WO2020155059A1 - 一种信息传输方法、相关设备及系统 - Google Patents

一种信息传输方法、相关设备及系统 Download PDF

Info

Publication number
WO2020155059A1
WO2020155059A1 PCT/CN2019/074277 CN2019074277W WO2020155059A1 WO 2020155059 A1 WO2020155059 A1 WO 2020155059A1 CN 2019074277 W CN2019074277 W CN 2019074277W WO 2020155059 A1 WO2020155059 A1 WO 2020155059A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
channel state
frequency
state information
information
Prior art date
Application number
PCT/CN2019/074277
Other languages
English (en)
French (fr)
Inventor
毕文平
赵越
谢信乾
余政
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980090774.9A priority Critical patent/CN113366779B/zh
Priority to PCT/CN2019/074277 priority patent/WO2020155059A1/zh
Publication of WO2020155059A1 publication Critical patent/WO2020155059A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communication technology, in particular to an information transmission method, related equipment and system.
  • Machine type communication (MTC) user equipment is currently the main type of IoT user equipment.
  • MTC Machine type communication
  • UE user equipment
  • the MTC user equipment is usually a low-cost device, and the supported radio frequency (RF) bandwidth is relatively small, and its RF transmission and reception bandwidth is generally 1.4 MHz.
  • RF radio frequency
  • MTC user equipment can only receive at most 6 consecutive physical resource blocks (PRB) signals in a subframe, that is, receive signals in a narrowband, but cannot receive the entire system bandwidth (for example, 20MHz). ) Within the signal.
  • PRB physical resource blocks
  • the MTC user equipment in the connected mode reports narrowband channel state information (CSI) according to the coverage level.
  • CSI narrowband channel state information
  • the user equipment does not work in the idle mode. Report channel status information. Therefore, there is still no solution for how users report channel state information in an idle state, especially for frequency hopping situations, how MTC user equipment reports channel state information is a problem that needs to be solved at present.
  • the embodiments of the present invention provide an information transmission method, related equipment, and system.
  • the user equipment can determine the reported channel state information according to the channel state of one or more frequency units, which can improve the accuracy of network equipment scheduling downlink transmission resources, and Resource utilization, saving power consumption of user equipment.
  • an embodiment of the present invention provides an information transmission method, which is applied to the first communication device side.
  • the method includes: a first communication device determines a first frequency domain resource, the first frequency domain resource includes N frequency units, and N is an integer greater than or equal to 1, and the first communication device sends M groups of channel state information to the second communication device, The M sets of channel state information are determined by the first communication device according to the channel state information of one or more of the N frequency units, and M is an integer greater than or equal to 1.
  • the first communication device may be a user equipment
  • the second communication device may be a network device.
  • the user equipment in the idle state can determine the reported one or more sets of channel state information according to the channel state information of one or more of the N frequency units, without requiring measurement as in the prior art
  • the channel quality of the entire bandwidth and the channel state information of the entire bandwidth are reported. Therefore, the embodiment of the present invention can reduce the reported data, reduce the measurement overhead and the feedback overhead, and save the power consumption of the user equipment.
  • the network equipment can more accurately configure resources for scheduling downlink control information and/or downlink control channel resources and/or downlink data channel resources and/or downlink control for the user equipment according to the channel state information reported by the user equipment in the idle state.
  • the number of repetitions of the channel and/or the number of repetitions of the downlink data channel and avoids the problem of waste of resources and power consumption caused by excessive scheduling, thereby saving resources and improving resource utilization.
  • the embodiment of the present invention can also report the channel state information of the entire bandwidth.
  • the channel state information reported by the user equipment can be considered comprehensively, so that the network equipment can perform downlink scheduling more accurately.
  • the first frequency domain resource is a system bandwidth, or the first frequency domain resource is a channel state information reference resource, or the first frequency domain resource is a frequency domain resource for the first communication device to monitor downlink control information, Or the first frequency domain resource is a frequency domain resource for the first communication device to monitor the downlink control channel, or the first frequency domain resource is a frequency domain resource selected by the first communication device.
  • N is a positive integer greater than or equal to 2
  • the group of channel state information is the channel state information of the P frequency units among the N frequency units.
  • Average value, P is an integer less than or equal to N and greater than or equal to 2;
  • the set of channel state information is determined by the first communication device according to the channel state information of Q frequency units among the N frequency units and a first weighting coefficient, the first weighting coefficient being predefined or configured by the second communication device Yes, Q is an integer less than or equal to N and greater than or equal to 2;
  • the set of channel state information is channel state information of a frequency unit with a middle channel state among the N frequency units;
  • the set of channel state information is determined by the first communication device according to the channel state information of the first frequency unit and/or the channel state information of the second frequency unit among the N frequency units, and the first frequency unit is N frequency units.
  • the frequency unit with the best channel state among the units, and the second frequency unit is the frequency unit with the worst channel state among the N frequency units.
  • the first weighting coefficient may be configured by the second communication device through physical layer signaling (including but not limited to downlink control information (DCI) signaling), or may be second communication
  • the device uses high-level signaling (including but not limited to radio resource control (RRC) signaling or medium access control control (MAC CE) signaling).
  • RRC radio resource control
  • MAC CE medium access control control
  • N is a positive integer greater than or equal to 2
  • M groups are at least two groups, that is, M is greater than or equal to 2; any group of channel state information in the at least two groups of channel state information is the first communication device Determined according to any of the following methods:
  • the first weighting coefficient is predefined or configured by the second communication device, and Q is an integer less than or equal to N and greater than or equal to 2. ;
  • the first frequency unit is the frequency unit with the best channel state among the N frequency units
  • the second frequency unit It is the frequency unit with the worst channel state among the N frequency units.
  • the first weighting coefficient may be configured by the second communication device through physical layer signaling (including but not limited to DCI signaling), or may be configured by the second communication device through higher layer signaling (including but not limited to DCI signaling). Limited to RRC signaling or MAC CE signaling).
  • N is a positive integer greater than or equal to 2
  • M N.
  • the channel state information of the M groups includes the channel state information of each of the N frequency units.
  • the channel state information includes one or more of the channel quality indicator, the number of repetitions of the first information, the aggregation level of the first information, or the received power of the reference signal, and the first information includes the downlink control channel Or downlink control information.
  • the frequency unit includes one or more of narrowband, subband, subcarrier, or resource block.
  • the above N frequency units may adopt a frequency hopping mode.
  • the embodiments of the present invention provide an information transmission method, which is applied to the second communication device side.
  • the method includes: a second communication device receives M groups of channel state information sent by a first communication device, the M groups of channel state information are determined by the first communication device according to the channel state information of one or more of the N frequency units , N frequency units are frequency units included in the first frequency domain resource, N is an integer greater than or equal to 1, and M is an integer greater than or equal to 1.
  • the first communication device may be a user equipment
  • the second communication device may be a network device.
  • the user equipment in the idle state can determine the reported one or more sets of channel state information according to the channel state information of one or more of the N frequency units, without requiring measurement as in the prior art
  • the channel quality of the entire bandwidth and the channel state information of the entire bandwidth are reported. Therefore, the embodiment of the present invention can reduce the reported data and reduce the measurement overhead and the feedback overhead.
  • the network equipment can more accurately configure and schedule downlink control information and/or downlink control channel resources and/or downlink data channel resources and/or downlink control channel resources for the user equipment according to the channel state information reported by the user equipment in the idle state.
  • the number of repetitions and/or the number of repetitions of the downlink data channel and avoids the problem of waste of resources and power consumption caused by excessive scheduling.
  • the embodiment of the present invention can also report the channel state information of the entire bandwidth.
  • the channel state information reported by the user equipment can be considered comprehensively, so that the network equipment can perform downlink scheduling more accurately.
  • the first frequency domain resource is a system bandwidth, or the first frequency domain resource is a channel state information reference resource, or the first frequency domain resource is a frequency domain resource for the first communication device to monitor downlink control information, Or the first frequency domain resource is a frequency domain resource for the first communication device to monitor the downlink control channel, or the first frequency domain resource is a frequency domain resource selected by the first communication device.
  • N is a positive integer greater than or equal to 2
  • the set of channel state information is an average value of channel state information of P frequency units among N frequency units, and P is an integer less than or equal to N and greater than or equal to 2;
  • the set of channel state information is determined by the first communication device according to the channel state information of Q frequency units among the N frequency units and a first weighting coefficient, the first weighting coefficient being predefined or configured by the second communication device Yes, Q is an integer less than or equal to N and greater than or equal to 2;
  • the set of channel state information is channel state information of a frequency unit with a middle channel state among the N frequency units;
  • the set of channel state information is determined by the first communication device according to the channel state information of the first frequency unit and/or the channel state information of the second frequency unit among the N frequency units, and the first frequency unit is N frequency units.
  • the frequency unit with the best channel state among the units, and the second frequency unit is the frequency unit with the worst channel state among the N frequency units.
  • the first weighting coefficient may be configured by the second communication device through physical layer signaling (including but not limited to DCI signaling), or may be configured by the second communication device through higher layer signaling (including but not limited to DCI signaling). Limited to RRC signaling or MAC CE signaling) configuration.
  • N is a positive integer greater than or equal to 2
  • M groups are at least two groups, that is, M is greater than or equal to 2.
  • Any group of channel state information in the at least two sets of channel state information is determined by the first communication device according to Determined in any of the following ways:
  • the first frequency unit is the frequency unit with the best channel state among the N frequency units
  • the second frequency unit It is the frequency unit with the worst channel state among the N frequency units.
  • the first weighting coefficient may be configured by the second communication device through physical layer signaling (including but not limited to DCI signaling), or may be configured by the second communication device through higher layer signaling (including but not limited to DCI signaling). Limited to RRC signaling or MAC CE signaling) configuration.
  • N is a positive integer greater than or equal to 2
  • M N
  • the M sets of channel state information include channel state information of each of the N frequency units.
  • the channel state information includes one or more of the channel quality indicator, the number of repetitions of the first information, the aggregation level of the first information, or the received power of the reference signal of the first information, and the first information Including downlink control channel or downlink control information.
  • the above N frequency units may adopt a frequency hopping mode.
  • embodiments of the present invention provide a resource allocation method, which is applied to the second communication device side.
  • the method includes: a second communication device determines first indication information and/or second indication information, the first indication information is used to indicate the time resource and/or frequency resource of the first transmission resource of the first communication device, and the second indication information Used to indicate the first reference signal configuration of the first communication device and/or the feedback search space of the first transmission resource; the second communication device sends the first indication information and/or the second indication information to the first communication device.
  • the first communication device is a user equipment
  • the second communication device is a network device.
  • the resource configuration of the present application is more flexible.
  • the coverage enhancement level of the first communication device when the coverage enhancement level of the first communication device is the first coverage enhancement level, the first indication information is included in the first message or the second message, and the second indication information is included in the first message
  • the coverage enhancement level of the first communication device is the second coverage enhancement level
  • the first indication information is included in the second message
  • the second indication information is included in the second message.
  • a network device such as a base station
  • the coverage level of the terminal is considered, and user-specific resources are allocated to user equipment with poor channel quality, thereby improving the transmission reliability of the user equipment and avoiding channel quality.
  • Resource conflicts occupied by poor user equipment increase the success rate of transmission; share resources are allocated to users with good channel quality to improve resource utilization.
  • the first reference signal configuration includes the cyclic shift of the first reference signal, the orthogonal cover code of the first reference signal, the scrambling sequence of the first reference signal, the sequence of the first reference signal, and the first reference signal.
  • the first reference signal includes demodulation reference signals, cell-specific reference signals, multicast/multicast single frequency network reference signals, position reference signals, channel state information reference signals, or sounding reference signals. One or more.
  • the feedback search space of the first transmission resource is the public search space and/or the user-specific search space.
  • the coverage enhancement level of the second coverage enhancement level the feedback search space of the first transmission resource is the user-specific search space.
  • embodiments of the present invention provide a resource allocation method, which is applied to the first communication device side.
  • the method includes: a first communication device receives first indication information and/or second indication information sent by a second communication device, where the first indication information is used to indicate the time resource and/or frequency of the first transmission resource of the first communication device Resource, the second indication information is used to indicate the first reference signal configuration of the first communication device and/or the feedback search space of the first transmission resource.
  • the first communication device is a user equipment
  • the second communication device is a network device.
  • network equipment such as a base station
  • allocates resources consider the coverage level of the terminal, allocate user-specific resources to users with poor channel quality, and allocate shared resources only to users with good channel quality, which can improve transmission reliability.
  • Channel quality is divided into 4 or 2 levels from good to bad: Level 4: coverage enhancement level 0, coverage enhancement level 1, coverage enhancement level 2. Coverage enhancement level 3; or level 2: Coverage enhancement level mode A and coverage enhancement level mode B.
  • the first coverage enhancement level is coverage enhancement level 0 or coverage enhancement level 1, or the first coverage enhancement level is coverage enhancement level mode A.
  • the second coverage enhancement level is coverage enhancement level 2 or coverage enhancement level 3, or the second coverage enhancement level is coverage enhancement level mode B.
  • a network device such as a base station
  • the coverage level of the terminal is considered, and user-specific resources are allocated to user equipment with poor channel quality, thereby improving the transmission reliability of the user equipment and avoiding channel quality.
  • Resource conflicts occupied by poor user equipment increase the success rate of transmission; share resources are allocated to users with good channel quality to improve resource utilization.
  • the first message is a system message SIB
  • the second message is a user-specific radio resource control RRC message or downlink control information.
  • the first communication device determines the first reference signal configuration according to the second indication information and the second manner.
  • the first reference signal configuration includes the cyclic shift of the first reference signal, the orthogonal cover code of the first reference signal, the scrambling sequence of the first reference signal, the sequence of the first reference signal, and the first reference signal.
  • the first communication device includes: a determining unit and a sending unit.
  • a sending unit configured to send M groups of channel state information to a second communication device, where the M groups of channel state information are channel state information of the first communication device according to one or more of the N frequency units Certainly, M is an integer greater than or equal to 1.
  • the embodiments of the present invention provide another communication device.
  • the communication device is a second communication device.
  • the second communication device may include multiple functional modules or units for correspondingly executing the information provided in the second aspect.
  • the transmission method, or the information transmission method provided in any one of the possible implementation manners of the second aspect.
  • an embodiment of the present invention provides a communication device.
  • the communication device is a second communication device.
  • the second communication device may include multiple functional modules or units for correspondingly performing the resource allocation provided in the third aspect. Method, or the resource allocation method provided by any one of the possible implementation manners of the third aspect.
  • the determining unit is configured to determine the first indication information and/or the second indication information, where the first indication information is used to indicate the time resource and/or the frequency resource of the first transmission resource of the first communication device, and the second indication information is The second indication information is used to indicate the first reference signal configuration of the first communication device and/or the feedback search space of the first transmission resource;
  • the sending unit is configured to send the first indication information and/or the second indication information to the first communication device.
  • an embodiment of the present invention provides another communication device.
  • the communication device is a first communication device.
  • the first communication device may include multiple functional modules or units for correspondingly executing the resources provided in the fourth aspect.
  • the first communication device includes: a receiving unit.
  • the receiving unit is configured to receive first indication information and/or second indication information sent by the second communication device, where the first indication information is used to indicate the time resource and/or the first transmission resource of the first communication device Frequency resource, the second indication information is used to indicate the first reference signal configuration of the first communication device and/or the feedback search space of the first transmission resource.
  • an embodiment of the present invention provides a communication device, which is used to execute the information transmission method described in the first aspect.
  • the communication device is a first communication device, and the first communication device may include a memory and a processor, a transmitter, and a receiver coupled with the memory.
  • the transmitter is used to support the first communication device to perform the step of sending information by the first communication device in the information transmission method provided in the first aspect.
  • the receiver is used to support the first communication device to perform the step of receiving information by the first communication device in the information transmission method provided in the first aspect.
  • the transmitter and receiver can be integrated into a transceiver.
  • the processor is configured to support the first communication device to execute other processing steps of the first communication device except for sending information and receiving information in the information transmission method provided in the first aspect.
  • the transmitter and receiver in the embodiment of the present invention may be integrated together, or may be coupled through a coupler.
  • the memory is used to store the implementation code of the information transmission method described in the first aspect, and the processor is used to execute the program code stored in the memory, that is, to execute the information transmission method provided in the first aspect, or the first aspect may The information transmission method provided by any of the implementation modes.
  • an embodiment of the present invention provides another communication device, which is used to execute the information transmission method described in the second aspect.
  • the communication device is a second communication device, and the second communication device may include a memory and a processor, a transmitter, and a receiver coupled with the memory.
  • the transmitter is used to support the second communication device to perform the step of sending information by the second communication device in the information transmission method provided in the second aspect.
  • the receiver is used to support the second communication device to perform the step of receiving information by the second communication device in the information transmission method provided in the second aspect.
