WO2021047457A1 - 参考信号传输方法及相关设备 - Google Patents
参考信号传输方法及相关设备 Download PDFInfo
- Publication number
- WO2021047457A1 WO2021047457A1 PCT/CN2020/113627 CN2020113627W WO2021047457A1 WO 2021047457 A1 WO2021047457 A1 WO 2021047457A1 CN 2020113627 W CN2020113627 W CN 2020113627W WO 2021047457 A1 WO2021047457 A1 WO 2021047457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference signal
- time
- period
- terminal device
- network device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
Definitions
- the present invention relates to the field of communication technology, and in particular to a reference signal transmission method and related equipment.
- the base station uses the channel sound reference signal (SRS) to estimate the uplink channel quality of different frequency bands.
- SRS channel sound reference signal
- TDD time division duplexing
- the base station Based on the received uplink SRS signal, the base station can measure the uplink channel state information of each antenna ( channel state information, CSI), and then use the principle of channel mutual benefit to estimate the downlink channel state and perform corresponding precoding.
- CSI channel state information
- the interval between two adjacent SRS transmissions by user equipment is generally at least 5 ms.
- the channel is time-varying.
- the downlink channel state of the UE may have changed. If the base station uses the downlink channel state information obtained before the current channel to precode the current channel, the precoding matrix will not match the current channel, that is, the channel aging problem will occur, causing the UE The throughput rate is reduced. For example, the base station receives the SRS sent by the UE in slot 0, uses the channel mutual benefit to obtain the CSI of the downlink channel, and precodes the downlink data according to the CSI of the downlink channel.
- the embodiments of the present application provide a reference signal transmission method and related equipment.
- the network equipment can obtain the channel status of the terminal equipment in time, thereby avoiding the problem of channel aging.
- the embodiments of the present application provide a reference signal transmission method, which is suitable for the uplink reference signal transmission process, and the method can be applied to the terminal device side.
- the method includes: the terminal device determines a first period and a second period for transmitting the reference signal.
- the terminal device sends at least two first reference signal sets in the first cycle.
- the at least two first reference signal sets are carried on at least two reference signal time periods.
- the terminal device transmits at least two second reference signal sets in the second period, each second reference signal set includes at least one reference signal, and the first reference signal set includes at least two second reference signal sets.
- Reference signal collection To implement the embodiment of the present application, the terminal device sends a first reference signal set to the network device every first cycle.
- the first reference signal set is sent within a reference signal time period.
- the terminal device The second set of reference signals is sent to the network device every second period, which can avoid the waste of transmission resources caused by the continuous transmission of the reference signal by the terminal device, and can send the reference signal in time when the channel state changes, so that the network device can obtain the downlink channel state in time Therefore, the changed channel state information is used for precoding, which improves the channel aging problem and improves the UE throughput rate.
- the length of each reference signal time period is the duration of N continuous time units, and N is an integer greater than or equal to 2.
- each reference signal time period includes M time units for carrying the reference signal, the M time units are M continuous time units or M non-continuous time units, and M is greater than An integer equal to 2.
- the above method further includes: the terminal device receives indication information for indicating the value of N.
- the indication information may directly indicate the value of N.
- the indication information may also indirectly indicate the value of N.
- the indication information may indicate the duration of the N continuous time units. Compared with the way of indirectly indicating the value of N, the way of directly indicating the value of N can save indication overhead.
- the value of N can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of N can also be predefined by the protocol.
- the terminal device receives the indication information used to indicate the value of N, including: the terminal device uses radio resource control (radio resource control, RRC) signaling, media access control, MAC) control element (control element, CE) signaling or downlink control information (downlink control information, DCI) receives indication information used to indicate the value of N.
- RRC radio resource control
- MAC media access control
- CE control element
- DCI downlink control information
- the above method further includes: the terminal device receives indication information used to indicate the value of M.
- the value of M can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of M can also be predefined by the protocol.
- the terminal device receiving the indication information used to indicate the value of M includes: the terminal device receives the indication information used to indicate the value of M through RRC signaling, MACCE signaling, or DCI.
- the above method further includes: the terminal device receives indication information for indicating the first period.
- the first cycle can be configured by the network device to the terminal device, and the configuration is more flexible.
- the first period can also be predefined by the protocol.
- the terminal device receiving the indication information used to indicate the first period includes: the terminal device receives the indication information used to indicate the first period through RRC signaling, MACCE signaling, or DCI.
- the above method further includes: the terminal device receives indication information for indicating the second period.
- the second cycle can be configured by the network device to the terminal device, and the configuration is more flexible.
- the second cycle can also be predefined by the protocol.
- the terminal device receiving the indication information used to indicate the second period includes: the terminal device receives the indication information used to indicate the second period through RRC signaling, MAC-CE signaling, or DCI.
- the above method further includes: the terminal device receives indication information used to indicate the time-frequency resource position of the reference signal in M time units in each reference signal time period.
- the frequency bands used to carry the frequency domain resources of the reference signal are the same in at least two reference signal time periods. In this case, the process of configuring the frequency hopping index by the network device can be reduced, and configuration overhead can be saved.
- the frequency bands used to carry the frequency domain resources of the reference signal are different in at least two reference signal time periods.
- frequency hopping is used for the frequency band used to carry the frequency domain resources of the reference signal in at least two reference signal time periods.
- the frequency hopping method can avoid occupying the entire bandwidth to transmit the reference signal in each reference signal time period, that is, each reference signal time period only needs to occupy part of the bandwidth to transmit the reference signal, which can save transmission overhead and cover different Bandwidth, and can disperse interference to different bandwidths, which can reduce various types of interference, such as channel interference, adjacent channel interference, intermodulation interference, etc.
- the frequency bands used to carry the frequency domain resources of the reference signal in the at least two reference signal time periods are the same or different, which may be pre-defined by network device configuration or protocol.
- the network device configures the entire frequency band used to carry the frequency domain resources of the reference signal in the reference signal time period (that is, the entire frequency band occupied by the frequency domain resources used to carry the reference signal in the above-mentioned at least two reference signal time periods) ), if the frequency band used to carry the frequency domain resources of the reference signal in the at least two reference signal time periods adopts frequency hopping, the network device will also send the frequency hopping index to the terminal device, and the protocol can predefine several different Frequency hopping pattern (pattern), each frequency hopping pattern is used to indicate a frequency domain resource location (or frequency band) distribution map, each frequency hopping pattern corresponds to an index value (that is, frequency hopping index), the network device sends to the terminal device The index value indicates the frequency hopping pattern used by the frequency domain resource used to carry the reference signal in the above
- the network device does not send the frequency hopping index to the terminal device, it is assumed that the frequency bands used to carry the frequency domain resources of the reference signal in the at least two reference signal time periods are the same.
- the network device can configure any two of the starting position of the frequency band (for example, the position of the starting RB), the ending position of the frequency band (for example, the position of the ending RB), and the bandwidth of the frequency band (for example, several RBs). Or three.
- the positions of the time-frequency resources used to carry the reference signal are the same. In this case, the process of configuring the frequency hopping index by the network device can be reduced, and configuration overhead can be saved.
- the positions of the time domain resources used to carry the reference signal are the same and the positions of the frequency domain resources are different.
- the location of the frequency domain resource can also be called a frequency band.
- the location of the frequency domain resource can pass through the start position of the frequency band (for example, the position of the start RB), the end position of the frequency band (for example, the position of the end RB), and the bandwidth of the frequency band (for example, the position of the end RB). Any two or three of several RBs) are determined.
- frequency hopping (or interleaving) is used in the position of the frequency domain resources used to carry the reference signal.
- the frequency hopping method can avoid occupying the entire bandwidth in each time unit to transmit the reference signal, that is, each time unit only needs to occupy part of the bandwidth to transmit the reference signal, which can save transmission overhead and cover different bandwidths.
- Distributing the interference to different bandwidths can reduce various types of interference, such as channel interference, adjacent channel interference, and intermodulation interference.
- the positions of the time domain resources used to carry the reference signal are different and the positions of the frequency domain resources are the same.
- the positions of the time domain resources and the positions of the frequency domain resources used to carry the reference signal are different.
- the location of the time-frequency resource used to carry the reference signal is the same or different can be pre-defined by network device configuration or protocol.
- the network device configures the entire frequency band occupied by the frequency domain used to carry the reference signal in a time unit within a reference signal time period, if at least two time units in the reference signal time period are located at the frequency domain resources carrying the reference signal With frequency hopping, the network device will also send a frequency hopping index to the terminal device.
- the protocol can predefine several different frequency hopping patterns (patterns), and each frequency hopping pattern is used to indicate a frequency domain resource location (or frequency band).
- each frequency hopping pattern corresponds to an index value (ie, frequency hopping index), and the network device sends the index value to the terminal device to indicate the frequency hopping pattern used for the position of the frequency domain resource carrying the reference signal on the at least two time units. . If the network device does not send the frequency hopping index to the terminal device, it is assumed that the positions of the frequency domain resources carrying the reference signal on the at least two time units are the same.
- one of the M time units includes one or more subcarriers used to carry the reference signal.
- one of the M time units includes one or more orthogonal frequency division multiplexing (OFDM) symbols for carrying reference signals.
- OFDM orthogonal frequency division multiplexing
- the OFDM symbols used to carry the reference signal in one time unit include at least two, the subcarriers carrying the reference signal on the at least two OFDM symbols are different.
- the OFDM symbols used to carry the reference signal in one time unit include at least two
- the subcarriers carrying the reference signal on the at least two OFDM symbols adopt frequency hopping.
- the frequency hopping method can avoid occupying the entire bandwidth in each OFDM symbol to transmit the reference signal, that is, each OFDM symbol only needs to occupy part of the bandwidth to transmit the reference signal, which can save transmission overhead and cover different bandwidths.
- Distributing the interference to different bandwidths can reduce various types of interference, such as channel interference, adjacent channel interference, and intermodulation interference.
- the OFDM symbols used to carry the reference signal in one time unit include at least two, the subcarriers carrying the reference signal on the at least two OFDM symbols are the same.
- At least two OFDM symbols in a single time unit have the same or different subcarriers carrying the reference signal, which may be pre-defined by network device configuration or protocol.
- the network equipment configures the entire frequency band occupied by a single time unit
- the subcarriers carrying reference signals on at least two OFDM symbols in the time unit use frequency hopping
- the network equipment will also send the frequency hopping index to the terminal equipment, and the protocol can be pre-defined.
- frequency hopping patterns are defined. Each frequency hopping pattern is used to indicate a frequency domain resource location (or frequency band) distribution map. Each frequency hopping pattern corresponds to an index value (ie, frequency hopping index).
