WO2022141106A1 - 重复传输数据信道的方法和设备 - Google Patents

重复传输数据信道的方法和设备 Download PDF

Info

Publication number
WO2022141106A1
WO2022141106A1 PCT/CN2020/141059 CN2020141059W WO2022141106A1 WO 2022141106 A1 WO2022141106 A1 WO 2022141106A1 CN 2020141059 W CN2020141059 W CN 2020141059W WO 2022141106 A1 WO2022141106 A1 WO 2022141106A1
Authority
WO
WIPO (PCT)
Prior art keywords
data channel
factor
time slot
res
repetition
Prior art date
Application number
PCT/CN2020/141059
Other languages
English (en)
French (fr)
Inventor
左志松
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080107050.3A priority Critical patent/CN116458236A/zh
Priority to EP20967454.8A priority patent/EP4270831A4/en
Priority to PCT/CN2020/141059 priority patent/WO2022141106A1/zh
Publication of WO2022141106A1 publication Critical patent/WO2022141106A1/zh
Priority to US18/215,552 priority patent/US20230362915A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method and a device for repeatedly transmitting a data channel.
  • the network device can configure the terminal device to use multiple timeslots for repeated transmission to improve transmission coverage.
  • TBS Transport Block Size
  • determining TBS based on this method may lead to the determined TBS being too large or too small, and in the coverage limited In this case, in order to obtain a specific bit rate, more physical resource blocks (PRBs) need to be allocated, which reduces resource utilization.
  • PRBs physical resource blocks
  • the present application provides a method and device for repeatedly transmitting a data channel, which is beneficial to improve resource utilization.
  • a method for repeatedly transmitting a data channel comprising: determining a corresponding data channel according to a first repetition time slot factor and/or the number of time domain symbols in a time slot in which the data channel is repeatedly transmitted. transport block size; encode the data channel according to the transport block size corresponding to the data channel to obtain encoded information bits; map the encoded information bits to multiple time slots.
  • a device for repeatedly transmitting a data channel which is used to execute the method in the above-mentioned first aspect or each of its implementations.
  • the device includes functional modules for executing the methods in the above-mentioned first aspect or each implementation manner thereof.
  • a device for repeatedly transmitting a data channel including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a chip is provided for implementing the method in each implementation manner of the foregoing first aspect.
  • the chip includes: a processor for invoking and running a computer program from a memory, so that a device on which the device is installed executes the method in the first aspect or each of its implementations.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a computer program product comprising computer program instructions, the computer program instructions cause a computer to perform the method in the first aspect or each of the implementations thereof.
  • a computer program which, when run on a computer, causes the computer to execute the method of the above-mentioned first aspect or each of its implementations.
  • the TBS is determined according to the first repetition time slot factor and/or the number of time domain symbols in the time slot actually used for repeated transmission of the data channel, which is equivalent to considering many The time-domain symbols in each time slot are allocated to calculate TBS, which can increase the size of the calculated TBS. Further, in order to obtain the same bit rate, only a smaller number of PRBs need to be allocated, thereby improving resource utilization.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a multi-slot repeated transmission.
  • FIG. 3 is a schematic interaction diagram of a method for repeatedly transmitting a data channel according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a device for repeatedly transmitting a data channel according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a station (STATION, ST) in the WLAN, and may be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a Wireless Local Loop (WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, etc., which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • predefinition may be implemented by pre-saving corresponding codes, forms, or other means that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • predefined may refer to the definition in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not limited in this application.
  • multi-slot (slot) PUSCH and PDSCH transmission can be performed through an uplink and downlink aggregation factor.
  • the terminal device transmits repeatedly through multiple slots, which can improve the coverage of a single transmission.
  • the same demodulation reference signal (Demodulation Reference Signal, DMRS) time domain structure is always used in each slot when repeating a PUSCH/PDSCH transmission.
  • DMRS Demodulation Reference Signal
  • the NR system supports flexible time slot allocation.
  • a time slot can have some uplink time domain symbols and some time domain symbols, Physical Uplink Control Channel (PUCCH) and Physical Uplink Shared Channel (PUSCH) ) is only transmitted in uplink time domain symbols, and the Physical Downlink Control Channel (PDCCH) and Physical Downlink Shared Channel (PDSCH) are only transmitted in uplink time domain symbols.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Control Channel
  • FIG. 2 shows a schematic diagram of a multi-slot repeated transmission.
  • the symbols in time slot 1 and time slot 2 are basically configured as downlink time domain symbols, the number of uplink time domain symbols does not meet the transmission requirements. Therefore, the terminal device ignores time slot 1 and time slot 2 Therefore, when the terminal equipment is configured to perform repeated transmission four times, the terminal equipment actually performs only two repeated transmissions.
  • TBS Transport Block Size
  • determining the TBS based on this method may cause the determined TBS to be too large or too small. And in the case of limited coverage, in order to obtain a specific bit rate, it is necessary to allocate more physical resource blocks (PRBs), which reduces resource utilization. Therefore, how to determine the TBS size in multi-slot repeated transmission to improve resource utilization is an urgent problem to be solved.
  • PRBs physical resource blocks
  • FIG. 3 is a schematic flowchart of a method 300 for repeatedly transmitting a data channel according to an embodiment of the present application.
  • the method 300 may be executed by a terminal device or a network device in the communication system shown in FIG. 1 .
  • the terminal device is used as the execution
  • the main body describes the embodiments of the present application, and the behaviors of the network devices are similar, which are not repeated here for brevity.
  • the method 300 includes the following contents:
  • the embodiments of the present application may be applicable to determining the TBS of a data channel, or may also be applicable to determining the TBS of other channels, such as a control channel, etc., which is not limited in this application.
  • the data channel may be an uplink data channel, such as a physical uplink shared channel (Physical Uplink Shared channel, PUSCH), or may also be a downlink data channel, such as a physical downlink shared channel (Physical Downlink Shared channel, PUSCH). Shared Channel, PDSCH).
  • PUSCH Physical Uplink Shared channel
  • PUSCH Physical Downlink Shared channel
  • PDSCH Physical Downlink Shared Channel
  • the time-domain symbols may refer to OFDM symbols
  • the number of time-domain symbols may refer to the number of OFDM symbols
  • the terminal device may determine according to the first repetition slot factor and/or the number of time domain symbols in the time slot in which the data channel is repeatedly transmitted The TBS of the data channel, and the second repeated timeslot factor is used to indicate the number of timeslots for repeated transmission of the data channel.
  • the second repetition slot factor may be configured by the network device.
  • the network device may configure the second repetition slot factor through radio resource control (Radio Resource Control, RRC) signaling, or may configure the second repetition slot factor through other signaling, which is not limited in this application.
  • RRC Radio Resource Control
  • the second repetition slot factor may correspond to the aforementioned aggregation factor Aggregation factor.
  • the number of timeslots in which the terminal device repeatedly transmits the data channel may be determined according to the second repeated timeslot factor, that is, the multiple timeslots may be determined according to the second repeated timeslot factor.
  • the number of time-domain symbols in the time slot for repeated transmission of the data channel may refer to the number of time-domain symbols in the time slot for repeated transmission of the data channel.
  • the uplink time domain symbols in each time slot are uncertain, and the embodiment of the present application determines the TBS according to the number of time domain symbols in the time slots actually used for repeated transmission of data channels. , can dynamically determine the number of time domain symbols used to transmit data channels according to the flexible time slot structure, and further dynamically determine the TBS corresponding to the data channel, which can achieve better scheduling of TBs in multi-slot repetition scenarios, thereby ensuring TB coverage performance .
  • the first repetition slot factor is less than or equal to the second repetition slot factor.
  • the first repetition slot factor is determined according to the second repetition slot factor.
  • the first repetition slot factor is the second repetition slot factor multiplied by a first coefficient, where the first coefficient is a positive number less than or equal to 1.