  • the transmitter and receiver can be integrated into a transceiver.
  • the processor is configured to support the second communication device to perform other processing steps of the second communication device in the resource allocation method provided in the third aspect except for sending information and receiving information.
  • the transmitter and receiver in the embodiment of the present invention may be integrated together, or may be coupled through a coupler.
  • the memory is used to store the implementation code of the resource allocation method described in the third aspect, and the processor is used to execute the program code stored in the memory, that is, execute the resource allocation method provided in the third aspect, or the third aspect may The resource allocation method provided by any one of the implementation manners.
  • the memory and the processor can be integrated together or coupled through a coupler.
  • the processor is configured to support the first communication device to execute other processing steps of the first communication device in the resource allocation method provided in the fourth aspect except for sending information and receiving information.
  • the transmitter and receiver in the embodiment of the present invention may be integrated together, or may be coupled through a coupler.
  • the memory is used to store the implementation code of the resource allocation method described in the fourth aspect, and the processor is used to execute the program code stored in the memory, that is, execute the resource allocation method provided in the fourth aspect, or the fourth aspect may The resource allocation method provided by any one of the implementation manners.
  • an embodiment of the present invention provides a computer-readable storage medium with instructions stored on the readable storage medium, which when run on a computer, cause the computer to execute the information transmission method described in the first aspect above .
  • an embodiment of the present invention provides a computer-readable storage medium with instructions stored on the readable storage medium, which when run on a computer, cause the computer to execute the resource allocation method described in the third aspect above .
  • embodiments of the present invention provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the information transmission method described in the first aspect.
  • the embodiments of the present invention provide another computer program product containing instructions that, when run on a computer, cause the computer to execute the information transmission method described in the second aspect.
  • the embodiments of the present invention provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the resource allocation method described in the third aspect.
  • embodiments of the present invention provide another computer program product containing instructions, which when run on a computer, cause the computer to execute the resource allocation method described in the fourth aspect.
  • an embodiment of the present invention provides a communication chip.
  • the communication chip may include a processor and one or more interfaces coupled to the processor.
  • the processor can be used to call the information transmission method provided by the second aspect or the implementation program of the information transmission method provided by any one of the possible implementations of the second aspect from the memory, and execute the program including Instructions.
  • the interface can be used to output the processing result of the processor.
  • an embodiment of the present invention provides a communication chip.
  • the communication chip may include a processor and one or more interfaces coupled to the processor.
  • the processor can be used to call the resource allocation method provided by the third aspect or the implementation program of the resource allocation method provided by any one of the possible implementation manners of the third aspect from the memory, and execute the program including Instructions.
  • the interface can be used to output the processing result of the processor.
  • FIG. 1 is a schematic diagram of a wireless communication system provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of a frequency hopping mode provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of an information transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of using pre-defined resource transmission services related to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a resource allocation method provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the hardware structure of a user equipment provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the hardware structure of a network device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the logical structure of a wireless communication system, a first communication device, and a second communication device according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of the logical structure of another wireless communication system, a first communication device, and a second communication device according to an embodiment of the present invention.
  • FIG. 1 shows a wireless communication system related to an embodiment of the present invention.
  • the wireless communication system 100 may work in a licensed frequency band or an unlicensed frequency band.
  • the wireless communication system 100 is not limited to a long term evolution (LTE) system, and may also be a 5G system that will evolve in the future, a new radio technology (NR) system, and the like. It can be understood that the use of unlicensed frequency bands can increase the system capacity of the wireless communication system 100.
  • the wireless communication system 100 includes: one or more network devices 101 and one or more user equipment 102. among them:
  • the network device 101 may perform wireless communication 103 with the user device 102 through one or more antennas. Each network device 101 can provide communication coverage for its corresponding coverage area 104.
  • the coverage area 104 corresponding to the network device 101 may be divided into multiple sectors (sector), where one sector corresponds to a part of the coverage area (not shown).
  • the network device 101 may include: an evolved NodeB (evolved NodeB, eNB or eNodeB), or a next-generation node (next-generation Node B, gNB), and so on.
  • the wireless communication system 100 may include several different types of network equipment 101, such as a macro base station (macro base station), a micro base station (micro base station), and so on.
  • the network device 101 may apply different wireless technologies, such as cell wireless access technology or WLAN wireless access technology.
  • the user equipment 102 is a device with wireless transceiver function. It can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as a ship); Deployed in the air (e.g. airplane, balloon, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a portable computer, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety (transportation safety) ), wireless terminals in smart cities, smart cars, wireless terminals in smart homes, and so on.
  • the embodiment of this application does not limit the application scenario.
  • the user equipment 102 may be an enhanced Machine Type Communication (eMTC) terminal.
  • the working bandwidth of the eMTC terminal may be a narrow band (narrow band, NB).
  • the working bandwidth of the eMTC terminal may generally be small, which is smaller than the working bandwidth of the Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the working bandwidth of an eMTC terminal may be a narrowband NB, one NB includes 6 consecutive physical resource blocks (PRB), and one physical resource block PRB includes 12 subcarriers (Subcarrier, SC).
  • the user equipment 102 may also include smart home equipment, and may also include mobile terminals such as mobile phones.
  • the wireless communication system 100 may be an eMTC system, or other evolved systems (for example, (Further eMTC, FeMTC), (Even Further eMTC, eFeMTC), or (additional MTC, AMTC), etc.).
  • the network device 101 may send a reference signal (reference signal, RS) to the user equipment 102 for the user equipment 102 to measure channel state information (CSI).
  • RS may include but is not limited to: cell-specific reference signal (CRS) or channel state information reference signal (CSI-RS).
  • CSI includes channel quality index (CQI), repetition times of first information, aggregation level of first information, reference signal received power (RSRP), rank indicator (rank index, RI), or One or more of precoding matrix indicators (precoding matrix index, PMI).
  • the first information includes downlink control channels (for example, physical downlink control channel (PDCCH), machine physical downlink control channel (MPDCCH), or narrowband physical downlink control channel (narrowband physical downlink control channel). downlink control channel, NPDCCH)) or downlink control information (downlink control information, DCI).
  • PDCCH physical downlink control channel
  • MPDCCH machine physical downlink control channel
  • NPDCCH narrowband physical downlink control channel
  • DCI downlink control information
  • the RI is used to recommend the number of data layers that the network device 101 sends to the user equipment 102 on the same time-frequency resource, and the CQI assists the network device 101 in determining the modulation and coding mode to improve transmission reliability and efficiency.
  • the network device 101 may use a precoding matrix determined according to the PMI or a precoding matrix jointly determined according to the PMI and other information to perform precoding processing on the downlink data.
  • system and “network” in the embodiments of the present application can be used interchangeably.
  • Multiple refers to two or more. In view of this, “multiple” can also be understood as “at least two” in the embodiments of the present application.
  • And/or describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” unless otherwise specified, generally indicates that the associated objects before and after are in an "or” relationship.
  • the UE For the UE, according to its radio resource control (Radio Resource Control, RRC) connection state, it can be divided into an idle state (idle), an inactive state (inactive) and a connected state (connected).
  • the UE in the connected state can communicate with the network device (for example, the base station) through the scheduling of the network device.
  • the network device for example, the base station
  • RRC Radio Resource Control
  • the UE in the idle state it cannot directly transmit data and needs to perform random access first. Data transmission can be performed only after uplink data is transmitted in message 3 (msg3) in the random access process or an RRC connection is established.
  • the inactive state can be regarded as the intermediate state of these two states.
  • the UE and the core network retain the context of the RRC message in the connected state, and therefore can enter the connected state at a faster speed than the idle state.
  • the random access process mainly includes the following steps one to five.
  • Step 2 After receiving the preamble sent by the UE, the network device sends an RRC random access response (random access response, RAR) (also known as msg2 message) to the UE in the random access response window.
  • RAR random access response
  • Step 3 After receiving the RRC random access response, the UE sends an RRC connection establishment request (also called msg3) on the uplink resources allocated by the network equipment.
  • RRC connection establishment request also called msg3
  • Step 5 After the contention resolution is completed, the UE establishes a signaling radio bearer according to the information in the RRC connection establishment message, and sends an RRC connection establishment complete message to the network device.
  • the CSI request field in message 2 (msg2) in the random access process is reserved, so channel state information is not reported in msg3. If the channel state information can be reported in the idle state, the determination of the channel state information requires the terminal to measure on the corresponding frequency resource (such as MPDCCH transmission narrowband), and then report the channel state information. Therefore, for the user equipment in the idle state, how to report the channel state information is a problem that needs to be solved.
  • the frequency resource may include multiple frequency units.
  • the MPDCCH for scheduling msg4 can be configured as frequency hopping, and the MPDCCH for msg4 can be frequency hopped on 2 or 4 narrowbands.
  • frequency hopping on several narrowbands is achieved by reducing the bandwidth of the system information block (system information block).
  • SIB-BR system information block
  • SIB-BR will also notify the frequency hopping offset, that is, the interval between two adjacent frequency hopping narrowbands, and also notify the duration of a narrowband. It is the time to stay on the narrowband after hopping once.
  • SIB-BR system information block
  • the narrowband used in the first subframe of msg4MPDCCH is notified in msg2.
  • msg2 the black grid in the upper left corner as shown in Figure 2, each in the horizontal direction.
  • the grid represents the duration of staying on a narrow band, and the offset is assumed to be 2 narrow bands, and the final frequency hopping is shown in the black grid in Figure 2.
  • the narrowband used by the terminal after frequency hopping is not the same as the narrowband used in the first subframe, so how to determine the reported channel state information according to different frequency hopping narrowbands and channel states of different narrowbands is also issues that need resolving.
  • an embodiment of the present invention provides an information transmission method.
  • the information transmission method includes but is not limited to the following steps:
  • the first communication device may be a terminal (for example, an eMTC terminal), and the second communication device may be a network device (for example, a base station).
  • a terminal for example, an eMTC terminal
  • the second communication device may be a network device (for example, a base station).
  • the first frequency domain resource is a system bandwidth, or the first frequency domain resource is a channel state information reference resource, or the first frequency domain resource is a frequency domain resource for the first communication device to monitor downlink control information (ie, DCI), Or the first frequency domain resource is a frequency domain resource for the first communication device to monitor the downlink control channel, or the first frequency domain resource is a frequency domain resource selected by the first communication device.
  • DCI downlink control information
  • the channel state information includes one or more of the channel quality indicator PMI, the number of repetitions of the first information, the aggregation level of the first information, or the received power RSRP of the reference signal of the first information, and the first information includes downlink Control channel PDCCH or downlink control information DCI.
  • a group of channel state information includes one or more of a PMI, a repetition number, an aggregation level, or a received power.
  • a set of channel state information includes a PMI and a number of repetitions.
  • the two sets of channel state information can include 1 PMI and 2 repetitions, or the two sets of channel state information include 1 PMI and 2 repetitions, or the two sets of channel state information include 1 PMI, 2 repetitions, and There are 2 aggregation levels. This time only the channel state information is exemplified. In practical applications, at least two sets of channel state information include at least two different values of the same parameter.
  • the set of channel state information is an average value of channel state information of P frequency units among N frequency units, and P is an integer less than or equal to N and greater than or equal to 2;
  • the set of channel state information is determined by the first communication device according to the channel state information of Q frequency units among the N frequency units and a first weighting coefficient, the first weighting coefficient being predefined or configured by the second communication device Yes, Q is an integer less than or equal to N and greater than or equal to 2;
  • the set of channel state information is channel state information of the frequency unit with the best channel state among the N frequency units;
  • the set of channel state information is channel state information of the frequency unit with the worst channel state among the N frequency units;
  • the set of channel state information is determined by the first communication device according to the channel state information of the first frequency unit and the channel state information of the second frequency unit among the N frequency units, and the first frequency unit is the N frequency units The frequency unit with the best channel state, and the second frequency unit is the frequency unit with the worst channel state among the N frequency units.
  • the set of channel state information is determined by the user equipment according to an average value of the channel state information of the first frequency unit and the channel state information of the second frequency unit, or a weighted average value.
  • the foregoing first weighting coefficient is a weighting coefficient of the channel state information of each frequency unit in the Q frequency units.
  • Q frequency units are 4 narrowbands
  • the channel state information measured by these 4 narrowbands are c1-c4
  • the weighting coefficients of the four narrowbands are w1-w4.
  • the channel state preferably refers to the minimum signal attenuation or the maximum signal to interference plus noise ratios of the useful signal received by the receiving end when the signal passes through the channel.
  • the channel state can be measured by parameters such as RSRP, number of repetitions, aggregation level, CQI, etc. For example, if the channel has the largest RSRP, the smallest number of repetitions, the lowest aggregation level, or CQI, the channel state is the best, otherwise, the worse.
  • the first weighting coefficient is predefined or configured by the second communication device, and Q is an integer less than or equal to N and greater than or equal to 2. ;
  • the method for determining each group of channel state information in the M groups of channel state information may be completely the same, or may not be completely different or completely different.
  • the foregoing M sets of channel state information include 6 sets of channel state information, and the first set of channel state information is determined based on the average value of the channel state information of P frequency units among N frequency units, and the second set of channel state information is determined based on The channel state information of Q frequency units among N frequency units and the first weighting coefficient are determined.
  • the third group of channel state information is determined based on the channel state information of the frequency unit with the best channel state among the N frequency units.
  • the fourth group The channel state information is determined based on the channel state information of the frequency unit with the worst channel state among the N frequency units.
  • the fifth set of channel state information is determined based on the channel state information of the frequency unit with the middle channel state among the N frequency units.
  • the group channel state information is determined based on the channel state information of the frequency unit with the best channel state among the N frequency units and the frequency unit with the worst channel state among the N frequency units.
  • the above P frequency units may include one of the frequency unit with the best channel state among the N frequency units, the frequency unit with the worst channel state among the N frequency units, and the frequency unit with the middle channel state among the N frequency units.
  • the aforementioned Q frequency units may include one or more of the frequency unit with the best channel state among the N frequency units, the frequency unit with the worst channel state among the N frequency units, and the frequency unit with the middle channel state among the N frequency units.
  • Kind. P can be equal to Q or not equal.
  • the foregoing first weighting coefficient is a weighting coefficient of channel state information of each frequency unit in the Q frequency units.
  • Q frequency units are 4 narrowbands
  • the channel state information measured by these 4 narrowbands are c1-c4
  • the weighting coefficients of the four narrowbands are w1-w4.
  • the first weighting coefficient may be configured by the network device through physical layer signaling (including but not limited to DCI signaling), or may be configured by the second communication device through higher layer signaling (including but not limited to RRC signaling or MAC CE signaling) configured.
  • physical layer signaling including but not limited to DCI signaling
  • higher layer signaling including but not limited to RRC signaling or MAC CE signaling
  • N can be a positive integer greater than or equal to 2
  • the M sets of channel state information include the channel of each of the N frequency units status information.
  • the user equipment in the idle state can determine the reported one or more sets of channel state information according to the channel state information of one or more of the N frequency units, without requiring measurement as in the prior art
  • the channel quality of the entire bandwidth and the channel state information of the entire bandwidth are reported. Therefore, the embodiment of the present invention can reduce the reported data, reduce the measurement overhead and the feedback overhead, and save the power consumption of the user equipment.
  • the network equipment can more accurately configure resources for scheduling downlink control information and/or downlink control channel resources and/or downlink data channel resources and/or downlink control for the user equipment according to the channel state information reported by the user equipment in the idle state.
  • the number of repetitions of the channel and/or the number of repetitions of the downlink data channel and avoids the problem of waste of resources and power consumption caused by excessive scheduling, thereby saving resources and improving resource utilization.
  • the embodiment of the present invention can also report the channel state information of the entire bandwidth.
  • the channel state information reported by the user equipment can be considered comprehensively, so that the network equipment can perform downlink scheduling more accurately.
  • the first communication device determines the N frequency units (for example, narrowband) used for the PDCCH frequency hopping.
  • M groups of channel state information are determined according to the channel state information of one or more of the N frequency units.
  • the determination method can refer to the aforementioned determination method, which will not be repeated this time.
  • the first information may be sent to the first communication device in one or more of the system message, the downlink control information of the scheduling message 2, the random access response, and the uplink authorization.
  • N is a positive integer greater than or equal to 2, that is, the PDCCH or DCI of the terminal adopts at least 2 narrowband transmissions, and the at least 2 narrowbands adopt the frequency hopping mode.
  • the terminal reports the channel state information, it only needs to determine the reported one or more sets of channel state information according to at least two narrowband channel state information involved in frequency hopping.
  • the terminal determines a group of channels to report according to one or more narrowbands used for scheduling msg2's PDCCH and scheduling msg4's PDCCH frequency hopping status information.
  • the terminal when N is a positive integer greater than or equal to 2, that is, the PDCCH or DCI of the terminal adopts at least 2 narrowband transmissions, and the at least 2 narrowbands adopt the frequency hopping mode.
  • the terminal does not need to report the channel quality of the entire bandwidth (full frequency band), but only needs to report at least two sets of channel state information. For example, if the PDCCH of msg2 is invoked and/or the PDCCH of msg4 is invoked to enable frequency hopping, the terminal determines the multiple sets of reported channel state information according to multiple narrowbands used for frequency hopping of the PDCCH of msg2 and/or PDCCH of msg4. The manners for determining the multiple sets of channel state information can refer to the related description in the foregoing embodiment, which will not be repeated this time.
  • the terminal only needs to determine the channel state information to be reported according to the channel state information of the frequency domain resources used for frequency hopping, without reporting the channel state of the entire bandwidth, so the number of bits used for reporting is small.
