017083078 W CN 2017083078W WO 2017193867 A1 WO2017193867 A1 WO 2017193867A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
subcarriers
subcarrier
subcarrier group
elements
Prior art date
Application number
PCT/CN2017/083078
Other languages
English (en)
French (fr)
Inventor
曲秉玉
刘建琴
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17795485.6A priority Critical patent/EP3445012B1/en
Publication of WO2017193867A1 publication Critical patent/WO2017193867A1/zh
Priority to US16/186,446 priority patent/US10812305B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0017Time-frequency-code in which a distinct code is applied, as a temporal sequence, to each frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0066Requirements on out-of-channel emissions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communications, and more particularly to a method of transmitting a signal, a transmitting end and a receiving end.
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • 3GPP 3rd Generation Partnership Project Long Term Evolution
  • Multi-antenna technology to increase the capacity and coverage of the system to improve the user experience.
  • Applying the high frequency band technology to multiple antennas can greatly reduce the size of the multi-antenna configuration, thereby facilitating the acquisition of the site and the deployment of more antennas.
  • hybrid beamforming is employed to reduce the dimensionality of the measurement reference signal and the complexity of the digital data transmission design, and multi-user multiplexed data transmission can be performed by digital beamforming or analog beamforming.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology exhibits strong anti-multipath interference capability, simple discrete Fourier transform implementation, and multi-antenna Transmission technology and other features, and is widely used in downlink signal transmission in LTE systems.
  • the uplink signal transmission in the LTE system may employ a Discrete Fourier Transform Spread OFDM (DFT-S-OFDM) technology.
  • DFT-S-OFDM technology can achieve Peak to Average Power Ratio (PAPR) performance similar to single carrier signals. Low PAPR can reduce the complexity and cost of hardware implementation.
  • PAPR Peak to Average Power Ratio
  • DFT-S-OFDM can implement orthogonal frequency division multiple access, thereby obtaining a single carrier orthogonal frequency division multiple access scheme. Therefore, DFT-S-OFDM technology is particularly suitable. Uplink transmission for mobile communication systems.
  • the single carrier transmission defined in the current LTE system refers to conforming to the single carrier characteristic in the time domain, so that a lower PAPR can be obtained.
  • In the frequency domain it can still be implemented by centralized single carrier transmission or distributed single carrier transmission.
  • centralized single-carrier transmission one type of transmission signal (data signal or reference signal) of a user occupies a continuous spectrum in the frequency domain (ie, frequency domain subcarriers are arranged together), and the occupied spectrum is the entire system bandwidth. portion.
  • a transmission signal (data signal or reference signal) of one user occupies a discontinuous spectrum in the frequency domain.
  • multiple data signals or reference signals are transmitted to one user.
  • the data signal and the reference signal for example, Demodulation Reference Signal (DMRS)
  • DMRS Demodulation Reference Signal
  • the plurality of subcarriers in the last symbol may be divided into two subcarrier groups that do not overlap each other to respectively transmit the uplink data signal and the uplink reference signal.
  • a plurality of subcarriers are frequency-divided into two comb teeth, comb 1 is used for transmission of an uplink data signal, and comb 2 is used for transmission of an uplink reference signal.
  • the above solution can realize the simultaneous transmission of the data signal and the reference signal, and can reduce the interference between the two signals by performing frequency division orthogonal transmission on the two signals to be transmitted.
  • a plurality of subcarriers are divided into two comb teeth to simultaneously transmit data signals and reference signals, single carrier characteristics are destroyed, resulting in higher PAPR.
  • the prior art can also employ a method of multiplexing with two time domain signals.
  • the first time domain signal sequence is f 0 , f 1 , ... f M-1 , denoted as ⁇ f i ⁇
  • the second time domain signal sequence is g 0 , g 1 , ... g M -1 , denoted as ⁇ g i ⁇ .
  • Time division multiplexing of two time-domain signal sequences is performed before Discrete Fourier Transform (DFT) to form time domain signal sequences f 0 , g 0 , f 1 , g 1 , ... f M-1 , g M-1 .
  • DFT Discrete Fourier Transform
  • the first time domain signal sequence and the second time domain signal sequence are both low PAPR sequences (for example, when the two time domain signal sequences are time domain waveforms in the form of DFT-S-OFDM or other low PAPR single carriers)
  • the domain waveform can ensure that the time-domain multiplexed time domain signal sequence is still a low PAPR sequence.
  • this scheme makes it possible to have two channels of transmitted signals having large interference after passing through the channel.
  • the present application provides a method for transmitting a signal, a transmitting end and a receiving end, so that when at least two signals are transmitted in one symbol, the PAPR can be guaranteed to be low and the mutual interference after passing through the channel is small.
  • a first aspect provides a method for transmitting a signal, including: a transmitting end mapping a first sequence to a subcarrier of a first subcarrier group, wherein the transmitting end maps the second sequence to a subcarrier of the second subcarrier group On the carrier, the first subcarrier group and the second subcarrier group do not have the same subcarrier, and the subcarriers included in the first subcarrier group and the second subcarrier group are the same time domain.
  • a subcarrier of the first subcarrier group is a subcarrier with a medium interval distribution of subcarrier sets, and two adjacent subcarriers in the first subcarrier group are interspersed in the subcarrier set L-1 subcarriers, the subcarriers of the second subcarrier group are subcarriers of the subcarrier set which are equally spaced, and the adjacent two subcarriers of the second subcarrier group are separated by the subcarrier set L-1 subcarriers, the first sequence is a fourth sequence of Fourier transform sequences, the second sequence is a fourth sequence of Fourier transform sequences, the third sequence and the fourth Non-zero elements when the elements at the same position in the sequence are not the same The third sequence and the fourth sequence are sequences in which at least one element is a non-zero element, and the set of subcarriers are LM subcarriers equally spaced in the frequency domain, where L and M are positive integers.
  • the transmitting end generates a transmission signal according to the elements
  • the subcarriers of the first subcarrier group may be equally spaced subcarriers with an indicator interval of L in the LM subcarriers
  • the subcarriers of the second subcarrier group may be the LM subcarriers.
  • the indicator interval is L
  • the sub-carriers are equally spaced
  • the LM sub-carriers are sub-carriers equally spaced in the frequency domain, and are labeled in the order of frequency, and the index is 0-LM-1.
  • the method for transmitting a signal provided by the first aspect is to construct two sequences of non-zero elements when the elements at the same position in the time domain are not different, and map the two sequences onto different two subcarrier groups so that one symbol
  • the PAPR can be ensured to be low, and the two signals can be less interfered with each other after passing through the channel.
  • the third sequence and the fourth sequence also satisfy the condition that the elements at the same position are not zero elements.
  • the non-zero elements of the third sequence may be equally spaced; and/or the non-zero elements of the fourth sequence may be equally spaced. In this way, it is ensured that the sequence mapped to the frequency domain has a repeating characteristic, so that the signal amplitude variation is relatively small, thereby having better channel estimation performance.
  • the method before the mapping the first sequence to the subcarriers of the first subcarrier group, the method further includes: the sending end performing the third sequence First transforming the first sequence, wherein the first transform is a discrete Fourier transform DFT; and/or before mapping the second sequence to subcarriers of a second subcarrier group The method further includes: the transmitting end performing a second transformation on the fourth sequence to obtain the second sequence, wherein the second transform is a DFT.
  • the first sequence may include M elements
  • the second sequence may include M elements
  • the third sequence also includes M elements
  • the fourth sequence also includes M elements. Therefore, the first transform is a D ⁇ of M ⁇ M; the second transform is a DFT of M ⁇ M.
  • the third sequence is a sequence obtained by performing an inverse discrete Fourier transform IDFT on the first sequence
  • the fourth sequence is performing an IDFT transform on the second sequence. The resulting sequence.
  • more signals of the path may be transmitted on the same time domain symbol, and the method further includes:
  • the transmitting end maps the fifth sequence to the subcarriers of the third subcarrier group, where the fifth sequence is a Fourier transform sequence of the sixth sequence, and the subcarriers of the third subcarrier group
  • the subcarriers included in the first subcarrier group and the second subcarrier group are subcarriers on the same time domain symbol, and any two of the sixth sequence, the third sequence, and the fourth sequence.
  • the subcarriers of the third subcarrier group are subcarriers that are equally spaced in the set of subcarriers, and two adjacent subcarriers in the third subcarrier group
  • the carrier interval has L-1 subcarriers in the set of subcarriers, and the third subcarrier group and the first subcarrier group and the second subcarrier group do not have the same subcarrier
  • the sixth A sequence is a sequence of at least one element that is a non-zero element.
  • the subcarriers of the third subcarrier group may be equally spaced subcarriers whose index intervals are L among the LM subcarriers.
  • the mapping the first sequence to the subcarriers of the first subcarrier group comprises: determining the third sequence including M elements, the third sequence
  • the M elements are f 0 , f 1 ,..., f M-1 ; the M elements f 0 , f 1 , . . .
  • f M-1 of the third sequence are expanded to a length of LM Sequence x 0 , x 1 ,..., x LM-1 , where s is a value in 0, 1, ..., L-1, i is a variable, and the value of i is 0, 1, ..., LM-1; the third sequence is LM ⁇ LM
  • the DFT is mapped to M subcarriers in the first subcarrier group of the LM subcarriers.
  • another implementation manner of the first sequence mapping is: determining the third sequence including M elements, where the M elements of the third sequence are f 0 , f 1 , . . . , f M-1 ; the third sequence of M elements f 0, f 1, ..., f M-1 to expand the length LM of the sequence x 0, x 1, ..., x LM-1,
  • s is a value in 0, 1, ..., L-1, i is a variable, and the value of i is 0, 1, ..., LM-1; the third sequence is LM ⁇ LM
  • the DFT is mapped to M subcarriers in the first subcarrier group of the LM subcarriers.
  • the mapping the second sequence to the subcarriers of the second subcarrier group comprises: determining the fourth sequence including M elements, the fourth sequence
  • the M elements are g 0 , g 1 , ..., g M-1 ;
  • the M elements g 0 , g 1 , ..., g M-1 of the fourth sequence are expanded to a length of LM Sequence h 0 , h 1 ,..., h LM-1 , where t is a value of 0, 1, ..., L-1, and t is not equal to s;
  • the fourth sequence is subjected to DFT of LM ⁇ LM, mapped to the first subcarrier group of LM subcarriers M subcarriers.
  • another implementation of the second sequence mapping is: determining the fourth sequence including M elements, where the M elements of the fourth sequence are g 0 , g 1 , . . . , g M-1 ; the fourth element of the M sequence g 0, g 1, ..., g M-1 expanded to a length LM sequence h 0, h 1, ..., h LM-1,
  • t is a value of 0, 1, ..., L-1, and t is not equal to s; the fourth sequence is subjected to DFT of LM ⁇ LM, mapped to the first subcarrier group of LM subcarriers M subcarriers.
  • the mapping the second sequence to the subcarriers of the second subcarrier group comprises: determining the fourth sequence including M elements, the fourth sequence The M elements are g 0 , g 1 , . . . , g M-1 ; the fourth sequence is subjected to D ⁇ FT of M ⁇ M to obtain the second sequence, and the second sequence is mapped to the On the subcarriers of the two subcarrier groups.
  • a second aspect provides a method for transmitting a signal, comprising: receiving, by a receiving end, a signal from a subcarrier, wherein the subcarrier is a subcarrier on a same time domain symbol; and the receiving end performs the signal on the signal a fast Fourier transform FFT, which obtains a first received signal corresponding to the first sequence and a second received signal corresponding to the second sequence, where the first sequence is carried on a subcarrier of the first subcarrier group of the subcarrier, The second sequence is carried on a subcarrier of the second subcarrier group of the subcarrier, where the first subcarrier group and the second subcarrier group do not have the same subcarrier, and the first subcarrier group
  • the subcarrier is a subcarrier with a medium interval distribution of subcarrier sets, and adjacent ones of the first subcarrier groups The two subcarriers are separated by L-1 subcarriers in the set of subcarriers, and the subcarriers of the second subcarrier group are sub
  • the subcarrier set is LM subcarriers equally spaced in the frequency domain, where L and M are both positive integers; the receiving end performs signal processing on the first received signal and the second received signal.
  • the two-way sequence corresponding to the two signals received in one symbol is a non-zero element when the elements at the same position in the time domain are different, and the two sequences are mapped to different two sub-carrier groups.
  • the two signals received in one symbol can ensure that the PAPR is low and the mutual interference is small.
  • non-zero elements of the third sequence may be equally spaced; and/or the non-zero elements of the fourth sequence may be equally spaced.
  • the method further includes: the receiving end receiving a signal from a subcarrier of the third subcarrier group, the subcarrier of the third subcarrier group and the The subcarriers included in one subcarrier group and the second subcarrier group are subcarriers on the same time domain symbol, and the subcarriers in the third subcarrier group are subcarriers in which the subcarrier sets are equally spaced.
  • the adjacent two subcarriers in the third subcarrier group are separated by L-1 subcarriers in the subcarrier set, the third subcarrier group and the first subcarrier group, and the second subcarrier There is no identical subcarrier in the group; the receiving end performs FFT on the signal carried by the third subcarrier group to obtain a third received signal corresponding to the fifth sequence, and the fifth sequence is a Fourier transform of the sixth sequence.
  • a sequence, any two of the sixth sequence, the third sequence, and the fourth sequence are non-zero elements when the elements at the same position are different, and the sixth sequence is at least one element is non-zero a sequence of zero elements;
  • the receiving end is Three reception signal subjected to signal processing.
  • the receiving end performs signal processing on the first received signal and the second received signal, including: the receiving end inverts the first received signal Discrete Fourier transform IDFT, to obtain the third sequence; and/or the receiving end performs inverse discrete Fourier transform IDFT on the second received signal to obtain the fourth sequence.
  • the method further includes: performing equalization operation on the first received signal when the first received signal is a data signal.
  • the method further includes: performing equalization operation on the second received signal when the second received signal is a data signal.
  • a sender including a processing module and a sending module, for performing the first aspect and its corresponding implementation.
  • a fourth aspect provides a transmitting end, including a processor, a transceiver, and a memory, for performing the first aspect and the corresponding implementation manner thereof, and the devices of the transmitting end of the fourth aspect are compatible with the transmitting end of the third aspect
  • the corresponding module corresponds.
  • a receiving end including a receiving module and a processing module, for performing the second aspect and its corresponding implementation.
  • a sixth aspect provides a receiving end, including a processor, a transceiver, and a memory, for performing the second aspect and the corresponding implementation manner thereof, and the devices of the receiving end of the sixth aspect are compatible with the receiving end of the fifth aspect
  • the corresponding module corresponds.
  • the first sequence may include M elements a 0 , a 1 , . . . , a M-1 , and the first sequence may be of length K
  • the second sequence may include M elements b 0 , b 1 , . . . , b M-1 , and the second sequence may be of length K
  • the base sequence d 0 , d 1 , ..., d K-1 is expanded, wherein v is a value in 0, 1, ..., p-1, and v is not equal to u.
  • the base sequence corresponding to the first sequence may be obtained by: the transmitting end performs a third transformation on a sequence consisting of K non-zero elements of the third sequence to obtain a base sequence corresponding to the first sequence, where the third transform is K. ⁇ K's Discrete Fourier Transform DFT.
  • the base sequence corresponding to the second sequence can be obtained by the following steps: the transmitting end performs a fourth transform on the K non-zero elements of the fourth sequence to obtain a base sequence corresponding to the second sequence, wherein the fourth transform is a K ⁇ K DFT.
  • the first sequence may also be obtained by the following method.
  • the first sequence includes M elements a 0 , a 1 , . . . , a M-1 , and the first sequence is extended by the base sequence c 0 , c 1 , . . . , c K-1 of length K.
  • M p ⁇ K
  • u is a value in 0, 1, ..., p-1
  • i is a variable
  • the value of i is 0, 1, ..., M-1, where p and K are both positive integers.
  • the second sequence can also be obtained by the following method.
  • the second sequence includes M elements b 0 , b 1 , . . . , b M-1 , and the second sequence is extended by the base sequence d 0 , d 1 , . . . , d K-1 of length K. ,among them, v is a value in 0, 1, ..., p-1, and v is not equal to u.
  • the base sequence may be a ZC sequence, a cyclic extension sequence of a ZC sequence, a truncation sequence of a ZC sequence, or a standard conforming to the 3rd Generation Partnership Project 3GPP Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the time domain symbol may be an OFDM or DFT-S-OFDM symbol.
  • FIG. 1 is a schematic diagram of a communication system for transmitting signals according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a method of transmitting a signal according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a method of transmitting a signal according to another embodiment of the present application.
  • FIG. 4 is a schematic diagram of a method of transmitting a signal according to still another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a method of transmitting a signal according to still another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a method of transmitting a signal according to still another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a transmitting end of an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a transmitting end of another embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a receiving end of an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a receiving end of another embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • LTE Long Term Evolution
  • UMTS Terrestrial Radio Access Universal Mobile Telecommunications System
  • UTRAN Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rate for GSM Evolution
  • GSM EDGE Radio Access Network GERAN
  • SGSN Serving GPRS Support
  • GGSN Gateway GPRS support node
  • PLMN public land mobile network
  • the terminal device can communicate with one or more core networks via a Radio Access Network (RAN), and the terminal device can be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, and a mobile station. , mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or may be a base station (NodeB, NB) in the WCDMA system, or may be An evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE system, or the network device may be a relay station, an access point, or a vehicle A device, a wearable device, and a network side device in a future 5G network or a network device in a future evolved PLMN network.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • eNodeB evolved base station
  • the network device may be a relay station, an access point, or a vehicle A device, a wearable device, and a network side device in a future 5G network or a network device in a future evolved PLMN network.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disk (CD), a digital versatile disk (Digital Versatile Disk, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for use in transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG. 1.
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • 3GPP 3rd Generation Partnership Project Long Term Evolution
  • Multi-antenna technology to increase the capacity and coverage of the system to improve the user experience.
  • Applying the high frequency band technology to multiple antennas can greatly reduce the size of the multi-antenna configuration, thereby facilitating the acquisition of the site and the deployment of more antennas.
  • hybrid beamforming is employed to reduce the dimensionality of the measurement reference signal and the complexity of the digital data transmission design, and multi-user multiplexed data transmission can be performed by digital beamforming or analog beamforming.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology exhibits strong anti-multipath interference capability, simple discrete Fourier transform implementation, and multi-antenna Transmission technology and other features, and is widely used in downlink signal transmission in LTE systems.
  • the uplink signal transmission in the LTE system may employ a Discrete Fourier Transform Spread OFDM (DFT-S-OFDM) technology.
  • DFT-S-OFDM technology can achieve Peak to Average Power Ratio (PAPR) performance similar to single carrier signals. Low PAPR can reduce the complexity and cost of hardware implementation.
  • PAPR Peak to Average Power Ratio
  • DFT-S-OFDM can implement orthogonal frequency division multiple access, thereby obtaining a single carrier orthogonal frequency division multiple access scheme. Therefore, DFT-S-OFDM technology is particularly suitable. Uplink transmission for mobile communication systems.
  • the single carrier transmission defined in the current LTE system refers to conforming to the single carrier characteristic in the time domain, so that a lower PAPR can be obtained.
  • In the frequency domain it can still be implemented by centralized single carrier transmission or distributed single carrier transmission.
  • centralized single-carrier transmission one type of transmission signal (data signal or reference signal) of a user occupies a continuous spectrum in the frequency domain (ie, frequency domain subcarriers are arranged together), and the occupied spectrum is the entire system bandwidth. portion.
  • a transmission signal (data signal or reference signal) of one user occupies a discontinuous spectrum in the frequency domain.
  • a data signal and a reference signal (such as a Demodulation Reference Signal (DMRS)) similar to a single carrier signal. ) Transmission by time division multiplexing.
  • DMRS Demodulation Reference Signal
  • the plurality of subcarriers in the last symbol may be divided into two subcarrier groups that do not overlap each other to respectively transmit the uplink data signal and the uplink reference signal.
  • the plurality of subcarriers are frequency-divided into two comb teeth, the comb 1 is used for transmission of the uplink data signal, and the comb 2 is used for transmission of the uplink reference signal.
  • the above solution can realize the simultaneous transmission of the data signal and the reference signal, and can reduce the interference between the two signals by performing frequency division orthogonal transmission on the two signals to be transmitted.
  • a plurality of subcarriers are divided into two comb teeth to simultaneously transmit data signals and reference signals, single carrier characteristics are destroyed, resulting in higher PAPR.
  • the prior art can also employ a method of multiplexing with two time domain signals.
  • the first time domain signal sequence is f 0 , f 1 , ... f M-1 , denoted as ⁇ f i ⁇
  • the second time domain signal sequence is g 0 , g 1 , ... g M -1 , denoted as ⁇ g i ⁇ .
  • Time division multiplexing of two time-domain signal sequences is performed before Discrete Fourier Transform (DFT) to form time domain signal sequences f 0 , g 0 , f 1 , g 1 , ... f M-1 , g M-1 .