- the device sends an index value to the terminal device to indicate the frequency hopping pattern used by the subcarriers carrying the reference signal on the at least two OFDM symbols. If the network device does not send the frequency hopping index to the terminal device, it is assumed that the subcarriers carrying the reference signal on the at least two OFDM symbols are the same.
- the embodiments of the present application provide another reference signal transmission method, which is suitable for the uplink reference signal transmission process, and the method can be applied to the network device side.
- the method includes: a network device receives at least two first reference signal sets in a first cycle, and the at least two first reference signal sets are carried on at least two reference signal time periods. In each reference signal time period, the network device receives at least two second reference signal sets in a second period, each second reference signal set includes at least one reference signal, and the first reference signal set includes at least two second reference signals Signal collection.
- the network device receives the first reference signal set from the terminal device every first cycle. The first reference signal set is sent in a reference signal time period.
- the network device During a reference signal time period, the network device The second reference signal set is received from the terminal device every second period, which can avoid the waste of computing resources caused by the continuous reception of the reference signal by the network device, and can obtain the reference signal in time when the channel state changes, so that the network device can obtain the downlink channel state in time Therefore, the changed channel state information is used for precoding, which improves the channel aging problem and improves the UE throughput rate.
- the length of each reference signal time period is the duration of N continuous time units, and N is an integer greater than or equal to 2.
- each reference signal time period includes M time units for carrying the reference signal, the M time units are M continuous time units or M non-continuous time units, and M is greater than An integer equal to 2.
- the above method further includes: the network device sends indication information for indicating the value of N.
- the indication information may directly indicate the value of N.
- the indication information may also indirectly indicate the value of N.
- the indication information may indicate the duration of the N continuous time units. Compared with the way of indirectly indicating the value of N, the way of directly indicating the value of N can save indication overhead.
- the value of N can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of N can also be predefined by the protocol.
- the network device sending the indication information for indicating the value of N includes: the network device sending the indication information for indicating the value of N through RRC signaling, MACCE signaling or DCI.
- the above method further includes: the network device sends indication information for indicating the value of M.
- the value of M can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of M can also be predefined by the protocol.
- the network device sending indication information for indicating the value of M includes: the network device sending indication information for indicating the value of M through RRC signaling, MACCE signaling, or DCI.
- the above method further includes: the network device sends indication information for indicating the first period.
- the first cycle can be configured by the network device to the terminal device, and the configuration is more flexible.
- the first period can also be predefined by the protocol.
- the network device sending the indication information used to indicate the first period includes: the network device sends the indication information used to indicate the first period through RRC signaling, MACCE signaling, or DCI.
- the above method further includes: the network device sends indication information for indicating the second period.
- the second cycle can be configured by the network device to the terminal device, and the configuration is more flexible.
- the second cycle can also be predefined by the protocol.
- the network device sending the indication information used to indicate the second period includes: the network device sends the indication information used to indicate the second period through RRC signaling, MAC-CE signaling or DCI.
- the above method further includes: the network device sending indication information used to indicate the time-frequency resource position of the reference signal in M time units in each reference signal time period.
- the frequency bands used to carry the frequency domain resources of the reference signal are the same in at least two reference signal time periods. In this case, the process of configuring the frequency hopping index by the network device can be reduced, and configuration overhead can be saved.
- the frequency bands used to carry the frequency domain resources of the reference signal are different in at least two reference signal time periods.
- frequency hopping is used for the frequency band used to carry the frequency domain resources of the reference signal in at least two reference signal time periods.
- the frequency hopping method can avoid occupying the entire bandwidth to transmit the reference signal in each reference signal time period, that is, each reference signal time period only needs to occupy part of the bandwidth to transmit the reference signal, which can save transmission overhead and cover different Bandwidth, and can disperse interference to different bandwidths, which can reduce various types of interference, such as channel interference, adjacent channel interference, intermodulation interference, etc.
- the positions of the time-frequency resources used to carry the reference signal on at least two of the M time units are the same. In this case, the process of configuring the frequency hopping index by the network device can be reduced, and the transmission overhead can be saved.
- At least two of the M time units have the same location of time domain resources for carrying reference signals and different locations of frequency domain resources.
- frequency hopping (or interleaving) is used for the frequency domain resource positions used to carry the reference signal on at least two of the M time units.
- the frequency hopping method can avoid occupying the entire bandwidth in each time unit to transmit the reference signal, that is, each time unit only needs to occupy part of the bandwidth to transmit the reference signal, which can save transmission overhead and cover different bandwidths.
- Distributing the interference to different bandwidths can reduce various types of interference, such as channel interference, adjacent channel interference, and intermodulation interference.
- At least two of the M time units have different locations of time domain resources for carrying reference signals and the same location of frequency domain resources.
- At least two of the M time units have different time domain resource positions and frequency domain resource positions for carrying the reference signal on at least two time units.
- one of the M time units includes one or more subcarriers used to carry the reference signal.
- one of the M time units includes one or more OFDM symbols used to carry the reference signal.
- the OFDM symbols used to carry the reference signal in one time unit include at least two, the subcarriers carrying the reference signal on the at least two OFDM symbols are different.
- the OFDM symbols used to carry the reference signal in one time unit include at least two
- the subcarriers carrying the reference signal on the at least two OFDM symbols adopt frequency hopping.
- the frequency hopping method can avoid occupying the entire bandwidth in each OFDM symbol to transmit the reference signal, that is, each OFDM symbol only needs to occupy part of the bandwidth to transmit the reference signal, which can save transmission overhead and cover different bandwidths.
- Distributing the interference to different bandwidths can reduce various types of interference, such as channel interference, adjacent channel interference, and intermodulation interference.
- the OFDM symbols used to carry the reference signal in one time unit include at least two, the subcarriers carrying the reference signal on the at least two OFDM symbols are the same.
- the embodiments of the present application provide another reference signal transmission method, which is suitable for the downlink reference signal transmission process.
- the method can be applied to the network device side.
- the method includes: the network device determines the first period for sending the reference signal and The second cycle.
- the network device sends at least two first reference signal sets in a first cycle, and the at least two first reference signal sets are carried on at least two reference signal time periods.
- the network device transmits at least two second reference signal sets in the second period, each second reference signal set includes at least one reference signal, and the first reference signal set includes at least two second reference signals Signal collection.
- the network device sends a first reference signal set to the terminal device every first cycle.
- the first reference signal set is sent within a reference signal time period.
- the network device every time Sending the second reference signal set to the terminal device at a second interval can prevent the network device from continuously sending the reference signal to cause a waste of transmission resources, and can send the reference signal in time when the channel status changes, so that the terminal device can obtain the uplink channel status in time.
- the above method further includes: the network device sends indication information used to indicate the first period, and/or indication information used to indicate the second period.
- the length of each reference signal time period is the duration of N continuous time units, and N is an integer greater than or equal to 2.
- each reference signal time period includes M time units for carrying the reference signal, the M time units are M continuous time units or M non-continuous time units, and M is greater than An integer equal to 2.
- the above method further includes: the network device sends indication information for indicating the value of N.
- the indication information may directly indicate the value of N.
- the indication information may also indirectly indicate the value of N.
- the indication information may indicate the duration of the N continuous time units. Compared with the way of indirectly indicating the value of N, the way of directly indicating the value of N can save indication overhead.
- the value of N can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of N can also be predefined by the protocol.
- the above method further includes: the network device sends indication information for indicating the value of M.
- the value of M can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of M can also be predefined by the protocol.
- the above method further includes: the network device sending indication information used to indicate the time-frequency resource position of the reference signal in M time units in each reference signal time period.
- the frequency domain resources used to carry the reference signal are located in the same or different frequency bands, the frequency domain resources used to carry the reference signal on at least two time units are the same or different, and at least within one time unit
- the frequency domain resources used to carry the reference signal on at least two time units are the same or different, and at least within one time unit
- the embodiments of the present application provide another reference signal transmission method, which is suitable for the downlink reference signal transmission process.
- the method can be applied to the terminal device side.
- the method includes: the terminal device receives at least two second signals in a first period.
- a reference signal set, and the at least two first reference signal sets are carried on at least two reference signal time periods.
- the terminal device receives at least two second reference signal sets in the second cycle, each second reference signal set includes at least one reference signal, and the first reference signal set includes at least two second reference signals Signal collection.
- the terminal device receives a first reference signal set sent by the network device every first period of the interval.
- the first reference signal set is sent within a reference signal time period.
- the terminal device Receiving the second set of reference signals sent by the network device every second period can avoid waste of transmission resources caused by the continuous reception of the reference signal by the terminal device, and can send the reference signal in time when the channel state changes, so that the terminal device can obtain the uplink channel in time status.
- the above method further includes: the terminal device receives indication information for indicating the first period and/or the second period.
- the length of each reference signal time period is the duration of N continuous time units, and N is an integer greater than or equal to 2.
- each reference signal time period includes M time units for carrying the reference signal, the M time units are M continuous time units or M non-continuous time units, and M is greater than An integer equal to 2.
- the above method further includes: the terminal device receives indication information for indicating the value of N.
- the value of N can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of N can also be predefined by the protocol.
- the above method further includes: the terminal device receives indication information used to indicate the value of M.
- the value of M can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of M can also be predefined by the protocol.
- the above method further includes: the terminal device receives indication information used to indicate the time-frequency resource position of the reference signal in M time units in each reference signal time period.
- the frequency domain resources used to carry the reference signal are located in the same or different frequency bands, the frequency domain resources used to carry the reference signal on at least two time units are the same or different, and at least within one time unit
- the frequency domain resources used to carry the reference signal on at least two time units are the same or different, and at least within one time unit
- the embodiments of the present application provide another reference signal transmission method, which is suitable for the uplink reference signal transmission process.
- the method is applied to the terminal device side.
- the method includes: the terminal device determines the second period for sending the reference signal.
- the terminal device transmits at least two second reference signal sets in the second period in the reference signal time period, where each second reference signal set includes at least one reference signal.
- the terminal device periodically sends the reference signal set to the network device during a reference signal time period, which can avoid the waste of transmission resources caused by the continuous transmission of the reference signal by the terminal device, and can also send the reference in time when the channel status changes. Signals so that the network equipment can obtain the downlink channel status in time, so as to use the changed channel status information for precoding, which improves the channel aging problem and improves the UE throughput rate.
- the length of the aforementioned reference signal time period is the duration of N continuous time units, and N is an integer greater than or equal to 2.
- the aforementioned reference signal time period includes M time units for carrying the reference signal, the M time units are M continuous time units or M non-continuous time units, and M is greater than or equal to An integer of 2.
- the above method further includes: the terminal device receives indication information for indicating the value of N.
- the value of N can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of N can also be predefined by the protocol.
- the above method further includes: the terminal device receives indication information used to indicate the value of M.
- the value of M can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of M can also be predefined by the protocol.