  • the measurement overhead and feedback overhead of the terminal are reduced.
  • the accuracy of the downlink scheduling of the network equipment is increased to avoid transmission failure caused by excessive scheduling or insufficient scheduling resources.
  • the reported M groups of channel state information can be determined according to the channel state information of one or more of the N frequency units, where the N frequency units and the M groups of channels.
  • the reported channel state information is determined based on only one piece of narrowband information, which may be the narrowband used by the PDCCH of msg4.
  • PDCCH is mainly used as an example for description.
  • the downlink control channel may also be MPDCCH or NPDCCH, etc.
  • the specific implementation process is similar and will not be repeated here.
  • the embodiments of the present invention also provide a resource allocation method, which is specifically introduced as follows.
  • the business is periodic and the business data packet is small.
  • DCI dynamic downlink control information
  • PUR preconfigured uplink resource transmission
  • PUR resource allocation modes There are three possible PUR resource allocation modes: user-specific PUR allocation (UE-dedicated), non-competitive shared PUR (contention-free shared PUR) and contention-based shared PUR (contention-based shared PUR).
  • UE-dedicated user-specific PUR allocation
  • non-competitive shared PUR contention-free shared PUR
  • contention-based shared PUR contention-based shared PUR
  • MTC users classify users according to the quality of the channel.
  • the channel quality is divided into 4 or 2 levels from good to bad: Level 4: coverage enhancement level 0, coverage enhancement level 1, coverage enhancement level 2, coverage enhancement level 3 ; Or level 2: coverage enhancement level mode A and coverage enhancement level mode B.
  • coverage enhancement level 0 and coverage enhancement level 1 correspond to coverage enhancement level mode A
  • coverage enhancement level 2 and coverage enhancement level 3 correspond to coverage enhancement level mode B.
  • the problem in the prior art is that in the prior technical solution, the coverage level is not considered when allocating resources. For users with coverage levels 2 and 3, the link quality is poor in deep coverage. At this time, if PUR allocates shared resources, its transmission reliability will be seriously affected, resulting in a higher block error rate.
  • the resource allocation method includes but is not limited to the following steps:
  • S502 The second communication device sends first indication information and/or second indication information to the first communication device, and the first communication device receives the first indication information and/or second indication information sent by the second communication device.
  • the first communication device determines the time resource and/or frequency resource configuration of the first transmission resource according to the first indication information, and determines the first reference signal configuration and/or the feedback search space of the first transmission resource according to the second indication information.
  • the first communication device may be a user equipment (for example, an eMTC terminal), and the second communication device may be a network device (for example, a base station).
  • a user equipment for example, an eMTC terminal
  • the second communication device may be a network device (for example, a base station).
  • the coverage enhancement level of the terminal is the first coverage enhancement level
  • the second communication device only sends the first indication information but not the second indication information
  • the first indication information is included in the first message or the first indication information In the second message; or, if the second communication device only sends the second indication information without sending the first indication information, the second indication information is included in the first message or the second message; or, if the second communication device sends both
  • the first indication information sends the second indication information, the first indication information is included in the first message or the second message, and the second indication information is also included in the first message or the second message, and the first indication
  • the information and the second indication information may be included in the same message and sent at the same time, or may be included in different messages and sent separately.
  • the coverage enhancement level of the terminal is the second coverage enhancement level
  • the second communication device only sends the first indication information but not the second indication information
  • the first indication information is included in the second message; or, if the second If the communication device sends only the second indication information but not the first indication information, the second indication information is included in the second message; or, if the second communication device sends both the first indication information and the second indication information, the second indication information is sent Both the one instruction information and the second instruction information are included in the second message.
  • the first message is a system information block (SIB)
  • the second message is a radio resource control RRC message or downlink control information (downlink control information, DCI).
  • SIB system information block
  • DCI downlink control information
  • the first coverage enhancement level is coverage enhancement level 0 or coverage enhancement level 1, or coverage enhancement level mode A.
  • the second coverage enhancement level is coverage enhancement level 2 or coverage enhancement level 3, or coverage enhancement level mode B.
  • the terminal's first transmission resource such as PUR
  • PUR coverage enhancement level
  • the RRC message or system message is configured, that is, the first indication information may be included in the first message or the second message, the first message is the system message SIB, and the second message is the RRC message.
  • the terminal's first transmission resource such as PUR
  • the terminal's first transmission resource is configured through user-specific RRC messages or connected RRC messages . That is, the first indication information may be included in the second message, and the second message is an RRC message.
  • the terminal determines the first reference signal configuration according to the second indication information and the first manner; when the coverage enhancement level of the terminal is the second coverage enhancement level, the terminal The first reference signal configuration is determined according to the second indication information and the second manner.
  • the first reference signal includes a demodulation reference signal (demodulation reference signal, DMRS), a cell-specific reference signal (cell-specific reference signal, CRS), and a multicast/multicast single frequency network reference signal (multicast broadcast single).
  • DMRS demodulation reference signal
  • CRS cell-specific reference signal
  • multicast/multicast single frequency network reference signal multicast broadcast single.
  • Frequency network reference signal MBSFN-RS
  • position reference signal position reference signal
  • PRS position reference signal
  • channel state information reference signal channel-state information reference signal
  • CSI-RS channel state information reference signal
  • sounding reference signal sounding reference signal
  • the terminal determines the first reference signal configuration according to the second indication information and the first method.
  • the coverage enhancement level is 2 or 3, or when the coverage enhancement level mode is B, the first reference signal configuration is determined according to the second indication information and the second manner.
  • the first reference signal configuration includes a cyclic shift of the first reference signal, an orthogonal cover code of the first reference signal, a scrambling sequence of the first reference signal, a sequence of the first reference signal, and a first reference signal.
  • the first method and the second method have different parameter acquisition methods and/or formulas.
  • the first reference signal as the DMRS as an example
  • the terminal has a coverage enhancement level of 0 or 1, or coverage enhancement level mode A
  • the cyclic shift information of the DMRS is obtained according to the following formula:
  • ⁇ ⁇ represents cyclic shift
  • the signaling includes RRC signaling, physical layer signaling (such as downlink control information (DCI) signaling or medium access control control element (MAC CE) signaling). Let), and it is different for different terminals sharing resources.
  • DCI downlink control information
  • MAC CE medium access control control element
  • ⁇ ⁇ represents cyclic shift
  • the terminal when the terminal has a coverage enhancement level of 0 or 1, or coverage enhancement level mode A, it is determined according to the second indication information that the feedback search space of the first transmission resource is a common search space (common search space) and or User-specific search space (ue-specific search space), when the terminal has coverage enhancement level 2 or 3, or coverage enhancement level mode B, the feedback search space of the first transmission resource is determined to be user-specific according to the second indication information Search space.
  • FIG. 6 shows a schematic structural diagram of a user equipment involved in an embodiment of the present invention.
  • the user equipment 600 may include: an input and output module (for example, an audio input and output module 618, a key input module 616, a display 620, etc.), a user interface 602, one or more processors 604, a transceiver 606, an antenna 614 and memory 612. These components can be connected via a bus or in other ways.
  • Fig. 6 uses a bus connection as an example. among them:
  • the antenna 614 can be used to convert electromagnetic energy into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in transmission lines.
  • the transceiver 606 can be used to transmit and process the signal output by the processor 604, and can also be used to receive and process the mobile communication signal received by the antenna 614.
  • the transceiver 606 can be regarded as a wireless modem.
  • the number of the transceiver 606 may be one or more.
  • the user equipment 600 may also include other communication components, such as a GPS module, a Bluetooth (Bluetooth) module, and a wireless high-fidelity (Wireless Fidelity, Wi-Fi) module.
  • the user equipment 600 may also support other wireless communication signals, such as satellite signals, shortwave signals, and so on.
  • the user equipment 600 may also be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • the memory 612 may be coupled with the processor 604 through a bus or an input/output port, and the memory 612 may also be integrated with the processor 604.
  • the memory 612 is used to store various software programs and/or multiple sets of instructions.
  • the memory 612 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 612 may store an operating system (hereinafter referred to as system), such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 612 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more user devices, and one or more network devices.
  • the memory 612 can also store a user interface program, which can vividly display the content of the application program through a graphical operation interface, and receive user control operations on the application program through input controls such as menus, dialog boxes, and buttons. .
  • the processor 604 can be used to read and execute computer readable instructions. Specifically, the processor 604 may be used to call a program stored in the memory 612, such as an implementation program of the information transmission method or resource allocation method provided by one or more embodiments of the present application on the user equipment 600 side, and execute the program including To implement the methods involved in the subsequent embodiments.
  • the processor 604 can support: Global System for Mobile Communication (GSM) (2G) communications, Wideband Code Division Multiple Access (WCDMA) (3G) communications, and Long Term Evolution (Long Term Evolution) , LTE) (4G) communication, and one or more of 5G communication.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • 4G Long Term Evolution
  • the processor 604 when the processor 604 receives any message or data, it specifically receives it by driving or controlling the receiver 608. Therefore, the processor 604 can be regarded as a control center that performs transmission or reception, and the transmitter 606 and the receiver 608 are specific performers of the transmission and reception operations.
  • the user equipment 600 may be the user equipment 102 in the wireless communication system 100 shown in FIG. 1, and may be implemented as an eMTC device, a mobile device, a mobile station, a mobile unit, and a wireless unit. Remote units, user agents, mobile clients, etc.
  • the user equipment 600 shown in FIG. 6 is only an implementation manner of the embodiment of the present application. In actual applications, the user equipment 600 may also include more or fewer components, which is not limited here. For the specific implementation of the user equipment 600, reference may be made to the relevant descriptions in the foregoing method embodiments, and details are not described herein again.
  • FIG. 7 shows a schematic structural diagram of a network device involved in an embodiment of the present invention.
  • the network device 700 may include: one or more processors 701, a memory 702, a network interface 703, a transceiver 705, and an antenna 708. These components can be connected through a bus 704 or in other ways.
  • FIG. 7 uses a bus connection as an example. among them:
  • the transceiver 705 may be used to transmit and process the signal output by the processor 701, such as signal modulation.
  • the transceiver 705 can also be used to receive and process the mobile communication signal received by the antenna 708. For example, signal demodulation.
  • the transceiver 705 can be regarded as a wireless modem.
  • the number of the transceiver 705 may be one or more.
  • the antenna 708 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in a free space, or convert electromagnetic waves in a free space into electromagnetic energy in a transmission line.
  • the memory 702 may be coupled with the processor 701 through a bus 704 or an input/output port, and the memory 702 may also be integrated with the processor 701.
  • the memory 702 is used to store various software programs and/or multiple sets of instructions.
  • the memory 702 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 702 can store an operating system (hereinafter referred to as the system), such as embedded operating systems such as uCOS, VxWorks, and RTLinux.
  • the memory 702 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more user devices, and one or more network devices.
  • the processor 701 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the network device 700 may be the network device 101 in the wireless communication system 100 shown in FIG. 1, and may be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), and an extended service set (ESS). , NodeB, eNodeB, gNB, etc.
  • FIG. 8 shows a schematic diagram of a possible logical structure of the wireless communication system, the first communication device, and the second communication device involved in the above-mentioned information transmission method embodiment provided by the embodiment of this application.
  • the first communication device 800 includes: a determining unit 801 and a sending unit 802.
  • the determining unit 801 is configured to determine a first frequency domain resource, where the first frequency domain resource includes N frequency units, and N is an integer greater than or equal to 1;
  • the sending unit 802 is configured to send M groups of channel state information to the second communication device, where the M groups of channel state information are the channel state of the first communication device according to one or more of the N frequency units As determined by the information, M is an integer greater than or equal to 1.
  • the second communication device 900 includes: a receiving unit 901.
  • the first frequency domain resource is a system bandwidth, or the first frequency domain resource is a channel state information reference resource, or the first frequency domain resource is a resource for the first communication device to monitor downlink control information Frequency domain resource, or the first frequency domain resource is a frequency domain resource for the first communication device to monitor a downlink control channel, or the first frequency domain resource is a frequency domain resource selected by the first communication device.
  • N is a positive integer greater than or equal to 2
  • the M group is a group
  • the group of channel state information is the average value of the channel state information of the P frequency units in the N frequency units, and P is less than An integer equal to N and greater than or equal to 2;
  • the set of channel state information is determined by the first communication device according to channel state information of Q frequency units among the N frequency units and a first weighting coefficient, and the first weighting coefficient is predefined Or configured by the second communication device, Q is an integer less than or equal to N and greater than or equal to 2;
  • the set of channel state information is channel state information of a frequency unit with a middle channel state among the N frequency units;
  • the set of channel state information is determined by the first communication device according to the channel state information of the first frequency unit and/or the channel state information of the second frequency unit among the N frequency units, and the first A frequency unit is a frequency unit with the best channel state among the N frequency units, and the second frequency unit is a frequency unit with the worst channel state among the N frequency units.
  • P is an integer less than or equal to N and greater than or equal to 2;
  • the first weighting coefficient is predefined or configured by the second communication device, and Q is less than or equal to N is an integer greater than or equal to 2;
  • N is a positive integer greater than or equal to 2
  • M N.
  • the M groups of channel state information include channel state information of each of the N frequency units.
  • the channel state information includes one or more of the channel quality indicator, the number of repetitions of the first information, the aggregation level of the first information, or the received power of the reference signal, and the first information includes downlink Control channel or downlink control information.
  • the frequency unit includes one or more of narrowband, subband, subcarrier, or resource block.
  • the first communication device may be a user equipment
  • the second communication device may be a network device.
  • the above N frequency units may adopt a frequency hopping mode.
  • each unit in the first communication device 800 and the second communication device 900 reference may be made to the relevant description in the information transmission method embodiment shown in FIG. 3, which will not be repeated this time.
  • the second communication device 1000 includes: a determining unit 1001 and a sending unit 1002.
  • the determining unit 1001 is configured to determine first indication information and/or second indication information, where the first indication information is used to indicate the time resource and/or frequency resource of the first transmission resource of the first communication device.
  • the second indication information is used to indicate the first reference signal configuration of the first communication device and/or the feedback search space of the first transmission resource;
  • the sending unit 1002 is configured to send the first indication information and/or the second indication information to the first communication device.
  • the receiving unit 1101 is configured to receive first indication information and/or second indication information sent by the second communication device, where the first indication information is used to indicate the time resource and/or the first transmission resource of the first communication device Or a frequency resource, the second indication information is used to indicate the first reference signal configuration of the first communication device and/or the feedback search space of the first transmission resource.
  • the first message is a system message SIB
  • the second message is a user-specific radio resource control RRC message or downlink control information.
  • the first communication device determines the first reference signal configuration according to the second indication information and the first manner; when the coverage enhancement level of the first communication device is the second coverage enhancement level, the first communication device determines the first reference signal configuration according to the second indication information and a second manner.
  • the first reference signal configuration includes the cyclic shift of the first reference signal, the orthogonal cover code of the first reference signal, the scrambling sequence of the first reference signal, and the first reference signal.
  • the first reference signal includes one of a demodulation reference signal, a cell-specific reference signal, a multicast/multicast single frequency network reference signal, a location reference signal, a channel state information reference signal, or a sounding reference signal Or multiple.
  • the feedback search space of the first transmission resource is a public search space and/or a user-specific search space.
  • the coverage enhancement level of the communication device is the second coverage enhancement level
  • the feedback search space of the first transmission resource is a user-specific search space.
  • the first communication device may be a user equipment
  • the second communication device may be a network device.
  • the communication chip 1000 may include a processor 1001, and one or more interfaces 1002 coupled to the processor 1001. among them:
  • the processor 1001 can be used to read and execute computer-readable instructions.
  • the processor 1001 may mainly include a controller, an arithmetic unit, and a register.
  • the controller is mainly responsible for instruction decoding, and sends out control signals for the operation corresponding to the instruction.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations and logical operations, etc. It can also perform address operations and conversions.
  • the register is mainly responsible for storing the register operands and intermediate operation results temporarily stored during the execution of the instruction.
  • the hardware architecture of the processor 1001 can be an application specific integrated circuit (ASIC) architecture, a microprocessor without interlocked pipeline stage architecture (MIPS) architecture, and advanced streamlining. Instruction set machine (advanced RISC machines, ARM) architecture or NP architecture, etc.
  • the processor 1001 may be single-core or multi-core.
  • the interface 1002 can be used to input data to be processed to the processor 1001, and can output the processing result of the processor 1001 to the outside.
  • the interface 1002 may be a general purpose input output (GPIO) interface, which can be connected to multiple peripheral devices (such as a display (LCD), a camera (camara), a radio frequency (RF) module, etc.) connection.
  • GPIO general purpose input output
  • the interface 1002 is connected to the processor 1001 through a bus 1003.
  • the processor 1001 may be used to call the implementation program of the information transmission method or resource allocation method provided by one or more embodiments of this application on the communication device side from the memory, and execute the instructions contained in the program.
  • the memory may be integrated with the processor 1001, or may be coupled with the communication chip 100 through the interface 1002.
  • the interface 1002 can be used to output the execution result of the processor 1001.
  • the interface 1002 may be specifically used to output the decoding result of the processor 1001.
  • each of the processor 1001 and the interface 1002 can be implemented either through hardware design, through software design, or through a combination of software and hardware, which is not limited here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息传输方法、相关设备及系统,用户设备能够根据一个或多个频率单元的信道状态来确定上报的信道状态信息,能够提高网络设备调度下行传输资源的精度。其中,该方法包括:第一通信设备确定第一频域资源,第一频域资源包括N个频率单元,N为大于等于1的整数;第一通信设备向第二通信设备发送M组信道状态信息,M组信道状态信息是第一通信设备根据N个频率单元中的一个或多个频率单元的信道状态信息确定的,M为大于等于1的整数。可选的,第一通信设备可以为用户设备,第二通信设备可以为网络设备。

