WO2021062613A1 - 数据传输的方法和设备 - Google Patents

数据传输的方法和设备 Download PDF

Info

Publication number
WO2021062613A1
WO2021062613A1 PCT/CN2019/109410 CN2019109410W WO2021062613A1 WO 2021062613 A1 WO2021062613 A1 WO 2021062613A1 CN 2019109410 W CN2019109410 W CN 2019109410W WO 2021062613 A1 WO2021062613 A1 WO 2021062613A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
pscch
pssch
terminal device
res
Prior art date
Application number
PCT/CN2019/109410
Other languages
English (en)
French (fr)
Inventor
赵振山
卢前溪
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Oppo广东移动通信有限公司深圳分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司, Oppo广东移动通信有限公司深圳分公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/109410 priority Critical patent/WO2021062613A1/zh
Priority to PCT/CN2020/074149 priority patent/WO2021062972A1/zh
Priority to PCT/CN2020/076071 priority patent/WO2021062978A1/zh
Priority to FIEP20870744.8T priority patent/FI4013161T3/fi
Priority to ES20870744T priority patent/ES2956442T3/es
Priority to BR112022005613A priority patent/BR112022005613A2/pt
Priority to EP23183996.0A priority patent/EP4246862A3/en
Priority to EP20870744.8A priority patent/EP4013161B1/en
Priority to KR1020227009354A priority patent/KR20220071963A/ko
Priority to CN202080041499.4A priority patent/CN113994749A/zh
Priority to CN202210199464.4A priority patent/CN114466461B/zh
Priority to PCT/CN2020/090674 priority patent/WO2021063002A1/zh
Priority to JP2022516452A priority patent/JP2022549595A/ja
Publication of WO2021062613A1 publication Critical patent/WO2021062613A1/zh
Priority to US17/688,501 priority patent/US20220190983A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to methods and devices for data transmission in D2D communication and V2X communication.
  • the Internet of Vehicles (Vehicle to Everything, V2X) communication is a kind of Sidelink (SL) transmission technology based on Device to Device (D2D) communication. It is different from the traditional Long Term Evolution (Long Term Evolution (LTE) systems have different ways of receiving or sending data through base stations.
  • LTE Long Term Evolution
  • the Internet of Vehicles system uses terminal-to-terminal direct communication, so it has higher spectrum efficiency and lower transmission delay.
  • TBS Transport Block
  • TBS Transport Block
  • the present application provides a data transmission method and device, which can accurately determine the TBS of the data channel in the side-line transmission process.
  • a data transmission method which includes: a terminal device determines the corresponding PSSCH in the second resource according to a first resource used to transmit PSCCH and a second resource used to transmit PSSCH The number of resource element REs, where the first resource and the second resource at least partially overlap; the terminal device determines the PSSCH transport block size TBS according to the number of REs corresponding to the PSSCH.
  • a terminal device in a second aspect, can execute the foregoing first aspect or any optional implementation method of the first aspect.
  • the terminal device includes a functional module for executing the foregoing first aspect or any possible implementation manner of the first aspect.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a chip for implementing the foregoing first aspect or any possible implementation of the first aspect.
  • the chip includes a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the first aspect or any possible implementation of the first aspect.
  • a computer-readable storage medium for storing computer programs.
  • the computer program causes the computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a computer program product including computer program instructions.
  • the computer program instructions cause the computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a computer program which when running on a computer, causes the computer to execute the method in the first aspect or any possible implementation of the first aspect.
  • the number of REs corresponding to PSSCH can be determined according to the transmission resources of PSCCH and PSSCH. Therefore, the TBS of the PSSCH can be accurately determined according to the number of REs corresponding to the PSSCH.
  • Fig. 1 is a schematic diagram of a possible wireless communication system applied by an embodiment of the present application.
  • Fig. 2 is a schematic architecture diagram of another application scenario of an embodiment of the present application.
  • Fig. 3 is a schematic diagram of the transmission resources of PSCCH and PSSCH overlapping.
  • Fig. 4 is a schematic diagram of the first PSCCH and the second PSCCH.
  • Figure 5 is a schematic diagram of the usage of each resource in a time slot.
  • Figure 6 is a schematic diagram of side feedback between terminal devices.
  • Fig. 7 is a schematic diagram of transmission resources of a side row feedback channel.
  • FIG. 8 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an apparatus for data transmission according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A advanced Advanced long term evolution
  • NR New Radio
  • NR NR
  • NR-based access to unlicensed spectrum, LTE-U NR
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • 5G system or other communication systems etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V vehicle to vehicle
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1 and FIG. 2.
  • the communication system 100 includes a network device 10.
  • the network device 10 may be a device that communicates with terminal devices.
  • the network device 10 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located in the coverage area.
  • the network device 10 may be, for example, a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system; a base station (NodeB, NB) in a WCDMA system; and an evolved base station (Evolutional Node B) in an LTE system. , ENB or eNodeB); the radio controller in the Cloud Radio Access Network (Cloud Radio Access Network, CRAN).
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B evolved base station
  • ENB or eNodeB the radio controller in the Cloud Radio Access Network
  • CRAN Cloud Radio Access Network
  • the network device 110 may be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network device in a 5G network, or a public land mobile network that will evolve in the future (Public Land Mobile Network). Network equipment in Mobile Network, PLMN). Alternatively, the network device 110 may also be a satellite in the NTN system.
  • PLMN Public Land Mobile Network
  • the communication system 100 also includes at least one terminal device located within the coverage area of the network device 10, such as the terminal device 20 and the terminal device 30.
  • the terminal device may be mobile or fixed.
  • the terminal device may refer to user equipment, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., which are not limited in the embodiment of the present application.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 20 and the terminal device 30 may perform direct terminal connection (Device to Device, D2D) communication.
  • D2D Device to Device
  • the terminal device 20 and the terminal device 30 directly communicate through a D2D link, that is, a side link (Sidelink, SL).
  • Sidelink Sidelink
  • the terminal device 20 and the terminal device 30 directly communicate through a side link.
  • the terminal device 20 and the terminal device 30 communicate through side links, and their transmission resources are allocated by the network device; in FIG. 2, the terminal device 20 and the terminal device 30 communicate through the side link
  • its transmission resources are independently selected by the terminal equipment, and no network equipment is required to allocate transmission resources.
  • Figures 1 and 2 exemplarily show one network device and two terminal devices, but the present application is not limited to this.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity.
  • D2D communication may refer to vehicle to vehicle (Vehicle to Vehicle, "V2V” for short) communication or vehicle to other device (Vehicle to Everything, V2X) communication.
  • V2X communication X can generally refer to any device with wireless receiving and sending capabilities, such as but not limited to slow-moving wireless devices, fast-moving vehicle-mounted devices, or network control nodes with wireless transmitting and receiving capabilities. It should be understood that the embodiment of the present invention is mainly applied to the scenario of V2X communication, but can also be applied to any other D2D communication scenario, which is not limited in the embodiment of the present invention.
  • the above-mentioned terminal device can use two transmission modes for side-line transmission, namely the first mode and the second mode.
  • the first mode the transmission resources of the terminal equipment are allocated by the network equipment, and the terminal equipment performs data transmission on the side link according to the resources allocated by the network equipment; the network equipment can allocate a single transmission for the terminal equipment Resources, semi-static transmission resources can also be allocated to the terminal.
  • this first mode is referred to as mode 3 (mode 3).
  • mode 4 this second mode.
  • mode 1 the network device allocates transmission resources to the terminal device, which corresponds to the above-mentioned first mode
  • mode 2 mode 2
  • the terminal device selects transmission resources by itself, which corresponds to the above The second mode.
  • the side link transmission supports the resource allocation method of Configured Grant (CG), that is, the network device allocates the side transmission resources to the terminal device through the method of configuring the grant.
  • CG Configured Grant
  • the terminal device can transmit sideline data on the transmission resource without sending a scheduling request (Scheduling Request, SR) or a buffer status report (Buffer Status Report, BSR) and other signaling are used to apply for resources, thereby reducing transmission delay.
  • CG Configured Grant
  • the method of dynamically allocating transmission resources is also supported.
  • the terminal device When the terminal device has side-line data to be sent, the terminal device sends a request to the network device, and the network device allocates side-line transmission resources to the terminal device through downlink control information (DCI), and the terminal device uses the transmission resources to perform side-line transmission.
  • DCI downlink control information
  • the terminal device autonomously selects transmission resources from the resource pool allocated or pre-configured by the network device. Among them, the terminal device can obtain the available resource set in the resource pool by means of listening. When the terminal device selects a transmission resource from the resource set for data transmission, for the service that is periodically transmitted, the terminal device may reserve the transmission resource for the next transmission, so as to prevent other users from preempting the resource. For aperiodic transmission services, terminal equipment does not need to reserve transmission resources.
  • the control channel and data channel can multiplex resources for transmission.
  • the resources of the control channel and the resources of the data channel overlap.
  • the resources of the Physical Sidelink Control Channel (PSCCH) are embedded in the transmission resources of the Physical Sidelink Shared Channel (PSSCH), PSCCH and PSSCH
  • PSSCH Physical Sidelink Shared Channel
  • the transmission resource of the PSSCH includes the length of a time slot, where the last time domain symbol is used as a guard period (Guard Period, GP), and the GP is not used to transmit data.
  • the PSCCH occupies the first few symbols in the time domain of the time slot. Therefore, the receiving end device can decode the PSCCH after receiving the PSCCH symbols. It does not need to receive the data of the entire time slot and then decode the PSCCH. Reduce transmission delay.
  • level 2 control information may be used in NR-V2X, that is, the control channel includes the first PSCCH and the second PSCCH.
  • the first PSCCH may indicate information for the receiving end device to perform resource listening, such as PSSCH transmission resources, priority information of services carried in the PSSCH, information about reserved resources, and so on.
  • the second PSCCH indicates information used to demodulate the PSSCH, such as Modulation and Coding Scheme (MCS), number of transmission layers, Hybrid Automatic Repeat reQuest (HARQ) process number, and new data indication ( New Data Indicator (NDI), relevant identification (ID) information of the sending end device and the receiving end device, etc.
  • MCS Modulation and Coding Scheme
  • HARQ Hybrid Automatic Repeat reQuest
