WO2022237509A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022237509A1
WO2022237509A1 PCT/CN2022/088848 CN2022088848W WO2022237509A1 WO 2022237509 A1 WO2022237509 A1 WO 2022237509A1 CN 2022088848 W CN2022088848 W CN 2022088848W WO 2022237509 A1 WO2022237509 A1 WO 2022237509A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
expansion factor
roll
coefficient
information
Prior art date
Application number
PCT/CN2022/088848
Other languages
English (en)
French (fr)
Inventor
马千里
黄煌
高宽栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22806479.6A priority Critical patent/EP4319076A1/en
Publication of WO2022237509A1 publication Critical patent/WO2022237509A1/zh
Priority to US18/504,541 priority patent/US20240073076A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26412Filtering over the entire frequency band, e.g. filtered orthogonal frequency-division multiplexing [OFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • the signal of the wireless communication system can only be transmitted over a longer distance after being amplified by power. Due to the limitations of technology and cost, a power amplifier usually only amplifies linearly within a certain range, and if it exceeds this range, the signal will be distorted. After the signal is distorted, the receiving end cannot correctly analyze the signal. In order to meet the coverage requirements of the communication system, it is often necessary to select a signal generation technology with a low peak-to-average power ratio (PAPR).
  • PAPR peak-to-average power ratio
  • DFT-S-OFDM-FDSS Discrete fourier transform spread orthogonal frequency division multiplexing with frequency-domain spectral shaping
  • DFT discrete fourier transform
  • spectrum replication is added, and then a filter is used to multiply the copied signal to achieve the effect of frequency domain shaping. Since the DFT-S-OFDM-FDSS performs spectrum shaping, it is possible to reduce the PAPR of the DFT-S-OFDM waveform. However, although DFT-S-OFDM-FDSS has lower PAPR, it sacrifices transmission efficiency at the expense of bandwidth expansion.
  • the present application provides a communication method and device, so as to ensure better use of frequency spectrum under the condition of low PAPR during communication transmission without sacrificing transmission bandwidth.
  • the present application provides a communication method, which can be applied to a first communication device or a second communication device, and can also be implemented through interaction between the first communication device and the second communication device.
  • the first communication device may be equivalent to terminal equipment, such as: user equipment (user equipment, UE), vehicle-mounted equipment, etc.
  • the second communication device may be equivalent to a transmission reception point (transmission reception point, TRP), the fifth generation (the 5th generation, 5G) base station (gNodeB, gNB), etc., which are not specifically limited in this application.
  • the second communication device can first determine the first message, wherein the first message includes the information of the expansion factor; then the second communication device can transmit the first message, and accordingly the first communication device can receive The first message, and determine the number of information bits according to the spreading factor; and generate the signal to be sent according to the number of information bits; and transmit the signal to be sent, the second communication device can receive the signal to be sent and demodulate the signal to be sent, based on the spreading factor A number of information bits of a signal to be transmitted transmitted by the first communication device is determined.
  • the transmission mentioned in this application can be understood as active transmission, and can also be understood as transmission after receiving an instruction.
  • the second communication device transmits the first message, which can be understood as the second communication device actively sends the first message.
  • a message can also be understood as the second communication device passively sends the first message after receiving an instruction from a certain network element of the core network, or after the first communication device sends the request information of the first message to the second communication device, It is sent by the second communication device, and the present application does not specifically limit the specific form of transmission.
  • the first communication device when performing spectrum replication, it can refer to the spreading factor to expand the number of information bits transmitted through the filter, and without sacrificing the bandwidth, the information bits transmitted through the filter The number of information bits is more, and the spectrum utilization rate will be improved accordingly.
  • the information of the expansion factor is an index value of the expansion factor.
  • the specific value of the expansion factor can be indicated by the index value of the expansion factor.
  • the index value of the expansion factor is 0000, indicating that the expansion factor is 1
  • the index value of the expansion factor is 00001, indicating that the expansion factor is 11/10, etc., which is not specifically limited in this application. Since the expansion factor is indicated by bits, and the specific value of the expansion factor is indicated by the bit, compared with directly indicating the specific value of the expansion factor, less memory can be occupied during data transmission, so that the first communication device or the second The second communication device can use more data processing resources to perform data calculation during data processing.
  • index value of the expansion factor can be indicated by 1 bit or multiple bits, which is not specifically limited in this application.
  • the first message further includes information about the roll-off coefficient of the filter of the first communication device; the extension factor corresponds to the roll-off coefficient one-to-one.
  • the first message includes information about the roll-off coefficient of the filter of the first communication device, so that the first communication device calculates the number of information bits according to the extension factor when referring to the roll-off coefficient. In this manner, when the roll-off coefficient is determined, more information bits can be transmitted without increasing the bandwidth during spectrum duplication, thereby improving the utilization rate of the spectrum.
  • the value of the expansion factor is greater than the roll-off coefficient of the filter of the first communication device.
  • the value of the expansion factor is larger than the roll-off coefficient to ensure that more information bits are transmitted during spectrum duplication, which can improve spectrum utilization.
  • the value of the expansion factor may be greater than or equal to the sum of the roll-off coefficient and the preset value.
  • the relationship between the value of the expansion factor and the roll-off coefficient can be limited by a preset value, usually the preset value can be 1, but in practical applications , can also be adjusted according to the needs of users, such as preset values of 1.1, 0.9, etc., which are not specifically limited in this application.
  • the extension factor information may be indicated by one or more of the following signalings:
  • Radio resource control radio resource control
  • media access control element media access control control element, MAC CE
  • downlink control information downlink control information
  • RRC signaling, MAC CE signaling, and DCI are sent through different layers (control layer, physical layer, etc.), and usually the level of RRC signaling is higher than that of MAC CE signaling and DCI, and MAC CE signaling To be higher than DCI.
  • any one of the above signalings can be used to indicate the value of the expansion factor, or the range of the expansion factor can be indicated through the higher-level signaling, and the range of the expansion factor can be indicated through the lower-level signaling. specific value.
  • the second communication device indicates the value range of the spreading factor from 1.1 to 1.3 through the RRC signaling, specifically indicates the value of the spreading factor 1.2 through the DCI signaling, and so on. The present application does not make specific limitations here.
  • the first communication device or the second communication device may determine the number of information bits according to the extension factor and at least one of the following parameters:
  • the roll-off coefficient of the filter of the first communication device the bandwidth of the first communication device, the number of signal streams, and the modulation and coding scheme (modulation and coding scheme, MCS).
  • this application also refers to the roll-off coefficient of the filter of the first communication device, the bandwidth of the first communication device, the number of signal streams, and the MCS when referring to the extension factor. and other parameters, making the calculated number of data bits more reliable.
  • the second communication device may also directly instruct the first communication device which parameters to use to determine the number of information bits, or the first communication device may generate a signal to be sent according to the number of information bits after determining the number of information bits, and transmit the signal to be sent , carry indication information of various parameters for determining the number of information bits, so that the second communication device knows which parameters are used to determine the number of information bits, and there may be other ways, which are not specifically limited in this application.
  • the first communication device or the second communication device may determine the number of information bits by the following formula:
  • N info represents the number of information bits
  • N RE represents the number of resource elements (resource element, RE);
  • represents the expansion factor;
  • represents the roll-off coefficient;
  • R represents the code rate;
  • Q m represents the modulation order;
  • the second communication device instructs the first communication device to actually transmit data bandwidth
  • the bandwidth size is represented by N RE
  • N RE represents the number of resource elements within a given number of persistent OFDM symbols, one resource element is a subcarrier in an OFDM symbol.
  • N BW N RE /K
  • the subcarrier spacing of the system is SCS
  • N RE can be determined by the following formula:
  • N RE int(min(N1,N' RE ).n PRB .( ⁇ + ⁇ ))
  • N'RE represents the number of REs in a physical resource block (physical resource block, PRB); n PRB represents the number of PRBs occupied by the bandwidth required by the modulated signal; N1 represents the constant agreed between the first communication device and the second communication device factor or limiting factor.
  • the number of REs is determined in consideration of the fact that the second communication device only indicates the actual data transmission bandwidth of the first communication device, which is more comprehensive.
  • the first communication device or the second communication device may also determine the symbol number of the modulation symbol by the following formula:
  • N sym represents the symbol number of the modulation symbol
  • N RE represents the number of resource elements RE
  • v represents the number of signal streams
  • represents the expansion factor
  • represents the roll-off coefficient
  • the first communication device or the second communication device may first determine the number of information bits, map the information bits into modulation symbols and transmit information through channel transmission of modulation symbols, or first determine the number of modulation symbols Number of symbols to transmit information by adjusting the number of information bits based on the determined number of modulation symbols.
  • the present application does not specifically limit here, whether to determine the number of information bits or the number of modulation symbols first.
  • the present application provides a first communication device, including: an input and output unit and a processing unit.
  • the input and output unit is used to receive the first message, and the first message includes the information of the expansion factor; the processing unit is used to determine the number of information bits according to the expansion factor; and generates a signal to be transmitted according to the number of information bits; the input and output unit , is also used to transmit the signal to be sent.
  • the information of the expansion factor is an index value of the expansion factor.
  • the first message further includes information about the roll-off coefficient of the filter of the first communication device; the extension factor corresponds to the roll-off coefficient one-to-one.
  • the value of the expansion factor is greater than the roll-off coefficient of the filter of the first communication device.
  • the value of the expansion factor is greater than or equal to the sum of the roll-off coefficient and the preset value.
  • the extension factor information is indicated by one or more of the following signaling: RRC, MAC CE and DCI.
  • the processing unit is specifically configured to: determine the number of information bits according to the extension factor and at least one of the following parameters: the roll-off coefficient of the filter of the first communication device, the Bandwidth, number of streams of signal, and MCS.
  • processing unit is specifically configured to: determine the number of information bits by the following formula:
  • N info represents the number of information bits
  • N RE represents the number of REs
  • represents the expansion factor
  • the ⁇ represents the roll-off coefficient
  • R represents the code rate
  • Q m represents the modulation order
  • represents the default value
  • int() represents rounding up, rounding down, or rounding up.
  • the present application provides a second communication device, including: a processing unit and an input and output unit.
  • the processing unit is used to determine the first message, and the first message includes the information of the expansion factor; the input and output unit is used to transmit the first message.
  • the information of the expansion factor is an index value of the expansion factor.
  • the first message further includes information about the roll-off coefficient of the filter of the first communication device; the extension factor corresponds to the roll-off coefficient one-to-one.
  • the value of the expansion factor is greater than the roll-off coefficient of the filter of the first communication device.
  • the value of the expansion factor is greater than or equal to the sum of the roll-off coefficient and the preset value.
  • the extension factor information is indicated by one or more of the following signaling: RRC, MAC CE and DCI.
  • the processing unit is specifically configured to: determine the number of information bits according to the extension factor and at least one of the following parameters: the roll-off coefficient of the filter of the first communication device, the Bandwidth, number of signal streams, and modulation and coding strategy MCS.
  • processing unit is specifically configured to: determine the number of information bits by the following formula:
  • N info represents the number of information bits
  • N RE represents the number of resource elements RE
  • represents the expansion factor
  • represents the roll-off coefficient
  • R represents the code rate
  • Q m represents the modulation order
  • int() indicates rounding up, rounding down, or rounding up.
  • the present application provides a communication device, including at least one processor and a memory; the memory is used to store computer programs or instructions, and when the device is running, the at least one processor executes the computer programs or instructions, so that The communication device executes the method according to the above first aspect or each embodiment of the first aspect.
  • the embodiment of the present application provides another communication device, including: an interface circuit and a logic circuit; where the interface circuit can be understood as an input and output interface, and the logic circuit can be used to run the code instructions to perform the above-mentioned first aspect or The method of the embodiments of the first aspect.
  • the present application also provides a computer-readable storage medium, where computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are run on a computer, the computer executes the method described in the first paragraph.
  • the present application provides a computer program product including instructions, which, when run on a computer, cause the computer to execute the above-mentioned first aspect or the method of each embodiment of the first aspect.
  • the present application provides a system-on-a-chip, which includes a processor and may further include a memory, configured to implement the method described in the above-mentioned first aspect or any possible design of the first aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a communication system, the system includes a first communication device and a second communication device, and the communication system is used to implement any possible design of the above first aspect or the first aspect the method described.
  • FIG. 1A shows a schematic diagram of a communication system provided by an embodiment of the present application
  • FIG. 1B shows a schematic diagram of another communication system provided by an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of frequency domain signal transmission
  • FIG. 3 shows a schematic flowchart of a communication method provided by an embodiment of the present application
  • FIG. 4 shows a schematic diagram of frequency domain signal transmission provided by an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a communication device provided by an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication method provided in the embodiment of the present application may be applied to a 5G communication system or various future communication systems.
  • the most typical three communication scenarios of the 5G communication system are enhanced mobile broadband (eMBB), massive machine type communication (mMTC) and ultra reliable low latency communication. , URLLC).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra reliable low latency communication
  • the communication system applicable to the communication method of this application is introduced below.
  • the first communication device in the communication system can be an access network device, and the second communication device can be a terminal device.
  • This application does not make specific limitations in practical applications.
  • a communication system to which this application may be applicable is introduced with reference to FIG. 1A and FIG. 1B .
  • FIG. 1A shows a communication system 100 suitable for use in the present application.
  • the communication system 100 includes an access network device 110, a terminal device 120, and a terminal device 130.
  • the transmission of data by the access network device 110 to the terminal device 110 or the terminal device 120 can be understood as downlink data transmission.
  • FIG. 1A shows a communication system for downlink communication .
  • FIG. 1B shows another communication system 200 suitable for the present application.
  • the communication system 200 includes an access network device 210, an access network device 220, an access network device 230, and a terminal device 240.
  • the data sent by the terminal device 240 to the access network device 210 can be understood as uplink data transmission.
  • communication system for communication includes an access network device 210, an access network device 220, an access network device 230, and a terminal device 240.