- the above method further includes: the terminal device receives indication information for indicating the second period.
- the second cycle can be configured by the network device to the terminal device, and the configuration is more flexible.
- the second cycle may also be predefined by the protocol.
- the above method further includes: the terminal device receives indication information used to indicate the time-frequency resource position of the reference signal in the above M time units.
- the embodiments of the present application provide another reference signal transmission method, which is suitable for the uplink reference signal transmission process.
- the method is applied to the network device side.
- the method includes: the network device uses the second period in the reference signal time period At least two second reference signal sets are received, where each second reference signal set includes at least one reference signal.
- the network device periodically receives the reference signal set sent by the terminal device within a reference signal time period, which can avoid the waste of transmission resources caused by the continuous transmission of the reference signal by the terminal device, and can also be timely when the channel status changes.
- the reference signal is sent so that the network equipment can obtain the downlink channel status in time, so that the changed channel status information is used for precoding, which improves the channel aging problem and improves the UE throughput rate.
- the length of the aforementioned reference signal time period is the duration of N continuous time units, and N is an integer greater than or equal to 2.
- the aforementioned reference signal time period includes M time units for carrying the reference signal, the M time units are M continuous time units or M non-continuous time units, and M is greater than or equal to An integer of 2.
- the above method further includes: the network device sends indication information for indicating the value of N.
- the value of N can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of N can also be predefined by the protocol.
- the above method further includes: the network device sends indication information for indicating the value of M.
- the value of M can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of M can also be predefined by the protocol.
- the above method further includes: the network device sends indication information for indicating the second period.
- the second cycle can be configured by the network device to the terminal device, and the configuration is more flexible.
- the second cycle may also be predefined by the protocol.
- the foregoing method further includes: the network device sending indication information used to indicate the time-frequency resource positions of the reference signal in the foregoing M time units.
- the embodiments of the present application provide another reference signal transmission method, which is suitable for a downlink reference signal transmission process.
- the method is applied to the network device side.
- the method includes: the network device determines a second period for sending the reference signal.
- the network device transmits at least two second reference signal sets in the second period in the reference signal time period, where the second reference signal set includes at least one reference signal.
- the network device periodically sends a reference signal set to the terminal device within a reference signal time period, which can avoid the waste of transmission resources caused by the continuous transmission of reference signals by the network device, and can also send the reference in time when the channel status changes. Signal so that the terminal equipment can obtain the uplink channel status in time.
- the length of the aforementioned reference signal time period is the duration of N continuous time units, and N is an integer greater than or equal to 2.
- the aforementioned reference signal time period includes M time units for carrying the reference signal, the M time units are M continuous time units or M non-continuous time units, and M is greater than or equal to An integer of 2.
- the above method further includes: the network device sends indication information for indicating the value of N.
- the value of N can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of N can also be predefined by the protocol.
- the above method further includes: the network device sends indication information for indicating the value of M.
- the value of M can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of M can also be predefined by the protocol.
- the above method further includes: the network device sends indication information for indicating the second period.
- the second cycle can be configured by the network device to the terminal device, and the configuration is more flexible.
- the second cycle may also be predefined by the protocol.
- the foregoing method further includes: the network device sending indication information used to indicate the time-frequency resource positions of the reference signal in the foregoing M time units.
- the embodiments of the present application provide another reference signal transmission method, which is suitable for the downlink reference signal transmission process.
- the method is applied to the terminal device side.
- the method includes: the terminal device uses the second period in the reference signal period At least two second reference signal sets are received, where the second reference signal set includes at least one reference signal.
- the terminal device periodically receives the reference signal set sent by the network device within a reference signal time period, which can avoid the waste of transmission resources caused by the continuous transmission of the reference signal by the network device, and the terminal device can also be used when the channel status changes. Obtain the reference signal in time so that the terminal equipment can obtain the uplink channel status in time.
- the length of the aforementioned reference signal time period is the duration of N continuous time units, and N is an integer greater than or equal to 2.
- the aforementioned reference signal time period includes M time units for carrying the reference signal, the M time units are M continuous time units or M non-continuous time units, and M is greater than or equal to An integer of 2.
- the above method further includes: the terminal device receives indication information for indicating the value of N.
- the value of N can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of N can also be predefined by the protocol.
- the above method further includes: the terminal device receives indication information used to indicate the value of M.
- the value of M can be configured by the network device to the terminal device, and the configuration is more flexible.
- the value of M can also be predefined by the protocol.
- the above method further includes: the terminal device receives indication information for indicating the second period.
- the second cycle can be configured by the network device to the terminal device, and the configuration is more flexible.
- the second cycle may also be predefined by the protocol.
- the above method further includes: the terminal device receives indication information used to indicate the time-frequency resource position of the reference signal in the above M time units.
- the embodiments of the present application provide a communication device.
- the communication device can be a terminal device, a device in a terminal device (such as a chip or a circuit), or a device that can be matched with the terminal device.
- the communication device may include a module that performs a one-to-one correspondence of the method/operation/step/action described in the first, fourth, fifth or eighth aspect, and the module may be a hardware circuit , It can also be software, or it can be realized by hardware circuit combined with software.
- the communication device may include a processing unit and a sending unit.
- a processing unit configured to determine the first cycle and the second cycle for sending the reference signal
- a sending unit configured to send at least two first reference signal sets in the first period; the at least two first reference signal sets are carried on at least two reference signal time periods;
- the sending unit is configured to send at least two second reference signal sets in the second period, and each second reference signal set At least one reference signal is included, and the first reference signal set includes at least two of the second reference signal sets.
- the foregoing sending unit may be implemented by a transmitter, and the transmitter may be a transmitting circuit or the like.
- the processing unit can be implemented by a processor.
- the communication device may further include a receiving unit, and the receiving unit may be implemented by a receiver, which may be a receiving circuit or the like.
- the communication device may further include a storage unit, and the storage unit may be implemented by a memory for storing computer programs or data.
- the embodiments of the present application provide a communication device.
- the communication device can be a network device, a device in a network device (such as a chip or a circuit), or a device that can be used in conjunction with the network device.
- the communication device may include a module that performs one-to-one correspondence of the method/operation/step/action described in the second, third, sixth, or seventh aspect, and the module may be a hardware circuit , It can also be software, or it can be realized by hardware circuit combined with software.
- the communication device may include a receiving unit.
- a receiving unit configured to receive at least two first reference signal sets in a first cycle; the at least two first reference signal sets are carried on at least two reference signal time periods;
- the receiving unit is configured to receive at least two second reference signal sets in a second period, and each second reference signal set includes at least One reference signal, and the first reference signal set includes at least two of the second reference signal sets.
- the above-mentioned receiving unit may be realized by a receiver, which may be a receiving circuit, etc.
- the communication device may further include a sending unit, and the sending unit may be realized by a transmitter, which may be a transmitting circuit, etc.
- the communication device may further include a processing unit, and the processing unit may be implemented by a processor.
- the communication device may further include a storage unit, and the storage unit may be implemented by a memory for storing computer programs or data.
- an embodiment of the present application provides another communication device, which is used to implement the reference signal transmission method described in the first, fourth, fifth, or eighth aspect.
- the communication device may include a memory and a processor, a transmitter, and a receiver coupled with the memory.
- the transmitter is used to support the communication device to execute the step of sending information by the terminal device in the reference signal transmission method provided in any one of the foregoing aspects.
- the receiver is used to support the communication device to perform the step of receiving information by the terminal device in the reference signal transmission method provided in any one of the above aspects.
- the processor is used to support the communication device to execute other processing steps of the terminal device in addition to sending information and receiving information in the reference signal transmission method provided in any one of the foregoing aspects.
- the transmitter and receiver in the embodiments of the present application may be integrated together, or may be coupled through a coupler.
- the memory is used to store the program instructions of the reference signal transmission method described in any of the above aspects
- the processor is used to execute the program instructions stored in the memory, so that the communication device executes the reference signal transmission provided in any of the above aspects. method.
- the memory and the processor can be integrated together or coupled through a coupler.
- an embodiment of the present application provides another communication device, which is used to implement the reference signal transmission method described in the second, third, sixth, or seventh aspect.
- the communication device may include a memory and a processor, a transmitter, and a receiver coupled with the memory.
- the transmitter is used to support the communication device to execute the step of sending information by the network device in the reference signal transmission method provided in any one of the above aspects.
- the receiver is used to support the communication device to perform the steps of receiving information by the network device in the reference signal transmission method provided in any one of the above aspects.
- the processor is configured to support the communication device to perform other processing steps of the network device in addition to sending information and receiving information in the reference signal transmission method provided in any one of the foregoing aspects.
- the transmitter and receiver in the embodiments of the present application may be integrated together, or may be coupled through a coupler.
- the memory is used to store the program instructions of the reference signal transmission method described in any of the above aspects
- the processor is used to execute the program instructions stored in the memory, that is, to execute the reference signal transmission method provided in any of the above aspects.
- the memory and the processor can be integrated together or coupled through a coupler.
- an embodiment of the present application provides a communication system, including a terminal device and a network device.
- the terminal device may be the communication device described in the foregoing ninth aspect or the eleventh aspect
- the network device may be the communication device described in the foregoing tenth aspect or the twelfth aspect.
- embodiments of the present application provide a computer-readable storage medium with instructions stored on the readable storage medium, which when run on a computer, cause the computer to execute the reference signal transmission described in any of the above aspects method.
- the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the reference signal transmission method described in any of the foregoing aspects.
- an embodiment of the present application provides a communication chip.
- the communication chip may include a processor and one or more interfaces coupled to the processor.
- the processor may be used to call the implementation program of the reference signal transmission method provided in any one of the foregoing aspects from the memory, and execute the instructions contained in the program.
- the interface may be used to output the processing result of the processor.
- FIG. 1 is a schematic diagram of the architecture of a wireless communication system provided by an embodiment of the present application
- FIG. 2 is a schematic flowchart of a reference signal transmission method provided by an embodiment of the present application.
- FIG. 3A is a schematic diagram of resource mapping of a reference signal provided by an embodiment of the present application.
- FIG. 3B is a schematic diagram of another reference signal resource mapping provided by an embodiment of the present application.
- FIG. 3C is a schematic diagram of resource mapping of another reference signal provided by an embodiment of the present application.
- FIG. 3D is a schematic diagram of resource mapping of another reference signal provided by an embodiment of the present application.
- FIG. 3E is a schematic diagram of another reference signal resource mapping provided by an embodiment of the present application.
- FIG. 3F is a schematic diagram of resource mapping of another reference signal provided by an embodiment of the present application.
- FIG. 3G is a schematic diagram of resource mapping of another reference signal provided by an embodiment of the present application.
- FIG. 3H is a schematic diagram of resource mapping of another reference signal provided by an embodiment of the present application.