  • DFT Discrete Fourier Transform
  • the first time domain signal sequence and the second time domain signal sequence are both low PAPR sequences (for example, when the two time domain signal sequences are time domain waveforms in the form of DFT-S-OFDM or other low PAPR single carriers)
  • the domain waveform can ensure that the time-domain multiplexed time domain signal sequence is still a low PAPR sequence.
  • this scheme makes it possible to have two channels of transmitted signals having large interference after passing through the channel.
  • the idea of the embodiment of the present application is to provide a method for transmitting a signal, so that when at least two signals are transmitted in one symbol, the PAPR can be ensured to be low, and at least two signals can be ensured to pass each other after the channel. Less interference.
  • the transmitting end sends a Z channel signal on the same time domain symbol, where Z is greater than or equal to 2.
  • the Z channel signal may include a reference signal or a data signal carrying information to be transmitted.
  • the signal in this application can be a modulated signal.
  • spatial precoding may also be performed before transmission, and different signals may have different spatial domain precoding.
  • the method for transmitting a signal may include: the transmitting end maps the first sequence to the subcarrier of the first subcarrier group, and the transmitting end maps the second sequence to the subcarrier of the second subcarrier group.
  • the first subcarrier group and the second subcarrier group do not have the same subcarrier, and the subcarriers included in the first subcarrier group and the second subcarrier group are the same time domain symbol.
  • the subcarriers of the first subcarrier group are subcarriers with a medium interval distribution of subcarrier sets, and adjacent two subcarriers of the first subcarrier group are separated by L in the subcarrier set.
  • the subcarriers of the second subcarrier group are subcarriers of the subcarrier set which are equally spaced, and the adjacent two subcarriers of the second subcarrier group are separated by the subcarrier set L-1 subcarriers
  • the first sequence is a fourth sequence of Fourier transform sequences
  • the second sequence is a fourth sequence of Fourier transform sequences
  • the third sequence and the fourth sequence Elements at the same position are not non-zero
  • the third sequence and the fourth sequence are both sequences in which at least one element is a non-zero element
  • the set of subcarriers are LM subcarriers equally spaced in the frequency domain, where L and M are positive An integer
  • the transmitting end generates a sending signal according to the elements on the first subcarrier group and the second subcarrier group
  • the sending end sends the sending signal.
  • the third sequence and the fourth sequence also satisfy the condition that the elements at the same position are not zero elements.
  • the two signals correspond to the third sequence and the fourth sequence in the time domain, respectively.
  • the third sequence and the fourth sequence may correspond to the same user or may correspond to different users.
  • the third sequence and the fourth sequence respectively comprise M elements, the third sequence may be f 0 , f 1 , ... f M-1 , denoted as ⁇ f i ⁇ , and the fourth sequence may be g 0 , g 1 , ...g M-1 , denoted as ⁇ g i ⁇ .
  • the third sequence ⁇ f i ⁇ and the fourth sequence ⁇ g i ⁇ are not non-zero elements when the elements at the same position are not at the same time.
  • the same position means that the elements are in the same position in the sequence in two time domain sequences also including M elements.
  • the elements of the third sequence and the fourth sequence at the same time are not zero at the same time.
  • the base sequence corresponding to the third sequence and the base sequence corresponding to the fourth sequence are time division multiplexed, so that after the two sequences undergo subsequent DFT, IFFT, etc., and other processing
  • the transmitted signal has a low PAPR.
  • the sequence corresponding to the third sequence ⁇ f i ⁇ in the frequency domain is the first sequence a 0 , a 1 , ... a M-1 , denoted as ⁇ a i ⁇ , and the fourth sequence is in the frequency.
  • the sequence corresponding to ⁇ g i ⁇ on the domain is the second sequence b 0 , b 1 , ...
  • the first sequence and the second sequence also respectively include M elements;
  • the time domain sequence corresponding to the first sequence is the third sequence
  • the time domain sequence corresponding to the second sequence is the fourth sequence
  • the first sequence is the fourth sequence of the Fourier transform sequence
  • the second sequence is The fourth sequence of Fourier transform sequences.
  • the correspondence between the third sequence and the first sequence is a DFT relationship or an inverse discrete Fourier transform (IDFT) relationship
  • the correspondence between the fourth sequence and the second sequence is a DFT relationship or an IDFT relationship.
  • the third sequence is a sequence obtained by IDFT of the first sequence
  • the first sequence is a sequence obtained by DFT of the third sequence
  • the fourth sequence is a sequence obtained by IDFT of the second sequence
  • the second sequence is a fourth sequence.
  • the sequence obtained by DFT is a DFT relationship or an inverse discrete Fourier transform (IDFT) relationship
  • IDFT inverse discrete Fourier transform
  • the final transmitting end maps the first sequence to the M subcarriers of the first subcarrier group, and maps the second sequence to the M subcarriers of the second subcarrier group.
  • the advantage that the M subcarriers of the first subcarrier group are equally spaced subcarriers and the M subcarriers of the second subcarrier group are equally spaced subcarriers is that the channel estimation performance can be more balanced. Thereby a better effective channel estimation is obtained.
  • the first subcarrier group and the second subcarrier group do not have the same subcarrier, and the 2M subcarriers included in the first subcarrier group and the second subcarrier group are subcarriers on the same time domain symbol, and the first subcarrier
  • the M subcarriers of the carrier group are equally spaced subcarriers, and the M subcarriers of the second subcarrier group are equally spaced subcarriers.
  • the first sequence and the second sequence are mapped to two comb teeth whose frequency domains do not overlap each other.
  • the first subcarrier group and the second subcarrier group may be equally spaced subcarriers with an index interval of L in the LM subcarriers, according to the subcarrier frequency, from low to high or from high.
  • the M subcarriers of each subcarrier group are numbered to low, and the indices are 0, 1, 2, ..., M-1, where L is a positive integer.
  • the LM subcarriers are also equally spaced, including the case of continuous distribution (in this case, the interval is 1), and the LM subcarrier indicators can be numbered according to the frequency, from low to high or high to low, and the index is 0. ⁇ LM-1.
  • the indicator interval L refers to the difference between the two indicators. Is L.
  • the indices of the M subcarriers of the equally spaced distribution with the index interval L are ⁇ k, k+L, k+2L, ..., k+(M-1)L ⁇ , where k is ⁇ 0, 1, 2, ..., An element in L-1 ⁇ .
  • the set of subcarriers is LM subcarriers equally spaced in the frequency domain.
  • the subcarriers of the first subcarrier group may be equally spaced subcarriers with an indicator interval of L in the LM subcarriers
  • the subcarriers of the second subcarrier group may be an indicator interval of the LM subcarriers.
  • the sub-carriers are equally spaced
  • the LM sub-carriers are sub-carriers equally spaced in the frequency domain, and are labeled in the order of frequency, and the index is 0-LM-1.
  • the LM subcarriers are numbered for description in the embodiment of the present application, and are not limited to the embodiments of the present application.
  • the non-zero elements of the third sequence may be equally spaced; and/or the non-zero elements of the fourth sequence may be equally spaced. That is, in the two signals discussed in the embodiments of the present application, at least one of the signals is equally spaced in the time domain. Therefore, it is ensured that the sequence mapped to the frequency domain has the characteristics of phase repetition, and thus the signal amplitude variation is relatively small, thereby having better channel estimation performance.
  • the non-zero elements may be equally spaced, f 0 , f 2 , f 4 , ... are non-zero elements, f 1 , f 3 , f 5 , ... is a non-zero element, f 0 , f 3 , f 6 , ... is a non-zero element, and so on, the specific form of the non-zero element equally spaced distribution is not limited in the embodiment of the present application.
  • the transmitting end transforms the elements on the 2M subcarriers into the time domain to generate a transmission signal.
  • the transmitting end may perform an IFFT transform to convert elements on the 2M subcarriers into time domain signals and then send them out.
  • the elements at the same position of the third sequence and the fourth sequence are not zero at the same time, so that the time domain signal of the final transmission can be ensured not to cause significant PAPR due to the superposition of the two signals in the time domain. This is because the knowledge of signal processing can be obtained, and the final transmitted signal is the phase-repetitive signal of the original third signal and the fourth signal, and the phase repetition does not affect the non-zero characteristics at the same time.
  • the transmitting end sends a Z channel signal on the same time domain symbol, where Z is greater than or equal to 2.
  • Any two of the Z-channel signals may be in various combinations, and these combinations may be applied to the embodiments of the present application.
  • any two signals may be reference signals, may be a combination of a reference signal and a control signal carried by the control channel, or a combination of a reference signal and a data signal carried by the data channel, or may be a reference signal and a bearer.
  • the combination of the signals of other information to be transmitted may also be a combination of any two of the above signals except the reference signal.
  • the time domain symbol may be an OFDM or a DFT-S-OFDM symbol.
  • L may be greater than or equal to Z.
  • the elements of the Z sequences corresponding to the Z channel signals are finally mapped onto the Z subcarrier groups of the LM subcarriers (corresponding to L subcarrier groups).
  • the use of the L-Z subcarrier groups other than the Z subcarrier groups in the L subcarrier groups is not limited.
  • the reference signal may be an uplink reference signal or a downlink reference signal.
  • the reference signal may be a Demodulation Reference Signal (DMRS) or a cell-specific reference signal (Cell).
  • DMRS Demodulation Reference Signal
  • Cell cell-specific reference signal
  • CRS specific reference signal
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • control information may be the uplink control information carried by the uplink control channel, such as the uplink control information carried on the physical uplink control channel (PUCCH) or the downlink control information carried by the downlink control channel, such as physical Downlink control information carried on a downlink control channel (PDCCH).
  • uplink control information carried on the physical uplink control channel (PUCCH) or the downlink control information carried by the downlink control channel, such as physical Downlink control information carried on a downlink control channel (PDCCH).
  • PUCCH physical uplink control channel
  • PDCCH physical Downlink control information carried on a downlink control channel
  • the data channel may be an uplink data channel, such as a Physical Uplink Shared Channel (PUSCH), or a downlink data channel, such as a Physical Downlink Shared Channel (PDSCH).
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • other information to be transmitted may include system information carried by the broadcast channel, such as information carried by a physical broadcast channel (PBCH), or a synchronization signal used for synchronization, such as a Primary Synchronization Signal (PSS) or Secondary Synchronization Signal (SSS), or two signals in the secondary synchronization signal.
  • PBCH physical broadcast channel
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the first sequence ⁇ a i ⁇ may be a sequence that is extended by the base sequence and then phase rotated; for the same reason, the second sequence ⁇ b i ⁇ may also be a sequence after the base sequence is expanded and then phase rotated.
  • the base sequence may be a ZC sequence (ie, a Zadoff-Chu sequence), a cyclic extension sequence of a ZC sequence, a truncation sequence of a ZC sequence, or a Long Term Evolution (LTE) system conforming to the 3rd Generation Partnership Project (3GPP). Standard reference signal sequence.
  • the cyclic extension sequence of the ZC sequence and the truncation sequence of the ZC sequence are described by the following examples.
  • the length of the uplink reference signal of the LTE system is generally an integer multiple of RB, that is, an integer multiple of 12.
  • the sequence of the ZC used to generate the reference signal is not necessarily an integer multiple of 12, and when the length of the ZC sequence is less than the length of the reference signal, the sequence of the reference signal is generated by cyclic expansion of the ZC sequence; when the length of the ZC sequence is greater than the reference signal The length of the reference signal is generated by truncation of the ZC sequence.
  • the length of the ZC sequence X i is M
  • the base sequence can be obtained by cyclic extension of the ZC sequence.
  • the ZC sequence has a good correlation, or cyclic shifting property, that is, any ZC original sequence is not related to the sequence obtained after cyclic shifting n bits, that is, the autocorrelation peak is sharp.
  • the ZC sequence has good cross-correlation properties and the cross-correlation value is close to zero.
  • the ZC sequence has a low PAPR.
  • FFT Fast Fourier Transformation
  • IFFT Inverse Fast Fourier Transformation
  • the base sequence may be generated corresponding to other Constant Amplitude Zero Auto Correlation (CAZAC) sequences.
  • the base sequence may also be other sequences having low PAPR characteristics, which are not limited in this embodiment of the present application.
  • the first sequence includes M elements a 0 , a 1 , . . . , a M-1
  • the second sequence includes M elements b 0 , b 1 , . . . , b M-1 , and the second sequence is extended by the base sequence d 0 , d 1 , . . . , d K-1 of length K. ,among them, v is a value in 0, 1, ..., p-1, and v is not equal to u.
  • the length of the base sequence corresponding to the first sequence and the length of the base sequence corresponding to the second sequence may also be unequal.
  • the base sequence corresponding to the first sequence has a length K 1
  • the base sequence corresponding to the second sequence has a length K 2
  • the K 1 is a non-zero integer multiple of K 2 .
  • the second sequence includes M elements b 0 , b 1 , . . . , b M-1 , and the second sequence is extended by the base sequence d 0 , d 1 , . . . , d K-1 of length K. ,among them, v is a value in 0, 1, ..., p-1, and v is not equal to u.
  • two base sequences ⁇ c i ⁇ and ⁇ d i ⁇ of length K are defined, which can be respectively obtained by cyclic extension of the ZC sequence.
  • the base sequence may carry information to be transmitted, for example, the modulated symbol information x is multiplied by the sequence ⁇ c i ⁇ as the base sequence corresponding to the first sequence. Or the modulated symbol information y is multiplied by the sequence ⁇ d i ⁇ as the base sequence corresponding to the second sequence.
  • the base sequence can employ a reference signal sequence in current LTE systems.
  • the ZC sequence ⁇ z i ⁇ can be expressed in the following form:
  • Q is the length of the ZC sequence; q is a natural number with Q, and different ZC sequences correspond to different q Value; l is the cyclic shift value under each ZC sequence.
  • the value of q can be 1 or 2, two basic ZC sequences ZC(3,1,l) and ZC(3,2,l).
  • Q is odd means that Q is an odd number and Qis even means that Q is an even number.
  • the sequence of M length obtained by expanding the base sequence ⁇ c i ⁇ of length K is the first sequence ⁇ a i ⁇ .
  • the M-length sequence obtained by augmenting the base sequence ⁇ d i ⁇ of length K is the second sequence ⁇ b i ⁇ .
  • the M elements a 0 , a 1 , . . . , a M-1 of the first sequence ⁇ a i ⁇ are mapped onto the first subcarrier group of the LM subcarriers, and the second sequence ⁇ b
  • the M elements b 0 , b 1 , ..., b M-1 of i ⁇ are mapped onto the second subcarrier group of the LM subcarriers.
  • the transmitting end transforms the elements on the 2M subcarriers into the time domain to generate a transmission signal, that is, a radio frequency (RF) signal.
  • RF radio frequency
  • the first sequence and the second sequence satisfy the phase-expanded (expanded plus phase rotation) characteristic, and the corresponding sequences (the third sequence and the fourth sequence) of the first sequence and the second sequence in the time domain satisfy different times and are non-zero.
  • the characteristics of the resulting superimposed signal have good PAPR characteristics.
  • one of the two signals corresponds to the third sequence; the other signal corresponds to the fourth sequence.
  • Mapping the third sequence to the first subcarrier group and mapping the fourth sequence to the second subcarrier group may employ the method shown in FIG. After obtaining the third sequence and the fourth sequence, the third sequence is subjected to M ⁇ M DFT mapping to the first subcarrier group; and the fourth sequence is subjected to M ⁇ M DFT mapping to the second subcarrier group.
  • another method is to obtain a sequence consisting of K non-zero elements of the third sequence, and K sequences of non-zero elements are subjected to K ⁇ K DFT to obtain a base sequence corresponding to the first sequence, and the base sequence is further expanded.
  • the expansion method is the same as the expansion method of the base sequence in the foregoing embodiment, and details are not described herein again.
  • the base sequence corresponding to the first sequence can be obtained by the following steps: the transmitting end performs a third transform on the sequence of the K non-zero elements of the third sequence to obtain a base sequence corresponding to the first sequence, where
  • the third transform is a K ⁇ K discrete Fourier transform DFT.
  • the base sequence corresponding to the second sequence can be obtained by the following steps: the transmitting end performs a fourth transform on the K non-zero elements of the fourth sequence to obtain a base sequence corresponding to the second sequence, wherein the fourth transform is a K ⁇ K DFT.
  • K non-zero elements of the third sequence and the K non-zero elements of the fourth sequence may be considered to be sequence elements corresponding to the information to be transmitted.
  • the specific step of obtaining the first sequence from the third sequence in each embodiment of the present application may be the step of obtaining the base sequence of the K elements of the first sequence from the K non-zero elements of the third sequence.
  • the specific step of obtaining the second sequence from the fourth sequence may be the step of obtaining the base sequence of the K elements of the second sequence from the K non-zero elements of the fourth sequence.
  • the first sequence of the embodiment of the present application may be obtained by DFT by the third sequence, that is, first extended in the time domain and then transformed into the frequency domain; or may be first transformed from the base sequence of the third sequence to the frequency domain. The expansion is performed in the frequency domain, which is not limited in this embodiment of the present application. Regardless of how the first sequence and the second sequence are obtained (corresponding to the frequency domain)
  • the sequence), or the third sequence and the fourth sequence (corresponding to sequences in the time domain), all satisfy the requirements of the sequence in the time domain or the frequency domain as described above.
  • the method before mapping the first sequence to the subcarriers of the first subcarrier group, the method further includes: the transmitting end performs a first transform on the third sequence to obtain a first sequence, where the first transform is a discrete Fourier Transforming the DFT; and/or before mapping the second sequence to the subcarriers of the second subcarrier group, the method further comprises: the transmitting end performing a second transform on the fourth sequence to obtain a second sequence, wherein the second transform is a DFT .
  • the first sequence may include M elements
  • the second sequence may include M elements
  • the third sequence also includes M elements
  • the fourth sequence also includes M elements. Therefore, the first transform is a D ⁇ of M ⁇ M; the second transform is a DFT of M ⁇ M.
  • determining the third sequence comprising M elements, the M elements of the third sequence being f 0 , f 1 , . . . , f M-1 ;
  • the M elements f 0 , f 1 , ..., f M-1 are expanded to a sequence of length LM x 0 , x 1 , ..., x LM-1 , wherein s is a value in 0, 1, ..., L-1, i is a variable, and the value of i is 0, 1, ..., LM-1;
  • the third sequence is LM ⁇ LM
  • the DFT is mapped to M subcarriers in the first subcarrier group of the LM subcarriers.
  • the sequence after DFT of LM ⁇ LM is a sequence of LM elements, but since only M subcarriers are non-zero elements, although the sequence of LM elements is mapped onto LM subcarriers, it is actually consistent with the previous description.
  • the mapping of the M elements of the first sequence to the M subcarriers and the mapping of the M elements of the second sequence to the other M subcarriers are not described herein again.
  • the value of s, t determines which subcarrier group is composed of M subcarriers.
  • another implementation manner for the first sequence mapping is: determining the third sequence including M elements, where the M elements of the third sequence are f 0 , f 1 , . . . , f M-1 ; expanding the M elements f 0 , f 1 , . . . , f M-1 of the third sequence into a sequence of length LM, x 0 , x 1 , . . .
  • s is a value in 0, 1, ..., L-1, i is a variable, and the value of i is 0, 1, ..., LM-1; the third sequence is LM ⁇ LM
  • the DFT is mapped to M subcarriers in the first subcarrier group of the LM subcarriers.
  • the M elements of the fourth sequence are g 0 , g 1 , . . . , g M-1 ;
  • the M elements g 0 , g 1 , ..., g M-1 are expanded into sequences of length LM h 0 , h 1 , ..., h LM-1 , wherein t is a value of 0, 1, ..., L-1, and t is not equal to s;
  • the fourth sequence is subjected to DFT of LM ⁇ LM, mapped to the first subcarrier group of LM subcarriers M subcarriers.
  • another implementation manner for the second sequence mapping is: determining the fourth sequence including M elements, where the M elements of the fourth sequence are g 0 , g 1 , . . . , g M-1; the fourth element of the M sequence g 0, g 1, ..., g M-1 expanded to a length LM sequence h 0, h 1, ..., h LM-1, among them, t is a value of 0, 1, ..., L-1, and t is not equal to s; the fourth sequence is subjected to DFT of LM ⁇ LM, mapped to the first subcarrier group of LM subcarriers M subcarriers.
  • the sequence after DFT of LM ⁇ LM is a sequence of LM elements, but since only M subcarriers are non-zero elements, although the sequence of LM elements is mapped onto LM subcarriers, it is actually consistent with the previous description.
  • the mapping of the M elements of the first sequence to the M subcarriers and the mapping of the M elements of the second sequence to the other M subcarriers are not described herein again.
  • the value of s, t determines which subcarrier group is composed of M subcarriers.
  • the above mapping manner is that the third sequence and the fourth sequence are respectively mapped to D sub-carriers of LM ⁇ LM and then mapped to M subcarriers in LM subcarriers
  • a change implementation manner is The extended sequence of the three sequences and the extended sequence of the fourth sequence are added to obtain a sum sequence, and the DFT of the LM ⁇ LM is performed on the sum sequence, and the obtained LM long sequence is then mapped onto the LM subcarriers.
  • the first subcarrier group and the second subcarrier group are included in the LM subcarriers.
  • the signals on the LM subcarriers are then converted into time domain signals by IFFT conversion.
  • one of the two signals is a reference signal, and the other is a data signal, and another mapping manner is shown in FIG. 6.
  • mapping the first sequence corresponding to the reference signal to the M subcarriers of the first subcarrier group of the LM subcarriers.
  • the second sequence maps the second sequence to subcarriers of the second subcarrier group.
  • the transmitting end performs K ⁇ K DFT on the K non-zero elements of the fourth sequence to obtain a base sequence of the second sequence, thereby obtaining a second sequence, and mapping the second sequence onto the M subcarriers of the second subcarrier group.
  • the transmitting end maps the fifth sequence to the subcarriers of the third subcarrier group, wherein the fifth sequence is a Fourier transform sequence of the sixth sequence, the subcarriers of the third subcarrier group and the first subcarrier group and the first