  • NDI New Data Indicator
  • ID relevant identification
  • the size of the time domain resource or the frequency domain resource of the first PSCCH is pre-configured or configured by the network device. For different resource pools, time domain resources or frequency domain resources of the first PSCCH of different sizes can be configured.
  • the resource pool configuration information includes indication information for determining the size of the transmission resource of the first PSCCH, so that the size of the transmission resource for transmitting the first PSCCH can be determined according to the indication information.
  • the first PSCCH may indicate information for determining the transmission resource of the second PSCCH, so that the size of the transmission resource of the second PSCCH may be determined according to the first PSCCH.
  • PSCCH and PSSCH can be multiplexed with resources for transmission.
  • the first symbol in the time slot is usually used for automatic gain control (Automatic Gain Control, AGC) performed by the receiving end device, and the data on this symbol is not used for data demodulation.
  • AGC Automatic Gain Control
  • the last symbol in this time slot is used as a GP for receiving and sending conversion or sending and receiving conversion. No data is sent on the GP.
  • a Physical Sidelink Fadeback Channel (PSFCH) is introduced in the side link.
  • the terminal device 20 and the terminal device 30 form a unicast link.
  • the terminal device 20 sends the sideline data to the terminal device 30, and the terminal device 30 sends the sideline feedback channel to the terminal device 20 according to the detection result of the received sideline data, which carries feedback information, namely HARQ ACK or NACK.
  • the terminal device 20 receives the feedback information sent by the terminal device 30, and determines whether to send a retransmission of the data to the terminal device 30 according to the feedback information.
  • the PSFCH occupies 2 time-domain symbols, that is, the PSFCH occupies the symbols 11 and 12 of the time slot, and the symbol 11 can be used for AGC.
  • the last time domain symbol of the time slot, that is, symbol 13 can be used as a GP, and there is a GP symbol between PSFCH and PSSCH.
  • Fig. 7 does not show reference signals such as demodulation reference signal (Demodulation Reference Signal, DMRS) corresponding to PSCCH, DMRS corresponding to PSSCH, and channel state information reference signal (Channel State Information-Reference Signal, CSI-RS).
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the terminal device When performing side-line transmission, the terminal device needs to determine a suitable TBS so as to send a transmission block of a suitable size through the PSSCH.
  • the embodiment of the present application provides a data transmission method, which can accurately determine the TBS, and is applicable to the situation where the control channel and the data channel multiplex resources in side-line transmission.
  • FIG. 8 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • the method 800 shown in FIG. 8 may be executed by a terminal device, such as the terminal device 20 or the terminal device 30 shown in FIG. 1 to FIG. 7.
  • the method includes all or part of the following steps.
  • the terminal device determines the resource corresponding to the PSSCH in the second resource according to the first resource used to transmit the physical side control channel PSCCH and the second resource used to transmit the physical side shared channel PSSCH.
  • the number of units (Resource Element, RE).
  • the first resource and the second resource at least partially overlap.
  • the terminal device determines the transport block size TBS of the PSSCH according to the number of REs corresponding to the PSSCH.
  • the sender device When performing side-line transmission, the sender device sends the PSCCH to the receiver device, and the sidelink control information (SCI) in the PSCCH is used to indicate the second resource allocated for the PSSCH.
  • the first resource used for PSCCH transmission and the second resource used for PSSCH transmission at least partially overlap, for example, the embodiment shown in FIG. 3 or FIG. 4.
  • the terminal device when determining the number of REs corresponding to the PSSCH, the terminal device needs to consider not only the second resource, but also the first resource, so as to obtain an accurate number of REs. After that, the terminal device can determine the size of the PSSCH transport block according to the number of REs corresponding to the PSSCH.
  • the PSCCH may include a first PSCCH and a second PSCCH.
  • the first PSCCH may indicate information used for resource sensing and first information
  • the first information is used to determine the second PSCCH
  • the second PSCCH indicates information used to demodulate the PSSCH information.
  • the first resource may include a first sub-resource and a second sub-resource, the first sub-resource is used to transmit the first PSCCH, and the second sub-resource is used to transmit the second PSCCH.
  • the first sub-resource may be determined according to resource pool configuration information, for example.
  • the resource pool configuration information is used to indicate a resource pool that can be used for sideline transmission by the terminal device, and it also carries indication information.
  • the indication information is used to determine the size of the first sub-resource.
  • the indication information may include, for example, at least one of the following information: the number of time-domain symbols occupied by the first PSCCH, the position of the starting time-domain symbol of the first PSCCH, the number of subbands occupied by the first PSCCH, and the subband size And other information.
  • the second sub-resource may be determined according to the first PSCCH.
  • the first PSCCH may include first information, and the first information may include, for example, at least one of the following information: the format of the second PSCCH, the aggregation level of the second PSCCH, and the occupation of the second PSCCH.
  • the terminal device may determine the resource size occupied by the second PSCCH according to the size of the frequency domain resources occupied by the second PSCCH and the number of time domain symbols; for another example, the terminal device may determine the corresponding control channel according to the aggregation level of the second PSCCH Unit (Control Channel Element, CCE) or RE group (RE Group, REG), and further determine the size of the resources occupied by the second PSCCH; for another example, there is a correspondence between different formats of the second PSCCH and different resources, and the terminal device can Determine the corresponding second PSCCH resource according to the format indicated by the first PSCCH; for another example, different formats of the second PSCCH correspond to different information bit sizes of the control information, and according to the information corresponding to the format of the second PSCCH The number of bits, combined with the MCS used by the second PSCCH, can determine the size of the resources occupied by the second PSCCH.
  • CCE Control Channel Element
  • REG RE Group
  • the first PSCCH may also indicate information used for resource sensing, for example, including at least one of the following information: information about the second resource, priority information of the service carried in the PSSCH, and the terminal equipment Information about reserved resources.
  • the second PSCCH indicates information used to demodulate the PSSCH, which includes, for example, at least one of the following information: MCS, number of transmission layers, HARQ process number, NDI, and identification information.
  • the identification information includes at least one of the following information: the identification of the transmitting end device, the identification of the receiving end device, the group identification of the receiving end device, and the service identification corresponding to the PSSCH.
  • the identification information may be the identification of the sending end device and the identification of the receiving end device; for multicast, the identification information may be the identification of the sending end device and the group identification of the receiving end device, that is, the receiving end device belongs to The identification of the device group; for broadcast, the identification information may be the identification and service identification of the sending end device, and only terminal devices that are interested in the service corresponding to the service identification, or terminal devices that need to receive the service, It is necessary to receive the PSSCH.
  • the first resource used to transmit the first PSCCH and the second resource used to transmit the second PSSCH may overlap completely or partially.
  • the first resource may be located within the scope of the second resource, that is, the second resource includes the first resource, for example, the embodiment shown in FIG. 3 and FIG. 4.
  • the frequency domain start position or the frequency domain end position of the first resource and the second resource are the same.
  • the first resource may partially overlap with the second resource.
  • the transmission resource of the first PSCCH does not overlap with the second resource, and the transmission resource of the second PSCCH overlaps with the second resource.
  • the overlapped part is used to transmit the PSCCH.
  • the above-mentioned method may be executed by the receiving end device, or may be executed by the sending end device. That is, the above-mentioned terminal device may be a sending-end device or a receiving-end device. Among them, the sending end device may send the PSCCH to the receiving end device on the first resource. Correspondingly, the receiving end device receives the PSCCH on the first resource, and determines the second resource according to the PSCCH.
  • the transmitting end device may determine the number of REs corresponding to the PSSCH according to the first resource used for transmitting the PSCCH and the second resource used for transmitting the PSSCH, and determine the TBS of the PSSCH according to the number of REs corresponding to the PSSCH.
  • the sending end device sends a PSCCH to the receiving end device on the first resource to indicate the second resource, and sends a PSSCH to the receiving end device based on the TBS on the second resource.
  • the receiving end device receives the PSCCH on the first resource and determines the second resource.
  • the receiving end device may determine the number of REs corresponding to the PSSCH according to the first resource and the second resource, and determine the TBS of the PSSCH according to the number of REs corresponding to the PSSCH, so as to receive the PSSCH based on the TBS on the second resource.
  • the terminal device determines the number of resource units RE corresponding to the PSSCH in the second resource according to the first resource and the second resource.
  • the RE corresponding to the second PSSCH is an RE used to determine the TBS of the PSSCH.
  • the RE corresponding to the second PSSCH may not include at least one of the following: REs in the first resource, REs occupied by side-line reference signals, REs that cannot be used for side-line transmission, and PSFCH occupied RE, RE used as GP, RE used in AGC, etc.
  • the RE corresponding to the second PSSCH is the RE used for PSSCH transmission, which does not include the RE occupied by overhead (overhead) such as reference signals.
  • the RE corresponding to the PSSCH does not include the RE in the first resource.
  • the terminal device needs to remove the REs occupied by the PSCCH in the second resource from the REs included in the second resource, that is, remove the part of the REs in the second resource that overlaps the first resource.
  • the REs corresponding to the PSSCH may not include at least one of the following: REs occupied by side-line reference signals, REs that cannot be used for side-line transmission, REs occupied by PSFCH, and REs used as GPs. , And RE used for AGC, etc.
  • the terminal device can remove the REs occupied by the GP, AGC, and PSFCH from the REs included in the second resource.
  • the side-line reference signal is used for channel demodulation, estimation, measurement, etc., and does not carry data in the data channel. Therefore, the terminal device may also remove the REs occupied by the side row reference signal from the REs included in the second resource.
  • the side-line reference signal includes, for example, the DMRS corresponding to the PSSCH, the CSI-RS of the side-line link, and phase tracking reference signals (PT-RS).
  • part of the resources in the second resource is used to transmit the side line data, and the other part of the resources is used to transmit the uplink data or the downlink data.
