WO2019015445A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2019015445A1
WO2019015445A1 PCT/CN2018/092692 CN2018092692W WO2019015445A1 WO 2019015445 A1 WO2019015445 A1 WO 2019015445A1 CN 2018092692 W CN2018092692 W CN 2018092692W WO 2019015445 A1 WO2019015445 A1 WO 2019015445A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
subband
subbands
indication information
discrete
Prior art date
Application number
PCT/CN2018/092692
Other languages
English (en)
French (fr)
Inventor
林铌忠
庞伶俐
张弦
张长
王新征
马新友
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18835649.7A priority Critical patent/EP3648518A4/en
Publication of WO2019015445A1 publication Critical patent/WO2019015445A1/zh
Priority to US16/744,656 priority patent/US11490387B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • Embodiments of the present application provide a communication method and apparatus for implementing discrete sub-band aggregation in a discrete narrowband communication system to support high-rate data transmission using a discrete narrowband spectrum.
  • a communication method in which a network device sends, to a terminal, first indication information indicating a frequency point of all discrete sub-bands of a serving cell currently located by the terminal, and the terminal receives the first information sent by the network device.
  • An indication information may be used to determine frequency points of all discrete sub-bands of the cell according to the first indication information.
  • the network device sends, to the terminal, second indication information, which is used to indicate that the terminal can be used in all the discrete sub-bands of the cell, and the terminal receives the second indication information that is sent by the network device, and may be determined according to the second indication information.
  • the network device may indicate the frequency of all discrete sub-bands of the serving cell currently located by the terminal by carrying one of the following information in the first indication information:
  • the first indication information sent by the network device to the first terminal includes a frequency point of a starting subband of the current serving cell of the terminal, and whether each subband in the frequency band in which the entire discrete subband of the current serving cell is located belongs to the The bit map of the serving cell and the frequency spacing of each sub-band in the frequency band in which all discrete sub-bands of the current serving cell are located.
  • the initial subband of the current serving cell of the terminal may be the first discrete subband in all the discrete subbands of the cell, or may be the first subband in the frequency band where all the discrete subbands of the cell are located.
  • the frequency point spacing is the absolute value of the difference between the center frequencies of the two sub-bands.
  • Manner 2 The fixed frequency interval is set in a predefined manner, and the first indication information sent by the network device to the first terminal includes the frequency point of the starting subband of the current serving cell of the terminal, and all the discretes of the current serving cell are characterized. Whether each subband in the frequency band in which the subband is located belongs to the bit bitmap of the cell.
  • the first indication information sent by the network device to the first terminal includes a frequency point of the initial subband involved in the foregoing, a bit bitmap indicating whether each subband in the frequency band belongs to the cell, or a start subband
  • the frequency point, the bit map of the sub-bands in the frequency band, and the frequency interval of each sub-band in the frequency band may also include the number of sub-bands of all discrete sub-bands of the current serving cell of the terminal, so that the network device determines After the number of all discrete sub-bands belonging to the current serving cell in the frequency band has been completed, the indication of the remaining sub-bands in the frequency band that are not in the current serving cell of the terminal may be omitted.
  • the network device includes at least one sub-band cluster indication information in the first indication information that is sent to the first terminal, where the sub-band cluster indication information includes the start sub-band information of the sub-band cluster, and each sub-band in the sub-band cluster Whether the band belongs to the bit map of the cell and the frequency interval of each sub-band within the sub-band cluster.
  • the manner indicated by the sub-band cluster indication information may be used to further save the M in the bit bitmap.
  • the indication overhead of consecutive M subbands that do not belong to the current serving cell may be used to further save the M in the bit bitmap.
  • the terminal may represent all the discrete sub-bands of the current serving cell according to the frequency of the starting sub-band of the current serving cell of the terminal. Whether the sub-bands in the frequency band belong to the bit map of the cell and the frequency interval of each sub-band in the frequency band in which all the discrete sub-bands of the current serving cell are located.
  • the network device may indicate a subband that the terminal can use in all discrete subbands of the current serving cell by carrying one of the following information in the second indication information:
  • the second indication information sent by the network device to the terminal may include the number of the initial subband that the terminal can use in all discrete subbands of the current serving cell, and the number of subbands that the terminal can use.
  • the network device may allocate a set number of consecutive logical sub-bands to all the discrete sub-bands of the current serving cell of the terminal as discrete sub-bands that the terminal can use. Wherein, if all the discrete sub-bands of the terminal serving cell are sequentially numbered, the continuous logical sub-band refers to a set number of sub-bands consecutively numbered in all discrete sub-bands of the cell.
  • the second indication information sent by the network device to the terminal includes a bit bitmap that indicates that each of the discrete subbands of the current serving cell of the terminal can be used by the terminal.
  • the terminal may send sub-band aggregation specification capability information to the network device, where the sub-band aggregation specification capability information is used to indicate the number of sub-bands supported by the terminal.
  • the network device receives the sub-band aggregation specification capability information sent by the terminal, and allocates available discrete sub-bands to the terminal according to the sub-band aggregation specification capability supported by the terminal, and then indicates to the terminal that it can be used in all discrete sub-bands of the current serving cell. Subband information.
  • the network device may further allocate an available discrete sub-band to the terminal according to at least one of a load condition of the current serving cell of the terminal and a current service requirement of the terminal, and send the second indication information to the terminal. To indicate the discrete subbands that the terminal can use in all discrete subbands of the current serving cell.
  • the network device may not send the second indication information involved to the terminal, and the terminal does not receive the network device.
  • all the discrete sub-bands of the current serving cell of the terminal may be used as discrete sub-bands that the terminal can use.
  • the terminal After the network device indicates the subband information that the terminal can use in all the discrete subbands of the current serving cell in the foregoing manner, the terminal can determine the discrete subbands that can be used, and perform data transmission in the discrete subbands that can be used.
  • the communication method of discrete sub-band aggregation is used for communication.
  • the terminal may select one sub-band to receive PDCCH information in the sub-bands that can be used by the terminal determined according to the second indication information, and determine Data transfer is performed in the subbands used.
  • the network device can select a set number of sub-bands in the sub-bands that the terminal can use, as a sub-band that the PDSCH can use, and make the PDSCH
  • the terminal may also be indicated by a communication method of discrete sub-band aggregation, wherein the sub-bands that the PDSCH can use may be indicated by the PDCCH.
  • the terminal may adopt a frequency hopping mechanism, and always perform data transmission and reception on the corresponding logical sub-band numbered sub-band, and between the logical sub-band and the actual physical sub-band number.
  • the frame number or the slot number is cyclically shifted to distribute the data transmission over multiple sub-bands on the frequency to obtain a frequency diversity gain to mitigate the deep fading effect.
  • the network device may send the first indication information to the terminal by using system information.
  • the terminal may receive the first indication information sent by the network device by using system information sent by the network device.
  • the network device may send the second indication information by using dedicated signaling after the RRC connection is established.
  • the terminal may receive the second indication information sent by the network device by using dedicated signaling sent by the network device.
  • the network device may further send third indication information to the terminal, where the third indication information is used to indicate at least one anchor subband information.
  • the anchor subband information may include a frequency point of the anchor subband, a number of the anchor subband in all discrete subbands of the current serving cell of the terminal, and a frequency point of the anchor subband relative to a starting subband of the current serving cell of the terminal. At least one of the intervals of the frequency points.
  • the terminal receives the third indication information sent by the network device, determines at least one anchor sub-band according to the third indication information, and selects an optimal anchor sub-band in the determined at least one anchor sub-band to obtain a synchronization signal, an MIB, an SIB, and the like.
  • the initial access information is used to enable the terminal to select an optimal anchor sub-band among the plurality of anchor sub-bands to obtain initial access information to alleviate the deep fading problem in the discrete narrowband communication system.
  • the network device may send the third indication information by using system information.
  • the terminal receives the third indication information through the system information.
  • the network device may further send fourth indication information to the terminal, where the fourth indication information is used to indicate that the terminal receives the subband of the system message.
  • the fourth indication information indicates that the terminal receives the subband of the system message by carrying one of the following information: the fourth indication information includes a frequency point of the start subband of the terminal receiving system message, and a bit indicating whether the terminal can receive the system information.
  • the bitmap or the fourth indication information includes a frequency point of each sub-band that the terminal can receive the system information, wherein the frequency point of each sub-band is characterized by the frequency interval of the sub-band relative to the anchor sub-band.
  • the terminal may determine a subband capable of receiving system information. If the terminal supports the subband aggregation capability, the system may receive the system message by using a discrete subband aggregation manner on the subband capable of receiving the system information. Reduce system message acquisition delay to a certain extent.
  • the network device may send the fourth indication information by using an RRC message, and the terminal receives the fourth indication information by using the RRC message.
  • the network device may also send the fourth indication information by using the layer 1 message, and the terminal receives the fourth indication information by using the layer 1 message.
  • a communication device in a second aspect, is provided, the communication device being applicable to a network device, the communication device applied to the network device comprising a unit or means for performing the steps of performing the network device involved in the first aspect above,
  • the unit or means may be implemented by hardware or by corresponding software implementation by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the communication device applied to the network device comprises a processing unit and a transmitting unit, and may further comprise a receiving unit, wherein the functions of the receiving unit, the processing unit and the sending unit may correspond to the method steps, and Give a brief description.
  • a communication device is provided, the communication device being applicable to a terminal, the communication device applied to the terminal comprising a unit or means for performing the steps performed by the terminal involved in the first aspect, the unit or The means can be implemented by hardware or by corresponding software implementation by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the communication device applied to the terminal comprises a processing unit and a receiving unit, and may further comprise a transmitting unit, wherein the functions of the processing unit, the receiving unit and the transmitting unit may correspond to the method steps, and the method does not Narration.
  • a network device comprising a processor, a transceiver, and a memory.
  • the memory is for coupling to a processor that holds program instructions and data necessary for the network device.
  • the processor, the transceiver and the memory are connected, the memory is used for storing instructions, the processor is configured to execute the instructions stored in the memory, and the transceiver is controlled to receive and transmit signals, and the first aspect and the first aspect are completed.
  • a terminal comprising a processor and a receiver, and a transmitter, further comprising a memory, the memory being coupled to the processor, which stores necessary program instructions and data of the terminal .
  • the processor executes instructions stored in the memory to perform the functions performed by the terminal in the first aspect described above and in any of the possible designs of the first aspect described above.
  • the terminal may also include an antenna.
  • a communication system comprising the network device of the fourth aspect, and one or more terminals related to the fifth aspect.
  • a computer storage medium in a seventh aspect, storing computer instructions, and when the instructions are run on a computer, the first aspect and the terminal in any possible design of the first aspect described above may be completed Or any method involved in the network device.
  • a computer program product comprising a computer program for performing the terminal or network device involved in completing the first aspect and any possible design of the first aspect described above Any method.
  • the network device sends, to the terminal, first indication information for indicating frequency points of all discrete sub-bands in the cell, and second indication information for indicating that the terminal can use the sub-bands in all discrete sub-bands, so that The terminal can determine the available sub-bands, thereby performing data transmission on the available sub-bands, and implementing aggregation of discrete sub-bands to support high-rate data transmission.
  • FIG. 1 is a system architecture diagram of an application according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of all discrete sub-bands of a cell to which the embodiment of the present application is applicable, and discrete sub-bands that can be used by the terminal;
  • FIG. 3 is a flowchart of implementing a communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a frequency hopping data transmission process according to an embodiment of the present application.
  • FIG. 5 is a flowchart of another implementation method of a communication method according to an embodiment of the present application.
  • FIG. 6 is a flowchart of still another implementation of a communication method according to an embodiment of the present application.
  • FIG. 7 is a flowchart of still another implementation of a communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another communication device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), transmission point (transmission and receiver point, TRP or transmission point, TP And so on, is a device that provides voice and/or data connectivity to users, for example, handheld devices with wireless connectivity, in-vehicle devices, and the like.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality. (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • a network device which may be referred to as a radio access network (RAN) device (or node), is a device that connects a terminal to a wireless network, and may also be referred to as a base station.
  • RAN nodes are: a continuation of evolved Node B (gNB), a transmission reception point (TRP), an evolved Node B (eNB), and a radio network controller (radio network controller, RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB) , a base band unit (BBU), or a wireless fidelity (Wifi) access point (AP).
  • gNB evolved Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B
  • the RAN may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure separates the protocol layer of the eNB in the long term evolution (LTE) system, and the functions of some protocol layers are centrally controlled in the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU by the CU. Centrally control the DU.
  • LTE long term evolution
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • Interaction refers to the process in which the two parties exchange information with each other.
  • the information transmitted here may be the same or different.
  • the two parties are the base station 1 and the base station 2, and the base station 1 may request information from the base station 2, and the base station 2 provides the base station 1 with the information requested by the base station 1.
  • the base station 1 and the base station 2 may request information from each other, and the information requested here may be the same or different.
  • sub-band can also be called sub-carrier.
  • Subbands that are discontinuous in frequency are called discrete subbands.
  • one cell contains a plurality of discrete subbands, and each discrete subband has a fixed subband bandwidth.
  • Anchor sub-band refers to a sub-mainstream used to transmit primary synchronization (PSS)/secondary synchronization (SSS) and physical broadcasting channel (PBCH). band. It can be understood that the signal transmitted by the anchor subband is not limited to the PSS, SSS and PBCH mentioned above, and may also include other signals.
  • the starting sub-band refers to the first sub-band.
  • the first sub-band is the sub-band with the smallest intra-frequency point in a certain frequency band, or may be a sub-band at a predefined fixed frequency point.
