WO2020199864A1 - 数据压缩方法及装置 - Google Patents

数据压缩方法及装置 Download PDF

Info

Publication number
WO2020199864A1
WO2020199864A1 PCT/CN2020/078619 CN2020078619W WO2020199864A1 WO 2020199864 A1 WO2020199864 A1 WO 2020199864A1 CN 2020078619 W CN2020078619 W CN 2020078619W WO 2020199864 A1 WO2020199864 A1 WO 2020199864A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
frequency domain
domain data
fourier transform
processing
Prior art date
Application number
PCT/CN2020/078619
Other languages
English (en)
French (fr)
Inventor
胡远洲
汪凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20785263.3A priority Critical patent/EP3937444A4/en
Publication of WO2020199864A1 publication Critical patent/WO2020199864A1/zh
Priority to US17/491,441 priority patent/US11546193B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/183Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a method and device for data compression.
  • IoT communication can be machine-to-machine (M2M) communication, machine type communication (MTC), or massive machine type communications (mMTC).
  • M2M machine-to-machine
  • MTC machine type communication
  • mMTC massive machine type communications
  • IoT communication can allow communication between terminal devices, or it can allow terminal devices to communicate with network devices without human intervention.
  • the application scenarios of IoT communication may include: smart grid, industrial automation control, wireless sensor network, smart home appliances, smart water meters, shared bicycles, etc.
  • a data transmission method including: performing first processing on ⁇ /2-BPSK modulated data with a length of M to obtain first frequency domain data with a length of M, wherein, in the first processing Including Fourier transform, M is an even number; performing second processing on the second frequency domain data of length Q to obtain time domain data, wherein the data in the second frequency domain data is included in the first frequency domain data , Q is a positive integer, M is greater than Q, and Q is greater than or equal to M/2, the second processing includes inverse Fourier transform; the time domain data is sent on one time domain symbol.
  • a data transmission method which includes: performing first processing on BPSK modulated data of length M to obtain first frequency domain data of length M, wherein the first processing includes phase rotation and Fourier transform , M is an even number; second processing is performed on the second frequency domain data of length Q to obtain time domain data, wherein the data in the second frequency domain data is included in the first frequency domain data, and Q is A positive integer, M is greater than Q, Q is greater than or equal to M/2, the second processing includes inverse Fourier transform; the time domain data is sent on one time domain symbol.
  • the bandwidth occupied during actual data transmission can be made smaller, and thus the spectral efficiency of data transmission can be improved.
  • the modulation data in the method provided by the embodiment of the present application is ⁇ /2-BPSK, which can maintain the low PAPR characteristic of the time domain data to be transmitted.
  • This method can increase the data transmission rate of the system. For example, under a given system bandwidth, each UE occupies a smaller bandwidth for data transmission, and can support more UEs for data transmission at the same time, and each UE The amount of data transmitted is not reduced, so the data transmission rate of the system is increased.
  • the data in the second frequency domain data is included in the first frequency domain data, including: the qth frequency domain data in the second frequency domain data is the first frequency domain data Frequency domain data Frequency domain data; or, the qth frequency domain data in the second frequency domain data is the qth frequency domain data in the first frequency domain data Frequency domain data; or, the qth frequency domain data in the second frequency domain data is the qth frequency domain data in the first frequency domain data A frequency domain data; among them, the value range of q is from the integer 0 to Q-1.
  • Using this method to determine the position of the data in the second frequency domain data in the first frequency domain data can ensure that the compressed second frequency domain data are orthogonal to each other, thereby ensuring that the The correctness of the data received by the terminal.
  • the second processing includes: inverse Fourier transform and adding cyclic prefix; or, frequency domain filtering, inverse Fourier transform and adding cyclic prefix; or, inverse Fourier transform, time domain filtering and adding cyclic prefix Prefix.
  • a raised cosine SRRC filter or a raised cosine RRC filter is used, and the roll-off factor of the used filter is
  • the use of filters for filtering can also reshape the time-domain data, so that the amplitude changes of the time-domain data after the reshaping are more gentle, thereby reducing PAPR.
  • the method when performing the inverse Fourier transform, includes: mapping the second frequency domain data to Q subcarriers to perform Fourier transform, for sending the ⁇ / of length M
  • the frequency domain resources of the 2-BPSK modulation data include the Q subcarriers.
  • the frequency domain data with a length of M is compressed to obtain shorter frequency domain compressed data, and the frequency domain compressed data is mapped to Q subcarriers for transmission, compared to mapping it to M subcarriers for transmission , Can make the bandwidth occupied during actual data transmission smaller, so the spectrum efficiency of data transmission can be improved.
  • the modulation data is ⁇ /2-BPSK modulation data
  • the first processing includes Fourier transform, including: the first processing includes phase rotation and Fourier transform in sequence.
  • the modulation data is BPSK modulation data
  • the first processing includes phase rotation and Fourier transform, including: the first processing includes the first phase rotation, the second phase rotation, and Fourier transform.
  • a device in the second aspect, can be a network device (or terminal device), a device in a network device (or terminal device), or a device that can be matched with a network device (or terminal device).
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module.
  • the processing module is used to perform a first processing on the ⁇ /2-BPSK modulated data with a length of M to obtain first frequency domain data with a length of M, wherein the first processing includes Fourier transform, and M is an even number; processing module It is also used to perform second processing on the second frequency domain data of length Q to obtain time domain data, wherein the data in the second frequency domain data is included in the first frequency domain data, and Q is a positive integer , M is greater than Q, Q is greater than or equal to M/2, the second processing includes inverse Fourier transform; the communication module is used to send the time domain data on a time domain symbol.
  • an embodiment of the present application provides a device, the device includes a processor, and is configured to implement the method described in the first aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the first aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be Internet equipment.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to perform first processing on the ⁇ /2-BPSK modulated data of length M to obtain first frequency domain data of length M, where the first processing includes Fourier transform, and M is an even number; the processor further Used to perform second processing on the second frequency domain data of length Q to obtain time domain data, wherein the data in the second frequency domain data is included in the first frequency domain data, and Q is a positive integer, M is greater than Q, and Q is greater than or equal to M/2, and the second processing includes inverse Fourier transform; the processor uses a communication interface to send the time domain data on a time domain symbol.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method described in the first aspect or any one of the possible designs in the first aspect.
  • the embodiments of the present application provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method described in the first aspect or any one of the possible designs in the first aspect .
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a memory, for implementing the method described in the first aspect or any one of the possible designs in the first aspect.
  • an embodiment of the present application provides a communication system that includes any of the devices described in the second aspect and a receiving device, and the receiving device is configured to receive any of the devices described in the second aspect Data sent by a device; or the communication system includes any device described in the third aspect and a receiving device, and the receiving device is configured to receive data sent by any device described in the third aspect.
  • FIGS 1 and 2 are schematic diagrams of data sending methods provided by embodiments of the application.
  • FIG. 3 is an example diagram of a data compression method provided by an embodiment of the application.
  • FIG. 4 is an example diagram of the structure of time domain symbols provided by an embodiment of the application.
  • Figure 5 is a simulation result diagram provided by an embodiment of the application.
  • Fig. 6 and Fig. 7 are diagrams of example structures of the apparatuses provided in the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application can be applied to various communication systems.
  • the technical solutions provided in the embodiments of the present application may be applied to a communication system capable of supporting IoT.
  • the technical solutions provided in the embodiments of the present application can be applied but not limited to: 5G, LTE, or future communication systems.
  • 5G can also be called new radio (NR).
  • the communication equipment may include network equipment and terminal equipment.
  • the wireless communication between communication devices may include: wireless communication between a network device and a terminal device, wireless communication between a network device and a network device, and wireless communication between a terminal device and a terminal device.
  • wireless communication can also be simply referred to as "communication”
  • communication can also be described as "data transmission”, “signal transmission”, “information transmission” or “transmission”.
  • transmission may include sending or receiving.
  • the transmission may be uplink transmission, for example, the terminal device may send a signal to the network device; the transmission may also be downlink transmission, for example, the network device may send a signal to the terminal device.
  • the technical solutions provided in the embodiments of the present application can be applied to various access technologies.
  • it can be applied to orthogonal multiple access (orthogonal multiple access, OMA) technology or non-orthogonal multiple access (non-orthogonal multiple access, NOMA) technology.
  • orthogonal multiple access technology it can be applied to orthogonal frequency division multiple access (orthogonal frequency division multiple access, OFDMA) or single carrier frequency division multiple access (single carrier frequency division multiple access, SC-FDMA) and other technologies .
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • SCMA sparse code multiple access
  • MUSA multi-user shared access
  • PDMA pattern split multiple access
  • IGMA interleave-grid multiple access
  • RSMA resource spreading multiple access
  • NCMA non-orthogonal coded multiple access
  • NOCA non-orthogonal coded access
  • the technical solutions provided in the embodiments of the present application are described by taking communication between a network device and a terminal device as an example, where the network device is a scheduling entity, and the terminal device is a subordinate entity.
  • the network device is a scheduling entity
  • the terminal device is a subordinate entity.
  • Those skilled in the art can use this technical solution to perform wireless communication between other scheduling entities and subordinate entities, such as wireless communication between a macro base station and a micro base station, such as device-to-device communication between a first terminal and a second terminal. to device, D2D) communication.
  • the terminal device involved in the embodiment of the present application may also be referred to as a terminal, and may be a device with a wireless transceiver function.
  • the terminal can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as a ship, etc.); it can also be deployed in the air (such as aeroplane, balloon, satellite, etc.).
  • the terminal equipment may be user equipment (UE).
  • the UE includes a handheld device, a vehicle-mounted device, a wearable device, or a computing device with wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device for implementing the function of the terminal may be a terminal, or a device capable of supporting the terminal to implement the function, such as a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is the terminal, and the terminal is the UE as an example to describe the technical solutions provided by the embodiments of the present application.
  • the network equipment involved in the embodiment of the present application includes a base station (BS), and the base station may be a device that is deployed in a wireless access network and can communicate with a terminal wirelessly.
  • Base stations may come in many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the base station involved in the embodiments of the present application may be a base station in 5G or a base station in LTE, where the base station in 5G may also be called a transmission reception point (TRP) or gNB (gNodeB).
  • TRP transmission reception point
  • gNodeB gNodeB
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system.
  • the device used to implement the functions of the network equipment is the network equipment, and the network equipment is the base station as an example to describe the technical solutions provided by the embodiments of the present application.
  • the sending end sends data or signals to the receiving end.
  • the sending end can be a base station or a UE; the receiving end can be a base station or a UE.
  • DL downlink
  • UL uplink
  • the sending end is the UE and the receiving end is the base station;
  • the data transmission is For wireless backhaul of DL, the sending end is a macro base station and the receiving end is a micro base station; when the data transmission is a wireless backhaul UL, the sending end is a micro base station and the receiving end is a macro base station; when the data transmission is D2D communication or When it is vehicle to everything (V2X) communication, the transmitting end is the first UE, and the receiving end is the second UE.
  • V2X vehicle to everything
  • the time domain data generated by the transmitting end can be amplified by a power amplifier (PA) and then sent to the receiving end.
  • PA power amplifier
  • the peak to average power ratio (PAPR, also known as the peak to average power ratio) of the time domain data may have certain requirements.
  • the amplification performance of high PAPR time domain data after passing through the PA may be nonlinear, and the low PAPR time domain data passing through the nonlinear PA can work at a higher operating point, that is, the output power of the low PAPR time domain data passing through the PA Compared with the time domain data of high PAPR, the output power after passing through the PA is larger, so the receiver performance is better.
  • a low PAPR waveform or transmission method
  • the PAPR of the transmitted time domain data is low, such as 1dB, 2dB, or 3dB.
  • a transmission method using "SC-FDMA+Pi/2-binary phase shift keying (BPSK) modulation method” is proposed.
  • Pi is the circumference ratio
  • Pi/2-BPSK is used to modulate each bit of data into one complex symbol.
  • the data to be sent (bits to be sent) can be processed as shown in FIG. 1.
  • the sending end can sequentially perform Pi/2-BPSK modulation, discrete Fourier transform (DFT), frequency domain filtering, and inverse fast Fourier transform (inverse fast Fourier transform).
  • DFT discrete Fourier transform
  • inverse fast Fourier transform inverse fast Fourier transform
  • Pi/2-BPSK can also be described as ⁇ /2-BPSK, where ⁇ represents the circumference ratio.
  • SC-FDMA+Pi/2-BPSK can reduce PAPR, it is relatively "SC-FDMA+high-order modulation mode (such as quadrature phase shift keying (QPSK))" data transmission.
  • QPSK quadrature phase shift keying
  • the data transmission method of the SC-FDMA+QPSK modulation mode is shown in Fig. 1, and the modulation is specifically the QPSK modulation mode.
  • Pi/2-BPSK is used to modulate every 1 bit of data into 1 complex symbol
  • QPSK is used to modulate every 2 bits of data into 1 complex symbol, 1 complex symbol It can be mapped to 1 resource unit and sent.
  • the resource unit may be, for example, a resource element (resource element, RE) in the LTE 36.211 standard protocol or the 5G 38.211 standard protocol, or other resource units, which are not limited in the embodiment of the present application.
  • RE resource element
  • One RE corresponds to one time domain symbol in the time domain, and corresponds to one subcarrier in the frequency domain.
  • an embodiment of the present application provides the signal transmission method shown in FIG. 2, which can also be called data compression method.
  • the transmitting end performs first processing on the ⁇ /2-BPSK modulated data with a length of M to obtain first frequency domain data with a length of M, where the first processing includes Fourier transform.
  • a piece of data is ⁇ /2-BPSK modulated data, which means that the data is data obtained by ⁇ /2-BPSK modulation on a bit to be modulated.
  • the modulation data may also be referred to as modulation symbols.
  • One modulation data is a complex number.
  • the imaginary part of the complex number is equal to 0, the complex number is equivalent to a real number.