  • the first repetition slot factor is configured by the network device.
  • the network device may configure the first repetition slot factor through RRC signaling, downlink control information DCI and other downlink messages or signaling.
  • the first repetition time slot factor is determined according to the number of time slots in which the data channel is actually repeatedly transmitted.
  • the second repeated timeslot factor is 4, and the number of timeslots used for multi-slot transmission is 2, then the first repeated timeslot factor may be 2.
  • the S310 may include:
  • the size of the transport block corresponding to the data channel is determined according to the first repetition slot factor and the scheduling parameter.
  • the scheduling parameters include at least one of the following:
  • the scheduling parameter may be included in downlink control information (Downlink Control Information, DCI) for scheduling the data channel.
  • DCI Downlink Control Information
  • the determining the size of the transport block corresponding to the data channel according to the first repetition slot factor and the scheduling parameter includes:
  • the size of the transport block corresponding to the data channel is determined.
  • the terminal device may determine the intermediate number N info of the information bits according to the following formula (1):
  • N info N RE ⁇ R ⁇ Q m ⁇ X
  • the N RE represents the number of target REs
  • the R represents the code rate
  • the Q m represents the modulation order
  • the ⁇ represents the number of transmission layers
  • the X represents the first repetition slot factor.
  • the target RE number N RE can be determined according to the following formula (2):
  • N RE min(N,N' RE ) ⁇ n PRB formula (2)
  • the N represents the first reference RE number threshold
  • N' RE represents the number of reference available REs in a time slot
  • the n PRB represents the number of RBs allocated by the network device
  • min represents the minimum value.
  • the first reference RE number threshold may be 156, or may be other values, which are not limited in this application.
  • the number of reference available REs N' RE in a time slot can be determined by the following formula (3):
  • It can be obtained from the scheduling information carried by the DCI.
  • It can be configured by the network device, or a fixed value.
  • X is a positive integer greater than 1, that is, the first repetition slot factor is a positive integer.
  • calculating the TBS corresponding to the data channel according to formula (1) is equivalent to calculating the TBS considering the allocation of OFDM symbols in multiple time slots, which can increase the size of the calculated TBS. Further, in order to obtain For the same bit rate, only a smaller number of PRBs need to be allocated, thereby improving resource utilization.
  • the determining the median number of the information bits according to the first repetition slot factor and the scheduling parameter includes:
  • the median number of the information bits is determined according to the target RE number and scheduling parameters.
  • the determining the target number of REs N RE according to the first repetition slot factor includes:
  • the target RE number N RE is determined according to the first repetition slot factor X and the reference available RE number N' RE in one slot.
  • the terminal device may determine the target RE number N RE according to formula (4):
  • N RE X ⁇ min(N,N' RE ) ⁇ n PRB formula (4)
  • the X represents the first repetition time slot factor
  • the N represents the first reference RE number threshold
  • the n PRB represents the number of resource blocks RB allocated by the network device
  • N' RE represents the number of resource blocks in a time slot. Refer to the number of REs available.
  • the first reference RE number threshold may be 156, or may be other values, which are not limited in this application.
  • the terminal device may determine the number N' RE of reference available REs in the one time slot according to the above formula (3).
  • the terminal device may determine the intermediate number N info of the information bits according to formula (5):
  • N info N RE ⁇ R ⁇ Q m ⁇ Formula (5)
  • the N RE represents the target number of REs determined according to formula (4)
  • the R represents the code rate
  • the Q m represents the modulation order
  • the ⁇ represents the number of transmission layers.
  • calculating the number of target REs N RE according to formula (4) is equivalent to calculating TBS considering the allocation of OFDM symbols in multiple time slots, which can improve the The calculated size of TBS, further, in order to obtain the same bit rate, only a smaller number of PRBs need to be allocated, thereby improving resource utilization.
  • the determining the target number of REs N RE according to the first repetition slot factor includes:
  • the terminal device may determine the number of reference available REs on the time slot for repeated transmission of the data channel according to the first repeated time slot factor and the number of time domain symbols in the time slot for repeated transmission of the data channel;
  • the target number of REs is determined according to the number of reference available REs on the time slot in which the data channel is repeatedly transmitted.
  • the number of time-domain symbols in the time slot for repeated transmission of the data channel may refer to the number of available time-domain symbols in the time slot for the actual transmission of the data channel, or the number of time-domain symbols in the time slot for the actual transmission of the data channel The actual number of time domain symbols used to transmit the data channel.
  • the TBS is determined by considering the number of time-domain symbols in the time slot actually used for repeated transmission of the data channel, and the number of time-domain symbols used for the transmission of the data channel can be dynamically determined according to the flexible time slot structure, which is beneficial to overcome the correlation
  • the TBS is determined according to the number of time-domain symbols in a single time slot, which leads to the problem that the calculated TBS is too large or too small.
  • the size of the calculated TBS can be increased. Further, in order to obtain the same bit rate, only a smaller number of PRBs need to be allocated, thereby improving resource utilization. Rate.
  • the terminal device determines, according to the following formula (6), the number of reference available REs N′′ RE on the time slot in which the data channel is repeatedly transmitted:
  • the X represents the first repetition slot factor, represents the number of subcarriers on each RB, represents the number of time-domain symbols in the i-th time slot of the repeated transmission of the data channel, represents the number of REs occupied by the DMRS in each RB in the i-th time slot of the repeated transmission of the data channel, Indicates the number of overhead REs.
  • the N" RE is different from the N' RE in the foregoing embodiment.
  • the N" RE takes into account the number of time-domain symbols and the number of DMRSs on the time slot of the actual transmission data channel, and the actual repeated transmission is considered. For the conversion of the DMRS of the time slot of the data channel and the OFDM symbol of the data (payload), the number of reference available REs calculated in this way is more accurate.
  • the number of RE resources used for the actual repeated transmission of the data channel is determined according to the time slot configuration of the frame structure and the second repetition time slot factor, which is beneficial to ensure reasonable resource allocation and encoding parameters such as bit rate.
  • the target RE number N RE is determined according to formula (7):
  • N RE min(N',N′′ RE ) ⁇ n PRB formula (7)
  • the N' represents the second reference RE number threshold
  • n PRB represents the number of RBs allocated by the network device
  • N" RE represents the number of available reference REs on the time slot for repeated transmission of the data channel
  • the second reference RE number threshold may be 156, or 156*X.
  • the target RE number N RE can be determined according to the following formula (8) or formula (9).
  • N RE min(156 ⁇ X,N' RE ) ⁇ n PRB formula (8)
  • N RE min(156,N' RE ) ⁇ n PRB formula (9)
  • the terminal device may substitute formula (7) into formula (5) to obtain the intermediate number N info of the information bits.
  • the intermediate number N info of the information bits can be determined.
  • the terminal device may perform quantization and rounding processing on the middle number of the information bits to determine the size of the transport block corresponding to the data channel.
  • a transport block size that is not smaller than the median number of the information bits and has the smallest difference from the median number of the information bits in the transport block size list is determined as the transport block size corresponding to the data channel.
  • the transport block size TBS list is shown in Table 1. If the median number of the information bits determined according to the foregoing embodiment is 101.9, look up the table to find a TBS that is not less than 101.9 and is the closest to the 101.9, that is, 104 as the TBS of the data channel.
  • index TBS index TBS index TBS index TBS 1 twenty four 31 336 61 1288 91 3624 2 32 32 352 62 1320 92 3752 3 40 33 368 63 1352 93 3824 4 48 34 384 64 1416 5 56 35 408 65 1480 6 64 36 432 66 1544 7 72 37 456 67 1608 8 80 38 480 68 1672 9 88 39 504 69 1736 10 96 40 528 70 1800 11 104 41 552 71 1864 12 112 42 576 72 1928 13 120 43 608 73 2024 14 128 44 640 74 2088 15 136 45 672 75 2152 16 144 46 704 76 2216 17 152 47 736 77 2280 18 160 48 768 78 2408 19 168 49 808 79 2472 20 176 50 848 80 2536 twenty one 184 51 888 81 2600 twenty two 192 52 928 82 2664 twenty three 208 53 984 83 2728 twenty four 224 54 1032 84 2792 25 240
  • the S320 further includes:
  • Channel coding is performed according to the size of the transport block corresponding to the data channel and the number of REs of multiple repeated data resources scheduled by the network device to obtain coded information bits.