Description

一种信息传输方法、相关设备及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种信息传输方法、相关设备及系统。
背景技术
机器类型通信(machine type communication,MTC)用户设备(user equipment,UE),是目前物联网用户设备的主要类型。
MTC用户设备通常是低成本的设备,且支持的射频(radio frequency,RF)带宽比较小,其RF发送和接收带宽一般为1.4MHz。通常MTC用户设备在一个子帧最多只能接收6个连续物理资源块(physical resource block,PRB)内的信号,也即,接收一个窄带内的信号,而不能同时接收整个系统带宽(比如,20MHz)内的信号。
连接态(connected mode)的MTC用户设备在传输数据之前,根据覆盖等级按需上报窄带的信道状态信息(channel state information,CSI),现有技术中,用户设备在空闲状态(idle mode)下不上报信道状态信息。因此,针对空闲态下用户如何上报信道状态信息仍然没有解决方案,尤其是针对跳频情况,MTC用户设备如何上报信道状态信息是目前需要解决的问题。
发明内容
本发明实施例提供了一种信息传输方法、相关设备及系统,用户设备能够根据一个或多个频率单元的信道状态来确定上报的信道状态信息,能够提高网络设备调度下行传输资源的精度,提高资源利用率,节省用户设备的功耗。
第一方面,本发明实施例提供了一种信息传输方法,应用于第一通信设备侧。该方法包括:第一通信设备确定第一频域资源,第一频域资源包括N个频率单元,N为大于等于1的整数;第一通信设备向第二通信设备发送M组信道状态信息,M组信道状态信息是第一通信设备根据N个频率单元中的一个或多个频率单元的信道状态信息确定的,M为大于等于1的整数。
可选的,第一通信设备可以为用户设备,第二通信设备可以为网络设备。
实施本发明实施例,空闲态的用户设备可以根据N个频率单元中的一个或多个频率单元的信道状态信息确定上报的一组或多组信道状态信息,无需像现有技术中一样需要测量整个带宽的信道质量以及上报整个带宽的信道状态信息,因此,本发明实施例能够减少上报的数据,降低了测量开销以及反馈的开销,节省用户设备的功耗。并且,网络设备能够根据空闲态的用户设备上报的信道状态信息更加精准的为用户设备配置调度下行控制信息的资源和/或下行控制信道的资源和/或下行数据信道的资源和/或下行控制信道的重复次数和/或下行数据信道的重复次数,并且避免了过度调度带来的资源和功耗的浪费的问题,从而节省资源、提高资源的利用率。
此外,本发明实施例除了可以根据N个频率单元中的一个或多个频率单元的信道状态信息确定上报的一组或多组信道状态信息以外,还可以上报整个带宽的信道状态信息,网 络设备可以结合用户设备上报的信道状态信息综合考虑,使得网络设备更为精准的进行下行调度。
在一种可能的设计中,第一频域资源为系统带宽,或者第一频域资源为信道状态信息参考资源,或者第一频域资源为第一通信设备监测下行控制信息的频域资源,或者第一频域资源为第一通信设备监测下行控制信道的频域资源,或者第一频域资源为第一通信设备选择的频域资源。
在一种可能的设计中,N为大于等于2的正整数,M组为一组,即M=1;该一组信道状态信息为N个频率单元中的P个频率单元的信道状态信息的平均值,P为小于等于N且大于等于2的整数;
或者,该一组信道状态信息为第一通信设备根据N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定的,第一加权系数为预先定义的或第二通信设备配置的,Q为小于等于N且大于等于2的整数;
或者,该一组信道状态信息为N个频率单元中信道状态居中的频率单元的信道状态信息;
或者,该一组信道状态信息为第一通信设备根据N个频率单元中的第一频率单元的信道状态信息和/或第二频率单元的信道状态信息确定的,第一频率单元为N个频率单元中信道状态最好的频率单元,第二频率单元为N个频率单元中信道状态最差的频率单元。
在一种可能的设计中,第一加权系数可以是第二通信设备通过物理层信令(包括但不限于下行控制信息(downlink control information,DCI)信令)配置的,也可以是第二通信设备通过高层信令(包括但不限于无线资源控制(radio resource control,RRC)信令或媒体接入控制控制(medium access control control element,MAC CE)信令)。
在一种可能的设计中,N为大于等于2的正整数,M组为至少两组,即M大于或等于2;至少两组信道状态信息中的任意一组信道状态信息是第一通信设备根据如下方式中的任意一种确定的:
根据N个频率单元中的P个频率单元的信道状态信息的平均值确定,P为小于等于N大于等于2的整数;
或者,根据N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定,第一加权系数为预先定义的或第二通信设备配置的,Q为小于等于N大于等于2的整数;
或者,根据N个频率单元中信道状态最好的频率单元的信道状态信息确定;
或者,根据N个频率单元中信道状态最差的频率单元的信道状态信息确定;
或者,根据N个频率单元中信道状态居中的频率单元的信道状态信息确定;
或者,根据N个频率单元中的第一频率单元的信道状态信息和第二频率单元的信道状态信息确定,第一频率单元为N个频率单元中信道状态最好的频率单元,第二频率单元为N个频率单元中信道状态最差的频率单元。
在一种可能的设计中,第一加权系数可以是第二通信设备通过物理层信令(包括但不限于DCI信令)配置的,也可以是第二通信设备通过高层信令(包括但不限于RRC信令或MAC CE信令)。
在一种可能的设计中,N为大于等于2的正整数,M=N,M组信道状态信息包括N个 频率单元中的每个频率单元的信道状态信息。
在一种可能的设计中,信道状态信息包括信道质量指示、第一信息的重复次数、第一信息的聚合等级或参考信号的接收功率中的一种或多种,第一信息包括下行控制信道或下行控制信息。
在一种可能的设计中,频率单元包括窄带、子带、子载波或资源块中的一种或多种。
在一种可能的设计中,上述N个频率单元可以采用跳频模式。
第二方面,本发明实施例提供了一种信息传输方法,应用于第二通信设备侧。该方法包括:第二通信设备接收第一通信设备发送的M组信道状态信息,M组信道状态信息是第一通信设备根据N个频率单元中的一个或多个频率单元的信道状态信息确定的,N个频率单元是第一频域资源包括的频率单元,N为大于等于1的整数,M为大于等于1的整数。
可选的,第一通信设备可以为用户设备,第二通信设备可以为网络设备。
实施本发明实施例,空闲态的用户设备可以根据N个频率单元中的一个或多个频率单元的信道状态信息确定上报的一组或多组信道状态信息,无需像现有技术中一样需要测量整个带宽的信道质量以及上报整个带宽的信道状态信息,因此,本发明实施例能够减少上报的数据,降低了测量开销以及反馈的开销。并且,网络设备能够根据空闲态的用户设备上报的信道状态信息更加精准的为用户设备配置调度下行控制信息和/或下行控制信道的资源和/或下行数据信道的资源和/或下行控制信道的重复次数和/或下行数据信道的重复次数,并且避免了过度调度带来的资源和功耗的浪费的问题。
此外,本发明实施例除了可以根据N个频率单元中的一个或多个频率单元的信道状态信息确定上报的一组或多组信道状态信息以外,还可以上报整个带宽的信道状态信息,网络设备可以结合用户设备上报的信道状态信息综合考虑,使得网络设备更为精准的进行下行调度。
在一种可能的设计中,第一频域资源为系统带宽,或者第一频域资源为信道状态信息参考资源,或者第一频域资源为第一通信设备监测下行控制信息的频域资源,或者第一频域资源为第一通信设备监测下行控制信道的频域资源,或者第一频域资源为第一通信设备选择的频域资源。
在一种可能的设计中,N为大于等于2的正整数,M组为一组,即M=1;
该一组信道状态信息为N个频率单元中的P个频率单元的信道状态信息的平均值,P为小于等于N且大于等于2的整数;
或者,该一组信道状态信息为第一通信设备根据N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定的,第一加权系数为预先定义的或第二通信设备配置的,Q为小于等于N且大于等于2的整数;
或者,该一组信道状态信息为N个频率单元中信道状态居中的频率单元的信道状态信息;
或者,该一组信道状态信息为第一通信设备根据N个频率单元中的第一频率单元的信道状态信息和/或第二频率单元的信道状态信息确定的,第一频率单元为N个频率单元中信道状态最好的频率单元,第二频率单元为N个频率单元中信道状态最差的频率单元。
在一种可能的设计中,第一加权系数可以是第二通信设备通过物理层信令(包括但不 限于DCI信令)配置的,也可以是第二通信设备通过高层信令(包括但不限于RRC信令或MAC CE信令)配置的。
在一种可能的设计中,N为大于等于2的正整数,M组为至少两组,即M大于等于2;至少两组信道状态信息中的任意一组信道状态信息是第一通信设备根据如下方式中的任意一种确定的:
根据N个频率单元中的P个频率单元的信道状态信息的平均值确定,P为小于等于N大于等于2的整数;
或者,根据N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定,第一加权系数为预先定义的或第二通信设备配置的,Q为小于等于N大于等于2的整数;
或者,根据N个频率单元中信道状态最好的频率单元的信道状态信息确定;
或者,根据N个频率单元中信道状态最差的频率单元的信道状态信息确定;
或者,根据N个频率单元中信道状态居中的频率单元的信道状态信息确定;
或者,根据N个频率单元中的第一频率单元的信道状态信息和第二频率单元的信道状态信息确定,第一频率单元为N个频率单元中信道状态最好的频率单元,第二频率单元为N个频率单元中信道状态最差的频率单元。
在一种可能的设计中,第一加权系数可以是第二通信设备通过物理层信令(包括但不限于DCI信令)配置的,也可以是第二通信设备通过高层信令(包括但不限于RRC信令或MAC CE信令)配置的。
在一种可能的设计中,N为大于等于2的正整数,M=N,M组信道状态信息包括N个频率单元中的每个频率单元的信道状态信息。
在一种可能的设计中,信道状态信息包括信道质量指示、第一信息的重复次数、第一信息的聚合等级或第一信息的参考信号的接收功率中的一种或多种,第一信息包括下行控制信道或下行控制信息。
在一种可能的设计中,频率单元包括窄带、子带、子载波或资源块中的一种或多种。
在一种可能的设计中,上述N个频率单元可以采用跳频模式。
第三方面,本发明实施例提供了一种资源分配方法,应用于第二通信设备侧。该方法包括:第二通信设备确定第一指示信息和/或第二指示信息,第一指示信息用于指示第一通信设备的第一传输资源的时间资源和/或频率资源,第二指示信息用于指示第一通信设备的第一参考信号配置和/或第一传输资源的反馈搜索空间;第二通信设备向第一通信设备发送第一指示信息和/或第二指示信息。
可选的,第一通信设备为用户设备,第二通信设备为网络设备。
实施本发明实施例,相较于现有技术中预先定义好每个用户的传输资源的方式来说,本申请的资源配置更加灵活。
在一种可能的设计中,当第一通信设备的覆盖增强等级为第一覆盖增强等级时,第一指示信息包含于第一消息中或第二消息中,第二指示信息包含于第一消息中或第二消息中;当第一通信设备的覆盖增强等级为第二覆盖增强等级时,第一指示信息包含于第二消息中,和/或,第二指示信息包含于第二消息中。
在一种可能的设计中,可以根据信道质量的好坏将用户进行分类,信道质量从好到差 分别分为4或2级:4级:覆盖增强等级0,覆盖增强等级1,覆盖增强等级2,覆盖增强等级3;或2级:覆盖增强等级模式A和覆盖增强等级模式B。第一覆盖增强等级为覆盖增强等级0或覆盖增强等级1,或第一覆盖增强等级为覆盖增强等级模式A。第二覆盖增强等级为覆盖增强等级2或覆盖增强等级3,或第二覆盖增强等级为覆盖增强等级模式B。
实施本发明实施例,网络设备(例如基站)分配资源时,考虑终端的覆盖等级,将用户特定资源分配给信道质量差的用户设备,提高该用户设备的传输可靠性,并且还可以避免信道质量差的用户设备占用的资源冲突,提升传输的成功率;将共享资源分配给信道质量好的用户,提高资源的利用率。
在一种可能的设计中,第一消息为系统消息SIB,第二消息为用户特定的无线资源控制RRC消息或下行控制信息。
在一种可能的设计中,第一参考信号配置包括第一参考信号的循环移位、第一参考信号的正交覆盖码、第一参考信号的加扰序列、第一参考信号的序列、第一参考信号的初始化或第一参考信号的初始化序列中的一种或多种。
在一种可能的设计中,第一参考信号包括解调参考信号、小区特定的参考信号、多播/组播单频网络参考信号、位置参考信号、信道状态信息参考信号或探测参考信号中的一种或多种。
在一种可能的设计中,当第一通信设备的覆盖增强等级为第一覆盖增强等级时,第一传输资源的反馈搜索空间为公共搜索空间和/或用户特定搜索空间,当第一通信设备的覆盖增强等级为第二覆盖增强等级时,第一传输资源的反馈搜索空间为用户特定搜索空间。
第四方面,本发明实施例提供了一种资源分配方法,应用于第一通信设备侧。该方法包括:第一通信设备接收第二通信设备发送的第一指示信息和/或第二指示信息,第一指示信息用于指示第一通信设备的第一传输资源的时间资源和/或频率资源,第二指示信息用于指示第一通信设备的第一参考信号配置和/或第一传输资源的反馈搜索空间。
可选的,第一通信设备为用户设备,第二通信设备为网络设备。
实施本发明实施例,网络设备(例如基站)分配资源时,考虑终端的覆盖等级,将用户特定资源分配给信道质量差的用户,将共享资源只分配给信道质量好的用户,能够提升传输的可靠性。
在一种可能的设计中,当第一通信设备的覆盖增强等级为第一覆盖增强等级时,第一指示信息包含于第一消息中或第二消息中,第二指示信息包含于第一消息中或第二消息中;当第一通信设备的覆盖增强等级为第二覆盖增强等级时,第一指示信息包含于第二消息中,和/或,第二指示信息包含于第二消息中。
在一种可能的设计中,可以根据信道质量的好坏将用户进行分类,信道质量从好到差分别分为4或2级:4级:覆盖增强等级0,覆盖增强等级1,覆盖增强等级2,覆盖增强等级3;或2级:覆盖增强等级模式A和覆盖增强等级模式B。第一覆盖增强等级为覆盖增强等级0或覆盖增强等级1,或第一覆盖增强等级为覆盖增强等级模式A。第二覆盖增强等级为覆盖增强等级2或覆盖增强等级3,或第二覆盖增强等级为覆盖增强等级模式B。
实施本发明实施例,网络设备(例如基站)分配资源时,考虑终端的覆盖等级,将用户特定资源分配给信道质量差的用户设备,提高该用户设备的传输可靠性,并且还可以避 免信道质量差的用户设备占用的资源冲突,提升传输的成功率;将共享资源分配给信道质量好的用户,提高资源的利用率。
在一种可能的设计中,第一消息为系统消息SIB,第二消息为用户特定的无线资源控制RRC消息或下行控制信息。
在一种可能的设计中,当第一通信设备的覆盖增强等级为第一覆盖增强等级时,第一通信设备根据第二指示信息和第一方式确定第一参考信号配置;
当第一通信设备的覆盖增强等级为第二覆盖增强等级时,第一通信设备根据第二指示信息和第二方式确定第一参考信号配置。
在一种可能的设计中,第一参考信号配置包括第一参考信号的循环移位、第一参考信号的正交覆盖码、第一参考信号的加扰序列、第一参考信号的序列、第一参考信号的初始化或第一参考信号的初始化序列中的一种或多种。
在一种可能的设计中,第一参考信号包括解调参考信号、小区特定的参考信号、多播/组播单频网络参考信号、位置参考信号、信道状态信息参考信号或探测参考信号中的一种或多种。
在一种可能的设计中,当第一通信设备的覆盖增强等级为第一覆盖增强等级时,第一传输资源的反馈搜索空间为公共搜索空间和/或用户特定搜索空间,当第一通信设备的覆盖增强等级为第二覆盖增强等级时,第一传输资源的反馈搜索空间为用户特定搜索空间。
第五方面,本发明实施例提供了一种通信设备,该通信设备为第一通信设备,第一通信设备可包括多个功能模块或单元,用于相应的执行第一方面所提供的信息传输方法,或者第一方面可能的实施方式中的任意一种所提供的信息传输方法。
例如,第一通信设备包括:确定单元和发送单元。
其中,确定单元,用于确定第一频域资源,所述第一频域资源包括N个频率单元,N为大于等于1的整数;
发送单元,用于向第二通信设备发送M组信道状态信息,所述M组信道状态信息是所述第一通信设备根据所述N个频率单元中的一个或多个频率单元的信道状态信息确定的,M为大于等于1的整数。
第六方面,本发明实施例提供了另一种通信设备,该通信设备为第二通信设备,第二通信设备可包括多个功能模块或单元,用于相应的执行第二方面所提供的信息传输方法,或者第二方面可能的实施方式中的任意一种所提供的信息传输方法。
例如,第二通信设备包括:接收单元。
其中,接收单元,用于接收第一通信设备发送的M组信道状态信息,所述M组信道状态信息是所述第一通信设备根据N个频率单元中的一个或多个频率单元的信道状态信息确定的,所述N个频率单元是第一频域资源包括的频率单元,N为大于等于1的整数,M为大于等于1的整数。
第七方面,本发明实施例提供了一种通信设备,该通信设备为第二通信设备,第二通信设备可包括多个功能模块或单元,用于相应的执行第三方面所提供的资源分配方法,或者第三方面可能的实施方式中的任意一种所提供的资源分配方法。
例如,第二通信设备包括:确定单元和发送单元。
其中,确定单元,用于确定第一指示信息和/或第二指示信息,所述第一指示信息用于指示第一通信设备的第一传输资源的时间资源和/或频率资源,所述第二指示信息用于指示所述第一通信设备的第一参考信号配置和/或所述第一传输资源的反馈搜索空间;
发送单元,用于向所述第一通信设备发送所述第一指示信息和/或所述第二指示信息。
第八方面,本发明实施例提供了另一种通信设备,该通信设备为第一通信设备,第一通信设备可包括多个功能模块或单元,用于相应的执行第四方面所提供的资源分配方法,或者第四方面可能的实施方式中的任意一种所提供的资源分配方法。
例如,第一通信设备包括:接收单元。
其中,接收单元,用于接收第二通信设备发送的第一指示信息和/或第二指示信息,所述第一指示信息用于指示第一通信设备的第一传输资源的时间资源和/或频率资源,所述第二指示信息用于指示所述第一通信设备的第一参考信号配置和/或所述第一传输资源的反馈搜索空间。
第九方面,本发明实施例提供了一种通信设备,该用于执行第一方面描述的信息传输方法。该通信设备为第一通信设备,第一通信设备可包括:存储器以及与所述存储器耦合的处理器、发射器、接收器。其中,所述发射器用于支持第一通信设备执行第一方面所提供的信息传输方法中第一通信设备发送信息的步骤。所述接收器用于支持第一通信设备执行第一方面所提供的信息传输方法中第一通信设备接收信息的步骤。其中,发射器和接收器可以集成为一收发器。处理器用于支持第一通信设备执行第一方面所提供的信息传输方法中第一通信设备除发送信息以及接收信息以外的其他处理步骤。需要说明的是,本发明实施例中的发射器和接收器可以集成在一起,也可以通过耦合器耦合。所述存储器用于存储第一方面描述的信息传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面所提供的信息传输方法,或者第一方面可能的实施方式中的任意一种所提供的信息传输方法。
第十方面,本发明实施例提供了另一种通信设备,该用于执行第二方面描述的信息传输方法。该通信设备为第二通信设备,第二通信设备可包括:存储器以及与所述存储器耦合的处理器、发射器、接收器。其中,所述发射器用于支持第二通信设备执行第二方面所提供的信息传输方法中第二通信设备发送信息的步骤。所述接收器用于支持第二通信设备执行第二方面所提供的信息传输方法中第二通信设备接收信息的步骤。其中,发射器和接收器可以集成为一收发器。处理器用于支持第二通信设备执行第二方面所提供的信息传输方法中第二通信设备除发送信息以及接收信息以外的其他处理步骤。需要说明的是,本发明实施例中的发射器和接收器可以集成在一起,也可以通过耦合器耦合。所述存储器用于存储第二方面描述的信息传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第二方面所提供的信息传输方法,或者第二方面可能的实施方式中的任意一种所提供的信息传输方法。存储器和处理器可以集成在一起,也可以通过耦合器耦合。
第十一方面,本发明实施例提供了另一种通信设备,该用于执行第三方面描述的资源分配方法。该通信设备为第二通信设备,第二通信设备可包括:存储器以及与所述存储器耦合的处理器、发射器、接收器。其中,所述发射器用于支持第二通信设备执行第三方面所提供的资源分配方法中第二通信设备发送信息的步骤。所述接收器用于支持第二通信设 备执行第三方面所提供的资源分配方法中第二通信设备接收信息的步骤。其中,发射器和接收器可以集成为一收发器。处理器用于支持第二通信设备执行第三方面所提供的资源分配方法中第二通信设备除发送信息以及接收信息以外的其他处理步骤。需要说明的是,本发明实施例中的发射器和接收器可以集成在一起,也可以通过耦合器耦合。所述存储器用于存储第三方面描述的资源分配方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第三方面所提供的资源分配方法,或者第三方面可能的实施方式中的任意一种所提供的资源分配方法。存储器和处理器可以集成在一起,也可以通过耦合器耦合。
第十二方面,本发明实施例提供了一种通信设备,该用于执行第四方面描述的资源分配方法。该通信设备为第一通信设备,第一通信设备可包括:存储器以及与所述存储器耦合的处理器、发射器、接收器。其中,所述发射器用于支持第一通信设备执行第四方面所提供的资源分配方法中第一通信设备发送信息的步骤。所述接收器用于支持第一通信设备执行第四方面所提供的资源分配方法中第一通信设备接收信息的步骤。其中,发射器和接收器可以集成为一收发器。处理器用于支持第一通信设备执行第四方面所提供的资源分配方法中第一通信设备除发送信息以及接收信息以外的其他处理步骤。需要说明的是,本发明实施例中的发射器和接收器可以集成在一起,也可以通过耦合器耦合。所述存储器用于存储第四方面描述的资源分配方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第四方面所提供的资源分配方法,或者第四方面可能的实施方式中的任意一种所提供的资源分配方法。
第十三方面,本发明实施例提供了一种通信系统,包括第一通信设备和第二通信设备。其中,所述第一通信设备可以是如前述第五方面或第九方面所描述的第一通信设备,所述第二通信设备可以是如前述第六方面或第十方面所描述的第二通信设备。
第十四方面,本发明实施例提供了一种通信系统,包括第一通信设备和第二通信设备。其中,所述第一通信设备可以是如前述第八方面或第十二方面所描述的第一通信设备,所述第二通信设备可以是如前述第七方面或第十一方面所描述的第二通信设备。
第十五方面,本发明实施例提供了一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面描述的信息传输方法。
第十六方面,本发明实施例提供了另一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面描述的信息传输方法。
第十七方面,本发明实施例提供了一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面描述的资源分配方法。
第十八方面,本发明实施例提供了另一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面描述的资源分配方法。
第十九方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面描述的信息传输方法。
第二十方面,本发明实施例提供了另一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面描述的信息传输方法。
第二十一方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机 上运行时,使得计算机执行上述第三方面描述的资源分配方法。
第二十二方面,本发明实施例提供了另一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第四方面描述的资源分配方法。