  • ⁇ /2-BPSK modulated data with a length of M represents M ⁇ /2-BPSK modulated data.
  • the bits to be modulated include M bits, and the sending end performs ⁇ /2-BPSK modulation on each of the M bits, thereby obtaining ⁇ /2-BPSK modulated data with a length of M.
  • the bit to be modulated may also be called a bit stream to be modulated, a bit to be sent, a bit stream to be sent, and so on.
  • the bit to be modulated is expressed as b, and b includes M bits, wherein the m-th bit is expressed as b(m), and the value of b(m) is 0 or 1.
  • the value range of m is 0 to M-1, that is, m can be taken from 0 to M-1.
  • Performing ⁇ /2-BPSK modulation on the bit b to be modulated can obtain ⁇ /2-BPSK modulated data d of length M, where the m-th data in d is denoted as d(m).
  • j represents the imaginary unit
  • the square of the imaginary unit is equal to -1.
  • mod means modulo operation.
  • other ⁇ /2-BPSK modulation methods may be used to obtain the modulated data d, which satisfies: the phase difference between two adjacent data in the modulated data d is ⁇ /2 or - ⁇ /2 , Or the phase difference between two adjacent data in the modulated data d is ⁇ /2 or 3 ⁇ /2.
  • the phase difference between d(m) and d(m+1) is ⁇ /2 or - ⁇ /2, or ⁇ /2 or 3 ⁇ /2, where m+1 ranges from 1 to M- 1.
  • the bit to be modulated may be a bit stream Str1 that has not undergone physical layer bit-level processing, or may be a bit stream Str2 obtained after physical layer bit-level processing of Str1.
  • the physical layer bit-level processing may include one or more of the following processing: segmentation, concatenation, channel coding, rate matching, scrambling, and adding cyclic redundancy check (cyclic redundancy check, CRC, etc.).
  • the physical layer bit-level processing can refer to LTE protocols 36.212 and 36.211, or refer to NR protocols 38.212 and 38.211, or refer to other bit-level processing, which is not limited in this embodiment.
  • the bit stream Str1 can be received by the media of the sending end.
  • the transmission block of the physical layer that the media access control (MAC) layer submits to the sender, or the bit stream Str1 is the information bit of the physical layer control channel.
  • the sender can process Str1 or Str2 and then carry it in the corresponding Send to the receiving end on the channel.
  • the first processing includes Fourier transform.
  • the transmitting end can perform Fourier transform on the ⁇ /2-BPSK modulated data d of length M to obtain the first frequency domain data X of length M, where the kth data in the first frequency domain data X is expressed as x(k ), the value of k ranges from 0 to M-1.
  • j represents the imaginary unit
  • coefficient Used to adjust the power of the output data obtained by Fourier transform Is a real number, for example Or 1.
  • the first processing includes phase rotation and Fourier transform.
  • the transmitting end can sequentially perform phase rotation and Fourier transform on the ⁇ /2-BPSK modulated data d of length M to obtain the first frequency domain data X of length M, where the kth data in the first frequency domain data X represents Is x(k), and the value range of k is 0 to M-1.
  • the Fourier transform may be a discrete Fourier transform (DFT), a fast Fourier transform (fast fourier transform, FFT), or other Fourier transform forms, which are not limited in this application.
  • DFT discrete Fourier transform
  • FFT fast fourier transform
  • other Fourier transform forms which are not limited in this application.
  • the transmitting end performs second processing on the second frequency domain data of length Q to obtain time domain data, and sends the time domain data on a time domain symbol.
  • the second frequency domain data is compressed data of the first frequency domain data
  • Q is a positive integer
  • M is greater than or equal to Q.
  • the sender can determine the values of M and Q in the following ways.
  • the values of M and Q are pre-configured; or the values of M and Q are notified by the base station through signaling for the UE; or the value of M is pre-configured, and the value of Q is notified by the base station through signaling. Or the value of Q is pre-configured, and the value of M is notified to the UE by the base station through signaling.
  • the values of M and Q/M are pre-configured; or the values of M and Q/M are notified by the base station through signaling for the UE; or the value of M is pre-configured,
  • the value of Q/M is notified by the base station for the UE through signaling; or the value of Q/M is pre-configured, and the value of M is notified by the base station for the UE through signaling.
  • M can be replaced with Q
  • Q/M can be replaced with M/Q.
  • the base station can configure the specific value of Q/M for the UE with 1 bit. For example, when the bit is 0, the specific value of Q/M is 1. /2, when this bit is 1, the specific value of Q/M is 1.
  • the second frequency domain data is compressed data of the first frequency domain data, and includes: the data in the second frequency domain data is included in the first frequency domain data.
  • the second frequency domain data may be determined according to any one of the following manner 1 to manner 6. Or, it can be described as: the first frequency domain data can be compressed according to any one of the following manners 1 to 6 to obtain the second frequency domain data.
  • the qth frequency domain data in the second frequency domain data is the first frequency domain data Frequency domain data, namely Indicates the first frequency domain data Frequency domain data.
  • M is an even number
  • Q is greater than or equal to M/2.
  • y(q) represents the q-th frequency domain data in the second frequency domain data Y
  • q is an integer ranging from 0 to Q-1.
  • the three data in the second frequency domain data can be obtained by compression as the second, third, and fourth data in the first frequency domain data.
  • the 6 data in the second frequency domain data can be obtained after compression, which are the 3rd, 4th, 5th, 6th, 7th and the first frequency domain data. 8 data.
  • Method 2 The qth frequency domain data in the second frequency domain data is the first frequency domain data Frequency domain data, namely among them, Indicates the first frequency domain data Frequency domain data.
  • M is an even number
  • Q is greater than or equal to M/2.
  • Method 3 The qth frequency domain data in the second frequency domain data is the first frequency domain data Frequency domain data, namely among them, Indicates the first frequency domain data Frequency domain data.
  • M is an even number
  • Q is greater than or equal to M/2.
  • x(2q) represents the 2qth frequency domain data in the first frequency domain data
  • 2q is an integer greater than or equal to 0 and less than or equal to M.
  • 3 in the second frequency domain data can be obtained after compression.
  • the data are the 0th, 2nd, and 4th data in the first frequency domain data.
  • x(2q+1) represents the 2q+1th frequency domain data in the first frequency domain data
  • 2q+1 is an integer greater than or equal to 0 and less than or equal to M.
  • the second frequency domain data can be obtained after compression
  • the 3 data of are respectively the first, third, and fifth data in the first frequency domain data.
  • the data in the second frequency domain data is other data in the first frequency domain data except for the second frequency domain data determined in the first manner.
  • the qth frequency domain data in the second frequency domain data is the qth frequency domain data in the first frequency domain data Frequency domain data, namely Among them, mod represents modulo operation.
  • the 6 data in the second frequency domain data can be obtained by compression, which are the second, first, zero, eleventh, tenth, and tenth data in the first frequency domain data. 9 data.
  • the data in the second frequency domain data is other data in the first frequency domain data except the second frequency domain data determined in the second way.
  • the qth frequency domain data in the second frequency domain data is the qth frequency domain data in the first frequency domain data Frequency domain data, namely Among them, mod represents modulo operation.
  • the data in the second frequency domain data is other data in the first frequency domain data except the second frequency domain data determined in the third manner.
  • the qth frequency domain data in the second frequency domain data is the qth frequency domain data in the first frequency domain data Frequency domain data, namely Among them, mod represents modulo operation.
  • the data index in the second frequency domain data may be different from the example shown in FIG. 3.
  • the foregoing manners 1 to 6 are only exemplary descriptions, and the data in the second frequency domain data may also be other data in the first frequency domain data, which is not limited in the embodiment of the present application.
  • the sending end performs second processing on the second frequency domain data of length Q to obtain time domain data.
  • the second processing may sequentially include:
  • the transmitter when the transmitter performs the second processing on the second frequency domain data, if the second processing includes frequency domain filtering or time domain filtering, square root raised cosine (SRRC) filtering can be used Filter, root raised cosine (RRC) filter, or other forms of filter for filtering, and the embodiment of the present application does not limit it.
  • SRRC square root raised cosine
  • Filter, root raised cosine (RRC) filter, or other forms of filter for filtering and the embodiment of the present application does not limit it.
  • the roll-off factor of the SRRC filter or the filter is Among them, frequency domain filtering can be expressed as the product of frequency domain data and filter coefficients, and time domain filtering can be expressed as the cyclic convolution of time domain data and filter coefficients obtained through inverse Fourier transform.
  • the embodiment of the present application takes as an example that the second processing sequentially includes frequency domain filtering, inverse Fourier transform, and adding cyclic prefix, to describe the implementation process of the second processing in detail.
  • the transmitting end performs frequency domain filtering on the second frequency domain data with length Q to obtain frequency domain filtered data Y filter with length Q.
  • the q-th data y filter (q) in the frequency-domain filtering data Y filter is equal to the q-th data y(q) in the second frequency-domain data multiplied by the frequency-domain filter coefficient s filter (q).
  • s filter (q) is the qth coefficient in the frequency domain filter coefficient S
  • q is an integer ranging from 0 to Q-1. which is:
  • the second processing does not include frequency domain filtering.
  • the length of the frequency domain filter coefficient S is Q (that is, the frequency domain filter coefficient S includes Q filter coefficients), or the length of the frequency domain filter coefficient S is greater than Q, the embodiment of the present application does not Do restrictions.
  • the coefficients in the frequency domain filter coefficient S are included in the basic frequency domain filter coefficient S base .
  • the frequency domain filter coefficient S may be called the first filter coefficient or other names
  • the basic frequency domain filter coefficient S base may be called the initial frequency domain filter coefficient and the second frequency domain filter coefficient. Or other names, the embodiment of this application does not limit it.
  • S base includes M coefficients.
  • the method of determining the frequency domain filter coefficient S according to the basic frequency domain filter coefficient S base is similar to the above-mentioned method of determining the second frequency domain data from the first frequency domain data.
  • the first frequency domain data is similar to the basic frequency domain filter coefficient S base
  • the second frequency domain data is similar to the frequency domain filter coefficient S.
  • the manner of determining the second frequency domain data from the first frequency domain data and the manner of determining the frequency domain filter coefficient S from the basic frequency domain filter coefficient S base may be the same or different, which is not limited in the embodiment of the present application.
  • the first method is adopted to determine the second frequency domain data from the first frequency domain data; and the first method is adopted to determine the frequency domain filter coefficient S from the basic frequency domain filter coefficient S base .
  • the first method is adopted to determine the second frequency domain data from the first frequency domain data; and the second method is adopted to determine the frequency domain filter coefficient S from the basic frequency domain filter coefficient S base .
  • the frequency domain filtering and the frequency domain data compression may be performed separately, or may be performed in combination, which is not limited in the embodiment of the present application.
  • the implementation can be expressed as:
  • the frequency domain filter data Y filter When the sending end of the frequency domain filter data for Y filter inverse Fourier transform, the frequency domain filter data Y filter in the one to one mapping of Q data corresponding to Q subcarriers, and inverse Fourier transform.
  • the Q subcarriers are located in the same time domain symbol.
  • the one-to-one mapping of the Q data to the corresponding Q subcarriers can also be described as: one-to-one mapping of the Q data to the corresponding Q resource elements (resource elements, RE), and the Q REs correspond to In or at the same time domain symbol, one RE frequency domain corresponds to one subcarrier.
  • the positions of the Q subcarriers to which the frequency domain filter data Y filter is mapped may be pre-configured; when the transmitting end is a UE, it may also be indicated by the base station for the UE through signaling.
  • the base station may indicate to the UE the RB positions where the Q subcarriers are located, and the Q subcarriers are included in the frequency domain resources used to transmit ⁇ /2-BPSK modulated data of length M.
  • the base station indicates the frequency domain resource of the data channel for the UE through signaling.
  • the frequency domain resource is the position of the RB where the Q subcarriers are located, and the data channel is used to carry the ⁇ /2-BPSK modulation data of length M.
  • the positions of the Q subcarriers may be continuous or discrete.
  • the Q subcarriers include at least 2 subcarriers, and any one of the at least 2 subcarriers and other subcarriers of the Q subcarriers are not adjacent in the frequency domain.
  • at least two may be two, three, four, or more, which is not limited in the embodiments of the present application.
  • the signaling may be semi-static signaling and/or dynamic signaling.
  • Semi-static signaling can also be referred to as higher layer signaling.
  • the semi-static signaling may be radio resource control (RRC) signaling, broadcast messages, system messages, or medium access control (MAC) control elements, CE).
  • RRC radio resource control
  • MAC medium access control
  • CE medium access control
  • the broadcast message may include remaining minimum system information (RMSI).
  • the dynamic signaling may be physical layer signaling.
  • the physical layer signaling may be signaling carried by a physical control channel or signaling carried by a physical data channel.
  • the physical data channel may be a downlink channel, for example, a physical downlink shared channel (PDSCH).
  • the physical control channel can be a physical downlink control channel (PDCCH), an enhanced physical downlink control channel (EPDCCH), a narrowband physical downlink control channel (narrowband physical downlink control channel, NPDCCH), or a machine type.
  • Communication physical downlink control channel (machine type communication (MTC) physical downlink control channel, MPDCCH).
  • the signaling carried by the PDCCH or EPDCCH may also be referred to as downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the physical control channel may also be a physical sidelink control channel (physical sidelink control channel), and the signaling carried by the physical sidelink control channel may also be called sidelink control information (SCI).
  • the data in the frequency domain filter data Y filter may be mapped to consecutive Q subcarriers one by one.
  • the starting position of the Q subcarriers is Then the positions of the Q subcarriers are: among them, Is the position of the starting subcarrier, It is an integer, such as 0, 1, 2, etc.
  • the data in the frequency domain filter data Y filter can be mapped one by one to Q subcarriers at equal intervals.
  • the starting position of the Q subcarriers is The interval between adjacent subcarriers is q step , then the position of the qth subcarrier among the Q subcarriers is: Among them, the value range of q is 0 to Q-1. among them, Is the position of the starting subcarrier, It is an integer, such as 0, 1, 2, etc.
  • q step is a positive integer, such as 1, 2, 3, etc.
  • the data in the frequency domain filter data Y filter may be mapped to Q subcarriers out of the M subcarriers one by one.
  • the positions of the Q subcarriers in the M subcarriers are the same as the positions of the second frequency domain data in the first frequency domain data, that is, the method for determining the positions of the Q subcarriers in the M subcarriers is the same as determining the second frequency domain The method of the position of the data in the first frequency domain data.
  • the positions of the M subcarriers may be pre-configured; when the transmitting end is the UE, it may also be indicated by the base station for the UE through signaling. For example, the base station may indicate the RB locations where the M subcarriers are located for the UE.
  • the transmitting end is the UE, and the positions of the M subcarriers indicated by the base station equipment for the UE through signaling are [12, 13, 14, 15, 16, 17].
  • the second frequency domain data is determined from the first frequency domain data in the above-mentioned way, and the second frequency domain data includes the second, third, and fourth data in the first frequency domain.