  • the terminal device needs to remove the REs that cannot be used to transmit sideline data from the REs included in the second resource.
  • the REs in the first resource include the REs occupied by the PSCCH, and, further, also include the REs occupied by the DMRS corresponding to the PSCCH. At this time, the terminal device does not need to remove the number of REs occupied by the DMRS corresponding to the PSCCH from the number of REs included in the second resource.
  • the PSSCH can occupy one time slot, that is, the second resource includes one time slot in the time domain.
  • this application is not limited to this.
  • the number of REs N RE corresponding to the PSSCH may be:
  • N PRB is the number of physical resource blocks (Physical Resource Block, PRB) corresponding to the PSSCH
  • N symb is the number of time domain symbols corresponding to the PSSCH
  • RE is the number of lower row occupied by the reference signal
  • N oh and ⁇ is a preset parameter, 0 ⁇ 1.
  • N symb is the number of time domain symbols corresponding to the PSSCH.
  • N PRB is the number of PRBs corresponding to the PSSCH, so Is the total number of REs included in the second resource.
  • N symb 12 may also be used.
  • the REs occupied by the PSCCH include the REs actually used to transmit the PSCCH and the REs used to transmit the DMRS corresponding to the PSCCH.
  • the number of REs occupied by the PSCCH needs to be removed.
  • the REs occupied by the side-line reference signal need to be removed from it, including the DMRS corresponding to the PSSCH and the side link CSI-RS and PT-RS etc.
  • N oh and ⁇ are optional parameters, which represent additional resource overhead (overhead).
  • N oh and ⁇ may be based on the following information to determine at least one of: the number of RE occupied PSFCH, as the number of GP RE, the RE for the number of the AGC, the second resource is unavailable for The number of REs transmitted in the side row and the number of time-domain symbols in the second resource that are not available for side row transmission.
  • N oh and ⁇ may be configured by the network device, for example, carried in the resource pool configuration information; or pre-configured, for example, agreed upon by the protocol.
  • Noh is the number of REs with no data mapped on the time domain symbols where AGC and GP are located, that is, The number of REs used for AGC and GP in time domain notation.
  • N symb 14.
  • the number may be N oh PSFCH of RE occupied.
  • N RE is adjusted by ⁇ .
  • the former symbol is used for AGC, and the latter symbol is used for carrying feedback information.
  • the number of symbols available for side-line transmission in a time slot may be less than 14, for example, 7.
  • the foregoing resource overhead such as PSFCH, GP, AGC, and resource overhead that cannot be used for side-line transmission, are not repeatedly considered.
  • the terminal device After determining the number of REs corresponding to the PSSCH in the second resource based on the foregoing method, the terminal device determines the transport block size TBS of the PSSCH according to the number of REs corresponding to the PSSCH.
  • the terminal device determining the TBS of the PSSCH according to the number of REs corresponding to the PSSCH includes: the terminal device determining the number of information bits according to the number of REs corresponding to the PSSCH; The terminal device determines the TBS according to the number of information bits.
  • N info N RE ⁇ R ⁇ Q m ⁇
  • N RE the number of REs corresponding to the PSSCH
  • R the transmission code rate
  • Q m the modulation order
  • the transmission Number of layers.
  • the terminal device may quantify the number of information bits N info, obtained after quantization information bits N 'info, and the quantization information according to the number of bits N' info, determining the TBS of PSSCH .
  • the process of determining the TBS according to the number of information bits may include the following situations.
  • Case 1 If the number of information bits is less than or equal to the first threshold, that is, N info ⁇ N thd1 , the terminal device quantizes the number of information bits to obtain the quantized number of information bits N′ info ; the terminal device in TBS table, choose not less than and closest to N 'as the TBS integer info.
  • the TBS table is shown in Table 1 for example.
  • the terminal device may N 'info, select the appropriate table in TBS TBS.
  • the above process of determining TBS is applicable to the situation when PSSCH is transmitted for the first time.
  • the PSSCH uses the MCS table shown in Table 2 below, and 0 ⁇ I MCS ⁇ 27; or, the PSSCH is used Other MCS forms such as Table 3 and Table 4 below, and 0 ⁇ I MCS ⁇ 28.
  • the TBS of the retransmitted PSSCH is the same as the TBS of the first transmission of the PSSCH.
  • the PSSCH carries the retransmitted data
  • the TBS of the retransmitted PSSCH uses the TBS corresponding to the first transmission. can.
  • the side-line control channel, the side-line feedback channel, the side-line reference signal, the resources not available for the side-line transmission on the shared carrier, and the comb mapping are considered. Therefore, it is possible to obtain a more accurate number of PSSCH REs, so as to accurately determine the size of the PSSCH transport block.
  • the size of the sequence number of the above-mentioned processes does not imply the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the implementation process of the embodiments of the present application. Constitute any limitation.
  • FIG. 9 is a schematic block diagram of a terminal device 900 according to an embodiment of the present application.
  • the terminal device 900 includes a processing unit 910 and a transceiving unit 920.
  • the processing unit 910 is used for:
  • the number of resource element REs corresponding to the PSSCH in the second resource is determined, where the first resource and the second resource are Resources overlap at least partially;
  • the PSCCH transmission resource and the PSSCH transmission resource jointly determine the number of REs occupied by the PSCCH, so that the number of REs occupied by the PSCCH can be determined according to The number of REs occupied by the PSCCH accurately determines the TBS of the PSSCH.
  • the number of REs corresponding to the PSSCH does not include the number of REs in the first resource.
  • the number of REs corresponding to the PSSCH does not include at least one of the following: the number of REs occupied by side-line reference signals, the number of REs that cannot be used for side-line transmission, and the REs occupied by PSFCH The number of REs used as GP, and the number of REs used for AGC.
  • the number of REs corresponding to the PSSCH is:
  • N PRB is the number of physical resource blocks PRBs corresponding to the PSSCH
  • N symb is the number of time domain symbols corresponding to the PSSCH
  • RE is the number of lower row occupied by the reference signal
  • N oh and ⁇ is a preset parameter, 0 ⁇ 1.
  • N oh and ⁇ is based on determining at least one of: the number of RE occupied PSFCH, as the number of GP RE, the RE for the number of the AGC, the second resource The number of REs that cannot be used for sideline transmission in the second resource, and the number of time-domain symbols that cannot be used for sideline transmission in the second resource.
  • the side row reference signal includes at least one of the following: a DMRS corresponding to the PSSCH, a CSI-RS of a side link, and a PT-RS.
  • the REs in the first resource include the number of REs occupied by the PSCCH and its corresponding DMRS.
  • the PSCCH includes a first PSCCH and a second PSCCH.
  • the first PSCCH indicates information used for resource sensing and first information
  • the first information is used to determine the transmission resource of the second PSCCH
  • the second PSCCH indicates that it is used to demodulate the PSSCH Information.
  • the information used for resource listening includes at least one of the following: information about the second resource, priority information of the service carried in the PSSCH, and information about the reserved resources of the terminal device. information.
  • the first information includes at least one of the following: the format of the second PSCCH; the aggregation level of the second PSCCH; the size of the frequency domain resources occupied by the second PSCCH; 2. The number of time-domain symbols occupied by the PSCCH.
  • the information used to demodulate the PSSCH includes at least one of the following: MCS, number of transmission layers, HARQ process number, NDI, and identification information; wherein, the identification information includes the following information At least one: the identifier of the transmitting end device, the identifier of the receiving end device, the group identifier of the receiving end device, and the service identifier corresponding to the PSSCH.
  • the terminal device is a receiving device, and the terminal device further includes: a transceiving unit 920, configured to receive, on the first resource, the PSCCH sent by the transmitting device, and the PSCCH is used to determine The second resource.
  • a transceiving unit 920 configured to receive, on the first resource, the PSCCH sent by the transmitting device, and the PSCCH is used to determine The second resource.
  • the terminal device is a transmitting-end device, and the terminal device further includes: a transceiving unit 920, configured to send the PSCCH to the receiving-end device on the first resource, and the PSCCH is used to determine The second resource.
  • a transceiving unit 920 configured to send the PSCCH to the receiving-end device on the first resource, and the PSCCH is used to determine The second resource.
  • the processing unit 910 is specifically configured to: determine the number of information bits according to the number of REs corresponding to the PSSCH; and determine the TBS according to the number of information bits.
  • N info N RE ⁇ R ⁇ Q m ⁇
  • N RE is the number of REs corresponding to the PSSCH
  • R is the transmission code rate
  • Q m is the modulation order
  • the processing unit 910 is specifically configured to: quantize the number of information bits to obtain a quantized number of information bits; the terminal device determines the TBS according to the number of quantized information bits.
  • terminal device 900 can perform the corresponding operations performed by the terminal device in the method shown in FIG.
  • FIG. 10 is a schematic structural diagram of a terminal device 1000 according to an embodiment of the present application.
  • the terminal device 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the terminal device 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the terminal device 1000 may further include a transceiver 1030, and the processor 1010 may control the transceiver 1030 to communicate with other devices, and specifically, may send information or data to other devices. Or receive information or data sent by other devices.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include an antenna, and the number of antennas may be one or more.
  • FIG. 11 is a schematic structural diagram of an apparatus for data transmission according to an embodiment of the present application.
  • the apparatus 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the apparatus 1100 may further include a memory 1120.
  • the processor 1110 can call and run a computer program from the memory 1120 to implement the method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the device 1100 may further include an input interface 1130.
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the apparatus 1100 may further include an output interface 1140.
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the apparatus 1100 may be applied to the terminal equipment in the embodiments of the present application, and the communication apparatus may implement the corresponding processes implemented by the terminal equipment in the various methods of the embodiments of the present application.
  • the communication apparatus may implement the corresponding processes implemented by the terminal equipment in the various methods of the embodiments of the present application.
  • the device 1100 may be a chip, for example.
  • the chip may be a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), and synchronous Dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic Random access memory (Synch Link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. Go into details.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, it is not here. Go into details again.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity , I won’t repeat it here.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • B corresponding (corresponding) to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