  • the subcarriers included in the two subcarrier groups are subcarriers on the same time domain symbol, and any two sequences in the sixth sequence, the third sequence, and the fourth sequence are non-zero elements when the elements at the same position are different.
  • the subcarriers of the third subcarrier group are subcarriers that are equally spaced apart in the set of subcarriers, and the adjacent two subcarriers in the third subcarrier group are separated by L-1 subcarriers in the set of subcarriers.
  • the third subcarrier group and the first subcarrier group and the second subcarrier group do not have the same subcarrier, and the sixth sequence is a sequence in which at least one element is a non-zero element.
  • the corresponding third and fourth sequences also satisfy the characteristics of time division multiplexing.
  • the signal on the third subcarrier group may be a data signal or a reference signal.
  • any two subcarrier groups of L (L ⁇ 2) subcarrier groups will be described as an example.
  • the first subcarrier group corresponds to one of the L subcarrier groups.
  • the second subcarrier group corresponds to another subcarrier group of the L subcarrier groups.
  • the signal on each subcarrier group corresponds to one signal of frequency division multiplexing.
  • the signals on the L subcarrier groups correspond to the multiplexing of the L frequency domain signals.
  • the time domain sequences corresponding to the L-path signals respectively satisfy the feature that the elements at the same position are not non-zero elements when they are different.
  • the LM subcarriers in the embodiments of the present application may be all subcarriers on the entire bandwidth, and may also be partial subcarriers on the entire bandwidth.
  • the LM subcarriers are LM subcarriers equally spaced in the frequency domain.
  • the remaining subcarriers in the time domain symbols can also carry other signals. That is, the signal carried on the LM can also be transmitted on the same time domain symbol in a manner of frequency division multiplexing with other signals.
  • the transmitting end determines two pieces of information to be sent, a first to-be-sent information and a second to-be-sent information.
  • the sequence corresponding to the first to-be-sent information is (a1, a2); the sequence corresponding to the second to-be-sent information is (b3, b4).
  • the sequence (a1, a2) is interpolated to obtain the sequence (a1, 0, a2, 0); the sequence (b3, b4) is interpolated to obtain the sequence (0, b3, 0, b4), where a1, a2, b3, B4 is a non-zero element.
  • the elements of the sequence (a1, 0, a2, 0) and the sequence (0, b3, 0, b4) at the same position are not non-zero elements.
  • the sequence (X1, 0, a2, 0) can be DFT to obtain a sequence (X1, X2, X3, X4), and the sequence (0, b3, 0, b4) can be DFT to obtain a sequence (Y1, Y2, Y3, Y4).
  • the sequence (X1, X2, X3, X4) and the sequence (Y1, Y2, Y3, Y4) are mapped onto two sets of subcarrier groups, respectively.
  • the subcarriers included in the two sets of subcarriers are subcarriers on the same time domain symbol, and the subcarriers included in the two sets of subcarriers are equally spaced subcarriers, and the interval is 2.
  • the sequence (a1, a2, 0, 0) is obtained by inserting zeros into the sequence (a1, a2); the sequence (0, 0, b3, b4) is obtained by interpolating the sequence (b3, b4), where a1, A2, b3, and b4 are non-zero elements.
  • the elements of the sequence (a1, a2, 0, 0) and the sequence (0, 0, b3, b4) at the same position are not non-zero elements.
  • the sequence (a1, a2, 0, 0) can be DFT to obtain the sequence (X1', X2', X3', X4'), and the sequence (0, 0, b3, b4) can be DFT to obtain the sequence (Y1', Y2 ', Y3', Y4').
  • the sequences (X1', X2', X3', X4') and the sequences (Y1', Y2', Y3', Y4') are mapped onto two sets of subcarrier groups, respectively.
  • sequence (a1, 0, a2, 0) can be expanded and phase rotated to obtain a sequence (a1, 0, a2, 0, a1, 0, a2, 0); pair sequence (0, b3, 0, b4)
  • the expansion is performed and the phase is rotated to obtain a sequence (0, b3, 0, b4, 0, -b3, 0, -b4).
  • DFT is performed on the sequence (a1, 0, a2, 0, a1, 0, a2, 0) to obtain a sequence (X1, 0, X2, 0, X3, 0, X4, 0); the sequence (0, b3, 0, B4,0,-b3,0,-b4) DFT to obtain the sequence (0, Y1, 0, Y2, 0, Y3, 0, Y4), the sequence (X1, 0, X2, 0, X3, 0, X4) , 0) and the sequence (0, Y1, 0, Y2, 0, Y3, 0, Y4) are respectively mapped onto consecutive identical 8 subcarriers.
  • sequence (a1, 0, a2, 0, a1, 0, a2, 0) and the sequence (0, b3, 0, b4, 0, -b3, 0, -b4) are added to obtain a sequence (a1, B3, a2, b4, a1, -b3, a2, -b4).
  • the sequence (X1, Y1, X2, Y2, X3, Y3, X4, Y4) can be obtained, and the sequence (X1,
  • the above results can also be obtained by directly mapping Y1, X2, Y2, X3, Y3, X4, Y4) to successive 8 subcarriers.
  • the transmitting end determines the three-way information to be sent, the first to-be-sent information, the second to-be-sent information, and the third to-be-sent information.
  • the sequence corresponding to the first to-be-sent information is (a1, a2); the sequence corresponding to the second to-be-sent information is (b3, b4); and the sequence corresponding to the third to-be-sent information is (c5, c6).
  • the sequence (a1,0,0,a2,0,0), the sequence (0,b3,0,0,b4,0) and the sequence (0,0,c5,0,0,c6) have the same position at different positions. Is a non-zer
  • DFT is performed on the sequence (a1, 0, 0, a2, 0, 0) to obtain a sequence (X1, X2, X3, X4, X5, X6); DFT is performed on the sequence (0, b3, 0, 0, b4, 0)
  • the sequence (Y1, Y2, Y3, Y4, Y5, Y6) is obtained; the sequence (0, 0, c5, 0, 0, c6) is subjected to DFT to obtain a sequence (Z1, Z2, Z3, Z4, Z5, Z6).
  • the sequences (X1, X2, X3, X4, X5, X6), sequences (Y1, Y2, Y3, Y4, Y5, Y6) and sequences (Z1, Z2, Z3, Z4, Z5, Z6) are mapped to three groups, respectively.
  • the subcarriers included in the three groups of subcarriers are subcarriers on the same time domain symbol, and the subcarriers included in the three groups of subcarriers are equally spaced subcarriers, and the intervals are all three.
  • the sequence (a1, 0, 0, a2, 0, 0) can be expanded and phase rotated to obtain a sequence (a1, 0, 0, a2, 0, 0, a1, 0, 0, a2, 0, 0, A1,0,0,a2,0,0); amplify the sequence (0, b3, 0, 0, b4, 0) and phase rotate to get the sequence Extend the sequence (0,0,c5,0,0,c6) and phase rotate to get the sequence DFT is obtained for the sequence (a1, 0, 0, a2, 0, 0, a1, 0, 0, a2, 0, 0, a1, 0, 0, 0, a2, 0, 0) to obtain a sequence (X1, 0, 0, X2,0,0,X3,0,0,X4,0,0,X5,0,0,X6,0,0); Perform DFT to obtain the sequence (0, Y1, 0, 0, Y2, 0, 0, Y3, 0, 0, Y4, 0, 0, Y5, 0, 0, Y6, 0); DFT is performed to obtain a sequence (0, 0, Z1, 0, 0, Z2, 0, 0, Z3, 0, 0, 0,
  • Sequence (X1,0,0,X2,0,0,X3,0,0,X4,0,0,X5,0,0,X6,0,0), sequence (0,Y1,0,0, Y2,0,0,Y3,0,0,Y4,0,0,Y5,0,0,Y6,0) and sequence (0,0,Z1,0,0,Z2,0,0,Z3,0 , 0, Z4, 0, 0, Z5, 0, 0, Z6) are mapped to consecutive identical 18 subcarriers, respectively.
  • sequence (a1, 0, 0, a2, 0, 0), the sequence (0, b3, 0, 0, b4, 0) and the sequence (0, 0, c5, 0, 0, c6) are in time
  • the number of repetitions on a domain is the interval of each group of subcarriers in the frequency domain, or the interval of the comb teeth.
  • the transmitting end determines the first to-be-sent information to be sent.
  • the sequence corresponding to the first to-be-sent information is (a1, a2).
  • the sequence (a1, a2) is interpolated to obtain the sequence (a1, 0, a2, 0).
  • DFT is performed on the sequence (a1, 0, a2, 0) to obtain a sequence (X1, X2, X3, X4).
  • the transmitting end determines the reference signal sequence (ZC1, ZC2, ZC3, ZC4).
  • the sequence (X1, X2, X3, X4) and the sequence (ZC1, ZC2, ZC3, ZC4) are mapped onto two sets of subcarrier groups, respectively.
  • the subcarriers included in the two sets of subcarriers are subcarriers on the same time domain symbol, and the subcarriers included in the two sets of subcarriers are equally spaced subcarriers, and the interval is 2.
  • the method for transmitting the signal on the receiving end side includes: receiving, by the receiving end, a signal from the subcarrier, where the subcarrier is a subcarrier on the same time domain symbol;
  • the receiving end performs fast Fourier transform FFT on the signal to obtain a first received signal corresponding to the first sequence and a second received signal corresponding to the second sequence, where the first sequence is carried in the subcarrier On a subcarrier of a subcarrier group, the second sequence is carried on a subcarrier of a second subcarrier group of the subcarrier, and the same subcarrier is not in the first subcarrier group and the second subcarrier group
  • the subcarriers of the first subcarrier group are subcarriers with a medium interval distribution of the subcarrier sets, and the adjacent two subcarriers in the first subcarrier group are separated by L-1 subcarriers in the subcarrier set.
  • the subcarriers of the second subcarrier group are subcarriers that are equally spaced apart in the set of subcarriers, and the adjacent two subcarriers in the second subcarrier group are separated by L-1 in the set of subcarriers.
  • a subcarrier the first sequence is a fourth sequence of Fourier transform sequences, the second sequence is a fourth sequence of Fourier transform sequences, and the third sequence and the fourth sequence are at the same position
  • the first received signal and the second received signal are subjected to signal processing.
  • the method for transmitting a signal on the receiving end may specifically include: receiving, by the receiving end, signals from 2M subcarriers, wherein the 2M subcarriers are subcarriers on the same time domain symbol;
  • the receiving end performs fast Fourier transform FFT on the signal to obtain a first received signal corresponding to the first sequence and a second received signal corresponding to the second sequence, where the first sequence is carried in the 2M sub- On the M subcarriers of the first subcarrier group of the carrier, the second sequence carries M of the second subcarrier groups of the 2M subcarriers On the subcarrier, the first subcarrier group and the second subcarrier group do not have the same subcarrier, and the subcarrier of the first subcarrier group is a subcarrier with a medium interval distribution of the subcarrier set, the first subcarrier
  • the adjacent two subcarriers in the carrier group are separated by L-1 subcarriers in the set of subcarriers, and the subcarrier
  • the characteristics of the first sequence, the second sequence, the third sequence, and the fourth sequence are consistent with the characteristics of the corresponding sequence of the transmitting end described above, and are not described herein again.
  • the signal processing in the embodiment of the present application may specifically include performing equalization and IDFT on the data signal, and may specifically include performing channel estimation on the sequence for the reference signal, and including the sequence for the sequence carrying the information. Perform sequence correlation and so on.
  • the receiving end performing signal processing on the first received signal and the second received signal may include: receiving, by the receiving end, an inverse discrete Fourier transform IDFT on the first received signal to obtain a third sequence; and/or receiving the pair The second received signal is subjected to inverse discrete Fourier transform IDFT to obtain a fourth sequence.
  • the signal processing further includes performing an equalization operation on the data signal.
  • a data signal such as a Physical Downlink Shared Channel (PDSCH)
  • the receiving end may further receive a signal from the subcarriers of the third subcarrier group, the subcarriers of the third subcarrier group and the first subcarrier
  • the subcarriers included in the carrier group and the second subcarrier group are subcarriers on the same time domain symbol
  • the subcarriers in the third subcarrier group are subcarriers in which the subcarrier sets are equally spaced
  • the Two adjacent subcarriers in the three subcarrier groups are separated by L-1 subcarriers in the subcarrier set, the third subcarrier group, the first subcarrier group, and the second subcarrier group.
  • the receiving end performs FFT on the signal carried by the third subcarrier group to obtain a third received signal corresponding to the fifth sequence
  • the fifth sequence is a Fourier transform sequence of the sixth sequence
  • Any two of the sixth sequence, the third sequence, and the fourth sequence are non-zero elements when the elements at the same position are different, and the sixth sequence is at least one element that is a non-zero element Sequence of the receiving end Reception signal subjected to signal processing.
  • the signal processing further includes performing an equalization operation on the data signal.
  • the method for transmitting a signal in the embodiment of the present application is described in detail with reference to FIG. 1 to FIG. 6. The following describes the transmitting end and the receiving end of the embodiment of the present application.
  • FIG. 7 shows a sending end 700 of an embodiment of the present application, including:
  • the processing module 710 is configured to map the first sequence to the subcarriers of the first subcarrier group, and map the second sequence to the subcarriers of the second subcarrier group, the first subcarrier group and the second There is no identical subcarrier in the subcarrier group, and the subcarriers included in the first subcarrier group and the second subcarrier group are subcarriers on the same time domain symbol, and the subcarriers of the first subcarrier group
  • the carrier is a sub-carrier with a medium-interval distribution of sub-carrier sets, and two adjacent sub-carriers in the first sub-carrier group are separated by L-1 sub-carriers in the sub-carrier set, and the sub-carriers of the second sub-carrier group
  • the carrier is a sub-carrier with a medium-interval distribution of the sub-carrier sets, and two adjacent sub-carriers of the second sub-carrier group are separated by L-1 sub-carriers in the sub-carrier set, and the first sequence
  • the processing module 710 is further configured to generate a sending signal according to the elements on the first subcarrier group and the second subcarrier group;
  • the sending module 720 is configured to send the sending signal generated by the processing module 710.
  • the transmitting end of the embodiment of the present application constructs two sequences of non-zero elements when the elements in the same position in the time domain are not different, and maps the two sequences to different two subcarrier groups, so that the signals are transmitted in one symbol. At least two signals can ensure that the PAPR is low, and that the two signals can interfere with each other after passing through the channel.
  • the second sequence includes M elements b 0 , b 1 , . . . , b M-1 , and the second sequence is a base sequence d 0 , d of length K. 1 ,...,d K-1 expansion, among them, v is a value in 0, 1, ..., p-1, and v is not equal to u.
  • the second sequence includes M elements b 0 , b 1 , . . . , b M-1 , and the second sequence is extended by the base sequence d 0 , d 1 , . . . , d K-1 of length K. ,among them, v is a value in 0, 1, ..., p-1, and v is not equal to u.
  • the base sequence is a ZC sequence, a cyclic extension sequence of a ZC sequence, a truncation sequence of a ZC sequence, or a reference signal sequence conforming to a standard of the 3rd Generation Partnership Project 3GPP Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the processing module 710 before the processing module 710 maps the first sequence to the subcarriers of the first subcarrier group, the processing module 710 is further configured to: perform a first transform on the third sequence.
  • the first sequence wherein the first transform is a discrete Fourier transform DFT; and/or the second sequence is mapped to the processing module 710
  • the processing module 710 Before the subcarriers of the second subcarrier group, the processing module 710 is further configured to: perform a second transform on the fourth sequence to obtain the second sequence, where the second transform is a DFT.
  • the processing module 710 is specifically configured to: determine the fourth sequence that includes M elements, where the M elements of the fourth sequence are g 0 , g 1 , . . . , g M-1 ; performing a D ⁇ of M ⁇ M on the fourth sequence to obtain the second sequence, and mapping the second sequence onto subcarriers of the second subcarrier group.
  • the processing module 710 is specifically configured to: determine the third sequence that includes M elements, where the M elements of the third sequence are f 0 , f 1 , . . . , f M-1 ; expanding the M elements f 0 , f 1 , . . . , f M-1 of the third sequence into a sequence of length LM, x 0 , x 1 , . . .
  • s is a value in 0, 1, ..., L-1, i is a variable, and the value of i is 0, 1, ..., LM-1; the third sequence is LM ⁇ LM
  • the DFT is mapped to M subcarriers in the first subcarrier group of the LM subcarriers.
  • another implementation manner for the first sequence mapping is: determining the third sequence including M elements, where the M elements of the third sequence are f 0 , f 1 , . . . , f M-1 ; expanding the M elements f 0 , f 1 , . . . , f M-1 of the third sequence into a sequence of length LM, x 0 , x 1 , . . .
  • s is a value in 0, 1, ..., L-1, i is a variable, and the value of i is 0, 1, ..., LM-1; the third sequence is LM ⁇ LM
  • the DFT is mapped to M subcarriers in the first subcarrier group of the LM subcarriers.
  • the processing module 710 is specifically configured to: determine the fourth sequence that includes M elements, where the M elements of the fourth sequence are g 0 , g 1 , . . . , g M-1; the fourth element of the M sequence g 0, g 1, ..., g M-1 expanded to a length LM sequence h 0, h 1, ..., h LM-1, among them, t is a value of 0, 1, ..., L-1, and t is not equal to s; the fourth sequence is subjected to DFT of LM ⁇ LM, mapped to the first subcarrier group of LM subcarriers M subcarriers.
  • another implementation manner for the second sequence mapping is: determining the fourth sequence including M elements, where the M elements of the fourth sequence are g 0 , g 1 , . . . , g M-1; the fourth element of the M sequence g 0, g 1, ..., g M-1 expanded to a length LM sequence h 0, h 1, ..., h LM-1, among them, t is a value of 0, 1, ..., L-1, and t is not equal to s; the fourth sequence is subjected to DFT of LM ⁇ LM, mapped to the first subcarrier group of LM subcarriers M subcarriers.
  • the third sequence performs inverse discrete Fourier transform (IDFT) on the first sequence.
  • the obtained sequence; the fourth sequence is a sequence obtained by IDFT transformation of the second sequence.
  • IDFT inverse discrete Fourier transform
  • the processing module 710 is further configured to: map the fifth sequence to the subcarriers of the third subcarrier group, where the fifth sequence is a fourth sequence of Fourier transform sequences.
  • the subcarriers of the third subcarrier group and the subcarriers included in the first subcarrier group and the second subcarrier group are subcarriers on the same time domain symbol, and the sixth sequence, the sixth If the elements of the third sequence and the fourth sequence are not different at the same position, the subcarriers of the third subcarrier group are subcarriers of the subcarrier set.
  • Two adjacent subcarriers in the third subcarrier group are separated by L-1 subcarriers in the subcarrier set, the third subcarrier group, the first subcarrier group, and the second subcarrier.
  • the non-zero elements of the third sequence are equally spaced; and/or the non-zero elements of the fourth sequence are equally spaced.
  • the processing module 710 may be implemented by a processor, and the sending module 720 may be implemented by a transceiver.
  • the transmitting end 800 can include a processor 810, a transceiver 820, and a memory 830.
  • the memory 830 can be used to store code and the like executed by the processor 810.
  • the various components in the transmit end 800 are coupled together by a bus system 840, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the transmitting end 700 shown in FIG. 7 or the transmitting end 800 shown in FIG. 8 can implement the various processes implemented in the foregoing embodiments of FIG. 1 to FIG. 6. To avoid repetition, details are not described herein again.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Connection Dynamic Random Access memory Synchronous Connection Dynamic Random Access memory
  • SLDRAM Synchronous Connection Dynamic Random Access memory
  • DR RAM direct memory bus random access memory
  • FIG. 9 shows a receiving end 900 of an embodiment of the present application, including:
  • the receiving module 910 is configured to receive a signal from a subcarrier, where the subcarriers are subcarriers on the same time domain symbol;
  • the processing module 920 is configured to perform the fast Fourier transform FFT on the signal received by the receiving module, and obtain the first received signal corresponding to the first sequence and the second sequence corresponding to the signal received by the receiving module 910.
  • a second received signal the first sequence is carried on a subcarrier of a first subcarrier group of the subcarrier
  • the second sequence is carried on a subcarrier of a second subcarrier group of the subcarrier
  • the first subcarrier group and the second subcarrier group do not have the same subcarrier
  • the subcarriers of the first subcarrier group are subcarriers with a medium interval distribution of subcarrier sets, and the phase in the first subcarrier group
  • the two subcarriers of the neighbor are separated by L-1 subcarriers in the set of subcarriers
  • the subcarriers of the second subcarrier group are subcarriers of the subcarrier set which are equally spaced
  • the second subcarrier group The two adjacent subcarriers are separated by L-1 subcar
  • the processing module 920 is further configured to perform signal processing on the first received signal and the second received signal.
  • the two-way sequence corresponding to the two signals received in one symbol is a non-zero element when the elements at the same position in the time domain are different, and the two sequences are mapped to different two sub-carriers.
  • the two signals received in one symbol can ensure that the PAPR is low and the mutual interference is small.
  • the second sequence includes M elements b 0 , b 1 , . . . , b M-1 , and the second sequence is a base sequence d 0 , d of length K. 1 ,...,d K-1 expansion, among them, v is a value in 0, 1, ..., p-1, and v is not equal to u.
  • the second sequence includes M elements b 0 , b 1 , . . . , b M-1 , and the second sequence is extended by the base sequence d 0 , d 1 , . . . , d K-1 of length K. ,among them, v is a value in 0, 1, ..., p-1, and v is not equal to u.
  • the base sequence is a ZC sequence, a cyclic extension sequence of a ZC sequence, a truncation sequence of a ZC sequence, or a reference signal sequence conforming to a standard of the 3rd Generation Partnership Project 3GPP Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the third sequence is a sequence obtained by performing an inverse discrete Fourier transform IDFT on the first sequence; and the fourth sequence is a sequence obtained by IDFT transforming the second sequence.
  • the receiving module 910 is further configured to: receive a signal from a subcarrier of the third subcarrier group, the subcarrier of the third subcarrier group and the first subcarrier group and The subcarriers included in the second subcarrier group are subcarriers on the same time domain symbol, and the subcarriers in the third subcarrier group are subcarriers in which the subcarrier sets are equally spaced, and the phase in the third subcarrier group The two subcarriers of the neighbor are separated by L-1 subcarriers in the set of subcarriers, and the third subcarrier group and the first subcarrier group and the second subcarrier group do not have the same subcarrier;
  • the processing module 920 is further configured to perform FFT on the signal carried by the third subcarrier group to obtain a third received signal corresponding to the fifth sequence, where the fifth sequence is a Fourier transform sequence of the sixth sequence, where the Any two of the six sequences, the third sequence, and the fourth sequence are not non-zero elements when the elements at the same position are different, and the sixth sequence is a sequence of at least one element that is a non-zero element;
  • the processing module 920 is further configured to perform signal processing on the third received signal.
  • the processing module 920 is specifically configured to:
  • the non-zero elements of the third sequence are equally spaced
  • the non-zero elements of the fourth sequence are equally spaced.
  • the receiving module 910 may be implemented by a transceiver, and the processing module 920 may be implemented by a processor.
  • the receiving end 1000 can include a processor 1010, a transceiver 1020, and a memory 1030.
  • the memory 1030 can be used to store code and the like executed by the processor 1010.
  • the various components in the receiving end 1000 are coupled together by a bus system 1040, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • a bus system 1040 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the disclosed systems, devices, and methods may It is achieved in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请公开了一种传输信号的方法,该方法包括将第一序列映射到第一子载波组上,将第二序列映射到第二子载波组上,第一子载波组和第二子载波组中没有相同的子载波,且所包括的子载波为相同的时域符号上的子载波,第一子载波组的子载波和第二子载波组的子载波分别为等间隔分布的子载波,第一序列为第三序列的傅里叶变换序列,第二序列为第四序列的傅里叶变换序列,第三序列和第四序列在相同位置上的元素不同时为非零元素,第三序列和第四序列均为至少有一个元素为非零元素的序列;将子载波上的元素变换到时域上,生成发送信号;发送发送信号。本申请的方法使得在一个符号内发射至少两路信号时,能保证PAPR较低且经过信道后互相干扰较小。