  • the starting subband of the cell may be the first subband of all discrete subbands of the cell, or may be a subband at a predefined fixed frequency.
  • the starting subband that the terminal can use can be the first subband of the discrete subbands that can be used.
  • the frequency of the subband which can also be called the center frequency of the subband.
  • Band corresponding to a frequency range, if the frequency of the sub-band falls within the frequency range, it can be called the frequency band in which the sub-band is located.
  • the communication method provided by the embodiment of the present application can be applied to a discrete narrowband communication system.
  • a terminal accesses a network through a network device such as a base station, and the network device and the core network complete data backhaul and forward transmission, as shown in FIG.
  • the terminal communicates with the network device through an air interface.
  • the data is usually transmitted through a discrete sub-band.
  • the communication mode in which the terminal transmits data through a discrete sub-band is called a single sub-band. Digital transmission.
  • the single sub-band communication mode is described by using FIG. 2 as an example.
  • the network device may allocate a set number of discrete sub-bands in the 100 discrete sub-bands of the current serving cell of the terminal as discrete sub-bands available to the terminal for data transmission between the terminal and the network device.
  • a terminal in a discrete narrowband communication system, usually performs single subband transmission through a single discrete subband allocated by a network device, and the bandwidth of the single discrete subband is limited, so the rate of data transmission that can be supported is limited, and cannot be Very good support for high rate data transmission.
  • the embodiment of the present application provides a communication method, in which a terminal can perform data transmission by using a set number of discrete sub-bands allocated by a network device to implement aggregation of discrete sub-bands to support high rate. data transmission.
  • FIG. 3 is a flowchart of implementing a communication method according to an embodiment of the present application. Referring to FIG. 3, the method includes:
  • the network device sends, to the terminal, first indication information, where the first indication information is used to indicate a frequency point of all discrete subbands of the serving cell where the terminal is currently located.
  • the terminal may adopt a single sub-band number transmission communication method, obtain a synchronization signal through the anchor sub-band, and acquire a master information block (MIB) and a system information block (System Information) carried in the PBCH. Block, SIB), which in turn allows the network device to send system information to the terminal.
  • MIB master information block
  • SIB system information block
  • the network device may send the first indication information to the terminal by using system information.
  • the terminal receives the first indication information sent by the network device, and according to the first indication information, determines a frequency point of all discrete sub-bands of the serving cell where the terminal is currently located.
  • the terminal can obtain the first indication information by using system information sent by the network device.
  • the network device sends second indication information to the terminal, where the second indication information is used to indicate a subband that the terminal can use in all discrete subbands of the current serving cell.
  • the network device may allocate available discrete sub-bands to the terminal in all discrete sub-bands of the current serving cell of the terminal, and send second indication information to the terminal to indicate all discrete sub-bands of the current serving cell. Discrete subbands that can be used.
  • the network device may allocate an available discrete sub-band to the terminal according to at least one of a load condition of the current serving cell of the terminal and a current service requirement of the terminal.
  • the terminal and the network device may use a single sub-band communication manner to access a random access channel (RACH), and establish a radio resource control (RRC) connection.
  • RACH random access channel
  • RRC radio resource control
  • the terminal may send the sub-band aggregation specification capability information to the network device in the RRC connection establishment process, where the sub-band aggregation specification capability information is used to indicate the number of sub-bands supported by the terminal.
  • the network device receives the subband aggregation specification capability information sent by the terminal, and allocates available discrete subbands to the terminal according to the subband aggregation specification capability supported by the terminal.
  • the network device may send the second indication information by using dedicated signaling after the RRC connection is established.
  • the second indication information may be sent to the terminal by using downlink control information (DCI) sent to the terminal.
  • DCI downlink control information
  • the network device may also send the second indication information by using dedicated signaling in the RRC connection establishment process, or after the RRC connection is established, for example, the second indication may be sent to the terminal by using an RRC connection setup message or an RRC connection reconfiguration message sent to the terminal. information.
  • the terminal receives the second indication information sent by the network device, and determines, according to the second indication information, a subband that the terminal can use.
  • the terminal may receive the second indication information sent by the network device by using the dedicated signaling sent by the network device.
  • the network device sends, to the terminal, first indication information for indicating frequency points of all discrete sub-bands in the cell, and second indication information for indicating that the terminal can use the sub-bands in all discrete sub-bands, so that The terminal can determine the available sub-bands, thereby performing data transmission on the available sub-bands, and implementing aggregation of discrete sub-bands to support high-rate data transmission.
  • S105 The terminal performs data transmission on a plurality of discrete sub-bands that can be used.
  • the communication mode in which the terminal transmits data through multiple discrete sub-bands is called a discrete sub-band aggregation communication mode.
  • the first indication information may include a frequency point of a starting subband of a current serving cell of the terminal, and a bit character indicating whether each subband in a frequency band in which all discrete subbands of the current serving cell belong to the cell
  • the terminal may determine the frequency points of all discrete sub-bands of the current serving cell of the terminal according to the information included in the first indication information.
  • the initial sub-band of the current serving cell of the terminal in the embodiment of the present application may be the first discrete sub-band in all discrete sub-bands of the cell, or may be the first sub-band in the frequency band of all discrete sub-bands of the cell.
  • the first sub-band in the frequency band including 200 sub-bands shown in FIG. 2 can be used as the starting sub-band, and the frequency of the starting sub-band can be understood as the first absolute radio frequency (absolute radio). Frequency), for example, the frequency of the starting sub-band can be denoted as f1 in the embodiment of the present application.
  • a bit indicates whether a subband belongs to a discrete subband of a cell. For example, a bit value of 1 indicates that the subband belongs to a discrete subband of the cell, and the bit value is 0. Indicates that the subband does not belong to the discrete subband of the cell. Of course, the value may be reversed. For example, if the bit value is 0, the subband belongs to the discrete subband of the cell, and the bit value of 1 indicates that the subband does not belong to the cell. Discrete subbands.
  • the sub-bands in the frequency band in which all the discrete sub-bands of the current serving cell are located are respectively represented by the bits, and the discrete sub-bands belonging to the current serving cell of the terminal in each sub-band of the current sub-band of the current serving cell may be represented. band.
  • all the discrete sub-bands of the current serving cell in FIG. 2 include 200 sub-bands, 200 bits can be used to indicate whether each sub-band belongs to a discrete sub-band of the current serving cell of the terminal.
  • bitmap of the discrete subband of the current serving cell may be represented as 101100101...1011001011 (a bitmap of 200 bits), and a total of 100 bits of 1 are bits, and the subbands corresponding to the 100 bits are 1 for the current serving cell. All discrete sub-bands.
  • the first indication information may further include a frequency interval of each sub-band in a frequency band in which all discrete sub-bands of the current serving cell of the terminal are located.
  • the frequency point interval refers to the absolute value of the difference between the center frequencies of the two sub-bands, and may be, for example, 25 kHz.
  • the first indication information may include a 32-bit bit for indicating the frequency of the initial sub-band, and is used to indicate the frequency band. Whether each sub-band belongs to 200 bits of the cell, and a bit for indicating 25 kHz.
  • the frequency interval of each sub-band in the frequency band in which all the discrete sub-bands of the current serving cell of the terminal are located may be included in the first indication information sent by the network device to the terminal, and the display is performed. The method is sent to the terminal.
  • the terminal may also determine the frequency interval in an implicit manner. For example, a fixed frequency interval may be set in a predefined manner, without being sent by the network device to the terminal.
  • the default value of the frequency point interval may be preset for the terminal in a predefined manner, for example, the default value is set to 25 kHz, and the terminal acquires the frequency point including the starting sub-band of the current serving cell of the terminal from the network device, and represents the current serving cell. After each subband in the frequency band in which all the discrete subbands belong to the cell's bitmap, the frequency points of all the discrete subbands belonging to the current serving cell can be determined.
  • the network device sends the first indication information related to the terminal to the terminal, and after receiving the first indication information, the terminal may determine, according to the information included in the first indication information, frequency points of all discrete sub-bands of the current serving cell of the terminal, for example, The frequency points of all discrete sub-bands of the current serving cell of the terminal are determined in the manner of Table 1.
  • the first indication information sent by the network device to the terminal includes, in addition to the frequency point of the initial subband involved in the foregoing, whether the subbands in the frequency band belong to a bitmap of the cell, or includes a starter.
  • the frequency of the band, the frequency band interval of each sub-band in the frequency band, and the frequency interval of each sub-band in the frequency band may also include the number of sub-bands of all discrete sub-bands of the current serving cell of the terminal.
  • the first indication information includes the number of the subbands of all the discrete subbands of the current serving cell of the terminal, and the network device may determine that the number of all the discrete subbands in the frequency band that belong to the current serving cell has been completed. The indication of the remaining subbands in the frequency band that are not in the current serving cell of the terminal is omitted.
  • the frequency band of the 5M bandwidth corresponds to 200 subbands with a frequency interval of 25 kHz, and the number of subbands including all discrete subbands of the current serving cell of the terminal in the 200 subbands is 100, and if the network device is in 200 subbands, After the indication of the 100 subbands of all the discrete subbands belonging to the current serving cell of the terminal is completed in the set subband position, the indication that the bit in the uninformed bit in the bitmap is 0 is omitted, and the indication overhead is saved.
  • M is a positive integer
  • Each subband of the M subbands in the frequency band in which all the discrete subbands of the current serving cell are located form two different subband clusters, and the continuous M subbands between the subband clusters do not belong to the cell.
  • the sub-bands in the frequency band of all the discrete sub-bands of the current serving cell are formed into at least one sub-band cluster, where the first indication information includes at least one sub-band cluster indication information, where the sub-band cluster indication information includes The initial subband information of the subband cluster, whether each subband in the subband cluster belongs to the bitmap of the cell and the frequency spacing of each subband in the subband cluster.
  • the frequency fading characteristics of each sub-band in the sub-band cluster are approximated.
  • the manner indicated by the sub-band cluster indication information may be used to further save the M in the bitmap.
  • the indication overhead of consecutive M subbands belonging to the current serving cell For example, if the cluster indication information is not used, the required indication information is: f1, 101100101...1011001011 (a bitmap of 200 bits), and the indication information required in the case of using the cluster indication information is: f1, 101100101; f3, 1011001011.
  • the embodiment of the present application describes a specific implementation process of the second indication information to implement a subband that the terminal can use in all discrete subbands of the current serving cell.
  • the second indication information may include a number of the initial subbands that the terminal can use in all discrete subbands of the current serving cell, and a number of subbands that the terminal can use.
  • the network device may allocate a set number of consecutive logical subbands to all the discrete subbands of the current serving cell of the terminal as discrete subbands that the terminal can use.
  • the continuous logical sub-band refers to a set number of sub-bands consecutively numbered in all discrete sub-bands of the cell.
  • the second indication information includes the number of the start subband that the terminal can use in all the discrete subbands of the current serving cell, and the number of subbands that the terminal can use, and the terminal can determine, according to the second indication information, the discrete that the terminal can use.
  • Sub-band as shown in Table 2, the starting sub-band of the terminal is numbered 8 in all discrete sub-bands of the current serving cell, and the number of sub-bands that the terminal can use is N, where N is a positive integer, then the terminal can The subband with the subband number N used corresponds to the subband with the number 8+N-1 of the discrete subband of the current serving cell.
  • the network device allocates a continuous logical sub-band to the terminal, and the second indication information that is sent by the network device to the terminal includes the number of the start sub-band that the terminal can use in all discrete sub-bands of the current serving cell. Determining how many bits are needed to indicate according to the number of all discrete sub-bands of the current serving cell, for example, the number of all discrete sub-bands of the current serving cell is 100, and the starting sub-band that the terminal can use can pass 7 bits. To indicate.
  • the second indication information includes a bitmap that indicates that each of the discrete subbands of the current serving cell of the terminal can be used by the terminal.
  • each of the discrete subbands in the current serving cell of the terminal may be allocated one bit, and the value of the bit indicates the corresponding subband in all the discrete subbands of the current serving cell of the terminal.
  • Can be used by the terminal for example, a bit value of 1 indicates that the terminal can use the sub-band, and a value of 0 indicates that the terminal cannot use the sub-band, and of course, the value may be reversed, for example, the bit is taken.
  • a value of 0 indicates that the terminal can use the subband
  • a value of 1 indicates that the terminal cannot use the subband. For example, if the number of all discrete sub-bands of the current serving cell shown in FIG.
  • the bitmap corresponding to whether each sub-band can be used by the terminal in all the discrete sub-bands of the current serving cell of the terminal can be represented as 0011110.. (100-bit bitmap), where the bit of the 100-bit bitmap is 1 The corresponding sub-band is a sub-band that the terminal can use.
  • the network device may not send the second indication information involved to the terminal, and the terminal does not receive In the case of the second indication information sent by the network device, all the discrete sub-bands of the current serving cell of the terminal may be used as discrete sub-bands that the terminal can use.
  • the terminal may perform communication by using a discrete sub-band aggregation communication manner.
  • one sub-band may be selected from the sub-bands that can be used by the terminal determined according to the second indication information to receive the physical downlink control channel (Physical Downlink). Control Channel, PDCCH) information, and data transmission in the determined subbands that can be used.
  • PDCCH Physical Downlink control channel
  • the terminal may receive the PDCCH on the sub-band (resident sub-band) that previously received the PDCCH.
  • the camped subband may be an anchor subband of the cell, or may be a subband of the terminal listening for the paging message.
  • a set number of sub-bands may be selected in a sub-band that can be used by the terminal, and the sub-band that can be used as a physical downlink shared channel (PDSCH) is used, so that the PDSCH can also be used.