  • the data sent by the terminal device 240 to the access network device 210 can be understood as uplink data transmission.
  • communication system for communication can be understood as uplink data transmission.
  • the communication method provided in this application can be applied to both the communication system for downlink communication shown in FIG. 1A and the communication system for uplink communication shown in FIG. 1B , which is not specifically limited in this application.
  • An access network device is a device deployed in a wireless access network to provide a wireless communication function for a terminal device.
  • the access network device is a device with wireless transceiver function or a chip that can be set on the device, including but not limited to: evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), Node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be a gNB in a 5G (such as new radio (NR)) system, or, a transmission point (TRP or
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements RRC, packet data convergence protocol (packet data convergence protocol, PDCP) layer functions, DU implements radio link control (radio link control, RLC) , Media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the access network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in a radio access network (radio access network, RAN), and the CU can also be divided into network devices in a core network CN, which is not limited here.
  • the terminal equipment involved in the embodiments of the present application is an entity on the user side for receiving or transmitting signals, and is used for sending uplink signals to network equipment or receiving downlink signals from network equipment.
  • Including devices that provide voice and/or data connectivity to a user may include, for example, a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via the RAN, and exchange voice and/or data with the RAN.
  • the terminal equipment may include user equipment (user equipment, UE), vehicle wireless communication technology (vehicle to X, V2X) terminal equipment, wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) Terminal equipment, machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station (subscriber station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal) , user agent (user agent), or user equipment (user device), wearable device, vehicle-mounted device, etc.
  • IoT Internet of things
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc., which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminal devices. ).
  • the background technology part of this application mentions that in order to obtain a signal with low PAPR, it can be realized by DFT-S-OFDM with FDSS.
  • the terminal device When the terminal device is performing uplink data transmission, it can refer to the following steps to generate the signal to be sent:
  • Step 1 modulate the data bits.
  • the data bits may be coded data bits or original data bits.
  • the specific encoding method is not limited here.
  • the modulation method can be various modulation methods, such as amplitude modulation keying, phase shift keying, frequency shift keying, or quadrature amplitude modulation (QAM). Any modulation method may also be any modulation method in offset quadrature amplitude modulation (OQAM).
  • Step 2 changing the time-domain signal into a frequency-domain signal, that is, performing fast Fourier transform (FFT) transform or discrete Fourier transform (DFT) transform on the signal.
  • FFT fast Fourier transform
  • DFT discrete Fourier transform
  • the time-domain signal can be copied, that is, the signal is up-sampled, and then transformed into the frequency domain; the QAM signal can also be directly transformed into the frequency domain, and then copied.
  • the specific implementation method is here Not limited.
  • Step 3 Filter the frequency domain signal.
  • the filter used for filtering may be a Nyquist (Nyquist) filter or a non-Nyquist filter, which is not specifically limited here.
  • step 3 may be performed before step 2. If step 3 is performed before step 2, it is time-domain filtering, and time-domain filtering is convolution of the time-domain signal and the time-domain filter. If step 3 is performed after step 2, it is frequency domain filtering. For frequency domain filtering, the frequency domain signal is multiplied one-to-one by the frequency domain filter signal.
  • Step 4 the frequency domain signal is mapped to the corresponding subcarrier position.
  • the subcarrier position may be the subcarrier position allocated by the base station, or the subcarrier position allocated by the communication system.
  • Step 5 the frequency domain signal is subjected to inverse fast Fourier transform (IFFT) points, the frequency domain signal is transformed into the time domain, and then a cyclic prefix (cyclic prefix, CP) is added for transmission.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the x modulated signals can be copied into three parts, that is, the modulated signals are three times up-sampled, and then the modulated signals are subjected to FFT transformation and converted to the frequency domain to obtain the frequency domain signal.
  • the frequency domain signal is three segments of the same frequency domain signal, and the frequency domain signal is subjected to frequency domain filtering, that is, one-to-one corresponding point multiplication with the frequency domain filter is performed, as shown in FIG. 2 . It should be noted that the length value of the frequency domain filter is larger than the length value of the data signal.
  • the ratio of the frequency domain filter length value exceeding the data signal to the data signal is recorded as ⁇ (that is, the roll-off coefficient of the filter), then the length of the filter is x (1+ ⁇ ), and the final transmitted data is between the dotted line
  • the length of the data inside is x ⁇ (1+ ⁇ ), that is, the length of the filter, but the length of the data that actually contains information is only x, so DFT-s-OFDM-FDSS is different from DFT-S-OFDM In other words, more bandwidth is occupied to transmit the same data, and the spectrum utilization rate is relatively low.
  • this application introduces the expansion factor, and when performing spectrum replication, the expansion factor can be used to expand the information bits transmitted through the filter. Number, under the premise of not sacrificing the bandwidth, the number of information bits transmitted through the filter is more, which improves the spectrum utilization. It can be implemented with reference to the communication method shown in FIG. 3 , which can be applied to the first communication device or the second communication device, and can also be implemented through the interaction between the first communication device and the second communication device. It is not specifically limited here. FIG. 3 only shows one first communication device and one second communication device, but in actual application, the number of the first communication device and the second communication device is not limited. The solution of the present application will be described below by taking the first communication device as UE and the second communication device as gNB as an example. Taking uplink communication as an example, you can refer to the following steps to execute:
  • step 301 the gNB determines a first message, where the first message includes spreading factor information.
  • the gNB with a large data calculation granularity can refer to the historical communication between multiple UEs and gNBs, and determine the expansion factor information (the value of the expansion factor, which parameters are associated with the expansion factor, etc.) through statistical analysis, which can be based on Artificial intelligence (artificial intelligence, AI) algorithm can also be determined based on other algorithms, and this application does not specifically limit it here.
  • the information of the expansion factor can also be calculated by the core network equipment communicating with the gNB (it can be calculated by referring to the above method, and will not be repeated here), and then the core network equipment transmits the information of the expansion factor to the gNB, which is not detailed in this application Define the source of information and how to determine the expansion factor.
  • the first message may carry other information besides the spreading factor information.
  • the gNB sends the first message through broadcast, and the first message may also carry the identification information of the UE.
  • the identification information indicates which UE performs subsequent calculation operations according to the expansion factor; or, the gNB sends the first message through multicast, and the first message may also carry the identification information of the cell, and indicate which specific cell is based on the identification information of the cell by carrying the identification information of the cell.
  • the expansion factor is used for subsequent calculation operations; if the gNB sends the first message through unicast, the first message can also carry signal transmission time indication information, and by carrying the signal transmission time indication information, it instructs the UE to perform subsequent calculation operations according to the expansion factor.
  • the signal to be sent is transmitted to the second communication device.
  • the first message may carry UE identification information, signal transmission time indication information, cell identification information, etc., which are not specifically limited in this application.
  • the expansion factor information can be flexibly adjusted with changes in communication services, such as periodic updates, adjustments based on preset parameter values, etc.
  • gNB1 refers to UE1-UE10 (the In the park) and its historical communication situation, determine the extension factor A, and indicate the extension factor A to UE1 ⁇ UE10 to enable UE1 ⁇ UE10 to perform communication with gNB1, but if the geographic location of UE1 ⁇ UE10 changes, gNB1 needs to update the extension Factor A can ensure normal communication with UE1 ⁇ UE10; in addition, although gNB1 has determined the expansion factor A, but in the actual communication process between each UE and gNB1, the communication effect is not good, it can be based on the initial value of expansion factor A or other The parameter value adjusts the value of the expansion factor. Specifically, how to adjust the expansion factor should be determined in combination with actual service conditions, and this application does not specifically limit it here.
  • the information of the expansion factor can be the index value of the expansion factor, and there is a one-to-one correspondence between the index value of the expansion factor and the specific value of the expansion factor, and the specific value of the expansion factor can be indicated by the index value of the expansion factor.
  • the index value of the extension factor may be indicated by one or more bits, which is not specifically limited in this application. Since the expansion factor is indicated by bits, and the specific value of the expansion factor is indicated by the bit, compared with directly indicating the specific value of the expansion factor, less memory can be occupied during data transmission, so that the first communication device or the second The second communication device can use more data processing resources to perform data calculation during data processing.
  • the index value of the expansion factor can be indicated by 4 bits, where the index value of the expansion factor is 0000, indicating that the expansion factor is 1, and the index value of the expansion factor is 0001, indicating that the expansion factor is 11/10, etc.
  • the present application is only for illustrative purposes here, and does not illustrate one by one. It should also be noted that only one or more rows in Table 1 may be used in actual application.
  • Index value of the expansion factor (Index) Expansion factor ⁇ 0000 1 0001 11/10 0010 6/5 ... ...
  • Step 302 the gNB transmits the first message.
  • the UE will receive the message from the gNB.
  • the transmission mentioned in this application can be understood as active sending, and can also be understood as sending after receiving an instruction.
  • gNB transmits the first message, which can be understood as gNB actively sending the first message, or can be understood as The gNB passively sends the first message after receiving an instruction from a certain network element of the core network. It may also be sent by the gNB after the UE sends the request information of the first message to the gNB.
  • This application does not specifically limit the transmission here. which form.
  • the first message may further include information about a roll-off coefficient of a filter of the UE; wherein, the extension factor ⁇ corresponds to the roll-off coefficient ⁇ one-to-one.
  • the first message includes information about the roll-off coefficient of the filter of the first communication device, so that the first communication device calculates the number of information bits according to the extension factor while referring to the roll-off coefficient. In this manner, when the roll-off coefficient is determined, more information bits can be transmitted without increasing the bandwidth during spectrum duplication, thereby improving the utilization rate of the spectrum.
  • the expansion factor ⁇ can be 1, 11/10, 8/7, 9/8, 10/9, 12/11, 13/12, etc.
  • the values of the expansion factor ⁇ and the roll-off coefficient ⁇ may be indicated through the above-mentioned index value of the extended information.
  • the index value of the expansion factor is 0000, indicating that the roll-off coefficient ⁇ is 0, and the expansion factor ⁇ is 1; the index value of the expansion factor is 0001, indicating that the roll-off coefficient ⁇ is 0.2, The expansion factor is 1; the index value of the expansion factor is 0011, which indicates that the roll-off coefficient ⁇ is 0.2, and the expansion factor is 11/10, etc., which are only illustrated here for illustration and not shown one by one.
  • Table 2 only one or more rows of Table 2 may be used in actual applications, or one of the roll-off coefficients and expansion factors involved in Table 2 may be fixed, so that Table 2 can be changed from three columns to two columns , for example, when the roll-off factor is only 0.2, only the value of the expansion factor can be indicated, then Table 2 becomes two columns; or when the expansion factor is 11/10, only the value of the roll-off factor can be indicated 0.2 and 0.3, then Table 2 can also be changed into two columns.
  • the roll-off factor is only 0.2, only the value of the expansion factor can be indicated, then Table 2 becomes two columns; or when the expansion factor is 11/10, only the value of the roll-off factor can be indicated 0.2 and 0.3, then Table 2 can also be changed into two columns.
  • Any method that can indicate the expansion factor and roll-off coefficient is applicable to this application.
  • the roll-off coefficient ⁇ and the expansion factor ⁇ can also be indicated separately, that is, through different signaling or information sent at different times, such as indicating the expansion factor through RRC signaling
  • the information indicates the roll-off coefficient through the MAC CE signaling; the information indicating the expansion factor through the RRC signaling sent at time 1, and the roll-off coefficient indicated through the RRC signaling sent at time 2, etc., the present application does not make specific limitations here.
  • the values of different roll-off coefficients can also indicate the values of different expansion factors.
  • can be 1, 11/10, 8/7, 9/8, 10/9, 12/ Part or all of the values in 11, 13/12 can also indicate ⁇ through different bits, for example, 3 bits can be used to indicate the above 7 values of ⁇ , and 2 bits can also be used to indicate the above 7 values of ⁇ . Any 4, the present application does not specifically limit here.
  • the expansion factor indicated by different bits can be flexibly selected to instruct the UE to perform the calculation operation of the information bits, assuming that the first message is sent by multicast, and the cell communicating with the gNB is exactly There are 4, and 2 bits can be used to indicate the expansion factor corresponding to the UE in each cell. For example, 11 indicates that the expansion factor corresponding to the UE in cell 4 is 11/10, etc. This application does not make specific limitations here, and can be combined with actual business conditions , flexible adjustment.
  • the value of the extension factor is greater than the roll-off coefficient of the filter of the UE.
  • a value of the expansion factor greater than the roll-off coefficient can ensure that more information bits are transmitted during spectrum replication, which can improve spectrum utilization.
  • the value of the expansion factor may be greater than or equal to the sum of the roll-off coefficient and the preset value.
  • the relationship between the value of the expansion factor and the roll-off coefficient can be limited by the preset value, usually the preset value can be 1, but in actual application, it can also be adjusted according to the needs of users Adjustments, such as preset values of 1.1, 0.9, etc., are not specifically limited in this application.
  • the extension factor information may be indicated by one or more of the following signaling: RRC, MAC CE, and DCI.
  • RRC signaling, MAC CE signaling and DCI are sent through different layers (control layer, physical layer, etc.), usually the level of RRC signaling is higher than MAC CE signaling and DCI, and MAC CE signaling is higher than DCI.
  • any one of the above signalings can be used to indicate the value of the expansion factor, or the range of the expansion factor can be indicated through the higher-level signaling, and the range of the expansion factor can be indicated through the lower-level signaling. specific value.
  • the gNB indicates the value range of the spreading factor from 1.1 to 1.3 through RRC signaling, and specifically indicates the value of the spreading factor 1.2 through DCI signaling or MAC CE signaling; or, the gNB indicates the value of the spreading factor through MAC CE signaling
  • the value ranges from 1.1 to 1.3, and the DCI signaling specifically indicates that the value of the expansion factor is 1.2, etc., which is not specifically limited in this application. In this way, flexible scheduling can be performed according to the conditions of the transmission channel, and the efficiency of data transmission can be improved.