第二十三方面,本发明实施例提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用第一方面所提供的信息传输方法,或者第一方面可能的实施方式中的任意一种所提供的信息传输方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的处理结果。
第二十四方面,本发明实施例提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用第二方面所提供的信息传输方法,或者第二方面可能的实施方式中的任意一种所提供的信息传输方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的处理结果。
第二十五方面,本发明实施例提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用第三方面所提供的资源分配方法,或者第三方面可能的实施方式中的任意一种所提供的资源分配方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的处理结果。
第二十六方面,本发明实施例提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用第四方面所提供的资源分配方法,或者第四方面可能的实施方式中的任意一种所提供的资源分配方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的处理结果。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本发明实施例提供的一种无线通信系统示意图;
图2是本发明实施例提供的一种跳频模式的示意图;
图3是本发明实施例提供的一种信息传输方法的流程示意图;
图4是本发明实施例涉及的采用预先定义好的资源传输业务的示意图;
图5是本发明实施例提供的一种资源分配方法的流程示意图;
图6是本发明实施例提供的一种用户设备的硬件结构示意图;
图7是本发明实施例提供的一种网络设备的硬件结构示意图;
图8是本发明实施例提供的一种无线通信系统、第一通信设备以及第二通信设备的逻辑结构示意图;
图9是本发明实施例提供的另一种无线通信系统、第一通信设备以及第二通信设备的逻辑结构示意图;
图10是本发明实施例提供的一种通信芯片的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在 限定本申请。
首先对本申请涉及的通信系统进行介绍。参考图1,图1示出了本发明实施例涉及的无线通信系统。无线通信系统100可以工作在授权频段,也可以工作在非授权频段。无线通信系统100不限于长期演进(long term evolution,LTE)系统,还可以是未来演进的5G系统、新无线技术(new radio,NR)系统等。可以理解的,非授权频段的使用可以提高无线通信系统100的系统容量。如图1所示,无线通信系统100包括:一个或多个网络设备101,一个或多个用户设备102。其中:
网络设备101可以通过一个或多个天线来和用户设备102进行无线通信103。各个网络设备101均可以为各自对应的覆盖范围104提供通信覆盖。网络设备101对应的覆盖范围104可以被划分为多个扇区(sector),其中,一个扇区对应一部分覆盖范围(未示出)。
在本申请实施例中,网络设备101可以包括:演进的节点B(evolved NodeB,eNB或者eNodeB),或下一代节点(next-generation Node B,gNB)等等。无线通信系统100可以包括几种不同类型的网络设备101,例如宏基站(macro base station)、微基站(micro base station)等。网络设备101可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
在本申请实施例中,用户设备102是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、便携电脑、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能汽车、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。用户设备有时也可以称为终端设备、终端(terminal)、接入终端、UE单元、UE站、移动设备、移动站、移动台(mobile station)、移动终端、移动客户端、移动单元(mobile unit)、远方站、远程终端设备、远程单元、无线单元、无线通信设备、用户代理或用户装置等。
例如,用户设备102可以是增强型机器类通信(enhanced Machine Type Communication,eMTC)终端。eMTC终端的工作带宽可以为窄带(narrow band,NB)。为了节省功耗,降低成本,eMTC终端的工作带宽通常可能较小,小于长期演进(Long Term Evolution,LTE)系统的工作带宽。例如eMTC终端的工作带宽可以是一个窄带NB,一个NB包括6个连续的物理资源块(physical resource block,PRB),一个物理资源块PRB包括12个子载波(Subcarrier,SC)。用户设备102也可以包括智能家居设备,还可以包括手机等移动终端。
本申请中,无线通信系统100可以是eMTC系统,及其他演化系统(例如(Further eMTC,FeMTC)、(Even Further eMTC,eFeMTC)或(additional MTC,AMTC)等)。
本申请实施例中,网络设备101可以向用户设备102发送参考信号(reference signal,RS),用于用户设备102测量信道状态信息(channel state information,CSI)。其中,RS可以包括但不限于:小区特定参考信号(cell-specific reference signal,CRS)或信道状态信息参考 信号(channel state information reference signal,CSI-RS)。
CSI包括信道质量指示(channel quality index,CQI)、第一信息的重复次数、第一信息的聚合等级、参考信号的接收功率(reference signal received power,RSRP)、秩指示(rank index,RI)或预编码矩阵指示(precoding matrix index,PMI)中的一个或多个。这里,第一信息包括下行控制信道(例如物理下行控制信道(physical downlink control channel,PDCCH)、机器类物理下行控制信道(machine physical downlink control channel,MPDCCH)或窄带物理下行链路控制信道(narrowband physical downlink control channel,NPDCCH))或下行控制信息(downlink control information,DCI)。用户设备102向网络设备101反馈CSI,用户设备102反馈的CSI包括PIM、重复次数、聚合等级、RSRP、RI或CQI中的一个或多个。其中,PMI可以用于网络设备101确定预编码矩阵,重复次数可以用于网络设备101确定第一信息的重复次数和/或调制与编码策略(modulation and coding scheme,MCS)等其他调度信息。聚合等级可以用于网络设备101确定第一信息的聚合等级和/或MCS等其他调度信息。RSRP可以用于网络设备101确定第一信息的RSRP和/或MCS等其他调度信息。RI用于推荐网络设备101给用户设备102在相同的时频资源上发送的数据层数,CQI辅助网络设备101确定调制编码方式,以提高传输可靠性和效率。之后,网络设备101向用户设备102发送下行数据时,可以采用根据PMI确定的预编码矩阵,或根据PMI和其他信息共同决定的预编码矩阵对下行数据进行预编码处理。
下述各个实施例中所提及的第一通信设备可以为图1所示实施例中的用户设备102,第二通信设备可以为图1所示实施例中的网络设备101。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
对于UE而言,根据其无线资源控制(radio resource control,RRC)的连接状态可以分为空闲态(idle)、非激活态(inactive)和连接态(connected)。连接态的UE可以通过网络设备的调度与网络设备(例如基站)进行通信。而对于空闲态的UE而言,其不能直接传输数据,需要先进行随机接入,在随机接入过程中的消息3(msg3)中传输上行数据或建立RRC连接以后才能够进行数据的传输。非激活态可以看作是这两种状态的中间状态,UE和核心网保留了连接态时RRC消息的上下文,因此相比于空闲态可以以更快速度的进入连接态。
随机接入过程主要包括如下步骤一至步骤五。
其中,步骤一:UE向网络设备(例如eNB)发送随机接入前导(random access preamble,Preamble)(又称msg1消息),Preamble消息中包含UE选择的一个随机接入前导序列Preamble。
步骤二:网络设备在接收到UE发送的preamble后,在随机接入响应窗中对UE发送RRC随机接入响应(random access response,RAR)(又称msg2消息)。
步骤三:UE在接收到RRC随机接入响应后,在网络设备分配的上行资源上发送RRC连接建立请求(又称msg3)。
步骤四:网络设备向终端发送RRC连接建立消息(又称msg4)。
步骤五:UE在竞争解决完成后,根据RRC连接建立消息中的信息建立信令无线承载,向网络设备发送RRC连接建立完成消息。
目前的技术方案中,随机接入过程中的消息2(msg2)中CSI request域是预留的,因此在msg3中不会上报信道状态信息。若支持空闲态下可以进行信道状态信息的上报,那么信道状态信息的确定需要终端在相应的频率资源(如MPDCCH传输窄带)上进行测量,进而进行信道状态信息的上报。因此,针对空闲态的用户设备,如何上报信道状态信息是需要解决的问题。
进一步的,针对跳频情况,频率资源可能包括多个频率单元。例如调度msg4的MPDCCH是可配置为跳频的,msg4的MPDCCH的可以在2个或4个窄带上进行跳频,具体是在几个窄带上跳频是通过带宽降低的系统信息块(system information block-bandwidth reduced,SIB-BR)来通知的,SIB-BR还会通知跳频的offset,也就是相邻两个跳频窄带之间的间隔,同时还会通知一个窄带所使用的时长,也就是跳完一次频后在该窄带上驻留的时间。具体举例来说明:假设一个系统带宽一共有四个窄带,msg4MPDCCH的第一个子帧所使用的窄带是在msg2中通知的,假设为图2所示左上角的黑色网格,水平方向每个格子代表在一个窄带上驻留时长,offset假设为2个窄带,则最终的跳频如图2黑色网格所示。如图2所示,跳频后终端所使用的窄带与第一个子帧所使用的窄带并不一致了,那么如何根据不同的跳频窄带以及不同窄带的信道状态来确定上报的信道状态信息也是需要解决的问题。
基于前述无线通信系统100,本发明实施例提供了一种信息传输方法。参见图3,该信息传输方法包括但不限于如下步骤:
S301、第一通信设备确定第一频域资源,该第一频域资源包括N个频率单元,N为大于等于1的整数。
S302、第一通信设备向第二通信设备发送M组信道状态信息,第二通信设备接收第一通信设备发送的M组信道状态信息,该M组信道状态信息是根据所述N个频率单元中的一个或多个频率单元的信道状态信息确定的,M为大于等于1的整数。
本发明实施例中,第一通信设备可以是终端(例如eMTC终端),第二通信设备可以是网络设备(例如基站)。
可选的,该频率单元包括窄带(narrow band,NB)、子带(Subband)、子载波(Subcarrier)或资源块(resource block,RB)中的一种或多种。
可选的,第一频域资源为系统带宽,或者第一频域资源为信道状态信息参考资源,或者第一频域资源为第一通信设备监测下行控制信息(即DCI)的频域资源,或者第一频域资源为第一通信设备监测下行控制信道的频域资源,或者第一频域资源为第一通信设备选择的频域资源。例如,该第一频域资源为该第一通信设备根据调度消息4(msg4)的物理下行控制信道(例如可以是PDCCH、MPDCCH或NPDCCH,下文以PDCCH为例)所使 用的频域资源确定的,调度消息4(msg4)的物理下行控制信道所使用的频域资源为该物理下行控制信道第一个子帧所使用的频域资源,或当该物理下行控制信道配置为跳频时所使用的所有频域资源。例如,该第一频域资源为该第一通信设备根据消息4(msg4)所使用的频域资源确定的,该消息4(msg4)所使用的频域资源为该消息4的第一个子帧所使用的频域资源,或当该消息4配置为跳频时所使用的所有频域资源。
可选的,信道状态信息包括信道质量指示PMI、第一信息的重复次数、第一信息的聚合等级或第一信息的参考信号的接收功率RSRP中的一种或多种,第一信息包括下行控制信道PDCCH或下行控制信息DCI。
本发明实施例中,一组信道状态信息包括一个PMI、一个重复次数、一个聚合等级或一个接收功率中的一项或多项。例如,一组信道状态信息包括一个PMI和一个重复次数。两组信道状态信息可以包括1个PMI和2个重复次数,或者,两组信道状态信息包括1个PMI和2个重复次数,或者,两组信道状态信息包括1个PMI、2个重复次数和2个聚合等级,此次仅仅示例性举例信道状态信息,在实际应用中,至少两组信道状态信息中至少包括同一参数的至少两个不同值。
可选的,N可以为大于等于2的正整数,M=1,即M组信道状态信息为一组信道状态信息,该一组信道状态信息的确定方式可以是如下方式中的任意一种:
该一组信道状态信息为N个频率单元中的P个频率单元的信道状态信息的平均值,P为小于等于N且大于等于2的整数;
或者,该一组信道状态信息为第一通信设备根据N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定的,第一加权系数为预先定义的或第二通信设备配置的,Q为小于等于N且大于等于2的整数;
或者,该一组信道状态信息为N个频率单元中信道状态最好的频率单元的信道状态信息;
或者,该一组信道状态信息为N个频率单元中信道状态最差的频率单元的信道状态信息;
或者,该一组信道状态信息为N个频率单元中信道状态居中的频率单元的信道状态信息;
或者,该一组信道状态信息为第一通信设备根据N个频率单元中的第一频率单元的信道状态信息和第二频率单元的信道状态信息确定的,第一频率单元为N个频率单元中信道状态最好的频率单元,第二频率单元为N个频率单元中信道状态最差的频率单元。例如,该一组信道状态信息为用户设备根据第一频率单元的信道状态信息和第二频率单元的信道状态信息的平均值确定的,或者加权平均值确定的。
其中,上述P个频率单元可以包括N个频率单元中信道状态最好的频率单元、N个频率单元中信道状态最差的频率单元和N个频率单元中信道状态居中的频率单元中的一种或多种。上述Q个频率单元可以包括N个频率单元中信道状态最好的频率单元、N个频率单元中信道状态最差的频率单元和N个频率单元中信道状态居中的频率单元中的一种或多种。P可以与Q相等,也可以不相等。
可选的,上述第一加权系数为Q个频率单元中每个频率单元的信道状态信息的加权系 数。例如,Q个频率单元为4个窄带,这4个窄带测量的信道状态信息分别为c1-c4,四个窄带的加权系数为w1-w4。则最后上报的信道状态信息为C=w1*c1+w2*c2+w3*c3+w4*c4,其中w1-w4均为大于等于0小于等于1的数,和/或w1+w2+w3+w4=1。
可以理解的,信道状态最好是指信号通过信道时,信号衰减最小或接收端接收到的有用信号的信干燥比(signal to interference plus noise ratios)最大。信道状态可以通过RSRP、重复次数、聚合等级、CQI等参数来衡量,例如若信道的RSRP最大、重复次数最小、聚合等级最低或者CQI,则信道状态最好,反之,则越差。
可选的,N可以为大于等于2的正整数,且M≥2(包括M=N的情况),即M组信道状态信息为至少两组信道状态信息;至少两组信道状态信息中的任意一组信道状态信息是第一通信设备根据如下方式中的任意一种确定的:
根据N个频率单元中的P个频率单元的信道状态信息的平均值确定,P为小于等于N大于等于2的整数;
或者,根据N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定,第一加权系数为预先定义的或第二通信设备配置的,Q为小于等于N大于等于2的整数;
或者,根据N个频率单元中信道状态最好的频率单元的信道状态信息确定;
或者,根据N个频率单元中信道状态最差的频率单元的信道状态信息确定;
或者,根据N个频率单元中信道状态居中的频率单元的信道状态信息确定;
或者,根据N个频率单元中的第一频率单元的信道状态信息和第二频率单元的信道状态信息确定,第一频率单元为N个频率单元中信道状态最好的频率单元,第二频率单元为N个频率单元中信道状态最差的频率单元(例如,一组信道状态信息为第一通信设备根据第一频率单元的信道状态信息和第二频率单元的信道状态信息的平均值确定的,或者加权平均值确定的)。
其中,M≥2时,上述M组信道状态信息中的每组信道状态信息的确定方式可以完全相同,也可以不完全不同或者完全不同。例如,上述M组信道状态信息包括6组信道状态信息,且第一组信道状态信息根据N个频率单元中的P个频率单元的信道状态信息的平均值确定,第二组信道状态信息是根据N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定,第三组信道状态信息是根据N个频率单元中信道状态最好的频率单元的信道状态信息确定,第四组信道状态信息是根据N个频率单元中信道状态最差的频率单元的信道状态信息确定,第五组信道状态信息是根据N个频率单元中信道状态居中的频率单元的信道状态信息确定,第六组信道状态信息是根据N个频率单元中信道状态最好的频率单元以及N个频率单元中信道状态最差的频率单元的信道状态信息确定的。
其中,上述P个频率单元可以包括N个频率单元中信道状态最好的频率单元、N个频率单元中信道状态最差的频率单元和N个频率单元中信道状态居中的频率单元中的一种或多种。上述Q个频率单元可以包括N个频率单元中信道状态最好的频率单元、N个频率单元中信道状态最差的频率单元和N个频率单元中信道状态居中的频率单元中的一种或多种。P可以与Q相等,也可以不相等。
可选的,上述第一加权系数为Q个频率单元中每个频率单元的信道状态信息的加权系数。例如,Q个频率单元为4个窄带,这4个窄带测量的信道状态信息分别为c1-c4,四个 窄带的加权系数为w1-w4。则最后上报的信道状态信息为C=w1*c1+w2*c2+w3*c3+w4*c4,其中w1-w4均为大于等于0小于等于1的数,和/或w1+w2+w3+w4=1。
可选的,第一加权系数可以是网络设备通过物理层信令(包括但不限于DCI信令)配置的,也可以是第二通信设备通过高层信令(包括但不限于RRC信令或MAC CE信令)配置的。
可选的,N可以为大于等于2的正整数,M=N(针对M=N的情况,还有一种确定方式),M组信道状态信息包括N个频率单元中的每个频率单元的信道状态信息。例如,N=4,则M=4,则4组信道状态信息包括这4个频率单元(例如窄带)各自的信道状态信息。
实施本发明实施例,空闲态的用户设备可以根据N个频率单元中的一个或多个频率单元的信道状态信息确定上报的一组或多组信道状态信息,无需像现有技术中一样需要测量整个带宽的信道质量以及上报整个带宽的信道状态信息,因此,本发明实施例能够减少上报的数据,降低了测量开销以及反馈的开销,节省用户设备的功耗。并且,网络设备能够根据空闲态的用户设备上报的信道状态信息更加精准的为用户设备配置调度下行控制信息的资源和/或下行控制信道的资源和/或下行数据信道的资源和/或下行控制信道的重复次数和/或下行数据信道的重复次数,并且避免了过度调度带来的资源和功耗的浪费的问题,从而节省资源、提高资源的利用率。
此外,本发明实施例除了可以根据N个频率单元中的一个或多个频率单元的信道状态信息确定上报的一组或多组信道状态信息以外,还可以上报整个带宽的信道状态信息,网络设备可以结合用户设备上报的信道状态信息综合考虑,使得网络设备更为精准的进行下行调度。
以下结合跳频情况和非跳频情况,对本发明实施例涉及的信道传输方式进行进一步说明。
可选的,在上述步骤S301之前,还包括:第二通信设备向第一通信设备发送第一信息,第一通信设备接收第二通信设备发送的第一信息,该第一信息用于指示PDCCH是否采用跳频模式。这里,PDCCH可以是调度msg4所使用的PDCCH,也可以是调度msg2所使用的PDCCH。
若第一信息指示PDCCH采用跳频,则第一通信设备确定PDCCH跳频所采用的N个频率单元(例如窄带)。根据N个频率单元中的一个或多个频率单元的信道状态信息确定M组信道状态信息。其中,确定方式可以参考前述确定方式,此次不再赘述。
其中,第一信息可以是携带在系统消息、调度消息2的下行控制信息、随机接入响应、上行授权中的一种或多种消息中发送至第一通信设备。
当N为大于等于2的正整数时,即终端的PDCCH或DCI采用至少2个窄带传输,这至少2个窄带采用跳频模式。终端在上报信道状态信息时,根据跳频涉及的至少2个窄带的信道状态信息确定上报的一组或多组信道状态信息即可。
例如,以频率单元为窄带为例,如果调度msg2的PDCCH和/或调度msg4的PDCCH使能跳频,则终端根据调度msg2的PDCCH和/或调度msg4的PDCCH跳频所使用的一个或多个窄带确定上报的一组信道状态信息。该窄带可以是调度msg2的PDCCH和/或调度 msg4的PDCCH的第一个子帧所使用的窄带或所使用的全部窄带。例如,若调度msg2的PDCCH使能跳频且调度msg4的PDCCH没有使能跳频,则终端根据msg2的PDCCH跳频所使用的一个或多个窄带确定上报的一组信道状态信息。或者,若调度msg4的PDCCH使能跳频且调度msg2的PDCCH没有使能跳频,则终端根据调度msg4的PDCCH跳频所使用的一个或多个窄带确定上报的一组信道状态信息。或者,若调度msg2的PDCCH使能跳频且调度msg4的PDCCH也使能跳频,则终端根据调度msg2的PDCCH和调度msg4的PDCCH跳频所使用的一个或多个窄带确定上报的一组信道状态信息。
或者,当N为大于等于2的正整数时,即终端的PDCCH或DCI采用至少2个窄带传输,这至少2个窄带采用跳频模式。终端在上报信道状态信息时,无需上报整个带宽(全频带)的信道质量,而只需上报至少两组信道状态信息即可。例如,如果调用msg2的PDCCH和/或调用msg4的PDCCH使能跳频,则终端根据调用msg2的PDCCH和/或调用msg4的PDCCH跳频所使用的多个窄带确定上报的多组信道状态信息。这多组信道状态信息的确定方式可以参考前述实施例中的相关描述,此次不再赘述。
实施本发明实施例,针对跳频场景,终端只需要根据跳频所使用的频域资源的信道状态信息确定上报的信道状态信息,无需上报整个带宽的信道状态,因此上报所使用比特数少,降低了终端的测量开销以及反馈开销。同时增加了网络设备下行调度的准确性,避免过度调度或调度资源不足导致传输失败。
若第一信息指示PDCCH采用非跳频,则可以根据N个频率单元中的一个或多个频率单元的信道状态信息确定上报的M组信道状态信息,其中,该N个频率单元以及M组信道状态信息的确定方式可以参考前述实施例中的描述,此处不再赘述。
此外,还可以仅根据调度msg2的PDCCH或调度msg4的PDCCH第一个子帧所使用的频域资源的信道状态信息确定上报的M组信道状态信息中的某一组信道状态信息。
例如,以频率单元为跳频为例,如果调度msg4的PDCCH没有使能跳频,则只根据一个窄带信息确定上报的信道状态信息,该窄带可以是msg4的PDCCH所使用的窄带。
需要说明的是,在本发明实施例中主要以PDCCH为例进行的说明,在实际应用中,下行控制信道还可以是MPDCCH或者NPDCCH等,具体的实现过程类似,此处不再赘述。
实施本发明实施例,针对非跳频场景,终端只需要根据下行控制信息或下行控制信道所采用的频域资源的信道状态信息确定上报的信道状态信息,无需上报整个带宽的信道状态,因此上报所使用比特数少,降低了终端的测量开销以及反馈开销。同时增加了网络设备下行调度的准确性,避免过度调度或调度资源不足导致传输失败。