Description

传输信号的方法、发送端和接收端
本申请要求于2016年5月11日提交中国专利局、申请号为201610311497.8、发明名称为“传输信号的方法、发送端和接收端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输信号的方法、发送端和接收端。
背景技术
一方面,频谱是无线通信中非常昂贵的资源。现代通信系统,例如,全球移动通讯(Global System for Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)2000系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统以及第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的长期演进(Long Term Evolution,LTE)系统,通常都工作在3GHz以下的频谱上。随着智能终端业务的扩展,特别是视频业务的出现,当前的频谱资源已经难以满足用户对容量需求的爆炸式增长。具有更大的可用带宽的高频频段特别是毫米波频段,日益成为下一代通信系统的候选频段,例如3GHz-200GHz频段。
另一方面,现代通信系统通常使用多天线技术来提高系统的容量和覆盖范围,以改善用户的体验。将高频频段技术应用于多天线中,可以大大减小多天线配置的尺寸,从而便于站址的获取和更多天线的部署。在多天线技术中,混合波束赋形被采用以降低测量参考信号的维度和数字数据传输设计的复杂度,可通过数字波束赋形或模拟波束赋形的方式进行多用户复用的数据发射。
多用户复用的各种技术中,正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术由于表现出强的抗多径干扰能力,简单的离散傅里叶变换实现,以及有利于多天线传输技术等特点,而被广泛应用于LTE系统中的下行信号传输中。
LTE系统中的上行信号传输可以采用离散傅里叶变换扩展正交频分复用(Discrete Fourier Transform Spread OFDM,DFT-S-OFDM)技术。DFT-S-OFDM技术能够实现与单载波信号相近的峰均比(Peak to Average Power Ratio,PAPR)性能,低PAPR可减低硬件实现的复杂度和成本。当不同用户所占用的子载波组不重叠时,DFT-S-OFDM可实现正交频分多址,由此得到单载波正交频分多址方案,因此,DFT-S-OFDM技术特别适用于移动通信系统的上行传输。
当前LTE系统中定义的单载波传输是指在时域上符合单载波特性,这样可以获得较低的PAPR。在频域上,则仍可以通过集中式单载波传输或分布式单载波传输两种方式实现。对于集中式单载波传输,一个用户的一种发送信号(数据信号或参考信号)在频域上占用连续的频谱(即频域子载波是排列在一起的),占用的频谱是整个系统带宽的一部分。对于分布式单载波传输,一个用户的一种发送信号(数据信号或参考信号)在频域上则占用非连续的频谱。现有的技术中,对于一个用户的多个数据信号或参考信号传 输来说,为保持与单载波信号相近的低PAPR,数据信号和参考信号(例如解调参考信号(Demodulation Reference Signal,DMRS))采用时分复用的方式进行传输。
然而采用高频频段技术时,在一些特殊子帧中要求在同一个时域符号上同时传输数据信号和参考信号。例如,用一个用户在特殊子帧的最后一个符号上需要同时传输上行数据信号和上行参考信号。此时,为了进行传输,可以将最后一个符号内的多个子载波分为互不重叠的两个子载波组,以分别传输上行数据信号和上行参考信号。换而言之,多个子载波被频分为两个梳齿,梳齿1用于上行数据信号的传输,梳齿2用于上行参考信号的传输。
上述方案可以实现数据信号和参考信号的同时传输,且通过将待传输的两路信号进行频分正交的发射可降低两路信号间的干扰。但由于多个子载波被分成两个梳齿来同时传输数据信号和参考信号,因此单载波特性被破坏,从而造成较高的PAPR。
此外,现有的技术也可以采用以两路时域信号进行复用的方法。例如,第一路时域信号序列为f0,f1,...fM-1,记作{fi};第二路时域信号序列为g0,g1,...gM-1,记作{gi}。在离散傅里叶变换(Discrete Fourier Transform,DFT)前进行两路时域信号序列的时分复用,形成时域信号序列f0,g0,f1,g1,...fM-1,gM-1。如果第一路时域信号序列和第二路时域信号序列都是低PAPR的序列(例如,两路时域信号序列为DFT-S-OFDM形式的时域波形或其他低PAPR的单载波时域波形),则上述操作可以保证时分复用后的时域信号序列仍然为低PAPR的序列。然而,该方案使得可能存在两路发射信号经过信道后有较大的干扰。
发明内容
本申请提供一种传输信号的方法、发送端和接收端,使得在一个符号内发射至少两路信号时,能保证PAPR较低且经过信道后互相干扰较小。
第一方面,提供了一种传输信号的方法,包括:发送端将第一序列映射到第一子载波组的子载波上,所述发送端将第二序列映射到第二子载波组的子载波上,所述第一子载波组和所述第二子载波组中没有相同的子载波,所述第一子载波组和所述第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第一子载波组的子载波为子载波集合中等间隔分布的子载波,所述第一子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第二子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第二子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第一序列为第三序列的傅里叶变换序列,所述第二序列为第四序列的傅里叶变换序列,所述第三序列和所述第四序列相同位置上的元素不同时为非零元素,所述第三序列和所述第四序列均为至少有一个元素为非零元素的序列,所述子载波集合为频域上等间隔分布的LM个子载波,其中,L和M均为正整数;所述发送端根据所述第一子载波组和所述第二子载波组上的元素生成发送信号;所述发送端发送所述发送信号。
具体而言,所述第一子载波组的子载波可以为LM个子载波中指标间隔为L的等间隔分布的子载波,所述第二子载波组的子载波可以为所述LM个子载波中指标间隔为L 的等间隔分布的子载波,所述LM个子载波是频域上等间隔分布的子载波,且按照频率高低的顺序进行标号,指标为0~LM-1。
第一方面提供的传输信号的方法,构造在时域上相同位置上的元素不同时为非零元素的两个序列,并且将两个序列映射到不同的两个子载波组上,使得在一个符号内发射至少两路信号时,既能保证PAPR较低,又能保证两路信号经过信道后互相干扰较小。
进一步地,当一个时域符号内只有第一序列和第二序列两路信号同时发射时,所述第三序列和所述第四序列还满足相同位置上的元素不同时为零元素的条件。
其中,所述第三序列的非零元素可以为等间隔分布的;和/或所述第四序列的非零元素可以为等间隔分布的。这样,可以保证映射到频域后的序列有重复的特性,因此信号幅度变化比较小,从而有较好的信道估计性能。
在第一方面的一种可能的实现方式中,在所述将第一序列映射到第一子载波组的子载波上之前,所述方法还包括:所述发送端对所述第三序列进行第一变换得到所述第一序列,其中,所述第一变换为离散傅里叶变换DFT;和/或在所述将第二序列映射到第二子载波组的子载波上之前,所述方法还包括:所述发送端对所述第四序列进行第二变换得到所述第二序列,其中,所述第二变换是DFT。
应理解,所述第一序列可以包括M个元素,所述第二序列可以包括M个元素,相应地,所述第三序列也包括M个元素,所述第四序列也包括M个元素。因此,所述第一变换为M×M的DFT;所述第二变换为M×M的DFT。
在第一方面的一种可能的实现方式中,所述第三序列为所述第一序列进行逆离散傅里叶变换IDFT得到的序列;所述第四序列为所述第二序列进行IDFT变换得到的序列。
在第一方面的一种可能的实现方式中,在同一个时域符号上还可以传输更多路的信号,所述方法还包括:
所述发送端将第五序列映射到第三子载波组的子载波上,其中,所述第五序列为第六序列的傅里叶变换序列,所述第三子载波组的子载波与所述第一子载波组和第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第六序列、所述第三序列和所述第四序列中的任意两个序列在相同位置上的元素不同时为非零元素,所述第三子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第三子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第三子载波组和所述第一子载波组、所述第二子载波组中没有相同的子载波,所述第六序列为至少有一个元素为非零元素的序列。具体而言,所述第三子载波组的子载波可以为所述LM个子载波中指标间隔为L的等间隔分布的子载波。
在第一方面的一种可能的实现方式中,所述将第一序列映射到第一子载波组的子载波上,包括:确定包括M个元素的所述第三序列,所述第三序列的M个元素为f0,f1,...,fM-1;将所述第三序列的M个元素f0,f1,...,fM-1扩充为长度为LM的序列x0,x1,...,xLM-1,其中,
Figure PCTCN2017083078-appb-000001
s为0,1,...,L-1中的一个值,i为变量,i的取值为0,1,...,LM-1;将所述第三序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波上。
此外,第一序列映射的另一种实现方式为:确定包括M个元素的所述第三序列,所述第三序列的M个元素为f0,f1,...,fM-1;将所述第三序列的M个元素f0,f1,...,fM-1扩充为长度为LM的序列x0,x1,...,xLM-1
其中,
Figure PCTCN2017083078-appb-000002
s为0,1,...,L-1中的一个值,i为变量,i的取值为0,1,...,LM-1;将所述第三序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波上。
在第一方面的一种可能的实现方式中,所述将第二序列映射到第二子载波组的子载波上,包括:确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1;将所述第四序列的M个元素g0,g1,...,gM-1扩充为长度为LM的序列h0,h1,...,hLM-1,其中,
Figure PCTCN2017083078-appb-000003
t为0,1,...,L-1中的一个值,并且t不等于s;将所述第四序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波。
此外,第二序列映射的另一种实现方式为:确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1;将所述第四序列的M个元素g0,g1,...,gM-1扩充为长度为LM的序列h0,h1,...,hLM-1
其中,
Figure PCTCN2017083078-appb-000004
t为0,1,...,L-1中的一个值,并且t不等于s;将所述第四序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波。
在第一方面的一种可能的实现方式中,所述将第二序列映射到第二子载波组的子载波上,包括:确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1;将所述第四序列进行M×M的DFT得到所述第二序列,将所述第二序列映射到所述第二子载波组的子载波上。
第二方面,提供了一种传输信号的方法,包括:接收端从子载波上接收信号,其中,所述子载波为相同的时域符号上的子载波;所述接收端对所述信号进行快速傅里叶变换FFT,得到第一序列对应的第一接收信号和第二序列对应的第二接收信号,所述第一序列承载在所述子载波的第一子载波组的子载波上,所述第二序列承载在所述子载波的第二子载波组的子载波上,所述第一子载波组和第二子载波组中没有相同的子载波,所述第一子载波组的子载波为子载波集合中等间隔分布的子载波,所述第一子载波组中相邻的 两个子载波间隔有所述子载波集合中的L-1个子载波,所述第二子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第二子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第一序列为第三序列的傅里叶变换序列,所述第二序列为第四序列的傅里叶变换序列,所述第三序列和所述第四序列相同位置上的元素不同时为非零元素,所述第三序列和所述第四序列均为至少有一个元素为非零元素的序列,所述子载波集合为频域上等间隔分布的LM个子载波,其中,L和M均为正整数;所述接收端对所述第一接收信号和所述第二接收信号进行信号处理。
本申请的方法,在一个符号内接收的两路信号对应的两路序列在时域上相同位置上的元素不同时为非零元素,并且将两个序列映射到不同的两个子载波组上,使得在一个符号内接收的两路信号,既能保证PAPR较低,又能保证其互相干扰较小。
其中,所述第三序列的非零元素可以为等间隔分布的;和/或所述第四序列的非零元素可以为等间隔分布的。
在第二方面的一种可能的实现方式中,所述方法还包括:所述接收端从第三子载波组的子载波上接收信号,所述第三子载波组的子载波与所述第一子载波组和第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第三子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第三子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第三子载波组和所述第一子载波组、所述第二子载波组中没有相同的子载波;所述接收端对所述第三子载波组承载的信号进行FFT得到第五序列对应的第三接收信号,所述第五序列为第六序列的傅里叶变换序列,所述第六序列、所述第三序列和所述第四序列中的任意两个序列在相同位置上的元素不同时为非零元素,所述第六序列为至少有一个元素为非零元素的序列;所述接收端对所述第三接收信号进行信号处理。
在第二方面的一种可能的实现方式中,所述接收端对所述第一接收信号和所述第二接收信号进行信号处理,包括:所述接收端对所述第一接收信号进行逆离散傅里叶变换IDFT,得到所述第三序列;和/或所述接收端对所述第二接收信号进行逆离散傅里叶变换IDFT,得到所述第四序列。
在第二方面的一种可能的实现方式中,所述方法还包括:当所述第一接收信号为数据信号时,对所述第一接收信号进行均衡操作。
在第二方面的一种可能的实现方式中,所述方法还包括:当所述第二接收信号为数据信号时,对所述第二接收信号进行均衡操作。
第三方面,提供了一种发送端,包括处理模块和发送模块,用于执行第一方面和其相应的实现方式。
第四方面,提供了一种发送端,包括处理器、收发器和存储器,用于执行第一方面和其相应的实现方式,并且第四方面的发送端的各器件可以与第三方面的发送端相应模块对应。
第五方面,提供了一种接收端,包括接收模块和处理模块,用于执行第二方面和其相应的实现方式。
第六方面,提供了一种接收端,包括处理器、收发器和存储器,用于执行第二方面和其相应的实现方式,并且第六方面的接收端的各器件可以与第五方面的接收端的相应模块对应。
在各方面及其相应的可能的实现方式中,所述第一序列可以包括M个元素a0,a1,...,aM-1,所述第一序列可以是由长度为K的基序列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
Figure PCTCN2017083078-appb-000005
u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1,其中,p和K均为正整数。
在各方面及其相应的可能的实现方式中,所述第二序列可以包括M个元素b0,b1,...,bM-1,所述第二序列可以是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
Figure PCTCN2017083078-appb-000006
v为0,1,...,p-1中的一个值,并且v不等于u。
其中,第一序列对应的基序列可以通过以下步骤得到:发送端对第三序列的K个非零元素组成的序列进行第三变换得到第一序列对应的基序列,其中,第三变换为K×K的离散傅里叶变换DFT。
第二序列对应的基序列可以通过以下步骤得到:发送端对第四序列的K个非零元素进行第四变换得到第二序列对应的基序列,其中,第四变换为K×K的DFT。
此外,在各方面及其相应的可能的实现方式中,第一序列还可以是以下方法得到的。第一序列包括M个元素a0,a1,...,aM-1,第一序列是由长度为K的基序列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
Figure PCTCN2017083078-appb-000007
u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1,其中,p和K均为正整数。
相应地,第二序列还可以是以下方法得到的。第二序列包括M个元素b0,b1,...,bM-1,第二序列是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
Figure PCTCN2017083078-appb-000008
v为0,1,...,p-1中的一个值,并且v不等于u。
在各方面及其相应的可能的实现方式中,所述基序列可以为ZC序列、ZC序列的循环扩充序列、ZC序列的截断序列或符合第三代合作伙伴计划3GPP的长期演进LTE系统的标准的参考信号序列。
本申请中,时域符号可以是OFDM或者DFT-S-OFDM符号。
附图说明
图1是本申请一个实施例的传输信号的通信系统的示意图。
图2是本申请一个实施例的传输信号的方法的示意图。
图3是本申请另一个实施例的传输信号的方法的示意图。
图4是本申请又一个实施例的传输信号的方法的示意图。
图5是本申请又一个实施例的传输信号的方法的示意图。
图6是本申请又一个实施例的传输信号的方法的示意图。
图7是本申请一个实施例的发送端的示意性框图。
图8是本申请另一个实施例的发送端的示意性框图。
图9是本申请一个实施例的接收端的示意性框图。
图10是本申请另一个实施例的接收端的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本申请实施例的技术方案可以应用于长期演进(Long Term Evolution,LTE)架构,还可以应用于通用移动通信系统(Universal Mobile Telecommunications System,UMTS)陆地无线接入网(UMTS Terrestrial Radio Access Network,UTRAN)架构,或者全球移动通信系统(Global System for Mobile Communication,GSM)/增强型数据速率GSM演进(Enhanced Data Rate for GSM Evolution,EDGE)系统的无线接入网(GSM EDGE Radio Access Network,GERAN)架构。在UTRAN架构或/GERAN架构中,MME的功能由服务通用分组无线业务(General Packet Radio Service,GPRS)支持节点(Serving GPRS Support,SGSN)完成,SGW\PGW的功能由网关GPRS支持节点(Gateway GPRS Support Node,GGSN)完成。本申请实施例的技术方案还可以应用于其他通信系统,例如公共陆地移动网络(Public Land Mobile Network,PLMN)系统,甚至未来的5G通信系统等,本申请实施例对此不作限定。
本申请各个实施例可以应用于终端设备中。终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备等。
本申请各个实施例也可以应用于网络设备中。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载 设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disk,CD)、数字通用盘(Digital Versatile Disk,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请一个实施例的传输信号的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于 传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
应理解,本申请实施例可以应用于上行传输,例如图1中示出的120和126,也可以应用于下行传输,例如图1中示出的118和124。图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
一方面,频谱是无线通信中非常昂贵的资源。现代通信系统,例如,全球移动通讯(Global System for Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)2000系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统以及第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的长期演进(Long Term Evolution,LTE)系统,通常都工作在3GHz以下的频谱上。随着智能终端业务的扩展,特别是视频业务的出现,当前的频谱资源已经难以满足用户对容量需求的爆炸式增长。具有更大的可用带宽的高频频段特别是毫米波频段,日益成为下一代通信系统的候选频段,例如3GHz-200GHz频段。
另一方面,现代通信系统通常使用多天线技术来提高系统的容量和覆盖范围,以改善用户的体验。将高频频段技术应用于多天线中,可以大大减小多天线配置的尺寸,从而便于站址的获取和更多天线的部署。在多天线技术中,混合波束赋形被采用以降低测量参考信号的维度和数字数据传输设计的复杂度,可通过数字波束赋形或模拟波束赋形的方式进行多用户复用的数据发射。
多用户复用的各种技术中,正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术由于表现出强的抗多径干扰能力,简单的离散傅里叶变换实现,以及有利于多天线传输技术等特点,而被广泛应用于LTE系统中的下行信号传输中。
LTE系统中的上行信号传输可以采用离散傅里叶变换扩展正交频分复用(Discrete Fourier Transform Spread OFDM,DFT-S-OFDM)技术。DFT-S-OFDM技术能够实现与单载波信号相近的峰均比(Peak to Average Power Ratio,PAPR)性能,低PAPR可减低硬件实现的复杂度和成本。当不同用户所占用的子载波组不重叠时,DFT-S-OFDM可实现正交频分多址,由此得到单载波正交频分多址方案,因此,DFT-S-OFDM技术特别适用于移动通信系统的上行传输。
当前LTE系统中定义的单载波传输是指在时域上符合单载波特性,这样可以获得较低的PAPR。在频域上,则仍可以通过集中式单载波传输或分布式单载波传输两种方式实现。对于集中式单载波传输,一个用户的一种发送信号(数据信号或参考信号)在频域上占用连续的频谱(即频域子载波是排列在一起的),占用的频谱是整个系统带宽的一部分。对于分布式单载波传输,一个用户的一种发送信号(数据信号或参考信号)在频域上则占用非连续的频谱。现有的技术中,对于一个用户的多个数据信号或参考信号传输来说,为保持与单载波信号相近的低PAPR,数据信号和参考信号(例如解调参考信号(Demodulation Reference Signal,DMRS))采用时分复用的方式进行传输。
然而采用高频频段技术时,在一些特殊子帧中要求在同一个时域符号上同时传输数据信号和参考信号。例如,用一个用户在特殊子帧的最后一个符号上需要同时传输上行数据信号和上行参考信号。此时,为了进行传输,可以将最后一个符号内的多个子载波分为互不重叠的两个子载波组,以分别传输上行数据信号和上行参考信号。换而言之, 多个子载波被频分为两个梳齿,梳齿1用于上行数据信号的传输,梳齿2用于上行参考信号的传输。
上述方案可以实现数据信号和参考信号的同时传输,且通过将待传输的两路信号进行频分正交的发射可降低两路信号间的干扰。但由于多个子载波被分成两个梳齿来同时传输数据信号和参考信号,因此单载波特性被破坏,从而造成较高的PAPR。
此外,现有的技术也可以采用以两路时域信号进行复用的方法。例如,第一路时域信号序列为f0,f1,...fM-1,记作{fi};第二路时域信号序列为g0,g1,...gM-1,记作{gi}。在离散傅里叶变换(Discrete Fourier Transform,DFT)前进行两路时域信号序列的时分复用,形成时域信号序列f0,g0,f1,g1,...fM-1,gM-1。如果第一路时域信号序列和第二路时域信号序列都是低PAPR的序列(例如,两路时域信号序列为DFT-S-OFDM形式的时域波形或其他低PAPR的单载波时域波形),则上述操作可以保证时分复用后的时域信号序列仍然为低PAPR的序列。然而,该方案使得可能存在两路发射信号经过信道后有较大的干扰。