  • step 303 the UE determines the number of information bits according to the spreading factor.
  • the UE can determine the number of information bits by referring to the execution process of one or more steps in steps 1 to 5 in the above-mentioned DFT-S-OFDM-FDSS generating the signal to be transmitted.
  • the length of the frequency-domain signal transmitted by the filter but when the application is implemented, an expansion factor is introduced, so that the length of the frequency-domain signal transmitted through the filter becomes longer.
  • the specific form is not limited here, as long as the value of ⁇ or y can be deduced according to the values of x and ⁇ .
  • DFT-s-OFDM-FDSS with the same filter length, more frequency domain signals are transmitted, and the spectrum utilization rate will be significantly improved.
  • the UE may determine the number of information bits according to the spreading factor and at least one of the following parameters: the roll-off coefficient of the filter of the UE, the bandwidth of the UE, the number of signal streams, and the MCS.
  • the bandwidth of the UE may be the bandwidth allocated by the gNB for the UE, or the bandwidth actually occupied by the UE when transmitting data, which is not specifically limited in this application.
  • the number of streams of the signal is the number of data streams of the signal transmitted between the gNB and the UE.
  • MCS is a strategy indicating modulation and coding. Through MCS, the transmission efficiency and transmission quality of the UE's business can be guaranteed. When the signal quality is good, a higher-order modulation method and higher coding efficiency are used (fewer protection bits are added); When the channel quality is poor, a lower order modulation mode and lower coding efficiency (adding more protection bits) etc. are used.
  • the number of information bits please also refer to parameters such as the roll-off coefficient of the UE filter, UE bandwidth, number of signal streams, and MCS in the case of referring to the spreading factor, so that the calculated number of data bits is reliable. Sex is higher.
  • the parameter determines the number of information bits. After the UE determines the number of information bits, it generates a signal to be sent according to the number of information bits. There may be other manners for the number of information bits, which are not specifically limited in this application.
  • the application determines the number of information bits, it can be determined with reference to one or more of the following methods:
  • Method 1 Determine the number of information bits with reference to the extension factor and the roll-off coefficient of the UE filter
  • the number of information bits can be determined with reference to Equation 1:
  • N info represents the number of information bits
  • x represents the number of information bits transmitted according to the traditional scheme, and can also be a parameter obtained by other processing methods
  • represents the expansion factor
  • represents the roll-off coefficient
  • represents the preset value
  • Method 2 Determine the number of information bits with reference to the spreading factor and the bandwidth of the UE
  • the number of information bits can be determined with reference to Equation 2:
  • N info int( ⁇ .N RE .x) Formula 2
  • N info represents the number of information bits
  • x represents a parameter obtained according to other processing methods
  • represents an expansion factor
  • N RE represents the number of subcarriers within the bandwidth.
  • Mode 3 refer to the expansion factor and the number of signal streams to determine the number of information bits
  • the number of information bits can be determined with reference to Equation 3:
  • N info represents the number of information bits
  • x represents a parameter obtained according to other processing methods
  • represents an expansion factor
  • v represents the number of signal streams.
  • Method 4 Determine the number of information bits with reference to the spreading factor, the bandwidth of the UE, and the number of signal streams
  • the number of information bits can be determined with reference to Equation 4:
  • N info int( ⁇ .N RE .vx)
  • N info represents the number of information bits
  • x represents parameters obtained by other processing methods
  • represents the expansion factor
  • v represents the number of signal streams
  • N RE represents the number of subcarriers within the bandwidth.
  • Method 5 refer to the extension factor, the roll-off coefficient of the UE filter, the bandwidth of the UE, the number of signal streams, and the number of information bits determined by the MCS
  • the number of information bits can be determined with reference to Equation 5:
  • N info represents the number of information bits
  • N RE represents the number of REs
  • represents the expansion factor
  • represents the roll-off coefficient
  • R represents the code rate
  • Q m represents the modulation order
  • Set value indicates rounding up, rounding down, or rounding up, which is not specifically limited in this application.
  • N info int(N RE .RQ m .v)
  • the roll-off factor is the situation information considering the expansion factor
  • the resource allocation scheme is to determine the number of REs according to the number of PRBs allocated by the MCS and gNB.
  • N' RE represents the number of REs in a PRB
  • n PRB represents the number of REs required to transmit data
  • the number of PRBs occupied by the bandwidth, and min indicates a smaller value.
  • the gNB indicates all the bandwidth occupied by the UE. In an optional way, the gNB indicates the actual data transmission bandwidth of the UE.
  • the bandwidth size is represented by N RE
  • N RE represents the number of resource elements within a given number of persistent OFDM symbols.
  • One resource element is the number of resources in one OFDM symbol. a subcarrier.
  • the number of continuous OFDM symbols is given as K
  • the subcarrier spacing of the system is SCS
  • N RE can be determined by the following formula 7:
  • N RE int(min(N1,N' RE ).n PRB .( ⁇ + ⁇ ))
  • N'RE represents the number of REs in a PRB
  • n PRB represents the number of PRBs occupied by the bandwidth required by the modulated signal
  • N1 represents the constant factor or limiting factor agreed between the gNB and the UE.
  • the methods provided by the above methods 1 to 7 are not limited to determine the number of information bits, and other methods can also be used to confirm that the above methods are only exemplary illustrations. In actual applications, the above different methods can also be used The number of information bits is determined by performing weighted calculation in a manner, which is not specifically limited in this application.
  • step 304 the UE generates a signal to be sent according to the number of information bits.
  • the signal to be sent needs to be determined by mapping information bits into modulation symbols.
  • the UE can first determine the number of information bits, map the information bits into modulation symbols and transmit the modulation symbols through the channel to transmit information.
  • the number of modulation symbols may be determined first, and the number of information bits may be adjusted based on the determined number of modulation symbols to transmit information.
  • the present application does not specifically limit here, whether to determine the number of information bits or the number of modulation symbols first.
  • the UE can determine the number of symbols of the modulation symbol through the following formula 8:
  • N sym represents the number of symbols of the modulation symbol
  • N RE represents the number of REs
  • v represents the number of streams of the signal
  • represents the expansion factor
  • represents the roll-off coefficient
  • represents the preset value; Or round down, or round up, which is not specifically limited in this application.
  • Step 305 the UE transmits the signal to be sent.
  • the gNB will receive the signal to be sent.
  • step 306 the gNB determines the number of information bits corresponding to the signal to be transmitted according to the spreading factor, and demodulates the signal to be transmitted.
  • the UE after the UE receives the spreading factor information, it can refer to the spreading factor to expand the number of information bits transmitted through the filter when performing spectrum replication. Without sacrificing the bandwidth, the number of information bits transmitted through the filter The larger the number, the higher the spectrum utilization rate will be.
  • the situation of downlink communication is similar to that of uplink communication.
  • the UE after receiving the information of the spreading factor from the gNB, the UE can determine the waiting time based on the spreading factor after receiving the signal to be sent from the gNB. Send the number of information bits corresponding to the signal, so as to demodulate the signal.
  • an embodiment of the present application provides a communication device as shown in FIG. 5 , including: a processing unit 501 and an input and output unit 502 .
  • the input and output units may be implemented by the same data processing chip, or by different data processing chips, which is not specifically limited in this application.
  • the communication device may be the above-mentioned first communication device and second communication device, which are not specifically limited in this application.
  • the first message can be received through the input and output unit 502, and the first message includes the information of the expansion factor; the processing unit 501 determines the number of information bits according to the expansion factor; and Generate the signal to be sent according to the number of information bits; the input and output unit 502 is also used to transmit the signal to be sent.
  • the transmission mentioned in this application can be understood as active transmission, and can also be understood as transmission after receiving an instruction.
  • the second communication device transmits the first message, which can be understood as the second communication device actively sends the first message.
  • a message can also be understood as the second communication device passively sends the first message after receiving an instruction from a certain network element of the core network, or after the first communication device sends the request information of the first message to the second communication device, It is sent by the second communication device, and the present application does not specifically limit the specific form of transmission.
  • the first communication device when performing spectrum replication, it can refer to the spreading factor to expand the number of information bits transmitted through the filter, and without sacrificing the bandwidth, the information bits transmitted through the filter The number of information bits is more, and the spectrum utilization rate will be improved accordingly.
  • the information of the expansion factor is an index value of the expansion factor.
  • the specific value of the expansion factor can be indicated by the index value of the expansion factor.
  • the index value of the expansion factor is 0000, indicating that the expansion factor is 1
  • the index value of the expansion factor is 0001, indicating that the expansion factor is 11/10, etc., which is not specifically limited in this application. Since the expansion factor is indicated by bits, and the specific value of the expansion factor is indicated by the bit, compared with directly indicating the specific value of the expansion factor, less memory can be occupied during data transmission, so that the first communication device or the second The second communication device can use more data processing resources to perform data calculation during data processing.
  • index value of the extension factor may be indicated by one or more bits, which is not specifically limited in this application.
  • the first message further includes information about the roll-off coefficient of the filter of the first communication device; the extension factor corresponds to the roll-off coefficient one-to-one.
  • the first message includes information about the roll-off coefficient of the filter of the first communication device, so that the first communication device calculates the number of information bits according to the extension factor when referring to the roll-off coefficient. In this manner, when the roll-off coefficient is determined, more information bits can be transmitted without increasing the bandwidth during spectrum duplication, thereby improving the utilization rate of the spectrum.
  • the value of the expansion factor is greater than the roll-off coefficient of the filter of the first communication device.
  • the value of the expansion factor is larger than the roll-off coefficient to ensure that more information bits are transmitted during spectrum duplication, which can improve spectrum utilization.
  • the value of the expansion factor is greater than or equal to the sum of the roll-off coefficient and the preset value.
  • the relationship between the value of the expansion factor and the roll-off coefficient can be limited by a preset value, usually the preset value can be 1, but in practical applications , can also be adjusted according to the needs of users, such as preset values of 1.1, 0.9, etc., which are not specifically limited in this application.
  • the extension factor information is indicated by one or more of the following signaling: RRC, MAC CE and DCI.
  • RRC signaling, MAC CE signaling, and DCI are sent through different layers (control layer, physical layer, etc.), and usually the level of RRC signaling is higher than that of MAC CE signaling and DCI, and MAC CE signaling To be higher than DCI.
  • any one of the above signalings can be used to indicate the value of the expansion factor, or the range of the expansion factor can be indicated through the higher-level signaling, and the range of the expansion factor can be indicated through the lower-level signaling. specific value.
  • the second communication device indicates the value range of the spreading factor from 1.1 to 1.3 through the RRC signaling, specifically indicates the value of the spreading factor 1.2 through the DCI signaling, and so on.
  • the present application does not make specific limitations here.
  • the processing unit 501 is specifically configured to: determine the number of information bits according to the extension factor and at least one of the following parameters: the roll-off coefficient of the filter of the first communication device, the bandwidth, number of signal streams, and MCS.
  • this application also refers to the roll-off coefficient of the filter of the first communication device, the bandwidth of the first communication device, the number of signal streams, and the MCS when referring to the extension factor. and other parameters, making the calculated number of data bits more reliable.
  • the second communication device may also directly instruct the first communication device which parameters to use to determine the number of information bits, or the first communication device may generate a signal to be sent according to the number of information bits after determining the number of information bits, and transmit the signal to be sent , carry indication information of various parameters for determining the number of information bits, so that the second communication device knows which parameters are used to determine the number of information bits, and there may be other ways, which are not specifically limited in this application.
  • processing unit 501 is specifically configured to: determine the number of information bits by the following formula:
  • N info represents the number of information bits
  • N RE represents the number of REs
  • represents the expansion factor
  • the ⁇ represents the roll-off coefficient
  • R represents the code rate
  • Q m represents the modulation order
  • represents the default value
  • int() represents rounding up, rounding down, or rounding up.
  • the second communication device instructs the first communication device to actually transmit data bandwidth
  • the bandwidth size is represented by N RE
  • N RE represents the number of resource elements within a given number of persistent OFDM symbols, one resource element is a subcarrier in an OFDM symbol.
  • N BW N RE /K
  • the subcarrier spacing of the system is SCS
  • N RE can be determined by the following formula:
  • N RE int(min(N1,N' RE ).n PRB .( ⁇ + ⁇ ))
  • N'RE represents the number of REs in a physical resource block (physical resource block, PRB); n PRB represents the number of PRBs occupied by the bandwidth required by the modulated signal; N1 represents the constant agreed between the first communication device and the second communication device factor or limiting factor.
  • the number of REs is determined in consideration of the fact that the second communication device only indicates the actual data transmission bandwidth of the first communication device, which is more comprehensive.
  • the processing unit 501 is specifically configured to: determine the symbol number of the modulation symbol by the following formula:
  • N sym represents the symbol number of the modulation symbol
  • N RE represents the number of resource elements RE
  • represents the spreading factor
  • represents the roll-off coefficient
  • the first communication device or the second communication device may first determine the number of information bits, map the information bits into modulation symbols and transmit information through channel transmission of modulation symbols, or first determine the number of modulation symbols Number of symbols to transmit information by adjusting the number of information bits based on the determined number of modulation symbols.
  • the present application does not specifically limit here, whether to determine the number of information bits or the number of modulation symbols first.
  • the processing unit 501 can determine the first message, and the first message includes the expansion factor information; the input and output unit 502 can transmit the first message.
  • the transmission mentioned in this application can be understood as active transmission, and can also be understood as transmission after receiving an instruction.
  • the second communication device transmits the first message, which can be understood as the second communication device actively sends the first message.
  • a message can also be understood as the second communication device passively sends the first message after receiving an instruction from a certain network element of the core network, or after the first communication device sends the request information of the first message to the second communication device, It is sent by the second communication device, and the present application does not specifically limit the specific form of transmission.
  • the information of the expansion factor is an index value of the expansion factor.
  • the specific value of the expansion factor can be indicated by the index value of the expansion factor.