  • Data, the 3 data in the frequency domain filter data Y filter are respectively mapped to the second, third, and fourth subcarriers of the M subcarriers, that is, the 3 subcarriers to which the 3 data are mapped.
  • the positions of the carrier are [14,15,16].
  • the inverse Fourier transform can be an inverse discrete Fourier transform (IDFT), or an inverse fast Fourier transform (IFFT), or other forms of Fourier transform.
  • Leaf inverse transformation the embodiment of this application does not limit it.
  • the transmitting end performs inverse Fourier transform on the frequency domain filtered data Y filter
  • the inverse Fourier transform method in the LTE standard 36.211 or the NR standard 38.211 can be used.
  • the transmitting end performs inverse Fourier transform on the frequency domain filtered data Y filter , the time domain signal is obtained, and the time domain signal is expressed as:
  • t is a real number.
  • y filter (q) is the qth data in the frequency domain filtering data Y filter
  • L q represents the subcarrier position to which the y filter (q) is mapped.
  • ⁇ f is the sub-carrier spacing.
  • ⁇ f in LTE can be 15kHz (kilohertz)
  • ⁇ f in NR can be 7.5kHz, 15kHz, 30kHz, 60kHz, etc.
  • t offset represents the delay offset
  • t offset is a real number
  • the value of t offset may be pre-configured; the value of t offset may also be notified to the UE by the base station through signaling.
  • q re,offset is the frequency domain offset factor
  • j is the imaginary unit, and the square of the imaginary unit is equal to -1.
  • the number of transform points is 2048, that is, when there are at most 2048 subcarriers on a time domain symbol, the positions of the 2048 subcarriers are from 0 to 2047 respectively.
  • the subcarrier position of each data in the frequency domain filter data Y filter is the position of the data in the 2048 subcarriers.
  • the time domain symbols may be various types of time domain symbols, such as single carrier time domain symbols, orthogonal frequency division multiplexing (OFDM) symbols, or single carrier frequency division multiple access. (single carrier frequency division multiple access, SC-FDMA) symbols, etc.
  • a time domain symbol may include a time continuous signal with a duration of N ⁇ T s ; or from a discrete point of view, a time domain symbol may include N pieces of data, and the N pieces of data may also be described as N Samples or the pure data part of the time domain symbol.
  • the time domain symbol may further include a cyclic prefix (cyclic prefix, CP), and the length of the cyclic prefix is N cp sampling points.
  • CP cyclic prefix
  • N and Ncp are positive integers.
  • N is 2048, 1024, 512, etc.
  • N cp is 160, 144, 88, etc.
  • the time unit T s is 1/(15000*2048) second.
  • the time unit T s can be 1/(15000*2048) second, 1/(15000*1024) second, 1/(15000*512) second, etc.
  • the time domain continuous signal of one time domain symbol is subjected to discrete sampling, and the time unit T s may be the time interval between two adjacent sampling points in the obtained sampling data.
  • time domain signal obtained after the second processing of the second frequency domain data is expressed at time t as:
  • t offset -N cp ⁇ T s
  • T s represents the time interval between adjacent sampling points
  • ⁇ f is the subcarrier interval
  • the second frequency domain filtered data in the above Fourier transform method can be replaced with second frequency domain data, and the above Fourier transform method is executed.
  • the sending end when the sending end sends data, either the sending end directly sends the data over the air interface, or it can mean that the sending end sends the data indirectly over the air interface, which is not limited in this application.
  • the sending end sends data indirectly over the air interface, it may be that the sending end performs data processing on the data, for example, after RF modulation, and then sends the data over the air interface.
  • the channel can be various possible channels or signals, such as: broadcast channel (physical broadcast channel, PBCH), primary synchronization signal (primary synchronization signal, PSS), secondary synchronization signal (secondary synchronization signal, SSS), physical downlink Shared channel (physical downlink shared channel, PDSCH), physical downlink control channel (physical downlink control channel, PDCCH), physical uplink shared channel (physical uplink shared channel, PUSCH), physical uplink control channel (physical uplink control channel, PUCCH), Various types of uplink reference signals (reference signals, RS), various types of downlink RS, or other possible physical channels, etc., are not limited in this application.
  • the data to be sent on the channel can be used as the input data of the method shown in Figure 1, and the sending end can be based on the input data and the data shown in Figure 1.
  • the method shown performs data processing to obtain corresponding output data, and sends the output data to the receiving end on the channel.
  • the data type of the data to be sent may be modulated data.
  • S201 may be implemented as: the transmitting end performs first processing on BPSK modulated data of length M to obtain first frequency domain data of length M, where the first processing includes Phase rotation and Fourier transform.
  • one piece of data is BPSK modulated data, which means that the piece of data is data obtained by performing BPSK on a bit to be modulated.
  • the value of the bit to be modulated and the obtained BPSK modulation data are shown in Table 1(a), Table 1(b) or Table 1(c).
  • BPSK modulated data with a length of M represents M BPSK modulated data.
  • the bits to be modulated include M bits, and the transmitting end can perform BPSK modulation on each of the M bits, thereby obtaining BPSK modulated data with a length of M.
  • bit to be modulated is represented as b
  • b includes M bits
  • the m-th data is represented as b(m)
  • the value of b(m) is 0 or 1.
  • the value range of m is 0 to M-1.
  • B treat modulated bits for BPSK modulation, BPSK modulation can obtain data d bpsk the length of M, wherein, d bpsk m-th data is represented as d bpsk (m).
  • the phase difference between two adjacent data in the modulated data is 0 or ⁇ .
  • the phase difference between d bpsk (m) and d bpsk (m+1) is 0 or ⁇ , where the value range of m+1 is 1 to M-1.
  • other BPSK modulation methods may be used to obtain the modulated data d bpsk , which satisfies: the phase difference between two adjacent data in the modulated data is 0 or ⁇ .
  • the transmitting end performs phase rotation on the BPSK modulated data d of length M to obtain the phase rotation output data d, where the m-th data in d is expressed as:
  • This phase rotation can be regarded as the Pi/2 phase rotation of the BPSK modulated data.
  • the BPSK data d bpsk obtained according to Table 1(a) is [1,-1,-1, 1,1,-1].
  • the phase factor of the phase rotation is e j ⁇ (mmod2)/2
  • the modulation data of Pi/2-BPSK modulation obtained from the BPSK data after Pi/2 phase rotation is [1,-j,-1,j ,1,-j].
  • the method of "BPSK modulation + phase rotation" for the modulated bit is equivalent to ⁇ /2-BPSK for the modulated bit.
  • the method for the transmitting end to perform Fourier transform on the phase-rotated output data d is similar to the method of performing Fourier transform on the ⁇ /2-BPSK modulated data d at the transmitting end in S201, which will not be repeated here. .
  • the modulation data in the method provided by the embodiment of the present application is ⁇ /2-BPSK, which can maintain the low PAPR characteristic of the time domain data to be transmitted.
  • the phases of two adjacent modulated data are different by ⁇ /2 or - ⁇ /2.
  • the two adjacent modulated data have been oversampled and superimposed when generating time domain data. They The phase difference of ⁇ /2 or - ⁇ /2 can avoid superposition in the same direction and reduce the amplitude of the maximum value, so it can reduce the PAPR of the transmitted time domain data.
  • curve (1) is the PAPR of time-domain data generated from QPSK modulated data of length 6 according to the method shown in Fig. 1;
  • curve (2) is the method shown in Fig. 1, modulated by QPSK of length 12
  • curve (3) is the method provided by the embodiment of the application according to the figure (the method shown in Fig.
  • the method provided in the embodiments of the present application can also be applied to other modulation methods.
  • the ⁇ /2-BPSK modulation data in the method provided by the embodiment of the present application is replaced with: K-ary pulse amplitude modulation (K-PAM) and Pi/2 phase rotation are sequentially performed on the bits to be modulated.
  • K-PAM K-ary pulse amplitude modulation
  • Pi/2 phase rotation are sequentially performed on the bits to be modulated.
  • the phase factor used in the Pi/2 phase rotation is the same as the phase factor described above the same.
  • K 2 A
  • A is a positive integer, such as a value of 1, 2, 3, 4 or greater, which is not limited in the embodiment of the present application.
  • Each modulation data obtained by the K-PAM modulation method can carry A bits of information.
  • the 1-bit information value is 1, the output of the corresponding 2-PAM modulation data is B, and when the 1-bit information value is 0, the output of the corresponding 2-PAM modulation data is -B; or the 1-bit
  • the information value is 1, the corresponding 2-PAM modulation data output is -B, and when the 1-bit information value is 0, the corresponding 2-PAM modulation data output is B.
  • the constellation point of 4-PAM modulation data can be expressed as [-3B,-B,B,3B], where B is a real number.
  • the output of the corresponding 4-PAM modulation data is -3B, and when the value of the 2 bit is 01, the output of the corresponding 4-PAM modulation data is- B.
  • the output of the corresponding 4-PAM modulation data is B, and when the value of the 2 bits is 10, the output of the corresponding 4-PAM modulation data is 3B.
  • the correspondence between the 2-bit value and the output of 4-PAM modulation data may also be in other forms, which is not limited in the embodiment of the present application.
  • the above describes a data compression method on a time domain symbol.
  • the method can be applied to multiple time domain symbols, that is, the data to be sent on each time domain symbol is separately applied to the data provided in the embodiment of this application.
  • M and Q corresponding to different time domain symbols may be the same or different, which is not limited in the embodiment of the present application.
  • the base station and/or UE may include a hardware structure and/or software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 6 is a schematic structural diagram of an apparatus 600 provided by an embodiment of the present application.
  • the device 600 may be a UE or a base station, and can implement the method provided in the embodiment of this application; the device 600 can also be a device that can support the UE or the base station to implement the method provided in the embodiment of the application, and the device 600 can be installed in the base station or the UE.
  • the apparatus 600 may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the device 600 may be implemented by a chip system.
  • the device 600 includes a processing module 602 and a communication module 604.
  • the processing module 602 may generate a signal for transmission, and may use the communication module 604 to transmit the signal.
  • the processing module 602 may use the communication module 604 to receive the signal and process the received signal.
  • the processing module 602 and the communication module 604 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or connection between devices, units or modules, which can be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the coupling can be a wired connection or a wireless connection.
  • the communication module may be a circuit, a module, a bus, an interface, a transceiver, a pin, or other device that can implement a transceiver function, and the embodiment of the present application does not limit it.
  • FIG. 7 is a schematic structural diagram of an apparatus 700 provided by an embodiment of the present application.
  • the device 700 may be a terminal device or a base station, which can implement the method provided in the embodiment of this application; the device 700 may also be a device that can support the terminal device or a base station to implement the method provided in the embodiment of the application, such as a chip system.
  • the device 700 can Installed in base stations or terminal equipment.
  • the apparatus 700 includes a processing system 702, which is used to implement or support a terminal device or a base station to implement the method provided in the embodiment of the present application.
  • the processing system 702 may be a circuit, and the circuit may be implemented by a chip system.
  • the processing system 702 includes one or more processors 722, which may be used to implement or support a terminal device or a base station to implement the method provided in the embodiments of the present application.
  • the processor 722 may also be used to manage other devices included in the processing system 702.
  • the other devices may be the following memory 724, bus 726, and One or more of the bus interfaces 728.
  • the processor 722 may be used to manage the memory 724, or the processor 722 may be used to manage the memory 724, the bus 726, and the bus interface 728.
  • the processing system 702 may also include one or more memories 724 for storing instructions and/or data.
  • the memory 724 may be included in the processor 722. If the processing system 702 includes the memory 724, the processor 722 may be coupled with the memory 724. The processor 722 may cooperate with the memory 724 to operate.
  • the processor 722 can execute instructions stored in the memory 724. When the processor 722 executes the instructions stored in the memory 724, it can implement or support the UE or the base station to implement the method provided in the embodiments of the present application.
  • the processor 722 may also read data stored in the memory 724.
  • the memory 724 may also store data obtained when the processor 722 executes instructions.
  • the memory includes volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as fast Flash memory (flash memory), hard disk drive (HDD) or solid-state drive (SSD); memory may also include a combination of the above types of memory; memory may also include any other device with storage function, For example, circuits, devices, or software modules.
  • volatile memory such as random-access memory (RAM)
  • non-volatile memory such as fast Flash memory (flash memory), hard disk drive (HDD) or solid-state drive (SSD); memory may also include a combination of the above types of memory; memory may also include any other device with storage function, For example, circuits, devices, or software modules.
  • the processing system 702 may also include a bus interface 728 for providing an interface between the bus 726 and other devices.
  • the bus interface can also be called a communication interface.
  • the communication interface may be a circuit, a module, a bus, an interface, a transceiver, or other device that can implement a transceiver function, and the embodiment of the present application does not limit it.
  • the apparatus 700 includes a transceiver 706 for communicating with other communication equipment through a transmission medium, so that other apparatuses in the apparatus 700 can communicate with other communication equipment.
  • the other device may be the processing system 702.
  • other devices in the device 700 may use the transceiver 706 to communicate with other communication devices, and receive and/or send corresponding information. It can also be described as that other devices in the device 700 may receive corresponding information, where the corresponding information is received by the transceiver 706 through a transmission medium, and the corresponding information may be received through the bus interface 728 or through the bus interface 728 and the bus 726.
  • Interaction between the transceiver 706 and other devices in the device 700; and/or, other devices in the device 700 may send corresponding information, where the corresponding information is sent by the transceiver 706 through the transmission medium, and the corresponding information
  • the information in the device can be interacted between the transceiver 706 and other devices in the device 700 through the bus interface 728 or through the bus interface 728 and the bus 726.
  • the device 700 may also include a user interface 704.
  • the user interface 704 is an interface between the user and the device 700, and may be used for information interaction between the user and the device 700.
  • the user interface 704 may be at least one of a keyboard, a mouse, a display, a speaker, a microphone, and a joystick.
  • the processing system 702 includes a processor 722, and may also include one or more of a memory 724, a bus 726, and a bus interface 728, for implementing the method provided in the embodiment of the present application.
  • the processing system 702 is also in the protection scope of this application.
  • the module division of the device is a logical function division, and there may be other division methods in actual implementation.
  • each functional module of the device may be integrated into one module, or each functional module may exist alone, or two or more functional modules may be integrated into one module.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, SSD).
  • the embodiments can be mutually cited.
  • methods and/or terms between method embodiments can be mutually cited, such as functions and/or functions between device embodiments.
  • Or terms may refer to each other, for example, functions and/or terms between the device embodiment and the method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请实施例提供了一种数据压缩方法,包括:对长度为M的π/2-二相移相键控BPSK调制数据进行第一处理,得到长度为M的第一频域数据,所述第一处理中包括傅立叶变换,M为偶数;对长度为Q的第二频域数据进行第二处理,得到时域数据,其中,所述第二频域数据中的数据包括于所述第一频域数据中,Q为正整数,M大于Q,Q大于或等于M/2,所述第二处理中包括傅立叶反变换;在一个时域符号上发送所述时域数据。该方法可以既可以保证发送数据的低峰均功率比PAPR,又可以获得较高的频谱效率。该方法可以应用于物联网IoT通信。