基于上述的描述,本申请实施例的思想是提供一种传输信号的方法,使得在一个符号内发射至少两路信号时,既能保证PAPR较低,又能保证至少两路信号经过信道后互相干扰较小。
本申请实施例中,发射端要在同一个时域符号上发送Z路信号,其中,Z大于或等于2。Z路信号中可以包括参考信号或携带了待传输信息的数据信号。本申请中的信号可以是调制后的信号。所述Z路信号在多个天线上发射的时候,还可以在发射之前进行空域预编码(Spatial Precoding),不同的信号可以有不同的空域预编码。
本申请实施例提供的传输信号的方法,可以包括:发送端将第一序列映射到第一子载波组的子载波上,所述发送端将第二序列映射到第二子载波组的子载波上,所述第一子载波组和所述第二子载波组中没有相同的子载波,所述第一子载波组和所述第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第一子载波组的子载波为子载波集合中等间隔分布的子载波,所述第一子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第二子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第二子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第一序列为第三序列的傅里叶变换序列,所述第二序列为第四序列的傅里叶变换序列,所述第三序列和所述第四序列相同位置上的元素不同时为非零元素,所述第三序列和所述第四序列均为至少有一个元素为非零元素的序列,所述子载波集合为频域上等间隔分布的LM个子载波,其中,L和M均为正整数;所述发送端根据所述第一子载波组和所述第二子载波组上的元素生成发送信号;所述发送端发送所述发送信号。
进一步地,当一个时域符号内只有第一序列和第二序列两路信号同时发射时,所述第三序列和所述第四序列还满足相同位置上的元素不同时为零元素的条件。
下面详细介绍本方法的具体的实现流程。
首先讨论Z路信号中的任意两路信号的传输。该两路信号在时域上分别对应第三序列和第四序列。第三序列和第四序列可以对应于同一个用户也可以对应于不同的用户。 第三序列和第四序列分别包括M个元素,第三序列可以为f0,f1,...fM-1,记作{fi},第四序列可以为g0,g1,...gM-1,记作{gi}。
第三序列{fi}和第四序列{gi}在相同位置上的元素不同时为非零元素。其中,相同位置是指在同样包括M个元素的两个时域序列中,元素在序列中的位置相同。换而言之,第三序列和第四序列在同一时刻的元素不同时非零。这样,在时域上,相当于第三序列对应的基序列和第四序列对应的基序列是时分复用的,从而使得在两个序列经过后续的DFT、IFFT等一系列变换及其它处理后,发送的信号具有低的PAPR。
本申请各实施例中第三序列{fi}在频域上对应的序列为第一序列a0,a1,...aM-1,记作{ai},第四序列在频域上{gi}对应的序列为第二序列b0,b1,...bM-1,记作{bi},第一序列和第二序列也分别包括M个元素;换而言之,第一序列对应的时域序列为第三序列,第二序列对应的时域序列为第四序列;或者说,第一序列为第三序列的傅里叶变换序列,第二序列为第四序列的傅里叶变换序列。
即,第三序列和第一序列的对应关系为DFT关系或逆离散傅里叶变换(Inverse Discrete Fourier Transform,IDFT)关系;第四序列和第二序列的对应关系为DFT关系或IDFT关系。亦即,第三序列为第一序列进行IDFT得到的序列,第一序列为第三序列进行DFT得到的序列;第四序列为第二序列进行IDFT得到的序列,第二序列为第四序列进行DFT得到的序列。
本申请各实施例中,最终发送端将第一序列映射到第一子载波组的M个子载波上,将第二序列映射到第二子载波组的M个子载波上。
应注意的是,第一子载波组的M个子载波为等间隔分布的子载波以及第二子载波组的M个子载波为等间隔分布的子载波的好处是,能够使得信道估计性能更加均衡,从而得到较好效果的信道估计。
而第一子载波组和第二子载波组中没有相同的子载波,第一子载波组和第二子载波组所包括的2M个子载波为相同的时域符号上的子载波,第一子载波组的M个子载波为等间隔分布的子载波,第二子载波组的M个子载波为等间隔分布的子载波。换而言之,第一序列和第二序列被映射到频域互不交叠的两把梳齿上。由此,可以使得第一子载波组上的信号和第二子载波组上的信号经过信道之后,在接收侧的干扰较小,从而保证了数据传输的性能。
本申请各个实施例中第一子载波组和第二子载波组可以均是LM个子载波中指标间隔为L的等间隔分布的子载波,按照子载波频率的高低,从低到高或者从高到低对每个子载波组的M个子载波进行编号,指标为0,1,2,…,M-1,其中L是正整数。第一序列或第二序列的元素{x(i)}映射到各自对应的子载波组的指标为i的子载波上,i=0,1,2,…,M-1。
所述LM个子载波也是等间隔分布的,包括连续分布的情况(此时,间隔为1),LM个子载波指标可以按照频率的高低,从低到高或者从高到低顺序编号,指标为0~LM-1。根据所述LM个子载波的指标的编号,指标间隔为L指的是两个指标之间的差 为L。例如指标间隔为L的等间隔分布的M个子载波的指标为{k,k+L,k+2L,…,k+(M-1)L},其中k是{0,1,2,…,L-1}中一个元素。
换而言之,子载波集合为频域上等间隔分布的LM个子载波。所述第一子载波组的子载波可以为LM个子载波中指标间隔为L的等间隔分布的子载波,所述第二子载波组的子载波可以为所述LM个子载波中指标间隔为L的等间隔分布的子载波,所述LM个子载波是频域上等间隔分布的子载波,且按照频率高低的顺序进行标号,指标为0~LM-1。为了方便说明,本申请实施例中对LM个子载波进行编号来进行描述,而非对本申请实施例的限制。
可选地,本申请实施例中,第三序列的非零元素可以为等间隔分布的;和/或第四序列的非零元素可以为等间隔分布的。即,本申请实施例所讨论的两路信号中,至少一路信号在时域上非零元素为等间隔分布的。由此,保证映射到频域后的序列的有带相位重复的特性,因此信号幅度变化比较小,从而有较好的信道估计性能。
可选地,第三序列的非零元素可以是连续分布的;和/或第四序列的非零元素是连续分布的,例如第三序列的非零元素是前M1个元素,第四序列的非零元素是后M2个元素,且M1+M2=M,其中M1,M2是正整数。由此,也可以保证最终发射的信号有较好的PAPR特性。
以第三序列为例进行说明,第三序列{fi}中,非零元素等间隔分布可以是f0,f2,f4,...为非零元素,f1,f3,f5,...为非零元素,f0,f3,f6,...为非零元素,等等,本申请实施例对非零元素等间隔分布的具体形式不作限定。
如图2所示,第一序列和第二序列被分别映射到第一子载波组和第二子载波组上后,发送端将2M个子载波上的元素变换到时域上,生成发送信号并发送上述发送信号。具体而言,发送端可以经过IFFT变换,将2M个子载波上的元素转化成时域信号后发送出去。
本申请实施例中,第三序列和第四序列相同位置上的元素不同时非零,从而可以保证最终发射的时域信号不会因为两路信号在时域上的叠加而导致明显的PAPR。这是因为由信号处理的知识可以得到,最终发射的信号是原始的第三信号和第四信号的带相位重复的信号,而带相位重复不影响不同时非零的特性。
本申请实施例中,发射端要在同一个时域符号上发送Z路信号,其中,Z大于或等于2。Z路信号中的任意两路信号可以是多种组合方式,这些组合均可以应用于本申请各实施例中。例如,任意两路信号可以均为参考信号,可以是参考信号和控制信道承载的控制信息的信号的组合,也可以是参考信号和数据信道承载的数据信号的组合,还可以是参考信号和承载其他待传输信息的信号的组合,还可以是上述信号中除参考信号外的任意两种信号的组合。
应理解,本申请实施例中,时域符号可以是OFDM或者DFT-S-OFDM符号。
本申请实施例中,L可以大于或等于Z。相对应地,最终将Z路信号对应的Z个序列的元素映射到LM个子载波(对应L个子载波组)的Z个子载波组上。而对L个子载波组中除Z个子载波组以外的L-Z个子载波组的用途不作限定。
其中,该参考信号可以是上行参考信号,也可以是下行参考信号。例如,参考信号可以为解调参考信号(Demodulation Reference Signal,DMRS)、小区特定参考信号(Cell  specific Reference Signal,CRS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、探测参考信号(Sounding Reference Signal,SRS)等,本申请实施例不限于此。
相应的,控制信息可以是上行控制信道承载的上行控制信息,如物理上行控制信道(Physical Uplink Control Channel,PUCCH)上承载的上行控制信息,或下行控制信道承载的下行控制信息,具体的如物理下行控制信道(Physical Downlink Control Channel,PDCCH)上承载的下行控制信息。
数据信道可以是上行数据信道,如物理上行共享信道(Physical Uplink Shared Channel,PUSCH),也可以是下行数据信道,如物理下行共享信道(Physical Downlink Shared Channel,PDSCH)等。
此外,其他待传输信息可以包括广播信道承载的系统信息,如物理广播信道(physical broadcast channel,PBCH)承载的信息,或用于同步的同步信号,如主同步信号(Primary Synchronization Signal,PSS)或辅同步信号(Secondary Synchronization Signal,SSS),或者辅同步信号中的两路信号等。
第一序列{ai}可以为由基序列扩充后再进行相位旋转后的序列;同理,第二序列{bi}也可以为由基序列扩充后再进行相位旋转后的序列。其中,基序列可以为ZC序列(即Zadoff-Chu序列)、ZC序列的循环扩充序列、ZC序列的截断序列或符合第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的长期演进LTE系统的标准的参考信号序列。
ZC序列的循环扩充序列和ZC序列的截断序列举以下例子进行说明。LTE系统的上行的参考信号的长度一般为RB的整数倍,即12的整数倍。但是用于生成参考信号的ZC的序列不一定是12的整数倍,当ZC序列的长度小于参考信号的长度时,通过ZC序列的循环扩充产生参考信号的序列;当ZC序列的长度大于参考信号的长度时,通过ZC序列的截断产生参考信号的序列。例如,ZC序列Xi的长度为M,参考信号Yi的长度为N,当M<N时,则Yi=XimodM,i=0,1,...,N-1;当M>N,则Yi=Xi,i=0,1,...,N-1。
在一个具体的例子中,基序列可以为ZC序列循环扩充得到。ZC序列有良好的相关性,或者称为循环移位特性,即任意的ZC原始序列与其循环移位n位后所得的序列不相关,即自相关峰值尖锐。ZC序列具有良好的互相关特性,互相关值接近于零。ZC序列具有低PAPR。任意ZC序列经过快速傅里叶变换(Fast Fourier Transformation,FFT)或逆快速傅里叶变换(Inverse Fast Fourier Transformation,IFFT)后,仍然为ZC序列。应理解,除ZC序列以外,基序列也可以对应其他的恒包络零自相关(Constant Amplitude Zero Auto Correlation,CAZAC)序列等生成。基序列还可以是其他的具有低PAPR特性的序列,本申请实施例对此不作限定。
具体而言,第一序列包括M个元素a0,a1,...,aM-1,第一序列是由长度为K的基序 列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
Figure PCTCN2017083078-appb-000009
u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1,其中,p和K均为正整数。
第二序列包括M个元素b0,b1,...,bM-1,第二序列是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
Figure PCTCN2017083078-appb-000010
v为0,1,...,p-1中的一个值,并且v不等于u。
可选地,所述第一序列对应的基序列长度和第二序列对应的基序列长度也可以不相等。如第一序列对应的基序列长度为K1,第二序列对应的基序列长度为K2,所述K1为K2的非零整数倍。
可扩展地,在另一种实施方式中,第一序列包括M个元素a0,a1,...,aM-1,第一序列是由长度为K的基序列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
Figure PCTCN2017083078-appb-000011
u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1,其中,p和K均为正整数。
第二序列包括M个元素b0,b1,...,bM-1,第二序列是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
Figure PCTCN2017083078-appb-000012
v为0,1,...,p-1中的一个值,并且v不等于u。
在本申请实施例中,定义两个长度为K的基序列{ci}和{di},可以分别由ZC序列的循环扩充得到。
基序列可以承载要发送的信息,例如调制后的符号信息x乘上序列{ci}作为第一序列对应的基序列。或者调制后的符号信息y乘上序列{di}作为第二序列对应的基序列。
基序列可以采用当前LTE系统中的参考信号序列。ZC序列{zi}具体可以表示为如下形式:
Figure PCTCN2017083078-appb-000013
其中,Q为ZC序列的长度;q为与Q互质的自然数,不同的ZC序列对应不同的q 值;l是每个ZC序列下的循环移位值。例如当Q=3时,q的取值可以为1或2,两个基本的ZC序列ZC(3,1,l)和ZC(3,2,l)。其中,Q is odd是指Q是奇数,Qis even是指Q是偶数。
将长度为K的基序列{ci},进行扩充得到的M长的序列即为第一序列{ai}。将长度为K的基序列{di}进行扩充得到的M长的序列即为第二序列{bi}。
如图3所示,第一序列{ai}的M个元素a0,a1,...,aM-1映射到LM个子载波的第一子载波组上,而第二序列{bi}的M个元素b0,b1,...,bM-1映射到LM个子载波的第二子载波组上。发送端将2M个子载波上的元素变换到时域上,生成发送信号,即射频(Radio Frequency,RF)信号。最后,发送RF信号。
第一序列和第二序列满足带相位的扩充(扩展加相位旋转)特性,则第一序列和第二序列在时域的对应序列(第三序列和第四序列)就满足不同时非零的特性,从而最终发射的叠加的信号有很好的PAPR特性。
在本申请的另一个实施例中,两路信号中一路信号对应第三序列;另一路信号对应第四序列。将第三序列映射到第一子载波组,将第四序列映射到第二子载波组可以采用图4所示的方法。在得到第三序列和第四序列后,将第三序列进行M×M的DFT映射到第一子载波组;将第四序列进行M×M的DFT映射到第二子载波组。
此外,还有一种方法是得到第三序列的K个非零元素组成的序列,将K个非零元素的序列经过K×K的DFT得到第一序列对应的基序列,对基序列再做扩充得到第一序列;得到第四序列的K个非零元素组成的序列,将K个非零元素的序列经过K×K的DFT得到第二序列对应的基序列,对第二序列再做扩充得到第二序列。扩充方法和前述实施例中对基序列的扩充方法相同,此处不再赘述。
换而言之,其中,第一序列对应的基序列可以通过以下步骤得到:发送端对第三序列的K个非零元素组成的序列进行第三变换得到第一序列对应的基序列,其中,第三变换为K×K的离散傅里叶变换DFT。
第二序列对应的基序列可以通过以下步骤得到:发送端对第四序列的K个非零元素进行第四变换得到第二序列对应的基序列,其中,第四变换为K×K的DFT。
应理解,第三序列的K个非零元素和第四序列的K个非零元素可以认为是待发送到的信息对应的序列元素。
本申请各实施例中由第三序列得到第一序列的具体步骤可以是上述由第三序列的K个非零元素得到第一序列的K个元素的基序列的步骤。和/或由第四序列得到第二序列的的具体步骤可以是由第四序列的K个非零元素得到第二序列的K个元素的基序列的步骤。换而言之,本申请实施例的第一序列可以由第三序列进行DFT获得,即首先在时域上扩充再变换到频域;也可以先由第三序列的基序列变换到频域,再在频域上进行扩充,本申请实施例对此不作限定。不论以何种方式获得第一序列和第二序列(对应于频域上 的序列),或者第三序列和第四序列(对应于时域上的序列),序列均满足前文所述的对序列在时域或频域上的要求。
具体地,在将第一序列映射到第一子载波组的子载波上之前,方法还包括:发送端对第三序列进行第一变换得到第一序列,其中,第一变换为离散傅里叶变换DFT;和/或在将第二序列映射到第二子载波组的子载波上之前,方法还包括:发送端对第四序列进行第二变换得到第二序列,其中,第二变换是DFT。
应理解,第一序列可以包括M个元素,第二序列可以包括M个元素,相应地,第三序列也包括M个元素,第四序列也包括M个元素。因此,第一变换为M×M的DFT;第二变换为M×M的DFT。
此外,还可以以下的方式进行映射。对于第一序列的映射,确定包括M个元素的所述第三序列,所述第三序列的M个元素为f0,f1,...,fM-1;将所述第三序列的M个元素f0,f1,...,fM-1扩充为长度为LM的序列x0,x1,...,xLM-1,其中,
Figure PCTCN2017083078-appb-000014
s为0,1,...,L-1中的一个值,i为变量,i的取值为0,1,...,LM-1;将所述第三序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波上。
LM×LM的DFT后的序列是LM个元素的序列,但是由于只有M个子载波上为非零元素,因此虽然将LM个元素的序列映射到LM个子载波上,实际上与前文的描述是一致的,是将第一序列的M个元素映射到M个子载波上,将第二序列的M个元素映射到另外M个子载波上本申请中不再赘述。其中s,t的取值决定了映射到哪一个由M个子载波组成的子载波组。
可选地,对于第一序列映射的另一种实施方式为:确定包括M个元素的所述第三序列,所述第三序列的M个元素为f0,f1,...,fM-1;将所述第三序列的M个元素f0,f1,...,fM-1扩充为长度为LM的序列x0,x1,...,xLM-1,其中,
Figure PCTCN2017083078-appb-000015
s为0,1,...,L-1中的一个值,i为变量,i的取值为0,1,...,LM-1;将所述第三序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波上。
对于第二序列的映射,确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1;将所述第四序列的M个元素g0,g1,...,gM-1扩充为长度为LM的序列h0,h1,...,hLM-1,其中,
Figure PCTCN2017083078-appb-000016
t为0,1,...,L-1中的一个值,并且t不等于s;将所述第四序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波。
可选地,对于第二序列映射的另一种实施方式为:确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1;将所述第四序列的M个元素g0,g1,...,gM-1扩充为长度为LM的序列h0,h1,...,hLM-1,其中,
Figure PCTCN2017083078-appb-000017
t为0,1,...,L-1中的一个值,并且t不等于s;将所述第四序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波。
LM×LM的DFT后的序列是LM个元素的序列,但是由于只有M个子载波上为非零元素,因此虽然将LM个元素的序列映射到LM个子载波上,实际上与前文的描述是一致的,是将第一序列的M个元素映射到M个子载波上,将第二序列的M个元素映射到另外M个子载波上本申请中不再赘述。其中s,t的取值决定了映射到哪一个由M个子载波组成的子载波组。
如图5所示,以上映射方式是将第三序列和第四序列分别进行LM×LM的DFT映射后分别映射到LM个子载波中的M个子载波上,一种变化的实现方式是,将第三序列的扩充序列和第四序列扩充序列相加得到和序列,对和序列进行LM×LM的DFT,得到的LM长的序列然后映射到LM个子载波上。LM个子载波中包括所述第一子载波组和第二子载波组。LM个子载波上的信号再经IFFT变换转化成时域的信号发送出去。和序列的元素{x(i)},i=0,1,2,…,LM-1,则映射到编号为i的子载波上,LM个子载波的编号按照频率高低(由高到低或者由低到高)的顺序0~LM-1。由于长度为M的序列的非零元素不同时为零的特征在扩充后仍适用于长度为LM的序列,即扩充不影响非零元素不同时为零的特征。从而IFFT之后的LM长时域序列仍然有较低的PAPR。
可选地,两路信号中一路为参考信号,另一路为数据信号时,还有一种映射方式如图6所示。将参考信号对应的第一序列映射到LM个子载波中第一子载波组的M个子载波上。确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1;将所述第四序列进行M×M的DFT得到所述第二序列,将所述第二序列映射到所述第二子载波组的子载波上。发送端对第四序列的K个非零元素进行K×K的DFT得到第二序列的基序列,从而得到第二序列,把第二序列映射到第二子载波组的M个子载波上。
除了讨论的两路信号及其分别对应的LM个子载波中第一子载波组和第二子载波组。在LM个子载波中还可以存在一个第三子载波组,用来发送另一路信号,对应于第三频域信号。发送端将第五序列映射到第三子载波组的子载波上,其中,第五序列为第六序列的傅里叶变换序列,第三子载波组的子载波与第一子载波组和第二子载波组所包括的子载波为相同的时域符号上的子载波,第六序列、第三序列和第四序列中的任意两个序列在相同位置上的元素不同时为非零元素,第三子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第三子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第三子载波组和所述第一子载波组、所述第二子载波组中没有相同的子载波,所述第六序列为至少有一个元素为非零元素的序列。
第三子载波组上的信号对应的第六序列,与第一子载波组和第二子载波组上的信号 对应的第三序列和第四序列也满足时分复用的特性。第三子载波组上的信号可以是数据信号也可以是参考信号。
上述各实施例中,以L(L≥2)个子载波组中的任意两个子载波组为例进行说明。其中第一子载波组对应L个子载波组中的一个子载波组,同理,第二子载波组对应L个子载波组中的另一个子载波组。每个子载波组上的信号对应频分复用的一路信号。L个子载波组上的信号对应了L路频域信号的复用。所述L路信号分别对应的时域序列满足在相同位置上的元素不同时为非零元素的特征。
本申请各实施例中的所述LM个子载波可以是整个带宽上全部子载波,还可以是整个带宽上的部分子载波。优选地,所述LM个子载波是频域上等间隔分布的LM个子载波。这样,所述时域符号中的剩余子载波还可以承载其他信号。即,所述LM上承载的信号还可以和其他信号通过频分复用的方式在所述相同时域符号上发送。
下面以几个具体的例子来说明本申请实施例的方法。
例子1
发送端确定待发送的两路信息,第一待发送信息和第二待发送信息。第一待发送信息对应的序列为(a1,a2);第二待发送信息对应的序列为(b3,b4)。对序列(a1,a2)插零得到序列(a1,0,a2,0);对序列(b3,b4)插零得到序列(0,b3,0,b4),其中,a1,a2,b3,b4为非零元素。序列(a1,0,a2,0)和序列(0,b3,0,b4)相同位置的元素不同时为非零元素。
可以对序列(a1,0,a2,0)进行DFT得到序列(X1,X2,X3,X4),对序列(0,b3,0,b4)进行DFT得到序列(Y1,Y2,Y3,Y4)。将序列(X1,X2,X3,X4)和序列(Y1,Y2,Y3,Y4)分别映射到两组子载波组上。两组子载波所包括的子载波为相同的时域符号上的子载波,两组子载波分别包括的子载波均为等间隔分布的子载波,上述间隔均为2。
或者,通过对序列(a1,a2)插零得到序列(a1,a2,0,0);对序列(b3,b4)插零得到序列(0,,0,b3,b4),其中,a1,a2,b3,b4为非零元素。序列(a1,a2,0,0)和序列(0,0,b3,b4)相同位置的元素不同时为非零元素。
可以对序列(a1,a2,0,0)进行DFT得到序列(X1’,X2’,X3’,X4’),对序列(0,0,b3,b4)进行DFT得到序列(Y1’,Y2’,Y3’,Y4’)。将序列(X1’,X2’,X3’,X4’)和序列(Y1’,Y2’,Y3’,Y4’)分别映射到两组子载波组上。