  • the index value of the expansion factor is 0000, indicating that the expansion factor is 1
  • the index value of the expansion factor is 00001, indicating that the expansion factor is 11/10, etc., which is not specifically limited in this application.
  • the expansion factor is indicated by bits
  • the specific value of the expansion factor is indicated by the bit, compared with directly indicating the specific value of the expansion factor, less memory can be occupied during data transmission, so that the first communication device or the second The second communication device can use more data processing resources to perform data calculation during data processing.
  • the index value of the extension factor may be indicated by one or more bits, which is not specifically limited in this application.
  • the first message further includes information about the roll-off coefficient of the filter of the first communication device; the extension factor corresponds to the roll-off coefficient one-to-one.
  • the first message includes information about the roll-off coefficient of the filter of the first communication device, so that the first communication device calculates the number of information bits according to the extension factor when referring to the roll-off coefficient. In this manner, when the roll-off coefficient is determined, more information bits can be transmitted without increasing the bandwidth during spectrum duplication, thereby improving the utilization rate of the spectrum.
  • the value of the expansion factor is greater than the roll-off coefficient of the filter of the first communication device.
  • the value of the expansion factor is larger than the roll-off coefficient to ensure that more information bits are transmitted during spectrum duplication, which can improve spectrum utilization.
  • the value of the expansion factor is greater than or equal to the sum of the roll-off coefficient and the preset value.
  • the relationship between the value of the expansion factor and the roll-off coefficient can be limited by a preset value, usually the preset value can be 1, but in practical applications , can also be adjusted according to the needs of users, such as preset values of 1.1, 0.9, etc., which are not specifically limited in this application.
  • the extension factor information is indicated by one or more of the following signaling: RRC, MAC CE and DCI.
  • RRC signaling, MAC CE signaling, and DCI are sent through different layers (control layer, physical layer, etc.), and usually the level of RRC signaling is higher than that of MAC CE signaling and DCI, and MAC CE signaling To be higher than DCI.
  • any one of the above signalings can be used to indicate the value of the expansion factor, or the range of the expansion factor can be indicated through the higher-level signaling, and the range of the expansion factor can be indicated through the lower-level signaling. specific value.
  • the second communication device indicates the value range of the spreading factor from 1.1 to 1.3 through the RRC signaling, specifically indicates the value of the spreading factor 1.2 through the DCI signaling, and so on.
  • the present application does not make specific limitations here.
  • the processing unit 501 is specifically configured to: determine the number of information bits according to the extension factor and at least one of the following parameters: the roll-off coefficient of the filter of the first communication device, the bandwidth, number of signal streams, and MCS.
  • this application also refers to the roll-off coefficient of the filter of the first communication device, the bandwidth of the first communication device, the number of signal streams, and the MCS when referring to the extension factor. and other parameters, making the calculated number of data bits more reliable.
  • the second communication device may also directly instruct the first communication device which parameters to use to determine the number of information bits, or the first communication device may generate a signal to be sent according to the number of information bits after determining the number of information bits, and transmit the signal to be sent , carry indication information of various parameters for determining the number of information bits, so that the second communication device knows which parameters are used to determine the number of information bits, and there may be other ways, which are not specifically limited in this application.
  • processing unit 501 is specifically configured to: determine the number of information bits by the following formula:
  • N info represents the number of information bits
  • N RE represents the number of REs
  • represents the expansion factor
  • the ⁇ represents the roll-off coefficient
  • R represents the code rate
  • Q m represents the modulation order
  • represents the default value
  • int() represents rounding up, rounding down, or rounding up.
  • the second communication device instructs the first communication device to actually transmit data bandwidth
  • the bandwidth size is represented by N RE
  • N RE represents the number of resource elements within a given number of persistent OFDM symbols, one resource element is a subcarrier in an OFDM symbol.
  • N BW N RE /K
  • the subcarrier spacing of the system is SCS
  • N RE can be determined by the following formula:
  • N RE int(min(N1,N' RE ).n PRB .( ⁇ + ⁇ ))
  • N'RE represents the number of REs in a physical resource block (physical resource block, PRB); n PRB represents the number of PRBs occupied by the bandwidth required by the modulated signal; N1 represents the constant agreed between the first communication device and the second communication device factor or limiting factor.
  • the number of REs is determined in consideration of the fact that the second communication device only indicates the actual data transmission bandwidth of the first communication device, which is more comprehensive.
  • the processing unit 501 is specifically configured to: determine the symbol number of the modulation symbol by the following formula:
  • N sym represents the symbol number of the modulation symbol
  • N RE represents the number of resource elements RE
  • v represents the number of signal streams
  • represents the expansion factor
  • represents the roll-off coefficient
  • the first communication device may first determine the number of information bits, map the information bits into modulation symbols and transmit the information through channel transmission of modulation symbols, or first determine the number of symbols of the modulation symbols, based on the determined The number of modulation symbols adjusts the number of information bits to transmit information.
  • the second communication device also needs to determine the number of modulation symbols, so that the signal to be transmitted transmitted by the first communication device can be demodulated. The present application does not specifically limit here, whether to determine the number of information bits or the number of modulation symbols first.
  • the communication device 600 may be a chip or a chip system.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the communication device 600 may include at least one processor 610, and the communication device 600 may further include at least one memory 620 for storing computer programs, program instructions and/or data.
  • the memory 620 is coupled to the processor 610 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 610 may cooperate with memory 620 .
  • Processor 610 may execute computer programs stored in memory 620 .
  • the at least one memory 620 may also be integrated with the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the communication device 600 may perform information exchange with other devices through the transceiver 630.
  • the transceiver 630 may be a circuit, a bus, a transceiver or any other device that can be used for information exchange.