除前述实施例以外,本发明实施例还提供了一种资源分配方法,具体介绍如下。
对于某些机器类通信,其业务是周期的,而且业务数据包较小。为了达到节能,减少信令开销的目的,如图4所示,需要支持在预先定义好的资源上传输业务的机制,也就是不需要动态的下行控制信息(downlink control information,DCI)调度,用户按照预先配置参数在预先配置的资源上传输信号,因此也叫做预先配置上行资源传输(preconfigured uplink resource transmission,PUR,也可以称为免调度传输grant-free)。连接态和空闲态都可以进行PUR传输。
PUR资源资源分配模式有三种可能:用户特定PUR分配(UE-dedicated)、非竞争共享PUR(contention-free shared PUR)和基于竞争的共享PUR(contention-based shared PUR)。用户特定PUR分配是每个用户分配一个特定的时频资源,可以减小冲突,提高传输的可靠性。用户共享的PUR分配可以更高效的利用资源,但是同时带来的问题是传输可靠性降低。
目前MTC用户根据信道质量的好坏将用户进行分类,信道质量从好到差分别分为4或2级:4级:覆盖增强等级0,覆盖增强等级1,覆盖增强等级2,覆盖增强等级3;或2级:覆盖增强等级模式A和覆盖增强等级模式B。在eMTC场景中,覆盖增强等级0和覆盖增强等级1对应覆盖增强等级模式A,覆盖增强等级2和覆盖增强等级3对应覆盖增强等级模式B。
现有技术中存在的问题是:现有技术方案中,分配资源时,没有考虑覆盖等级。对于覆盖等级2和3的用户而言,其处于深覆盖中链路质量差,此时如果PUR分配共享资源,那么会严重影响其其传输可靠性,导致较高的误块率。
本发明实施例提供了一种资源分配方法,对于覆盖等级2或3的用户而言,其处于深覆盖中链路质量差,此时应该提高其传输的可靠性,而对于覆盖增强等级0或1的用户而言,其所处的信道环境较好,因此可以适当牺牲传输可靠性而提高资源利用率。以下进行详细描述。
基于前述无线通信系统100,本发明实施例提供了一种资源分配方法。参见图5,该资源分配方法包括但不限于如下步骤:
S501、第二通信设备确定第一指示信息和/或第二指示信息,第一指示信息用于指示第一通信设备的第一传输资源的时间资源和/或频率资源,第二指示信息用于指示第一通信设备的第一参考信号配置和/或第一传输资源的反馈搜索空间;
S502、第二通信设备向第一通信设备发送第一指示信息和/或第二指示信息,第一通信设备接收第二通信设备发送的第一指示信息和/或第二指示信息。
第一通信设备根据第一指示信息确定第一传输资源的时间资源和/或频率资源配置,根据第二指示信息确定第一参考信号配置和/或第一传输资源的反馈搜索空间。
本发明实施例中,第一通信设备可以是用户设备(例如eMTC终端),第二通信设备可以是网络设备(例如基站)。
可选的,当终端的覆盖增强等级为第一覆盖增强等级时,若第二通信设备只发送第一指示信息而不发送第二指示信息,则第一指示信息包含于第一消息中或第二消息中;或者,若第二通信设备只发送第二指示信息而不发送第一指示信息,则第二指示信息包含于第一消息或第二消息中;或者,若第二通信设备既发送第一指示信息又发送第二指示信息,则第一指示信息包含于第一消息中或第二消息中,且第二指示信息也包含于第一消息或第二消息中,并且,第一指示信息和第二指示信息可以包含于同一消息中同时发送也可以包含于不同的消息中分别发送。
当终端的覆盖增强等级为第二覆盖增强等级时,若第二通信设备只发送第一指示信息而不发送第二指示信息,则第一指示信息包含于第二消息中;或者,若第二通信设备只发送第二指示信息而不发送第一指示信息,则第二指示信息包含于第二消息中;或者,若第二通信设备既发送第一指示信息又发送第二指示信息,则第一指示信息和第二指示信息均 包含于第二消息中。
可选的,第一消息为系统消息(system information block,SIB),第二消息为无线资源控制RRC消息或下行控制信息(downlink control information,DCI)。
可选的,第一覆盖增强等级为覆盖增强等级0或覆盖增强等级1,或覆盖增强等级模式A。
第二覆盖增强等级为覆盖增强等级2或覆盖增强等级3,或覆盖增强等级模式B。
例如,当终端(或用户)的覆盖增强等级为覆盖增强等级为0或1时,或为覆盖增强等级模式A时,终端的第一传输资源,如PUR,通过用户特定RRC消息或连接态的RRC消息或系统消息进行配置,即第一指示信息可以包含于第一消息或第二消息中,第一消息为系统消息SIB,第二消息为RRC消息。
又例如,当终端的覆盖增强等级为覆盖增强等级为2或3时,或为覆盖增强等级模式B时,终端的第一传输资源,如PUR,通过用户特定RRC消息或连接态的RRC消息配置。即第一指示信息可以包含于第二消息中,第二消息为RRC消息。
可选的,当终端的覆盖增强等级为第一覆盖增强等级时,终端根据第二指示信息和第一方式确定第一参考信号配置;当终端的覆盖增强等级为第二覆盖增强等级时,终端根据第二指示信息和第二方式确定第一参考信号配置。
可选的,第一参考信号包括解调参考信号(demodulation reference signal,DMRS)、小区特定的参考信号(cell-specific reference signal,CRS)、多播/组播单频网络参考信号(multicast broadcast single frequency network reference signal,MBSFN-RS)、位置参考信号(position reference signal,PRS)、信道状态信息参考信号(channel-state information reference signal,CSI-RS)或探测参考信号(sounding reference signal,SSS)中的一种或多种。
例如,当终端(或用户)的覆盖增强等级为覆盖增强等级为0或1时,或为覆盖增强等级模式A时,终端根据第二指示信息和第一方式确定第一参考信号配置,当终端为覆盖增强等级为2或3时,或为覆盖增强等级模式B时,根据第二指示信息和第二方式确定第一参考信号配置。
可选的,第一参考信号配置包括第一参考信号的循环移位(cyclic shift)、第一参考信号的正交覆盖码、第一参考信号的加扰序列、第一参考信号的序列、第一参考信号的初始化或第一参考信号的初始化序列中的一种或多种。
第一方式和第二方式的参数获取方式和/或公式不同。以第一参考信号为DMRS为例,若当终端为覆盖增强等级为0或1时,或为覆盖增强等级模式A时,DMRS的循环移位信息根据如下公式获得:
α λ=2πn cs,λ/12
Figure PCTCN2019074277-appb-000001
其中,α λ表示循环移位,
Figure PCTCN2019074277-appb-000002
通过高层配置,n PN(n s)和δ根据配置的系统参数确定。
Figure PCTCN2019074277-appb-000003
为信令配置的,该信令包括RRC信令、物理层信令(例如下行控制信息(downlink control information,DCI)信令或媒体接入控制控制元素(medium access control control  element,MAC CE)信令),且对于共享资源的不同终端是不同的。而当终端(或用户)为覆盖增强等级为2或3时,或为覆盖增强等级模式B时,DMRS的循环移位信息根据如下公式获得:
α λ=2πn cs,λ/12
Figure PCTCN2019074277-appb-000004
其中,α λ表示循环移位,
Figure PCTCN2019074277-appb-000005
通过高层配置,n PN(n s)和δ根据配置的系统参数确定。
Figure PCTCN2019074277-appb-000006
为协议规定的,且对于不同终端是相同的。
可选的,当终端为覆盖增强等级为0或1时,或为覆盖增强等级模式A时,根据第二指示信息确定第一传输资源的反馈搜索空间为公共搜索空间(common search space)和或用户特定搜索空间(ue-specific search space),当终端为覆盖增强等级为2或3时,或为覆盖增强等级模式B时,根据第二指示信息确定第一传输资源的反馈搜索空间为用户特定搜索空间。
实施本发明实施例,相较于现有技术中预先定义好每个用户的传输资源的方式来说,本申请的资源配置更加灵活。并且,网络设备(例如基站)分配资源时,考虑终端的覆盖等级,将用户特定资源分配给信道质量差的用户设备,提高该用户设备的传输可靠性,并且还可以避免信道质量差的用户设备占用的资源冲突,提升传输的成功率;将共享资源分配给信道质量好的用户,提高资源的利用率。
参考图6,图6示出了本发明实施例涉及的用户设备的结构示意图。如图6所示,用户设备600可包括:输入输出模块(例如音频输入输出模块618、按键输入模块616以及显示器620等)、用户接口602、一个或多个处理器604、收发器606、天线614以及存储器612。这些部件可通过总线或者其它方式连接,图6以通过总线连接为例。其中:
天线614可用于将电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。
收发器606可用于对处理器604输出的信号进行发射处理,也可用于对天线614接收的移动通信信号进行接收处理。
在本申请实施例中,收发器606可看作一个无线调制解调器。在用户设备600中,收发器606的数量可以是一个或者多个。
除了图6所示的收发器606,用户设备600还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,用户设备600还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,用户设备600还可以配置有有线网络接口(如LAN接口)来支持有线通信。
输入输出模块可用于实现用户设备600和用户/外部环境之间的交互,可主要包括音频输入输出模块618、按键输入模块616以及显示器620等。具体的,输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,输入输出模块均通过用户接口602与处理器604进行通信。
存储器612可以和处理器604通过总线或者输入输出端口耦合,存储器612也可以与处理器604集成在一起。存储器612用于存储各种软件程序和/或多组指令。具体的,存储器612可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器612可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器612还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个用户设备,一个或多个网络设备进行通信。存储器612还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请实施例中,存储器612可用于存储本申请的一个或多个实施例提供的信息传输方法或资源分配方法在用户设备600侧的实现程序。关于本申请的一个或多个实施例提供的信息传输方法或资源分配方法的实现,请参考后续实施例。
处理器604可用于读取和执行计算机可读指令。具体的,处理器604可用于调用存储于存储器612中的程序,例如本申请的一个或多个实施例提供的信息传输方法或资源分配方法在用户设备600侧的实现程序,并执行该程序包含的指令以实现后续实施例涉及的方法。处理器604可支持:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)通信、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G)通信,以及长期演进(Long Term Evolution,LTE)(4G)通信、以及5G通信等等中的一个或多个。可选地,当处理器604发送任何消息或数据时,其具体通过驱动或控制发射器606做发送。可选地,当处理器604接收任何消息或数据时,其具体通过驱动或控制接收器608做接收。因此,处理器604可以被视为是执行发送或接收的控制中心,发射器606和接收器608是发送和接收操作的具体执行者。
可以理解的,用户设备600可以是图1示出的无线通信系统100中的用户设备102,可实施为eMTC设备、移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
需要说明的,图6所示的用户设备600仅仅是本申请实施例的一种实现方式,实际应用中,用户设备600还可以包括更多或更少的部件,这里不作限制。关于用户设备600的具体实现可以参考前述方法实施例中的相关描述,此处不再赘述。
参考图7,图7示出了本发明实施例涉及的网络设备的结构示意图。如图7所示,网络设备700可包括:一个或多个处理器701、存储器702、网络接口703、收发器705和天线708。这些部件可通过总线704或者其他方式连接,图7以通过总线连接为例。其中:
网络接口703可用于网络设备700与其他通信设备,例如其他网络设备,进行通信。具体的,网络接口703可以是有线接口。
收发器705可用于对处理器701输出的信号进行发射处理,例如信号调制。收发器705还可用于对天线708接收的移动通信信号进行接收处理。例如信号解调。在本申请的一些实施例中,收发器705可看作一个无线调制解调器。在网络设备700中,收发器705的数量可以是一个或者多个。天线708可用于将传输线中的电磁能转换成自由空间中的电磁波, 或者将自由空间中的电磁波转换成传输线中的电磁能。
存储器702可以和处理器701通过总线704或者输入输出端口耦合,存储器702也可以与处理器701集成在一起。存储器702用于存储各种软件程序和/或多组指令。具体的,存储器702可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器702可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器702还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个用户设备,一个或多个网络设备进行通信。
处理器701可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。
本申请实施例中,处理器701可用于读取和执行计算机可读指令。具体的,处理器701可用于调用存储于存储器702中的程序,例如本申请的一个或多个实施例提供的信息传输方法或资源分配方法在网络设备700侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备700可以是图1示出的无线通信系统100中的网络设备101,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB,gNB等等。
需要说明的是,图7所示的网络设备700仅仅是本申请实施例的一种实现方式,实际应用中,网络设备700还可以包括更多或更少的部件,这里不作限制。关于网络设备700的具体实现可以参考前述方法实施例中的相关描述,此处不再赘述。
图8所示,为本申请的实施例提供的上述信息传输方法实施例中所涉及的无线通信系统、第一通信设备以及第二通信设备的一种可能的逻辑结构示意图。第一通信设备800包括:确定单元801和发送单元802。
其中,确定单元801,用于确定第一频域资源,所述第一频域资源包括N个频率单元,N为大于等于1的整数;
发送单元802,用于向第二通信设备发送M组信道状态信息,所述M组信道状态信息是所述第一通信设备根据所述N个频率单元中的一个或多个频率单元的信道状态信息确定的,M为大于等于1的整数。
第二通信设备900包括:接收单元901。
其中,接收单元901,用于接收第一通信设备发送的M组信道状态信息,所述M组信道状态信息是所述第一通信设备根据N个频率单元中的一个或多个频率单元的信道状态信息确定的,所述N个频率单元是第一频域资源包括的频率单元,N为大于等于1的整数,M为大于等于1的整数。
可选的,所述第一频域资源为系统带宽,或者所述第一频域资源为信道状态信息参考资源,或者所述第一频域资源为所述第一通信设备监测下行控制信息的频域资源,或者所 述第一频域资源为所述第一通信设备监测下行控制信道的频域资源,或者所述第一频域资源为所述第一通信设备选择的频域资源。
可选的,N为大于等于2的正整数,所述M组为一组;所述一组信道状态信息为N个频率单元中的P个频率单元的信道状态信息的平均值,P为小于等于N且大于等于2的整数;
或者,所述一组信道状态信息为所述第一通信设备根据所述N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定的,所述第一加权系数为预先定义的或所述第二通信设备配置的,Q为小于等于N且大于等于2的整数;
或者,所述一组信道状态信息为所述N个频率单元中信道状态居中的频率单元的信道状态信息;
或者,所述一组信道状态信息为所述第一通信设备根据所述N个频率单元中的第一频率单元的信道状态信息和/或第二频率单元的信道状态信息确定的,所述第一频率单元为所述N个频率单元中信道状态最好的频率单元,所述第二频率单元为所述N个频率单元中信道状态最差的频率单元。
可选的,N为大于等于2的正整数,所述M组为至少两组;所述至少两组信道状态信息中的任意一组信道状态信息是所述第一通信设备根据如下方式中的任意一种确定的:
根据所述N个频率单元中的P个频率单元的信道状态信息的平均值确定,P为小于等于N大于等于2的整数;
或者,根据所述N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定,所述第一加权系数为预先定义的或所述第二通信设备配置的,Q为小于等于N大于等于2的整数;
或者,根据所述N个频率单元中信道状态最好的频率单元的信道状态信息确定;
或者,根据所述N个频率单元中信道状态最差的频率单元的信道状态信息确定;
或者,根据所述N个频率单元中信道状态居中的频率单元的信道状态信息确定;
或者,根据所述N个频率单元中的第一频率单元的信道状态信息和第二频率单元的信道状态信息确定,所述第一频率单元为所述N个频率单元中信道状态最好的频率单元,所述第二频率单元为所述N个频率单元中信道状态最差的频率单元;
或者,
N为大于等于2的正整数,M=N,所述M组信道状态信息包括所述N个频率单元中的每个频率单元的信道状态信息。
可选的,所述信道状态信息包括信道质量指示、第一信息的重复次数、所述第一信息的聚合等级或参考信号的接收功率中的一种或多种,所述第一信息包括下行控制信道或下行控制信息。
可选的,所述频率单元包括窄带、子带、子载波或资源块中的一种或多种。
可选的,第一通信设备可以为用户设备,第二通信设备可以为网络设备。
可选的,上述N个频率单元可以采用跳频模式。
需要说明的是,第一通信设备800以及第二通信设备900中各个单元的具体实现可以参考前述图3所示的信息传输方法实施例中的相关描述,此次不再赘述。
图9所示,为本申请的实施例提供的上述资源分配方法实施例中所涉及的无线通信系统、第一通信设备以及第二通信设备的一种可能的逻辑结构示意图。
第二通信设备1000包括:确定单元1001和发送单元1002。
其中,确定单元1001,用于确定第一指示信息和/或第二指示信息,所述第一指示信息用于指示第一通信设备的第一传输资源的时间资源和/或频率资源,所述第二指示信息用于指示所述第一通信设备的第一参考信号配置和/或所述第一传输资源的反馈搜索空间;
发送单元1002,用于向所述第一通信设备发送所述第一指示信息和/或所述第二指示信息。
第一通信设备1100包括:接收单元1101。
其中,接收单元1101,用于接收第二通信设备发送的第一指示信息和/或第二指示信息,所述第一指示信息用于指示第一通信设备的第一传输资源的时间资源和/或频率资源,所述第二指示信息用于指示所述第一通信设备的第一参考信号配置和/或所述第一传输资源的反馈搜索空间。
可选的,当所述第一通信设备的覆盖增强等级为第一覆盖增强等级时,所述第一指示信息包含于第一消息中或第二消息中,所述第二指示信息包含于第一消息中或第二消息中;当所述第一通信设备的覆盖增强等级为第二覆盖增强等级时,所述第一指示信息包含于所述第二消息中,和/或,所述第二指示信息包含于所述第二消息中。
可选的,所述第一消息为系统消息SIB,所述第二消息为用户特定的无线资源控制RRC消息或下行控制信息。
可选的,当所述第一通信设备的覆盖增强等级为第一覆盖增强等级时,所述第一通信设备根据所述第二指示信息和第一方式确定所述第一参考信号配置;当所述第一通信设备的覆盖增强等级为第二覆盖增强等级时,所述第一通信设备根据所述第二指示信息和第二方式确定所述第一参考信号配置。
可选的,所述第一参考信号配置包括所述第一参考信号的循环移位、所述第一参考信号的正交覆盖码、所述第一参考信号的加扰序列、所述第一参考信号的序列、所述第一参考信号的初始化或所述第一参考信号的初始化序列中的一种或多种。
可选的,所述第一参考信号包括解调参考信号、小区特定的参考信号、多播/组播单频网络参考信号、位置参考信号、信道状态信息参考信号或探测参考信号中的一种或多种。
可选的,当所述第一通信设备的覆盖增强等级为第一覆盖增强等级时,所述第一传输资源的反馈搜索空间为公共搜索空间和/或用户特定搜索空间,当所述第一通信设备的覆盖增强等级为第二覆盖增强等级时,所述第一传输资源的反馈搜索空间为用户特定搜索空间。
可选的,第一通信设备可以为用户设备,第二通信设备可以为网络设备。
需要说明的是,第一通信设备1000以及第二通信设备1100中各个单元的具体实现可以参考前述图5所示的资源分配方法实施例中的相关描述,此次不再赘述。
参见图10,图10示出了本申请提供的一种通信芯片的结构示意图。如图10所示,通信芯片1000可包括:处理器1001,以及耦合于处理器1001的一个或多个接口1002。其中:
处理器1001可用于读取和执行计算机可读指令。具体实现中,处理器1001可主要包括控制器、运算器和寄存器。其中,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器1001的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、无互锁管道阶段架构的微处理器(microprocessor without interlocked piped stages architecture,MIPS)架构、进阶精简指令集机器(advanced RISC machines,ARM)架构或者NP架构等等。处理器1001可以是单核的,也可以是多核的。
接口1002可用于输入待处理的数据至处理器1001,并且可以向外输出处理器1001的处理结果。具体实现中,接口1002可以是通用输入输出(general purpose input output,GPIO)接口,可以和多个外围设备(如显示器(LCD)、摄像头(camara)、射频(radio frequency,RF)模块等等)连接。接口1002通过总线1003与处理器1001相连。
本申请中,处理器1001可用于从存储器中调用本申请的一个或多个实施例提供的信息传输方法或资源分配方法在通信设备侧的实现程序,并执行该程序包含的指令。存储器可以和处理器1001集成在一起,也可以通过接口1002与通信芯片100相耦合。接口1002可用于输出处理器1001的执行结果。本申请中,接口1002可具体用于输出处理器1001的译码结果。关于本申请的一个或多个实施例提供的信息传输方法或资源分配方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器1001、接口1002各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选的还包括没有列出的步骤或单元,或可选的还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质 (例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (30)