- FIG. 3I is a schematic diagram of resource mapping of another reference signal provided by an embodiment of the present application.
- FIG. 3J is a schematic diagram of resource mapping of another reference signal provided by an embodiment of the present application.
- FIG. 3K is a schematic diagram of resource mapping of another reference signal provided by an embodiment of the present application.
- FIG. 4 is a schematic flowchart of another reference signal transmission method provided by an embodiment of the present application.
- FIG. 5 is a schematic flowchart of another reference signal transmission method provided by an embodiment of the present application.
- FIG. 6 is a schematic diagram of resource mapping of another reference signal provided by an embodiment of the present application.
- FIG. 7 is a schematic flowchart of another reference signal transmission method provided by an embodiment of the present application.
- FIG. 8 is a schematic diagram of the logical structure of a communication device provided by the implementation of this application.
- FIG. 9 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the present application.
- FIG. 10 is a schematic diagram of the logical structure of another communication device provided by an embodiment of the present application.
- FIG. 11 is a schematic diagram of the hardware structure of another communication device provided by an embodiment of the present application.
- FIG. 12 is a schematic structural diagram of a communication chip provided by an embodiment of the present application.
- Fig. 1 shows an example of a wireless communication system related to an embodiment of the present application.
- the wireless communication system 100 includes communication devices, and the communication devices can use air interface resources for wireless communication.
- the communication device may include a network device 101 and a terminal device 102, and the network device 101 may also be referred to as a network side device.
- the air interface resources may include at least one of time domain resources, frequency domain resources, code domain resources, and space resources.
- the network device 101 may perform wireless communication with the terminal device 102 through one or more antennas. Each network device 101 can provide communication coverage for its corresponding coverage area 104. The coverage area 104 corresponding to the network device 101 may be divided into multiple cells or multiple sectors (sector), where one cell or one sector corresponds to a part of the coverage area (not shown). The network device 101 can communicate with the terminal device 102 through the wireless air interface 105. The network device 101 and the network device 101 may also directly or indirectly communicate with each other through an interface 107 (such as an X2/Xn interface).
- the number of network devices 101 and terminal devices 102 in FIG. 1 is only for example, and does not constitute a limitation on the application scope of the embodiments of the present application.
- the terminal device 102 involved in the embodiments of the present application can also be called a terminal, and can be a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; or on the water ( Such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
- the terminal device may be a user equipment (UE), where the UE includes a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, or a computing device.
- the UE may be a machine type communication (MTC) terminal, a mobile phone (mobile phone), a tablet computer, or a computer with a wireless transceiver function.
- MTC machine type communication
- Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
- the device used to implement the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to implement the function, such as a chip system, which may be installed in the terminal or used in conjunction with the terminal.
- the chip system may be composed of chips, or may include chips and other discrete devices.
- the device used to implement the functions of the terminal is a terminal or a UE as an example to describe the technical solutions provided in the embodiments of the present application.
- the network equipment involved in the embodiment of the present application includes a base station (base station, BS), which may be a device that is deployed in a wireless access network and can communicate with a terminal wirelessly.
- the base station may have many forms, such as macro base stations, micro base stations, relay stations, and access points.
- the base station involved in the embodiment of the present application may be a base station in 5G or a base station in LTE, where the base station in 5G may also be called a transmission reception point (TRP) or a next-generation node (next-generation node).
- TRP transmission reception point
- gNB next-generation node B
- the device used to implement the function of the network device may be a network device; it may also be a device capable of supporting the network device to implement the function, such as a chip system, which may be installed in the network device or connected to the network device. Matching use.
- the device used to implement the functions of the network equipment is a network device or a base station as an example to describe the technical solutions provided in the embodiments of the present application.
- the network equipment may include a centralized unit (CU) and a distributed unit (DU, distributed unit).
- the network device may also include a radio unit (RU).
- CU implements some functions of network equipment
- DU implements some functions of network equipment, for example, CU implements radio resource control (RRC), packet data convergence protocol (PDCP) layer functions, and DU implements Functions of radio link control (RLC), media access control (MAC) and physical (physical, PHY) layers. Since the information of the RRC layer will eventually become the information of the physical layer, or be transformed from the information of the physical layer, in this architecture, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used.
- RRC radio resource control
- PDCP packet data convergence protocol
- RLC radio link control
- MAC media access control
- PHY physical layers
- the base station may be a CU node, or a DU node, or a device including a CU node and a DU node.
- the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network (Core network, CN), which is not limited here.
- the wireless communication system 100 is not limited to a long-term evolution (LTE) system, but may also be a 5G system, an NR system, a wireless fidelity (wireless fidelity, Wi-Fi) system, etc. that will evolve in the future.
- the wireless communication system 100 may also be an Internet of Things (IoT) system, an MTC system, a massive machine type communication (mMTC) system, an enhanced machine type communication (eMTC) system, etc. .
- IoT Internet of Things
- MTC massive machine type communication
- eMTC enhanced machine type communication
- V2X communication vehicle to everything (V2X) technology
- X stands for anything
- V2X communication is aimed at high-speed devices represented by vehicles. It is the basic technology and key technology applied in scenarios with very high communication delay requirements in the future, such as smart cars, autonomous driving, intelligent transportation systems and other scenarios.
- the V2X communication includes: communication between vehicles and vehicles (V2V), communication between vehicles and roadside infrastructure (V2I), and communication between vehicles and pedestrians. pedestrian, V2P) or vehicle to network (V2N) communication, etc.
- V2V vehicle to everything
- SL slide link
- the terminal described in this application may also be a vehicle or a vehicle component applied to a vehicle.
- the technical solutions provided by the embodiments of the present application can be applied to wireless communication between communication devices.
- the wireless communication between communication devices may include: wireless communication between a network device and a terminal, wireless communication between a network device and a network device, and wireless communication between a terminal and a terminal.
- wireless communication may also be simply referred to as "communication”
- communication may also be described as "data transmission”, "information transmission” or “transmission”.
- This technical solution can be used for wireless communication between a scheduling entity and a subordinate entity, and those skilled in the art can use the technical solution provided in the embodiments of this application to perform wireless communication between other scheduling entities and subordinate entities, such as a macro base station and a micro base station.
- the network device in order to avoid the channel aging problem, the network device needs to track the time-varying channel and perform channel measurement.
- the terminal device 102 may send a reference signal to the network device 101, and the network device 101 performs uplink channel quality measurement based on the reference signal, and estimates the downlink channel quality according to the channel mutual benefit of the TDD system, and performs a measurement of the downlink channel quality according to the CSI of the downlink channel.
- the data is pre-coded.
- the reference signal includes but is not limited to: channel sound reference signal (sound reference signal, SRS) or (doppler tracking reference signal, DT-RS).
- terminal equipment may control when not sending SRS.
- the radio frequency device enters the dormant state, and the radio frequency device is controlled to enter the working state until the terminal device sends the SRS, which will cause the phase rotation of the channel obtained by the network device to measure the SRS.
- performing channel measurement includes measuring Doppler information and the like.
- the reference signal may also be referred to as a pilot, a sequence, and so on.
- system and “network” in the embodiments of the present application can be selected interchangeably.
- Signals can also be described as sequences, data, and so on. At least one can also be described as one or more, and multiple can be two, three, four or more, and this application is not limited.
- a plurality of may also be understood as “at least two”.
- At least two can be two, three, four or more, and this application is not limited.
- “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
- the character "/" unless otherwise specified, generally indicates that the associated objects before and after are in an "or” relationship.
- the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C”, and “D”, etc.
- first”, “Second”, “Third”, “A”, “B”, “C” and “D” there is no order or size order among the technical features.
- the reference signal transmission method includes but is not limited to the following steps:
- the terminal device determines a first period and a second period for sending a reference signal.
- the terminal device transmits at least two first reference signal sets in the first period, and the network device receives at least two first reference signal sets in the first period, and the at least two first reference signal sets are carried on the at least two reference signals.
- the terminal device transmits at least two second reference signal sets in the second period, and the network device receives at least two second reference signal sets in the second period.
- the second reference signal set includes at least one reference signal
- the first reference signal set includes at least two second reference signal sets.
- the “bearer” mentioned in the embodiment of the present application may also be referred to as “mapping”.
- the reference signal time period may also be referred to as a pilot band and a pilot time period; a segment may also be referred to as a segment, a burst, and so on.
- the length of each reference signal period is the duration of N consecutive time units.
- each reference signal time period includes M time units for carrying the reference signal, and the M time units may be M continuous time units or M non-continuous time units.
- N is a positive integer, for example, an integer of 1, 2, 3, 4 or greater, which is not limited in the embodiment of the present application.
- M is a positive integer less than or equal to N. If the value of N and the second period are known, the value of M can be derived. For example, if N continuous time units are 5 slots, and the second period is 2 slots, it can be calculated that M non-continuous time units are 3 slots.
- the second reference signal set is used to characterize all reference signals carried on a time unit, and the second reference signal set includes at least one reference signal.
- the first reference signal set is used to characterize all reference signals carried in a reference signal time period, and the first reference signal set includes at least two second reference signal sets.
- the reference signal set can also be referred to as a reference signal set.
- the terminal device sends the first reference signal set in the first cycle. It can also be understood that the terminal device sends the reference signal set on M continuous or non-continuous time units every first cycle.
- the number of reference signals carried on each time unit is not limited, and there may be one or more.
- the number of reference signals carried on the two time units may be the same or different.
- the number of reference signals carried in the two reference signal time periods may be the same or different.
- the granularity of the reference signal time period may be orthogonal frequency division multiplexing (OFDM) symbols, slots, subframes, or frames.
- the granularity of the time unit can also be an OFDM symbol, a time slot, a subframe, or a frame.
- the granularity of the reference signal period and the granularity of the time unit may be the same or different.
- the granularity of the reference signal time period and time unit are both slots.
- the granularity of the first period and the second period may be OFDM symbols, time slots, subframes or frames, etc., and the time length of the first period is greater than the time length of the second period.
- the granularity of the first period and the second period may be the same or different.
- Figure 3A is a schematic diagram of resource mapping of reference signals.
- the first period is 100 slots
- the second period is 2 slots
- the terminal device sends reference signals on 3 slots in a reference signal time period every 100 slots.
- the time slots carrying the reference signal are slot0, slot2, slot4, slot100, slot102, and slot104.
- Slot200, slot202, slot204, etc. each time slot can carry one or more reference signals.
- each reference signal time period may also include M continuous time units.
- the second period is 1 slot
- the granularity of the aforementioned reference signal time period may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the granularity of the foregoing time unit may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the above-mentioned value of N (or the duration of the above-mentioned N continuous time units) or the above-mentioned value of M may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the signaling sent by the network device to the terminal may be system messages, broadcast messages, radio resource control (radio resource control, RRC) signaling, media access control (media access control, MAC) control element, CE) signaling and downlink control information (downlink control information, DCI) one or a combination of one or more.