  • the communication apparatus 600 may be applied to the aforementioned terminal device, or may be the aforementioned first communication apparatus, or may be the aforementioned second communication apparatus.
  • the memory 620 stores necessary computer programs, program instructions and/or data for implementing the functions of the relay device in any of the above-mentioned embodiments.
  • the processor 610 may execute the computer program stored in the memory 620 to complete the method in any of the foregoing embodiments.
  • a specific connection medium among the transceiver 630, the processor 610, and the memory 620 is not limited.
  • the memory 620, the processor 610, and the transceiver 630 are connected through a bus.
  • the bus is represented by a thick line in FIG. 6, and the connection mode between other components is only for schematic illustration. It is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 6 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and may also be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • the memory may also be, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of implementing a storage function, for storing computer programs, program instructions and/or data.
  • the embodiment of the present application also provides another communication device 700, including: an interface circuit 710 and a logic circuit 720; the interface circuit 710, which can be understood as an input and output interface, can be used to perform The schematic input and output unit or the same operation steps as the transceiver shown in FIG. 6 will not be repeated in this application.
  • the logic circuit 720 can be used to run the code instructions to execute the method in any of the above-mentioned embodiments, and can be understood as the processing unit in FIG. 5 or the processor in FIG. 6 above, which can realize the same function as the processing unit or processor, This application will not go into details here.
  • an embodiment of the present application further provides a readable storage medium, the readable storage medium stores instructions, and when the instructions are executed, the communication method in any of the above embodiments is implemented.
  • the readable storage medium may include various mediums capable of storing program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising the instruction device, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Abstract

本申请实施例提供一种通信方法及装置,涉及通信技术领域。第一通信装置可接收第一消息,其中,第一消息中包括扩展因子的信息;第一通信装置根据扩展因子确定信息比特的数目;根据信息比特的数目生成待发送信号;传输待发送信号。本申请中,通信装置在通信时,通过应用扩展因子,可以增加在滤波器中传输的信息比特的数目,可以在数据传输效率较高的情况下,保证良好地频谱利用率。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年05月10日提交中国专利局、申请号为202110507432.1、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
无线通信系统的信号经过功率放大后才能传播更远的距离。由于技术和成本的限制,一个功率放大器往往只在一定的范围内线性放大,如果超过这个范围,信号则会出现失真。信号失真后,接收端则无法正确解析信号。为了满足通信系统的覆盖需求,往往需要选择峰值平均功率比(peak to average power ratio,PAPR)低的信号生成技术。
带有频域脉冲赋形的离散傅里叶变换扩展正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing with frequency-domain spectral shaping,DFT-S-OFDM-FDSS)在离散傅里叶变换(discrete fourier transform,DFT)后,增加了频谱复制,之后又使用一个滤波器与该复制后的信号相乘,从而达到频域赋形的效果。由于DFT-S-OFDM-FDSS执行了频谱赋形,能够降低DFT-S-OFDM波形的PAPR。但是DFT-S-OFDM-FDSS虽然具有更低的PAPR,其以带宽的扩展为代价,牺牲了传输效率。
发明内容
本申请提供一种通信方法及装置,以保证通信传输时低PAPR的情况下,不牺牲传输带宽的情况下,更好地利用频谱。
第一方面,本申请提供一种通信方法,该方法可应用于第一通信装置,也可应用于第二通信装置,还可通过第一通信装置与第二通信装置的交互来实现。其中,第一通信装置可相当于终端设备,如:用户设备(user equipment,UE)、车载设备等,第二通信装置可相当于传输接收点(transmission reception point,TRP)、第5代(the 5th generation,5G)基站(gNodeB,gNB)等,本申请在此不作具体限定。在执行本申请的通信方法时,第二通信装置可先确定第一消息,其中,第一消息包括扩展因子的信息;之后第二通信装置可传输第一消息,相应地第一通信装置可接收第一消息,并根据扩展因子确定信息比特的数目;以及根据信息比特的数目生成待发送信号;并传输待发送信号,第二通信装置可接收待发送信号对待发送信号进行解调,基于扩展因子确定第一通信装置发送的待发送信号的信息比特的数目。
需要说明的是,本申请中提及的传输可以理解为主动发送,也可以理解为收到指令后的发送,如,第二通信装置传输第一消息,可以理解为第二通信装置主动发送第一消息,也可以理解为第二通信装置接收到核心网某个网元的指示后,被动发送第一消息,还可能是第一通信装置向第二通信装置发送第一消息的请求信息后,第二通信装置发送的,本申 请在此并不具体限定传输具体是指哪种形式。
本申请中第一通信装置接收到扩展因子的信息后,在进行频谱复制时,可参考扩展因子扩展通过滤波器传输的信息比特的数目,在不牺牲带宽的前提条件下,经过滤波器传输的信息比特的数目更多,频谱利用率也会相应提高。
在一种可选的方式中,扩展因子的信息为扩展因子的索引值。
需要说明的是,扩展因子的索引值与扩展因子的具体数值存在一一对应关系,通过扩展因子的索引值可以指示扩展因子的具体数值,如扩展因子的索引值为0000,指示扩展因子为1,扩展因子的索引值为00001,指示扩展因子为11/10等,本申请在此不作具体限定。由于扩展因子是通过比特位指示的,通过比特位指示扩展因子的具体值,相对于直接指示扩展因子的具体值而言,可以在数据传输时占用更少的内存,以便第一通信装置或第二通信装置在数据处理时,可以利用更多的数据处理资源来进行数据计算。
另外,扩展因子的索引值,可通1比特或多比特来指示,本申请在此不作具体限定。
在一种可选的方式中,第一消息还包括第一通信装置的滤波器的滚降系数的信息;扩展因子与滚降系数一一对应。
需要说明的是,第一消息中包括第一通信装置的滤波器的滚降系数的信息,以便第一通信装置在参考滚降系数的情况下,根据扩展因子计算信息比特的数目。通过该方式可以在确定滚降系数的情况下,在频谱复制时,带宽不增加的情况下,传输更多的信息比特的数目,进而提高频谱的利用率。
在一种可选的方式中,扩展因子的取值大于第一通信装置的滤波器的滚降系数。
本申请中,扩展因子的取值大于滚降系数可以确保在频谱复制时,传输更多的信息比特数目,可以提高频谱的利用率。
在一种可选的方式中,扩展因子的取值可大于或等于滚降系数与预设值的和。
需要说明的是,本申请中,为了保证频谱的具有更高地利用效率,可通过预设值来限定扩展因子的取值与滚降系数的关系,通常预设值可以为1,但是在实际应用时,也可根据用户的需求进行调整,如预设值为1.1、0.9等,本申请在此不作具体限定。
在一种可选的方式中,扩展因子的信息可通过以下信令中的一种或多种指示:
无线资源控制(radio resource control,RRC)、媒体接入控制元素(media access control control element,MAC CE)以及下行控制信息(downlink control information,DCI)。
需要说明的是,RRC信令、MAC CE信令以及DCI是通过不同层(控制层、物理层等)发送的,通常RRC信令的层级要高于MAC CE信令和DCI,MAC CE信令要高于DCI。在应用在本申请的方案时,可通过上述信令中的任意一个指示扩展因子的值,也可通过层级较高的信令指示扩展因子的范围,通过层级较低的信令指示扩展因子的具体值。通过该方式可根据传输信道的情况,降低开销,增加调度的灵活性,可以提高数据的传输效率。例如,第二通信装置通过RRC信令指示扩展因子的取值范围1.1~1.3,通过DCI信令具体指示扩展因子的取值1.2等。本申请在此不作具体限定。
在一种可选的方式中,第一通信装置或第二通信装置可根据扩展因子以及如下参数中的至少一项确定信息比特的数目:
第一通信装置的滤波器的滚降系数、第一通信装置的带宽、信号的流数以及调制与编码策略(modulation and coding scheme,MCS)。
需要说明的是,本申请在确定信息比特的数目时,在参考扩展因子的情况下,还参考 第一通信装置的滤波器的滚降系数、第一通信装置的带宽、信号的流数以及MCS等参数,使得计算的数据比特数目的可靠性更高。此外,在第一通信装置与第二通信装置存在数据传输的前提条件下,第一通信装置采用哪些参数确定信息比特数目,第二通信装置也采用哪些参数确定信息比特的数目,可通过通信协议提前约定,也可通过第二通信装置直接指示第一通信装置采用哪些参数确定信息比特数目,还可以是第一通信装置确定信息比特数目后,根据信息比特数目生成待发送信号,传输待发送信号时,携带确定信息比特数目的各个参数的指示信息,以便第二通信装置知晓采用哪些参数确定信息比特的数目,可能还存在其他方式,本申请在此不作具体限定。
在一种可选的方式中,第一通信装置或第二通信装置可通过如下公式确定信息比特的数目:
Figure PCTCN2022088848-appb-000001
其中,N info表示信息比特的数目;N RE表示资源元素(resource element,RE)的数目;β表示扩展因子;α表示滚降系数;R表示码率;Q m表示调制阶数;v表示信号的流数;表示预设值;λ表示预设值;int()表示向上取整,或向下取整,或四舍五入取整。
需要说明的是,上述的公式仅仅是计算信息比特数目的一种方式,在实际应用中,还可能存在其他的计算方式,只要信息比特数目的计算方式中参考扩展因子的情况,均适用于本申请的保护范围。
在一种可选的方式中,第二通信装置指示第一通信装置实际传输数据的带宽,通常带宽大小使用N RE表示,N RE表示给定持续OFDM符号数目内的资源元素数目,一个资源元素为一个OFDM符号内的一个子载波。假设给定持续OFDM符号数目为K,则每一个OFDM内的子载波数目为N BW=N RE/K,系统的子载波间隔为SCS,则带宽为BW=SCS.N BW,由此可知系统带宽可以通过N RE推导出来,也就是可以使用N RE进行表征。N RE可通过如下公式确定:
N RE=int(min(N1,N' RE).n PRB.(λ+α))
其中,N' RE表示一个物理资源块(physical resource block,PRB)中RE的数目;n PRB表示调制信号所需带宽占用的PRB的数目;N1表示第一通信装置与第二通信装置约定的常数因子或限制因子。
该方式考虑到第二通信装置仅仅指示第一通信装置实际传输数据的带宽的情况,来确定RE的数目,考虑更加全面。
在一种可选的方式中,第一通信装置或第二通信装置还可通过如下公式确定调制符的符号数:
Figure PCTCN2022088848-appb-000002
其中,N sym表示调制符号的符号数;N RE表示资源元素RE的数目;v表示信号的流数;β表示扩展因子;α表示滚降系数。
需要说明的是,在实际应用中,第一通信装置或第二通信装置可先确定信息比特的数目,将信息比特映射成调制符号通过信道传输调制符号来传输信息,也可先确定调制符号的符号数,基于确定的调制符号数调整信息比特的数目来传输信息。本申请在此并不具体 限定,是先确定信息比特的数目,还是先确定调制符号的数目。
第二方面,本申请提供一种第一通信装置,包括:输入输出单元以及处理单元。
其中,输入输出单元,用于接收第一消息,第一消息包括扩展因子的信息;处理单元,用于根据扩展因子确定信息比特的数目;以及根据信息比特的数目生成待发送信号;输入输出单元,还用于传输待发送信号。
在一种可选的方式中,扩展因子的信息为扩展因子的索引值。
在一种可选的方式中,第一消息还包括第一通信装置的滤波器的滚降系数的信息;扩展因子与滚降系数一一对应。
在一种可选的方式中,扩展因子的取值大于第一通信装置的滤波器的滚降系数。
在一种可选的方式中,扩展因子的取值大于或等于滚降系数与预设值的和。
在一种可选的方式中,扩展因子的信息通过以下信令中的一种或多种指示:RRC、MAC CE以及DCI。
在一种可选的方式中,处理单元,具体用于:根据扩展因子以及如下参数中的至少一项确定信息比特的数目:第一通信装置的滤波器的滚降系数、第一通信装置的带宽、信号的流数以及MCS。
在一种可选的方式中,处理单元,具体用于:通过如下公式确定信息比特的数目:
Figure PCTCN2022088848-appb-000003
其中,N info表示信息比特的数目;N RE表示RE的数目;β表示所述扩展因子;所述α表示滚降系数;R表示码率;Q m表示调制阶数;v表示信号的流数;λ表示预设值;int()表示向上取整,或向下取整,或四舍五入取整。
第三方面,本申请提供一种第二通信装置,包括:处理单元和输入输出单元。
其中,处理单元,用于确定第一消息,第一消息包括扩展因子的信息;输入输出单元,用于传输第一消息。
在一种可选的方式中,扩展因子的信息为扩展因子的索引值。
在一种可选的方式中,第一消息还包括第一通信装置的滤波器的滚降系数的信息;扩展因子与滚降系数一一对应。
在一种可选的方式中,扩展因子的取值大于第一通信装置的滤波器的滚降系数。
在一种可选的方式中,扩展因子的取值大于或等于滚降系数与预设值的和。
在一种可选的方式中,扩展因子的信息通过以下信令中的一种或多种指示:RRC、MAC CE以及DCI。
在一种可选的方式中,处理单元,具体用于:根据扩展因子以及如下参数中的至少一项确定信息比特的数目:第一通信装置的滤波器的滚降系数、第一通信装置的带宽、信号的流数以及调制与编码策略MCS。
在一种可选的方式中,处理单元,具体用于:通过如下公式确定信息比特的数目:
Figure PCTCN2022088848-appb-000004
其中,N info表示信息比特的数目;N RE表示资源元素RE的数目;β表示扩展因子;α表示滚降系数;R表示码率;Q m表示调制阶数;v表示信号的流数;λ表示预设值;int()表示向上取整,或向下取整,或四舍五入取整。
第四方面,本申请提供一种通信装置,包括至少一个处理器和存储器;该存储器用于存储计算机程序或指令,当该装置运行时,该至少一个处理器执行该计算机程序或指令,以使该通信装置执行如上述第一方面或第一方面的各实施例的方法。
第五方面,本申请实施例提供另一种通信装置,包括:接口电路和逻辑电路;其中接口电路,可以理解为输入输出接口,逻辑电路可用于运行所述代码指令以执行上述第一方面或第一方面的各实施例的方法。