  • the number of REs of the multiple repeated data resources may be indicated in the DCI of the network device.
  • the number of bits after channel coding and rate matching corresponds to the number of REs.
  • mapping of the encoded information bits to multiple time slots includes:
  • a redundant version of the encoded information bits is continuously mapped onto the plurality of time slots.
  • only one redundancy version may be mapped, and the one redundancy version may be continuously mapped on the multiple time slots, that is, the information bits mapped on the multiple time slots.
  • a redundant version can be formed.
  • the multiple timeslots may be timeslots in which data channels are actually transmitted.
  • a redundancy version can be mapped to REs of the data resources scheduled for the time slots that are actually repeatedly transmitted.
  • FIG. 4 shows a schematic block diagram of a device 400 for repeatedly transmitting a data channel according to an embodiment of the present application.
  • the device 400 includes:
  • a processing unit 410 configured to determine the size of the transmission block corresponding to the data channel according to the first repetition time slot factor and/or the number of time domain symbols in the time slot for repeated transmission of the data channel;
  • the encoded information bits are mapped onto a plurality of time slots.
  • the processing unit 410 is further configured to:
  • the size of the transport block corresponding to the data channel is determined according to the first repetition slot factor and the scheduling parameter.
  • the scheduling parameters include at least one of the following:
  • the number of target resource unit REs, code rate, modulation order, and number of transmission layers are defined by the number of target resource unit REs, code rate, modulation order, and number of transmission layers.
  • the processing unit 410 is further configured to:
  • the size of the transport block corresponding to the data channel is determined.
  • the processing unit 410 is further configured to:
  • the median number N info of the information bits is determined according to the following formula:
  • N info N RE ⁇ R ⁇ Q m ⁇ ⁇ ⁇ X
  • the N RE represents the number of target REs
  • the R represents the code rate
  • the Q m represents the modulation order
  • the ⁇ represents the number of transmission layers
  • the X represents the first repetition slot factor.
  • the processing unit 410 is further configured to:
  • the median number of the information bits is determined according to the target RE number and scheduling parameters.
  • the processing unit 410 is further configured to:
  • the target number of REs is determined according to the first repetition slot factor and the number of reference available REs in one slot.
  • the processing unit 410 is further configured to:
  • the target RE number N RE is determined according to the following formula:
  • N RE X ⁇ min(N,N' RE ) ⁇ n PRB
  • the X represents the first repetition time slot factor
  • the N represents the first reference RE number threshold
  • the n PRB represents the number of resource blocks RB allocated by the network device
  • N' RE represents the number of resource blocks in a time slot. Refer to the number of REs available.
  • the first reference RE number threshold may be 156.
  • the processing unit 410 is further configured to:
  • the reference available RE number N' RE in the one time slot is determined:
  • the processing unit 410 is further configured to:
  • the first repetition time slot factor and the number of time domain symbols in the time slot for repeated transmission of the data channel determine the number of reference available REs on the time slot for repeated transmission of the data channel
  • the target number of REs is determined according to the number of reference available REs on the time slot in which the data channel is repeatedly transmitted.
  • the processing unit 410 is further configured to:
  • the X represents the first repetition slot factor, represents the number of subcarriers on each RB, represents the number of time-domain symbols in the i-th time slot of the repeated transmission of the data channel, represents the number of REs occupied by the DMRS in each RB in the i-th time slot of the repeated transmission of the data channel, Indicates the number of overhead REs.
  • the processing unit 410 is further configured to:
  • the target RE number N RE is determined according to the following formula:
  • N RE min(N',N′′ RE ) ⁇ n PRB
  • the N′ represents the second reference RE number threshold
  • n PRB represents the number of RBs allocated by the network device
  • N′′ RE represents the number of reference available REs on the time slot for repeated transmission of the data channel.
  • the second reference RE number threshold is 156*X, or 156, where X represents the first repetition slot factor.
  • the processing unit 410 is further configured to: perform quantization and rounding processing on the median number of the information bits, and determine the size of the transport block corresponding to the data channel.
  • the processing unit 410 is further configured to:
  • a transport block size that is not smaller than the median number of the information bits and has the smallest difference from the median number of the information bits in the transport block size list is determined as the transport block size corresponding to the data channel.
  • the first repeated timeslot factor is determined according to a second repeated timeslot factor configured by the network device.
  • the first repetition slot factor is the second repetition slot factor multiplied by a first coefficient, where the first coefficient is less than or equal to 1.
  • the first repetition slot factor is configured by the network device.
  • the first repetition slot factor is configured by at least one of the following signaling: radio resource control RRC signaling, downlink control information DCI.
  • the first repetition time slot factor is determined according to the number of time slots in which the data channel is actually repeatedly transmitted.
  • the processing unit 410 is further configured to:
  • Channel coding is performed according to the size of the transport block corresponding to the data channel and the number of REs of the multiple repeated data resources scheduled by the network device to obtain coded information bits.
  • the processing unit 410 is further configured to:
  • a redundant version of the encoded information bits is continuously mapped onto the plurality of time slots.
  • the first repetition time slot factor is less than or equal to the second repetition time slot factor configured by the network device, and the second repetition time slot factor is used to indicate the time slot of the repeated transmission data channel. number.
  • the device 400 is a terminal device or a network device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the above-mentioned processing unit 410 may be one or more processors.
  • the device 400 may correspond to the terminal device or the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the device 400 are respectively for realizing the one shown in FIG. 3 .
  • the corresponding processes of the terminal device or the network device in the method 300 are not repeated here for brevity.
  • FIG. 5 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 5 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may specifically be the network device in this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 6 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 7 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application.