提供了一种数据传输的方法和设备,能够准确地确定侧行传输中数据信道的TBS,提高传输性能。所述方法包括:终端设备根据用于传输PSCCH的第一资源,以及用于传输PSSCH的第二资源,确定所述PSSCH在所述第二资源内对应的资源单元RE的数量,其中,所述第一资源与所述第二资源至少部分重叠;所述终端设备根据所述PSSCH对应的RE的数量,确定所述PSSCH的传输块大小TBS。

Description

数据传输的方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及D2D通信、V2X通信中数据传输的方法和设备。
背景技术
车联网或称车到设备(Vehicle to Everything,V2X)通信是基于设备到设备(Device to Device,D2D)通信的一种侧行链路(Sidelink,SL)传输技术,与传统的长期演进(Long Term Evolution,LTE)系统中通过基站接收或者发送数据的方式不同,车联网系统采用终端到终端直接通信的方式,因此具有更高的频谱效率和更低的传输时延。在进行数据信道传输时,采用合适的传输块大小(Transport Block,TBS)能够有效提高侧行传输性能。因此,如何准确地确定侧行传输过程中数据信道的TBS,成为亟待解决的问题。
发明内容
本申请提供一种数据传输的方法和设备,能够准确地确定侧行传输过程中数据信道的TBS。
第一方面,提供了一种数据传输的方法,包括:终端设备根据用于传输PSCCH的第一资源,以及用于传输PSSCH的第二资源,确定所述PSSCH在所述第二资源内对应的资源单元RE的数量,其中,所述第一资源与所述第二资源至少部分重叠;所述终端设备根据所述PSSCH对应的RE的数量,确定所述PSSCH的传输块大小TBS。
第二方面,提供了一种终端设备,所述终端设备可以执行上述第一方面或第一方面的任意可选的实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。
第三方面,提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行该存储器中存储的计算机程序,以执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,所述芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或第一方面的任意可能的实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序。所述计算机程序使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令。所述计算机程序指令使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
基于上述技术方案,在进行侧行传输时,当PSCCH的传输资源,与PSCCH指示的PSSCH的传输资源之间重叠时,可以根据PSCCH的传输资源与PSSCH的传输资源共同确定PSSCH对应的RE的数量,从而能够根据PSSCH对应的RE的数量,准确地确定所述PSSCH的TBS。
附图说明
图1是本申请实施例应用的一种可能的无线通信系统的示意图。
图2是本申请实施例的另一种应用场景的示意性架构图。
图3是PSCCH与PSSCH的传输资源重叠的示意图。
图4是第一PSCCH和第二PSCCH的示意图。
图5是一个时隙内各个资源的使用情况的示意图。
图6是终端设备之间进行侧行反馈的示意图。
图7是侧行反馈信道的传输资源的示意图。
图8是本申请实施例的数据传输的方法的示意性流程图。
图9是本申请实施例的终端设备的示意性框图。
图10是本申请实施例的终端设备的示意性结构图。
图11是本申请实施例的用于数据传输的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、5G系统或其他通信系统等。
通常,传统的通信系统支持的连接数有限,也易于实现。然而,随着通信技术的发展,移动通信系统不仅支持传统的通信,还将支持例如设备到设备(Device to Device,D2D)通信、机器到机器(Machine to Machine,M2M)通信、机器类型通信(Machine Type Communication,MTC)、以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可应用于这些通信系统。
另外,本申请实施例的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景、双连接(Dual Connectivity,DC)场景、独立(Standalone,SA)布网场景等。
示例性的,本申请实施例应用的通信系统100如图1和图2所示。通信系统100包括网络设备10。网络设备10可以是与终端设备通信的设备。网络设备10可以为特定地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
本申请实施例中,网络设备10例如可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS);WCDMA系统中的基站(NodeB,NB);LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB);云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器。或者,网络设备110可以是移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。或者,网络设备110也可以是NTN系统中的卫星。
通信系统100还包括位于网络设备10覆盖范围内的至少一个终端设备,例如终端设备20和终端设备30。所述终端设备可以是移动的或固定的。可选地,所述终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
终端设备20与终端设备30之间可以进行终端直连(Device to Device,D2D)通信。在进行D2D通信时,终端设备20和终端设备30通过D2D链路即侧行链路(Sidelink,SL)直接进行通信。例如图1或者图2所示的实施例中,终端设备20和终端设备30通过侧行链路直接进行通信。在图1中,终端设备20和终端设备30之间通过侧行链路通信,其传输资源是由网络设备分配的;在图2中,终端设备20和终端设备30之间通过侧行链路通信,其传输资源是由终端设备自主选取的,不需要网络设备分配传输资源。
图1和图2示例性地示出了一个网络设备和两个终端设备,但本申请并不限于此。通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备。此外,通信系统100还可以包括网络控制器、移动性管理实体等其他网络实体。
本申请实施例中,D2D通信可以指车对车(Vehicle to Vehicle,简称“V2V”)通信或车辆到其他设备(Vehicle to Everything,V2X)通信。在V2X通信中,X可以泛指任何具有无线接收和发送能力的设备,例如但不限于慢速移动的无线装置,快速移动的车载设备,或是具有无线发射接收能力的网络控制节点等。应理解,本发明实施例主要应用于V2X通信的场景,但也可以应用于任意其它D2D通信场景,本发明实施例对此不做任何限定。
上述终端设备可以采用两种传输模式进行侧行传输,即第一模式和第二模式。其中,在第一模式中,终端设备的传输资源是由网络设备分配的,终端设备根据网络设备分配的资源,在侧行链路上进行数据传输;网络设备可以为终端设备分配单次传输的资源,也可以为终端分配半静态传输的资源。在LTE-V2X中,将该第一模式称为模式3(mode 3)。在第二模式中,终端设备端在资源池中选取一个资源进行数据传输。在LTE-V2X中,将该第二模式称为模式4(mode 4)。
在NR-V2X中,需要支持自动驾驶。因此对车辆之间的数据交互提出了更高的要求,例如先不要更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。同样,NR-V2X中引入了两种传输模式,即模式1和模式2。其中,在模式1(mode 1)中,由网络设备为终端设备分配传输资源,即对应于上述的第一模式;在模式2(mode 2)中,终端设备自行选取传输资源,即对应于上述的第二模式。
在模式1中,侧行链路传输支持配置授权(Configured Grant,CG)的资源分配方式,即网络设备通过配置授权的方式为终端设备分配侧行传输资源。当终端设备被分配了配置授权的传输资源,终端设备可以在所述传输资源上传输侧行数据,而不需要向网络设备发送调度请求(Scheduling Request,SR)或缓存状态报告(Buffer Status Report,BSR)等信令用来申请资源,从而降低传输时延。
另外,在模式1中,也支持动态分配传输资源的方式。当终端设备有侧行数据需要发送时,终端设备向网络设备发送请求,网络设备通过下行控制信息(Download Control Information,DCI)为终端设备分配侧行传输资源,终端设备使用所述传输资源进行侧行数据传输。
在模式2中,终端设备在网络设备分配或者预配置的资源池中自主选取传输资源。其中,终端设备可以通过侦听的方式,在资源池中获取可用的资源集合。当终端设备从所述资源集合中选取一个传输资源进行数据传输时,对于周期性传输的业务,所述终端设备可以预留下一次传输的传输资源,从而避免其他用户抢占该资源。对于非周期传输的业务,终端设备不需要预留传输资源。
在NR-V2X中,控制信道和数据信道可以复用资源进行传输。例如图3所示的实施例中,控制信道的资源和数据信道的资源重叠。其中,如图3所示的实施例中,物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)的资源嵌入在物理侧行数据信道(Physical Sidelink Shared Channel,PSSCH)的传输资源中,PSCCH和PSSCH的频域起始位置或者频域结束位置是相同的。通常,PSSCH的传输资源包括一个时隙的长度,其中最后一个时域符号用作保护周期(Guard Period,GP),GP不用于传输数据。PSCCH占 用该时隙中时域位置靠前的几个符号,因此接收端设备在接收完PSCCH的符号后,即可解码PSCCH,而不需要得到接收完整个时隙的数据后再解码PSCCH,从而降低传输时延。
进一步地,例如图4所示的实施例中,NR-V2X中可以采用2阶控制信息,即控制信道包括第一PSCCH和第二PSCCH。其中,第一PSCCH可以指示用于接收端设备进行资源侦听的信息,例如PSSCH的传输资源、PSSCH中承载的业务的优先级信息、预留资源的信息等。第二PSCCH指示用于解调PSSCH的信息,例如调制与编码策略(Modulation and Coding Scheme,MCS)、传输层数、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程号、新数据指示(New Data Indicator,NDI)、发送端设备和接收端设备的相关标识(Identity,ID)信息等。并且,第一PSCCH还可以指示用于确定第二PSCCH的传输资源的信息。
第一PSCCH的时域资源或频域资源大小是预配置的或者由网络设备配置的。针对不同的资源池,可以配置不同大小的第一PSCCH的时域资源或频域资源。例如,资源池配置信息中包括用于确定第一PSCCH传输资源大小的指示信息,从而根据该指示信息可以确定用于传输第一PSCCH的传输资源的大小。进一步地,第一PSCCH可以指示用于确定第二PSCCH的传输资源的信息,从而根据第一PSCCH可以确定第二PSCCH的传输资源的大小。
例如图5所示的实施例中,在一个时隙中,PSCCH和PSSCH可以复用资源进行传输。该时隙内的第一个符号通常用于接收端设备进行自动增益控制(Automatic Gain Control,AGC),该符号上的数据不用于数据解调。该时隙内的最后一个符号用作GP,用于收发转换或发收转换,GP上不发送数据。
另外,为了提高传输可靠性,在侧行链路中引入了物理侧行反馈信道(Physical Sidelink Fadeback Channel,PSFCH)。例如图6所示的实施例中,终端设备20和终端设备30构成一个单播链路。终端设备20向终端设备30发送侧行数据,终端设备30根据接收到的侧行数据的检测结果,向终端设备20发送侧行反馈信道,其中承载反馈信息,即HARQ ACK或NACK。终端设备20接收终端设备30发送的反馈信息,并根据该反馈信息确定是否向终端设备30发送该数据的重传。