第六方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,以使得计算机执行如第一方面或第一方面中任一种可能的设计中所述的方法。
第七方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的各实施例的方法。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请提供了一种通信系统,所述系统包括第一通信装置以及第二通信装置,所述通信系统用于执行上述第一方面或第一方面中任一种可能的设计中所述的方法。
上述第二方面至第九方面可以达到的技术效果,请参照上述第一方面中相应可能设计方案可以达到的技术效果说明,本申请这里不再重复赘述。
附图说明
图1A示出了本申请实施例提供的一种通信系统的示意图;
图1B示出了本申请实施例提供的另一种通信系统的示意图;
图2示出了一种频域信号传输情况的示意图;
图3示出了本申请实施例提供的通信方法的流程示意图;
图4示出了本申请实施例提供的频域信号传输情况的示意图;
图5示出了本申请实施例提供的通信装置的结构示意图;
图6示出了本申请实施例提供的通信装置的结构示意图;
图7示出了本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的通信方法可以应用于5G通信系统或未来的各种通信系统。具体的,例如5G通信系统最典型的三个通信场景增强型移动互联网(enhance mobile broadband,eMBB)、海量机器连接通信(massive machine type communication,mMTC)和高可靠低延迟通信(ultra reliable low latency communication,URLLC)。
下面来介绍适用于本申请通信方法的通信系统,该通信系统中的第一通信装置可以为 接入网设备,第二通信装置可以为终端设备,在实际应用时本申请不作具体限定。接下来以第一通信装置为终端设备,第二通信装置为接入网设备为例,参照图1A和图1B来介绍本申请可能适用的通信系统。
图1A示出一种适用于本申请的通信系统100。该通信系统100包括接入网设备110、终端设备120以及终端设备130,接入网设备110向终端设备110或终端设备120发送数据可以理解为下行数据传输,图1A示意为下行通信的通信系统。
图1B示出另一种适用于本申请的通信系统200。该通信系统200包括接入网设备210、接入网设备220、接入网设备230以及终端设备240,终端设备240向接入网设备210发送数据可以理解为上行数据传输,图1B示意为上行通信的通信系统。
本申请提供的通信方法既可以适用于图1A所示的下行通信的通信系统也可以适用于图1B示出的上行通信的通信系统,本申请在此不作具体限定。
接入网设备为是一种部署在无线接入网中为终端设备提供无线通信功能的装置。接入网设备具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G(如新无线(new radio,NR))系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU),或,卫星等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现RRC,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息(即通过PHY层发送),或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,接入网设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为无线接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
本申请实施例中所涉及的终端设备,又可以称之为终端,是用户侧的一种用于接收或发射信号的实体,用于向网络设备发送上行信号,或从网络设备接收下行信号。包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经RAN与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、车用无线通信技术(vehicle to X,V2X)终端设备、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT) 终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)、可穿戴设备、车载设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请背景技术部分提及为了得到PAPR低的信号,可通过DFT-S-OFDM with FDSS来实现。终端设备在进行上行数据传输时,可参照如下步骤生成待发送信号:
步骤1,对数据比特进行调制。该数据比特可以是编码后的数据比特,也可以是原始的数据比特。具体编码方式这里不进行限定。调制使用的方式可以是各种调制方式,例如为幅度调制键控,也可以是相移键控,还可以是频移键控,也可以是正交幅度调制(quadrature amplitude modulation,QAM)中的任意一种调制方式,也可以是偏移正交幅度调制(offset quadrature amplitude modulation,OQAM)中的任意一种调制方式。
步骤2,将时域信号变为频域信号,即对信号进行快速傅里叶变换(fast fourier transform,FFT)变换或离散傅里叶变换(discrete fourier transform,DFT)变换。如果是QAM信号,可以对时域信号进行复制,即对信号进行上采样,再将其变换到频域;也可以将QAM信号直接变换到频域,然后进行复制,具体实现方式本申请在此不作限定。
步骤3,对频域信号进行滤波,滤波使用的滤波器可以是Nyquist(奈奎斯特)滤波器,也可以是非Nyquist滤波器,在此不作具体限定。一种实现的方式中,可以在步骤2之前执行步骤3。如果步骤3在步骤2之前执行,则为时域滤波,时域滤波为时域信号与时域滤波器进行卷积。步骤3在步骤2之后执行,则为频域滤波,对于频域滤波,频域信号与频域滤波器信号进行一对一相乘。
步骤4,将频域信号映射到对应的子载波位置上。该子载波位置可以是基站分配的子载波位置,也可以是通信系统分配的子载波位置。
步骤5,将频域信号进行逆向快速傅里叶变换(inverse fast fourier transform,IFFT)点数,将频域信号变换到时域,之后添加循环前缀(cyclic prefix,CP)进行发送。
对于传统的DFT-s-OFDM-FDSS而言,可将x个调制信号复制成3份,即对调制信号进行三倍的上采样,然后将调制信号进行FFT变换,转换到频域,得到频域信号。在上述步骤3中该频域信号为3段相同的频域信号,对该频域信号进行频域滤波,即与频域滤波器进行一一对应的点乘如图2所示。需要注意的是,频域滤波器的长度值比数据信号的长度值大。频域滤波长度值超过数据信号的部分与数据信号的比值记为α(也即滤波器的滚降系数),那么滤波器的长度为x·(1+α),最后传输的数据为虚线之内的数据,其长度为x·(1+α),也即滤波器的长度,但是,实际包含信息的数据长度仅为x,因此DFT-s-OFDM-FDSS相对于DFT-S-OFDM而言,占用更多的带宽传输相同的数据,频谱利用率比较低。
考虑到相关技术中,DFT-S-OFDM with FDSS具有低PAPR但是频率利用率低的情况,本申请通过引入扩展因子,在进行频谱复制时,可参考扩展因子扩展通过滤波器传输的信息比特的数目,在不牺牲带宽的前提条件下,经过滤波器传输的信息比特的数目更多,提高频谱利用率。可参照图3所示的通信方法来执行,该方法可应用于第一通信装置,也可应用于第二通信装置,还可通过第一通信装置与第二通信装置的交互来实现,本申请在此并不具体限定。图3仅示意1个第一通信装置和1个第二通信装置,但是在实际应用时,并不限定第一通信装置和第二通信装置的数量。下面以第一通信装置为UE,第二通信装置为gNB为例来说明本申请的方案。以上行通信为例,可参照如下步骤来执行:
步骤301,gNB确定第一消息,其中第一消息包括扩展因子的信息。
需要说明的是,数据计算粒度较大的gNB可参考多个UE与gNB历史的通信情况,经过统计分析确定扩展因子的信息(扩展因子的取值、扩展因子与哪些参数关联等),可基于人工智能(artificial intelligence,AI)的算法来确定,也可基于其他算法来确定,本申请在此不作具体限定。此外,也可通过与gNB通信的核心网设备计算扩展因子的信息(可参照上述方式计算,在此不重复赘述),之后核心网设备将扩展因子的信息传输至gNB,本申请在此不具体限定扩展因子的信息来源以及确定方式。
此外,还要说明的是,第一消息中除了携带扩展因子的信息以外,还可能携带其他信息,如gNB通过广播发送第一消息,第一消息中还可以携带UE的标识信息,通过携带UE标识信息指示具体哪个UE根据扩展因子进行后续的计算操作;亦或者,gNB通过组播发送第一消息,第一消息中还可以携带小区的标识信息,通过携带小区的标识信息指示具体哪个小区根据扩展因子进行后续的计算操作;如gNB通过单播发送第一消息,第一消息中还可以携带信号传输时间指示信息,通过携带信号传输时间指示信息指示UE根据扩展因子进行后续的计算操作后何时将待发送信号传输至第二通信装置。第一消息中可携带UE的标识信息、信号传输时间指示信息、小区标识信息等,本申请在此不具体限定。
另外,还要说明的是,扩展因子的信息随着通信业务的变化可以灵活调整,如定期更新,基于预设的参数值进行调整等,例如,gNB1参考UE1~UE10(位于同一地区的同一工作园区中)与其历史的通信情况,确定扩展因子A,可将扩展因子A指示给UE1~UE10以使UE1~UE10执行与gNB1的通信,但是UE1~UE10的地理位置发生变化,gNB1则需更新扩展因子A才能保证与UE1~UE10的正常通信;此外,gNB1虽然确定了扩展因子A,但是在各UE与gNB1实际通信的过程中,通信效果不好,则可基于扩展因子A的初始值或其他参数值调整扩展因子的取值。具体如何调整扩展因子,还要结合实际业务情况来确定,本申请在此不具体限定。
示例性说明,扩展因子的信息可以为扩展因子的索引值,扩展因子的索引值与扩展因 子的具体数值存在一一对应关系,通过扩展因子的索引值可以指示扩展因子的具体数值,本申请在此不作具体限定。扩展因子的索引值,可通过1个或多个比特来指示,本申请在此不作具体限定。由于扩展因子是通过比特位指示的,通过比特位指示扩展因子的具体值,相对于直接指示扩展因子的具体值而言,可以在数据传输是占用更少的内存,以便第一通信装置或第二通信装置在数据处理时,可以利用更多的数据处理资源来进行数据计算。
如表1所示,可通过4比特来指示扩展因子的索引值,其中,扩展因子的索引值为0000,指示扩展因子为1,扩展因子的索引值为0001,指示扩展因子为11/10等,本申请在此仅作示例性说明,不一一示意,另外还要说明的是,在实际应用时可能仅仅应用表1中的一行或多行。
表1
扩展因子的索引值(Index) 扩展因子β
0000 1
0001 11/10
0010 6/5
步骤302,gNB传输第一消息。相应地,UE会接收来自gNB的消息。
需要说明的是,本申请中提及的传输可以理解为主动发送,也可以理解为收到指令后的发送,如,gNB传输第一消息,可以理解为gNB主动发送第一消息,也可以理解为gNB接收到核心网某个网元的指示后,被动发送第一消息,还可能是UE向gNB发送第一消息的请求信息后,gNB发送的,本申请在此并不具体限定传输具体是指哪种形式。
在一种可选的实施方式中,第一消息中还可以包括UE的滤波器的滚降系数的信息;其中,扩展因子β与滚降系数α一一对应。第一消息中包括第一通信装置的滤波器的滚降系数的信息,以便第一通信装置在参考滚降系数的情况下,根据扩展因子计算信息比特的数目。通过该方式可以在确定滚降系数的情况下,在频谱复制时,带宽不增加的情况下,传输更多的信息比特的数目,进而提高频谱的利用率。
例如,滚降系数α为0.2时,扩展因子β可以为1、11/10、8/7、9/8、10/9、12/11、13/12等,与此同时,在第一消息包括滚降系数α的情况下,可通过上述的扩展信息的索引值,指示扩展因子β与滚降系数α的取值。具体如下,可参照表2进行指示,其中,扩展因子的索引值为0000,指示滚降系数α为0,扩展因子β为1;扩展因子的索引值为0001,指示滚降系数α为0.2,扩展因子为1;扩展因子的索引值为0011指示滚降系数α为0.2,扩展因子为11/10等,在此仅作示例性说明,不一一示意。另外还要说明的是,在实际应用时可能仅仅应用表2的一行或多行,或者固定表2涉及的滚降系数和扩展因子中的一个,这样表2就可以由三列改为两列,例如,在滚降系数仅为0.2时,可仅仅指示扩展因子的取值,那么表2则变为两列;亦或者在扩展因子均为11/10时,仅仅指示滚降系数的取值0.2和0.3,那么表2也可变为两列,在此仅仅示例性说明,并不对表格的形式和内容具体限定,凡是可以指示出扩展因子和滚降系数的方式均可适用于本申请。
表2
扩展因子的索引值(Index) 滚降系数α 扩展因子β
0000 0 1
0001 0.2 1
0010 0.2 11/10
0011 0.2 8/7
0100 0.2 9/8
0101 0.2 10/9
0110 0.2 12/11
0111 0.2 13/12
1000 0.3 1
1001 0.3 6/5
1010 0.3 11/10
1011 0.3 8/7
1100 0.3 9/8
1101 0.3 10/9
1110 0.3 12/11
1111 0.3 13/12
还要说明的是,在实际应用时,滚降系数α和扩展因子β也可单独指示,也即通过不同的信令或不同时刻发送的信息分别指示,如,通过RRC信令指示扩展因子的信息,通过MAC CE信令指示滚降系数;通过时刻1发送的RRC信令指示扩展因子的信息,通过时刻2发送的RRC信令指示滚降系数等,本申请在此不作具体限定。
另外,不同滚降系数的取值还可指示不同的扩展因子的取值,例如,α=0.2时,β可以为1、11/10、8/7、9/8、10/9、12/11、13/12中的部分或者全部的值,还可通过不同的比特指示β,如通过3比特指示上述β的7个取值,也可通过2比特指示上述β的7个取值中的任意4个,本申请在此不作具体限定。
此外,考虑到第一消息的传输方式,可灵活选择不同的比特位指示的扩展因子来指示UE执行信息比特的计算操作,假定第一消息是通过组播发送的,且与gNB通信的小区恰好为4个,可通过2比特分别指示各小区中UE对应的扩展因子,例如,11指示小区4中UE对应的扩展因子为11/10等,本申请在此不作具体限定,可结合实际业务情况,灵活调整。
示例性说明,扩展因子的取值大于UE的滤波器的滚降系数。扩展因子的取值大于滚降系数可以确保在频谱复制时,传输更多的信息比特数目,可以提高频谱的利用率。
示例性说明,扩展因子的取值可大于或等于滚降系数与预设值的和。为了保证频谱的具有更高地利用效率,可通过预设值来限定扩展因子的取值与滚降系数的关系,通常预设值可以为1,但是在实际应用时,也可根据用户的需求进行调整,如预设值为1.1、0.9等,本申请在此不作具体限定。
在一种可选的方式中,扩展因子的信息可通过以下信令中的一种或多种指示:RRC、MAC CE以及DCI。其中,RRC信令、MAC CE信令以及DCI是通过不同层(控制层、物理层等)发送的,通常RRC信令的层级要高于MAC CE信令和DCI,MAC CE信令要高于DCI。在应用在本申请的方案时,可通过上述信令中的任意一个指示扩展因子的值,也可通过层级较高的信令指示扩展因子的范围,通过层级较低的信令指示扩展因子的具体 值。例如,gNB通过RRC信令指示扩展因子的取值范围1.1~1.3,通过DCI信令或MAC CE信令具体指示扩展因子的取值1.2;亦或者,gNB通过MAC CE信令指示扩展因子的取值范围1.1~1.3,通过DCI信令具体指示扩展因子的取值1.2等,本申请在此不作具体限定。通过该方式可根据传输信道的情况,进行灵活调度,可以提高数据的传输效率。
步骤303,UE根据扩展因子确定信息比特的数目。
需要说明的是,UE可参照上述DFT-S-OFDM-FDSS生成待发送信号中的步骤1~步骤5的一个或多个步骤的执行流程确定信息比特的数目,该信息比特数目可以理解为通过滤波器传输的频域信号的长度,但是本申请在执行时,引入了扩展因子,使得通过滤波器传输的频域信号的长度变长。如图4所示,本申请在定义超奈奎斯特(faster than nyquist,FTN)时,可在DFT-s-OFDM-FDSS上指示扩展因子β,根据扩展因子可以得出传输的数据为y=x.β,其中x表示不进行扩展需要传输的数据,其中x小于等于y,多传输的数据τ=y-x。这里不限定具体的形式,只要根据x和β的值,可以推导出τ或y的值即可。相对于相关技术DFT-s-OFDM-FDSS而言,相同滤波器长度,传输的频域信号更多,那么频谱的利用率也会显著提高。
在一种可选的实施方式中,UE可根据扩展因子以及如下参数中的至少一项确定信息比特的数目:UE的滤波器的滚降系数、UE的带宽、信号的流数以及MCS。
需要说明的是,UE的带宽可以为gNB为UE分配的带宽,也可以为UE传输数据时,实际占用的带宽,本申请在此不作具体限定。信号的流数为gNB与UE之间传输信号的数据流数目。MCS是指示调制和编码的策略,通过MCS可以保障UE的业务的传输效率和传输质量,信号质量好时,采用更高阶的调制方式和更高的编码效率(添加更少的保护比特);当信道质量差时,采用更低阶的调制方式和更低的编码效率(添加更多的保护比特)等。
本请在确定信息比特的数目时,在参考扩展因子的情况下,还参考UE的滤波器的滚降系数、UE的带宽、信号的流数以及MCS等参数,使得计算的数据比特数目的可靠性更高。
此外,在UE与gNB存在数据传输的前提条件下,UE采用哪些参数确定信息比特数目,gNB也采用哪些参数确定信息比特的数目,可通过通信协议提前约定,也可通过gNB直接指示UE采用哪些参数确定信息比特数目,还可以是UE确定信息比特数目后,根据信息比特数目生成待发送信号,传输待发送信号时,携带确定信息比特数目的各个参数的指示信息,以便gNB知晓采用哪些参数确定信息比特的数目,可能还存在其他方式,本申请在此不作具体限定。
示例性说明,本申请在确定信息比特的数目时,可参照以下方式中的一种或多种来确定:
方式1、参考扩展因子以及UE的滤波器的滚降系数确定信息比特的数目
在执行时,可参照公式1确定信息比特的数目:
Figure PCTCN2022088848-appb-000005