或者,可以对序列(a1,0,a2,0)进行扩充并相位旋转得到序列(a1,0,a2,0,a1,0,a2,0);对序列(0,b3,0,b4)进行扩充并相位旋转得到序列(0,b3,0,b4,0,-b3,0,-b4)。对序列(a1,0,a2,0,a1,0,a2,0)进行DFT得到序列(X1,0,X2,0,X3,0,X4,0);对序列(0,b3,0,b4,0,-b3,0,-b4)进行DFT得到序列(0,Y1,0,Y2,0,Y3,0,Y4),将序列(X1,0,X2,0,X3,0,X4,0)和序列(0,Y1,0,Y2,0,Y3,0,Y4)分别映射到连续的相同的8个子载波上。
或者,将序列(a1,0,a2,0,a1,0,a2,0)和序列(0,b3,0,b4,0,-b3,0,-b4)相加,得到序列(a1,b3,a2,b4,a1,-b3,a2,-b4)。对序列(a1,b3,a2,b4,a1,-b3,a2,-b4)进行DFT后可以得到序列(X1,Y1,X2,Y2,X3,Y3,X4,Y4),将序列(X1,Y1,X2,Y2,X3,Y3,X4,Y4)直接映射到连续的8个子载波上,也可以得到上述结果。
例子2
发送端确定待发送的三路信息,第一待发送信息、第二待发送信息和第三待发送信息。第一待发送信息对应的序列为(a1,a2);第二待发送信息对应的序列为(b3,b4);第三待发送信息对应的序列为(c5,c6)。对序列(a1,a2)插零得到序列(a1,0,0,a2,0,0),对序列(b3,b4)插零得到序列(0,b3,0,0,b4,0),对序列(c5,c6)插零得到序列(0,0,c5,0,0,c6)。序列(a1,0,0,a2,0,0)、序列(0,b3,0,0,b4,0)和序列(0,0,c5,0,0,c6)相同位置的元素不同时为非零元素。
对序列(a1,0,0,a2,0,0)进行DFT得到序列(X1,X2,X3,X4,X5,X6);对序列(0,b3,0,0,b4,0)进行DFT得到序列(Y1,Y2,Y3,Y4,Y5,Y6);对序列(0,0,c5,0,0,c6)进行DFT得到序列(Z1,Z2,Z3,Z4,Z5,Z6)。将序列(X1,X2,X3,X4,X5,X6)、序列(Y1,Y2,Y3,Y4,Y5,Y6)和序列(Z1,Z2,Z3,Z4,Z5,Z6)分别映射到三组子载波组上。三组子载波所包括的子载波为相同的时域符号上的子载波,三组子载波分别包括的子载波均为等间隔分布的子载波,上述间隔均为3。
或者,可以对序列(a1,0,0,a2,0,0)进行扩充并相位旋转得到序列(a1,0,0,a2,0,0,a1,0,0,a2,0,0,a1,0,0,a2,0,0);对序列(0,b3,0,0,b4,0)进行扩充并相位旋转得到序列
Figure PCTCN2017083078-appb-000018
Figure PCTCN2017083078-appb-000019
对序列(0,0,c5,0,0,c6)进行扩充并相位旋转得到序列
Figure PCTCN2017083078-appb-000020
Figure PCTCN2017083078-appb-000021
对序列(a1,0,0,a2,0,0,a1,0,0,a2,0,0,a1,0,0,a2,0,0)进行DFT得到序列(X1,0,0,X2,0,0,X3,0,0,X4,0,0,X5,0,0,X6,0,0);对序列
Figure PCTCN2017083078-appb-000022
Figure PCTCN2017083078-appb-000023
进行DFT得到序列(0,Y1,0,0,Y2,0,0,Y3,0,0,Y4,0,0,Y5,0,0,Y6,0);对序列
Figure PCTCN2017083078-appb-000024
Figure PCTCN2017083078-appb-000025
进行DFT得到序列(0,0,Z1,0,0,Z2,0,0,Z3,0,0,Z4,0,0,Z5,0,0,Z6)。将序列(X1,0,0,X2,0,0,X3,0,0,X4,0,0,X5,0,0,X6,0,0)、序列(0,Y1,0,0,Y2,0,0,Y3,0,0,Y4,0,0,Y5,0,0,Y6,0)和序列(0,0,Z1,0,0,Z2,0,0,Z3,0,0,Z4,0,0,Z5,0,0,Z6)分别映射到连续的相同的18个子载波上。
或者,将序列(a1,0,0,a2,0,0,a1,0,0,a2,0,0,a1,0,0,a2,0,0)、序列
Figure PCTCN2017083078-appb-000026
Figure PCTCN2017083078-appb-000027
和序列
Figure PCTCN2017083078-appb-000028
Figure PCTCN2017083078-appb-000029
相加,得到序列
Figure PCTCN2017083078-appb-000030
Figure PCTCN2017083078-appb-000031
对序列
Figure PCTCN2017083078-appb-000032
Figure PCTCN2017083078-appb-000033
Figure PCTCN2017083078-appb-000034
进行DFT后可以得到序列(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4,X5,Y5,Z5,X6,Y6,Z6),将序列(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4,X5,Y5,Z5,X6,Y6,Z6)直接映射到连续的18个子载波上,也可以得到上述结果。
应理解,将序列(a1,0,0,a2,0,0)、序列(0,b3,0,0,b4,0)和序列(0,0,c5,0,0,c6)在时域上重复的次数就是频域上每组子载波的间隔,或者称为梳齿的间隔。
还应理解,在本例子中,三个序列中相位旋转的系数
Figure PCTCN2017083078-appb-000035
中r的取值可以为0、1或2。
例子3
发送端确定待发送的第一待发送信息。第一待发送信息对应的序列为(a1,a2)。对序列(a1,a2)插零得到序列(a1,0,a2,0)。对序列(a1,0,a2,0)进行DFT得到序列(X1,X2,X3,X4)。发送端确定参考信号序列(ZC1,ZC2,ZC3,ZC4)。将序列(X1,X2,X3,X4)和序列(ZC1,ZC2,ZC3,ZC4)分别映射到两组子载波组上。两组子载波所包括的子载波为相同的时域符号上的子载波,两组子载波分别包括的子载波均为等间隔分布的子载波,上述间隔均为2。
对于接收端而言,接收端侧传输信号的方法包括:接收端从子载波上接收信号,其中,所述子载波为相同的时域符号上的子载波;
所述接收端对所述信号进行快速傅里叶变换FFT,得到第一序列对应的第一接收信号和第二序列对应的第二接收信号,所述第一序列承载在所述子载波的第一子载波组的子载波上,所述第二序列承载在所述子载波的第二子载波组的子载波上,所述第一子载波组和第二子载波组中没有相同的子载波,所述第一子载波组的子载波为子载波集合中等间隔分布的子载波,所述第一子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第二子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第二子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第一序列为第三序列的傅里叶变换序列,所述第二序列为第四序列的傅里叶变换序列,所述第三序列和所述第四序列相同位置上的元素不同时为非零元素,所述第三序列和所述第四序列均为至少有一个元素为非零元素的序列,所述子载波集合为频域上等间隔分布的LM个子载波,其中,L和M均为正整数;接收端对第一接收信号和第二接收信号进行信号处理。
与前文中的元素个数相对应地,接收端侧传输信号的方法具体可以包括:接收端从2M个子载波上接收信号,其中,所述2M个子载波为相同的时域符号上的子载波;所述接收端对所述信号进行快速傅里叶变换FFT,得到第一序列对应的第一接收信号和第二序列对应的第二接收信号,其中,所述第一序列承载在所述2M个子载波的第一子载波组的M个子载波上,所述第二序列承载在所述2M个子载波的第二子载波组的M个 子载波上,所述第一子载波组和第二子载波组中没有相同的子载波,所述第一子载波组的子载波为子载波集合中等间隔分布的子载波,所述第一子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第二子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第二子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第一序列为第三序列的傅里叶变换序列,所述第二序列为第四序列的傅里叶变换序列,所述第三序列和所述第四序列相同位置上的元素不同时为非零元素,所述第三序列和所述第四序列均为至少有一个元素为非零元素的序列,所述子载波集合为频域上等间隔分布的LM个子载波,其中,L和M均为正整数;所述接收端对所述第一接收信号和所述第二接收信号进行信号处理。
其中,第一序列、第二序列、第三序列和第四序列的特性与上文中描述的发送端的相应序列的特性一致,此处不再进行赘述。
本申请实施例中的信号处理,对于数据信号而言具体可以包括对序列进行均衡和IDFT等,对于参考信号而言具体可以包括对序列进行信道估计等,对于承载信息的序列而言包括对序列进行序列的相关等。相应地,接收端对第一接收信号和第二接收信号进行信号处理,可以包括:接收端对第一接收信号进行逆离散傅里叶变换IDFT,得到第三序列;和/或接收端对第二接收信号进行逆离散傅里叶变换IDFT,得到第四序列。
当第一接收信号或第二接收信号为数据信号时,例如为物理下行共享信道(Physical Downlink Shared Channel,PDSCH)时,信号处理进一步包括对数据信号进行均衡操作。
与发送端对应地,除了上文所描述的两路信号外,接收端还可以从第三子载波组的子载波上接收信号,所述第三子载波组的子载波与所述第一子载波组和第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第三子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第三子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第三子载波组和所述第一子载波组、所述第二子载波组中没有相同的子载波;所述接收端对所述第三子载波组承载的信号进行FFT得到第五序列对应的第三接收信号,所述第五序列为第六序列的傅里叶变换序列,所述第六序列、所述第三序列和所述第四序列中的任意两个序列在相同位置上的元素不同时为非零元素,所述第六序列为至少有一个元素为非零元素的序列;所述接收端对所述第三接收信号进行信号处理。
同上所述,当所述第三接收信号为数据信号时,例如为PDSCH时,信号处理进一步包括对数据信号进行均衡操作。
以上结合图1至图6对本申请实施例的传输信号的方法进行了详细描述,下面对本申请实施例的发送端和接收端分别进行描述。
图7示出了本申请实施例的发送端700,包括:
处理模块710,用于将第一序列映射到第一子载波组的子载波上,将第二序列映射到第二子载波组的子载波上,所述第一子载波组和所述第二子载波组中没有相同的子载波,所述第一子载波组和所述第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第一子载波组的子载波为子载波集合中等间隔分布的子载波,所述第一子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第二子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第二子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第一序列为第三序列的傅里叶变换序 列,所述第二序列为第四序列的傅里叶变换序列,所述第三序列和所述第四序列相同位置上的元素不同时为非零元素,所述第三序列和所述第四序列均为至少有一个元素为非零元素的序列,所述子载波集合为频域上等间隔分布的LM个子载波,其中,L和M均为正整数;
处理模块710还用于根据所述第一子载波组和所述第二子载波组上的元素生成发送信号;
发送模块720用于发送该处理模块710生成的该发送信号。
本申请实施例的发送端,构造在时域上相同位置上的元素不同时为非零元素的两个序列,并且将两个序列映射到不同的两个子载波组上,使得在一个符号内发射至少两路信号时,既能保证PAPR较低,又能保证两路信号经过信道后互相干扰较小。
可选地,作为一个实施例,该所述第一序列包括M个元素a0,a1,...,aM-1,所述第一序列是由长度为K的基序列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
Figure PCTCN2017083078-appb-000036
u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1,其中,p和K均为正整数。
可选地,作为一个实施例,所述第二序列包括M个元素b0,b1,...,bM-1,所述第二序列是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
Figure PCTCN2017083078-appb-000037
v为0,1,...,p-1中的一个值,并且v不等于u。
可选地,在另一种实施方式中,第一序列包括M个元素a0,a1,...,aM-1,第一序列是由长度为K的基序列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
Figure PCTCN2017083078-appb-000038
u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1。
第二序列包括M个元素b0,b1,...,bM-1,第二序列是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
Figure PCTCN2017083078-appb-000039
v为0,1,...,p-1中的一个值,并且v不等于u。
可选地,作为一个实施例,该基序列为ZC序列、ZC序列的循环扩充序列、ZC序列的截断序列或符合第三代合作伙伴计划3GPP的长期演进LTE系统的标准的参考信号序列。
可选地,作为一个实施例,在该处理模块710将第一序列映射到第一子载波组的子载波上之前,该处理模块710还用于:对所述第三序列进行第一变换得到所述第一序列,其中,所述第一变换为离散傅里叶变换DFT;和/或在该处理模块710将第二序列映射到 第二子载波组的子载波上之前,该处理模块710还用于:对所述第四序列进行第二变换得到所述第二序列,其中,所述第二变换是DFT。
可选地,作为一个实施例,该处理模块710具体用于:确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1;将所述第四序列进行M×M的DFT得到所述第二序列,将所述第二序列映射到所述第二子载波组的子载波上。
可选地,作为一个实施例,该处理模块710具体用于:确定包括M个元素的所述第三序列,所述第三序列的M个元素为f0,f1,...,fM-1;将所述第三序列的M个元素f0,f1,...,fM-1扩充为长度为LM的序列x0,x1,...,xLM-1,其中,
Figure PCTCN2017083078-appb-000040
s为0,1,...,L-1中的一个值,i为变量,i的取值为0,1,...,LM-1;将所述第三序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波上。
可选地,对于第一序列映射的另一种实施方式为:确定包括M个元素的所述第三序列,所述第三序列的M个元素为f0,f1,...,fM-1;将所述第三序列的M个元素f0,f1,...,fM-1扩充为长度为LM的序列x0,x1,...,xLM-1,其中,
Figure PCTCN2017083078-appb-000041
s为0,1,...,L-1中的一个值,i为变量,i的取值为0,1,...,LM-1;将所述第三序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波上。
可选地,作为一个实施例,该处理模块710具体用于:确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1;将所述第四序列的M个元素g0,g1,...,gM-1扩充为长度为LM的序列h0,h1,...,hLM-1,其中,
Figure PCTCN2017083078-appb-000042
t为0,1,...,L-1中的一个值,并且t不等于s;将所述第四序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波。
可选地,对于第二序列映射的另一种实施方式为:确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1;将所述第四序列的M个元素g0,g1,...,gM-1扩充为长度为LM的序列h0,h1,...,hLM-1,其中,
Figure PCTCN2017083078-appb-000043
t为0,1,...,L-1中的一个值,并且t不等于s;将所述第四序列进行LM×LM的DFT,映射到LM个子载波的第一子载波组中的M个子载波。
可选地,作为一个实施例,该第三序列为该第一序列进行逆离散傅里叶变换IDFT 得到的序列;该第四序列为该第二序列进行IDFT变换得到的序列。
可选地,作为一个实施例,该处理模块710还用于:将第五序列映射到第三子载波组的子载波上,其中,所述第五序列为第六序列的傅里叶变换序列,所述第三子载波组的子载波与所述第一子载波组和第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第六序列、所述第三序列和所述第四序列中的任意两个序列在相同位置上的元素不同时为非零元素,所述第三子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第三子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第三子载波组和所述第一子载波组、所述第二子载波组中没有相同的子载波,所述第六序列为至少有一个元素为非零元素的序列。
可选地,作为一个实施例,该第三序列的非零元素为等间隔分布的;和/或该第四序列的非零元素为等间隔分布的。
应注意,本申请实施例中,处理模块710可以由处理器实现,发送模块720可以由收发器实现。如图8所示,发送端800可以包括处理器810、收发器820和存储器830。其中,存储器830可以用于存储处理器810执行的代码等。
发送端800中的各个组件通过总线系统840耦合在一起,其中总线系统840除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图7所示的发送端700或图8所示的发送端800能够实现前述图1至图6的实施例中所实现的各个过程,为避免重复,这里不再赘述。
应注意,本申请上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机 存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图9示出了本申请实施例的接收端900,包括:
接收模块910,用于从子载波上接收信号,其中,所述子载波为相同的时域符号上的子载波;
处理模块920,用于对该接收模块910接收的该信号用于对所述接收模块接收的所述信号进行快速傅里叶变换FFT,得到第一序列对应的第一接收信号和第二序列对应的第二接收信号,所述第一序列承载在所述子载波的第一子载波组的子载波上,所述第二序列承载在所述子载波的第二子载波组的子载波上,所述第一子载波组和第二子载波组中没有相同的子载波,所述第一子载波组的子载波为子载波集合中等间隔分布的子载波,所述第一子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第二子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第二子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第一序列为第三序列的傅里叶变换序列,所述第二序列为第四序列的傅里叶变换序列,所述第三序列和所述第四序列相同位置上的元素不同时为非零元素,所述第三序列和所述第四序列均为至少有一个元素为非零元素的序列,所述子载波集合为频域上等间隔分布的LM个子载波,其中,L和M均为正整数;
该处理模块920还用于对该第一接收信号和该第二接收信号进行信号处理。
本申请实施例的接收端,在一个符号内接收的两路信号对应的两路序列在时域上相同位置上的元素不同时为非零元素,并且将两个序列映射到不同的两个子载波组上,使得在一个符号内接收的两路信号,既能保证PAPR较低,又能保证其互相干扰较小。
可选地,作为一个实施例,所述第一序列包括M个元素a0,a1,...,aM-1,所述第一序列是由长度为K的基序列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
Figure PCTCN2017083078-appb-000044
u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1,其中,p和K均为正整数。
可选地,作为一个实施例,所述第二序列包括M个元素b0,b1,...,bM-1,所述第二序列是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
Figure PCTCN2017083078-appb-000045
v为0,1,...,p-1中的一个值,并且v不等于u。
可选地,在另一种实施方式中,第一序列包括M个元素a0,a1,...,aM-1,第一序列是由长度为K的基序列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
Figure PCTCN2017083078-appb-000046
u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1。
第二序列包括M个元素b0,b1,...,bM-1,第二序列是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
Figure PCTCN2017083078-appb-000047
v为0,1,...,p-1中的一个值,并且v不等于u。
可选地,作为一个实施例,该基序列为ZC序列、ZC序列的循环扩充序列、ZC序列的截断序列或符合第三代合作伙伴计划3GPP的长期演进LTE系统的标准的参考信号序列。
可选地,作为一个实施例,该第三序列为该第一序列进行逆离散傅里叶变换IDFT得到的序列;该第四序列为该第二序列进行IDFT变换得到的序列。
可选地,作为一个实施例,该接收模块910还用于:从第三子载波组的子载波上接收信号,所述第三子载波组的子载波与所述第一子载波组和第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第三子载波组的子载波为子载波集合中等间隔分布的子载波,所述第三子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第三子载波组和所述第一子载波组、所述第二子载波组中没有相同的子载波;
该处理模块920还用于对所述第三子载波组承载的信号进行FFT得到第五序列对应的第三接收信号,所述第五序列为第六序列的傅里叶变换序列,所述第六序列、所述第三序列和所述第四序列中的任意两个序列在相同位置上的元素不同时为非零元素,所述第六序列为至少有一个元素为非零元素的序列;
该处理模块920还用于对该第三接收信号进行信号处理。
可选地,作为一个实施例,该处理模块920具体用于:
对该第一接收信号进行逆离散傅里叶变换IDFT,得到该第三序列;和/或
对该第二接收信号进行逆离散傅里叶变换IDFT,得到该第四序列。
可选地,作为一个实施例,该第三序列的非零元素为等间隔分布的;
和/或
该第四序列的非零元素为等间隔分布的。
应注意,本申请实施例中,接收模块910可以由收发器实现,处理模块920可以由处理器实现。如图10所示,接收端1000可以包括处理器1010、收发器1020和存储器1030。其中,存储器1030可以用于存储处理器1010执行的代码等。
接收端1000中的各个组件通过总线系统1040耦合在一起,其中总线系统1040除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以 通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (38)