  • the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be Read-Only Memory (ROM), Programmable Read-Only Memory (Programmable ROM, PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), electrically programmable Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program may be applied to the network device in the embodiments of the present application, and when the computer program runs on the computer, the computer executes the corresponding processes implemented by the network device in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种重复传输数据信道的方法和设备,该方法包括:根据第一重复时隙因子和/或重复传输所述数据信道的时隙中的时域符号数,确定所述数据信道对应的传输块大小;根据所述数据信道对应的传输块大小对所述数据信道进行编码,得到编码后的信息比特;将所述编码后的信息比特映射到多个时隙上。

Description

重复传输数据信道的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种重复传输数据信道的方法和设备。
背景技术
在新无线(New Radio,NR)系统中,网络设备可以配置终端设备采用多时隙重复传输,提升传输覆盖。在数据信道进行编码映射时,首先需要确定数据信道对应的传输块大小(Transport Block Size,TBS),在相关技术中,确定数据信道对应的TBS只考虑一个时隙中的正交频分复用(Orthogonal frequency-division multiplexing,OFDM)符号分配,当多时隙重复传输需要适应灵活的时隙配比时,基于此方式确定TBS可能会导致确定的TBS过大或者过小,并且在覆盖受限的情况下,为了获得特定比特速率,需要分配较多的物理资源块(physical resource block,PRB),降低了资源利用率。
发明内容
本申请提供了一种重复传输数据信道的方法和设备,有利于提升资源利用率。
第一方面,提供了一种重复传输数据信道的方法,包括:根据第一重复时隙因子和/或重复传输所述数据信道的时隙中的时域符号数,确定所述数据信道对应的传输块大小;根据所述数据信道对应的传输块大小对所述数据信道进行编码,得到编码后的信息比特;将所述编码后的信息比特映射到多个时隙上。
第二方面,提供了一种重复传输数据信道的设备,用于执行上述第一方面或其各实现方式中的方法。具体地,该设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第三方面,提供了一种重复传输数据信道的设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
通过上述技术方案,在配置第二时隙重复因子的情况下,根据第一重复时隙因子和/ 或实际用于重复传输数据信道的时隙中的时域符号数确定TBS,相当于考虑多个时隙中的时域符号分配计算TBS,能够提升计算得到的TBS的大小,进一步地,为了获得相同的比特速率,只需分配较少数量的PRB,从而能够提升资源利用率。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是一种多时隙重复传输的示意图。
图3是根据本申请实施例提供的一种重复传输数据信道的方法的示意性交互图。
图4是根据本申请实施例提供的一种重复传输数据信道的设备的示意性框图。
图5是根据本申请实施例提供的一种通信设备的示意性框图。
图6是根据本申请实施例提供的一种芯片的示意性框图。
图7是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone, SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者 NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等 关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
在NR系统,可以通过上下行的聚合因子(Aggregation factor)来进行多时隙(slot)的PUSCH和PDSCH传输。终端设备通过多slot重复传输,可以提高单次传输的覆盖。
由于Aggregation factor是半静态配置的,重复进行一个PUSCH/PDSCH传输时总是在每个slot里面采用相同的解调参考信号(Demodulation Reference Signal,DMRS)时域结构。
NR系统支持灵活的时隙配比,一个时隙可以有部分上行时域符号和部分时域符号,物理上行控制信道(Physical Uplink Control Channel,PUCCH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)只在上行时域符号中传输,物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)只在上行时域符号中传输。以PUSCH的传输为例,要实现多时隙重复传输,传输PUSCH的时隙中的可用符号的起始位置和数量都要满足PUSCH的资源配置,否则,终端设备忽略在该时隙上的重复传输。
图2示出了一种多时隙重复传输的示意图。如图2所示,由于时隙1和时隙2中的符号配置基本为下行时域符号,上行时域符号的数量不满足传输需求,因此,终端设备忽略在该时隙1和时隙2上的传输,而只在时隙0和时隙3上进行重复传输,因此,在配置终端设备进行四次重复传输的情况下,终端设备实际上只进行了两次重复传输。
在进行多时隙重复传输时,需要首先确定数据信道对应的传输块大小(Transport Block Size,TBS),在相关技术中,确定TBS只考虑一个时隙中的OFDM符号分配,这种设计要求每个slot中的OFDM符号完全一样。
当多时隙重复传输需要适应灵活的时隙配比时,基于此方式确定TBS可能会导致确定的TBS过大或者过小。并且在覆盖受限的情况下,为了获得特定比特速率,需要分配较多的物理资源块(physical resource block,PRB),降低了资源利用率。因此,如何确定多时隙重复传输中的TBS大小以提升资源利用率是一项急需解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图3是根据本申请实施例的重复传输数据信道的方法300的示意性流程图,该方法300可以由图1所示的通信系统中的终端设备或网络设备执行,以下,以终端设备为执行主体描述本申请实施例,网络设备的行为类似,为了简洁,这里不再赘述。
如图3所示,该方法300包括如下内容:
S310,根据第一重复时隙因子和/或重复传输所述数据信道的时隙中的时域符号数,确定所述数据信道对应的传输块大小;
S320,根据所述数据信道对应的传输块大小对所述数据信道进行编码,得到编码后的信息比特;
S330,将所述编码后的信息比特映射到多个时隙上。
应理解,本申请实施例可以适用于确定数据信道的TBS,或者也可以适用于确定其他信道的TBS,例如控制信道等,本申请对此不作限定。
可选地,在一些实施例中,所述数据信道可以为上行数据信道,例如物理上行共享信道(Physical Uplink Shared channel,PUSCH),或者也可以为下行数据信道,例如物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。
可选地,在一些实施例中,时域符号可以指OFDM符号,时域符号数可以指OFDM符号数。
在本申请一些实施例中,终端设备可以在被配置第二重复时隙因子的情况下,根据第一重复时隙因子和/或重复传输所述数据信道的时隙中的时域符号数确定所述数据信道的TBS,所述第二重复时隙因子用于指示重复传输数据信道的时隙数。
可选地,所述第二重复时隙因子可以是网络设备配置的。例如,网络设备可以通过无线资源控制(Radio Resource Control,RRC)信令配置该第二重复时隙因子,或者也可以通过其他信令配置该第二重复时隙因子,本申请对此不作限定。
可选地,在一些实施例中,所述第二重复时隙因子可以对应于前文所述的聚合因子Aggregation factor。
可选地,该终端设备重复传输数据信道的时隙数可以根据所述第二重复时隙因子确定,即所述多个时隙可以根据所述第二重复时隙因子确定。
可选地,在一些实施例中,所述重复传输所述数据信道的时隙中的时域符号数可以指实际用于重复传输数据信道的时隙中的时域符号数。
由前文描述可知,引入灵活时隙结构之后,每个时隙中的上行时域符号是不确定的,本申请实施例根据实际用于重复传输数据信道的时隙中的时域符号数确定TBS,能够根据灵活时隙结构动态确定用于传输数据信道的时域符号数,进一步地动态确定数据信道对应的TBS,可以实现多时隙重复场景中TB的更好的调度,从而保证TB的覆盖性能。
可选地,在一些实施例中,所述第一重复时隙因子小于或等于所述第二重复时隙因子。
可选地,在一些实施例中,所述第一重复时隙因子根据所述第二重复时隙因子确定。
例如,所述第一重复时隙因子为所述第二重复时隙因子乘以第一系数,其中,所述第一系数为小于等于1的正数。
可选地,在一些实施例中,所述第一重复时隙因子是网络设备配置的。
例如,网络设备可以通过RRC信令,下行控制信息DCI等下行消息或信令配置该第一重复时隙因子。
可选地,在一些实施例中,所述第一重复时隙因子根据实际重复传输所述数据信道的时隙数确定。例如,在图2示例中,第二重复时隙因子为4,实现用于多时隙传输的时隙数为2,则该第一重复时隙因子可以为2。
可选地,在一些实施例中,所述S310可以包括:
根据所述第一重复时隙因子和调度参数,确定所述数据信道对应的传输块大小。
在一些实施例中,所述调度参数包括以下中的至少一项:
目标资源单元RE数N RE,码率R,调制阶数Q m,传输层数υ。
可选地,所述调度参数可以包括在调度所述数据信道的下行控制信息(Downlink Control Information,DCI)中。
可选地,在一些实施例中,所述根据所述第一重复时隙因子和调度参数,确定所述数据信道对应的传输块大小,包括:
根据所述第一重复时隙因子和所述调度参数,确定信息比特的中间数;
根据所述信息比特的中间数,确定所述数据信道对应的传输块大小。