其中,N info表示信息比特的数目;x表示根据传统方案传输的信息比特数目,也可以为其他处理方式得到的参数;β表示扩展因子;α表示滚降系数,λ表示预设值。
方式2、参考扩展因子以及UE的带宽确定信息比特的数目
在执行时,可参照公式2确定信息比特的数目:
N info=int(β.N RE.x)        公式2
其中,N info表示信息比特的数目;x表示根据其他处理方式得到的参数,β表示扩展因子,N RE表示带宽之内的子载波数目。
方式3、参考扩展因子以及信号流数确定系信息比特的数目
在执行时,可参照公式3确定信息比特的数目:
N info=int(β.v.x)          公式3
其中,N info表示信息比特的数目;x表示根据其他处理方式得到的参数,β表示扩展因子,v表示信号流数。
方式4、参考扩展因子、UE的带宽、信号的流数确定信息比特的数目
在执行时,可参照公式4确定信息比特的数目:
N info=int(β.N RE.v.x)            公式4
其中,N info表示信息比特的数目;x表示根据其他处理方式得到的参数,β表示扩展因子,v表示信号流数,N RE表示带宽之内的子载波数目。
方式5、参考扩展因子、UE的滤波器的滚降系数、UE的带宽、信号的流数以及MCS确定信息比特的数目
在执行时,可参照公式5确定信息比特的数目:
Figure PCTCN2022088848-appb-000006
其中,N info表示信息比特的数目;N RE表示RE的数目;β表示扩展因子;α表示滚降系数;R表示码率;Q m表示调制阶数;v表示信号的流数;λ表示预设值;int()表示向上取整,或向下取整,或四舍五入取整,本申请在此不作具体限定。
还要说明的是,在未考虑到扩展因子以及滚降系数的情况下,信息比特数目为N info=int(N RE.R.Q m.v),考虑到滚降系数为考虑扩展因子的情况信息比特数目可通过公式6确定:
Figure PCTCN2022088848-appb-000007
需要说明的是,公式6中与公式5中相同的参数具有相同的含义,在此不一一赘述。通过比对公式5以及公式6可知本申请在计算信息比特的数目时多乘一个扩展因子。在β大于1时,公式5中
Figure PCTCN2022088848-appb-000008
的取值显然大于
Figure PCTCN2022088848-appb-000009
的取值,也即信息比特的数目得到扩展。
另外,在原始的通信协议中,资源分配的方案是根据MCS以及gNB分配的PRB数目,确定RE的数目。每一个资源元素由一个时域符号和一个频域子载波组成,N RE=min(156,N' RE).n PRB,其中N' RE表示一个PRB中RE的数目,n PRB表示传输数据需要的带宽所占用的PRB数目,min表示取较小的值。
上述的方案中gNB指示了UE占用的所有带宽。在一种可选的方式中,gNB指示UE实际传输数据的带宽,通常带宽大小使用N RE表示,N RE表示给定持续OFDM符号数目内的资源元素数目,一个资源元素为一个OFDM符号内的一个子载波。假设给定持续OFDM符号数目为K,则每一个OFDM内的子载波数目为N BW=N RE/K,系统的子载波间隔为SCS,则带宽为BW=SCS.N BW,由此可知系统带宽可以通过N RE推导出来,也就是可以使 用N RE进行表征。该资源分配方式需要对带宽起始位置进行自动的扩展。其中,N RE可通过如下公式7确定:
N RE=int(min(N1,N' RE).n PRB.(λ+α))      公式7
其中,N' RE表示一个PRB中RE的数目;n PRB表示调制信号所需带宽占用的PRB的数目;N1表示gNB与UE约定的常数因子或限制因子。
在实际应用时,并不限定上述方式1~方式7提供的方法来确定信息比特的数目,还可以通过其他方式来确实上述方式仅仅是示例性说明,在实际应用时,还可将上述不同的方式进行加权计算确定信息比特的数目,本申请在此并不具体限定。
步骤304,UE根据信息比特的数目生成待发送信号。
需要说明的是,在实际应用中,待发送信号需要通过信息比特映射成调制符号来确定,UE可先确定信息比特的数目,将信息比特映射成调制符号通过信道传输调制符号来传输信息,也可先确定调制符号的符号数,基于确定的调制符号数调整信息比特的数目来传输信息。本申请在此并不具体限定,是先确定信息比特的数目,还是先确定调制符号的数目。
示例性说明,UE可通过如下公式8确定调制符的符号数:
Figure PCTCN2022088848-appb-000010
其中,N sym表示调制符号的符号数;N RE表示RE的数目;v表示信号的流数;β表示扩展因子;α表示滚降系数;λ表示预设值;int()表示向上取整,或向下取整,或四舍五入取整,本申请在此不作具体限定。
步骤305,UE传输待发送信号。相应地,gNB会接收待发送信号。
步骤306,gNB根据扩展因子确定待发送信号对应的信息比特的数目,并解调待发送信号。
本申请中UE接收到扩展因子的信息后,在进行频谱复制时,可参考扩展因子扩展通过滤波器传输的信息比特的数目,在不牺牲带宽的前提条件下,经过滤波器传输的信息比特的数目更多,频谱利用率也会相应提高。
还要说明的是,下行通信与上行通信的情况类似,但是,在下行通信时,UE可接收来自gNB的扩展因子的信息后,在接收到来自gNB的待发送信号,才通过扩展因子确定待发送信号对应的信息比特数目,从而解调出信号。
基于同样的构思,本申请实施例提供一种通信装置如图5所示,包括:处理单元501和输入输出单元502。在实际应用时,输入输出单元可通过同一数据处理芯片来实现,也可通过不同的数据处理芯片来实现,本申请在此不作具体限定。该通信装置可以为上述的第一通信装置和第二通信装置,本申请在此不具体限定。
在为第一通信装置时,也即终端设备等时,可通过输入输出单元502,接收第一消息,第一消息包括扩展因子的信息;处理单元501,根据扩展因子确定信息比特的数目;以及根据信息比特的数目生成待发送信号;输入输出单元502,还用于传输待发送信号。
需要说明的是,本申请中提及的传输可以理解为主动发送,也可以理解为收到指令后的发送,如,第二通信装置传输第一消息,可以理解为第二通信装置主动发送第一消息,也可以理解为第二通信装置接收到核心网某个网元的指示后,被动发送第一消息,还可能是第一通信装置向第二通信装置发送第一消息的请求信息后,第二通信装置发送的,本申 请在此并不具体限定传输具体是指哪种形式。
本申请中第一通信装置接收到扩展因子的信息后,在进行频谱复制时,可参考扩展因子扩展通过滤波器传输的信息比特的数目,在不牺牲带宽的前提条件下,经过滤波器传输的信息比特的数目更多,频谱利用率也会相应提高。
在一种可选的方式中,扩展因子的信息为扩展因子的索引值。
需要说明的是,扩展因子的索引值与扩展因子的具体数值存在一一对应关系,通过扩展因子的索引值可以指示扩展因子的具体数值,如扩展因子的索引值为0000,指示扩展因子为1,扩展因子的索引值为0001,指示扩展因子为11/10等,本申请在此不作具体限定。由于扩展因子是通过比特位指示的,通过比特位指示扩展因子的具体值,相对于直接指示扩展因子的具体值而言,可以在数据传输是占用更少的内存,以便第一通信装置或第二通信装置在数据处理时,可以利用更多的数据处理资源来进行数据计算。
另外,扩展因子的索引值,可通过1个或多个比特来指示,本申请在此不作具体限定。
在一种可选的方式中,第一消息还包括第一通信装置的滤波器的滚降系数的信息;扩展因子与滚降系数一一对应。
需要说明的是,第一消息中包括第一通信装置的滤波器的滚降系数的信息,以便第一通信装置在参考滚降系数的情况下,根据扩展因子计算信息比特的数目。通过该方式可以在确定滚降系数的情况下,在频谱复制时,带宽不增加的情况下,传输更多的信息比特的数目,进而提高频谱的利用率。
在一种可选的方式中,扩展因子的取值大于第一通信装置的滤波器的滚降系数。
本申请中,扩展因子的取值大于滚降系数可以确保在频谱复制时,传输更多的信息比特数目,可以提高频谱的利用率。
在一种可选的方式中,扩展因子的取值大于或等于滚降系数与预设值的和。
需要说明的是,本申请中,为了保证频谱的具有更高地利用效率,可通过预设值来限定扩展因子的取值与滚降系数的关系,通常预设值可以为1,但是在实际应用时,也可根据用户的需求进行调整,如预设值为1.1、0.9等,本申请在此不作具体限定。
在一种可选的方式中,扩展因子的信息通过以下信令中的一种或多种指示:RRC、MAC CE以及DCI。
需要说明的是,RRC信令、MAC CE信令以及DCI是通过不同层(控制层、物理层等)发送的,通常RRC信令的层级要高于MAC CE信令和DCI,MAC CE信令要高于DCI。在应用在本申请的方案时,可通过上述信令中的任意一个指示扩展因子的值,也可通过层级较高的信令指示扩展因子的范围,通过层级较低的信令指示扩展因子的具体值。通过该方式可根据传输信道的情况,进行灵活调度,可以提高数据的传输效率。例如,第二通信装置通过RRC信令指示扩展因子的取值范围1.1~1.3,通过DCI信令具体指示扩展因子的取值1.2等。本申请在此不作具体限定。
在一种可选的方式中,处理单元501,具体用于:根据扩展因子以及如下参数中的至少一项确定信息比特的数目:第一通信装置的滤波器的滚降系数、第一通信装置的带宽、信号的流数以及MCS。
需要说明的是,本申请在确定信息比特的数目时,在参考扩展因子的情况下,还参考第一通信装置的滤波器的滚降系数、第一通信装置的带宽、信号的流数以及MCS等参数,使得计算的数据比特数目的可靠性更高。此外,在第一通信装置与第二通信装置存在数据 传输的前提条件下,第一通信装置采用哪些参数确定信息比特数目,第二通信装置也采用哪些参数确定信息比特的数目,可通过通信协议提前约定,也可通过第二通信装置直接指示第一通信装置采用哪些参数确定信息比特数目,还可以是第一通信装置确定信息比特数目后,根据信息比特数目生成待发送信号,传输待发送信号时,携带确定信息比特数目的各个参数的指示信息,以便第二通信装置知晓采用哪些参数确定信息比特的数目,可能还存在其他方式,本申请在此不作具体限定。
在一种可选的方式中,处理单元501,具体用于:通过如下公式确定信息比特的数目:
Figure PCTCN2022088848-appb-000011
其中,N info表示信息比特的数目;N RE表示RE的数目;β表示所述扩展因子;所述α表示滚降系数;R表示码率;Q m表示调制阶数; v表示信号的流数;λ表示预设值;int()表示向上取整,或向下取整,或四舍五入取整。
需要说明的是,上述的公式仅仅是计算信息比特数目的一种方式,在实际应用中,还可能存在其他的计算方式,只要信息比特数目的计算方式中参考扩展因子的情况,均适用于本申请的保护范围。
在一种可选的方式中,第二通信装置指示第一通信装置实际传输数据的带宽,通常带宽大小使用N RE表示,N RE表示给定持续OFDM符号数目内的资源元素数目,一个资源元素为一个OFDM符号内的一个子载波。假设给定持续OFDM符号数目为K,则每一个OFDM内的子载波数目为N BW=N RE/K,系统的子载波间隔为SCS,则带宽为BW=SCS.N BW,由此可知系统带宽可以通过N RE推导出来,也就是可以使用N RE进行表征。N RE可通过如下公式确定:
N RE=int(min(N1,N' RE).n PRB.(λ+α))
其中,N' RE表示一个物理资源块(physical resource block,PRB)中RE的数目;n PRB表示调制信号所需带宽占用的PRB的数目;N1表示第一通信装置与第二通信装置约定的常数因子或限制因子。
该方式考虑到第二通信装置仅仅指示第一通信装置实际传输数据的带宽的情况,来确定RE的数目,考虑更加全面。
在一种可选的方式中,处理单元501,具体用于:通过如下公式确定调制符的符号数:
Figure PCTCN2022088848-appb-000012
其中,N sym表示调制符号的符号数;N RE表示资源元素RE的数目;β表示扩展因子;α表示滚降系数。
需要说明的是,在实际应用中,第一通信装置或第二通信装置可先确定信息比特的数目,将信息比特映射成调制符号通过信道传输调制符号来传输信息,也可先确定调制符号的符号数,基于确定的调制符号数调整信息比特的数目来传输信息。本申请在此并不具体限定,是先确定信息比特的数目,还是先确定调制符号的数目。
在为第二通信装置时,也即接入网设备等时,可通过处理单元501,确定第一消息,第一消息包括扩展因子的信息;输入输出单元502,传输第一消息。
需要说明的是,本申请中提及的传输可以理解为主动发送,也可以理解为收到指令后 的发送,如,第二通信装置传输第一消息,可以理解为第二通信装置主动发送第一消息,也可以理解为第二通信装置接收到核心网某个网元的指示后,被动发送第一消息,还可能是第一通信装置向第二通信装置发送第一消息的请求信息后,第二通信装置发送的,本申请在此并不具体限定传输具体是指哪种形式。
在一种可选的方式中,扩展因子的信息为扩展因子的索引值。
需要说明的是,扩展因子的索引值与扩展因子的具体数值存在一一对应关系,通过扩展因子的索引值可以指示扩展因子的具体数值,如扩展因子的索引值为0000,指示扩展因子为1,扩展因子的索引值为00001,指示扩展因子为11/10等,本申请在此不作具体限定。由于扩展因子是通过比特位指示的,通过比特位指示扩展因子的具体值,相对于直接指示扩展因子的具体值而言,可以在数据传输时占用更少的内存,以便第一通信装置或第二通信装置在数据处理时,可以利用更多的数据处理资源来进行数据计算。另外,扩展因子的索引值,可通过1个或多个比特来指示,本申请在此不作具体限定。
在一种可选的方式中,第一消息还包括第一通信装置的滤波器的滚降系数的信息;扩展因子与滚降系数一一对应。
需要说明的是,第一消息中包括第一通信装置的滤波器的滚降系数的信息,以便第一通信装置在参考滚降系数的情况下,根据扩展因子计算信息比特的数目。通过该方式可以在确定滚降系数的情况下,在频谱复制时,带宽不增加的情况下,传输更多的信息比特的数目,进而提高频谱的利用率。
在一种可选的方式中,扩展因子的取值大于第一通信装置的滤波器的滚降系数。
本申请中,扩展因子的取值大于滚降系数可以确保在频谱复制时,传输更多的信息比特数目,可以提高频谱的利用率。
在一种可选的方式中,扩展因子的取值大于或等于滚降系数与预设值的和。
需要说明的是,本申请中,为了保证频谱的具有更高地利用效率,可通过预设值来限定扩展因子的取值与滚降系数的关系,通常预设值可以为1,但是在实际应用时,也可根据用户的需求进行调整,如预设值为1.1、0.9等,本申请在此不作具体限定。
在一种可选的方式中,扩展因子的信息通过以下信令中的一种或多种指示:RRC、MAC CE以及DCI。
需要说明的是,RRC信令、MAC CE信令以及DCI是通过不同层(控制层、物理层等)发送的,通常RRC信令的层级要高于MAC CE信令和DCI,MAC CE信令要高于DCI。在应用在本申请的方案时,可通过上述信令中的任意一个指示扩展因子的值,也可通过层级较高的信令指示扩展因子的范围,通过层级较低的信令指示扩展因子的具体值。通过该方式可根据传输信道的情况,进行灵活调度,可以提高数据的传输效率。例如,第二通信装置通过RRC信令指示扩展因子的取值范围1.1~1.3,通过DCI信令具体指示扩展因子的取值1.2等。本申请在此不作具体限定。
在一种可选的方式中,处理单元501,具体用于:根据扩展因子以及如下参数中的至少一项确定信息比特的数目:第一通信装置的滤波器的滚降系数、第一通信装置的带宽、信号的流数以及MCS。
需要说明的是,本申请在确定信息比特的数目时,在参考扩展因子的情况下,还参考第一通信装置的滤波器的滚降系数、第一通信装置的带宽、信号的流数以及MCS等参数,使得计算的数据比特数目的可靠性更高。此外,在第一通信装置与第二通信装置存在数据 传输的前提条件下,第一通信装置采用哪些参数确定信息比特数目,第二通信装置也采用哪些参数确定信息比特的数目,可通过通信协议提前约定,也可通过第二通信装置直接指示第一通信装置采用哪些参数确定信息比特数目,还可以是第一通信装置确定信息比特数目后,根据信息比特数目生成待发送信号,传输待发送信号时,携带确定信息比特数目的各个参数的指示信息,以便第二通信装置知晓采用哪些参数确定信息比特的数目,可能还存在其他方式,本申请在此不作具体限定。
在一种可选的方式中,处理单元501,具体用于:通过如下公式确定信息比特的数目:
Figure PCTCN2022088848-appb-000013
其中,N info表示信息比特的数目;N RE表示RE的数目;β表示所述扩展因子;所述α表示滚降系数;R表示码率;Q m表示调制阶数; v表示信号的流数;λ表示预设值;int()表示向上取整,或向下取整,或四舍五入取整。
需要说明的是,上述的公式仅仅是计算信息比特数目的一种方式,在实际应用中,还可能存在其他的计算方式,只要信息比特数目的计算方式中参考扩展因子的情况,均适用于本申请的保护范围。
在一种可选的方式中,第二通信装置指示第一通信装置实际传输数据的带宽,通常带宽大小使用N RE表示,N RE表示给定持续OFDM符号数目内的资源元素数目,一个资源元素为一个OFDM符号内的一个子载波。假设给定持续OFDM符号数目为K,则每一个OFDM内的子载波数目为N BW=N RE/K,系统的子载波间隔为SCS,则带宽为BW=SCS.N BW,由此可知系统带宽可以通过N RE推导出来,也就是可以使用N RE进行表征。N RE可通过如下公式确定:
N RE=int(min(N1,N' RE).n PRB.(λ+α))
其中,N' RE表示一个物理资源块(physical resource block,PRB)中RE的数目;n PRB表示调制信号所需带宽占用的PRB的数目;N1表示第一通信装置与第二通信装置约定的常数因子或限制因子。
该方式考虑到第二通信装置仅仅指示第一通信装置实际传输数据的带宽的情况,来确定RE的数目,考虑更加全面。
在一种可选的方式中,处理单元501,具体用于:通过如下公式确定调制符的符号数:
Figure PCTCN2022088848-appb-000014
其中,N sym表示调制符号的符号数;N RE表示资源元素RE的数目;v表示信号的流数;β表示扩展因子;α表示滚降系数。
需要说明的是,在实际应用中,第一通信装置可先确定信息比特的数目,将信息比特映射成调制符号通过信道传输调制符号来传输信息,也可先确定调制符号的符号数,基于确定的调制符号数调整信息比特的数目来传输信息,相应地第二通信设备也要确定调制符号的数目,以便可以解调第一通信设备传输的待发送信号。本申请在此并不具体限定,是先确定信息比特的数目,还是先确定调制符号的数目。
此外,如图6所示,为本申请还提供的一种通信装置600。示例性地,通信装置600可以是芯片或芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包 含芯片和其他分立器件。