如图7所示的实施例中,PSFCH占用2个时域符号,即PSFCH占用该时隙的符号11和12,其中符号11可以用于AGC。该时隙的最后一个时域符号,即符号13可以用作GP,并且PSFCH与PSSCH之间存在GP符号。图7中未示出PSCCH对应的解调参考信号(Demodulation Reference Signal,DMRS)、PSSCH对应的DMRS、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)等参考信号。
在进行侧行传输时,终端设备需要确定合适的TBS,从而通过PSSCH发送大小合适的传输块。本申请实施例提供一种数据传输的方法,能够准确地确定TBS,并且适用于侧行传输中控制信道与数据信道复用资源的情况。
图8是本申请实施例的数据传输的方法的示意性流程图。图8所示的方法800可以由终端设备执行,例如图1至图7中所示的终端设备20或者终端设备30。如图8所示的实施例中,该方法包括以下步骤中的全部或部分。
在810中,终端设备根据用于传输物理侧行控制信道PSCCH的第一资源,以及用于传输物理侧行共享信道PSSCH的第二资源,确定所述PSSCH在所述第二资源内对应的资源单元(Resource Element,RE)的数量。
其中,可选地,所述第一资源与所述第二资源至少部分重叠。
在820中,终端设备根据所述PSSCH对应的RE的数量,确定所述PSSCH的传输块大小TBS。
在进行侧行传输时,发送端设备向接收端设备发送PSCCH,PSCCH中的侧行控制信息(Sidelink Control Information,SCI)用于指示为PSSCH分配的第二资源。该实施例中, 用于传输PSCCH的第一资源与用于传输PSSCH的第二资源至少部分重叠,例如图3或图4所示的实施例。这时,终端设备在确定所述PSSCH对应的RE的数量时,不仅需要考虑第二资源,还需要考虑第一资源,从而获得准确的RE数量。之后,终端设备根据所述PSSCH对应的RE的数量,可以确定PSSCH的传输块的大小。
所述PSCCH可以包括第一PSCCH和第二PSCCH。其中,所述第一PSCCH可以指示用于资源侦听的信息、以及第一信息,所述第一信息用于确定所述第二PSCCH,所述第二PSCCH指示用于解调所述PSSCH的信息。
其中,所述第一资源可以包括第一子资源和第二子资源,所述第一子资源用于传输所述第一PSCCH,所述第二子资源用于传输所述第二PSCCH。
所述第一子资源例如可以是根据资源池配置信息确定的。其中,所述资源池配置信息用于指示可用于所述终端设备进行侧行传输的资源池,且同时携带指示信息。该指示信息用于确定第一子资源的大小。该指示信息例如可以包括以下信息中的至少一种:第一PSCCH占用的时域符号的数量、第一PSCCH的起始时域符号的位置、第一PSCCH占用的子带数量、以及子带大小等信息。终端设备接收到资源池配置信息后,可以确定用于传输第一PSCCH的第一子资源。
所述第二子资源可以根据所述第一PSCCH确定。所述第一PSCCH可以包括第一信息,所述第一信息例如可以包括以下信息中的至少一种:所述第二PSCCH的格式、所述第二PSCCH的聚合等级、所述第二PSCCH占用的频域资源的大小、所述第二PSCCH占用的时域符号的数量、所述第二PSCCH的调制阶数、所述第二PSCCH的码率、所述第二PSCCH承载的SCI的信息比特数、所述第二PSCCH承载的SCI的编码比特数。
例如,终端设备可以根据第二PSCCH占用的频域资源的大小和时域符号的数量,确定第二PSCCH占用的资源大小;又例如,终端设备可以根据第二PSCCH的聚合等级确定相应的控制信道单元(Control Channel Element,CCE)或RE组(RE Group,REG),并进一步确定第二PSCCH占用的资源大小;又例如,第二PSCCH的不同格式与不同资源之间存在对应关系,终端设备可以根据第一PSCCH所指示的格式,确定相对应的第二PSCCH的资源;又例如,第二PSCCH的不同格式对应着不同的控制信息的信息比特数大小,根据第二PSCCH的格式所对应的信息比特数,并结合第二PSCCH采用的MCS,可以确定第二PSCCH占用的资源的大小。
所述第一PSCCH还可以指示用于资源侦听的信息,例如包括以下信息中的至少一种:所述第二资源的信息、所述PSSCH中承载的业务的优先级信息、所述终端设备的预留资源的信息。
所述第二PSCCH指示用于解调所述PSSCH的信息,其中例如包括以下信息中的至少一种:MCS、传输层数、HARQ进程号、NDI、以及标识信息等。
其中,所述标识信息包括以下信息中的至少一种:发送端设备的标识、接收端设备的标识、接收端设备的组标识、以及所述PSSCH对应的业务标识。
对于单播,所述标识信息可以是发送端设备的标识和接收端设备的标识;对于组播,所述标识信息可以是发送端设备的标识和接收端设备的组标识,即接收端设备所属的设备组的标识;对于广播,所述标识信息可以是发送端设备的标识和业务标识,只有对所述业务标识对应的业务感兴趣的终端设备,或者需要接收该业务的终端设备而言,才需要接收所述PSSCH。
应理解,用于传输第一PSCCH的第一资源,与用于传输第二PSSCH的第二资源之间可以全部重叠或者部分重叠。第一资源与第二资源全部重叠时,第一资源可以位于第二资源的范围之内,即第二资源包括第一资源,例如图3和图4所示的实施例。优选地,所述第一资源与所述第二资源的频域起始位置或频域结束位置相同。又例如,第一资源可以与第二资源部分重叠,比如第一PSCCH的传输资源与第二资源不重叠,而第二PSCCH的传 输资源与第二资源重叠。第一资源与第二资源重叠时,重叠的部分用来传输PSCCH。
上述方法可以由接收端设备执行,也可以由发送端设备执行。即,上述终端设备可以是发送端设备,也可以是接收端设备。其中,发送端设备可以在第一资源上,向接收端设备发送PSCCH。相应地,接收端设备在第一资源上接收PSCCH,并根据PSCCH确定第二资源。
发送端设备可以根据用于传输PSCCH的第一资源和用于传输PSSCH的第二资源,确定PSSCH对应的RE的数量,并根据PSSCH对应的RE的数量确定PSSCH的TBS。发送端设备在第一资源上向接收端设备发送PSCCH,以指示第二资源,并在第二资源上基于该TBS向接收端设备发送PSSCH。
接收端设备在第一资源上接收PSCCH,并确定第二资源。接收端设备可以根据第一资源和第二资源,确定PSSCH对应的RE的数量,并根据PSSCH对应的RE的数量确定PSSCH的TBS,从而在第二资源上基于该TBS接收PSSCH。
该实施例中,终端设备根据第一资源和第二资源,确定所述PSSCH在所述第二资源内对应的资源单元RE的数量。其中,所述第二PSSCH对应的RE,为用于确定所述PSSCH的TBS的RE。
例如,所述第二PSSCH对应的RE中可以不包括以下中的至少一种:第一资源内的RE、侧行参考信号所占的RE、不可用于侧行传输的RE、PSFCH所占的RE、用作GP的RE、以及用于AGC的RE等。
也就是说,所述第二PSSCH对应的RE,为用于传输PSSCH的RE,其中不包括参考信号等额外开销(overhead)占用的RE。
其中,所述PSSCH对应的RE中不包括所述第一资源内的RE。
也就是说,终端设备需要从第二资源内包括的RE中,去除第二资源内被所述PSCCH所占的RE,即去除第二资源内的与第一资源重叠的那一部分RE。
进一步地,所述PSSCH对应的RE中还可以不包括以下中的至少一种:侧行参考信号所占的RE、不可用于侧行传输的RE、PSFCH所占的RE、用作GP的RE、以及用于AGC的RE等。
其中,GP所在的时域符号上不传输数据。用于AGC的时域符号上虽然传输数据,但是该数据仅用于自动增益控制,不用于数据解调。PSFCH中携带反馈信息例如ACK/NACK,并不承载数据信道中的数据。因此,终端设备可以从第二资源内包括的RE中,去除GP、AGC、PSFCH所占的RE。
侧行参考信号用于信道解调、估计和测量等,并不承载数据信道中的数据。因此,终端设备还可以从第二资源内包括的RE中,去除侧行参考信号所占的RE。所述侧行参考信号例如包括所述PSSCH对应的DMRS、侧行链路的CSI-RS、以及相位跟踪参考信号(Phase Tracking Reference Signals,PT-RS)等。
另外,对于共享载波的情况,例如上行传输与侧行传输可以共用一个载波时,第二资源内的部分资源用于传输侧行数据,而另一部分资源用于传输上行数据或下行数据,且不用来传输侧行数据。这时,终端设备需要从第二资源包括的RE中,去除不能用来传输侧行数据的RE。
所述第一资源内的RE包括PSCCH所占的RE,并且,进一步地,还包括所述PSCCH对应的DMRS所占的RE。这时,终端设备不需要从第二资源内包括的RE的数量中,去除PSCCH对应的DMRS所占的RE的数量。
通常,PSSCH可以占用一个时隙,也就是说,第二资源在时域上包括一个时隙。但本申请对此并不限定。
举例来说,所述PSSCH对应的RE的数量N RE可以为:
Figure PCTCN2019109410-appb-000001
其中,N PRB为所述PSSCH对应的物理资源块(Physical Resource Block,PRB)的数量,N symb为所述PSSCH对应的时域符号的数量,
Figure PCTCN2019109410-appb-000002
为一个PRB中包括的子载波的数量,
Figure PCTCN2019109410-appb-000003
为所述第二资源内所述PSCCH所占的RE的数量,
Figure PCTCN2019109410-appb-000004
为所述侧行参考信号所占的RE的数量,N oh和β为预设参数,0<β≤1。
下面分别对这些参数进行说明。
Figure PCTCN2019109410-appb-000005
为一个PRB中包括的子载波的数量,N symb为所述PSSCH对应的时域符号的数量。N PRB为所述PSSCH对应的PRB的数量,因此
Figure PCTCN2019109410-appb-000006
为第二资源中包括的RE的总数。
例如,对于正常循环前缀(Cyclic Prefix,CP),一个时隙的时域符号为14个,即N symb=14;对于共享载波的情况,一个时隙内可用于侧行传输的符号的数量可能小于14,例如为7个,即N symb=7。如果考虑时隙聚合,即一个PSSCH可以在连续的多个时隙上传输,此时N symb大于14。例如,如果PSSCH在两个时隙上传输,则N symb=28。
又例如,考虑到该时隙内的第一个时域符号用于AGC且最后一个时域符号用作GP,因此也可以N symb=12。
又例如,该时隙内的第一个时域符号用于AGC且最后一个时域符号用作GP,但是第一个时域符号上仍传输数据,而最后一个时域符号上不传输数据,因此还可以N symb=13。
Figure PCTCN2019109410-appb-000007
为第二资源内被PSCCH占用的RE的数量,其中,被PSCCH占用的RE中包括实际用于传输PSCCH的RE,以及用于传输PSCCH对应的DMRS的RE。在确定第二资源内PSSCH对应的RE的数量时,需要从中去除PSCCH占用的RE的数量。
Figure PCTCN2019109410-appb-000008
为侧行参考信号所占的RE的数量,在确定第二资源内PSSCH对应的RE的数量时,需要从中去除侧行参考信号所占的RE,其中包括PSSCH对应的DMRS、侧行链路的CSI-RS以及PT-RS等。
N oh和β为可选参数,表示额外资源开销(overhead)。例如,N oh和β可以基于以下信息中的至少一种确定的:PSFCH所占的RE的数量、用作GP的RE的数量、用于AGC的RE的数量、所述第二资源内不可用于侧行传输的RE的数量、以及所述第二资源内不可用于侧行传输的时域符号的数量。
N oh和β可以是网络设备配置的,例如携带于资源池配置信息中;或者是预配置的,例如协议约定的。
例如,如果用于AGC的符号和用作GP的时域符号上采用梳状映射的方式映射数据,则N oh为AGC和GP所在的时域符号上没有映射数据的RE的数量,即所述时域符号上用于进行AGC和用作GP的RE的数量。此时,上述N symb=14。
又例如,N oh可以为PSFCH占用的RE的数量。
又例如,考虑PSFCH占用的RE的数量,N RE通过β进行调整。假设PSFCH占用2个时域符号,如图7所示的实施例中,其中前一个符号用于AGC,后一个符号用于承载反馈信息。并且在PSSCH和PSFCH之间需要一个GP。因此,PSFCH的存在导致了3/14的资源开销,因此可以设置β=1-3/14=0.8。这时,可选地,N oh的取值不需要再考虑PSFCH。
又例如,对于共享载波的情况,一个时隙内可用于侧行传输的符号的数量可能小于14,例如为7个,这时,可以设置β=7/14=0.5。此时,N symb的取值不需要再考虑共享载波的 情况,即N symb=14。
在配置N symb、N oh和β的取值时,不会重复考虑上述资源开销,例如PSFCH、GP、AGC以及不可用于侧行传输的资源开销。