- the terminal device may receive the indication information used to indicate the value of N or the value of M through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the indication information can directly indicate the value of N or M, or indirectly indicate the value of N or M.
- the value of M configured by the network device is equal to 3, and the second period is 2 slots.
- the terminal device can determine the total duration of these 3 non-contiguous slots.
- the length of the time domain is 5 slots, or the number N of time units included in the reference signal time period configured by the network device is equal to 5, and the second period is 2 slots, then the terminal device can determine the 5 consecutive slots to be used
- the slots carrying the reference signal are three non-contiguous slots among them.
- the reference signal time period can be understood as the time period between the first time unit carrying the reference signal and the last time unit carrying the reference signal in the first period.
- the first period may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the network device may send the indication information for indicating the first cycle to the terminal device through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the terminal device may receive the indication information used to indicate the first cycle through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the indication information may indicate the value of the first period, or may indirectly indicate the value of the first period.
- the second cycle may be predefined in the protocol, or configured by the network device to the terminal device through signaling.
- the network device may send the indication information for indicating the second cycle to the terminal device through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the terminal device may receive the indication information used to indicate the second cycle through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the indication information may indicate the value of the second period, or may indirectly indicate the value of the second period.
- the terminal device determines the first cycle and the second cycle, it will always send the first reference signal set according to the first cycle, which can be considered as a periodic reference signal.
- the terminal device after the terminal device determines the first period and the second period, the terminal device sends the first reference signal set according to the first period after receiving the activation signaling sent by the network device.
- the terminal device After receiving the deactivation signaling sent by the network device, stop sending the first reference signal set, which can be considered as a semi-static (or semi-persistent) reference signal.
- the position of the time-frequency resource carrying the reference signal in each time unit may be predefined by the protocol, or may be configured by the network device to the terminal device through signaling.
- the configuration mode of the network device is more flexible than the mode predefined by the protocol.
- the frequency bands where the frequency domain resources used to carry the reference signal are located in the at least two reference signal time periods are the same or different, which will be described separately in the following.
- the frequency bands of the frequency domain resources used to carry the reference signals in the at least two reference signal time periods are the same. It can also be understood that the frequency domain resource positions occupied by the reference signals carried in the at least two reference signal time periods are the same and the bandwidths are the same. For example, referring to FIG. 3A, the frequency domain resources used to carry the reference signal are located in the same frequency band in each reference signal time period.
- the frequency bands of the frequency domain resources used to carry the reference signal in the at least two reference signal time periods are different. It can also be understood that the frequency domain resource positions occupied by the reference signals carried in the at least two reference signal time periods are different.
- the different locations of frequency domain resources may include irregular or regular differences, and regular differences include frequency hopping.
- the frequency band where the frequency domain resource used for carrying the reference signal is located in the above at least two reference signal time periods performs frequency hopping according to a certain pattern.
- the frequency bands of multiple reference signal periods can cover a continuous bandwidth or cover a non-continuous bandwidth. For example, referring to FIG.
- the above-mentioned at least two reference signal time periods perform frequency hopping according to a certain frequency hopping pattern.
- the frequency hopping pattern is used to characterize the frequency domain resources occupied by the reference signal.
- the frequency band where the frequency domain resource used to carry the reference signal is hopped twice in the reference signal time period, and occupies 3 frequency bands, then the first reference signal time period (including slot0, slot2, and slot4)
- the frequency band where the second reference signal time period (including the three time units of slot100, slot102, and slot104) and the third reference signal time period (including the three time units of slot200, slot202, and slot204) are located Cover a continuous bandwidth.
- the above-mentioned at least two reference signal time periods perform frequency hopping according to a certain pattern.
- the reference signal time period hops twice, occupying 3 frequency bands, then the first reference signal time period (including the three time units of slot0, slot2 and slot4), the second reference signal time period ( The frequency band that includes the three time units of slot100, slot102, and slot104) and the third reference signal time period (including the three time units of slot200, slot202, and slot204) covers a non-continuous bandwidth.
- the frequency hopping period can be understood as a period in which the frequency band where the reference signal time period is traverses once in the entire bandwidth. For example, in FIG.
- the frequency band where three reference signal time periods are located covers a continuous bandwidth, and The frequency band where the reference signal time period is located once traverses 300 slots in the entire bandwidth, or in Figure 3D, the frequency band where the three reference signal time periods are located covers a non-continuous bandwidth, and the three reference signal time periods are located The frequency band in the entire bandwidth traverses once in a period of 300 slots.
- the frequency bands of the frequency domain resources used to carry the reference signals in the at least two reference signal time periods are the same or different can be pre-defined by network device configuration or protocol.
- the network device configures the entire frequency band where the frequency domain resource used to carry the reference signal in the reference signal time period (that is, the entire frequency band occupied by the frequency domain resource used to carry the reference signal in the above-mentioned at least two reference signal time periods), If frequency hopping is used in the frequency band where the frequency domain resources used to carry the reference signal in the at least two reference signal time periods, the network device will also send a frequency hopping index to the terminal device, and the protocol can predefine several different frequency hopping patterns (pattern), each frequency hopping pattern is used to indicate the frequency domain resource location (or frequency band) distribution map occupied by a reference signal, and each frequency hopping pattern corresponds to an index value (that is, the frequency hopping index), and the network device tells the terminal The device sending index value indicates the frequency hopping pattern used by the frequency domain resource used to carry the reference
- the network device does not send the frequency hopping index to the terminal device, it is assumed that the frequency domain resources used to carry the reference signal in the at least two reference signal time periods are in the same frequency band.
- the network device can configure any two of the starting position of the frequency band (for example, the position of the starting RB), the ending position of the frequency band (for example, the position of the ending RB), and the bandwidth of the frequency band (for example, several RBs). Or three.
- the positions of the time-frequency resources used to carry the reference signal on the M time units within a reference signal time period may be the same or different, which will be described separately below.
- the positions of the time-frequency resources used to carry the reference signal on at least two of the above-mentioned M time units are the same. It can also be understood that the time-frequency resource patterns used to carry the reference signal on at least two of the above M time units are the same, and it can also be understood that the OFDM is the same in at least two of the above M time units.
- the subcarriers carrying the reference signal on the symbols are the same.
- the positions of the time-frequency resources used to carry the reference signal on at least two of the M time units are the same, including: the positions of the time-frequency resources used to carry the reference signal on the two time units of the M time units are the same , The positions of the time-frequency resources used to carry the reference signal on the three time units of the M time units are the same, or the positions of the time-frequency resources used to carry the reference signal on all the time units of the M time units are the same, etc. Wait. For example, referring to FIG. 3A or FIG. 3C, the position of the time-frequency resource used for mapping the reference signal in each time unit is the same.
- the time domain resources used to carry the reference signal in slot0, slot2, and slot4 are all OFDM symbol 7, and frequency domain resources Both are subcarrier 3 and subcarrier 9.
- the positions of frequency domain resources used to carry the reference signal on at least two of the above M time units are different.
- the different locations of frequency domain resources used to carry reference signals on at least two of the M time units include: different locations of frequency domain resources used to carry reference signals on two of the M time units,
- the positions of the frequency domain resources used to carry the reference signal on 3 time units of the M time units are different, or the positions of the frequency domain resources used to carry the reference signal on the M time units are all different, and so on.
- the difference in the location of the frequency domain resources may include irregular or regular differences, and the irregular differences include frequency hopping (or staggered).
- the frequency domain resource positions used to carry the reference signal on the M time units perform frequency hopping according to a certain pattern.
- the frequency domain resource positions used to carry the reference signal on the M time units may cover a continuous bandwidth, or may cover a non-continuous bandwidth.
- the frequency band where the reference signal period is located has been hopped twice, occupying 3 frequency bands and covering a non-continuous bandwidth.
- the time domain resource position used to carry the reference signal in slot0 is symbol 7
- the frequency domain resource position is subcarrier 3 and subcarrier 9
- slot2 is used for carrying
- the time domain resource position of the reference signal is symbol 7
- the frequency domain resource position is subcarrier 1 and subcarrier 7, respectively
- the time domain resource position used to carry the reference signal in slot 4 is symbol 7
- the frequency domain resource position is subcarrier 5 and subcarrier respectively.
- Carrier 11 In other optional implementation manners, the frequency domain resource positions used to carry the reference signal on the M time units may also cover a continuous bandwidth.
- the positions of time domain resources used to carry the reference signal on at least two of the above M time units are different.
- the different positions of the time domain resources used to carry the reference signal on at least two of the M time units include: the different positions of the time domain resources used to carry the reference signal on the two time units of the M time units,
- the positions of the time domain resources used to carry the reference signal on 3 time units of the M time units are different, or the positions of the time domain resources used to carry the reference signal on the M time units are all different, and so on.
- the time domain resource position used to carry the reference signal in slot0 is symbol 0, and the frequency domain resource position is subcarrier 3 and subcarrier 9, respectively.
- Slot 2 is used The time domain resource position for carrying the reference signal is symbol 2, the frequency domain resource position is subcarrier 3 and subcarrier 9, respectively, the time domain resource position used to carry the reference signal in slot 4 is symbol 4, and the frequency domain resource position is subcarrier. 3 and subcarrier 9.
- the positions of the time-frequency resources used to carry the reference signal on at least two of the above-mentioned M time units are different.
- the positions of the time-frequency resources used to carry the reference signal on at least two of the M time units are different, including: the positions of the time-frequency resources used to carry the reference signal on the two time units of the M time units are both different Different, the positions of the time-frequency resources used to carry the reference signal on the 3 time units of the M time units are all different, or the positions of the time-frequency resources used to carry the reference signal on the M time units are all different, and so on.
- the position of the time-frequency resource used to carry the reference signal on each time unit may be predefined by the protocol, or may be configured by the network device to the terminal device through signaling.
- the time domain resource position used to carry the reference signal in each time unit includes OFDM symbols, time slots, etc.
- the frequency domain resource position includes subcarriers, RBs, and so on.
- the locations of the time-frequency resources used to carry the reference signals on the M time units in the above-mentioned reference signal time period are the same or different, and may be pre-defined by network device configuration or protocol.
- the network device configures the entire frequency band occupied by the frequency domain resources used to carry the reference signal in a time unit within a reference signal time period, if at least two time units in the reference signal time period occupy the frequency domain resource positions of the reference signal With frequency hopping, the network device will also send a frequency hopping index to the terminal device.
- the protocol can predefine several different frequency hopping patterns (patterns), and each frequency hopping pattern is used to indicate a frequency domain resource location (or frequency band).