以下,结合具体实施例,说明根据所述第一重复时隙因子和所述调度参数,确定信息比特的中间数的实现方式。
实施例一
所述终端设备可以根据如下公式(1),确定所述信息比特的中间数N info
N info=N RE·R·Q m·υ·X             公式(1)
其中,所述N RE表示目标RE数,所述R表示码率,所述Q m表示调制阶数,所述υ表示传输层数,所述X表示所述第一重复时隙因子。
在该实施例一中,所述目标RE数N RE可以根据如下公式(2)确定:
N RE=min(N,N' RE)·n PRB       公式(2)
其中,所述N表示第一参考RE数阈值,N' RE表示一个时隙中的参考可用RE数,所述n PRB表示网络设备分配的RB个数,min表示取最小值。
可选地,所述第一参考RE数阈值可以为156,或者也可以为其他数值,本申请对此不作限定。
在一些实施例中,一个时隙中的参考可用RE数N' RE可以采用如下公式(3)确定:
Figure PCTCN2020141059-appb-000001
其中,
Figure PCTCN2020141059-appb-000002
表示每个RB上的子载波个数,
Figure PCTCN2020141059-appb-000003
表示每个时隙中的时域符号个数,
Figure PCTCN2020141059-appb-000004
表示每个RB中解调参考信号DMRS所占RE个数,
Figure PCTCN2020141059-appb-000005
表示开销RE数。
可选地,在一些实施例中,
Figure PCTCN2020141059-appb-000006
可以在DCI所承载的调度信息中获取。
可选地,在一些实施例中,
Figure PCTCN2020141059-appb-000007
可以是网络设备配置的,或者固定值。
可选地,在一些实施例中,X为大于1的正整数,即第一重复时隙因子为正整数。
因此,在该实施例一中,根据公式(1)计算数据信道对应的TBS,相当于考虑多个时隙中的OFDM符号分配计算TBS,能够提升计算得到的TBS的大小,进一步地,为 了获得相同的比特速率,只需分配较少数量的PRB,从而能够提升资源利用率。
实施例二
所述根据所述第一重复时隙因子和调度参数,确定所述信息比特的中间数,包括:
根据所述第一重复时隙因子X,确定目标RE数N RE
根据所述目标RE数和调度参数,确定所述信息比特的中间数。
在一些实施例中,所述根据所述第一重复时隙因子,确定目标RE数N RE,包括:
根据所述第一重复时隙因子X和一个时隙中的参考可用RE数N' RE,确定所述目标RE数N RE
作为一个实现方式,所述终端设备可以根据公式(4)确定所述目标RE数N RE
N RE=X·min(N,N' RE)·n PRB        公式(4)
其中,所述X表示所述第一重复时隙因子,所述N表示第一参考RE数阈值,所述n PRB表示网络设备分配的资源块RB个数,N' RE表示一个时隙内的参考可用RE数。
可选地,所述第一参考RE数阈值可以为156,或者也可以为其他数值,本申请对此不作限定。
可选地,在一些实施例中,终端设备可以根据上述公式(3),确定所述一个时隙内的参考可用RE数N' RE
进一步地,所述终端设备可以根据公式(5)确定所述信息比特的中间数N info
N info=N RE·R·Q m·υ        公式(5)
其中,所述N RE表示根据公式(4)确定的目标RE数,所述R表示码率,所述Q m表示调制阶数,所述υ表示传输层数。
因此,在该实现方式中,根据公式(4)计算目标RE数N RE,即根据第一重复时隙因子计算目标RE数,相当于考虑多个时隙中的OFDM符号分配计算TBS,能够提升计算得到的TBS的大小,进一步地,为了获得相同的比特速率,只需分配较少数量的PRB,从而能够提升资源利用率。
在另一些实施例中,所述根据所述第一重复时隙因子,确定目标RE数N RE,包括:
所述终端设备可以根据所述第一重复时隙因子和重复传输所述数据信道的时隙中的时域符号数,确定重复传输所述数据信道的时隙上的参考可用RE数;
根据重复传输所述数据信道的时隙上的参考可用RE数,确定所述目标RE数。
在本申请一些实施例中,重复传输所述数据信道的时隙中的时域符号数可以指实际传输数据信道的时隙中的可用时域符号数,或者,实际传输数据信道的时隙中的实际用于传输数据信道的时域符号数。
在本申请实施例中,考虑实际用于重复传输数据信道的时隙中的时域符号数确定TBS,能够根据灵活时隙结构动态确定用于传输数据信道的时域符号数,有利于克服相关技术中根据单个时隙中的时域符号数确定TBS,导致计算的TBS过大或过小的问题。并且由于考虑了多个时隙中的时域符号数确定TBS,能够提升计算得到的TBS的大小,进一步地,为了获得相同的比特速率,只需分配较少数量的PRB,从而能够提升资源利 用率。
并且,考虑实际传输数据信道的时隙中的时域符号数确定TBS,能够更准确的应用于灵活时隙结构下的数据信道的自适应重复传输,更好地解决了数据信道的覆盖不足问题。
作为一个实现方式,终端设备根据如下公式(6)确定重复传输所述数据信道的时隙上的参考可用RE数N″ RE
Figure PCTCN2020141059-appb-000008
其中,所述X表示所述第一重复时隙因子,
Figure PCTCN2020141059-appb-000009
表示每个RB上的子载波个数,
Figure PCTCN2020141059-appb-000010
表示重复传输所述数据信道的第i个时隙中的时域符号数,
Figure PCTCN2020141059-appb-000011
表示在重复传输所述数据信道的第i个时隙中的每个RB中DMRS所占RE个数,
Figure PCTCN2020141059-appb-000012
表示开销RE数。
在该实现方式中,该N″ RE与前述实施例的N' RE的确定方式不同,该N″ RE考虑了实际传输数据信道的时隙上的时域符号数以及DMRS数,考虑实际重复传输数据信道的时隙的DMRS和数据(payload)的OFDM符号的折算问题,采用此方式计算的参考可用RE数更为准确。
因此,在本申请实施例中,计算传输块大小时,根据帧结构的时隙配置和第二重复时隙因子确定实际重复传输数据信道所用到的RE资源数量,有利于保证合理的资源分配和码率等编码参数。
进一步地,在一些实施例中,根据公式(7)确定所述目标RE数N RE
N RE=min(N',N″ RE)·n PRB      公式(7)
其中,所述N'表示第二参考RE数阈值,n PRB表示网络设备分配的RB个数,N″ RE表示重复传输所述数据信道的时隙上的参考可用RE数,该N″ RE为根据公式(6)确定。
可选地,在一些实施例中,所述第二参考RE数阈值可以为156,或者156*X。
也就是说,可以根据如下公式(8)或公式(9)确定所述目标RE数N RE
N RE=min(156·X,N' RE)·n PRB        公式(8)
N RE=min(156,N' RE)·n PRB        公式(9)
进一步地,所述终端设备可以将公式(7)代入公式(5)得到所述信息比特的中间数N info
基于上述实施例,可以确定所述信息比特的中间数N info
进一步地,在一些实施例中,所述终端设备可以对所述信息比特的中间数进行量化和取整处理,确定所述数据信道对应的传输块大小。
例如,将传输块大小列表中不小于所述信息比特的中间数,并且与所述信息比特的中间数的差值最小的传输块大小确定为所述数据信道对应的传输块大小。
作为一个示例,传输块大小TBS列表如表1所示,若根据前述实施例确定的所述信息比特的中间数为101.9,则查表找到一个不小于101.9并且与该101.9最接近的TBS,即104作为数据信道的TBS。
表1
索引 TBS 索引 TBS 索引 TBS 索引 TBS
1 24 31 336 61 1288 91 3624
2 32 32 352 62 1320 92 3752
3 40 33 368 63 1352 93 3824
4 48 34 384 64 1416    
5 56 35 408 65 1480    
6 64 36 432 66 1544    
7 72 37 456 67 1608    
8 80 38 480 68 1672    
9 88 39 504 69 1736    
10 96 40 528 70 1800    
11 104 41 552 71 1864    
12 112 42 576 72 1928    
13 120 43 608 73 2024    
14 128 44 640 74 2088    
15 136 45 672 75 2152    
16 144 46 704 76 2216    
17 152 47 736 77 2280    
18 160 48 768 78 2408    
19 168 49 808 79 2472    
20 176 50 848 80 2536    
21 184 51 888 81 2600    
22 192 52 928 82 2664    
23 208 53 984 83 2728    
24 224 54 1032 84 2792    
25 240 55 1064 85 2856    
26 256 56 1128 86 2976    
27 272 57 1160 87 3104    
28 288 58 1192 88 3240    
29 304 59 1224 89 3368    
30 320 60 1256 90 3496    
可选地,在本申请一些实施例中,所述S320还包括:
根据所述数据信道对应的传输块大小和网络设备调度的多个重复数据资源的RE数进行信道编码,得到编码后的信息比特。
可选地,该多个重复数据资源的RE数可以是在网络设备的DCI中指示的。
在一些实施例中,信道编码和速率匹配后的比特数和该RE数对应。
在本申请实施例中,所述将所述编码后的信息比特映射到多个时隙上,包括:
将所述编码后的信息比特的一个冗余版本连续映射到所述多个时隙上。
即在本申请实施例中,进行编码映射时,可以只映射一个冗余版本,并且该一个冗余版本可以连续映射在该多个时隙上,即该多个时隙上所映射的信息比特可以组成一个冗余版本。
可选地,该多个时隙可以为实际传输数据信道的时隙。
例如,可以将一个冗余版本映射到实际重复传输的时隙所调度的数据资源的RE上。
上文结合图3,详细描述了本申请的方法实施例,下文结合图4至图7,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图4示出了根据本申请实施例的重复传输数据信道的设备400的示意性框图。如图4所示,该设备400包括:
处理单元410,用于根据第一重复时隙因子和/或重复传输所述数据信道的时隙中的时域符号数,确定所述数据信道对应的传输块大小;