应理解,上述公式仅仅是示例,本申请实施例所述的方法并不限定于上述公式。其中的部分参数是可选配置的,例如可以不配置参数N oh或参数β。
终端设备基于上述方法确定第二资源内所述PSSCH对应的RE的数量后,根据所述PSSCH对应的RE的数量,确定所述PSSCH的传输块大小TBS。
例如,在820中,所述终端设备根据所述PSSCH对应的RE的数量,确定所述PSSCH的TBS,包括:所述终端设备根据所述PSSCH对应的RE的数量,确定信息比特数;所述终端设备根据所述信息比特数,确定所述TBS。
其中,所述信息比特数N info=N RE×R×Q m×υ,其中,N RE为所述PSSCH对应的RE的数量,R为传输码率,Q m为调制阶数,υ为传输层数。
进一步地,所述终端设备可以对所述信息比特数N info进行量化,得到量化后的信息比特数N′ info,并根据所述量化后的信息比特数N′ info,确定所述PSSCH的TBS。
其中,根据所述信息比特数确定TBS的过程,可以包括以下几种情况。
情况1:如果所述信息比特数小于或等于第一门限,即N info≤N thd1,所述终端设备对所述信息比特数进行量化,得到量化后的信息比特数N′ info;所述终端设备在TBS表格中,选择不小于且最接近N′ info的整数作为所述TBS。其中,所述第一门限N thd1可以是网络设备配置的,或者是预配置的例如协议约定的。例如N thd1=3824。
Figure PCTCN2019109410-appb-000009
其中,
Figure PCTCN2019109410-appb-000010
所述TBS表格例如表一所示。终端设备可以根据N′ info,在TBS表格中选择合适的TBS。
表一
TBS索引 TBS TBS索引 TBS TBS索引 TBS TBS索引 TBS
1 24 31 336 61 1288 91 3624
2 32 32 352 62 1320 92 3752
3 40 33 368 63 1352 93 3824
4 48 34 384 64 1416    
5 56 35 408 65 1480    
6 64 36 432 66 1544    
7 72 37 456 67 1608    
8 80 38 480 68 1672    
9 88 39 504 69 1736    
10 96 40 528 70 1800    
11 104 41 552 71 1864    
12 112 42 576 72 1928    
13 120 43 608 73 2024    
14 128 44 640 74 2088    
15 136 45 672 75 2152    
16 144 46 704 76 2216    
17 152 47 736 77 2280    
18 160 48 768 78 2408    
19 168 49 808 79 2472    
20 176 50 848 80 2536    
21 184 51 888 81 2600    
22 192 52 928 82 2664    
23 208 53 984 83 2728    
24 224 54 1032 84 2792    
25 240 55 1064 85 2856    
26 256 56 1128 86 2976    
27 272 57 1160 87 3104    
28 288 58 1192 88 3240    
29 304 59 1224 89 3368    
30 320 60 1256 90 3496    
情况2:如果所述信息比特数大于第一门限,即N info>N thd1,并且所述PSSCH的码率小于等于第二门限,即R≤R thd2,则终端设备对N info进行量化后得到N′ info
Figure PCTCN2019109410-appb-000011
其中,
Figure PCTCN2019109410-appb-000012
进一步地,
Figure PCTCN2019109410-appb-000013
情况3:如果所述信息比特数大于第一门限,即N info>N thd1,并且所述PSSCH的码率大于第二门限,即R>R thd2,则终端设备对N info进行量化后得到N′ info
Figure PCTCN2019109410-appb-000014
其中,
Figure PCTCN2019109410-appb-000015
如果N′ info>8424,则
Figure PCTCN2019109410-appb-000016
其他情况下,
Figure PCTCN2019109410-appb-000017
需要说明的是,上述确定TBS的过程,适用于首次传输PSSCH时的情况,例如,所述PSSCH使用下表二所示的MCS表格,且0≤I MCS≤27时;或者,所述PSSCH使用其他MCS表格例如下表三和表四,且0≤I MCS≤28时。
表二
Figure PCTCN2019109410-appb-000018
Figure PCTCN2019109410-appb-000019
表三
Figure PCTCN2019109410-appb-000020
Figure PCTCN2019109410-appb-000021
表四
Figure PCTCN2019109410-appb-000022
Figure PCTCN2019109410-appb-000023
当进行PSSCH重传时,重传的PSSCH的TBS与首次传输所述PSSCH的TBS相同。例如,当使用表二且28≤I MCS≤31时,或者使用其他MCS表格且29≤I MCS≤31时,PSSCH中承载重传数据,重传的PSSCH的TBS使用首次传输时对应的TBS即可。
采用本申请实施例的方法,在计算PSSCH的RE的数量时,考虑了侧行控制信道、侧行反馈信道、侧行参考信号、共享载波上不可用于侧行传输的资源、以及梳状映射时的资源开销等,因此可以获得更准确的PSSCH的RE的数量,从而准确地确定PSSCH的传输块的大小。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的数据传输的方法,下面将结合图9至图11,描 述根据本申请实施例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图9是根据本申请实施例的终端设备900的示意性框图。如图9所示的实施例中,终端设备900包括处理单元910和收发单元920。其中,处理单元910用于:
根据用于传输PSCCH的第一资源,以及用于PSSCH的第二资源,确定所述PSSCH在所述第二资源内对应的资源单元RE的数量,其中,所述第一资源与所述第二资源至少部分重叠;
根据所述PSSCH对应的RE的数量,确定所述PSSCH的传输块大小TBS。
因此,在进行侧行传输时,当PSCCH的传输资源,与PSCCH指示的PSSCH的传输资源之间重叠时,根据PSCCH的传输资源与PSSCH的传输资源共同确定PSCCH占用的RE的数量,从而能够根据PSCCH占用的RE的数量,准确地确定所述PSSCH的TBS。
可选地,所述PSSCH对应的RE的数量中不包括所述第一资源内的RE的数量。
可选地,所述PSSCH对应的RE的数量中还不包括以下中的至少一种:侧行参考信号所占的RE的数量、不可用于侧行传输的RE的数量、PSFCH所占的RE的数量、用作GP的RE的数量、以及用于AGC的RE的数量。
可选地,所述PSSCH对应的RE的数量为:
Figure PCTCN2019109410-appb-000024
其中,N PRB为所述PSSCH对应的物理资源块PRB的数量,N symb为所述PSSCH对应的时域符号的数量,
Figure PCTCN2019109410-appb-000025
为一个PRB中包括的子载波的数量,
Figure PCTCN2019109410-appb-000026
为所述第二资源内所述PSCCH所占的RE的数量,
Figure PCTCN2019109410-appb-000027
为所述侧行参考信号所占的RE的数量,N oh和β为预设参数,0<β≤1。
可选地,N oh和β是基于以下中的至少一种确定的:所述PSFCH所占的RE的数量、用作GP的RE的数量、用于AGC的RE的数量、所述第二资源内不可用于侧行传输的RE的数量、以及所述第二资源内不可用于侧行传输的时域符号的数量。
可选地,所述侧行参考信号包括以下中的至少一种:所述PSSCH对应的DMRS、侧行链路的CSI-RS以及PT-RS。
可选地,所述第一资源内的RE,包括所述PSCCH及其对应的DMRS所占的RE的数量。
可选地,所述PSCCH包括第一PSCCH和第二PSCCH。其中,所述第一PSCCH指示用于资源侦听的信息以及第一信息,所述第一信息用于确定所述第二PSCCH的传输资源,所述第二PSCCH指示用于解调所述PSSCH的信息。
可选地,所述用于资源侦听的信息包括以下中的至少一种:所述第二资源的信息、所述PSSCH中承载的业务的优先级信息、所述终端设备的预留资源的信息。
可选地,所述第一信息包括以下中的至少一种:所述第二PSCCH的格式;所述第二PSCCH的聚合等级;所述第二PSCCH占用的频域资源的大小;所述第二PSCCH占用的时域符号的数量。
可选地,所述用于解调所述PSSCH的信息包括以下中的至少一种:MCS、传输层数、HARQ进程号、NDI、以及标识信息;其中,所述标识信息包括以下信息中的至少一种:发送端设备的标识、接收端设备的标识、接收端设备的组标识、以及所述PSSCH对应的业务标识。
可选地,所述终端设备为接收端设备,所述终端设备还包括:收发单元920,用于在所述第一资源上,接收发送端设备发送的所述PSCCH,所述PSCCH用于确定所述第二资源。
可选地,所述终端设备为发送端设备,所述终端设备还包括:收发单元920,用于在所述第一资源上,向接收端设备发送所述PSCCH,所述PSCCH用于确定所述第二资源。
可选地,处理单元910具体用于:根据所述PSSCH对应的RE的数量,确定信息比特数;根据所述信息比特数,确定所述TBS。
可选地,所述信息比特数N info=N RE×R×Q m×υ,其中,N RE为所述PSSCH对应的RE的数量,R为传输码率,Q m为调制阶数,υ为传输层数。
可选地,所述处理单元910具体用于:对所述信息比特数进行量化,得到量化后的信息比特数;所述终端设备根据所述量化后的信息比特数,确定所述TBS。
应理解,终端设备900可以执行图8所示的方法中由终端设备执行的相应操作,为了简洁,在此不再赘述。
图10是本申请实施例的一种终端设备1000的示意性结构图。图10所示的终端设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示的实施例中,终端设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图10所示的实施例中,终端设备1000还可以包括收发器1030,处理器1010可以控制收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
图11是本申请实施例的用于数据传输的装置的示意性结构图。图11所示的装置1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示的实施例中,装置1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,装置1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,装置1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,装置1100可应用于本申请实施例中的终端设备,并且该通信装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
装置1100例如可以为芯片。所述芯片可为系统级芯片、系统芯片、芯片系统、或者片上系统芯片等。
本申请实施例中的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储 器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
其中,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在本申请实施例中,术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清除地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (37)