- each frequency hopping pattern corresponds to an index value (ie, frequency hopping index), and the network device sends the index value to the terminal device to indicate the frequency hopping pattern used by the frequency domain resource positions carrying the reference signal on the at least two time units. If the network device does not send the frequency hopping index to the terminal device, it is assumed that the positions of the frequency domain resources carrying the reference signal on the at least two time units are the same.
- the above description is based on the time-frequency resource positions used to carry the reference signal on M time units in a single reference signal time period as an example, and the M time units in different reference signal time periods are used for
- the position of the time-frequency resource carrying the reference signal may also be the same or different.
- the position of the time-frequency resource used to carry the reference signal on 3 time units in each reference signal time period All the same.
- the subcarriers carrying the reference signal on the OFDM symbol used to carry the reference signal in a single time unit may be the same or different, which will be described separately below.
- the subcarriers carrying the reference signal on at least two OFDM symbols used for carrying the reference signal in a single time unit are the same.
- the above-mentioned reference signal bearing subcarriers on at least two OFDM symbols used for bearing reference signals are the same, including: the same subcarriers bearing reference signals on two OFDM symbols used for bearing reference signals in a single time unit, and the same subcarriers used in a single time unit
- the subcarriers carrying the reference signal on the three OFDM symbols carrying the reference signal are the same, or the subcarriers carrying the reference signal on all the OFDM symbols used for carrying the reference signal in a single time unit are the same, and so on.
- the subcarriers carrying the reference signal on the two OFDM symbols used to carry the reference signal in a single time unit are the same. Taking slot 0 as an example, the subcarrier carrying the reference signal on the OFDM symbol 4 in slot 0 is Subcarrier 9, the subcarrier carrying the reference signal on the OFDM symbol 7 in slot 0 is also subcarrier 9.
- the subcarriers carrying the reference signal on at least two OFDM symbols used for carrying the reference signal in a single time unit are different.
- the reference signal bearing subcarriers on at least two OFDM symbols used to carry the reference signal in a single time unit are different, including: the reference signal bearing subcarriers on the two OFDM symbols used to carry the reference signal in a single time unit are different, single The subcarriers carrying the reference signal on the three OFDM symbols used to carry the reference signal in a time unit are different, or the subcarriers carrying the reference signal on all OFDM symbols used for carrying the reference signal in a single time unit are different, and so on.
- the subcarriers carrying the reference signal on the two OFDM symbols used to carry the reference signal in a single time unit are different.
- the subcarrier carrying the reference signal on the OFDM symbol 4 in slot 0 is Subcarrier 3
- the subcarrier carrying the reference signal on OFDM symbol 7 in slot 0 is subcarrier 9.
- At least two OFDM symbols in a single time unit have the same or different subcarriers carrying the reference signal, which may be pre-defined by network device configuration or protocol.
- the network equipment configures the entire frequency band occupied by a single time unit
- the subcarriers carrying reference signals on at least two OFDM symbols in the time unit use frequency hopping
- the network equipment will also send the frequency hopping index to the terminal equipment, and the protocol can be pre-defined.
- frequency hopping patterns are defined. Each frequency hopping pattern is used to indicate a frequency domain resource location (or frequency band) distribution map. Each frequency hopping pattern corresponds to an index value (ie, frequency hopping index).
- the device sends an index value to the terminal device to indicate the frequency hopping pattern used by the subcarriers carrying the reference signal on the at least two OFDM symbols. If the network device does not send the frequency hopping index to the terminal device, it is assumed that the subcarriers carrying the reference signal on the at least two OFDM symbols are the same.
- the number of subcarriers used to carry the reference signal on a single time unit may be one or multiple, which is not limited in the embodiment of the present application.
- the subcarriers carrying the reference signal on the two OFDM symbols used for carrying the reference signal are all the same.
- the subcarriers carrying the reference signal on the two OFDM symbols used to carry the reference signal are two different subcarriers.
- the subcarrier used to carry the reference signal on a single time unit is one. This implementation can save transmission overhead. Only one subcarrier needs to be occupied to carry the reference signal in each reference signal time period.
- the terminal device may control the radio frequency device to enter the dormant state when not sending SRS, and then control the radio frequency device to enter the working state before the terminal device sends the SRS.
- This causes the network equipment to measure the phase rotation of the channel obtained by the SRS.
- This situation requires the network equipment to track channel changes, otherwise it will restrict the use of filtering during channel estimation (such as joint filtering of SRS, or channel prediction).
- filtering such as joint filtering of SRS, or channel prediction.
- the terminal device may use one or more subcarriers or one or more RBs to transmit the reference signal to the network device.
- the position of the subcarrier used to carry the reference signal may be unique or frequency hopping.
- the position of the subcarrier used to carry the reference signal may be configured by the network device to the terminal device, or may be predefined in the protocol, which is not limited in this application.
- the above-mentioned three frequency hopping modes of frequency hopping in the reference signal time period, frequency hopping in a time unit, and frequency hopping of subcarriers carrying reference signals on different OFDM symbols in a single time unit can be arbitrarily combined.
- the time unit in the reference signal time period may also perform frequency hopping.
- the reference signal time period performs frequency hopping according to a certain pattern.
- the frequency band where the frequency domain resource used to carry the reference signal is hopped twice in the reference signal time period, occupying 3 frequency bands and covering a non-contiguous bandwidth.
- the frequency domain resource positions of the M time units each carrying the reference signal are hopped according to a certain pattern.
- the time domain resources used to carry the reference signal in slot0 The location is symbol 7, the frequency domain resource locations are subcarrier 3 and subcarrier 9, respectively, the time domain resource location used to carry the reference signal in slot2 is symbol 7, and the frequency domain resource location is subcarrier 1 and subcarrier 7, respectively.
- Slot 4 is used The time domain resource location for carrying the reference signal is symbol 7, and the frequency domain resource location is subcarrier 5 and subcarrier 11, respectively.
- subcarriers carrying reference signals on different OFDM symbols in a single time unit may also perform frequency hopping.
- the reference signal time period performs frequency hopping according to a certain pattern.
- the frequency band where the frequency domain resource used to carry the reference signal is hopped twice in the reference signal time period, occupying 3 frequency bands and covering a continuous bandwidth.
- the subcarriers carrying reference signals on different OFDM symbols in a single time unit can also be frequency hopped.
- the subcarrier carrying the reference signal on OFDM symbol 4 in slot0 is subcarrier 3
- the OFDM symbol in slot0 The subcarrier carrying the reference signal on 7 is subcarrier 9.
- M time units in the reference signal time period can also be frequency hopping, and the subcarriers carrying reference signals on different OFDM symbols in a single time unit can also be frequency hopping.
- the reference signal time period performs frequency hopping according to a certain pattern.
- the frequency band where the frequency domain resource used to carry the reference signal is hopped twice in the reference signal time period, occupying 3 frequency bands and covering a continuous bandwidth.
- the frequency domain resource positions of the M time units in the reference signal time period that each carry the reference signal are hopped according to a certain pattern. Take the three time units slot0, slot2, and slot4 as an example for illustration.
- Slot0 is used to carry The time domain resource positions of the reference signal are symbol 2, symbol 7, and the frequency domain resource positions are subcarrier 3 and subcarrier 9, respectively.
- the time domain resource positions used to carry the reference signal in slot 2 are symbol 2, symbol 7, and frequency domain resource position These are subcarrier 1 and subcarrier 7, respectively, the time domain resource positions used to carry the reference signal in slot 4 are symbol 2 and symbol 7, and the frequency domain resource positions are subcarrier 5 and subcarrier 11, respectively.
- the subcarriers carrying reference signals on different OFDM symbols in a single time unit can also be frequency hopping. Taking slot0 as an example, the subcarrier carrying the reference signal on OFDM symbol 2 in slot0 is subcarrier 3, and the OFDM symbol in slot0 The subcarrier carrying the reference signal on 7 is subcarrier 9.
- the terminal device sends a first reference signal set to the network device every first cycle.
- the first reference signal set is sent within a reference signal time period.
- the terminal device The second set of reference signals is sent to the network device every second period, which can avoid the waste of transmission resources caused by the continuous transmission of the reference signal by the terminal device, and can send the reference signal in time when the channel state changes, so that the network device can obtain the downlink channel state in time Therefore, the changed channel state information is used for precoding, which improves the channel aging problem and improves the UE throughput rate.
- the reference signals mentioned in the embodiments of the present application are uplink reference signals, including but not limited to SRS, DT-RS, and other uplink reference signals.
- the reference signal transmission method includes but is not limited to the following steps:
- the network device determines a first period and a second period for sending a reference signal.
- the network device sends at least two first reference signal sets in the first period, and the terminal device receives at least two first reference signal sets in the first period, and the at least two first reference signal sets are carried on the at least two reference signals.
- the network device transmits the second reference signal set in the second period, and the terminal device receives the second reference signal set in the second period, where the first reference signal set includes at least two Reference signals, the second reference signal set includes at least one reference signal, and the first reference signal set includes at least two second reference signal sets.
- the duration of each reference signal time period is the duration of N continuous time units.
- the number of time units used to carry the reference signal in each reference signal time period is M, and the M time units may be M continuous time units or M non-continuous time units.
- N is a positive integer, for example, an integer of 1, 2, 3, 4 or greater, which is not limited in the embodiment of the present application.
- M is a positive integer less than or equal to N.
- the granularity of the aforementioned reference signal time period may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the granularity of the foregoing time unit may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the above-mentioned value of N (or the duration of N continuous time units) or the above-mentioned value of M may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the signaling sent by the network device to the terminal may be one or a combination of system messages, broadcast messages, RRC signaling, MACCE signaling, and DCI.
- the terminal device may receive the indication information used to indicate the value of N or the value of M through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the first cycle may be predefined in the protocol, or configured by the network device to the terminal device through signaling.
- the network device may send the indication information for indicating the first cycle to the terminal device through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the terminal device may receive the indication information used to indicate the first cycle through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the second cycle may be predefined in the protocol, or configured by the network device to the terminal device through signaling.
- the network device may send the indication information for indicating the second cycle to the terminal device through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the terminal device may receive the indication information used to indicate the second cycle through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the foregoing first cycle may also be semi-statically configured.
- the network device may also configure the first cycle and the second cycle to the terminal device through RRC signaling, MAC signaling, etc., and then activate/deactivate the first cycle through DCI. Configuration.
- the position of the time-frequency resource used to carry the reference signal in each time unit may be predefined by the protocol, or may be configured by the network device to the terminal device through signaling.
- the frequency domain resources used to carry reference signals in different reference signal time periods are the same or different
- the time-frequency resources carrying reference signals in different time units are the same or different
- the OFDM symbols in a single time unit are the same or different.