根据所述数据信道对应的传输块大小对所述数据信道进行编码,得到编码后的信息比特;
将所述编码后的信息比特映射到多个时隙上。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一重复时隙因子和调度参数,确定所述数据信道对应的传输块大小。
可选地,在一些实施例中,所述调度参数包括以下中的至少一项:
目标资源单元RE数,码率,调制阶数,传输层数。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一重复时隙因子和所述调度参数,确定信息比特的中间数;
根据所述信息比特的中间数,确定所述数据信道对应的传输块大小。
可选地,在一些实施例中,所述处理单元410还用于:
根据如下公式,确定所述信息比特的中间数N info
N info=N RE·R·Q m·υ·X
其中,所述N RE表示目标RE数,所述R表示码率,所述Q m表示调制阶数,所述υ表示传输层数,所述X表示所述第一重复时隙因子。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一重复时隙因子,确定目标RE数;
根据所述目标RE数和调度参数,确定所述信息比特的中间数。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一重复时隙因子和一个时隙中的参考可用RE数,确定所述目标RE数。
可选地,在一些实施例中,所述处理单元410还用于:
根据如下公式确定所述目标RE数N RE
N RE=X·min(N,N' RE)·n PRB
其中,所述X表示所述第一重复时隙因子,所述N表示第一参考RE数阈值,所述n PRB表示网络设备分配的资源块RB个数,N' RE表示一个时隙内的参考可用RE数。
可选地,所述第一参考RE数阈值可以为156。
可选地,在一些实施例中,所述处理单元410还用于:
根据如下公式,确定所述一个时隙内的参考可用RE数N' RE:
Figure PCTCN2020141059-appb-000013
其中,
Figure PCTCN2020141059-appb-000014
表示每个RB上的子载波个数,
Figure PCTCN2020141059-appb-000015
表示每个时隙中的时域符号个数,
Figure PCTCN2020141059-appb-000016
表示每个RB中解调参考信号DMRS所占RE个数,
Figure PCTCN2020141059-appb-000017
表示开销RE数。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一重复时隙因子和重复传输所述数据信道的时隙中的时域符号数,确定重复传输所述数据信道的时隙上的参考可用RE数;
根据重复传输所述数据信道的时隙上的参考可用RE数,确定所述目标RE数。
可选地,在一些实施例中,所述处理单元410还用于:
根据如下公式确定重复传输所述数据信道的时隙上的参考可用RE数N' RE
Figure PCTCN2020141059-appb-000018
其中,所述X表示所述第一重复时隙因子,
Figure PCTCN2020141059-appb-000019
表示每个RB上的子载波个数,
Figure PCTCN2020141059-appb-000020
表示重复传输所述数据信道的第i个时隙中的时域符号数,
Figure PCTCN2020141059-appb-000021
表示在重复传输所述数据信道的第i个时隙中的每个RB中DMRS所占RE个数,
Figure PCTCN2020141059-appb-000022
表示开销RE数。
可选地,在一些实施例中,所述处理单元410还用于:
根据如下公式确定所述目标RE数N RE
N RE=min(N',N″ RE)·n PRB
其中,所述N'表示第二参考RE数阈值,n PRB表示网络设备分配的RB个数,N″ RE表示重复传输所述数据信道的时隙上的参考可用RE数。
可选地,在一些实施例中,所述第二参考RE数阈值为156*X,或者156,其中,所述X表示所述第一重复时隙因子。
可选地,在一些实施例中,所述处理单元410还用于:对所述信息比特的中间数进行量化和取整处理,确定所述数据信道对应的传输块大小。
可选地,在一些实施例中,所述处理单元410还用于:
将传输块大小列表中不小于所述信息比特的中间数,并且与所述信息比特的中间数的差值最小的传输块大小确定为所述数据信道对应的传输块大小。
可选地,在一些实施例中,所述第一重复时隙因子根据网络设备配置的第二重复时隙因子确定。
可选地,在一些实施例中,所述第一重复时隙因子为所述第二重复时隙因子乘以第一系数,其中,所述第一系数小于等于1。
可选地,在一些实施例中,所述第一重复时隙因子是网络设备配置的。
可选地,在一些实施例中,所述第一重复时隙因子通过以下信令中的至少一个配置:无线资源控制RRC信令,下行控制信息DCI。
可选地,在一些实施例中,所述第一重复时隙因子根据实际重复传输所述数据信道的时隙数确定。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述数据信道对应的传输块大小和网络设备调度的多个重复数据资源的RE数进行信道编码,得到编码后的信息比特。
可选地,在一些实施例中,所述处理单元410还用于:
将所述编码后的信息比特的一个冗余版本连续映射到所述多个时隙上。
可选地,在一些实施例中,所述第一重复时隙因子小于或等于网络设备配置的第二重复时隙因子,所述第二重复时隙因子用于指示重复传输数据信道的时隙数。
可选地,在一些实施例中,所述设备400为终端设备或网络设备。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元410可以是一个或多个处理器。
应理解,根据本申请实施例的设备400可对应于本申请方法实施例中的终端设备或网络设备,并且设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法300中终端设备或网络设备的相应流程,为了简洁,在此不再赘述。
图5是本申请实施例提供的一种通信设备600示意性结构图。图5所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图5所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图5所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为 了简洁,在此不再赘述。
图6是本申请实施例的芯片的示意性结构图。图6所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图7是本申请实施例提供的一种通信系统900的示意性框图。如图7所示,该通信系统900包括终端设备910和网络设备920。其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only  Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程, 为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (52)

  1. 一种重复传输数据信道的方法,其特征在于,包括:
    根据第一重复时隙因子和/或重复传输所述数据信道的时隙中的时域符号数,确定所述数据信道对应的传输块大小;
    根据所述数据信道对应的传输块大小对所述数据信道进行编码,得到编码后的信息比特;
    将所述编码后的信息比特映射到多个时隙上。
  2. 根据权利要求1所述的方法,其特征在于,所述根据第一重复时隙因子和/或重复传输所述数据信道的时隙中的时域符号数,确定所述数据信道对应的传输块大小,包括:
    根据所述第一重复时隙因子和调度参数,确定所述数据信道对应的传输块大小。
  3. 根据权利要求2所述的方法,其特征在于,所述调度参数包括以下中的至少一项:
    目标资源单元RE数,码率,调制阶数,传输层数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述第一重复时隙因子和调度参数,确定所述数据信道对应的传输块大小,包括:
    根据所述第一重复时隙因子和所述调度参数,确定信息比特的中间数;
    根据所述信息比特的中间数,确定所述数据信道对应的传输块大小。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一重复时隙因子和所述调度参数,确定信息比特的中间数,包括:
    根据如下公式,确定所述信息比特的中间数N info
    N info=N RE·R·Q m·υ·X
    其中,所述N RE表示目标RE数,所述R表示码率,所述Q m表示调制阶数,所述υ表示传输层数,所述X表示所述第一重复时隙因子。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述第一重复时隙因子和调度参数,确定所述信息比特的中间数,包括:
    根据所述第一重复时隙因子,确定目标RE数;
    根据所述目标RE数和调度参数,确定所述信息比特的中间数。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述第一重复时隙因子,确定目标RE数,包括:
    根据所述第一重复时隙因子和一个时隙中的参考可用RE数,确定所述目标RE数。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第一重复时隙因子和一个时隙中的参考可用RE数,确定所述目标RE数,包括:
    根据如下公式确定所述目标RE数N RE
    N RE=X·min(N,N′ RE)·n PRB
    其中,所述X表示所述第一重复时隙因子,所述N表示第一参考RE数阈值,所述n PRB表示网络设备分配的资源块RB个数,N′ RE表示一个时隙内的参考可用RE数。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    根据如下公式,确定所述一个时隙内的参考可用RE数N′ RE:
    Figure PCTCN2020141059-appb-100001
    其中,
    Figure PCTCN2020141059-appb-100002
    表示每个RB上的子载波个数,
    Figure PCTCN2020141059-appb-100003
    表示每个时隙中的时域符号个数,
    Figure PCTCN2020141059-appb-100004
    表示每个RB中解调参考信号DMRS所占RE个数,
    Figure PCTCN2020141059-appb-100005