  1. 一种数据传输的方法,其特征在于,所述方法包括:
    终端设备根据用于传输物理侧行控制信道PSCCH的第一资源,以及用于传输物理侧行共享信道PSSCH的第二资源,确定所述PSSCH在所述第二资源内对应的资源单元RE的数量,其中,所述第一资源与所述第二资源至少部分重叠;
    所述终端设备根据所述PSSCH对应的RE的数量,确定所述PSSCH的传输块大小TBS。
  2. 根据权利要求1所述的方法,其特征在于,所述PSSCH对应的RE中不包括所述第一资源内的RE。
  3. 根据权利要求2所述的方法,其特征在于,所述PSSCH对应的RE中还不包括以下中的至少一种:
    侧行参考信号所占的RE、不可用于侧行传输的RE、物理侧行反馈信道PSFCH所占的RE、用作保护间隔GP的RE、以及用于自动增益控制AGC的RE。
  4. 根据权利要求3所述的方法,其特征在于,所述PSSCH对应的RE的数量为:
    Figure PCTCN2019109410-appb-100001
    其中,N PRB为所述PSSCH对应的物理资源块PRB的数量,N symb为所述PSSCH对应的时域符号的数量,
    Figure PCTCN2019109410-appb-100002
    为一个PRB中包括的子载波的数量,
    Figure PCTCN2019109410-appb-100003
    为所述第二资源内所述PSCCH所占的RE的数量,
    Figure PCTCN2019109410-appb-100004
    为所述侧行参考信号所占的RE的数量,N oh和β为预设参数,0<β≤1。
  5. 根据权利要求4所述的方法,其特征在于,N oh和β是基于以下中的至少一种确定的:
    所述PSFCH所占的RE的数量、用作GP的RE的数量、用于AGC的RE的数量、所述第二资源内不可用于侧行传输的RE的数量、以及所述第二资源内不可用于侧行传输的时域符号的数量。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,所述侧行参考信号包括以下中的至少一种:
    所述PSSCH对应的解调参考信号DMRS、侧行链路的信道状态指示参考信号CSI-RS以及相位跟踪参考信号PT-RS。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一资源内的RE,包括所述PSCCH及其对应的DMRS所占的RE。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述PSCCH包括第一PSCCH和第二PSCCH,
    其中,所述第一PSCCH用于指示用于资源侦听的信息以及第一信息,所述第一信息用于确定所述第二PSCCH的传输资源,所述第二PSCCH用于指示用于解调所述PSSCH的信息。
  9. 根据权利要求8所述的方法,其特征在于,所述用于资源侦听的信息包括以下中的至少一种:
    所述第二资源的信息、所述PSSCH中承载的业务的优先级信息、所述终端设备的预留资源的信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一信息包括以下中的至少一种:
    所述第二PSCCH的格式;
    所述第二PSCCH的聚合等级;
    所述第二PSCCH占用的频域资源的大小;
    所述第二PSCCH占用的时域符号的数量。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述用于解调所述PSSCH的信息包括以下中的至少一种:
    调制编码方式MCS、传输层数、混合自动重传请求HARQ进程号、新数据指示NDI、以及标识信息;
    其中,所述标识信息包括以下信息中的至少一种:发送端设备的标识、接收端设备的标识、接收端设备的组标识、以及所述PSSCH对应的业务标识。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述终端设备为接收端设备,所述方法还包括:
    所述终端设备在所述第一资源上,接收发送端设备发送的所述PSCCH,所述PSCCH用于确定所述第二资源。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述终端设备为发送端设备,所述方法还包括:
    所述终端设备在所述第一资源上,向接收端设备发送所述PSCCH,所述PSCCH用于确定所述第二资源。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述终端设备根据所述PSSCH对应的RE的数量,确定所述PSSCH的TBS,包括:
    所述终端设备根据所述PSSCH对应的RE的数量,确定信息比特数;
    所述终端设备根据所述信息比特数,确定所述TBS。
  15. 根据权利要求14所述的方法,其特征在于,所述信息比特数N info=N RE×R×Q m×υ,其中,N RE为所述PSSCH对应的RE的数量,R为传输码率,Q m为调制阶数,υ为传输层数。
  16. 根据权利要求14或15所述的方法,其特征在于,所述终端设备根据所述信息比特数,确定所述TBS,包括:
    所述终端设备对所述信息比特数进行量化,得到量化后的信息比特数;
    所述终端设备根据所述量化后的信息比特数,确定所述TBS。
  17. 一种终端设备,其特征在于,所述终端设备包括:
    处理单元,用于根据用于传输物理侧行控制信道PSCCH的第一资源,以及用于传输物理侧行共享信道PSSCH的第二资源,确定所述PSSCH在所述第二资源内占用的资源单元RE的数量,其中,所述第一资源与所述第二资源至少部分重叠;
    所述处理单元还用于,根据所述PSSCH对应的RE的数量,确定所述PSSCH的传输块大小TBS。
  18. 根据权利要求17所述的终端设备,其特征在于,所述PSSCH对应的RE的数量中不包括所述第一资源内的RE的数量。
  19. 根据权利要求18所述的终端设备,其特征在于,所述PSSCH对应的RE的数量中还不包括以下中的至少一种:
    侧行参考信号所占的RE的数量、不可用于侧行传输的RE的数量、物理侧行反馈信道PSFCH所占的RE的数量、用作保护间隔GP的RE的数量、以及用于自动增益控制AGC的RE的数量。
  20. 根据权利要求19所述的终端设备,其特征在于,所述PSSCH对应的RE的数量为:
    Figure PCTCN2019109410-appb-100005
    其中,N PRB为所述PSSCH对应的物理资源块PRB的数量,N symb为所述PSSCH对应的时域符号的数量,
    Figure PCTCN2019109410-appb-100006
    为一 个PRB中包括的子载波的数量,
    Figure PCTCN2019109410-appb-100007
    为所述第二资源内所述PSCCH所占的RE的数量,
    Figure PCTCN2019109410-appb-100008
    为所述侧行参考信号所占的RE的数量,N oh和β为预设参数,0<β≤1。
  21. 根据权利要求20所述的终端设备,其特征在于,N oh和β是基于以下中的至少一种确定的:
    所述PSFCH所占的RE的数量、用作GP的RE的数量、用于AGC的RE的数量、所述第二资源内不可用于侧行传输的RE的数量、以及所述第二资源内不可用于侧行传输的时域符号的数量。
  22. 根据权利要求19至21中任一项所述的终端设备,其特征在于,所述侧行参考信号包括以下中的至少一种:
    所述PSSCH对应的解调参考信号DMRS、侧行链路的信道状态指示参考信号CSI-RS以及相位跟踪参考信号PT-RS。
  23. 根据权利要求17至22中任一项所述的终端设备,其特征在于,所述第一资源内的RE,包括所述PSCCH及其对应的DMRS所占的RE的数量。
  24. 根据权利要求17至23中任一项所述的终端设备,其特征在于,所述PSCCH包括第一PSCCH和第二PSCCH,
    其中,所述第一PSCCH用于指示用于资源侦听的信息以及第一信息,所述第一信息用于确定所述第二PSCCH,所述第二PSCCH用于指示用于解调所述PSSCH的信息。
  25. 根据权利要求24所述的终端设备,其特征在于,所述用于资源侦听的信息包括以下中的至少一种:
    所述第二资源的信息、所述PSSCH中承载的业务的优先级信息、所述终端设备的预留资源的信息。
  26. 根据权利要求24或25所述的终端设备,其特征在于,所述用于传输所述第二PSCCH的资源信息包括以下中的至少一种:
    所述第二PSCCH的格式;
    所述第二PSCCH的聚合等级;
    所述第二PSCCH占用的频域资源的大小;
    所述第二PSCCH占用的时域符号的数量。
  27. 根据权利要求24至26中任一项所述的终端设备,其特征在于,所述用于解调所述PSSCH的信息包括以下中的至少一种:
    调制编码方式MCS、传输层数、混合自动重传请求HARQ进程号、新数据指示NDI、以及标识信息;
    其中,所述标识信息包括以下信息中的至少一种:发送端设备的标识、接收端设备的标识、接收端设备的组标识、以及所述PSSCH对应的业务标识。
  28. 根据权利要求17至27中任一项所述的终端设备,其特征在于,所述终端设备为接收端设备,所述终端设备还包括:
    收发单元,用于在所述第一资源上,接收发送端设备发送的所述PSCCH,所述PSCCH用于确定所述第二资源。
  29. 根据权利要求17至28中任一项所述的终端设备,其特征在于,所述终端设备为发送端设备,所述终端设备还包括:
    收发单元,用于在所述第一资源上,向接收端设备发送所述PSCCH,所述PSCCH用于确定所述第二资源。
  30. 根据权利要求17至29中任一项所述的终端设备,其特征在于,处理单元具体用于:
    根据所述PSSCH对应的RE的数量,确定信息比特数;
    根据所述信息比特数,确定所述TBS。
  31. 根据权利要求30所述的终端设备,其特征在于,所述信息比特数N info=N RE×R×Q m×υ,其中,N RE为所述PSSCH对应的RE的数量,R为传输码率,Q m为调制阶数,υ为传输层数。
  32. 根据权利要求30或31所述的终端设备,其特征在于,所述处理单元具体用于:
    对所述信息比特数进行量化,得到量化后的信息比特数;
    所述终端设备根据所述量化后的信息比特数,确定所述TBS。
  33. 一种终端设备,其特征在于,所述终端设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至16中任一项所述的方法。
  34. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行权利要求1至16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行权利要求1至16中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求1至16中任一项所述的方法。
  37. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求1至16中任一项所述的方法。
PCT/CN2019/109410 2019-09-30 2019-09-30 数据传输的方法和设备 WO2021062613A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
PCT/CN2019/109410 WO2021062613A1 (zh) 2019-09-30 2019-09-30 数据传输的方法和设备
PCT/CN2020/074149 WO2021062972A1 (zh) 2019-09-30 2020-02-01 数据传输的方法和设备
PCT/CN2020/076071 WO2021062978A1 (zh) 2019-09-30 2020-02-20 数据传输的方法和设备
EP20870744.8A EP4013161B1 (en) 2019-09-30 2020-05-15 Data transmission method and device
ES20870744T ES2956442T3 (es) 2019-09-30 2020-05-15 Método y dispositivo de transmisión de datos
BR112022005613A BR112022005613A2 (pt) 2019-09-30 2020-05-15 Método para transmissão de dados e dispositivo terminal
EP23183996.0A EP4246862A3 (en) 2019-09-30 2020-05-15 Data transmission method and device
FIEP20870744.8T FI4013161T3 (fi) 2019-09-30 2020-05-15 Datanlähetysmenetelmä ja laite
KR1020227009354A KR20220071963A (ko) 2019-09-30 2020-05-15 데이터 전송 방법 및 장치
CN202080041499.4A CN113994749A (zh) 2019-09-30 2020-05-15 数据传输的方法和设备
CN202210199464.4A CN114466461B (zh) 2019-09-30 2020-05-15 数据传输的方法和设备
PCT/CN2020/090674 WO2021063002A1 (zh) 2019-09-30 2020-05-15 数据传输的方法和设备
JP2022516452A JP2022549595A (ja) 2019-09-30 2020-05-15 データ送信方法と装置
US17/688,501 US20220190983A1 (en) 2019-09-30 2022-03-07 Method for data transmission and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109410 WO2021062613A1 (zh) 2019-09-30 2019-09-30 数据传输的方法和设备