通信装置600可以包括至少一个处理器610,通信装置600还可以包括至少一个存储器620,用于存储计算机程序、程序指令和/或数据。存储器620和处理器610耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器610可能和存储器620协同操作。处理器610可能执行存储器620中存储的计算机程序。可选的,所述至少一个存储器620也可与处理器610集成在一起。
通信装置600中还可以包括收发器630,通信装置600可以通过收发器630和其它设备进行信息交互。收发器630可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置。
在一种可能的实施方式中,该通信装置600可以应用于前述的终端设备,也可以是前述的第一通信装置,还可以是前述的第二通信装置。存储器620保存实施上述任一实施例中的中继设备的功能的必要计算机程序、程序指令和/或数据。所述处理器610可执行所述存储器620存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中不限定上述收发器630、处理器610以及存储器620之间的具体连接介质。本申请实施例在图6中以存储器620、处理器610以及收发器630之间通过总线连接,总线在图6中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、程序指令和/或数据。
基于以上实施例,参见图7,本申请实施例还提供另一种通信装置700,包括:接口电路710和逻辑电路720;接口电路710,可以理解为输入输出接口,可用于执行与上述图5示意的输入输出单元或如图6示意的收发器同样的操作步骤,本申请在此不再赘述。逻辑电路720可用于运行所述代码指令以执行上述任一实施例中的方法,可以理解成上述图5中的处理单元或图6中的处理器,可以实现处理单元或处理器同样的功能,本申请在此不再赘述。
基于以上实施例,本申请实施例还提供一种可读存储介质,该可读存储介质存储有指令,当所述指令被执行时,使上述任一实施例中通信方法被实施。该可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理装置的处理器以产生一个机器,使得通过计算机或其他可编程数据处理装置的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理装置以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理装置上,使得在计算机或其他可编程装置上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程装置上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (35)

  1. 一种通信方法,应用于第一通信装置,其特征在于,包括:
    接收第一消息,所述第一消息包括扩展因子的信息;
    根据所述扩展因子确定信息比特的数目;
    根据所述信息比特的数目生成待发送信号;
    传输所述待发送信号。
  2. 根据权利要求1所述的方法,其特征在于,所述扩展因子的信息为所述扩展因子的索引值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一消息还包括所述第一通信装置的滤波器的滚降系数的信息;所述扩展因子与所述滚降系数一一对应。
  4. 根据权利要求1或2所述的方法,其特征在于,所述扩展因子的取值大于所述第一通信装置的滤波器的滚降系数。
  5. 根据权利要求3或4所述的方法,其特征在于,所述扩展因子的取值大于或等于所述滚降系数与预设值的和。
  6. 根据权利要求1-5中任一所述的方法,其特征在于,所述扩展因子的信息通过以下信令中的一种或多种指示:
    无线资源控制RRC、媒体接入控制MAC CE以及下行控制信息DCI。
  7. 根据权利要求1-6中任一所述的方法,其特征在于,所述根据所述扩展因子确定信息比特的数目包括:
    根据所述扩展因子以及如下参数中的至少一项确定所述信息比特的数目:
    所述第一通信装置的滤波器的滚降系数、所述第一通信装置的带宽、信号的流数以及调制与编码策略MCS。
  8. 根据权利要求5所述的方法,其特征在于,通过如下公式确定所述信息比特的数目:
    Figure PCTCN2022088848-appb-100001
    其中,所述N info表示信息比特的数目;所述N RE表示资源元素RE的数目;所述β表示所述扩展因子;所述α表示所述滚降系数;所述R表示码率;所述Q m表示调制阶数;所述v表示所述信号的流数;所述λ表示所述预设值;所述int()表示向上取整,或向下取整,或四舍五入取整。
  9. 一种通信方法,应用于第二通信装置,其特征在于,包括:
    确定第一消息,所述第一消息包括扩展因子的信息;
    传输所述第一消息。
  10. 根据权利要求9所述的方法,其特征在于,所述扩展因子的信息为所述扩展因子的索引值。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一消息还包括第一通信装置的滤波器的滚降系数的信息;所述扩展因子与所述滚降系数一一对应。
  12. 根据权利要求9或10所述的方法,其特征在于,所述扩展因子的取值大于第一通信装置的滤波器的滚降系数。
  13. 根据权利要求11或12所述的方法,其特征在于,所述扩展因子的取值大于或等于 所述滚降系数与预设值的和。
  14. 根据权利要求9-13中任一所述的方法,其特征在于,所述扩展因子的信息通过以下信令中的一种或多种指示:
    无线资源控制RRC、媒体接入控制MAC CE以及下行控制信息DCI。
  15. 根据权利要求9-14中任一所述的方法,其特征在于,还包括:
    根据所述扩展因子以及如下参数中的至少一项确定所述信息比特的数目:
    第一通信装置的滤波器的滚降系数、第一通信装置的带宽、信号的流数以及调制与编码策略MCS。
  16. 根据权利要求13所述的方法,其特征在于,通过如下公式确定所述信息比特的数目:
    Figure PCTCN2022088848-appb-100002
    其中,所述N info表示信息比特的数目;所述N RE表示资源元素RE的数目;所述β表示所述扩展因子;所述α表示所述滚降系数;所述R表示码率;所述Q m表示调制阶数;所述v表示所述信号的流数;所述λ表示所述预设值;所述int()表示向上取整,或向下取整,或四舍五入取整。
  17. 一种第一通信装置,其特征在于,包括:
    输入输出单元,用于接收第一消息,所述第一消息包括扩展因子的信息;
    处理单元,用于根据所述扩展因子确定信息比特的数目;以及根据所述信息比特的数目生成待发送信号;
    所述输入输出单元,还用于传输所述待发送信号。
  18. 根据权利要求17所述的装置,其特征在于,所述扩展因子的信息为所述扩展因子的索引值。
  19. 根据权利要求17或18所述的装置,其特征在于,所述第一消息还包括所述第一通信装置的滤波器的滚降系数的信息;所述扩展因子与所述滚降系数一一对应。
  20. 根据权利要求17或18所述的装置,其特征在于,所述扩展因子的取值大于所述第一通信装置的滤波器的滚降系数。
  21. 根据权利要求19或20所述的装置,其特征在于,所述扩展因子的取值大于或等于所述滚降系数与预设值的和。
  22. 根据权利要求17-21中任一所述的装置,其特征在于,所述扩展因子的信息通过以下信令中的一种或多种指示:
    无线资源控制RRC、媒体接入控制MAC CE以及下行控制信息DCI。
  23. 根据权利要求17-22中任一所述的装置,其特征在于,所述处理单元,具体用于:
    根据所述扩展因子以及如下参数中的至少一项确定所述信息比特的数目:
    所述第一通信装置的滤波器的滚降系数、所述第一通信装置的带宽、信号的流数以及调制与编码策略MCS。
  24. 根据权利要求21所述的装置,其特征在于,所述处理单元,具体用于:通过如下公式确定所述信息比特的数目:
    Figure PCTCN2022088848-appb-100003
    其中,所述N info表示信息比特的数目;所述N RE表示资源元素RE的数目;所述β表示所述扩展因子;所述α表示所述滚降系数;所述R表示码率;所述Q m表示调制阶数;所述v表示所述信号的流数;所述λ表示所述预设值;所述int()表示向上取整,或向下取整,或四舍五入取整。
  25. 一种第二通信装置,其特征在于,包括:
    处理单元,用于确定第一消息,所述第一消息包括扩展因子的信息;
    输入输出单元,用于传输所述第一消息。
  26. 根据权利要求25所述的装置,其特征在于,所述扩展因子的信息为所述扩展因子的索引值。
  27. 根据权利要求25或26所述的装置,其特征在于,所述第一消息还包括第一通信装置的滤波器的滚降系数的信息;所述扩展因子与所述滚降系数一一对应。
  28. 根据权利要求25或26所述的装置,其特征在于,所述扩展因子的取值大于第一通信装置的滤波器的滚降系数。
  29. 根据权利要求27或28所述的装置,其特征在于,所述扩展因子的取值大于或等于所述滚降系数与预设值的和。
  30. 根据权利要求25-29中任一所述的装置,其特征在于,所述扩展因子的信息通过以下信令中的一种或多种指示:
    无线资源控制RRC、媒体接入控制MAC CE以及下行控制信息DCI。
  31. 根据权利要求25-30中任一所述的装置,其特征在于,所述处理单元,具体用于:
    根据所述扩展因子以及如下参数中的至少一项确定所述信息比特的数目:
    第一通信装置的滤波器的滚降系数、第一通信装置的带宽、信号的流数以及调制与编码策略MCS。
  32. 根据权利要求29所述的装置,其特征在于,所述处理单元,具体用于:通过如下公式确定所述信息比特的数目:
    Figure PCTCN2022088848-appb-100004
    其中,所述N info表示信息比特的数目;所述N RE表示资源元素RE的数目;所述β表示所述扩展因子;所述α表示所述滚降系数;所述R表示码率;所述Q m表示调制阶数;所述v表示所述信号的流数;所述λ表示所述预设值;所述int()表示向上取整,或向下取整,或四舍五入取整。
  33. 一种通信装置,其特征在于,包括:至少一个处理器和存储器;
    所述存储器,用于存储计算机程序或指令;
    所述至少一个处理器,用于执行所述计算机程序或指令,以使得如权利要求1-8中任一项或权利要求9-16中任一项所述的方法被执行。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被计算机执行时,使得如权利要求1-8中任一项或9-16中任一项所述的方法被执行。
  35. 一种包含计算机程序或指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得上述权利要求1-8中任一项或9-16中任一项所述的方法被执行。
PCT/CN2022/088848 2021-05-10 2022-04-24 一种通信方法及装置 WO2022237509A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22806479.6A EP4319076A1 (en) 2021-05-10 2022-04-24 Communication method and device
US18/504,541 US20240073076A1 (en) 2021-05-10 2023-11-08 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110507432.1A CN115333907A (zh) 2021-05-10 2021-05-10 一种通信方法及装置
CN202110507432.1 2021-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/504,541 Continuation US20240073076A1 (en) 2021-05-10 2023-11-08 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022237509A1 true WO2022237509A1 (zh) 2022-11-17

Family

ID=83912625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088848 WO2022237509A1 (zh) 2021-05-10 2022-04-24 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20240073076A1 (zh)
EP (1) EP4319076A1 (zh)
CN (1) CN115333907A (zh)
WO (1) WO2022237509A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255571A1 (en) * 2010-04-20 2011-10-20 Michael Paul Caffrey Energy efficiency in wirless communication systems
US10491261B1 (en) * 2014-11-06 2019-11-26 Abdullah A. Al-Eidan Multi carrier frequency modulation spread spectrum communication system
WO2019238131A1 (zh) * 2018-06-15 2019-12-19 华为技术有限公司 一种确定传输块大小的方法、传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255571A1 (en) * 2010-04-20 2011-10-20 Michael Paul Caffrey Energy efficiency in wirless communication systems
US10491261B1 (en) * 2014-11-06 2019-11-26 Abdullah A. Al-Eidan Multi carrier frequency modulation spread spectrum communication system
WO2019238131A1 (zh) * 2018-06-15 2019-12-19 华为技术有限公司 一种确定传输块大小的方法、传输方法及装置

Also Published As

Publication number Publication date
CN115333907A (zh) 2022-11-11
EP4319076A1 (en) 2024-02-07
US20240073076A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
TW201929464A (zh) 用於藉由參考信號之非線性估計的系統及方法
JP2020523830A (ja) トランスポートブロックサイズを決定する方法及び装置
US20150156801A1 (en) Uplink control in a wireless communication network
CN106936556B (zh) 一种面向窄带物联网的时频二维稀疏码多址接入方法
JP2020503791A5 (zh)
JP2020503791A (ja) 情報送信方法、情報受信方法、装置及びシステム
TW202008829A (zh) 資源配置的方法和終端設備
JP7165194B2 (ja) 低いピーク対平均電力比の基本シーケンスを使用した基準信号生成
WO2017092632A1 (zh) 无线通信的方法和装置
TW202008828A (zh) 資源配置的方法和終端設備
US20230198715A1 (en) Phase tracking reference signal sending method and receiving method and communication apparatus
JP2022084784A (ja) 端末及び通信方法
WO2020199864A1 (zh) 数据压缩方法及装置
WO2018228177A1 (zh) 一种调度请求的传输方法及相关设备
US20240039668A1 (en) Method and apparatus for determining phase tracking reference signal pattern
WO2018171742A1 (zh) 无线通信的方法和装置
US9491725B2 (en) User equipment and methods for device-to-device communication over an LTE air interface
WO2021008385A1 (zh) 调度时延敏感业务上报的方法及时延敏感业务的上报方法
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
CN112511285A (zh) 基于序列的信号处理方法及装置
WO2022237509A1 (zh) 一种通信方法及装置
CN109587092B (zh) 基于序列的信号处理方法及装置
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2019052370A1 (zh) 用于进行数据传输的方法和装置
WO2021088069A1 (zh) 信息传输方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022806479

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022806479

Country of ref document: EP

Effective date: 20231027

NENP Non-entry into the national phase

Ref country code: DE