    表示开销RE数。
  10. 根据权利要求6所述的方法,其特征在于,所述根据所述第一重复时隙因子,确定目标RE数,包括:
    根据所述第一重复时隙因子和重复传输所述数据信道的时隙中的时域符号数,确定重复传输所述数据信道的时隙上的参考可用RE数;
    根据重复传输所述数据信道的时隙上的参考可用RE数,确定所述目标RE数。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述第一重复时隙因子和重复传输所述数据信道的时隙中的时域符号数,确定重复传输所述数据信道的时隙上的参考可用RE数,包括:
    根据如下公式确定重复传输所述数据信道的时隙上的参考可用RE数N″ RE
    Figure PCTCN2020141059-appb-100006
    其中,所述X表示所述第一重复时隙因子,
    Figure PCTCN2020141059-appb-100007
    表示每个RB上的子载波个数,
    Figure PCTCN2020141059-appb-100008
    表示重复传输所述数据信道的第i个时隙中的时域符号数,
    Figure PCTCN2020141059-appb-100009
    表示在重复传输所述数据信道的第i个时隙中的每个RB中DMRS所占RE个数,
    Figure PCTCN2020141059-appb-100010
    表示开销RE数。
  12. 根据权利要求10或11所述的方法,其特征在于,所述根据重复传输所述数据信道的时隙上的参考可用RE数,确定所述目标RE数,包括:
    根据如下公式确定所述目标RE数N RE
    N RE=min(N′,N″ RE)·n PRB
    其中,所述N′表示第二参考RE数阈值,n PRB表示网络设备分配的RB个数,N″ RE表示重复传输所述数据信道的时隙上的参考可用RE数。
  13. 根据权利要求10或11所述的方法,其特征在于,所述第二参考RE数阈值为156*X,或者156,其中,所述X表示所述第一重复时隙因子。
  14. 根据权利要求4-13中任一项所述的方法,其特征在于,所述根据所述信息比特的中间数,确定所述数据信道对应的传输块大小,包括:
    对所述信息比特的中间数进行量化和取整处理,确定所述数据信道对应的传输块大小。
  15. 根据权利要求14所述的方法,其特征在于,所述对所述信息比特的中间数进行量化和取整处理,确定所述数据信道对应的传输块大小,包括:
    将传输块大小列表中不小于所述信息比特的中间数,并且与所述信息比特的中间数的差值最小的传输块大小确定为所述数据信道对应的传输块大小。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一重复时隙因 子根据网络设备配置的第二重复时隙因子确定。
  17. 根据权利要求16所述的方法,其特征在于,所述第一重复时隙因子为所述第二重复时隙因子乘以第一系数,其中,所述第一系数小于等于1。
  18. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一重复时隙因子是网络设备配置的。
  19. 根据权利要求18所述的方法,其特征在于,所述第一重复时隙因子通过以下信令中的至少一个配置:无线资源控制RRC信令,下行控制信息DCI。
  20. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一重复时隙因子根据实际重复传输所述数据信道的时隙数确定。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述根据所述数据信道对应的传输块大小对所述数据信道进行编码,得到编码后的信息比特,包括:
    根据所述数据信道对应的传输块大小和网络设备调度的多个重复数据资源的RE数进行信道编码,得到编码后的信息比特。
  22. 根据权利要求1-21中任一项所述的方法,其特征在于,所述将所述编码后的信息比特映射到多个时隙上,包括:
    将所述编码后的信息比特的一个冗余版本连续映射到所述多个时隙上。
  23. 根据权利要求1-22中任一项所述的方法,其特征在于,所述第一重复时隙因子小于或等于网络设备配置的第二重复时隙因子,所述第二重复时隙因子用于指示重复传输数据信道的时隙数。
  24. 一种重复传输数据信道的设备,其特征在于,包括:
    处理单元,用于根据第一重复时隙因子和/或重复传输所述数据信道的时隙中的时域符号数,确定所述数据信道对应的传输块大小;
    根据所述数据信道对应的传输块大小对所述数据信道进行编码,得到编码后的信息比特;
    将所述编码后的信息比特映射到多个时隙上。
  25. 根据权利要求24所述的设备,其特征在于,所述处理单元还用于:
    根据所述第一重复时隙因子和调度参数,确定所述数据信道对应的传输块大小。
  26. 根据权利要求25所述的设备,其特征在于,所述调度参数包括以下中的至少一项:目标资源单元RE数,码率,调制阶数,传输层数。
  27. 根据权利要求25或26所述的设备,其特征在于,所述处理单元还用于:
    根据所述第一重复时隙因子和所述调度参数,确定信息比特的中间数;
    根据所述信息比特的中间数,确定所述数据信道对应的传输块大小。
  28. 根据权利要求27所述的设备,其特征在于,所述处理单元还用于:
    根据如下公式,确定所述信息比特的中间数N info
    N info=N RE·R·Q m·υ·X
    其中,所述N RE表示目标RE数,所述R表示码率,所述Q m表示调制阶数,所述υ表 示传输层数,所述X表示所述第一重复时隙因子。
  29. 根据权利要求27所述的设备,其特征在于,所述处理单元还用于:
    根据所述第一重复时隙因子,确定目标RE数;
    根据所述目标RE数和调度参数,确定所述信息比特的中间数。
  30. 根据权利要求29所述的设备,其特征在于,所述处理单元还用于:
    根据所述第一重复时隙因子和一个时隙中的参考可用RE数,确定所述目标RE数。
  31. 根据权利要求30所述的设备,其特征在于,所述处理单元还用于:
    根据如下公式确定所述目标RE数N RE
    N RE=X·min(N,N′ RE)·n PRB
    其中,所述X表示所述第一重复时隙因子,所述N表示第一参考RE数阈值,所述n PRB表示网络设备分配的资源块RB个数,N′ RE表示一个时隙内的参考可用RE数。
  32. 根据权利要求30或31所述的设备,其特征在于,所述处理单元还用于:
    根据如下公式,确定所述一个时隙内的参考可用RE数N′ RE:
    Figure PCTCN2020141059-appb-100011
    其中,
    Figure PCTCN2020141059-appb-100012
    表示每个RB上的子载波个数,
    Figure PCTCN2020141059-appb-100013
    表示每个时隙中的时域符号个数,
    Figure PCTCN2020141059-appb-100014
    表示每个RB中解调参考信号DMRS所占RE个数,
    Figure PCTCN2020141059-appb-100015
    表示开销RE数。
  33. 根据权利要求29所述的设备,其特征在于,所述处理单元还用于:
    根据所述第一重复时隙因子和重复传输所述数据信道的时隙中的时域符号数,确定重复传输所述数据信道的时隙上的参考可用RE数;
    根据重复传输所述数据信道的时隙上的参考可用RE数,确定所述目标RE数。
  34. 根据权利要求33所述的设备,其特征在于,所述处理单元还用于:
    根据如下公式确定重复传输所述数据信道的时隙上的参考可用RE数N″ RE
    Figure PCTCN2020141059-appb-100016
    其中,所述X表示所述第一重复时隙因子,
    Figure PCTCN2020141059-appb-100017
    表示每个RB上的子载波个数,
    Figure PCTCN2020141059-appb-100018
    表示重复传输所述数据信道的第i个时隙中的时域符号数,
    Figure PCTCN2020141059-appb-100019
    表示在重复传输所述数据信道的第i个时隙中的每个RB中DMRS所占RE个数,
    Figure PCTCN2020141059-appb-100020
    表示开销RE数。
  35. 根据权利要求33或34所述的设备,其特征在于,所述处理单元还用于:
    根据如下公式确定所述目标RE数N RE
    N RE=min(N′,N″ RE)·n PRB
    其中,所述N′表示第二参考RE数阈值,n PRB表示网络设备分配的RB个数,N″ RE表示重复传输所述数据信道的时隙上的参考可用RE数。
  36. 根据权利要求33或34所述的设备,其特征在于,所述第二参考RE数阈值为156*X,或者156,其中,所述X表示所述第一重复时隙因子。
  37. 根据权利要求27-36中任一项所述的设备,其特征在于,所述处理单元还用于:
    对所述信息比特的中间数进行量化和取整处理,确定所述数据信道对应的传输块大 小。
  38. 根据权利要求37所述的设备,其特征在于,所述处理单元还用于:
    将传输块大小列表中不小于所述信息比特的中间数,并且与所述信息比特的中间数的差值最小的传输块大小确定为所述数据信道对应的传输块大小。
  39. 根据权利要求24至38中任一项所述的设备,其特征在于,所述第一重复时隙因子根据网络设备配置的第二重复时隙因子确定。
  40. 根据权利要求39所述的设备,其特征在于,所述第一重复时隙因子为所述第二重复时隙因子乘以第一系数,其中,所述第一系数小于等于1。
  41. 根据权利要求24至38中任一项所述的设备,其特征在于,所述第一重复时隙因子是网络设备配置的。
  42. 根据权利要求41所述的设备,其特征在于,所述第一重复时隙因子通过以下信令中的至少一个配置:无线资源控制RRC信令,下行控制信息DCI。
  43. 根据权利要求24至38中任一项所述的设备,其特征在于,所述第一重复时隙因子根据实际重复传输所述数据信道的时隙数确定。
  44. 根据权利要求24至43中任一项所述的设备,其特征在于,所述处理单元还用于:
    根据所述数据信道对应的传输块大小和网络设备调度的多个重复数据资源的RE数进行信道编码,得到编码后的信息比特。
  45. 根据权利要求24-44中任一项所述的设备,其特征在于,所述处理单元还用于:
    将所述编码后的信息比特的一个冗余版本连续映射到所述多个时隙上。