  1. 一种信息传输方法,其特征在于,包括:
    第一通信设备确定第一频域资源,所述第一频域资源包括N个频率单元,N为大于等于1的整数;
    所述第一通信设备向第二通信设备发送M组信道状态信息,所述M组信道状态信息是所述第一通信设备根据所述N个频率单元中的一个或多个频率单元的信道状态信息确定的,M为大于等于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一频域资源为系统带宽,或者所述第一频域资源为信道状态信息参考资源,或者所述第一频域资源为所述第一通信设备监测下行控制信息的频域资源,或者所述第一频域资源为所述第一通信设备监测下行控制信道的频域资源,或者所述第一频域资源为所述第一通信设备选择的频域资源。
  3. 根据权利要求1或2所述的方法,其特征在于,N为大于等于2的正整数,所述M组为一组;所述一组信道状态信息为N个频率单元中的P个频率单元的信道状态信息的平均值,P为小于等于N且大于等于2的整数;
    或者,所述一组信道状态信息为所述第一通信设备根据所述N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定的,所述第一加权系数为预先定义的或所述第二通信设备配置的,Q为小于等于N且大于等于2的整数;
    或者,所述一组信道状态信息为所述N个频率单元中信道状态居中的频率单元的信道状态信息;
    或者,所述一组信道状态信息为所述第一通信设备根据所述N个频率单元中的第一频率单元的信道状态信息和/或第二频率单元的信道状态信息确定的,所述第一频率单元为所述N个频率单元中信道状态最好的频率单元,所述第二频率单元为所述N个频率单元中信道状态最差的频率单元。
  4. 根据权利要求1或2所述的方法,其特征在于,N为大于等于2的正整数,所述M组为至少两组;所述至少两组信道状态信息中的任意一组信道状态信息是所述第一通信设备根据如下方式中的任意一种确定的:
    根据所述N个频率单元中的P个频率单元的信道状态信息的平均值确定,P为小于等于N大于等于2的整数;
    或者,根据所述N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定,所述第一加权系数为预先定义的或所述第二通信设备配置的,Q为小于等于N大于等于2的整数;
    或者,根据所述N个频率单元中信道状态最好的频率单元的信道状态信息确定;
    或者,根据所述N个频率单元中信道状态最差的频率单元的信道状态信息确定;
    或者,根据所述N个频率单元中信道状态居中的频率单元的信道状态信息确定;
    或者,根据所述N个频率单元中的第一频率单元的信道状态信息和第二频率单元的信道状态信息确定,所述第一频率单元为所述N个频率单元中信道状态最好的频率单元,所述第二频率单元为所述N个频率单元中信道状态最差的频率单元;
    或者,
    N为大于等于2的正整数,M=N,所述M组信道状态信息包括所述N个频率单元中的每个频率单元的信道状态信息。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述信道状态信息包括信道质量指示、第一信息的重复次数、所述第一信息的聚合等级或参考信号的接收功率中的一种或多种,所述第一信息包括下行控制信道或下行控制信息。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述频率单元包括窄带、子带、子载波或资源块中的一种或多种。
  7. 一种信息传输方法,其特征在于,包括:
    第二通信设备接收第一通信设备发送的M组信道状态信息,所述M组信道状态信息是所述第一通信设备根据N个频率单元中的一个或多个频率单元的信道状态信息确定的,所述N个频率单元是第一频域资源包括的频率单元,N为大于等于1的整数,M为大于等于1的整数。
  8. 根据权利要求7所述的方法,其特征在于,所述第一频域资源为系统带宽,或者所述第一频域资源为信道状态信息参考资源,或者所述第一频域资源为所述第一通信设备监测下行控制信息的频域资源,或者所述第一频域资源为所述第一通信设备监测下行控制信道的频域资源,或者所述第一频域资源为所述第一通信设备选择的频域资源。
  9. 根据权利要求7或8所述的方法,其特征在于,N为大于等于2的正整数,所述M组为一组;
    所述一组信道状态信息为N个频率单元中的P个频率单元的信道状态信息的平均值,P为小于等于N且大于等于2的整数;
    或者,所述一组信道状态信息为所述第一通信设备根据所述N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定的,所述第一加权系数为预先定义的或所述第二通信设备配置的,Q为小于等于N且大于等于2的整数;
    或者,所述一组信道状态信息为所述N个频率单元中信道状态居中的频率单元的信道状态信息;
    或者,所述一组信道状态信息为所述第一通信设备根据所述N个频率单元中的第一频率单元的信道状态信息和/或第二频率单元的信道状态信息确定的,所述第一频率单元为所述N个频率单元中信道状态最好的频率单元,所述第二频率单元为所述N个频率单元中信道状态最差的频率单元。
  10. 根据权利要求7或8所述的方法,其特征在于,N为大于等于2的正整数,所述M组为至少两组;所述至少两组信道状态信息中的任意一组信道状态信息是所述第一通信设备根据如下方式中的任意一种确定的:
    根据所述N个频率单元中的P个频率单元的信道状态信息的平均值确定,P为小于等于N大于等于2的整数;
    或者,根据所述N个频率单元中的Q个频率单元的信道状态信息和第一加权系数确定,所述第一加权系数为预先定义的或所述第二通信设备配置的,Q为小于等于N大于等于2的整数;
    或者,根据所述N个频率单元中信道状态最好的频率单元的信道状态信息确定;
    或者,根据所述N个频率单元中信道状态最差的频率单元的信道状态信息确定;
    或者,根据所述N个频率单元中信道状态居中的频率单元的信道状态信息确定;
    或者,根据所述N个频率单元中的第一频率单元的信道状态信息和第二频率单元的信道状态信息确定,所述第一频率单元为所述N个频率单元中信道状态最好的频率单元,所述第二频率单元为所述N个频率单元中信道状态最差的频率单元;
    或者,
    N为大于等于2的正整数,M=N,所述M组信道状态信息包括所述N个频率单元中的每个频率单元的信道状态信息。
  11. 根据权利要求7至10任一项所述的方法,其特征在于,所述信道状态信息包括信道质量指示、第一信息的重复次数、所述第一信息的聚合等级或所述第一信息的参考信号的接收功率中的一种或多种,所述第一信息包括下行控制信道或下行控制信息。
  12. 根据权利要求7至11任一项所述的方法,其特征在于,所述频率单元包括窄带、子带、子载波或资源块中的一种或多种。
  13. 一种资源分配方法,其特征在于,包括:
    第二通信设备确定第一指示信息和/或第二指示信息,所述第一指示信息用于指示第一通信设备的第一传输资源的时间资源和/或频率资源,所述第二指示信息用于指示所述第一通信设备的第一参考信号配置和/或所述第一传输资源的反馈搜索空间;
    所述第二通信设备向所述第一通信设备发送所述第一指示信息和/或所述第二指示信息。
  14. 根据权利要求13所述的方法,其特征在于,当所述第一通信设备的覆盖增强等级为第一覆盖增强等级时,所述第一指示信息包含于第一消息中或第二消息中,所述第二指示信息包含于第一消息中或第二消息中;当所述第一通信设备的覆盖增强等级为第二覆盖增强等级时,所述第一指示信息包含于所述第二消息中,和/或,所述第二指示信息包含于所述第二消息中。
  15. 根据权利要求14所述的方法,其特征在于,所述第一消息为系统消息SIB,所述第二消息为用户特定的无线资源控制RRC消息或下行控制信息。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,所述第一参考信号配置包括所述第一参考信号的循环移位、所述第一参考信号的正交覆盖码、所述第一参考信号的加扰序列、所述第一参考信号的序列、所述第一参考信号的初始化或所述第一参考信号的初始化序列中的一种或多种。
  17. 根据权利要求13至16任一项所述的方法,其特征在于,所述第一参考信号包括解调参考信号、小区特定的参考信号、多播/组播单频网络参考信号、位置参考信号、信道状态信息参考信号或探测参考信号中的一种或多种。
  18. 根据权利要求13至17任一项所述的方法,其特征在于,当所述第一通信设备的覆盖增强等级为第一覆盖增强等级时,所述第一传输资源的反馈搜索空间为公共搜索空间和/或用户特定搜索空间,当所述第一通信设备的覆盖增强等级为第二覆盖增强等级时,所述第一传输资源的反馈搜索空间为用户特定搜索空间。
  19. 一种资源分配方法,其特征在于,包括:
    第一通信设备接收第二通信设备发送的第一指示信息和/或第二指示信息,所述第一指示信息用于指示第一通信设备的第一传输资源的时间资源和/或频率资源,所述第二指示信息用于指示所述第一通信设备的第一参考信号配置和/或所述第一传输资源的反馈搜索空间。
  20. 根据权利要求19所述的方法,其特征在于,当所述第一通信设备的覆盖增强等级为第一覆盖增强等级时,所述第一指示信息包含于第一消息中或第二消息中,所述第二指示信息包含于第一消息中或第二消息中;当所述第一通信设备的覆盖增强等级为第二覆盖增强等级时,所述第一指示信息包含于所述第二消息中,和/或,所述第二指示信息包含于所述第二消息中。
  21. 根据权利要求20所述的方法,其特征在于,所述第一消息为系统消息SIB,所述第二消息为用户特定的无线资源控制RRC消息或下行控制信息。
  22. 根据权利要求19至21任一项所述的方法,其特征在于,当所述第一通信设备的覆盖增强等级为第一覆盖增强等级时,所述第一通信设备根据所述第二指示信息和第一方式确定所述第一参考信号配置;当所述第一通信设备的覆盖增强等级为第二覆盖增强等级时,所述第一通信设备根据所述第二指示信息和第二方式确定所述第一参考信号配置。
  23. 根据权利要求22所述的方法,其特征在于,所述第一参考信号配置包括所述第一参考信号的循环移位、所述第一参考信号的正交覆盖码、所述第一参考信号的加扰序列、所述第一参考信号的序列、所述第一参考信号的初始化或所述第一参考信号的初始化序列中的一种或多种。
  24. 根据权利要求19至23任一项所述的方法,其特征在于,所述第一参考信号包括解调参考信号、小区特定的参考信号、多播/组播单频网络参考信号、位置参考信号、信道状态信息参考信号或探测参考信号中的一种或多种。
  25. 根据权利要求19至24任一项所述的方法,其特征在于,当所述第一通信设备的覆盖增强等级为第一覆盖增强等级时,所述第一传输资源的反馈搜索空间为公共搜索空间和/或用户特定搜索空间,当所述第一通信设备的覆盖增强等级为第二覆盖增强等级时,所述第一传输资源的反馈搜索空间为用户特定搜索空间。
  26. 一种通信设备,其特征在于,所述通信设备为第一通信设备,所述第一通信设备包括处理器、存储器和收发器,所述处理器、所述存储器和所述收发器相互连接,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码执行权利要求1至6任一项所述的信息传输方法。
  27. 一种通信设备,其特征在于,所述通信设备为第二通信设备,所述第二通信设备包括处理器、存储器和收发器,所述处理器、所述存储器和所述收发器相互连接,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码执行权利要求7至12任一项所述的信息传输方法。
  28. 一种通信设备,其特征在于,所述通信设备为第二通信设备,所述第二通信设备包括处理器、存储器和收发器,所述处理器、所述存储器和所述收发器相互连接,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码执行权利要求13至18任一项所述的资源分配方法。
  29. 一种通信设备,其特征在于,所述通信设备为第一通信设备,所述第一通信设备包括处理器、存储器和收发器,所述处理器、所述存储器和所述收发器相互连接,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码执行权利要求19至25任一项所述的资源分配方法。
  30. 一种通信系统,其特征在于,包括第一通信设备和第二通信设备,所述第一通信设备为权利要求26所述的第一通信设备,所述第二通信设备为权利要求27所述的第二通信设备;或者,所述第一通信设备为权利要求29所述的第一通信设备,所述第二通信设备为权利要求28所述的第二通信设备。
PCT/CN2019/074277 2019-01-31 2019-01-31 一种信息传输方法、相关设备及系统 WO2020155059A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980090774.9A CN113366779B (zh) 2019-01-31 2019-01-31 一种信息传输方法、相关设备及系统
PCT/CN2019/074277 WO2020155059A1 (zh) 2019-01-31 2019-01-31 一种信息传输方法、相关设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074277 WO2020155059A1 (zh) 2019-01-31 2019-01-31 一种信息传输方法、相关设备及系统