- the reference signals mentioned in the embodiments of the present application are downlink reference signals, including but not limited to channel state information reference signals (CSI-RS), and may also be other downlink reference signals.
- CSI-RS channel state information reference signals
- the network device sends a first reference signal set to the terminal device every first cycle.
- the first reference signal set is sent within a reference signal time period.
- the network device every time Sending the second reference signal set to the terminal device at a second interval can prevent the network device from continuously sending the reference signal to cause a waste of transmission resources, and can send the reference signal in time when the channel status changes, so that the terminal device can obtain the uplink channel status in time.
- the embodiments of the present application also provide another reference signal transmission method.
- the reference signal transmission method includes but is not limited to the following steps:
- S501 The terminal device determines a second period for sending a reference signal.
- the terminal device sends at least two second reference signal sets in the second period in the reference signal time period, and the network device receives the second reference signal sets in the second period in the reference signal time period.
- the two reference signal sets include at least one reference signal.
- the embodiment of the present application ends the transmission of the reference signal after the terminal device transmits the second reference signal set according to the second period within a reference signal time period.
- the embodiment of the present application occupies less transmission resources.
- FIG. 6, which is a schematic diagram of resource mapping of reference signals provided in an embodiment of the present application.
- the terminal device periodically sends the reference signal to the network device through only one reference signal time period.
- the duration of the only reference signal time period in the embodiment of the present application is the duration of N continuous time units.
- the number of time units used to carry the reference signal in the unique reference signal time period is M, and the M time units may be M continuous time units or M non-continuous time units.
- N is a positive integer, for example, an integer of 1, 2, 3, 4 or greater, which is not limited in the embodiment of the present application.
- M is a positive integer less than or equal to N.
- the granularity of the aforementioned reference signal time period may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the granularity of the foregoing time unit may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the above-mentioned value of N (or the duration of N continuous time units) or the above-mentioned value of M may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the signaling sent by the network device to the terminal may be one or a combination of system messages, broadcast messages, RRC signaling, MACCE signaling, and DCI.
- the terminal device may receive the indication information used to indicate the value of N or the value of M through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the second cycle in the embodiment of the present application can be understood as the second cycle in the embodiment shown in FIG. 2 above.
- the cycle may be predefined in the protocol or configured by the network device to the terminal device through signaling.
- the network device may send the indication information for indicating the second cycle to the terminal device through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the position of the time-frequency resource used to carry the reference signal in each time unit may be predefined by the protocol, or may be configured by the network device to the terminal device through signaling.
- the network device may further configure the second period and the duration of the reference signal time period, etc., so that the terminal device continues to follow a reference signal
- the reference signal is sent periodically within the time period, so that the network device can learn the channel state information of the terminal device in time.
- the terminal device periodically sends the reference signal set to the network device during the reference signal time period, which can avoid the waste of transmission resources caused by the continuous transmission of the reference signal by the terminal device, and can also send the reference signal in time when the channel status changes. , So that the network equipment can obtain the downlink channel state in time, and then use the changed channel state information for precoding, which improves the channel aging problem and improves the UE throughput rate.
- the reference signal transmission method includes but is not limited to the following steps:
- the network device determines a second period for sending the reference signal.
- the network device sends a reference signal set in the second period during the reference signal time period, and the terminal device receives at least two second reference signal sets in the second period during the reference signal time period, where the second reference The signal set includes at least one reference signal.
- the embodiment of the present application can end the transmission of the reference signal after the network device sends the reference signal according to the second cycle within a reference signal time period. Compared with the embodiment shown in FIG. 4, the embodiment of the present application occupies less transmission resources.
- the duration of the only reference signal time period in the embodiment of the present application is the duration of N continuous time units.
- the number of time units used to carry the reference signal in the only reference signal time period is M, and the M time units may be M continuous time units or M non-continuous time units.
- N is a positive integer, for example, an integer of 1, 2, 3, 4 or greater, which is not limited in the embodiment of the present application.
- M is a positive integer less than or equal to N.
- the granularity of the aforementioned reference signal time period may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the granularity of the foregoing time unit may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the above-mentioned value of N (or the duration of N continuous time units) or the above-mentioned value of M may be predefined in the protocol, or may be configured by the network device to the terminal device through signaling.
- the signaling sent by the network device to the terminal may be one or a combination of system messages, broadcast messages, RRC signaling, MACCE signaling, and DCI.
- the terminal device may receive the indication information used to indicate the value of N or the value of M through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the period in the embodiment of the present application can be understood as the second period in the embodiment shown in FIG. 2.
- the period may be predefined in the protocol, or configured by the network device to the terminal device through signaling.
- the network device may send the indication information for indicating the second cycle to the terminal device through one or more of system messages, broadcast messages, RRC signaling, MAC CE signaling, and DCI.
- the position of the time-frequency resource carrying the reference signal in each time unit may be predefined by the protocol, or may be configured by the network device to the terminal device through signaling.
- the network device may also configure the period and the duration of the reference signal time period to the terminal device again, so that the terminal device will continue to follow a reference signal set.
- the reference signal is received periodically during the signal period.
- the network device periodically sends the reference signal set to the terminal device during the reference signal time period, which can avoid the waste of transmission resources caused by the continuous transmission of the reference signal by the network device, and can also send the reference signal in time when the channel status changes. , So that the terminal equipment can obtain the uplink channel status in time.
- each network element such as a terminal device and a network device, includes a hardware structure and/or software module corresponding to each function.
- this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
- the method implemented by the terminal device can also be implemented by a component (such as a chip or circuit) that can be configured in the terminal device
- the method implemented by a network device can also be implemented by a method that can be configured in the network device.
- the component (such as a chip or circuit) is implemented.
- the embodiments of the present application can divide the terminal equipment and network equipment into functional modules according to the above method examples.
- each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
- the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
- FIG. 8 shows a schematic diagram of a possible logical structure of the terminal device involved in the foregoing embodiment.
- the communication apparatus 700 includes: a processing unit 701 and a sending unit 702.
- the communication device may be the terminal device in the foregoing method embodiment, or may be a component (for example, a chip system, a hardware circuit, etc.) configured in the terminal device.
- the sending unit 702 is configured to support the communication apparatus 700 to perform the steps of sending information by the corresponding terminal device in the method embodiments shown in FIG. 2, FIG. 4, FIG. 5, or FIG. 7.
- the processing unit 701 is configured to support the communication device 700 to execute the corresponding terminal device-related processing steps in the method embodiments shown in FIG. 2, FIG.
- the communication device 700 may further include a receiving unit for supporting the communication device 700 to perform the steps of receiving information by the corresponding terminal device in the method embodiment shown in FIG. 2, FIG. 4, FIG. 5, or FIG. 7.
- the communication device 700 may further include a storage unit for storing code (program) or data.
- the processing unit 701 is configured to determine a first cycle and a second cycle for sending a reference signal; the sending unit 702 is configured to send at least two first reference signal sets in the first cycle; the at least two The first reference signal set is carried on at least two reference signal time periods; in each of the at least two reference signal time periods, the sending unit 702 is configured to use the second period At least two second reference signal sets are sent, each second reference signal set includes at least one reference signal, and the first reference signal set includes at least two second reference signal sets.
- the sending unit 702 may be a transmitter or a transmitting circuit.
- the aforementioned processing unit 701 may be a processor or a processing circuit or the like.
- the receiving unit may be a receiver or a receiving circuit.
- the storage unit may be a memory. The above-mentioned processing unit, sending unit, receiving unit, and storage unit may be integrated or separated.
- the communication device 800 may include: an input and output module (for example, an audio input and output module 805, a key input module 806, a display 807, etc.), a user interface 808, one or more processors 801, a transceiver 802, an antenna 803 and memory 804. These components can be connected via a bus or in other ways.
- Fig. 9 takes the connection via a bus as an example. among them:
- the antenna 803 can be used to convert electromagnetic energy into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in transmission lines.
- the transceiver 802 can be used to transmit and process the signal output by the processor 801, and can also be used to receive and process the mobile communication signal received by the antenna 803.
- the transceiver 802 can be regarded as a wireless modem.
- the number of transceivers 802 may be one or more.
- the communication device 800 may also include other communication components, such as a GPS module, a Bluetooth (Bluetooth) module, a wireless fidelity (Wi-Fi) module, and so on. Not limited to the above-mentioned wireless communication signals, the communication device 800 may also support other wireless communication signals, such as satellite signals, shortwave signals, and so on.
- the input and output module can be used to realize the interaction between the communication device 800 and the user/external environment, and can mainly include an audio input and output module 805, a key input module 806, a display 807, and so on.
- the input and output modules may also include: cameras, touch screens, sensors, and so on. Among them, the input and output modules communicate with the processor 801 through the user interface 808.
- the memory 804 may be coupled with the processor 801 through a bus or an input/output port, and the memory 804 may also be integrated with the processor 801.
- the memory 804 is configured to store at least one of various software programs and multiple sets of instructions.
- the memory 804 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
- the memory 804 may store an operating system (hereinafter referred to as a system), such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
- the memory 804 can also store a user interface program, which can vividly display the content of the application program through a graphical operation interface, and receive user control operations on the application program through input controls such as menus, dialog boxes, and keys. .
- the memory 804 may be used to store the implementation program on the terminal device side of the reference signal transmission method provided in one or more embodiments of the present application.
- the implementation of the reference signal transmission method provided by one or more embodiments of the present application please refer to the foregoing embodiments.
- the processor 801 can be used to read and execute computer-readable instructions. Specifically, the processor 801 may be used to call a program stored in the memory 804, such as a terminal device side implementation program of the reference signal transmission method provided by one or more embodiments of the present application, and execute the instructions contained in the program to implement The method involved in the previous embodiment.
- the processor 801 may support: one or more of long term evolution (LTE) (4G) communication, 5G communication, and future evolution communication technologies, and so on.
- LTE long term evolution
- 4G long term evolution
- 5G communication Fifth Generation
- future evolution communication technologies and so on.
- the processor 801 sends any message or data
- the transceiver 802 specifically drives or controls the transceiver 802 to send it.
- the processor 801 receives any message or data, it specifically receives it by driving or controlling the transceiver 802. Therefore, the processor 801 can be regarded as a control center that performs transmission or reception, and the transceiver 802 is a specific performer of
- the communication device 800 may be the terminal device 102 in the wireless communication system 100 shown in FIG. 1, and may be implemented as an eMTC device, a mobile device, a mobile station, a mobile unit, or a wireless unit. Remote units, user agents, mobile clients, etc.
- the communication device 800 shown in FIG. 9 is only an implementation manner of the embodiment of the present application. In actual applications, the communication device 800 may further include more or fewer components, which is not limited here.
- the communication apparatus 800 reference may be made to the relevant descriptions of the terminal equipment in the foregoing method embodiments, and details are not described herein again.