  46. 根据权利要求24-45中任一项所述的设备,其特征在于,所述第一重复时隙因子小于或等于网络设备配置的第二重复时隙因子,所述第二重复时隙因子用于指示重复传输数据信道的时隙数。
  47. 根据权利要求24-46中任一项所述的设备,其特征在于,所述设备为终端设备或网络设备。
  48. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至23中任一项所述的方法。
  49. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至23中任一项所述的方法。
  50. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
  51. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至23中任一项所述的方法。
  52. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
PCT/CN2020/141059 2020-12-29 2020-12-29 重复传输数据信道的方法和设备 WO2022141106A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080107050.3A CN116458236A (zh) 2020-12-29 2020-12-29 重复传输数据信道的方法和设备
EP20967454.8A EP4270831A4 (en) 2020-12-29 2020-12-29 METHOD AND DEVICE FOR REPEATED TRANSMISSION OF A DATA CHANNEL
PCT/CN2020/141059 WO2022141106A1 (zh) 2020-12-29 2020-12-29 重复传输数据信道的方法和设备
US18/215,552 US20230362915A1 (en) 2020-12-29 2023-06-28 Method and device for repeatedly transmitting data channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141059 WO2022141106A1 (zh) 2020-12-29 2020-12-29 重复传输数据信道的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/215,552 Continuation US20230362915A1 (en) 2020-12-29 2023-06-28 Method and device for repeatedly transmitting data channel

Publications (1)

Publication Number Publication Date
WO2022141106A1 true WO2022141106A1 (zh) 2022-07-07

Family

ID=82258764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141059 WO2022141106A1 (zh) 2020-12-29 2020-12-29 重复传输数据信道的方法和设备

Country Status (4)

Country Link
US (1) US20230362915A1 (zh)
EP (1) EP4270831A4 (zh)
CN (1) CN116458236A (zh)
WO (1) WO2022141106A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087120A1 (zh) * 2022-10-27 2024-05-02 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278614A (zh) * 2019-06-24 2019-09-24 西安理工大学 一种数据信道的传输方法及装置
US20190349116A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Transport block size scaling factor indication for ultra-reliable low-latency communication
CN110830183A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 上行传输方法、用户设备、基站和计算机可读介质
US20200162208A1 (en) * 2018-11-21 2020-05-21 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel in communication system and apparatus for the same
WO2020164102A1 (en) * 2019-02-15 2020-08-20 Zte Corporation Resource indication scheme for repeated transmissions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7299328B2 (ja) * 2019-02-15 2023-06-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) マルチセグメントpuschについての送信フォーマット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349116A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Transport block size scaling factor indication for ultra-reliable low-latency communication
CN110830183A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 上行传输方法、用户设备、基站和计算机可读介质
US20200162208A1 (en) * 2018-11-21 2020-05-21 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel in communication system and apparatus for the same
WO2020164102A1 (en) * 2019-02-15 2020-08-20 Zte Corporation Resource indication scheme for repeated transmissions
CN110278614A (zh) * 2019-06-24 2019-09-24 西安理工大学 一种数据信道的传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4270831A4 *
VIVO: "Discussion on solutions for PUSCH coverage enhancement", 3GPP DRAFT; R1-2007680, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939837 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087120A1 (zh) * 2022-10-27 2024-05-02 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN116458236A (zh) 2023-07-18
US20230362915A1 (en) 2023-11-09
EP4270831A4 (en) 2024-02-21
EP4270831A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2021062613A1 (zh) 数据传输的方法和设备
WO2018228522A1 (zh) 发送参考信号的方法、接收参考信号的方法和通信装置
WO2019015445A1 (zh) 一种通信方法及装置
US20230362915A1 (en) Method and device for repeatedly transmitting data channel
CN115399025A (zh) 无线通信方法、终端设备和网络设备
CN115136523A (zh) 反馈资源的确定方法和装置
US20230007682A1 (en) Data transmission method, terminal device and network device
CN110035548B (zh) 通信的方法和通信设备
CN112187401A (zh) 多时间单元传输方法及相关装置
WO2022036523A1 (zh) 数据传输的方法及设备
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2022104650A1 (zh) 上报直流载波位置的方法、终端设备和网络设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
CN115004828A (zh) 通信方法和通信装置
WO2022109881A1 (zh) 重复传输控制信道的方法、终端设备和网络设备
WO2024011553A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
CN113852577B (zh) 无线通信方法和通信装置
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备
WO2023108638A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024026772A1 (zh) 无线通信的方法和终端设备
CN112423313B (zh) 传输块大小确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107050.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020967454

Country of ref document: EP

Effective date: 20230726