  • the communication mode using the discrete sub-band aggregation is indicated to the terminal, wherein the sub-bands that the PDSCH can use can be indicated by the PDCCH.
  • the specific implementation process of the sub-bands that the network device can use to indicate that the PDSCH can be used in the embodiment of the present application is similar to the implementation process of the discrete sub-bands that can be used by the terminal by using the second indication information, except that the indication terminal can
  • the discrete sub-bands used are configured based on all the discrete sub-bands of the current serving cell of the terminal, and the sub-bands that can be used by the PDSCH are based on all the discrete sub-band configurations that the terminal can use. Therefore, the details are not described herein again.
  • the initial sub-band can be in a predefined manner to omit the indication of the starting sub-band, and the overhead of signaling is saved.
  • the default PDSCH start subband is the starting subband of the discrete subband that the terminal can use, and only the number of subbands that the PDSCH can use is indicated.
  • the frequency hopping mechanism may be adopted, that is, the terminal always performs data transmission and reception on the sub-band of the corresponding logical sub-band number, and logic
  • the subband and the actual physical subband number are cyclically shifted by the subframe number or the slot number. It is therefore possible to distribute the data transmission over multiple sub-bands on the frequency to obtain a frequency diversity gain.
  • the physical sub-band number refers to the sequence number of all discrete sub-bands of the current serving cell of the terminal, and the mapping relationship between the logical sub-band and the physical sub-band can be predefined.
  • the network device always indicates the logical sub-band of the terminal, and the actual data is transmitted and received. Corresponds to the physical subband. For example, in FIG. 4, the terminal always performs data transmission and reception on logical subbands with logical subband numbers 0, 1, 2, and 3, and the physical subband corresponding to slot 0 is subbands 0, 4, 8, and 12.
  • the physical sub-bands corresponding to slot 1 are sub-bands 2, 6, 10, 14.
  • the network device sends, to the terminal, first indication information for indicating frequency points of all discrete sub-bands in the cell, and second indication information for indicating that the terminal can use the sub-bands in all discrete sub-bands, so that The terminal can determine the available sub-bands, thereby performing data transmission on the available sub-bands, and implementing aggregation of discrete sub-bands to support high-rate data transmission.
  • FIG. 5 is a schematic diagram of a possible communication process for performing communication by using the foregoing communication method according to an embodiment of the present application.
  • the terminal uses a single sub-band digital transmission communication method to acquire a synchronization signal, a PBCH, and system information, and performs RACH access and establishment of an RRC connection.
  • the network device may send the first indication information to the terminal by using the system information to indicate the frequency of all the discrete sub-bands of the current serving cell of the terminal, and the terminal obtains the first indication information by using the system information. And determining the frequency points of all discrete sub-bands of the current serving cell of the terminal.
  • the terminal may obtain the second indication information by using the dedicated signaling sent by the network device, and determine the subband that the terminal can use in all the discrete subbands of the current serving cell of the terminal.
  • the data can be transmitted by using a discrete subband aggregation communication mode on the available subbands.
  • the network equipment can indicate the subband information that the PDSCH can use through the PDCCH.
  • the frequency hopping mechanism can also be used for data transmission.
  • the manner of indicating all the discrete sub-bands of the cell the manner of indicating the sub-bands that the terminal can use, and the manner of indicating the sub-bands that can be used by the PDSCH, refer to the related description in the foregoing embodiments, and details are not described herein.
  • the network device may further send, to the terminal, third indication information, where the third indication information is used to indicate at least one anchor subband information, so that the terminal can select an anchor point with the best performance to obtain an initial Access information, the specific implementation process is shown in Figure 6.
  • the network device sends third indication information to the terminal, where the third indication information is used to indicate at least one anchor subband information.
  • the network device may configure multiple anchor sub-bands for the terminal, so that the terminal can select an optimal anchor sub-band among the multiple anchor sub-bands to obtain initial access information, so as to alleviate the discrete narrow-band communication system.
  • the problem of deep decay in the middle may be configured to reduce the discrete narrow-band communication system.
  • the design of the cluster bandwidth may be such that the frequency fading of each sub-band in a sub-band cluster is the same or similar.
  • the network device may configure an anchor subband in each subband cluster for the terminal, and the information transmitted on each anchor subband may be the same or different.
  • the network device may send the third indication information used to indicate the anchor sub-band information to the terminal, so that the terminal may determine multiple anchor sub-bands.
  • the anchor subband information may include a frequency point of the anchor subband, a number of the anchor subband in all discrete subbands of the current serving cell of the terminal, and a frequency point of the anchor subband relative to a starting subband of the current serving cell of the terminal. At least one of the intervals of the frequency points.
  • the network device in the embodiment of the present application may send the third indication information to the terminal by using system information.
  • the terminal receives the third indication information sent by the network device, determines at least one anchor sub-band according to the third indication information, and selects an optimal anchor sub-band in the determined at least one anchor sub-band to obtain a synchronization signal, an MIB, and Initial access information such as SIB.
  • the terminal may obtain the third indication information sent by the network device by using the system information.
  • the network device may indicate the frequency point of the anchor sub-band to the terminal.
  • the network device indicates the frequency of the anchor sub-band to the terminal, and may use different indication manners according to whether the information content transmitted by the network device on the multiple anchor sub-bands configured for the terminal in the current serving cell of the terminal is the same. If the information content transmitted by the network device on multiple anchor sub-bands configured for the terminal in the current serving cell of the terminal is the same, the network device may indicate the frequency point of all the anchor sub-bands to the terminal. If the information content transmitted by the network device on the multiple anchor sub-bands configured for the terminal in the current serving cell of the terminal is different, the network device may indicate to the terminal the frequency points of the anchor sub-bands other than the currently used anchor sub-band.
  • the network device indicates the frequency point of all anchor sub-bands to the terminal
  • the specific frequency point of all anchor sub-bands may be indicated, and the number of all anchor sub-bands in all discrete sub-bands of the current serving cell of the terminal may also be indicated.
  • the number of the starting anchor subbands in all anchor subbands may be indicated, as well as the spacing of the other anchor subbands relative to the frequency of the starting anchor subband.
  • the network device When the network device indicates to the terminal the frequency points of the anchor sub-bands other than the currently used anchor sub-band, it may indicate a specific frequency point of the anchor sub-bands other than the currently used anchor sub-band, and may also indicate the current use.
  • the network device may send the third indication information indicating the anchor subband information to the terminal, so that the terminal may determine multiple anchor subbands, and select the optimal anchor point among the multiple anchor subbands. Take the initial access information.
  • the terminal needs to obtain the system information of the target cell before the reselection cell can be further completed.
  • the system message may be sent by means of discrete sub-band aggregation.
  • an anchor subband of a system message can be sent for subband aggregation.
  • the network device may also send fourth indication information to the terminal, where the fourth indication information is used to indicate that the terminal receives the sub-band information of the system message, in order to implement the method of sending the system message by using the method of the discrete sub-band aggregation.
  • the terminal may determine a subband capable of receiving system information. If the terminal supports the subband aggregation capability, the system may receive the system message by using a discrete subband aggregation manner on the subband capable of receiving the system information. Reduce system message acquisition delay to a certain extent.
  • an implementation manner that the network device sends the fourth indication information of the sub-band for instructing the terminal to receive the system information to the terminal may be implemented on the basis of the method shown in FIG. 3, or may be implemented in FIG.
  • the method is implemented on the basis of the method, and the embodiment of the present application is not limited.
  • the implementation based on the method shown in FIG. 6 will be described as an example, and the specific implementation process is as shown in FIG. 7.
  • S301, S302, S303, S304, S305, and S306 in FIG. 7 are the same as the implementation steps of S201, S202, S203, S204, S205, and S206 in FIG. 6, and details are not described herein again.
  • the network device sends fourth indication information to the terminal, where the fourth indication information is used to indicate that the terminal receives the subband information of the system message.
  • the fourth indication information may be sent by using an RRC message (for example, MIB or SIB1), and the fourth indication information may also be sent by a layer 1 message (for example, DCI).
  • RRC message for example, MIB or SIB1
  • layer 1 message for example, DCI
  • the fourth indication information may be used to indicate that the terminal receives the subband information of the system message by carrying one of the following information:
  • the fourth indication information includes a frequency point of the start subband of the terminal receiving system message, and a bit bitmap that indicates whether the terminal can receive system information.
  • the fourth indication information includes a frequency point of each subband that the terminal can receive the system information, where the frequency of each subband is characterized by a frequency interval of the subband with respect to the anchor subband.
  • the terminal receives the fourth indication information sent by the network device, and determines, according to the subband information of the receiving system message indicated in the fourth indication information, a subband capable of receiving system information, where the determined subband capable of receiving system information is determined. Receive system information in a discrete subband aggregation manner.
  • the terminal may obtain the frequency points of all the sub-bands in the bitmap, and receive the system message at the frequency points.
  • the terminal may acquire the frequency points of each subband and receive the system message at the frequency points.
  • the terminal receives the system message by using a discrete sub-band aggregation manner on the sub-band capable of receiving the system information, which can reduce the system message acquisition delay to a certain extent.
  • first, second and the like in the specification and claims of the embodiments of the present application and the drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence.
  • the order, for example, the first indication information, the second indication information, the third indication information, and the fourth indication information involved in the foregoing embodiment of the present application are only used to facilitate description and distinguish different indication information, and do not constitute the indication information. Limited. It is to be understood that the data so used may be interchanged where appropriate, so that the embodiments of the invention described herein can be implemented in a sequence other than those illustrated or described herein.
  • the network device in FIG. 7 may first send the third indication information and the fourth. Instructing information, and then transmitting the first indication information and the second indication information, without first transmitting the first indication information and the second indication information in the manner shown in FIG. 7, and then transmitting the third indication information and the fourth indication information .
  • the solution provided by the embodiment of the present application is mainly introduced from the perspective of interaction between the terminal and the network device.
  • the terminal and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the units (devices, devices) and algorithm steps of the examples described in the embodiments disclosed in the application. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiments of the present application may divide the functional units (devices, devices) of the terminal and the network device according to the foregoing method.
  • each functional unit (device, device) may be divided according to each function, or two or more may be used.
  • the functions are integrated in one processing unit (device, device).
  • the above integrated units (devices, devices) can be implemented in the form of hardware or in the form of software functional units (devices, devices). It should be noted that the division of the unit (device, device) in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 8 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device 100 illustrated in FIG. 8 is applicable to a network device of a discrete narrowband communication system.
  • the communication device 100 applied to the network device illustrated in FIG. 8 may include a processing unit 101 and a transmitting unit 102.
  • the sending unit 102 sends the first indication information and the second indication information to the terminal under the control of the processing unit 101.
  • the first indication information is used to indicate a frequency point of all discrete sub-bands of the serving cell where the terminal is currently located; the second indication information is used to indicate that the terminal is usable in all discrete sub-bands of the serving cell. Subband.
  • the first indication information indicates the frequency of all the discrete subbands of the serving cell where the terminal is currently located by carrying the following information: the frequency of the initial subband in all the discrete subbands of the serving cell where the terminal is currently located. And indicating whether each subband in the frequency band belongs to a bit bitmap of a serving cell where the terminal is currently located, and a frequency interval of each subband in the frequency band.
  • the frequency band is a frequency band in which all discrete sub-bands of the serving cell where the terminal is currently located.
  • the first indication information may further include the number of all discrete sub-bands of the serving cell where the terminal is currently located.
  • the second indication information may indicate a subband that the terminal can use in all discrete subbands of the serving cell by carrying one of the following information:
  • the second indication information includes a number of a starting subband that the terminal can use in all discrete subbands of the serving cell where the terminal is currently located, and a number of subbands that the terminal can use.
  • the second indication information includes a bit bitmap that indicates that each of the discrete subbands of the serving cell where the terminal is currently located can be used by the terminal.
  • the sending unit 102 is further configured to: send third indication information to the terminal, where the third indication information is used to indicate at least one anchor subband information.
  • the anchor subband information includes at least one of the following information: a frequency point of the anchor subband; a number of the anchor subband in all discrete subbands of the serving cell where the terminal is currently located; and an anchor subband frequency The spacing of the points relative to the frequency of the starting subband.
  • the communication device 100 applied to the network device further includes a receiving unit 103, configured to: before the sending unit 102 sends the second indication information to the terminal, the receiving terminal sends the Subband aggregation specification capability information, where the subband aggregation specification capability information is used to indicate the number of subbands that the terminal supports for aggregation.
  • the sending unit 102 is further configured to: send, to the terminal, fourth indication information, where the fourth indication information is used to indicate that the terminal receives the subband of the system message.
  • the fourth indication information indicates that the terminal receives the subband of the system message by carrying one of the following information: including a starting subband frequency point, and a bit bitmap indicating whether the terminal can receive system information. Or comprising a frequency point of each subband of the terminal information, wherein the frequency of each subband is characterized by a frequency interval of the subband relative to the anchor subband.
  • the processing unit 101 may be a processor or a controller.
  • the transmitting unit 102 and the receiving unit 103 may be a communication interface, a transceiver, a transceiver circuit, or the like.
  • the communication interface is a collective name and may include one or more interfaces.
  • the communication device 100 When the processing unit 101, the sending unit 102, and the receiving unit 103 are transceivers, the communication device 100 according to the embodiment of the present application may be the communication device shown in FIG. 9, and the communication device shown in FIG. 9 may be a network device. For example a base station.
  • FIG. 9 is a schematic structural diagram of a network device 1000 according to an embodiment of the present application, that is, another schematic structural diagram of the communication device 100.
  • the network device 1000 includes a processor 1001 and a transceiver 1002.