Description

数据压缩方法及装置
本申请要求于2019年03月30日提交国家知识产权局、申请号为201910253984.7、申请名称为“数据压缩方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及数据的压缩方法及装置。
背景技术
基于市场需求,无线通信系统中,例如长期演进(long term evolution,LTE)或第五代(5th generation,5G)移动通信系统中,提出了物联网(internet of things,IoT)通信。IoT通信可以是机器与机器(machine to machine,M2M)通信、机器类型通信(machine type communication,MTC)或海量物联网通信(massive machine type communications,mMTC)。IoT通信可以允许终端设备间进行通信,或者可以在无需人为干预的条件下允许终端设备与网络设备进行通信。例如,IoT通信的应用场景可以包括:智能电网、工业自动化控制、无线传感器网络、智能家电、智能水表、共享单车等。
发明内容
第一方面,提供了一种数据发送方法,包括:对长度为M的π/2-BPSK调制数据进行第一处理,得到长度为M的第一频域数据,其中,所述第一处理中包括傅立叶变换,M为偶数;对长度为Q的第二频域数据进行第二处理,得到时域数据,其中,所述第二频域数据中的数据包括于所述第一频域数据中,Q为正整数,M大于Q,Q大于或等于M/2,所述第二处理中包括傅立叶反变换;在一个时域符号上发送所述时域数据。或者,提供了一种数据发送方法,包括:对长度为M的BPSK调制数据进行第一处理,得到长度为M的第一频域数据,其中,所述第一处理中包括相位旋转和傅立叶变换,M为偶数;对长度为Q的第二频域数据进行第二处理,得到时域数据,其中,所述第二频域数据中的数据包括于所述第一频域数据中,Q为正整数,M大于Q,Q大于或等于M/2,所述第二处理中包括傅立叶反变换;在一个时域符号上发送所述时域数据。
本申请实施例提供的方法中,通过将长度为M的频域数据压缩得到长度更短的频域压缩数据,可以使得实际数据传输时占用的带宽更小,因此可以提高数据传输的频谱效率。同时,本申请实施例提供的方法中的调制数据为π/2-BPSK,可以保持被发送的时域数据的低PAPR特性。通过该方法可以提高系统的数据传输速率,例如在给定的系统带宽下,每个UE进行数据传输时占用的带宽更小,则可以同时支持更多个UE进行数据传输,且每个UE所传输的数据量没有减少,因此系统的数据传输速率被 提高。
在一种可能的实现中,所述第二频域数据中的数据包括于所述第一频域数据中,包括:所述第二频域数据中第q个频域数据是所述第一频域数据中第
Figure PCTCN2020078619-appb-000001
个频域数据;或者,所述第二频域数据中第q个频域数据是所述第一频域数据中第
Figure PCTCN2020078619-appb-000002
个频域数据;或者,所述第二频域数据中第q个频域数据是所述第一频域数据中第
Figure PCTCN2020078619-appb-000003
个频域数据;其中,q的取值范围是从整数0至Q-1。
通过该方法确定所述第二频域数据中的数据在所述第一频域数据中的位置,可以保证经过压缩得到的第二频域数据相互之间是正交的,从而可以保证在接收端所接收到的数据的正确性。
在一种可能的实现中,所述第二处理中包括:傅立叶反变换和添加循环前缀;或者,频域滤波、傅立叶反变换和添加循环前缀;或者,傅立叶反变换、时域滤波和添加循环前缀。可选地,进行所述频域滤波或时域滤波时使用跟升余弦SRRC滤波器或者升余弦RRC滤波器,且所使用的滤波器的滚降因子为
Figure PCTCN2020078619-appb-000004
通过该方法,可以保证所述第二频域数据进行滤波后的输出数据仍然是正交的,从而可以保证在接收端所接收到的数据的正确性。同时,采用滤波器进行滤波还可以对时域数据进行整形,使得经过整形后的时域数据的幅度变化更加平缓,从而降低PAPR。
在一种可能的实现中,进行所述傅立叶反变换时,所述方法包括:将所述第二频域数据映射至Q个子载波上进行傅立叶变换,用于发送所述长度为M的π/2-BPSK调制数据的频域资源包括所述Q个子载波。该方法中,将长度为M的频域数据压缩得到长度更短的频域压缩数据,将该频域压缩数据映射到Q个子载波上进行发送,相比将其映射到M个子载波上进行发送,可以使得实际数据传输时占用的带宽更小,因此可以提高数据传输的频谱效率。
在一种可能的实现中,所述调制数据为π/2-BPSK调制数据,第一处理中包括傅立叶变换,包括:所述第一处理中依次包括相位旋转和傅里叶变换。其中,所述相位旋转的相位因子为e -j×π×m/M,Q=M/2。通过该方法,可以保证所述第一频域数据是正交的,从而可以保证在接收端所接收到的数据的正确性。
在一种可能的实现中,所述调制数据为BPSK调制数据,所述第一处理中包括相位旋转和傅立叶变换,包括:所述第一处理中依次包括第一相位旋转、第二相位旋转和傅里叶变换。其中,所述第二相位旋转的相位因子为e -j×π×m/M,Q=M/2。
第二方面,提供一种装置,该装置可以是网络设备(或终端设备),也可以是网络设备(或终端设备)中的装置,或者是能够和网络设备(或终端设备)匹配使用的装置。一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性地,
处理模块用于对长度为M的π/2-BPSK调制数据进行第一处理,得到长度为M的 第一频域数据,其中,所述第一处理中包括傅立叶变换,M为偶数;处理模块还用于对长度为Q的第二频域数据进行第二处理,得到时域数据,其中,所述第二频域数据中的数据包括于所述第一频域数据中,Q为正整数,M大于Q,Q大于或等于M/2,所述第二处理中包括傅立叶反变换;通信模块用于在一个时域符号上发送所述时域数据。
在一种可能的实现中,关于第一处理、第二处理和傅立叶反变换的介绍可以参考第一方面中的相关描述,这里不再赘述。
第三方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器用于对长度为M的π/2-BPSK调制数据进行第一处理,得到长度为M的第一频域数据,其中,所述第一处理中包括傅立叶变换,M为偶数;处理器还用于对长度为Q的第二频域数据进行第二处理,得到时域数据,其中,所述第二频域数据中的数据包括于所述第一频域数据中,Q为正整数,M大于Q,Q大于或等于M/2,所述第二处理中包括傅立叶反变换;处理器利用通信接口在一个时域符号上发送所述时域数据。
在一种可能的实现中,关于第一处理、第二处理和傅立叶反变换的介绍可以参考第一方面中的相关描述,这里不再赘述。
第四方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或第一方面中任一种可能的设计所描述的方法。
第五方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面中任一种可能的设计所描述的方法。
第六方面,本申请实施例提供了一种芯片系统,该芯片系统中包括处理器,还可以包括存储器,用于实现第一方面或第一方面中任一种可能的设计所描述的方法。
第七方面,本申请实施例提供了一种通信系统,该通信系统中包括第二方面描述的任一种装置和接收装置,所述接收装置用于接收所述第二方面描述的任一种装置所发送的数据;或者该通信系统中包括第三方面描述的任一种装置和接收装置,所述接收装置用于接收所述第三方面描述的任一种装置发送的数据。
附图说明
图1和图2为本申请实施例提供的数据发送方法的示意图;
图3为本申请实施例提供的数据压缩方法的示例图;
图4为本申请实施例提供的时域符号的结构示例图;
图5为本申请实施例提供的仿真结果图;
图6和图7本申请实施例提供的装置的结构示例图。
具体实施方式
本申请实施例提供的技术方案可以应用于各种通信系统。示例性地,本申请实施例提供的技术方案可以应用于能够支持IoT的通信系统。例如,本申请实施例提供的技术方案可以应用但不限于:5G、LTE或未来通信系统。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。其中,通信设备可以包括网络设备和终端设备。通信设备间的无线通信可以包括:网络设备和终端设备间的无线通信、网络设备和网络设备间的无线通信、以及终端设备和终端设备间的无线通信。在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信号传输”、“信息传输”或“传输”等。在本申请实施例中,传输可以包括发送或接收。示例性地,传输可以是上行传输,例如可以是终端设备向网络设备发送信号;传输也可以是下行传输,例如可以是网络设备向终端设备发送信号。
本申请实施例提供的技术方案在通信系统中应用时,可以应用于各种接入技术。例如,可以应用于正交多址接入(orthogonal multiple access,OMA)技术或非正交多址接入(non-orthogonal multiple access,NOMA)技术。应用于正交多址接入技术时,可以应用于正交频分多址(orthogonal frequency division multiple access,OFDMA)或单载波频分多址(single carrier frequency division multiple access,SC-FDMA)等技术,本申请实施例不做限制。应用于非正交多址接入技术时,可以应用于稀疏码多址接入(sparsecode multiple access,SCMA)、多用户共享接入(multi-usershared access,MUSA)、图样分割多址接入(patterndivision multiple access,PDMA)、交织格栅多址接入(interleave-gridmultiple access,IGMA)、资源扩展多址接入(resourcespreading multiple access,RSMA)、非正交编码多址接入(non-orthogonalcoded multiple access,NCMA)或非正交编码接入(non-orthogonalcoded access,NOCA)等技术,本申请实施例不做限制。
本申请实施例提供的技术方案以网络设备和终端设备之间的通信为例进行描述,其中网络设备为调度实体,终端设备为从属实体。本领域技术人员可以将该技术方案用于进行其它调度实体和从属实体间的无线通信,例如宏基站和微基站之间的无线通信,例如第一终端和第二终端间的设备到设备(device to device,D2D)通信。
本申请实施例涉及的终端设备还可以称为终端,可以是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、 平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中,以用于实现终端的功能的装置是终端,以终端是UE为例,描述本申请实施例提供的技术方案。
本申请实施例涉及的网络设备包括基站(base station,BS),基站可以是一种部署在无线接入网中能够和终端进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G中的基站或LTE中的基站,其中,5G中的基站还可以称为传输接收点(transmission reception point,TRP)或gNB(gNodeB)。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
在本申请实施例中,发送端向接收端发送数据或者信号。发送端可以是基站,也可以是UE;接收端可以是基站,也可以是UE。例如,当数据传输为下行(downlink,DL)时,发送端是基站,接收端是UE;当数据传输的为上行(uplink,UL)时,发送端是UE,接收端是基站;当数据传输为无线回传的DL时,发送端是宏基站,接收端是微基站;当数据传输为无线回传的UL时,发送端是微基站,接收端是宏基站;当数据传输为D2D通信或者是车辆外联(vehicle to everything,V2X)通信时,发送端是第一UE,接收端是第二UE。在本申请实施例中,“第一”、“第二”等词汇是用于区分的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在通信系统中,发送端向接收端发送数据时,发送端生成的时域数据可以经过功率放大器(power amplifier,PA)进行放大后发送至接收端。在时域数据经过PA时,为了保证放大效率,可以对时域数据的峰均功率比(peak to average power ratio,PAPR,又称为峰均比)有一定的要求。高PAPR的时域数据经过PA后的放大性能可能是非线性的,低PAPR的时域数据经过非线性的PA可以工作在更高的工作点,即低PAPR的时域数据经过PA后的输出功率相比高PAPR的时域数据经过PA后的输出功率更大,因此接收机性能也更好。例如对于高频(high frequency,HF)场景、IoT场景、或V2X场景等,这些场景使用的PA的线性度比较差,因此需要低PAPR的波形(或,发送方法),即要求利用该波形所发送的时域数据的PAPR较低,例如1dB、2dB、或3dB等。
为了实现低PAPR的数据发送方法,提出了一种使用“SC-FDMA+Pi/2-二相移相键控(binary phase shift keying,BPSK)调制方式”的发送方法。其中,Pi为圆周率,Pi/2-BPSK用于将每1个比特的数据调制为1个复数符号。在SC-FDMA+Pi/2-BPSK的发送方法中,可以对待发送数据(待发送比特)进行图1所示的处理。如图1所示, 对于待发送比特,发送端可以对其依次进行Pi/2-BPSK调制、离散傅立叶变换(discrete fourier transform,DFT)、频域滤波、快速傅立叶反变换(inverse fast Fourier transformation,IFFT)、和添加循环前缀(cyclic prefix,CP),得到时域数据,并将所得到的时域数据发送至接收端。在本申请实施例中,Pi/2-BPSK还可以被描述为π/2-BPSK,其中,π表示圆周率。
虽然SC-FDMA+Pi/2-BPSK的数据发送方法可以降低PAPR,但是其相对“SC-FDMA+高阶调制方式(例如四相移相键控(quadrature phase shift keying,QPSK))”的数据发送方法的频谱效率较低。其中,SC-FDMA+QPSK调制方式的数据发送方法如图1所示,其中的调制具体为QPSK调制方式。在对待发送比特的处理中,Pi/2-BPSK用于将每1个比特的数据调制为1个复数符号,QPSK用于将每2个比特的数据调制为1个复数符号,1个复数符号可以映射至1个资源单元上发送。因此,相对QPSK,采用Pi/2-BPSK时每个时频资源上所承载的比特数少1半,即SC-FDMA+Pi/2-BPSK的数据发送方法的频谱效率较低。其中,资源单元可以是例如LTE 36.211标准协议或5G 38.211标准协议中的资源元素(resource element,RE),也可以是其它的资源单元,本申请实施例不做限制。一个RE时域上对应一个时域符号,频域上对应一个子载波。
为了解决上述SC-FDMA+Pi/2-BPSK的数据发送方法的频谱效率较低的问题,本申请实施例提供了图2所示的信号发送方法,该信号发送方法还可以被称为数据压缩方法。
S201,发送端对长度为M的π/2-BPSK调制数据进行第一处理,得到长度为M的第一频域数据,其中,所述第一处理中包括傅立叶变换。
在本申请实施例中,一个数据是π/2-BPSK调制数据表示该数据是对一个待调制比特进行π/2-BPSK调制后得到的数据。在本申请实施例中,调制数据还可以称为调制符号。一个调制数据为一个复数。可选地,该复数的虚部等于0时,该复数等效为实数。
在本申请实施例中,长度为M的π/2-BPSK调制数据表示M个π/2-BPSK调制数据。示例性地,待调制比特中包括M个比特,发送端对该M个比特中的每个比特分别进行π/2-BPSK调制,从而得到长度为M的π/2-BPSK调制数据。其中,待调制比特还可以称为待调制比特流、待发送比特、待发送比特流等。
示例性地,待调制比特表示为b,b中包括M个比特,其中第m个比特表示为b(m),b(m)的取值为0或者1。m的取值范围是0至M-1,即m可以取遍0至M-1。对待调制比特b进行π/2-BPSK调制,可以得到长度为M的π/2-BPSK调制数据d,其中,d中第m个数据表示为d(m)。
可选地,
Figure PCTCN2020078619-appb-000005
其中,j表示虚数单位,虚数单位的平方等于-1。mod表示取模运算。在本申请实施例中,或者可以采用其他的π/2-BPSK调制方式得到调制数据d,其满足:调制数据d中相邻两个数据之间的相位差为π/2或-π/2,或者调制数据d中相邻两个数据之间的相位差为π/2或3π/2。例如,d(m)和d(m+1)的相位差为π/2或-π/2,或者为π/2或3π/2,其中,m+1的取值范围是1至M-1。
在本申请实施例中,待调制比特可以是未经过物理层比特级处理的比特流Str1,也可以是对Str1经过物理层比特级处理后得到的比特流Str2。其中,物理层比特级处理可以包括以下处理中的一种或多种:分段、级联、信道编码、速率匹配、加扰、和添加循环冗余校验(cyclic redundancy check,CRC等。可选地,物理层比特级处理可以参考LTE协议36.212和36.211,或者参考NR协议38.212和38.211,或者参考其它的比特级处理,本申请实施例不做限制。比特流Str1可以是由发送端的媒体接入控制(media access control,MAC)层递交至发送端的物理层的传输块,或者比特流Str1是物理层控制信道的信息比特。发送端可以对Str1或Str2经过处理后,将其承载在相应的信道上发送至接收端。