Publications (1)

Publication Number Publication Date
WO2020155059A1 true WO2020155059A1 (zh) 2020-08-06

Family

ID=71840773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074277 WO2020155059A1 (zh) 2019-01-31 2019-01-31 一种信息传输方法、相关设备及系统

Country Status (2)

Country Link
CN (1) CN113366779B (zh)
WO (1) WO2020155059A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118118947A (zh) * 2022-11-30 2024-05-31 中兴通讯股份有限公司 信息传输方法、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160295345A1 (en) * 2015-04-02 2016-10-06 Hyukjun Oh Method for performing machine type communication for the purpose of coverage improvement, apparatuses and systems for performing the same
CN108886429A (zh) * 2016-04-01 2018-11-23 高通股份有限公司 执行在增强的机器类型通信中的信道状态信息测量
CN108990163A (zh) * 2018-08-29 2018-12-11 创新维度科技(北京)有限公司 下行信道状态反馈方法、基站、用户设备及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282870B (zh) * 2017-01-06 2021-04-20 华为技术有限公司 一种资源指示方法、用户设备及网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160295345A1 (en) * 2015-04-02 2016-10-06 Hyukjun Oh Method for performing machine type communication for the purpose of coverage improvement, apparatuses and systems for performing the same
CN108886429A (zh) * 2016-04-01 2018-11-23 高通股份有限公司 执行在增强的机器类型通信中的信道状态信息测量
CN108990163A (zh) * 2018-08-29 2018-12-11 创新维度科技(北京)有限公司 下行信道状态反馈方法、基站、用户设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "UL Transmission in Preconfigured Resources for eMTC", 3GPP DRAFT; R1-1812455, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 7, XP051478657 *
SIERRA WIRELESS: "LTE-M Preconfigured UL Resources Summary RAN1 #95", 3GPP DRAFT; R1-1813725, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 9, XP051480056 *

Also Published As

Publication number Publication date
CN113366779B (zh) 2023-06-06
CN113366779A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
US11387969B2 (en) Signal transmission method, related device, and system
US20200154399A1 (en) Transmission method and apparatus thereof
WO2019136723A1 (zh) 上行数据传输方法及相关设备
US11751211B2 (en) Method for processing physical resource and user equipment
US11405961B2 (en) Wireless communication method and apparatus
US20230049307A1 (en) Device-to-Device Based Resource Determining Method and Device
WO2019191949A1 (zh) 通信方法、通信装置和系统
US20220272668A1 (en) Wireless communication resource allocation method and apparatus, and communication device
WO2020164156A1 (zh) 传输带宽的确定方法、设备及存储介质
CN112312463A (zh) 上报信道状态信息的方法和装置
WO2019015445A1 (zh) 一种通信方法及装置
WO2021129229A1 (zh) 一种通信方法和装置
US20210204312A1 (en) Downlink control information transmission method and apparatus
WO2021047457A1 (zh) 参考信号传输方法及相关设备
JP7199551B2 (ja) リソース予約方法および関連デバイス
WO2020155059A1 (zh) 一种信息传输方法、相关设备及系统
CN112564873A (zh) 参考信号传输方法及通信装置
WO2020237451A1 (zh) 一种信息传输方法、相关设备及系统
CA3095210C (en) Data transmission method, communications apparatus, storage medium, and program product
WO2020143053A1 (en) Method, device and computer readable medium for measuring sidelink received signal strength
EP3823378A1 (en) Resource use status reporting method and communication device
EP3790337B9 (en) Method for transmitting reference signal, and communication device
TWI696398B (zh) 用於無線通信系統的使用者裝置和方法
WO2021244386A1 (zh) 一种信号传输的方法及其相关设备
WO2021134382A1 (zh) 一种资源指示方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913104

Country of ref document: EP

Kind code of ref document: A1