  • the processor 1001 can also be a controller.
  • the processor 1001 is configured to support a network device to perform the functions involved in FIGS. 3, 6, and 7.
  • the transceiver 1002 is configured to support a function of a network device to send and receive messages.
  • the network device can also include a memory 1003 for coupling with the processor 1001 that retains the program instructions and data necessary for the network device.
  • the processor 1001, the transceiver 1002 and the memory 1003 are connected to each other.
  • the memory 1003 is configured to store an instruction
  • the processor 1001 is configured to execute the instruction stored in the memory 1003 to control the transceiver 1002 to send and receive signals, and complete the network device in the foregoing method. The steps to perform the corresponding function.
  • FIG. 10 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device 200 illustrated in FIG. 10 can be applied to a terminal of a discrete narrowband communication system.
  • the communication device 200 applied to the terminal shown in FIG. 10 can include a processing unit 201 and a receiving unit 202.
  • the receiving unit 202 receives the first indication information and the second indication information sent by the network device under the control of the processing unit 201.
  • the first indication information is used to indicate a frequency point of all discrete sub-bands of the serving cell where the terminal is currently located; the second indication information is used to indicate that the terminal is in all discrete sub-bands of the serving cell where the terminal is currently located.
  • the first indication information is used to carry a frequency point of a starting subband in all discrete subbands of a serving cell where the terminal is currently located, a bit bitmap that indicates whether each subband in the frequency band belongs to a serving cell where the terminal is currently located, and
  • the frequency interval of each sub-band in the frequency band indicates the frequency point of all discrete sub-bands of the serving cell where the terminal is currently located.
  • the frequency band is a frequency band in which all discrete sub-bands of the serving cell where the terminal is currently located
  • the first indication information further includes the number of all discrete sub-bands of the serving cell where the terminal is currently located.
  • the second indication information indicates a subband that can be used by the terminal in all discrete subbands of the serving cell by carrying one of the following information: the initial subband that the terminal can use is currently located in the terminal. The number in all discrete sub-bands of the serving cell and the number of sub-bands that the terminal can use. Or the second indication information includes a bit bitmap that indicates that each of the discrete subbands of the serving cell where the terminal is currently located can be used by the terminal.
  • the receiving unit 202 is further configured to: receive third indication information that is sent by the network device, where the third indication information is used to indicate at least one anchor subband information.
  • the anchor subband information includes at least one of the following information: a frequency point of the anchor subband; a number of the anchor subband in all discrete subbands of the serving cell where the terminal is currently located; and an anchor subband frequency The spacing of the points relative to the frequency of the starting subband.
  • the communication device 200 further includes a sending unit 203, configured to: send the subband aggregation to the network device before the receiving unit 202 receives the second indication information sent by the network device.
  • the capability capability information, the subband aggregation specification capability information is used to indicate the number of subbands that the terminal supports for aggregation.
  • the receiving unit 202 is further configured to: receive fourth indication information sent by the network device, where the fourth indication information is used to indicate that the terminal receives the subband of the system message.
  • the fourth indication information indicates, by one of the following information, a subband that the terminal receives the system message: a starting subband frequency point, and a bit bitmap that indicates whether the terminal can receive system information.
  • the terminal can receive the frequency points of each subband of the system information, wherein the frequency points of each subband are characterized by the frequency spacing of the subbands relative to the anchor subbands.
  • the processing unit 201 may be a processor or a controller.
  • the receiving unit 202 can be a communication interface, a receiver, a receiving circuit, and the like.
  • the transmitting unit 203 can be a communication interface, a transmitter, a transmitting circuit, or the like.
  • the communication interface is a collective name and may include one or more interfaces.
  • the processing unit 201 is a processor
  • the receiving unit 202 is a receiver
  • the sending unit 203 is a transmitter
  • the communication device 200 may be the communication device shown in FIG. 11, and the communication device shown in FIG. It is the terminal.
  • FIG. 1 is a schematic structural diagram of a terminal 2000 according to an embodiment of the present application, that is, another possible structure diagram of the communication device 200 is shown.
  • the terminal 2000 includes a processor 2001, a transmitter 2002, and a receiver 2003.
  • the processor 2001 can also be a controller.
  • the processor 2001 is configured to support a terminal to perform the functions involved in FIGS. 3, 6, and 7.
  • the transmitter 2002 and the receiver 2003 are configured to support a function of transceiving messages between the terminal 2000 and the network device.
  • the terminal 2000 can also include a memory 2004 for coupling with the processor 2001 that holds the necessary program instructions and data for the terminal 2000.
  • the processor 2001, the transmitter 2002, the receiver 2003 and the memory 2004 are connected, the memory 2004 is for storing instructions for executing the instructions stored by the memory 2004 to control the transmitter 2002 and the receiver 2003 to transmit and receive.
  • the signal completes the steps of the terminal performing the corresponding function in the above method.
  • the terminal 2000 may further include an antenna 2005.
  • the terminal and the network device are not limited to the above structure, and may further include, for example, an antenna array, a duplexer, and a baseband processing portion.
  • the duplexer of the network device is used to implement an antenna array, which is used for both transmitting signals and receiving signals.
  • the transmitter is used to convert between the RF signal and the baseband signal.
  • the transmitter can include a power amplifier, a digital-to-analog converter and a frequency converter.
  • the receiver can include a low noise amplifier, an analog to digital converter and a frequency converter. Among them, the receiver and the transmitter can sometimes also be collectively referred to as a transceiver.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the terminal may further include a display device, an input/output interface, and the like.
  • the terminal may have a single antenna or multiple antennas (ie, an antenna array).
  • the duplexer of the terminal is used to implement the antenna array for both transmitting signals and receiving signals.
  • the transmitter is used to convert between the RF signal and the baseband signal.