在一种可能的实现中,第一处理中包括傅立叶变换。发送端可以对长度为M的π/2-BPSK调制数据d进行傅立叶变换,得到长度为M的第一频域数据X,其中,第一频域数据X中第k个数据表示为x(k),k的取值范围是0至M-1。
示例性地,
Figure PCTCN2020078619-appb-000006
其中,j表示虚数单位;系数
Figure PCTCN2020078619-appb-000007
用于调整经过傅立叶变换得到的输出数据的功率,
Figure PCTCN2020078619-appb-000008
为实数,例如
Figure PCTCN2020078619-appb-000009
或者1。
在一种可能的实现中,第一处理中包括相位旋转和傅立叶变换。发送端可以对长度为M的π/2-BPSK调制数据d依次进行相位旋转和傅立叶变换,得到长度为M的第一频域数据X,其中,第一频域数据X中第k个数据表示为x(k),k的取值范围是0至M-1。
示例性地,
Figure PCTCN2020078619-appb-000010
其中,j表示虚数单位;系数
Figure PCTCN2020078619-appb-000011
用于调整经过傅立叶变换得到的输出数据的功率,
Figure PCTCN2020078619-appb-000012
为实数,例如
Figure PCTCN2020078619-appb-000013
或者1。
Figure PCTCN2020078619-appb-000014
表示相位旋转因子,该相位旋转因子可以是由M确定的。示例性地,
Figure PCTCN2020078619-appb-000015
的值为e -j×π×m/M。该方法可以适用于Q=M/2的场景,也可以用于其它场景,本申请实施例不做限制。其中,对于Q的介绍请参考S202。
在本申请实施例中,傅立叶变换可以是离散傅立叶变换(discrete fourier transform,DFT)、快速傅立叶变换(fast fourier transform,FFT),或者其它傅立叶变换形式,本申请不做限制。
S202,发送端对长度为Q的第二频域数据进行第二处理,得到时域数据,并在一个时域符号上发送该时域数据。其中,第二频域数据是第一频域数据的压缩数据,Q为正整数,M大于或等于Q。
发送端可以通过以下方式确定M和Q的值。
可选地,M和Q的值是预配置的;或者M和Q的值是基站通过信令为UE通知的;或者M的值是预配置的,Q的值是基站通过信令为UE通知的;或者Q的值是预配置的,M的值是基站通过信令为UE通知的。
可选地,M和Q/M(Q和M的比值)的值是预配置的;或者M和Q/M的值是基站通过信令为UE通知的;或者M的值是预配置的,Q/M的值是基站通过信令为UE 通知的;或者Q/M的值是预配置的,M的值是基站通过信令为UE通知的。该方法中,M可以替换为Q,和/或Q/M可以替换为M/Q。通过该方法,知道了M和Q/M,便可以确定出M和Q。示例性地,Q/M的候选取值为1/2或1,则基站可以通过1比特为UE配置Q/M的具体值,例如,该比特为0时,Q/M的具体值为1/2,该比特为1时,Q/M的具体值为1。
第二频域数据是第一频域数据的压缩数据,包括:第二频域数据中的数据包括于第一频域数据中。
示例性地,可以根据以下方式一至方式六中任一种方式确定第二频域数据。或者,可以描述为:可以根据以下方式一至方式六中任一种方式对第一频域数据进行压缩,得到第二频域数据。
方式一:第二频域数据中第q个频域数据是第一频域数据中第
Figure PCTCN2020078619-appb-000016
个频域数据,即
Figure PCTCN2020078619-appb-000017
表示第一频域数据中第
Figure PCTCN2020078619-appb-000018
个频域数据。可选地,M为偶数,Q大于或等于M/2。在方式一至方式六中,y(q)表示第二频域数据Y中的第q个频域数据,q是取值范围为0至Q-1的整数。
示例性地,M=6,Q=M/2=3时,当
Figure PCTCN2020078619-appb-000019
时,如图3(a)所示,经过压缩可以得到第二频域数据中的3个数据分别是第一频域数据中的第2、第3、和第4个数据。
示例性地,M=12,Q=M/2=6时,当
Figure PCTCN2020078619-appb-000020
时,如图3(b)所示,经过压缩可以得到第二频域数据中的6个数据分别是第一频域数据中的第3、第4、第5、第6、第7和第8个数据。
示例性地,M=12,Q>M/2,Q=9,当
Figure PCTCN2020078619-appb-000021
时,如图3(c)所示,经过压缩可以得到第二频域数据中的9个数据分别是第一频域数据中的第2、第3、第4、第5、第6、第7、第8、第9和第10个数据。
方式二:第二频域数据中第q个频域数据是第一频域数据中第
Figure PCTCN2020078619-appb-000022
个频域数据,即
Figure PCTCN2020078619-appb-000023
其中,
Figure PCTCN2020078619-appb-000024
表示第一频域数据中第
Figure PCTCN2020078619-appb-000025
个频域数据。可选地,M为偶数,Q大于或等于M/2。
方式三:第二频域数据中第q个频域数据是第一频域数据中第
Figure PCTCN2020078619-appb-000026
个频域数据,即
Figure PCTCN2020078619-appb-000027
其中,
Figure PCTCN2020078619-appb-000028
表示第一频域数据中第
Figure PCTCN2020078619-appb-000029
个频域数据。可选地,M为偶数,Q大于或等于M/2。
方式四:第二频域数据中第q个频域数据是第一频域数据中第2q个频域数据,即y(q)=x(2q)。其中,x(2q)表示第一频域数据中第2q个频域数据,2q是大于等于0且小于等于M的整数。
示例性地,M=6,Q=M/2=3时,当y(q)=x(2q)时,如图3(d)所示,经过压缩可以得到第二频域数据中的3个数据分别是第一频域数据中的第0、第2、和第4个数据。
方式五:第二频域数据中第q个频域数据是第一频域数据中第2q+1个频域数据,即y(q)=x(2q+1)。其中,x(2q+1)表示第一频域数据中第2q+1个频域数据,2q+1是 大于等于0且小于等于M的整数。
示例性地,M=6,Q=M/2=3时,当y(q)=x(2q+1)时,如图3(e)所示,经过压缩可以得到第二频域数据中的3个数据分别是第一频域数据中的第1、第3、和第5个数据。
方式六:当Q=M/2时,第二频域数据中的数据是第一频域数据中的数据,是除了上述方式一确定的第二频域数据以外的其它数据,或者是除了上述方式二确定的第二频域数据以外的其它数据,或者是除了上述方式三确定的第二频域数据以外的其它数据。
在一种可能的实现中,第二频域数据中的数据是第一频域数据中除了上述方式一确定的第二频域数据以外的其它数据。示例性地,第二频域数据中第q个频域数据是第一频域数据中第
Figure PCTCN2020078619-appb-000030
个频域数据,即
Figure PCTCN2020078619-appb-000031
其中,mod表示取模操作。
示例性地,M=6,Q=M/2=3时,当
Figure PCTCN2020078619-appb-000032
时,如图3(f)所示,经过压缩可以得到第二频域数据中的3个数据分别是第一频域数据中的第1、第0、和第5个数据。
示例性地,M=12,Q=M/2=6时,当
Figure PCTCN2020078619-appb-000033
时,如图3(g)所示,经过压缩可以得到第二频域数据中的6个数据分别是第一频域数据中的第2、第1、第0、第11、第10和第9个数据。
在一种可能的实现中,Q=M/2时,第二频域数据中的数据是第一频域数据中除了上述方式二确定的第二频域数据以外的其它数据。示例性地,第二频域数据中第q个频域数据是第一频域数据中第
Figure PCTCN2020078619-appb-000034
个频域数据,即
Figure PCTCN2020078619-appb-000035
其中,mod表示取模操作。
在一种可能的实现中,Q=M/2时,第二频域数据中的数据是第一频域数据中除了上述方式三确定的第二频域数据以外的其它数据。示例性地,第二频域数据中第q个频域数据是第一频域数据中第
Figure PCTCN2020078619-appb-000036
个频域数据,即
Figure PCTCN2020078619-appb-000037
其中,mod表示取模操作。
在本申请实施例提供的方法中,第二频域数据中的数据索引可以和图3所示的示例不同。上述方式一至方式六仅是示例性描述,第二频域数据中的数据也可以是第一频域数据中的其它数据,本申请实施例不做限制。
发送端对长度为Q的第二频域数据进行第二处理,得到时域数据。其中,第二处理中可以依次包括:
傅立叶反变换;或者,
傅立叶反变换和添加循环前缀;或者,
频域滤波和傅立叶反变换;或者,
傅立叶反变换和时域滤波;或者,
频域滤波、傅立叶反变换和添加循环前缀;或者,
傅立叶反变换、时域滤波和添加循环前缀。
在一种可能的实现中,发送端对第二频域数据进行第二处理时,如果第二处理中 包括频域滤波或时域滤波,可以使用跟升余弦(square root raised cosine,SRRC)滤波器、升余弦(root raised cosine,RRC)滤波器或者其它形式的滤波器进行滤波,本申请实施例不做限制。可选地,该SRRC滤波器或所述滤波器的滚降因子为
Figure PCTCN2020078619-appb-000038
其中,频域滤波可以表示为频域数据和滤波系数的乘积,时域滤波可以表示为经过傅里叶反变换得到的时域数据和滤波系数的循环卷积。
为了简化描述,本申请实施例以第二处理中依次包括频域滤波、傅立叶反变换和添加循环前缀为例,详细描述第二处理的实现过程。
频域滤波:
发送端对长度为Q的第二频域数据进行频域滤波,得到长度为Q的频域滤波数据Y filter。频域滤波数据Y filter中第q个数据y filter(q)等于第二频域数据中的第q个数据y(q)乘以频域滤波器系数s filter(q)。其中,s filter(q)为频域滤波器系数S中的第q个系数,q是取值范围为0至Q-1的整数。即:
y filter(q)=y(q)×s filter(q),q=0,1,2,...,Q-1
可选地,频域滤波器系数S中的系数全部为1时,第二频域数据Y和频域滤波数据Y filter相同,即可以认为第二处理中不包括频域滤波。可选地,频域滤波器系数S的长度为Q(即,频域滤波器系数S中包括Q个滤波器系数),或者频域滤波器系数S的长度为大于Q,本申请实施例不做限制。
可选地,频域滤波器系数S的长度为Q时,频域滤波器系数S中的系数包括于基础频域滤波器系数S base中。在本申请实施例中,频域滤波器系数S可以称为第一滤波器系数或者其它名称,基础频域滤波器系数S base可以称为初始频域滤波器系数、第二频域滤波器系数或者其它名称,本申请实施例不做限制。
可选地,S base中包括M个系数。根据基础频域滤波器系数S base确定频域滤波器系数S的方法类似上述从第一频域数据中确定第二频域数据的方法。其中,第一频域数据类似基础频域滤波器系数S base,第二频域数据类似频域滤波器系数S。从第一频域数据中确定第二频域数据的方式和从基础频域滤波器系数S base中确定频域滤波器系数S的方式可以相同,也可以不同,本申请实施例不做限制。例如,采用方式一,从第一频域数据中确定第二频域数据;且采用方式一从基础频域滤波器系数S base中确定频域滤波器系数S。再例如,采用方式一,从第一频域数据中确定第二频域数据;且采用方式二从基础频域滤波器系数S base中确定频域滤波器系数S。
在本申请实施例中,频域滤波和频域数据压缩可以分别执行,也可以合并执行,本申请实施例不做限制。例如,当频域滤波和频域数据压缩合并执行,且频域数据压缩方式为上述方式一时,该实现可以表示为:
Figure PCTCN2020078619-appb-000039
傅立叶反变换:
发送端对频域滤波数据Y filter进行傅立叶反变换时,将频域滤波数据Y filter中的Q个数据一对一地映射至相应的Q个子载波,并进行傅立叶反变换。其中,该Q个子载波位于相同的时域符号。将该Q个数据一对一地映射至相应的Q个子载波还可以描述为:将该Q个数据一对一地映射至相应的Q个资源元素(resource element,RE),该Q个RE对应于或位于相同的时域符号,一个RE频域对应于一个子载波。
可选地,频域滤波数据Y filter所映射至的Q个子载波的位置可以是预配置的;当发送端是UE时,也可以是基站通过信令为UE指示的。例如,基站可以为UE指示该Q个子载波所在的RB位置,该Q个子载波包括于用于发送长度为M的π/2-BPSK调制数据的频域资源。例如,基站通过信令为UE指示数据信道的频域资源,该频域资源为该Q个子载波所在的RB位置,该数据信道用于携带该长度为M的π/2-BPSK调制数据。关于RB的介绍可以参考LTE协议36.211、NR协议38.211或未来通信系统,本申请实施例不做限制。该Q个子载波的位置可以是连续的,也可以是离散的。当该Q个子载波的位置是离散的时,该Q个子载波包括至少2个子载波,该至少2个子载波中的任一个子载波和该Q个子载波中的其它子载波在频域不相邻。在本申请实施例中,至少2个可以是2个、3个、4个或者更多个,本申请实施例不做限制。
在本申请实施例中,信令可以是半静态信令和/或动态信令。半静态信令也可以称为高层信令。
在本申请实施例中,半静态信令可以是无线资源控制(radio resource control,RRC)信令、广播消息、系统消息、或媒体接入控制(medium access control,MAC)控制元素(control element,CE)。其中,广播消息可以包括剩余最小系统消息(remaining minimum system information,RMSI)。
在本申请实施例中,动态信令可以是物理层信令。物理层信令可以是物理控制信道携带的信令或者物理数据信道携带的信令。其中,物理数据信道可以是下行信道,例如物理下行共享信道(physical downlink shared channel,PDSCH)。物理控制信道可以是物理下行控制信道(physical downlink control channel,PDCCH)、增强物理下行控制信道(enhanced physical downlink control channel,EPDCCH)、窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH)或机器类通信物理下行控制信道(machine type communication(MTC)physical downlink control channel,MPDCCH)。其中,PDCCH或EPDCCH携带的信令还可以称为下行控制信息(downlink control information,DCI)。物理控制信道还可以是物理副链路控制信道(physical sidelink control channel),物理副链路控制信道携带的信令还可以称为副链路控制信息(sidelink control information,SCI)。
可选地,频域滤波数据Y filter中的数据可以被一一地映射至连续的Q个子载波上。例如,该Q个子载波的起始位置为
Figure PCTCN2020078619-appb-000040
则该Q个子载波的位置分别为:
Figure PCTCN2020078619-appb-000041
其中,
Figure PCTCN2020078619-appb-000042
为起始子载波的位置,
Figure PCTCN2020078619-appb-000043
为整数,例如0、1、2等。
可选地,频域滤波数据Y filter中的数据可以被一一地映射至等间隔的Q个子载波上。例如,该Q个子载波的起始位置为
Figure PCTCN2020078619-appb-000044
相邻子载波之间的间隔为q step,则该Q个子载波中的第q个子载波的位置为:
Figure PCTCN2020078619-appb-000045
其中,q的取值范围是0至Q-1。其 中,
Figure PCTCN2020078619-appb-000046
为起始子载波的位置,
Figure PCTCN2020078619-appb-000047
为整数,例如0、1、2等。q step为正整数,例如1、2、3等。
可选地,频域滤波数据Y filter中的数据可以被一一地映射至M个子载波中的Q个子载波上。该Q个子载波在该M个子载波中的位置同第二频域数据在第一频域数据中的位置,即确定该Q个子载波在该M个子载波中的位置的方法同确定第二频域数据在第一频域数据中的位置的方法。该M个子载波的位置可以是预配置的;当发送端是UE时,也可以是基站通过信令为UE指示的。例如,基站可以为UE指示该M个子载波所在的RB位置。
示例性地,发送端是UE,基站设备通过信令为UE指示的M个子载波的位置为[12,13,14,15,16,17]。假设M=6,Q=3,采用上述方式一从第一频域数据中确定第二频域数据,则第二频域数据中包括第一频域数据中的第2、第3和第4个数据,则频域滤波数据Y filter中的3个数据分别一对一地映射至该M个子载波中的第2、第3和第4个子载波,即该3个数据所映射至的3个子载波的位置分别为[14,15,16]。
在本申请实施例中,傅里叶反变换可以是离散傅里叶反变换(inversediscrete fouriertransform,IDFT),或者快速傅里叶反变换(inverse fast fouriertransform,IFFT),也可以是其他形式的傅里叶反变换;本申请实施例不做限制。例如,发送端对频域滤波数据Y filter进行傅立叶反变换时,可以采用LTE标准36.211或NR标准38.211中的傅立叶反变换方法。