  1. 一种传输信号的方法,其特征在于,包括:
    发送端将第一序列映射到第一子载波组的子载波上,所述发送端将第二序列映射到第二子载波组的子载波上,所述第一子载波组和所述第二子载波组中没有相同的子载波,所述第一子载波组和所述第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第一子载波组的子载波为子载波集合中等间隔分布的子载波,所述第一子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第二子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第二子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第一序列为第三序列的傅里叶变换序列,所述第二序列为第四序列的傅里叶变换序列,所述第三序列和所述第四序列相同位置上的元素不同时为非零元素,所述第三序列和所述第四序列均为至少有一个元素为非零元素的序列,所述子载波集合为频域上等间隔分布的LM个子载波,其中,L和M均为正整数;
    所述发送端根据所述第一子载波组和所述第二子载波组上的元素生成发送信号;
    所述发送端发送所述发送信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一序列包括M个元素a0,a1,...,aM-1,所述第一序列是由长度为K的基序列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
    Figure PCTCN2017083078-appb-100001
    u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1,其中,p和K均为正整数。
  3. 根据权利要求2所述的方法,其特征在于,所述第二序列包括M个元素b0,b1,...,bM-1,所述第二序列是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
    Figure PCTCN2017083078-appb-100002
    v为0,1,...,p-1中的一个值,并且v不等于u。
  4. 根据权利要求2或3所述的方法,其特征在于,所述基序列为ZC序列、ZC序列的循环扩充序列、ZC序列的截断序列或符合第三代合作伙伴计划3GPP的长期演进LTE系统的标准的参考信号序列。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,在所述将第一序列映射到第一子载波组的子载波上之前,所述方法还包括:所述发送端对所述第三序列进行第一变换得到所述第一序列,其中,所述第一变换为离散傅里叶变换DFT;和/或
    在所述将第二序列映射到第二子载波组的子载波上之前,所述方法还包括:所述发送端对所述第四序列进行第二变换得到所述第二序列,其中,所述第二变换是DFT。
  6. 根据权利要求1所述的方法,其特征在于,所述将第二序列映射到第二子载波组的子载波上,包括:
    确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1
    将所述第四序列进行M×M的DFT得到所述第二序列,将所述第二序列映射到所 述第二子载波组的子载波上。
  7. 根据权利要求1所述的方法,其特征在于,所述将第一序列映射到第一子载波组的子载波上,包括:
    确定包括M个元素的所述第三序列,所述第三序列的M个元素为f0,f1,...,fM-1
    将所述第三序列的M个元素f0,f1,...,fM-1扩充为长度为LM的序列x0,x1,...,xLM-1,其中,
    Figure PCTCN2017083078-appb-100003
    s为0,1,...,L-1中的一个值,i为变量,i的取值为0,1,...,LM-1;
    将所述第三序列进行LM×LM的DFT,映射到所述LM个子载波的第一子载波组中的M个子载波上。
  8. 根据权利要求7所述的方法,其特征在于,所述将第二序列映射到第二子载波组的子载波上,包括:
    确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1
    将所述第四序列的M个元素g0,g1,...,gM-1扩充为长度为LM的序列h0,h1,...,hLM-1,其中,
    Figure PCTCN2017083078-appb-100004
    t为0,1,...,L-1中的一个值,并且t不等于s;
    将所述第四序列进行LM×LM的DFT,映射到所述LM个子载波的第一子载波组中的M个子载波。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第三序列为所述第一序列进行逆离散傅里叶变换IDFT得到的序列;所述第四序列为所述第二序列进行IDFT变换得到的序列。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述发送端将第五序列映射到第三子载波组的子载波上,其中,所述第五序列为第六序列的傅里叶变换序列,所述第三子载波组的子载波与所述第一子载波组和第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第六序列、所述第三序列和所述第四序列中的任意两个序列在相同位置上的元素不同时为非零元素,所述第三子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第三子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第三子载波组和所述第一子载波组、所述第二子载波组中没有相同的子载波,所述第六序列为至少有一个元素为非零元素的序列。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第三序列的非零元素为等间隔分布的;
    和/或
    所述第四序列的非零元素为等间隔分布的。
  12. 一种传输信号的方法,其特征在于,包括:
    接收端从子载波上接收信号,其中,所述子载波为相同的时域符号上的子载波;
    所述接收端对所述信号进行快速傅里叶变换FFT,得到第一序列对应的第一接收信号和第二序列对应的第二接收信号,所述第一序列承载在所述子载波的第一子载波组的子载波上,所述第二序列承载在所述子载波的第二子载波组的子载波上,所述第一子载波组和第二子载波组中没有相同的子载波,所述第一子载波组的子载波为子载波集合中等间隔分布的子载波,所述第一子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第二子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第二子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第一序列为第三序列的傅里叶变换序列,所述第二序列为第四序列的傅里叶变换序列,所述第三序列和所述第四序列相同位置上的元素不同时为非零元素,所述第三序列和所述第四序列均为至少有一个元素为非零元素的序列,所述子载波集合为频域上等间隔分布的LM个子载波,其中,L和M均为正整数;
    所述接收端对所述第一接收信号和所述第二接收信号进行信号处理。
  13. 根据权利要求12所述的方法,其特征在于,所述第一序列包括M个元素a0,a1,...,aM-1,所述第一序列是由长度为K的基序列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
    Figure PCTCN2017083078-appb-100005
    u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1,其中,p和K均为正整数。
  14. 根据权利要求13所述的方法,其特征在于,所述第二序列包括M个元素b0,b1,...,bM-1,所述第二序列是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
    Figure PCTCN2017083078-appb-100006
    v为0,1,...,p-1中的一个值,并且v不等于u。
  15. 根据权利要求13或14所述的方法,其特征在于,所述基序列为ZC序列、ZC序列的循环扩充序列、ZC序列的截断序列或符合第三代合作伙伴计划3GPP的长期演进LTE系统的标准的参考信号序列。
  16. 根据权利要求12至15中任一项所述的方法,其特征在于,所述第三序列为所述第一序列进行逆离散傅里叶变换IDFT得到的序列;所述第四序列为所述第二序列进行IDFT变换得到的序列。
  17. 根据权利要求12至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述接收端从第三子载波组的子载波上接收信号,所述第三子载波组的子载波与所述第一子载波组和第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第三子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第三子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第三子载波组和所述第一子载波组、所述第二子载波组中没有相同的子载波;
    所述接收端对所述第三子载波组承载的信号进行FFT得到第五序列对应的第三接收信号,所述第五序列为第六序列的傅里叶变换序列,所述第六序列、所述第三序列和 所述第四序列中的任意两个序列在相同位置上的元素不同时为非零元素,所述第六序列为至少有一个元素为非零元素的序列;
    所述接收端对所述第三接收信号进行信号处理。
  18. 根据权利要求12至17中任一项所述的方法,其特征在于,所述接收端对所述第一接收信号和所述第二接收信号进行信号处理,包括:
    所述接收端对所述第一接收信号进行逆离散傅里叶变换IDFT,得到所述第三序列;和/或
    所述接收端对所述第二接收信号进行逆离散傅里叶变换IDFT,得到所述第四序列。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述第三序列的非零元素为等间隔分布的;
    和/或
    所述第四序列的非零元素为等间隔分布的。
  20. 一种发送端,其特征在于,包括:
    处理模块,用于将第一序列映射到第一子载波组的子载波上,将第二序列映射到第二子载波组的子载波上,所述第一子载波组和所述第二子载波组中没有相同的子载波,所述第一子载波组和所述第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第一子载波组的子载波为子载波集合中等间隔分布的子载波,所述第一子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第二子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第二子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第一序列为第三序列的傅里叶变换序列,所述第二序列为第四序列的傅里叶变换序列,所述第三序列和所述第四序列相同位置上的元素不同时为非零元素,所述第三序列和所述第四序列均为至少有一个元素为非零元素的序列,所述子载波集合为频域上等间隔分布的LM个子载波,其中,L和M均为正整数;
    所述处理模块还用于根据所述第一子载波组和所述第二子载波组上的元素生成发送信号;
    发送模块,用于发送所述处理模块生成的所述发送信号。
  21. 根据权利要求20所述的发送端,其特征在于,所述第一序列包括M个元素a0,a1,...,aM-1,所述第一序列是由长度为K的基序列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
    Figure PCTCN2017083078-appb-100007
    u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1,其中,p和K均为正整数。
  22. 根据权利要求21所述的发送端,其特征在于,所述第二序列包括M个元素b0,b1,...,bM-1,所述第二序列是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
    Figure PCTCN2017083078-appb-100008
    v为0,1,...,p-1中的一个值,并且v不等于u。
  23. 根据权利要求21或22所述的发送端,其特征在于,所述基序列为ZC序列、 ZC序列的循环扩充序列、ZC序列的截断序列或符合第三代合作伙伴计划3GPP的长期演进LTE系统的标准的参考信号序列。
  24. 根据权利要求20至23中任一项所述的发送端,其特征在于,在所述处理模块将第一序列映射到第一子载波组的子载波上之前,所述处理模块还用于:对所述第三序列进行第一变换得到所述第一序列,其中,所述第一变换为离散傅里叶变换DFT;和/或
    在所述处理模块将第二序列映射到第二子载波组的子载波上之前,所述处理模块还用于:对所述第四序列进行第二变换得到所述第二序列,其中,所述第二变换是DFT。
  25. 根据权利要求20所述的发送端,其特征在于,所述处理模块具体用于:
    确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1
    将所述第四序列进行M×M的DFT得到所述第二序列,将所述第二序列映射到所述第二子载波组的子载波上。
  26. 根据权利要求20所述的发送端,其特征在于,所述处理模块具体用于:
    确定包括M个元素的所述第三序列,所述第三序列的M个元素为f0,f1,...,fM-1
    将所述第三序列的M个元素f0,f1,...,fM-1扩充为长度为LM的序列x0,x1,...,xLM-1,其中,
    Figure PCTCN2017083078-appb-100009
    s为0,1,...,L-1中的一个值,i为变量,i的取值为0,1,...,LM-1;
    将所述第三序列进行LM×LM的DFT,映射到所述LM个子载波的第一子载波组中的M个子载波上。
  27. 根据权利要求26所述的发送端,其特征在于,所述处理模块具体用于:
    确定包括M个元素的所述第四序列,所述第四序列的M个元素为g0,g1,...,gM-1
    将所述第四序列的M个元素g0,g1,...,gM-1扩充为长度为LM的序列h0,h1,...,hLM-1,其中,
    Figure PCTCN2017083078-appb-100010
    t为0,1,...,L-1中的一个值,并且t不等于s;
    将所述第四序列进行LM×LM的DFT,映射到所述LM个子载波的第一子载波组中的M个子载波。
  28. 根据权利要求20至27中任一项所述的发送端,其特征在于,所述第三序列为所述第一序列进行逆离散傅里叶变换IDFT得到的序列;所述第四序列为所述第二序列进行IDFT变换得到的序列。
  29. 根据权利要求20至28中任一项所述的发送端,其特征在于,所述处理模块还用于:
    将第五序列映射到第三子载波组的子载波上,其中,所述第五序列为第六序列的傅 里叶变换序列,所述第三子载波组的子载波与所述第一子载波组和第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第六序列、所述第三序列和所述第四序列中的任意两个序列在相同位置上的元素不同时为非零元素,所述第三子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第三子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第三子载波组和所述第一子载波组、所述第二子载波组中没有相同的子载波,所述第六序列为至少有一个元素为非零元素的序列。
  30. 根据权利要求20至29中任一项所述的发送端,其特征在于,所述第三序列的非零元素为等间隔分布的;
    和/或
    所述第四序列的非零元素为等间隔分布的。
  31. 一种接收端,其特征在于,包括:
    接收模块,用于从子载波上接收信号,其中,所述子载波为相同的时域符号上的子载波;
    处理模块,用于对所述接收模块接收的所述信号进行快速傅里叶变换FFT,得到第一序列对应的第一接收信号和第二序列对应的第二接收信号,所述第一序列承载在所述子载波的第一子载波组的子载波上,所述第二序列承载在所述子载波的第二子载波组的子载波上,所述第一子载波组和第二子载波组中没有相同的子载波,所述第一子载波组的子载波为子载波集合中等间隔分布的子载波,所述第一子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第二子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第二子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第一序列为第三序列的傅里叶变换序列,所述第二序列为第四序列的傅里叶变换序列,所述第三序列和所述第四序列相同位置上的元素不同时为非零元素,所述第三序列和所述第四序列均为至少有一个元素为非零元素的序列,所述子载波集合为频域上等间隔分布的LM个子载波,其中,L和M均为正整数;
    所述处理模块还用于对所述第一接收信号和所述第二接收信号进行信号处理。
  32. 根据权利要求31所述的接收端,其特征在于,所述第一序列包括M个元素a0,a1,...,aM-1,所述第一序列是由长度为K的基序列c0,c1,...,cK-1扩充得到的,其中,M=p×K,
    Figure PCTCN2017083078-appb-100011
    u为0,1,...,p-1中的一个值,i为变量,i的取值为0,1,...,M-1,其中,p和K均为正整数。
  33. 根据权利要求32所述的接收端,其特征在于,所述第二序列包括M个元素b0,b1,...,bM-1,所述第二序列是由长度为K的基序列d0,d1,...,dK-1扩充得到的,其中,
    Figure PCTCN2017083078-appb-100012
    v为0,1,...,p-1中的一个值,并且v不等于u。
  34. 根据权利要求32或33所述的接收端,其特征在于,所述基序列为ZC序列、ZC序列的循环扩充序列、ZC序列的截断序列或符合第三代合作伙伴计划3GPP的长期演进LTE系统的标准的参考信号序列。
  35. 根据权利要求31至34中任一项所述的接收端,其特征在于,所述第三序列为所述第一序列进行逆离散傅里叶变换IDFT得到的序列;所述第四序列为所述第二序列进行IDFT变换得到的序列。
  36. 根据权利要求31至35中任一项所述的接收端,其特征在于,所述接收模块还用于:从第三子载波组的子载波上接收信号,所述第三子载波组的子载波与所述第一子载波组和第二子载波组所包括的子载波为相同的时域符号上的子载波,所述第三子载波组的子载波为所述子载波集合中等间隔分布的子载波,所述第三子载波组中相邻的两个子载波间隔有所述子载波集合中的L-1个子载波,所述第三子载波组和所述第一子载波组、所述第二子载波组中没有相同的子载波;
    所述处理模块还用于对所述第三子载波组承载的信号进行FFT得到第五序列对应的第三接收信号,所述第五序列为第六序列的傅里叶变换序列,所述第六序列、所述第三序列和所述第四序列中的任意两个序列在相同位置上的元素不同时为非零元素,所述第六序列为至少有一个元素为非零元素的序列;
    所述处理模块还用于对所述第三接收信号进行信号处理。
  37. 根据权利要求31至36中任一项所述的接收端,其特征在于,所述处理模块具体用于:
    对所述第一接收信号进行逆离散傅里叶变换IDFT,得到所述第三序列;和/或
    对所述第二接收信号进行逆离散傅里叶变换IDFT,得到所述第四序列。
  38. 根据权利要求31至37中任一项所述的接收端,其特征在于,所述第三序列的非零元素为等间隔分布的;
    和/或
    所述第四序列的非零元素为等间隔分布的。
PCT/CN2017/083078 2016-05-11 2017-05-04 传输信号的方法、发送端和接收端 WO2017193867A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17795485.6A EP3445012B1 (en) 2016-05-11 2017-05-04 Signal transmission method, sending end and receiving end
US16/186,446 US10812305B2 (en) 2016-05-11 2018-11-09 Signal transmission method, transmit end, and receive end