  • the transmitter can include a power amplifier, a digital-to-analog converter and a frequency converter.
  • the receiver can include a low noise amplifier, an analog to digital converter and a frequency converter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the terminal may further include a control part, configured to request an uplink physical resource, calculate channel state information (CSI) corresponding to the downlink channel, determine whether the downlink data packet is successfully received, or the like.
  • CSI channel state information
  • the processor involved in the foregoing embodiments may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific).
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the memory may be integrated in the processor or may be separately provided from the processor.
  • the functions of the receiver and the transmitter can be implemented by a dedicated chip through the transceiver circuit or the transceiver.
  • the processor can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • program code that implements processor, receiver, and transmitter functions is stored in a memory that implements the functions of the processor, receiver, and transmitter by executing code in memory.
  • the embodiment of the present application further provides a communication system, including the foregoing network device and one or more terminals.
  • the embodiment of the present application further provides a computer storage medium, where the computer storage medium stores instructions, and when the instructions are executed, the communication method involved in the foregoing method embodiments may be completed.
  • the embodiment of the present application further provides a computer program product, where the computer program product includes a computer program, and the computer program is used to execute the communication method involved in the foregoing method embodiment.
  • embodiments of the present application can be provided as a method, system, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,应用于离散窄带通信信息,以实现离散子带的聚合,支持高速率的数据传输。在该方法中,网络设备向终端发送第一指示信息,第一指示信息包括终端服务小区的全部离散子带中起始子带的频点、表征频段内各子带是否属于服务小区的比特位图、以及频段内各子带的频点间隔。终端接收网络设备发送的第一指示信息,确定小区的全部离散子带的频点。网络设备向终端发送第二指示信息,第二指示信息用于指示所述终端在所述小区的全部离散子带中能够使用的子带。终端接收网络设备发送的第二指示信息,确定终端在小区的全部离散子带中能够使用的子带,进而在能够使用的子带上进行数据传输,实现离散子带的聚合,以支持高速率的数据传输。

Description

一种通信方法及装置
本申请要求在2017年7月17日提交中国专利局、申请号为201710582800.2、发明名称为《一种通信方法及设备》的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
现有的离散窄带通信系统中,仅支持单载波的数据传输。受限于频谱资源过窄,如电力系统的频谱中,单个载波的带宽仅为25kHz,目前的离散窄带通信系统仅能支持低速率业务,故能支持的通信应用有限。然而,随着业务需求的发展,如电力行业的配电自动化业务,视频监控等速率要求较高的业务,需要一种新的通信技术,以利用离散窄带频谱来支持高速率的数据传输。
发明内容
本申请实施例提供一种通信方法及装置,在离散窄带通信系统中实现离散子带聚合,以利用离散窄带频谱支持高速率的数据传输。
第一方面,提供一种通信方法,在该通信方法中,网络设备向终端发送用于指示终端当前所在服务小区的全部离散子带的频点的第一指示信息,终端接收网络设备发送的第一指示信息,可以依据第一指示信息确定小区的全部离散子带的频点。网络设备向终端发送用于指示所述终端在所述小区的全部离散子带中能够使用的子带的第二指示信息,终端接收网络设备发送的第二指示信息,可以依据第二指示信息确定终端在小区的全部离散子带中能够使用的子带,进而在能够使用的子带上进行数据传输,实现离散子带的聚合,以支持高速率的数据传输。
一种可能的设计中,网络设备可通过在第一指示信息中携带如下信息之一,指示终端当前所在服务小区的全部离散子带的频点:
方式一:网络设备在向第一终端发送的第一指示信息中包括终端当前服务小区的起始子带的频点、表征当前服务小区的全部离散子带所在的频段内各子带是否属于所述服务小区的比特位图、以及当前服务小区的全部离散子带所在的频段内各子带的频点间隔。
其中,终端当前服务小区的起始子带可以是该小区的全部离散子带中的首个离散子带,也可以是该小区的全部离散子带所在频段内的首个子带。频点间隔是指两个子带的中心频率之差的绝对值。
方式二:采用预定义的方式设置固定的频点间隔,网络设备在向第一终端发送的第一指示信息中包括终端当前服务小区的起始子带的频点、表征当前服务小区的全部离散子带所在的频段内各子带是否属于小区的比特位图。
方式三:网络设备在向第一终端发送的第一指示信息中除包括上述涉及的起始子带的频点、表征频段内各子带是否属于小区的比特位图,或者包括起始子带的频点、表征频段内各子带是否属于小区的比特位图以及频段内各子带的频点间隔以外,还可包括终端当前 服务小区的全部离散子带的子带数目,使得网络设备确定频段内属于当前服务小区的全部离散子带数目已完成指示后,可以省略频段内剩余的不属于终端当前服务小区的子带的指示。
方式四:网络设备在向第一终端发送的第一指示信息中包含至少一个子带簇指示信息,其中,子带簇指示信息包含子带簇的起始子带信息,子带簇内各子带是否属于小区的比特位图及子带簇内各子带的频点间隔。
本申请实施例中,在子带簇之间具有M个不属于终端当前服务小区的连续M个子带的情况下,采用通过子带簇指示信息指示的方式,可进一步节省比特位图中这M个不属于当前服务小区的连续M个子带的指示开销。
网络设备指示终端当前服务小区的全部离散子带的频点后,终端接收到第一指示信息后,可依据终端当前服务小区的起始子带的频点、表征当前服务小区的全部离散子带所在的频段内各子带是否属于小区的比特位图、以及当前服务小区的全部离散子带所在的频段内各子带的频点间隔。
另一种可能的设计中,网络设备可通过在第二指示信息中携带如下信息之一,指示终端在当前服务小区的全部离散子带中能够使用的子带:
方式一:网络设备向终端发送的第二指示信息中可包括终端能够使用的起始子带在当前服务小区的全部离散子带中的编号,以及终端能够使用的子带数量。
其中,网络设备可在终端当前服务小区的全部离散子带中为终端分配设定数量的连续逻辑子带,作为终端能够使用的离散子带。其中,若将终端服务小区的全部离散子带顺序编号,则连续逻辑子带是指在小区的全部离散子带中编号连续的设定数量的子带。
方式二:网络设备向终端发送的第二指示信息中包括表征终端当前服务小区的全部离散子带中对应各子带能够被终端使用的比特位图。
一种可能的设计中,终端可向网络设备发送子带聚合规格能力信息,所述子带聚合规格能力信息用于指示终端支持聚合的子带数量。网络设备接收终端发送的子带聚合规格能力信息,可根据终端支持的子带聚合规格能力,为终端分配可用的离散子带,然后向终端指示在当前服务小区的全部离散子带中能够使用的子带信息。
又一种可能的设计中,网络设备还可基于终端当前服务小区的负载情况以及终端当前的业务需求等中的至少一项,为终端分配可用的离散子带,并向终端发送第二指示信息,以指示终端在当前服务小区的全部离散子带中能够使用的离散子带。
又一种可能的设计中,若终端当前服务小区的全部离散子带均为终端能够使用的离散子带,则网络设备可不向终端发送上述涉及的第二指示信息,终端在未接收到网络设备发送的第二指示信息的情况下,可默认终端当前服务小区的全部离散子带均为终端能够使用的离散子带。
网络设备采用上述方式指示终端在当前服务小区的全部离散子带中能够使用的子带信息后,终端可确定能够使用的离散子带,并在能够使用的离散子带中进行数据传输,实现采用离散子带聚合的通信方式进行通信。
终端采用离散子带聚合的通信方式进行通信时,一种可能的设计中,终端可在依据第二指示信息确定的终端能够使用的子带中选择一个子带接收PDCCH信息,并在确定的能够使用的子带中进行数据传输。
终端采用离散子带聚合的通信方式进行通信时,又一种可能的设计中,网络设备可在 终端能够使用的子带中选择设定数量的子带,作为PDSCH能够使用的子带,使PDSCH也可采用离散子带聚合的通信方式指示给终端,其中,PDSCH能够使用的子带可通过PDCCH指示。
终端采用离散子带聚合的通信方式进行通信时,终端可采用跳频机制,始终在对应的逻辑子带编号的子带上进行数据收发,逻辑子带和实际的物理子带编号之间按子帧号或时隙号做循环移位,以将数据传输分布在频率上的多个子带,以获得频率分集增益,缓解深衰影响。
其中,网络设备可通过系统信息向终端发送第一指示信息。终端可通过网络设备发送的系统信息接收网络设备发送的第一指示信息
网络设备可在RRC连接建立后,通过专用信令发送第二指示信息。终端可通过网络设备发送的专用信令接收网络设备发送的第二指示信息。
又一种可能的设计中,网络设备还可向终端发送第三指示信息,该第三指示信息用于指示至少一个锚点子带信息。其中,锚点子带信息可包括锚点子带的频点、锚点子带在终端当前服务小区的全部离散子带中的编号,以及锚点子带的频点相对终端当前服务小区的起始子带的频点的间隔中的至少一项。
终端接收网络设备发送的第三指示信息,依据第三指示信息确定至少一个锚点子带,并在确定的至少一个锚点子带中选择一个性能最优的锚点子带获取同步信号、MIB以及SIB等初始接入信息,以使终端能够在多个锚点子带中选择一个性能最优的锚点子带获取初始接入信息,以缓解离散窄带通信系统中的深衰问题。
其中,网络设备可以通过系统信息发送第三指示信息。终端通过系统信息接收第三指示信息。
又一种可能的设计中,网络设备还可向终端发送第四指示信息,该第四指示信息用于指示终端接收系统消息的子带。第四指示信息中通过携带如下信息之一,指示终端接收系统消息的子带:第四指示信息中包括终端接收系统消息的起始子带的频点、以及表征终端是否能够接收系统信息的比特位图;或者第四指示信息中包括终端能够接收系统信息的每个子带的频点,其中,每个子带的频点通过该子带相对锚点子带的频点间隔表征。终端接收到第四指示信息后,可确定能够接收系统信息的子带,若终端支持子带聚合能力,则可在能够接收系统信息的子带上采用离散子带聚合的方式接收系统消息,以在一定程度上降低系统消息获取时延。
其中,网络设备可通过RRC消息发送第四指示信息,终端通过RRC消息接收第四指示信息。网络设备也可通过层1消息发送第四指示信息,终端通过层1消息接收第四指示信息。
第二方面,提供一种通信装置,该通信装置可应用于网络设备,该应用于网络设备的通信装置包括执行上述第一方面中涉及的网络设备执行各个步骤的单元或手段(means),所述单元或手段可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
一种可能的设计中,应用于网络设备的通信装置包括处理单元和发送单元,还可包括接收单元,其中,接收单元、处理单元和发送单元的功能可以和各方法步骤相对应,在此不予赘述。
第三方面,提供一种通信装置,该通信装置可应用于终端,该应用于终端的通信装置 包括执行上述第一方面中涉及的终端执行各个步骤的单元或手段(means),所述单元或手段可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
一种可能的设计中,应用于终端的通信装置包括处理单元和接收单元,还可包括发送单元,其中,处理单元、接收单元和发送单元的功能可以和各方法步骤相对应,在此不予赘述。
第四方面,提供一种网络设备,该网络设备包括处理器、收发器,还可以包括存储器。所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。其中,处理器、收发器和存储器相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,控制收发器进行信号的接收和发送,完成上述第一方面以及第一方面中任意可能的设计中涉及的网络设备所执行的功能。
第五方面,提供一种终端,该终端包括处理器和接收器,还可以包括发射器,还可包括存储器,所述存储器用于与所述处理器耦合,其保存终端必要的程序指令和数据。处理器执行存储器存储的指令,执行上述第一方面以及上述第一方面任意可能的设计中涉及的终端所执行的功能。
一种可能的设计中,终端还可包括天线。
第六方面,提供一种通信系统,其包括第四方面涉及的网络设备、和一个或多于一个第五方面涉及的终端。
第七方面,提供一种计算机存储介质,所述计算机可读存储介质存储有计算机指令,当所述指令在计算机上运行时,可以完成第一方面以及上述第一方面任意可能的设计中的终端或网络设备所涉及的任意一种方法。
第八方面,提供一种计算机程序产品,所述计算机程序产品中包括有计算机程序,该计算机程序用于执行完成第一方面以及上述第一方面任意可能的设计中的终端或网络设备所涉及的任意一种方法。
本申请实施例中,网络设备向终端发送用于指示小区内全部离散子带的频点的第一指示信息、以及用于指示终端在全部离散子带中可用子带的第二指示信息,使得终端能够确定可用的子带,进而可在可用子带上进行数据传输,实现离散子带的聚合,以支持高速率的数据传输。
附图说明
图1为本申请实施例应用的系统架构图;
图2为本申请实施例适用的小区的全部离散子带与终端能够使用的离散子带的示意图;
图3为本申请实施例提供的一种通信方法实施流程图;
图4为本申请实施例提供的跳频数据传输过程示意图;
图5为本申请实施例提供的另一种通信方法实施流程图;
图6为本申请实施例提供的又一种通信方法实施流程图;
图7为本申请实施例提供的又一种通信方法实施流程图;
图8为本申请实施例提供的一种通信装置结构示意图;
图9为本申请实施例提供的一种网络设备的结构示意图;
图10为本申请实施例提供的另一种通信装置结构示意图;
图11为本申请实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、传输点(transmission and receiver point,TRP或者transmission point,TP)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)、网络设备,可以称之为无线接入网(radio access network,RAN)设备(或节点),是一种将终端接入到无线网络的设备,又可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
3)、“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
4)、交互,是指交互双方彼此向对方传递信息的过程,这里传递的信息可以相同,也可以不同。例如,交互双方为基站1和基站2,可以是基站1向基站2请求信息,基站2向基站1提供基站1请求的信息。当然,也可以基站1和基站2彼此向对方请求信息,这里请求的信息可以相同,也可以不同。
5)、名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
6)、子带,又可以称为子载波。频率上不连续的子带称为离散子带。在离散窄带通信系统中,一个小区包含多个离散子带,并且每个离散子带具有固定的子带带宽。