示例性地,发送端对频域滤波数据Y filter进行傅立叶反变换后,得到时域信号,该时域信号在时刻t表示为:
Figure PCTCN2020078619-appb-000048
其中,t为实数。y filter(q)是频域滤波数据Y filter中的第q个数据,L q表示y filter(q)被映射至的子载波位置。Δf为子载波间隔,例如LTE中Δf可以是15kHz(千赫兹),NR中Δf可以是7.5kHz、15kHz、30kHz、60kHz等。t offset表示时延偏移,t offset为实数,t offset的值可以是预配置的;t offset的值也可以是由基站通过信令通知UE的。
Figure PCTCN2020078619-appb-000049
是用于调整傅立叶反变换输出数据功率的系数,
Figure PCTCN2020078619-appb-000050
为实数,例如
Figure PCTCN2020078619-appb-000051
或1.5等。q re,offset为频域偏移因子,q re,offset的值可以是预配置的,例如q re,offset=1/2;q re,offset的值也可以是由基站通过信令通知UE的。j为虚数单位,虚数单位的平方等于-1。
示例性地,进行傅立叶反变换时,该变换的点数为2048,即在一个时域符号上最多有2048个子载波时,该2048个子载波的位置分别从0到2047。频域滤波数据Y filter中的各数据的子载波位置即该数据在该2048个子载波中的位置。
在本申请实施例中,时域符号可以是各种类型的时域符号,例如单载波时域符号、正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、或单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号等。一个时域符号可以包含持续时间为N×T s的时域连续信号(time continuous signal);或者从 离散的角度一个时域符号可以包含可以包括N个数据,该N个数据还可以描述为N个采样点或该时域符号的纯数据部分。可选地,如图4所示,该时域符号中还可以包括循环前缀(cyclic prefix,CP),该循环前缀的长度是N cp个采样点。其中,N和Ncp为正整数,示例性地,N为2048、1024、512等,N cp为160、144、88等。关于时域符号、时隙、子帧、无线帧、N、N cp以及时间单元T s可以参考LTE或5G中相应的介绍,这里不再赘述。例如在LTE中,时间单元T s为1/(15000*2048)秒。例如在NR中,时间单元T s可以为1/(15000*2048)秒,1/(15000*1024)秒,1/(15000*512)秒等。可选地,将一个时域符号的时域连续信号进行离散采样,时间单元T s可以是得到的采样数据中相邻两个采样点之间的时间间隔。
如上所述,对第二频域数据进行第二处理后得到的时域信号在时刻t表示为:
Figure PCTCN2020078619-appb-000052
则当第二处理中包括添加循环前缀时,以
Figure PCTCN2020078619-appb-000053
对s(t)进行离散采样,对于时域符号中的第
Figure PCTCN2020078619-appb-000054
个采样点,其中,
Figure PCTCN2020078619-appb-000055
该采样点上发送的时域数据为:
Figure PCTCN2020078619-appb-000056
类似地,当第二处理中不包括添加循环前缀时,以
Figure PCTCN2020078619-appb-000057
对s(t)进行离散采样,对于时域符号中的第
Figure PCTCN2020078619-appb-000058
个采样点,其中,
Figure PCTCN2020078619-appb-000059
该采样点上发送的时域数据为:
Figure PCTCN2020078619-appb-000060
其中,t offset=-N cp·T s
Figure PCTCN2020078619-appb-000061
T s表示相邻采样点之间的时间间隔,Δf为子载波间隔。
可选地,当第二处理中是对第二频域数据进行傅立叶变换时,可以将上述傅立叶变换方法中的第二频域滤波数据替换为第二频域数据,并执行上述傅立叶变换方法。
在本申请实施例中,发送端发送数据,既可以是发送端直接在空口发送该数据,也可以指发送端间接在空口发送该数据,本申请不做限制。发送端间接在空口发送数据时,可以是发送端对该数据进行数据处理后,例如中射频调制后,在空口发送该数据。
本申请实施例提供的方法可以应用于发送端在信道上向接收端发送数据;相应地,接收端可以在该信道上接收发送端所发送的数据。其中,该信道可以是各种可能的信道或者信号,例如:广播信道(physical broadcast channel,PBCH)、主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)、各种类型的上行参考信号(reference signal,RS)、各种类型的下行RS、或者其它可 能的物理信道等,本申请不做限制。图1所示的方法应用于发送端在信道上向接收端发送数据时,该信道上的待发送数据可以作为图1所示的方法的输入数据,发送端可以根据该输入数据以及图1所示的方法进行数据处理,得到相应的输出数据,并将该输出数据在该信道上发送至接收端。其中,该待发送数据的数据类型可以是调制数据。
在图2所示的方法中,S201或者可以实现为:发送端对长度为M的BPSK调制数据进行第一处理,得到长度为M的第一频域数据,其中,所述第一处理中包括相位旋转和傅立叶变换。
在本申请实施例中,一个数据是BPSK调制数据表示该数据是对一个待调制比特进行BPSK后得到的数据。示例性地,该待调制比特的值和所得到BPSK调制数据如表1(a)、表1(b)或表1(c)所示。
表1(a)
Figure PCTCN2020078619-appb-000062
表1(b)
Figure PCTCN2020078619-appb-000063
表1(c)
Figure PCTCN2020078619-appb-000064
在本申请实施例中,长度为M的BPSK调制数据表示M个BPSK调制数据。示例性地,待调制比特中包括M个比特,发送端可以该M个比特中的每个比特分别进行BPSK调制,从而得到长度为M的BPSK调制数据。
示例性地,假设待调制比特表示为b,b中包括M个比特,其中第m个数据表示为b(m),b(m)的取值为0或者1。其中,m的取值范围是0至M-1。对待调制比特b进行BPSK调制,可以得到长度为M的BPSK调制数据d bpsk,其中,d bpsk中第m个数据表示为d bpsk(m)。
可选地,d bpsk(m)=1-2×b(m)、d bpsk(m)=2×b(m)-1或
Figure PCTCN2020078619-appb-000065
对于长度为M的BPSK调制数据d bpsk,该调制数据中相邻两个数据之间的相位差为0或π。例如,d bpsk(m)和d bpsk(m+1)的相位差为0或π,其中,m+1的取值范围是1至M-1。在本申请实施例中,或者可以采用其他的BPSK调制方式得到调制数据d bpsk,其满足:该调制数据中相邻两个数据之间的相位差为0或π。
发送端对长度为M的BPSK调制数据d进行相位旋转,得到相位旋转输出数据d,其中,d中第m个数据表示为:
Figure PCTCN2020078619-appb-000066
其中,
Figure PCTCN2020078619-appb-000067
表示对d bpsk(m)进行相位旋转的旋转因子,j表示虚数单位,即
Figure PCTCN2020078619-appb-000068
旋转因子
Figure PCTCN2020078619-appb-000069
可以是
Figure PCTCN2020078619-appb-000070
或者e -j×π×m/2,或者e j×π×(mmod2)/2,或者e -j×π×(mmod2)/2。该相位旋转可以看做对BPSK调制数据进行Pi/2相位旋转。
例如,M的值为6,待发送比特数据为[0,1,1,0,0,1]时,根据表1(a)得到的BPSK数据d bpsk为[1,-1,-1,1,1,-1]。相位旋转的相位因子为e j×π×(mmod2)/2时,由该BPSK数据经过Pi/2相位旋转得到的Pi/2-BPSK调制的调制数据为[1,-j,-1,j,1,-j]。
对待调制比特进行“BPSK调制+相位旋转”的方法等效于对待调制比特进行π/2-BPSK。发送端对相位旋转输出数据d进行傅立叶变换的方法(例如傅立叶变换、或相位旋转+傅立叶变换)类似上述S201中发送端对π/2-BPSK调制数据d进行傅立叶变换的方法,这里不再赘述。
本申请实施例提供的方法中,通过将长度为M的频域数据压缩得到长度更短的频域压缩数据,可以使得实际数据传输时占用的带宽更小,因此可以提高数据传输的频谱效率。同时,本申请实施例提供的方法中的调制数据为π/2-BPSK,可以保持被发送的时域数据的低PAPR特性。长度为M的Pi/2-BPSK调制数据中相邻2个调制数据的相位相差π/2或者-π/2,相邻两个调制数据在生成时域数据时经过了过采样和叠加,它们相位相差π/2或者-π/2可以避免同向的叠加,减小了最大值的幅度,因此可以降低被发送的时域数据的PAPR。
对于一次数据传输,如图5为本申请实施例提供的仿真结果,其中横轴表示时域数据的PAPR,纵轴表示互补累计分布函数(complementary cumulative distribution function,CCDF)。其中曲线(1)为根据图1所示的方法,由长度为6的QPSK调制数据生成的时域数据的PAPR;曲线(2)为根据图1所示的方法,由长度为12的QPSK调制数据生成的时域数据的PAPR;曲线(3)为根据图本申请实施例提供的方法(图2所示的方法),M=12,Q=6的时域数据的PAPR;曲线(4)为根据图本申请实施例提供的方法,M=24,Q=12时的时域数据的PAPR。其中,曲线(1)和曲线(3)对应的频谱效率是一致的,曲线(2)和曲线(4)对应的频谱效率是一致的。对比曲线(1)和曲线(3)可以知道,本申请实施例提供的方法的PAPR增益为0.6dB;对比曲线(2)和曲线(4)可以知道,本申请实施例提供的方法的PAPR增益为0.9dB。
本申请实施例提供的方法除了应用于BPSK调和π/2-BPSK,还可以应用于其它调制方式。例如,将本申请实施例提供的方法中的π/2-BPSK调制数据替换为:对待调制比特依次进行K元脉冲幅度调制(Kary pulse amplitude modulation,K-PAM)和 Pi/2相位旋转后得到的数据,或者将本申请实施例提供的方法中的BPSK调制数据替换为:对待调制比特进行K–PAM后得到的数据。其中,进行Pi/2相位旋转时使用的相位因子与前文描述的相位因子
Figure PCTCN2020078619-appb-000071
相同。其中,K=2 A,A为正整数,例如1、2、3、4或者更大的值,本申请实施例不做限制。K-PAM调制方式得到的每个调制数据可以承载A个比特的信息。
例如K=2时,2-PAM调制数据的星座(constellation)点可以表示为[-B,B],其中B为实数例如B=1;每个调制数据可以承载A=1个比特的信息。此时,该1比特信息值为1时,对应的2-PAM调制数据的输出为B,该1比特信息值为0时,对应的2-PAM调制数据的输出为-B;或者该1比特信息值为1时,对应的2-PAM调制数据的输出为-B,该1比特信息值为0时,对应的2-PAM调制数据的输出为B。对2-PAM调制数据进行Pi/2相位旋转与采用Pi/2-BPSK调制方式进行调制是等效的。
例如K=4时,4-PAM调制数据的星座点可以表示为[-3B,-B,B,3B],其中B为实数。例如
Figure PCTCN2020078619-appb-000072
每个调制数据可以承载A=2个比特的信息。一种可能的实现方式中,该2比特的值为00时,对应的4-PAM调制数据的输出为-3B,该2比特的值为01时,对应的4-PAM调制数据的输出为-B,该2比特的值为11时,对应的4-PAM调制数据的输出为B,该2比特的值为10时,对应的4-PAM调制数据的输出为3B。4-PAM调制方式中,2比特的值与4-PAM调制数据的输出的对应关系还可能是其它形式,本申请实施例不做限制。
上述描述了一个时域符号上的数据压缩方法,在一次数据传输中,该方法可以分别应用于多个时域符号,即对每个时域符号上的待发送数据分别应用本申请实施例提供的方法。其中,不同时域符号对应的M和Q可以相同,也可以不同,本申请实施例不做限制。
上述从基站和UE交互的角度描述了本申请实施例提供的方法。为了实现本申请实施例提供的方法中的功能,基站和/或UE可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图6是本申请实施例提供的装置600的结构示意图。其中,装置600可以是UE或基站,能够实现本申请实施例提供的方法;装置600也可以是能够支持UE或基站实现本申请实施例提供的方法的装置,装置600可以安装在基站或UE中。装置600可以是硬件结构、软件模块、或硬件结构加软件模块。装置600可以由芯片系统实现。
装置600中包括处理模块602和通信模块604。处理模块602可以生成用于发送的信号,并可以利用通信模块604发送该信号。处理模块602可以利用通信模块604接收信号,并处理该接收到的信号。处理模块602和通信模块604耦合。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或连接,其可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。耦合可以是有线连接,也可以是无线连接。
在本申请实施例中,通信模块可以是电路、模块、总线、接口、收发器、管脚或者其它可以实现收发功能的装置,本申请实施例不做限制。
图7是本申请实施例提供的装置700的结构示意图。其中,装置700可以是终端设备或基站,能够实现本申请实施例提供的方法;装置700也可以是能够支持终端设备或基站实现本申请实施例提供的方法的装置,比如芯片系统,装置700可以安装在基站或终端设备中。
如图7中所示,装置700中包括处理系统702,用于实现或者用于支持终端设备或基站实现本申请实施例提供的方法。处理系统702可以是一种电路,该电路可以由芯片系统实现。处理系统702中包括一个或多个处理器722,可以用于实现或者用于支持终端设备或基站实现本申请实施例提供的方法。当处理系统702中包括除处理器722以外的其它装置时,处理器722还可以用于管理处理系统702中包括的其它装置,示例性地,该其它装置可能为下述存储器724、总线726和总线接口728中一个或多个。例如,处理器722可以用于管理存储器724,或者处理器722可以用于管理存储器724、总线726和总线接口728。
处理系统702中还可以包括一个或多个存储器724,用于存储指令和/或数据。存储器724可以包括于处理器722中。如果处理系统702中包括存储器724,处理器722可以和存储器724耦合。处理器722可以和存储器724协同操作。处理器722可以执行存储器724中存储的指令。当处理器722执行存储器724中存储的指令时,可以实现或者支持UE或基站实现本申请实施例提供的方法。处理器722还可能读取存储器724中存储的数据。存储器724还可能存储处理器722执行指令时得到的数据。
在本申请实施例中,存储器包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合;存储器还可以包括其它任何具有存储功能的装置,例如电路、器件或软件模块。
处理系统702还可以包括总线接口728,用于提供总线726和其它装置之间的接口。其中,总线接口还可以称为通信接口。在本申请实施例中,通信接口可以是电路、模块、总线、接口、收发器或者其它可以实现收发功能的装置,本申请实施例不做限制。
可选地,装置700包括收发器706,用于通过传输介质和其它通信设备进行通信,从而用于装置700中的其它装置可以和其它通信设备进行通信。其中,该其它装置可能是处理系统702。示例性地,装置700中的其它装置可能利用收发器706和其它通信设备进行通信,接收和/或发送相应的信息。还可以描述为,装置700中的其它装置可能接收相应的信息,其中,该相应的信息由收发器706通过传输介质进行接收,该相应的信息可以通过总线接口728或者通过总线接口728和总线726在收发器706和装置700中的其它装置之间进行交互;和/或,装置700中的其它装置可能发送相应的信息,其中,该相应的信息由收发器706通过传输介质进行发送,该相应的信息可以通过总线接口728或者通过总线接口728和总线726在收发器706和装置700中的其它装置之间进行交互。
装置700还可能包括用户接口704,用户接口704是用户和装置700之间的接口,可能用于用户和装置700进行信息交互。示例性地,用户接口704可能是键盘、鼠标、显示器、扬声器(speaker)、麦克风和操作杆中至少一个。
上述主要从装置700的角度描述了本申请实施例提供的一种装置结构。在该装置中,处理系统702中包括处理器722,还可以包括存储器724、总线726和总线接口728中一种或多种,用于实现本申请实施例提供的方法。处理系统702也在本申请的保护范围。
本申请的装置实施例中,装置的模块划分是一种逻辑功能划分,实际实现时可以有另外的划分方式。例如,装置的各功能模块可以集成于一个模块中,也可以是各个功能模块单独存在,也可以两个或两个以上功能模块集成在一个模块中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
以上各实施例仅用以说明本申请的技术方案,并不用于限定其保护范围。凡在本申请的技术方案的基础上所做的修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (11)