Publications (1)

Publication Number Publication Date
WO2021062613A1 true WO2021062613A1 (zh) 2021-04-08

Family

ID=75336359

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2019/109410 WO2021062613A1 (zh) 2019-09-30 2019-09-30 数据传输的方法和设备
PCT/CN2020/074149 WO2021062972A1 (zh) 2019-09-30 2020-02-01 数据传输的方法和设备
PCT/CN2020/076071 WO2021062978A1 (zh) 2019-09-30 2020-02-20 数据传输的方法和设备
PCT/CN2020/090674 WO2021063002A1 (zh) 2019-09-30 2020-05-15 数据传输的方法和设备

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/074149 WO2021062972A1 (zh) 2019-09-30 2020-02-01 数据传输的方法和设备
PCT/CN2020/076071 WO2021062978A1 (zh) 2019-09-30 2020-02-20 数据传输的方法和设备
PCT/CN2020/090674 WO2021063002A1 (zh) 2019-09-30 2020-05-15 数据传输的方法和设备

Country Status (9)

Country Link
US (1) US20220190983A1 (zh)
EP (2) EP4013161B1 (zh)
JP (1) JP2022549595A (zh)
KR (1) KR20220071963A (zh)
CN (2) CN113994749A (zh)
BR (1) BR112022005613A2 (zh)
ES (1) ES2956442T3 (zh)
FI (1) FI4013161T3 (zh)
WO (4) WO2021062613A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211194A1 (ko) * 2022-04-28 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2024031620A1 (zh) * 2022-08-12 2024-02-15 Oppo广东移动通信有限公司 一种信息确定方法及装置、通信设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3592070B1 (en) * 2017-03-24 2022-05-04 LG Electronics Inc. Power allocation method of terminal having multiple carriers configured, and terminal using same
KR20220079835A (ko) * 2019-10-09 2022-06-14 가부시키가이샤 엔티티 도코모 단말 및 통신 방법
US11601919B2 (en) * 2019-11-28 2023-03-07 Apple Inc. V2X sidelink channel design
WO2021147112A1 (zh) * 2020-01-23 2021-07-29 华为技术有限公司 通信方法和通信装置
EP4142431A1 (en) * 2020-04-22 2023-03-01 Ntt Docomo, Inc. Terminal and communication method
WO2023028987A1 (zh) * 2021-09-03 2023-03-09 Oppo广东移动通信有限公司 无线通信的方法和终端设备
US20230084636A1 (en) * 2021-09-14 2023-03-16 Qualcomm Incorporated Sidelink reference signal configuration
CN114640637B (zh) * 2022-05-17 2023-02-28 深圳传音控股股份有限公司 处理方法、通信设备及存储介质
CN117320176A (zh) * 2022-06-20 2023-12-29 维沃移动通信有限公司 Sl数据传输方法、第一终端及第二终端
WO2024031540A1 (zh) * 2022-08-11 2024-02-15 Oppo广东移动通信有限公司 通信方法及通信装置
WO2024059984A1 (zh) * 2022-09-19 2024-03-28 Oppo广东移动通信有限公司 传输块大小的确定方法、装置、设备及存储介质
WO2024071844A1 (ko) * 2022-09-26 2024-04-04 한국전자통신연구원 통신 시스템의 단말 간 통신에서 피드백 방법 및 장치
WO2024072191A1 (ko) * 2022-09-30 2024-04-04 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 데이터 송수신 방법, 장치 및 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196159A2 (en) * 2016-05-13 2017-11-16 Samsung Electronics Co., Ltd. Method and device for transmitting data
CN107666681A (zh) * 2016-07-29 2018-02-06 北京三星通信技术研究有限公司 传输数据的方法及设备
WO2018174688A1 (ko) * 2017-03-24 2018-09-27 엘지전자 주식회사 복수의 반송파들이 설정된 단말의 전력 할당 방법 및 상기 방법을 이용하는 단말
US20190053267A1 (en) * 2017-08-14 2019-02-14 Qualcomm Incorporated Methods and apparatus for control channel scheduling in wireless communications

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160095114A1 (en) * 2014-09-26 2016-03-31 Electronics And Telecommunications Research Institute Method and apparatus for managing allocation and usage of radio resource, method and apparatus for transmitting data through unlicensed band channel, and method and apparatus for managing access of radio resource
US10362596B2 (en) * 2015-04-10 2019-07-23 Lg Electronics Inc. Method and wireless device for receiving PDSCH
CN107277922A (zh) * 2016-04-01 2017-10-20 北京三星通信技术研究有限公司 一种v2x通信中控制信道和数据信道发送方法和设备
WO2018004323A1 (ko) * 2016-07-01 2018-01-04 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
US11146981B2 (en) * 2016-08-24 2021-10-12 Lg Electronics Inc. Method by which V2X terminal performs V2X communication in wireless communication system and terminal using method
WO2018135905A1 (en) * 2017-01-20 2018-07-26 Samsung Electronics Co., Ltd. A method and device for vehicle to everything (v2x) communications and a transmitting and receiving method and equipment in v2x communication
EP3471304B1 (en) * 2017-03-23 2021-11-17 LG Electronics Inc. Method for determining transport block size and wireless device
CN108632782B (zh) * 2017-03-24 2023-11-21 北京三星通信技术研究有限公司 一种v2x通信中的发送与接收方法和设备
CN110100496B (zh) * 2017-03-31 2022-09-02 Lg电子株式会社 在无线通信系统中由终端发送信号以用于v2x通信的方法以及使用该方法的设备
US10939321B2 (en) * 2017-09-11 2021-03-02 Apple Inc. Power boosting and transport block size (TBS) design in a new radio (NR) system
CN110035445B (zh) * 2018-01-12 2022-04-19 中兴通讯股份有限公司 数据传输管理方法及装置、终端、基站及存储介质
CN110166168B (zh) * 2018-02-14 2021-12-03 华为技术有限公司 确定传输块大小的方法、装置以及系统
US11291030B2 (en) * 2018-02-16 2022-03-29 Intel Corporation Sidelink control information for vehicle-to-vehicle communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196159A2 (en) * 2016-05-13 2017-11-16 Samsung Electronics Co., Ltd. Method and device for transmitting data
CN107666681A (zh) * 2016-07-29 2018-02-06 北京三星通信技术研究有限公司 传输数据的方法及设备
WO2018174688A1 (ko) * 2017-03-24 2018-09-27 엘지전자 주식회사 복수의 반송파들이 설정된 단말의 전력 할당 방법 및 상기 방법을 이용하는 단말
US20190053267A1 (en) * 2017-08-14 2019-02-14 Qualcomm Incorporated Methods and apparatus for control channel scheduling in wireless communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on physical layer structure for NR sidelink", 3GPP TSG RAN WG1 #97 R1-1907012, 17 May 2019 (2019-05-17), XP051709045 *
VIVO: "Physical layer structure for NR sidelink", 3GPP TSG RAN WG1 #96BIS MEETING R1-1904072, 12 April 2019 (2019-04-12), XP051707095 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211194A1 (ko) * 2022-04-28 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2024031620A1 (zh) * 2022-08-12 2024-02-15 Oppo广东移动通信有限公司 一种信息确定方法及装置、通信设备

Also Published As

Publication number Publication date
BR112022005613A2 (pt) 2022-07-19
EP4013161A4 (en) 2022-10-12
CN113994749A (zh) 2022-01-28
JP2022549595A (ja) 2022-11-28
CN114466461B (zh) 2023-07-18
WO2021063002A1 (zh) 2021-04-08
FI4013161T3 (fi) 2023-09-21
EP4246862A3 (en) 2023-11-29
EP4013161B1 (en) 2023-08-23
US20220190983A1 (en) 2022-06-16
WO2021062978A1 (zh) 2021-04-08
EP4246862A2 (en) 2023-09-20
KR20220071963A (ko) 2022-05-31
CN114466461A (zh) 2022-05-10
ES2956442T3 (es) 2023-12-21
EP4013161A1 (en) 2022-06-15
WO2021062972A1 (zh) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2021062972A1 (zh) 数据传输的方法和设备
WO2020143059A1 (zh) 侧行通信的方法和终端设备
WO2020143065A1 (zh) 侧行通信的方法、终端设备和网络设备
TWI829760B (zh) 用於側行鏈路的通信方法和設備
CN116390228A (zh) 确定传输资源的方法和装置
WO2019091143A1 (zh) D2d通信中资源配置的方法、终端设备和网络设备
WO2020025042A1 (zh) 资源配置的方法和终端设备
WO2020200014A1 (zh) 通信方法及装置
CN111742598A (zh) 通信方法和设备
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
WO2020191636A1 (zh) 通信方法、终端设备和网络设备
US20220329368A1 (en) Wireless communication method and terminal device
CN112187401B (zh) 多时间单元传输方法及相关装置
CN115136523A (zh) 反馈资源的确定方法和装置
WO2020113424A1 (zh) 确定传输块大小tbs的方法和设备
US20210258961A1 (en) Data transmission method and device
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
CN115004828A (zh) 通信方法和通信装置
TW202015470A (zh) 無線通訊方法和通信設備
RU2801816C1 (ru) Способ и устройство для передачи данных
CN113273274A (zh) 无线通信的方法和设备
WO2023131067A1 (zh) 一种频域资源配置方法及装置、通信设备
WO2022027426A1 (zh) 资源上报和资源选择方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948194

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19948194

Country of ref document: EP

Kind code of ref document: A1