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610311497.8 2016-05-11
CN201610311497.8A CN107370701B (zh) 2016-05-11 2016-05-11 传输信号的方法、发送端和接收端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/186,446 Continuation US10812305B2 (en) 2016-05-11 2018-11-09 Signal transmission method, transmit end, and receive end

Publications (1)

Publication Number Publication Date
WO2017193867A1 true WO2017193867A1 (zh) 2017-11-16

Family

ID=60266303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083078 WO2017193867A1 (zh) 2016-05-11 2017-05-04 传输信号的方法、发送端和接收端

Country Status (4)

Country Link
US (1) US10812305B2 (zh)
EP (1) EP3445012B1 (zh)
CN (1) CN107370701B (zh)
WO (1) WO2017193867A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020118536A1 (zh) * 2018-12-11 2020-06-18 华为技术有限公司 一种通信方法及装置
EP3716558A4 (en) * 2017-12-30 2021-01-20 Huawei Technologies Co., Ltd. DATA TRANSMISSION PROCESS AND DEVICE

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282439B (zh) * 2017-01-06 2020-08-14 华为技术有限公司 一种信号发送、接收方法及装置
US10439779B2 (en) 2017-11-26 2019-10-08 Huawei Technologies Co., Ltd. Sequence determining method and apparatus
CN109842478A (zh) * 2017-11-26 2019-06-04 华为技术有限公司 一种序列确定方法和装置
CN110677226B (zh) * 2018-07-03 2022-05-10 中国移动通信有限公司研究院 参考信号发送、接收方法及通信设备
KR102641188B1 (ko) * 2018-12-05 2024-02-27 지티이 코포레이션 이산 스펙트럼을 사용하기 위한 기술들
US11184952B2 (en) * 2019-04-02 2021-11-23 Intel Corporation Length-six computer generated sequences (CGS) for uplink low peak-to-average power ratio (PAPR) demodulation reference signals (DMRS)
EP4099654A4 (en) * 2020-02-25 2023-01-11 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
CN114448580A (zh) * 2020-10-31 2022-05-06 华为技术有限公司 一种通信方法及装置
CN115250220B (zh) * 2021-04-26 2024-06-18 华为技术有限公司 无线局域网中的通信方法及相关装置
US11606240B1 (en) 2021-09-30 2023-03-14 Silicon Laboratories Inc. Using preamble portion having irregular carrier spacing for frequency synchronization
CN117081896A (zh) * 2022-05-09 2023-11-17 中兴通讯股份有限公司 通信方法、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723647A (zh) * 2002-10-26 2006-01-18 韩国电子通信研究院 利用comb模式码元的跳频正交频分多址方法
US20090238306A1 (en) * 2008-03-24 2009-09-24 Fujitsu Limited Phase tracking circuit and radio receiver using the same
CN104717171A (zh) * 2015-03-04 2015-06-17 东南大学 多色可见光dco-ofdm通信系统的前导设计和信道估计方法
CN105101257A (zh) * 2014-05-22 2015-11-25 华为技术有限公司 测量参考信号传输的方法、用户设备及演进基站

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042857B2 (en) * 2002-10-29 2006-05-09 Qualcom, Incorporated Uplink pilot and signaling transmission in wireless communication systems
JP4546342B2 (ja) * 2005-07-07 2010-09-15 パナソニック株式会社 送信装置および送信方法
US8363739B2 (en) * 2005-09-30 2013-01-29 Apple Inc. Pilot scheme for a MIMO communication system
JP4736934B2 (ja) * 2006-04-28 2011-07-27 日本電気株式会社 無線通信システム、パイロット系列割り当て装置及びそれらに用いるパイロット系列割り当て方法
CA2680856C (en) * 2007-06-19 2015-11-17 Panasonic Corporation Channel arrangement method and radio communication base station device
US7986738B2 (en) * 2007-10-19 2011-07-26 Redpine Signals, Inc Peak to average power ratio reduction apparatus and method for a wireless OFDM transmitter
WO2009143860A1 (en) * 2008-05-28 2009-12-03 Nokia Siemens Networks Oy Method and apparatus for providing pilot signals in ofdm frames
KR101513044B1 (ko) * 2008-08-05 2015-04-17 엘지전자 주식회사 Papr을 줄이기 위한 무선 접속 방식
KR101581956B1 (ko) * 2008-10-22 2016-01-04 엘지전자 주식회사 무선통신 시스템에서 신호 전송 방법 및 장치
KR101549004B1 (ko) * 2008-12-31 2015-09-11 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 모드 결정 기법
TWI396416B (zh) * 2008-11-20 2013-05-11 Univ Nat Sun Yat Sen 可降低峰值對平均功率比值之方法及其裝置
US9137076B2 (en) * 2009-10-30 2015-09-15 Qualcomm Incorporated Method and apparatus for mutiplexing reference signal and data in a wireless communication system
WO2011060509A1 (en) * 2009-11-23 2011-05-26 National Ict Australia Limited Improved orthogonal frequency division multiplexing (ofdm)
CN101783781B (zh) * 2010-02-05 2012-05-23 华中科技大学 一种降低ofdm系统信号峰均功率比的信息传输方法
CN102035785B (zh) * 2010-11-12 2013-04-03 清华大学 一种用于宽带无线通信系统的频分双工传输方法
CN102025681B (zh) * 2010-12-21 2013-08-28 东南大学 Ofdm系统降峰均比技术中slm和pts的边带信息传输方法
CN103227768B (zh) * 2013-04-28 2016-07-06 南京邮电大学 一种新的ici自消除方法在ofdm调制中的应用
US9924510B2 (en) * 2014-12-03 2018-03-20 Intel IP Corporation Wireless device, method, and computer readable media for orthogonal frequency division multiple access (OFDMA) allocations based on a basic tone resource unit or entire sub-channel
WO2016090529A1 (zh) * 2014-12-08 2016-06-16 华为技术有限公司 发送导频的方法、站点及接入站
EP3267723B1 (en) * 2015-03-11 2021-06-30 Huawei Technologies Co., Ltd. Ofdma transmission method and station
US10439853B2 (en) * 2015-04-16 2019-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Time domain in continuous DFT-S-OFDM for sidelobes reduction
US9544173B1 (en) * 2015-09-15 2017-01-10 Nokia Solutions And Networks Oy Iterative normalization technique for reference sequence generation for zero-tail discrete fourier transform spread orthogonal frequency division multiplexing
US9967122B2 (en) * 2016-01-19 2018-05-08 Qualcomm Incorporated Techniques for extending an OFDM waveform for multiplexing
US10439663B2 (en) * 2016-04-06 2019-10-08 Qualcomm Incorporated Methods and apparatus for phase noise estimation in data symbols for millimeter wave communications
US10367672B2 (en) * 2016-09-28 2019-07-30 Qualcomm Incorporated Enhancements to phase-noise compensation reference signal design and scrambling
US10404511B2 (en) * 2016-11-23 2019-09-03 Qualcomm Incorporated Space-time block coding schemes for DFT-s-OFDM
CN110024343B (zh) * 2016-11-30 2022-01-21 瑞典爱立信有限公司 在多载波系统中发送和接收参考信号的方法及其设备
WO2018100591A1 (en) * 2016-12-02 2018-06-07 Wisig Networks Private Limited A method and a system for transmitting dft-s-ofdm symbols
US10123358B2 (en) * 2016-12-22 2018-11-06 Qualcomm Incorporated Priority management for new radio-spectrum sharing (NR-SS)
US11153886B2 (en) * 2017-01-13 2021-10-19 Huawei Technologies Co., Ltd. System and method on transmission adaptation for uplink grant-free transmission
WO2018155605A1 (ja) * 2017-02-24 2018-08-30 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10454659B2 (en) * 2017-02-28 2019-10-22 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
CN115277337A (zh) * 2017-03-03 2022-11-01 苹果公司 用于同步信号的传输的方法、基站及介质
CN108632189B (zh) * 2017-03-22 2021-01-08 展讯通信(上海)有限公司 上行数据的发送方法、装置及用户设备
WO2018175766A1 (en) * 2017-03-22 2018-09-27 Idac Holdings, Inc. Transmit diversity for uplink control channel using discrete fourier transform spread orthogonal frequency division multiplexing (dft-s-ofdm) waveforms
US10419188B2 (en) * 2017-03-24 2019-09-17 Qualcomm Incorporated Virtual time-domain multiplexing for reference signals and data with modified cyclic prefix
CN108668367B (zh) * 2017-04-01 2020-06-02 华为技术有限公司 一种数据传输方法、网络设备和终端
US10700907B2 (en) * 2017-07-12 2020-06-30 Qualcomm Incorporated Waveform for millimeter wave new radio
US11540257B2 (en) * 2018-03-23 2022-12-27 Qualcomm Incorporated Uplink control information transmission on autonomous uplink in new radio-unlicensed (NR-U)
US11044057B2 (en) * 2018-07-06 2021-06-22 Qualcomm Incorporated Resource unit spreading

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723647A (zh) * 2002-10-26 2006-01-18 韩国电子通信研究院 利用comb模式码元的跳频正交频分多址方法
US20090238306A1 (en) * 2008-03-24 2009-09-24 Fujitsu Limited Phase tracking circuit and radio receiver using the same
CN105101257A (zh) * 2014-05-22 2015-11-25 华为技术有限公司 测量参考信号传输的方法、用户设备及演进基站
CN104717171A (zh) * 2015-03-04 2015-06-17 东南大学 多色可见光dco-ofdm通信系统的前导设计和信道估计方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3716558A4 (en) * 2017-12-30 2021-01-20 Huawei Technologies Co., Ltd. DATA TRANSMISSION PROCESS AND DEVICE
US11025467B2 (en) 2017-12-30 2021-06-01 Huawei Technologies Co., Ltd. Data sending method and apparatus
WO2020118536A1 (zh) * 2018-12-11 2020-06-18 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN107370701A (zh) 2017-11-21
EP3445012B1 (en) 2023-10-04
EP3445012A4 (en) 2019-03-20
US20190081838A1 (en) 2019-03-14
EP3445012A1 (en) 2019-02-20
US10812305B2 (en) 2020-10-20
CN107370701B (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2017193867A1 (zh) 传输信号的方法、发送端和接收端
US10312990B2 (en) Signal sending or receiving method and device
CN109076048B (zh) 传输信号的方法、发送端和接收端
JP2019531000A (ja) 情報伝送方法と情報伝送装置
WO2018170842A1 (zh) 传输上行解调参考信号的方法和设备
CN111431686B (zh) 信号处理的方法和装置
US11695607B2 (en) Wireless transmission device, wireless reception device, transmission method, and reception method
WO2018024127A1 (zh) 一种传输信号的方法及网络设备
WO2021195975A1 (zh) 传输参考信号的方法和装置
WO2023093821A1 (zh) 通信方法及装置
CN107666455B (zh) 一种传输信号的方法及网络设备
CN109587092B (zh) 基于序列的信号处理方法及装置
US11025463B2 (en) First network node and a method therein for generation and transmission of a binary phase shift keying (BPSK) signal
WO2020154298A1 (en) Devices and methods for facilitating dmrs sequence grouping
CN113892249A (zh) 用于数据调制中的伪序列插入的方法及装置
CN110971383B (zh) 一种参考信号的发送、接收方法及装置
WO2020063930A1 (zh) 一种参考信号的发送、接收方法及装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017795485

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017795485

Country of ref document: EP

Effective date: 20181115

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795485

Country of ref document: EP

Kind code of ref document: A1