  1. 一种数据压缩方法,其特征在于,包括:
    对长度为M的π/2-二相移相键控BPSK调制数据进行第一处理,得到长度为M的第一频域数据,其中,所述第一处理中包括傅立叶变换,M为偶数;
    对长度为Q的第二频域数据进行第二处理,得到时域数据,其中,所述第二频域数据中的数据包括于所述第一频域数据中,Q为正整数,M大于Q,Q大于或等于M/2,所述第二处理中包括傅立叶反变换;
    在一个时域符号上发送所述时域数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第二频域数据中的数据包括于所述第一频域数据中,包括:
    所述第二频域数据中第q个频域数据是所述第一频域数据中第
    Figure PCTCN2020078619-appb-100001
    个频域数据;
    所述第二频域数据中第q个频域数据是所述第一频域数据中第
    Figure PCTCN2020078619-appb-100002
    个频域数据;或者,
    所述第二频域数据中第q个频域数据是所述第一频域数据中第
    Figure PCTCN2020078619-appb-100003
    个频域数据;
    其中,q的取值范围是从整数0至Q-1。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二处理中包括傅立叶反变换,包括:
    所述第二处理中依次包括:
    傅立叶反变换和添加循环前缀;
    频域滤波、傅立叶反变换和添加循环前缀;或者,
    傅立叶反变换、时域滤波和添加循环前缀。
  4. 根据权利要求3所述的方法,其特征在于,进行所述频域滤波或时域滤波时使用跟升余弦SRRC滤波器或者升余弦RRC滤波器,且所使用的滤波器的滚降因子为
    Figure PCTCN2020078619-appb-100004
  5. 根据权利要求1-4任一项所述的方法,其特征在于,进行所述傅立叶反变换时,所述方法包括:
    将所述第二频域数据映射至Q个子载波上进行傅立叶变换,用于发送所述长度为M的π/2-BPSK调制数据的频域资源包括所述Q个子载波。
  6. 根据权利要求1-5任一项的方法,其特征在于,第一处理中包括傅立叶变换,包括:
    所述第一处理中依次包括相位旋转和傅里叶变换,其中,针对第m个调制数据,所述相位旋转的相位因子为e -j×π×m/M,Q=M/2,m是取值范围为0至M-1的整数。
  7. 一种通信装置,用于实现权利要求1-6任一项所述的方法。
  8. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器 耦合,所述处理器用于执行权利要求1-6任一项所述的方法。
  9. 一种通信装置,其特征在于,包括处理器和通信接口,
    所述处理器用于对长度为M的π/2-二相移相键控BPSK调制数据进行第一处理,得到长度为M的第一频域数据,其中,所述第一处理中包括傅立叶变换,M为偶数;
    所述处理器还用于对长度为Q的第二频域数据进行第二处理,得到时域数据,其中,所述第二频域数据中的数据包括于所述第一频域数据中,Q为正整数,M大于Q,Q大于或等于M/2,所述第二处理中包括傅立叶反变换;
    所述处理器利用所述通信接口,在一个时域符号上发送所述时域数据。
  10. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行权利要求1-6任一项所述的方法。
  11. 一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行权利要求1-6任一项所述的方法。
PCT/CN2020/078619 2019-03-30 2020-03-10 数据压缩方法及装置 WO2020199864A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20785263.3A EP3937444A4 (en) 2019-03-30 2020-03-10 DATA COMPRESSION METHOD AND DEVICE
US17/491,441 US11546193B2 (en) 2019-03-30 2021-09-30 Data compression method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910253984.7A CN111770041B (zh) 2019-03-30 2019-03-30 数据压缩方法及装置
CN201910253984.7 2019-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/491,441 Continuation US11546193B2 (en) 2019-03-30 2021-09-30 Data compression method and apparatus