7)、锚点子带(Anchor子带),是指主要用于传输主同步信号(primary synchronization,PSS)/辅同步信号(secondary synchronization,SSS)、物理广播信道(physical broadcasting channel,PBCH)的子带。可以理解的是,锚点子带传输的信号并不限于上述涉及的PSS、SSS和PBCH,还可以包括其它的信号。
8)、起始子带,是指首个子带,通常该首个子带是某一频段内频点最小的子带,也可以是预定义的某个固定频点处的子带。例如小区的起始子带,可以是小区的全部离散子带中的首个子带,也可以是预定义的某个固定频点处的子带。终端能够使用的起始子带可以是能够使用的离散子带中的首个子带。
9)、子带的频点,又可称为子带的中心频率。
10)、频段(Band),对应一个频率范围,若子带的频率落在该频率范围内,可称为该子带所在的频段。
本申请实施例提供的通信方法可应用于离散窄带通信系统。离散窄带通信系统中,终端通过诸如基站等网络设备接入到网络中,网络设备与核心网完成数据的回传和前向传递,如图1所示。在图1所示的离散窄带通信系统中,终端与网络设备之间通过空口进行通信与交互。其中,终端与网络设备通过空口进行通信与交互时,通常通过一个离散子带进行数据传输,以下实施例中为描述方便,可将终端通过一个离散子带进行数据传输的通信方式称为单子带数传。以图2所示为例对单子带通信方式进行说明,例如图2所示,在包含200个子带的频段内,有100个离散子带属于终端当前服务小区的可用子带,针对某一终端,网络设备在终端当前服务小区的100个离散子带中可分配设定数量的离散子带作为终端可用的离散子带,以用于该终端与网络设备进行数据传输。
目前,在离散窄带通信系统中,终端通常是通过网络设备分配的单个离散子带进行单子带数传,而该单个离散子带的带宽有限,故能支持的数据传输的速率也有限,并不能很好的支持高速率的数据传输。
有鉴于此,本申请实施例提供一种通信方法,在该方法中,终端可通过在网络设备分配的设定数量的离散子带进行数据传输,实现离散子带的聚合,以支持高速率的数据传输。
图3所示为本申请实施例提供的一种通信方法实施流程图,参阅图3所示,包括:
S101:网络设备向终端发送第一指示信息,该第一指示信息用于指示终端当前所在服务小区的全部离散子带的频点。
本申请实施例中,终端可采用单子带数传的通信方式,通过锚点子带获取同步信号,并获取承载在PBCH中的包括主信息块(Master Information Block,MIB)以及系统信息块(System Information Block,SIB),进而使得网络设备可向终端发送系统信息。
一种可能的实施方式中,网络设备可通过系统信息向终端发送第一指示信息。
S102:终端接收网络设备发送的第一指示信息,根据该第一指示信息可确定终端当前所在服务小区的全部离散子带的频点。
其中,终端可通过网络设备发送的系统信息,获取第一指示信息。
S103:网络设备向终端发送第二指示信息,所述第二指示信息用于指示终端在当前服务小区的全部离散子带中能够使用的子带。
本申请实施例中,网络设备可在终端当前服务小区的全部离散子带中为终端分配可用 的离散子带,并向终端发送第二指示信息,以指示终端在当前服务小区的全部离散子带中能够使用的离散子带。
本申请实施例中,网络设备可基于终端当前服务小区的负载情况以及终端当前的业务需求等中的至少一项,为终端分配可用的离散子带。
进一步的,本申请实施例中,终端与网络设备之间可采用单子带通信方式进行随机接入信道(Random Access Channel,RACH)的接入,并建立无线资源控制(Radio Resource Control,RRC)连接。
一种可能的实施方式中,终端可在RRC连接建立过程中,向网络设备发送子带聚合规格能力信息,所述子带聚合规格能力信息用于指示终端支持聚合的子带数量。网络设备接收终端发送的子带聚合规格能力信息,可根据终端支持的子带聚合规格能力,为终端分配可用的离散子带。
其中,网络设备可在RRC连接建立后,通过专用信令发送第二指示信息,例如可通过向终端发送的下行控制信息(downlink control information,DCI)向终端发送第二指示信息。
网络设备还可在RRC连接建立过程中,或者RRC连接建立后,通过专用信令发送第二指示信息,例如可通过向终端发送的RRC连接建立消息或者RRC连接重配置消息向终端发送第二指示信息。
S104:终端接收网络设备发送的第二指示信息,依据该第二指示信息确定终端能够使用的子带。
其中,终端可通过网络设备发送的专用信令接收网络设备发送的第二指示信息。
本申请实施例中,网络设备向终端发送用于指示小区内全部离散子带的频点的第一指示信息、以及用于指示终端在全部离散子带中可用子带的第二指示信息,使得终端能够确定可用子带,进而可在可用子带上进行数据传输,实现离散子带的聚合,以支持高速率的数据传输。
S105:终端在多个能够使用的离散子带上进行数据传输。
本申请实施例中为描述方便,可将终端通过多个离散子带进行数据传输的通信方式,称为离散子带聚合的通信方式。
本申请实施例以下将结合实际应用对上述实施例涉及的离散子带聚合的通信方式进行说明。
首先,本申请实施例中对第一指示信息实现指示终端当前服务小区的全部离散子带的频点的具体实施过程进行说明。
一种可能的实施方式中,第一指示信息中可包括终端当前服务小区的起始子带的频点、表征当前服务小区的全部离散子带所在的频段内各子带是否属于小区的比特位图(bitmap)、以及当前服务小区的全部离散子带所在的频段内各子带的频点间隔。终端根据第一指示信息中包括的信息,可确定终端当前服务小区的全部离散子带的频点。
其中,本申请实施例中终端当前服务小区的起始子带可以是该小区的全部离散子带中的首个离散子带,也可以是该小区的全部离散子带所在频段内的首个子带。例如,在图2所示的包括200个子带的频段内第一个子带,可作为起始子带,该起始子带的频点可以理解为是第一个的绝对无线频率(absolute radio frequency),例如本申请实施例中可将该起始子带的频点记为f1。
本申请实施例中,可通过一个比特位指示一个子带是否属于小区的离散子带,例如,比特位取值为1可表示子带属于该小区的离散子带,比特位取值为0可表示子带不属于该小区的离散子带,当然也可以取值相反,例如比特位取值为0表示子带属于该小区的离散子带,比特位取值为1表示子带不属于该小区的离散子带。将当前服务小区的全部离散子带所在的频段内各子带分别用比特位表示,则可表示出当前服务小区的全部离散子带所在的频段内各子带中属于终端当前服务小区的离散子带。例如,图2所示当前服务小区的全部离散子带所在频段内包括200个子带,则可通过200个比特位表示各子带是否属于终端当前服务小区的离散子带。例如,当前服务小区的离散子带的bitmap可表示为101100101…1011001011(200位的bitmap),共100个为1的bit位,则这100个比特位为1对应的子带为当前服务小区的全部离散子带。
本申请实施例中,为实现指示小区的全部离散子带的频点,第一指示信息中还可包括终端当前服务小区的全部离散子带所在的频段内各子带的频点间隔。其中,频点间隔是指两个子带的中心频率之差的绝对值,例如可以是25KHZ。
假设终端当前服务小区的全部离散子带所在的频段带宽为5M,则采用上述指示方式,第一指示信息中可包括用于指示起始子带的频点的32比特位、用于指示频段内各子带是否属于小区的200个比特位,以及用于指示25KHZ的比特位。
本申请实施例一种可能的实施方式中,终端当前服务小区的全部离散子带所在的频段内各子带的频点间隔可包括在网络设备向终端发送的第一指示信息中,采用显示的方式发送给终端。另一种可能的实施方式中,终端也可采用隐式的方式确定该频点间隔,例如可采用预定义的方式设置固定的频点间隔,无需由网络设备向终端发送。例如,可采用预定义的方式为终端预先设置频点间隔的默认值,例如设置默认值为25KHZ,终端从网络设备处获取包括终端当前服务小区的起始子带的频点、表征当前服务小区的全部离散子带所在的频段内各子带是否属于小区的bitmap后,即可确定属于当前服务小区的全部离散子带的频点。
网络设备向终端发送上述涉及的第一指示信息,终端接收该第一指示信息后,可根据该第一指示信息中包括的信息,确定终端当前服务小区的全部离散子带的频点,例如可采用表1的方式确定终端当前服务小区的全部离散子带的频点。
Figure PCTCN2018092692-appb-000001
表1
另一种可能的实施方式中,网络设备向终端发送的第一指示信息中除包括上述涉及的起始子带的频点、表征频段内各子带是否属于小区的bitmap,或者包括起始子带的频点、 表征频段内各子带是否属于小区的bitmap以及频段内各子带的频点间隔以外,还可包括终端当前服务小区的全部离散子带的子带数目。
本申请实施例中,在第一指示信息中包括终端当前服务小区的全部离散子带的子带数目,可使得网络设备确定频段内属于当前服务小区的全部离散子带数目已完成指示后,可以省略频段内剩余的不属于终端当前服务小区的子带的指示。例如,5M带宽的频段对应频点间隔为25kHz的子带为200个,在200个子带中包括终端当前服务小区的全部离散子带的子带数目为100个,则若网络设备在200个子带中设定子带位置处完成针对属于终端当前服务小区的全部离散子带的100个子带的指示后,可以省略bitmap中未进行指示的比特位中比特位为0的指示,节省指示开销。
进一步的,又一种可能的实施方式中,本申请实施例中若终端当前服务小区的全部离散子带所在频段内存在连续M个子带不属于终端当前服务小区,M为正整数,则可将当前服务小区的全部离散子带所在频段内在该M个子带两端的各个子带形成两个不同的子带簇,子带簇之间连续M个子带不属于该小区。并采用上述方式将当前服务小区的全部离散子带所在频段内的各子带形成至少一个子带簇,所述第一指示信息中包含至少一个子带簇指示信息,其中子带簇指示信息包含子带簇的起始子带信息,子带簇内各子带是否属于小区的bitmap及子带簇内各子带的频点间隔。可选的,子带簇内各子带的频率衰落特性近似。
本申请实施例中,在子带簇之间具有M个不属于终端当前服务小区的连续M个子带的情况下,采用通过子带簇指示信息指示的方式,可进一步节省bitmap中这M个不属于当前服务小区的连续M个子带的指示开销。例如,未采用簇指示信息的情况下,所需的指示信息为:f1,101100101…1011001011(200位的bitmap),采用簇指示信息的情况下所需的指示信息为:f1,101100101;f3,1011001011。
其次,本申请实施例对第二指示信息实现指示终端在当前服务小区的全部离散子带中能够使用的子带的具体实施过程进行说明。
一种可能的实施方式中,第二指示信息中可包括终端能够使用的起始子带在当前服务小区的全部离散子带中的编号,以及终端能够使用的子带数量。
本申请实施例中,网络设备可在终端当前服务小区的全部离散子带中为终端分配设定数量的连续逻辑子带,作为终端能够使用的离散子带。其中,若将终端服务小区的全部离散子带顺序编号,则连续逻辑子带是指在小区的全部离散子带中编号连续的设定数量的子带。
第二指示信息中包括终端能够使用的起始子带在当前服务小区的全部离散子带中的编号,以及终端能够使用的子带数量,则终端可根据第二指示信息确定终端能够使用的离散子带,如表2所示,终端的起始子带在当前服务小区的全部离散子带中的编号为8,终端能够使用的子带数量为N,其中,N为正整数,则终端能够使用的子带编号为N的子带对应当前服务小区的离散子带的编号为8+N-1的子带。
终端能够使用的子带编号 服务小区的离散子带的编号
1 8
2 9
 
N 8+N-1
表2
本申请实施例中,网络设备为终端分配连续逻辑子带,网络设备向终端发送的第二指示信息中包括终端能够使用的的起始子带在当前服务小区的全部离散子带中的编号可根据当前服务小区的全部离散子带的数量确定需要多少个比特位来指示,例如当前服务小区的全部离散子带的数量为100,则终端能够使用的的起始子带可通过7个比特位来指示。
另一种可能的实施方式中,第二指示信息中包括表征终端当前服务小区的全部离散子带中对应各子带能够被终端使用的bitmap。
本申请实施例中,可为终端当前服务小区中的全部离散子带中的每一个子带分配一个比特位,通过比特位的取值指示终端当前服务小区的全部离散子带中对应各子带能否被终端使用,例如,比特位取值为1可表示终端能够使用该子带,比特位取值为0可表示终端不能够使用该子带,当然也可以取值相反,例如比特位取值为0表示终端能够使用该子带,比特位取值为1可表示终端不能够使用该子带。例如,图2所示当前服务小区的全部离散子带的数量为100个,则可通过100个比特位表示终端当前服务小区的全部离散子带中对应各子带能否被终端使用的bitmap,例如,终端当前服务小区的全部离散子带中对应各子带能否被终端使用的bitmap可表示为0011110..(100位的bitmap),其中,100位的bitmap中取值为1的比特位对应的子带为终端能够使用的子带。
本申请的一种可能的实施方式中,若终端当前服务小区的全部离散子带均为终端能够使用的离散子带,则网络设备可不向终端发送上述涉及的第二指示信息,终端在未接收到网络设备发送的第二指示信息的情况下,可默认终端当前服务小区的全部离散子带均为终端能够使用的离散子带。
本申请实施例中,终端采用上述方式确定了能够使用的离散子带后,可采用离散子带聚合的通信方式进行通信。
具体的,本申请实施例中,终端采用离散子带聚合的通信方式进行通信时,可在依据第二指示信息确定的终端能够使用的子带中选择一个子带接收物理下行控制信道(Physical Downlink Control Channel,PDCCH)信息,并在确定的能够使用的子带中进行数据传输。
其中,若终端能够使用的离散子带为终端当前服务小区的全部离散子带,则终端可在之前接收PDCCH的子带(驻留的子带)上接收PDCCH。具体的,该驻留的子带可以是小区的锚点子带,也可以是终端监听寻呼消息的子带。
进一步的,本申请实施例中可在终端能够使用的子带中选择设定数量的子带,作为物理下行链路共享信道(Physical Downlink Shared Channel,PDSCH)能够使用的子带,使PDSCH也可采用离散子带聚合的通信方式指示给终端,其中,PDSCH能够使用的子带可通过PDCCH指示。
其中,本申请实施例中网络设备指示PDSCH能够使用的子带的具体实施过程,与上述通过第二指示信息指示终端能够使用的离散子带的实施过程类似,不同之处仅在于,指示终端能够使用的离散子带是基于终端当前服务小区的全部离散子带配置的,而PDSCH能够使用的子带是基于终端能够使用的全部离散子带配置的,故相同之处,在此不再赘述。
进一步的,本申请实施例中网络设备指示PDSCH能够使用的子带的具体实施过程中, 起始子带可以采用预定义的方式,以省略起始子带的指示,节省指示信令的开销。例如默认PDSCH起始子带为终端能够使用的离散子带的起始子带,则仅需指示PDSCH能够使用的子带数量。
考虑到单个子带的带宽较窄,较带宽较大的宽带更易发生深衰。本申请实施例中,为缓解深衰影响,终端采用离散子带聚合的通信方式进行通信时,可采用跳频机制,即终端始终在对应的逻辑子带编号的子带上进行数据收发,逻辑子带和实际的物理子带编号之间按子帧号或时隙号做循环移位。因此可以将数据传输分布在频率上的多个子带,以获得频率分集增益。其中,物理子带编号是指终端当前服务小区的全部离散子带的顺序编号,逻辑子带和物理子带之间的映射关系可预先定义,网络设备始终指示终端的逻辑子带,实际数据收发时对应到物理子带。例如,图4中,终端始终在逻辑子带编号为0、1、2和3的逻辑子带上进行数据收发,在时隙0对应的物理子带为子带0、4、8、12,在时隙1对应的物理子带为子带2、6、10、14。
本申请实施例中,网络设备向终端发送用于指示小区内全部离散子带的频点的第一指示信息、以及用于指示终端在全部离散子带中可用子带的第二指示信息,使得终端能够确定可用的子带,进而可在可用子带上进行数据传输,实现离散子带的聚合,以支持高速率的数据传输。
图5所示为本申请实施例提供的一种采用上述涉及的通信方法进行通信的一种可能的通信过程示意图。参阅图5所示,终端采用单子带数传的通信方式获取同步信号、PBCH、系统信息,并进行RACH的接入以及RRC连接的建立。其中,在单子带数传的通信过程中,网络设备可通过系统信息向终端发送第一指示信息,以指示终端当前服务小区的全部离散子带的频点,终端通过系统信息获取第一指示信息,并确定终端当前服务小区的全部离散子带的频点。终端在完成RRC连接建立后或者在RRC连接建立过程中,可通过网络设备发送的专用信令获取第二指示信息,并确定终端在终端当前服务小区的全部离散子带中能够使用的子带。终端确定了能够使用的子带后,可在能够使用的子带上采用离散子带聚合的通信方式进行数据传输,在进行数据传输过程中,网络设备可通过PDCCH指示PDSCH能够使用的子带信息,也可采用跳频机制进行数据传输。
其中,指示小区的全部离散子带的方式、指示终端能够使用的子带的方式以及指示PDSCH能够使用的子带方式可参阅上述实施例中相关描述,在此不再赘述。
进一步的,本申请实施例中,网络设备还可向终端发送第三指示信息,该第三指示信息用于指示至少一个锚点子带信息,以使终端能够选择性能最优的锚点子带获取初始接入信息,具体实施过程如图6所示。
图6中S201、S202、S203和S204的实施步骤与图3中的S101、S102、S103和S104的实施步骤相同,在此不再赘述。
S205:网络设备向终端发送第三指示信息,该第三指示信息用于指示至少一个锚点子带信息。
本申请实施例中,网络设备可为终端配置多个锚点子带,以使终端能够在多个锚点子带中选择一个性能最优的锚点子带获取初始接入信息,以缓解离散窄带通信系统中的深衰问题。
通常,簇带宽的设计可使得一个子带簇中各子带的频率衰落情况相同或相近,为避免在一个子带簇内发生深衰,本申请实施例中,若终端当前服务小区的全部离散子带所在频 段内各个子带中包括多个子带簇,则网络设备可为终端在每个子带簇中配置一个锚点子带,各锚点子带上传输的信息可相同也可不同。
本申请实施例中,网络设备通过向终端发送用于指示锚点子带信息的第三指示信息,可使终端确定多个锚点子带。其中,锚点子带信息可包括锚点子带的频点、锚点子带在终端当前服务小区的全部离散子带中的编号,以及锚点子带的频点相对终端当前服务小区的起始子带的频点的间隔中的至少一项。
其中,本申请实施例中网络设备可通过系统信息向终端发送第三指示信息。
S206:终端接收网络设备发送的第三指示信息,依据第三指示信息确定至少一个锚点子带,并在确定的至少一个锚点子带中选择一个性能最优的锚点子带获取同步信号、MIB以及SIB等初始接入信息。