Publications (1)

Publication Number Publication Date
WO2020199864A1 true WO2020199864A1 (zh) 2020-10-08

Family

ID=72664521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078619 WO2020199864A1 (zh) 2019-03-30 2020-03-10 数据压缩方法及装置

Country Status (4)

Country Link
US (1) US11546193B2 (zh)
EP (1) EP3937444A4 (zh)
CN (1) CN111770041B (zh)
WO (1) WO2020199864A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200571B (zh) * 2018-11-19 2021-10-01 华为技术有限公司 一种信号传输方法及装置
CN114844752A (zh) * 2021-01-30 2022-08-02 华为技术有限公司 数据发送方法、数据接收方法及相关装置
CN116545596A (zh) * 2022-01-25 2023-08-04 华为技术有限公司 一种数据处理方法、装置及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080144553A1 (en) * 2006-12-14 2008-06-19 Samsung Electronics Co., Ltd. System and method for wireless communication of audiovisual data having data size adaptation
CN103973436A (zh) * 2014-05-16 2014-08-06 西安电子科技大学 Gsm语音信道中安全传输数字信息的方法
CN105453627A (zh) * 2013-08-06 2016-03-30 夏普株式会社 终端装置
CN109067686A (zh) * 2018-09-14 2018-12-21 珠海中慧微电子有限公司 基于二进制相移键控调制和正交频分复用技术的信号传输方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101433043A (zh) * 2006-02-08 2009-05-13 高通股份有限公司 频谱整形以降低无线通信中的峰均比
KR20090006708A (ko) * 2007-07-12 2009-01-15 엘지전자 주식회사 스케줄링 요청 신호 전송 방법
JP6288089B2 (ja) * 2013-07-23 2018-03-07 日本電気株式会社 デジタルフィルタ装置、デジタルフィルタ処理方法及びデジタルフィルタプログラムが記憶された記憶媒体
WO2016085286A1 (ko) * 2014-11-27 2016-06-02 엘지전자 주식회사 무선랜에서 서로 다른 파일롯 톤 패턴을 기반으로 한 데이터 전송 방법 및 장치
CN106027441B (zh) * 2016-04-28 2019-10-18 上海华为技术有限公司 一种调制信号的方法、设备
US10003489B2 (en) * 2016-08-12 2018-06-19 Qualcomm Incorporated Communication device using a spectral shaped low peak-to-average power discrete Fourier transform waveform
CN107888531B (zh) * 2016-09-30 2020-09-04 华为技术有限公司 一种参考信号传输方法和装置
WO2018203706A1 (en) * 2017-05-04 2018-11-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal for low peak-to-average power ratio in wireless communication system
US11005695B2 (en) * 2017-09-11 2021-05-11 Qualcomm Incorporated Reference signal design for Pi/2 binary phase shift keying modulation with frequency domain spectral shaping
EP3701692A1 (en) * 2017-10-27 2020-09-02 Telefonaktiebolaget LM Ericsson (Publ) Dm-rs of pi/2-bpsk signals
EP3906626A1 (en) * 2019-01-02 2021-11-10 IDAC Holdings, Inc. Low papr dmrs and low inter-cell interference for dft-spread ofdm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080144553A1 (en) * 2006-12-14 2008-06-19 Samsung Electronics Co., Ltd. System and method for wireless communication of audiovisual data having data size adaptation
CN105453627A (zh) * 2013-08-06 2016-03-30 夏普株式会社 终端装置
CN103973436A (zh) * 2014-05-16 2014-08-06 西安电子科技大学 Gsm语音信道中安全传输数字信息的方法
CN109067686A (zh) * 2018-09-14 2018-12-21 珠海中慧微电子有限公司 基于二进制相移键控调制和正交频分复用技术的信号传输方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "EVM Calculation for π/2-BPSK W/ Spectrum Shaping", 3GPP TSG-RAN4 WG4 #85 R4-1713626, 17 November 2017 (2017-11-17), XP051375272 *
See also references of EP3937444A4

Also Published As

Publication number Publication date
US20220021570A1 (en) 2022-01-20
CN111770041A (zh) 2020-10-13
CN111770041B (zh) 2023-02-03
EP3937444A4 (en) 2022-05-18
EP3937444A1 (en) 2022-01-12
US11546193B2 (en) 2023-01-03

Similar Documents

Publication Publication Date Title
US11546193B2 (en) Data compression method and apparatus
WO2020103687A1 (zh) 一种信号传输方法及装置
WO2021027901A1 (zh) 数据传输方法及其装置
CN108632193B (zh) 一种资源指示方法及网络设备、终端设备
CN109391576B (zh) 基于序列的信号处理方法、通信设备及通信系统
WO2020103771A1 (zh) 数据传输方法和装置
WO2019144812A1 (zh) 基于加扰的数据传输方法
WO2020211578A1 (zh) 参考信号发送方法和装置
WO2020187132A1 (zh) 数据信道的传输方法及装置
JP2021122124A (ja) 無線送信装置、及び、送信方法
WO2022110973A1 (zh) 信号配置方法、装置、设备和存储介质
WO2021000712A1 (zh) 符号处理的方法与装置
WO2018202106A1 (zh) 无线通信方法及装置
US20210195568A1 (en) Communication method and apparatus
WO2020063260A1 (zh) 数据传输方法及装置
WO2020063364A1 (zh) 一种数据传输方法及装置
WO2022161224A1 (zh) 数据发送方法、数据接收方法及相关装置
WO2024067698A1 (zh) 基于序列的信号处理方法、装置及存储介质
CN111147215B (zh) 无线通信方法、装置及系统
WO2023169302A1 (zh) 一种通信方法及装置
WO2023116613A1 (zh) 通信方法及装置
WO2022237509A1 (zh) 一种通信方法及装置
WO2022127811A1 (zh) 一种信号传输的方法及装置
WO2023051921A1 (en) Probabilistic amplitude shaping applied to papr reduction
CN113439474A (zh) 序列生成方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020785263

Country of ref document: EP

Effective date: 20211007