本申请实施例中,终端可通过系统信息获取网络设备发送的第三指示信息。
本申请实施例中,为使终端能够尽快获取到性能最优的锚点子带,可由网络设备向终端指示锚点子带的频点。其中,网络设备向终端指示锚点子带的频点,可依据网络设备在终端当前服务小区内为终端配置的多个锚点子带上传输的信息内容是否相同采用不同的指示方式。其中,若网络设备在终端当前服务小区内为终端配置的多个锚点子带上传输的信息内容相同,则网络设备可向终端指示全部锚点子带的频点。若网络设备在终端当前服务小区内为终端配置的多个锚点子带上传输的信息内容不相同,则网络设备可向终端指示除当前使用的锚点子带以外的其它锚点子带的频点。
具体的,网络设备向终端指示全部锚点子带的频点时,可以指示全部锚点子带的具体频点,也可指示全部锚点子带在终端当前服务小区的全部离散子带中的编号,还可指示全部锚点子带中的起始锚点子带的编号,以及其它各锚点子带相对起始锚点子带的频点的间隔。
网络设备向终端指示除当前使用的锚点子带以外的其它锚点子带的频点时,可以指示除当前使用的锚点子带以外的其它锚点子带的具体频点,也可指示除当前使用的锚点子带以外的其它锚点子带在终端当前服务小区的全部离散子带中的编号,还可指示除当前使用的锚点子带以外的其它锚点子带相对当前使用的锚点子带的频点的间隔。
本申请实施例中,网络设备通过向终端发送用于指示锚点子带信息的第三指示信息,可使终端确定多个锚点子带,并在多个锚点子带中选择性能最优的锚点子带获取初始接入信息。
进一步的,本申请实施例中终端采用离散子带聚合的通信方式进行数据传输过程中,若发生小区重选,则终端需要先获取目标小区的系统信息,然后才可进一步完成重选小区的接入。本申请实施例中,可采用离散子带聚合的方式发送系统消息。例如,可将发送系统消息的锚点子带进行子带聚合。
本申请实施例中,为了实现采用离散子带聚合的方式发送系统消息,网络设备还可向终端发送第四指示信息,该第四指示信息用于指示终端接收系统消息的子带信息。终端接收到第四指示信息后,可确定能够接收系统信息的子带,若终端支持子带聚合能力,则可在能够接收系统信息的子带上采用离散子带聚合的方式接收系统消息,以在一定程度上降低系统消息获取时延。
本申请实施例中,网络设备向终端发送用于指示终端接收系统信息的子带的第四指示信息的实施方案,可以在图3所示的方法基础上实施,也可在图6所示的方法基础上实施, 本申请实施例不做限定。以下,以在图6所示的方法基础上实施为例进行说明,具体实施过程如图7所示。
图7中S301、S302、S303、S304、S305和S306的实施步骤与图6中的S201、S202、S203、S204、S205和S206的实施步骤相同,在此不再赘述。
S307:网络设备向终端发送第四指示信息,第四指示信息用于指示终端接收系统消息的子带信息。
其中,第四指示信息可通过RRC消息(例如MIB或SIB1)发送,第四指示信息也可通过层1消息(例如DCI)发送。
具体的,第四指示信息可通过携带如下信息之一,指示终端接收系统消息的子带信息:
方式一:第四指示信息中包括终端接收系统消息的起始子带的频点、以及表征终端是否能够接收系统信息的比特位图。
方式二:第四指示信息中包括终端能够接收系统信息的每个子带的频点,其中,每个子带的频点通过该子带相对锚点子带的频点间隔表征。
S308:终端接收网络设备发送的第四指示信息,并依据第四指示信息中指示的接收系统消息的子带信息,确定能够接收系统信息的子带,在确定的能够接收系统信息的子带上采用离散子带聚合的方式接收系统信息。
本申请实施例中,网络设备若采用方式一指示终端接收系统信息的子带信息,则终端可获取到bitmap中所有为1的子带的频点,并在这些频点上接收系统消息。
网络设备若采用方式二指示终端接收系统信息的子带信息,则终端可获取到每个子带的频点,并在这些频点上接收系统消息。
本申请实施例中,终端在能够接收系统信息的子带上采用离散子带聚合的方式接收系统消息,可以在一定程度上降低系统消息获取时延。
需要说明的是,本申请实施例的说明书和权利要求书及附图中涉及的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序,例如本申请实施例中上述涉及的第一指示信息、第二指示信息、第三指示信息以及第四指示信息,仅是用于方便描述以及区分不同的指示信息,并不构成对指示信息的限定。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
进一步需要说明的是,本申请实施例上述涉及的各方法执行步骤描述以及附图示意的执行步骤并不限定具体执行的先后顺序,例如图7中网络设备可先发送第三指示信息和第四指示信息,然后再发送第一指示信息和第二指示信息,而不必按照图7所示的方式,先发送第一指示信息和第二指示信息,然后在发送第三指示信息和第四指示信息。
上述主要从终端和网络设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元(器、器件)及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能单元(器、器件)的 划分,例如,可以对应各个功能划分各个功能单元(器、器件),也可以将两个或两个以上的功能集成在一个处理单元(器、器件)中。上述集成的单元(器、器件)既可以采用硬件的形式实现,也可以采用软件功能单元(器、器件)的形式实现。需要说明的是,本申请实施例中对单元(器、器件)的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元(器、器件)的情况下,图8示出了本申请实施例提供的一种通信装置的结构示意图。图8所述的通信装置100可应用于离散窄带通信系统的网络设备,参阅图8所示应用于网络设备的通信装置100可包括处理单元101和发送单元102。其中,发送单元102,在处理单元101的控制下向终端发送第一指示信息和第二指示信息。所述第一指示信息用于指示终端当前所在的服务小区的全部离散子带的频点;所述第二指示信息用于指示所述终端在所述服务小区的全部离散子带中能够使用的子带。
其中,所述第一指示信息通过携带如下信息指示终端当前所在的服务小区的全部离散子带的频点:包括所述终端当前所在的服务小区的全部离散子带中起始子带的频点、表征频段内各子带是否属于终端当前所在的服务小区的比特位图、以及频段内各子带的频点间隔。所述频段为所述终端当前所在的服务小区的全部离散子带所在的频段。
进一步的,所述第一指示信息中还可包括所述终端当前所在的服务小区的全部离散子带的数目。
其中,所述第二指示信息可通过携带如下信息之一,指示所述终端在所述服务小区的全部离散子带中能够使用的子带:
所述第二指示信息包括所述终端能够使用的起始子带在所述终端当前所在的服务小区的全部离散子带中的编号,以及所述终端能够使用的子带数量。或者所述第二指示信息中包括表征所述终端当前所在的服务小区的全部离散子带中对应各子带能够被终端使用的比特位图。
一种可能的实施方式中,所述发送单元102,还用于:向终端发送第三指示信息,所述第三指示信息用于指示至少一个锚点子带信息。其中,所述锚点子带信息包括如下信息中的至少一项:锚点子带的频点;锚点子带在所述终端当前所在的服务小区的全部离散子带中的编号;锚点子带的频点相对所述起始子带的频点的间隔。
又一种可能的实施方式中,应用于网络设备的通信装置100还包括接收单元103,所述接收单元103用于:在所述发送单元102向终端发送第二指示信息之前,接收终端发送的子带聚合规格能力信息,所述子带聚合规格能力信息用于指示终端支持聚合的子带数量。
又一种可能的实施方式中,所述发送单元102,还用于:向终端发送第四指示信息,所述第四指示信息用于指示终端接收系统消息的子带。
其中,所述第四指示信息通过携带如下信息之一,指示终端接收系统消息的子带:包括起始子带频点、以及表征终端是否能够接收系统信息的比特位图。或者包括终端能接收系统信息的每个子带的频点,其中,每个子带的频点通过该子带相对锚点子带的频点间隔表征。
当采用硬件形式实现时,本申请实施例中,处理单元101可以是处理器或控制器。发送单元102和接收单元103可以是通信接口、收发器、收发电路等。其中,通信接口是统称,可以包括一个或多个接口。
当所处理单元101处理器,发送单元102和接收单元103是收发器时,本申请实施例所涉及的通信装置100可以为图9所示通信装置,图9所示的通信装置可以是网络设备,例如基站。
图9示出了本申请实施例提供的网络设备1000的结构示意图,即示出了通信装置100的另一结构示意图。参阅图9所示,网络设备1000包括处理器1001、收发器1002。其中,处理器1001也可以为控制器。所述处理器1001被配置为支持网络设备执行图3、图6和图7中涉及的功能。所述收发器1002被配置为支持网络设备收发消息的功能。所述网络设备还可以包括存储器1003,所述存储器1003用于与处理器1001耦合,其保存网络设备必要的程序指令和数据。其中,处理器1001、收发器1002和存储器1003相连,该存储器1003用于存储指令,该处理器1001用于执行该存储器1003存储的指令,以控制收发器1002收发信号,完成上述方法中网络设备执行相应功能的步骤。
本申请实施例中,通信装置100和网络设备1000所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
在采用集成的单元(器、器件)的情况下,图10示出了本申请实施例提供的一种通信装置的结构示意图。图10所述的通信装置200可应用于离散窄带通信系统的终端,参阅图10所示应用于终端的通信装置200可包括处理单元201和接收单元202。其中,接收单元202,在所述处理单元201的控制下接收网络设备发送的第一指示信息和第二指示信息。所述第一指示信息用于指示终端当前所在的服务小区的全部离散子带的频点;所述第二指示信息用于指示所述终端在所述终端当前所在的服务小区的全部离散子带中能够使用的子带。
其中,所述第一指示信息通过携带终端当前所在的服务小区的全部离散子带中起始子带的频点、表征频段内各子带是否属于终端当前所在的服务小区的比特位图、以及频段内各子带的频点间隔,指示终端当前所在的服务小区的全部离散子带的频点。所述频段为所述终端当前所在的服务小区的全部离散子带所在的频段
进一步的,所述第一指示信息中还包括所述终端当前所在的服务小区的全部离散子带的数目。
其中,所述第二指示信息通过携带如下信息之一,指示所述终端在所述服务小区的全部离散子带中能够使用的子带:所述终端能够使用的起始子带在终端当前所在的服务小区的全部离散子带中的编号,以及所述终端能够使用的子带数量。或者所述第二指示信息中包括表征所述终端当前所在的服务小区的全部离散子带中对应各子带能够被终端使用的比特位图。
一种可能的实施方式中,所述接收单元202还用于:接收网络设备发送的第三指示信息,所述第三指示信息用于指示至少一个锚点子带信息。其中,所述锚点子带信息包括如下信息中的至少一项:锚点子带的频点;锚点子带在所述终端当前所在的服务小区的全部离散子带中的编号;锚点子带的频点相对所述起始子带的频点的间隔。
另一种可能的实施方式中,通信装置200还包括发送单元203,所述发送单元203用于:在所述接收单元202接收网络设备发送的第二指示信息之前,向网络设备发送子带聚合规格能力信息,所述子带聚合规格能力信息用于指示终端支持聚合的子带数量。
又一种可能的实施方式中,所述接收单元202,还用于:接收网络设备发送的第四指 示信息,所述第四指示信息用于指示终端接收系统消息的子带。其中,所述第四指示信息通过携带如下信息之一,指示终端接收系统消息的子带:起始子带频点、以及表征终端是否能够接收系统信息的比特位图。终端能接收系统信息的每个子带的频点,其中,每个子带的频点通过该子带相对锚点子带的频点间隔表征。
当采用硬件形式实现时,本申请实施例中,处理单元201可以是处理器或控制器。接收单元202可以是通信接口、接收器、接收电路等。发送单元203可以是通信接口、发射器、发射电路等。其中,通信接口是统称,可以包括一个或多个接口。
当处理单元201是处理器,接收单元202是接收器、发送单元203是发射器时,本申请实施例所涉及的通信装置200可以为图11所示通信装置,图11所示的通信装置可以是终端。
图1示出了本申请实施例提供的终端2000的结构示意图,即示出了通信装置200另一种可能的结构示意图。参阅图11所示,终端2000包括处理器2001、发射器2002和接收器2003。其中,处理器2001也可以为控制器。所述处理器2001被配置为支持终端执行图3、图6和图7中涉及的功能。所述发射器2002和接收器2003被配置为支持终端2000与网络设备之间进行消息的收发功能。所述终端2000还可以包括存储器2004,所述存储器2004用于与处理器2001耦合,其保存终端2000必要的程序指令和数据。其中,处理器2001、发射器2002、接收器2003和存储器2004相连,该存储器2004用于存储指令,该处理器2001用于执行该存储器2004存储的指令,以控制发射器2002和接收器2003收发信号,完成上述方法中终端执行相应功能的步骤。
进一步的,所述终端2000还可以包括天线2005。
本申请实施例中,通信装置200和终端2000所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
可以理解的是,本申请实施例附图中仅仅示出了终端和网络设备的简化设计。在实际应用中,终端和网络设备并不限于上述结构,例如还可以包括天线阵列,双工器以及基带处理部分。
其中,网络设备的双工器用于实现天线阵列,既用于发送信号,又用于接收信号。发射器用于实现射频信号和基带信号之间的转换,通常发射器可以包括功率放大器,数模转换器和变频器,通常接收器可以包括低噪放,模数转换器和变频器。其中,接收器和发射器有时也可以统称为收发器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。再例如,终端还可以包括显示设备、输入输出接口等。
其中,终端可具有单天线,也可以具有多天线(即天线阵列)。其中,终端的双工器用于实现天线阵列既用于发送信号,又用于接收信号。发射器用于实现射频信号和基带信号之间的转换,通常发射器可以包括功率放大器,数模转换器和变频器,通常接收器可以包括低噪放,模数转换器和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。在一个示例中,终端也可以包括控制部分,用于请求上行物理资源、计算下行信道对应的信道状态信息(channel state information, CSI)、判断下行数据包是否接收成功等等。
需要说明的是,本申请实施例上述涉及的处理器可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
其中,所述存储器可以集成在所述处理器中,也可以与所述处理器分开设置。
作为一种实现方式,接收器和发射器的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,将实现处理器、接收器和发射器功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器、接收器和发射器的功能。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端。
本申请实施例还提供一种计算机存储介质,该计算机存储介质中存储有一些指令,这些指令被执行时,可以完成上述方法实施例中涉及的通信方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品中包括计算机程序,该计算机程序用于执行上述方法实施例中涉及的通信方法。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的 精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种通信方法,应用于离散窄带通信系统,其特征在于,包括:
    网络设备向终端发送第一指示信息,所述第一指示信息包括终端当前所在的服务小区的全部离散子带中起始子带的频点、表征频段内各子带是否属于所述服务小区的比特位图、以及频段内各子带的频点间隔,其中,所述频段为所述服务小区的全部离散子带所在的频段;
    所述网络设备向终端发送第二指示信息,所述第二指示信息用于指示所述终端在所述服务小区的全部离散子带中能够使用的子带。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示信息中还包括所述服务小区的全部离散子带的数目。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向终端发送第三指示信息,所述第三指示信息用于指示至少一个锚点子带信息,其中,所述锚点子带信息包括如下信息中的至少一项:
    锚点子带的频点;
    锚点子带在所述服务小区的全部离散子带中的编号;
    锚点子带的频点相对所述起始子带的频点的间隔。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述第二指示信息通过携带如下信息之一,指示所述终端在所述服务小区的全部离散子带中能够使用的子带:
    所述终端能够使用的起始子带在所述服务小区的全部离散子带中的编号,以及所述终端能够使用的子带数量,或者
    表征所述服务小区的全部离散子带中对应各子带能够被终端使用的比特位图。
  5. 如权利要求4所述的方法,其特征在于,所述网络设备向终端发送第二指示信息之前,所述方法还包括:
    所述网络设备接收终端发送的子带聚合规格能力信息,所述子带聚合规格能力信息用于指示终端支持聚合的子带数量。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向终端发送第四指示信息,所述第四指示信息用于指示终端接收系统消息的子带;
    其中,所述第四指示信息通过携带如下信息之一,指示终端接收系统消息的子带:
    起始子带频点、以及表征终端能够接收系统信息的比特位图;
    终端能够接收系统信息的每个子带的频点,其中,每个子带的频点通过该子带相对锚点子带的频点间隔表征。
  7. 一种通信方法,应用于离散窄带通信系统,其特征在于,包括:
    终端接收网络设备发送的第一指示信息,所述第一指示信息包括终端当前所在的服务小区的全部离散子带中起始子带的频点、表征频段内各子带是否属于所述服务小区的比特位图、以及频段内各子带的频点间隔,其中,所述频段为所述服务小区的全部离散子带所在的频段;
    所述终端接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述终端在所述服务小区的全部离散子带中能够使用的子带。
  8. 如权利要求7所述的方法,其特征在于,所述第一指示信息中还包括所述服务小区的全部离散子带的数目。
  9. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端接收网络设备发送的第三指示信息,所述第三指示信息用于指示至少一个锚点子带信息,其中,所述锚点子带信息包括如下信息中的至少一项:
    锚点子带的频点;
    锚点子带在所述服务小区的全部离散子带中的编号;
    锚点子带的频点相对所述起始子带的频点的间隔。
  10. 如权利要求7至9任一项所述的方法,其特征在于,所述第二指示信息通过携带如下信息之一,指示所述终端在所述服务小区的全部离散子带中能够使用的子带:
    所述终端能够使用的起始子带在所述服务小区的全部离散子带中的编号,以及所述终端能够使用的子带数量,或者
    表征所述服务小区的全部离散子带中对应各子带能够被终端使用的比特位图。
  11. 如权利要求10所述的方法,其特征在于,所述终端接收网络设备发送的第二指示信息之前,所述方法还包括:
    所述终端向网络设备发送子带聚合规格能力信息,所述子带聚合规格能力信息用于指示终端支持聚合的子带数量。
  12. 如权利要求7至11任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收网络设备发送的第四指示信息,所述第四指示信息用于指示终端接收系统消息的子带;
    其中,所述第四指示信息通过携带如下信息之一,指示终端接收系统消息的子带:
    起始子带频点、以及表征终端能够接收系统信息的比特位图;
    终端能够接收系统信息的每个子带的频点,其中,每个子带的频点通过该子带相对锚点子带的频点间隔表征。
  13. 一种通信装置,应用于离散窄带通信系统中的网络设备,其特征在于,包括处理器和收发器,其中:
    所述收发器,在所述处理器的控制下向终端发送第一指示信息和第二指示信息;
    其中,所述第一指示信息包括终端当前所在的服务小区的全部离散子带中起始子带的频点、表征频段内各子带是否属于服务小区的比特位图、以及频段内各子带的频点间隔,其中,所述频段为所述服务小区的全部离散子带所在的频段;
    所述第二指示信息用于指示所述终端在所述服务小区的全部离散子带中能够使用的子带。
  14. 如权利要求13所述的装置,其特征在于,所述第一指示信息中还包括所述服务小区的全部离散子带的数目。
  15. 如权利要求13所述的装置,其特征在于,所述收发器,还用于:
    向终端发送第三指示信息,所述第三指示信息用于指示至少一个锚点子带信息,其中,所述锚点子带信息包括如下信息中的至少一项:
    锚点子带的频点;
    锚点子带在所述服务小区的全部离散子带中的编号;
    锚点子带的频点相对所述起始子带的频点的间隔。
  16. 如权利要求13至15任一项所述的装置,其特征在于,所述第二指示信息通过携带如下信息之一,指示所述终端在所述服务小区的全部离散子带中能够使用的子带:
    所述终端能够使用的起始子带在所述服务小区的全部离散子带中的编号,以及所述终端能够使用的子带数量,或者
    表征所述服务小区的全部离散子带中对应各子带能被终端使用的比特位图。
  17. 如权利要求16所述的装置,其特征在于,所述收发器,还用于:
    在向终端发送第二指示信息之前,接收终端发送的子带聚合规格能力信息,所述子带聚合规格能力信息用于指示终端支持聚合的子带数量。
  18. 如权利要求13至17任一项所述的装置,其特征在于,所述收发器,还用于:
    向终端发送第四指示信息,所述第四指示信息用于指示终端接收系统消息的子带;
    其中,所述第四指示信息通过携带如下信息之一,指示终端接收系统消息的子带:
    起始子带频点、以及表征终端能够接收系统信息的比特位图;
    终端能够接收系统信息的每个子带的频点,其中,每个子带的频点通过该子带相对锚点子带的频点间隔表征。
  19. 一种通信装置,应用于离散窄带通信系统的终端,其特征在于,包括处理器和接收器,其中:
    所述接收器,在所述处理器的控制下接收网络设备发送的第一指示信息和第二指示信息;
    其中,所述第一指示信息包括终端当前所在的服务小区的全部离散子带中起始子带的频点、表征频段内各子带是否属于服务小区的比特位图、以及频段内各子带的频点间隔,其中,所述频段为所述服务小区的全部离散子带所在的频段;
    所述第二指示信息用于指示所述终端在所述服务小区的全部离散子带中能够使用的子带。
  20. 如权利要求19所述的装置,其特征在于,所述第一指示信息中还包括所述服务小区的全部离散子带的数目。
  21. 如权利要求19所述的装置,其特征在于,所述接收器还用于:
    接收网络设备发送的第三指示信息,所述第三指示信息用于指示至少一个锚点子带信息,其中,所述锚点子带信息包括如下信息中的至少一项:
    锚点子带的频点;
    锚点子带在所述服务小区的全部离散子带中的编号;
    锚点子带的频点相对所述起始子带的频点的间隔。
  22. 如权利要求19至21任一项所述的装置,其特征在于,所述第二指示信息通过携带如下信息之一,指示所述终端在所述服务小区的全部离散子带中能够使用的子带:
    所述终端能够使用的起始子带在所述服务小区的全部离散子带中的编号,以及所述终端能够使用的子带数量,或者
    表征所述服务小区的全部离散子带中对应各子带能够被终端使用的比特位图。
  23. 如权利要求22所述的装置,其特征在于,所述装置还包括发射器,所述发射器用于:
    在所述接收器接收网络设备发送的第二指示信息之前,向网络设备发送子带聚合规格能力信息,所述子带聚合规格能力信息用于指示终端支持聚合的子带数量。
  24. 如权利要求19至23任一项所述的装置,其特征在于,所述接收器,还用于:
    接收网络设备发送的第四指示信息,所述第四指示信息用于指示终端接收系统消息的子带;
    其中,所述第四指示信息通过携带如下信息之一,指示终端接收系统消息的子带:
    起始子带频点、以及表征终端能够接收系统信息的比特位图;
    终端能够接收系统信息的每个子带的频点,其中,每个子带的频点通过该子带相对锚点子带的频点间隔表征。
PCT/CN2018/092692 2017-07-17 2018-06-25 一种通信方法及装置 WO2019015445A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18835649.7A EP3648518A4 (en) 2017-07-17 2018-06-25 COMMUNICATION METHOD AND DEVICE
US16/744,656 US11490387B2 (en) 2017-07-17 2020-01-16 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710582800.2A CN109275190B (zh) 2017-07-17 2017-07-17 一种通信方法及装置
CN201710582800.2 2017-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/744,656 Continuation US11490387B2 (en) 2017-07-17 2020-01-16 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019015445A1 true WO2019015445A1 (zh) 2019-01-24

Family

ID=65015416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092692 WO2019015445A1 (zh) 2017-07-17 2018-06-25 一种通信方法及装置

Country Status (4)

Country Link
US (1) US11490387B2 (zh)
EP (1) EP3648518A4 (zh)
CN (1) CN109275190B (zh)
WO (1) WO2019015445A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114531355A (zh) * 2020-11-23 2022-05-24 维沃移动通信有限公司 通信方法、装置及通信设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114946146A (zh) * 2019-10-30 2022-08-26 Oppo广东移动通信有限公司 用于混合自动重传请求上报的用户设备和方法
CN111314924B (zh) * 2020-02-13 2020-12-04 中国电信股份有限公司 信息传输方法、近端设备、远端设备和通信系统
CN114501353B (zh) * 2020-10-23 2024-01-05 维沃移动通信有限公司 通信信息的发送、接收方法及通信设备
WO2022109335A1 (en) * 2020-11-20 2022-05-27 R.P. Scherer Technologies, Llc Glycoside dual-cleavage linkers for antibody-drug conjugates
CN118368203A (zh) * 2023-01-17 2024-07-19 中国移动通信有限公司研究院 数据传输方法、装置、网络设备、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906243A (zh) * 2012-12-28 2014-07-02 中国移动通信集团公司 一种辅载波的配置和资源调度的方法及系统
CN105813203A (zh) * 2014-12-30 2016-07-27 联想(北京)有限公司 一种信息处理方法、基站及终端设备
US20170111860A1 (en) * 2014-10-31 2017-04-20 Qualcomm Incorporated Dynamic bandwidth switching for reducing power consumption in wireless communication devices
CN106937390A (zh) * 2017-03-28 2017-07-07 北京佰才邦技术有限公司 一种资源配置的方法及终端、基站

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378370B (zh) * 2010-08-13 2014-10-29 电信科学技术研究院 一种载波聚合能力的处理方法和设备
CN102547718B (zh) * 2012-01-19 2016-01-20 北京邮电大学 基于最大空间优先的离散频谱聚合方法
CN103298121B (zh) * 2012-03-02 2016-07-06 普天信息技术有限公司 一种终端频点映射与配置方法
CN103052076B (zh) * 2012-08-28 2016-07-20 深圳市国电科技通信有限公司 一种离散窄带实现宽带数据传输的方法
CN103347301B (zh) * 2013-07-09 2016-04-20 深圳供电局有限公司 一种为多子带用户终端分配无线资源的方法及装置
CN104270767A (zh) * 2014-09-30 2015-01-07 国家电网公司 一种适用于电力无线专网宽带化的解决方法
WO2016183950A1 (zh) * 2015-05-15 2016-11-24 华为技术有限公司 载波聚合能力上报、载波测量装置及方法
WO2017030345A1 (en) * 2015-08-14 2017-02-23 Lg Electronics Inc. Method and apparatus for performing frequency hopping for mtc ue in wireless communication system
US10917214B2 (en) * 2015-09-10 2021-02-09 Lg Electronics Inc. Communication method and MTC device using narrowband
CN105611538B (zh) * 2015-12-30 2019-02-15 国网信息通信产业集团有限公司 一种用于授权电力无线频段的频点聚合方法及系统
CN106330262A (zh) * 2016-08-31 2017-01-11 国网河南省电力公司开封供电公司 基于载波聚合的电力无线通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906243A (zh) * 2012-12-28 2014-07-02 中国移动通信集团公司 一种辅载波的配置和资源调度的方法及系统
US20170111860A1 (en) * 2014-10-31 2017-04-20 Qualcomm Incorporated Dynamic bandwidth switching for reducing power consumption in wireless communication devices
CN105813203A (zh) * 2014-12-30 2016-07-27 联想(北京)有限公司 一种信息处理方法、基站及终端设备
CN106937390A (zh) * 2017-03-28 2017-07-07 北京佰才邦技术有限公司 一种资源配置的方法及终端、基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3648518A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114531355A (zh) * 2020-11-23 2022-05-24 维沃移动通信有限公司 通信方法、装置及通信设备
CN114531355B (zh) * 2020-11-23 2023-07-18 维沃移动通信有限公司 通信方法、装置及通信设备

Also Published As

Publication number Publication date
US20200154437A1 (en) 2020-05-14
US11490387B2 (en) 2022-11-01
EP3648518A1 (en) 2020-05-06
EP3648518A4 (en) 2020-06-24
CN109275190B (zh) 2021-10-26
CN109275190A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
JP7000345B2 (ja) ワイヤレスローカルエリアネットワークにおけるトリガフレーム
US11881917B2 (en) Communications method and apparatus
JP7197700B2 (ja) ガード・バンド指示方法及び装置
WO2019015445A1 (zh) 一种通信方法及装置
US20210250878A1 (en) Method and apparatus for reporting power headroom report, and method and apparatus for obtaining power headroom report
US11191036B2 (en) Power control based on path loss and power value
WO2020063130A1 (zh) 一种资源确定方法及装置
WO2019029466A1 (zh) 一种时间配置的方法、网络设备及ue
WO2021233217A1 (zh) 能力信息上报方法及其装置
WO2020238992A1 (zh) 一种通信方法及装置
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2020155059A1 (zh) 一种信息传输方法、相关设备及系统
US20210204312A1 (en) Downlink control information transmission method and apparatus
CN110035548B (zh) 通信的方法和通信设备
WO2021129229A1 (zh) 一种通信方法和装置
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
WO2022067802A1 (zh) 探测参考信号配置方法与装置、终端和网络设备
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2022088085A1 (zh) 上报直流载波位置的方法、终端设备和网络设备
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2022082767A1 (zh) 一种通信方法及相关设备
WO2022104650A1 (zh) 上报直流载波位置的方法、终端设备和网络设备
WO2020192360A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018835649

Country of ref document: EP

Effective date: 20200130