- FIG. 10 shows a schematic diagram of a possible logical structure of the network device involved in the foregoing embodiment
- the communication device 900 includes: a receiving unit 901.
- the communication device 900 may be the network device in the foregoing method embodiment, or may be a component (for example, a chip system, a hardware circuit, etc.) configured in the network device.
- the receiving unit 901 is configured to support the communication device 90 to perform the steps of receiving information by the corresponding network device in the method embodiment shown in FIG. 2, FIG. 4, FIG. 5, or FIG. 7.
- the communication device 900 may further include a sending unit for supporting the communication device 90 to perform the steps of sending information by the corresponding network device in the method embodiment shown in FIG. 2, FIG. 4, FIG. 5, or FIG. 7.
- the communication device 900 may further include a processing unit for supporting the network device to perform the processing steps related to the network device in the method embodiment shown in FIG. 2, FIG. 4, FIG. 5, or FIG. And other functions other than the function of the receiving unit, etc.
- the communication device 900 may further include a storage unit for storing code (program) or data.
- the receiving unit 901 is configured to receive at least two first reference signal sets in a first period; the at least two first reference signal sets are carried in at least two reference signal time periods; In each reference signal time period of the four reference signal time periods, the receiving unit 901 is configured to receive at least two second reference signal sets in a second period, and each second reference signal set includes at least one reference signal, The first reference signal set includes at least two of the second reference signal sets.
- the foregoing processing unit may be a processor or a processing circuit.
- the receiving unit 901 may be a receiver, a receiving circuit, or the like.
- the transmitting unit may be a transmitter or a transmitting circuit.
- the storage unit may be a memory. The above-mentioned processing unit, sending unit, receiving unit, and storage unit may be integrated or separated.
- FIG. 11 shows a schematic diagram of a possible hardware structure of the network device involved in the foregoing embodiment.
- the communication device 1000 may include: one or more processors 1001, a memory 1002, a network interface 1003, a transceiver 1005, and an antenna 1008. These components can be connected through the bus 1004 or in other ways.
- FIG. 11 takes the connection through the bus as an example. among them:
- the network interface 1003 can be used for the communication device 1000 to communicate with other communication devices, such as other network devices.
- the network interface 1003 may be a wired interface.
- the transceiver 1005 may be used to transmit and process the signal output by the processor 1001, such as signal modulation.
- the transceiver 1005 can also be used to receive and process mobile communication signals received by the antenna 1008. For example, signal demodulation.
- the transceiver 1005 can be regarded as a wireless modem.
- the number of the transceiver 1005 may be one or more.
- the antenna 1008 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in a free space, or convert electromagnetic waves in a free space into electromagnetic energy in a transmission line.
- the memory 1002 may be coupled with the processor 1001 through a bus 1004 or an input/output port, and the memory 1002 may also be integrated with the processor 1001.
- the memory 1002 is used to store various software programs and/or multiple sets of instructions or data.
- the memory 1002 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
- the memory 1002 can store an operating system (hereinafter referred to as the system), such as embedded operating systems such as uCOS, VxWorks, and RTLinux.
- the processor 1001 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
- the processor may also be a combination for realizing certain functions, for example, including a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
- the processor 1001 may be used to read and execute computer-readable instructions. Specifically, the processor 1001 may be used to call a program stored in the memory 1002, such as a program for implementing the reference signal transmission method provided by one or more embodiments of the present application on the network device side, and execute instructions contained in the program.
- a program stored in the memory 1002 such as a program for implementing the reference signal transmission method provided by one or more embodiments of the present application on the network device side, and execute instructions contained in the program.
- the communication device 1000 may be the network device 101 in the wireless communication system 100 shown in FIG. 1, and may be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), and an extended service.
- BSS basic service set
- ESS extended service set
- NodeB NodeB
- eNodeB gNodeB
- the communication device 1000 shown in FIG. 11 is only an implementation manner of the embodiment of the present application. In practical applications, the communication device 1000 may further include more or fewer components, which is not limited here. For the specific implementation of the communication device 1000, reference may be made to the relevant descriptions of the network equipment in the foregoing method embodiments, which will not be repeated here.
- the communication chip 1100 may include: a processor 1101, and one or more interfaces 1102 coupled to the processor 1101.
- the processor 1101 may be used to read and execute computer-readable instructions.
- the processor 1101 may mainly include a controller, an arithmetic unit, and a register.
- the controller is mainly responsible for instruction decoding, and sends control signals for operations corresponding to the instructions.
- the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations and logic operations, etc., and can also perform address operations and conversions.
- the register is mainly responsible for storing the register operands and intermediate operation results temporarily stored during the execution of the instruction.
- the hardware architecture of the processor 1101 can be an application specific integrated circuit (ASIC) architecture, a microprocessor without interlocked pipeline stage architecture (microprocessor without interlocked stages architecture, MIPS) architecture, and advanced streamlining. Instruction set machine (advanced RISC machines, ARM) architecture or network processor (network processor, NP) architecture, etc.
- the processor 1101 may be single-core or multi-core.
- the interface 1102 can be used to input data to be processed to the processor 1101, and can output the processing result of the processor 1101 to the outside.
- the interface 1102 may be a general purpose input output (GPIO) interface, which can be connected to at least one peripheral device (such as a display (LCD), a camera (camara), a radio frequency (RF) module, etc.) connection.
- GPIO general purpose input output
- the interface 1102 is connected to the processor 1101 through the bus 1103.
- the processor 1101 can be used to call the implementation program or data on the terminal device side of the reference signal transmission method provided by one or more embodiments of the present application from the memory, so that the chip can implement the aforementioned FIG. 2 , Figure 4, Figure 5, or Figure 7 shows the relevant functions of the reference signal transmission method in the terminal device.
- the processor 1101 can be used to call the implementation program or data on the network device side of the reference signal transmission method provided by one or more embodiments of the present application from the memory, so that the chip can implement the aforementioned Related operations of the reference signal transmission method shown in FIG. 2, FIG. 4, FIG. 5, or FIG. 7 in a network device.
- the memory may be integrated with the processor 1101, or may be coupled to the communication chip 1100 through the interface 1102, that is to say, the memory may be a part of the communication chip 1100, or may be independent of the communication chip 110.
- the interface 1102 can be used to output the execution result of the processor 1101.
- processor 1101 and the interface 1102 can be implemented by hardware design, software design, or a combination of software and hardware, which is not limited here.
- a computer-readable storage medium stores computer-executable instructions.
- a device may be a single-chip microcomputer, a chip, etc.
- the readable The computer stored in the storage medium executes the instructions, so that the device or the processor executes the steps of the terminal device and the network device in the reference signal transmission method provided in FIG. 2, FIG. 4, FIG. 5, or FIG. 7.
- the aforementioned computer-readable storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk, and other media that can store program codes.
- a computer program product in another embodiment of the present application, includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium; at least one processor of the device can be accessed from a computer.
- the reading storage medium reads the computer-executable instruction, and at least one processor executes the computer-executable instruction to make the device implement the steps of the terminal device and the network device in the reference signal transmission method provided in FIG. 2, FIG. 4, FIG. 5, or FIG. 7.
- a communication system in another embodiment of the present application, includes multiple devices, and the multiple devices include terminal devices and network devices.
- the terminal device may be the communication device provided in FIG. 8 or FIG. 10, and is used to execute the steps corresponding to the terminal device in the reference signal transmission method provided in FIG. 2, FIG. 4, FIG. 5, or FIG. 7.
- the network device may be the network device provided in FIG. 9 or FIG. 11, and is used to execute the steps corresponding to the network device in the reference signal transmission method provided in FIG. 2, FIG. 4, FIG. 5, or FIG. 7.
- the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- software it can be implemented in the form of a computer program product in whole or in part.
- the computer program product includes one or more computer instructions.
- the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
- the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
- Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
- the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例公开了一种参考信号传输方法及相关设备,其中,该方法包括:终端设备确定发送参考信号的第一周期和第二周期;终端设备以所述第一周期发送至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;在所述至少两个参考信号时间段中的每个参考信号时间段内,所述终端设备以所述第二周期发送至少两个第二参考信号集合,其中,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。实施本申请实施例中的方法,网络设备能够及时获得终端设备的信道状态,从而避免信道老化问题。
Description
本申请要求于2019年09月09日提交中国专利局、申请号为201910851689.1、申请名称为“参考信号传输方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及通信技术领域,尤其涉及一种参考信号传输方法及相关设备。
在长期演进(long term evolution,LTE)系统中,基站使用信道探测参考信号(sound reference signal,SRS)来估计不同频段的上行信道质量。在时分双工(time division duplexing,TDD)系统中,因为上下行链路使用同一个频率,上下行信道是对称的,基于接收的上行SRS信号,基站能够测量每根天线的上行信道状态信息(channel state information,CSI),然后利用信道互益性原理来估计下行信道状态进行相应的预编码。
在LTE系统中,用户设备(user equipment,UE)相邻两次发送SRS的间隔一般至少是5ms,而针对UE快速移动的场景,信道是时变的,在两次发送SRS的间隔时间内,UE的下行信道状态可能已经发生了变化,若基站采用当前信道之前获得的下行信道状态信息对当前信道进行预编码则会导致预编码矩阵与当前信道不匹配,即出现信道老化的问题,造成UE吞吐率降低。举例说明,基站在时隙(slot)0上接收UE发送的SRS,利用信道互益性获得下行信道的CSI,根据下行信道的CSI来对下行数据进行预编码,在之后的slot1-slot9上基站会继续采用slot0上获得的CSI对下行数据进行预编码,直至在slot10上又接收到新的SRS。基站在slot9上使用的老的信道的预编码矩阵已经跟真正的slot9的信道不匹配,从而造成UE的吞吐量降低。因此,如何避免信道老化问题是目前需要解决的技术问题。
发明内容
本申请实施例提供了一种参考信号传输方法及相关设备,网络设备能够及时获得终端设备的信道状态,从而避免信道老化问题。
第一方面,本申请实施例提供了一种参考信号传输方法,适用于上行参考信号传输过程,该方法可以应用于终端设备侧。该方法包括:终端设备确定发送参考信号的第一周期和第二周期。终端设备以该第一周期发送至少两个第一参考信号集合。该至少两个第一参考信号集合承载在至少两个参考信号时间段上。在每个参考信号时间段内,终端设备以该第二周期发送至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,第一参考信号集合包括至少两个第二参考信号集合。实施本申请实施例,终端设备每间隔第一周期向网络设备发送第一参考信号集合,这第一参考信号集合是在一个参考信号时间段内发送的,在一个参考信号时间段内,终端设备每间隔第二周期向网络设备发送第二参考信号集合,既可以避免终端设备持续发送参考信号造成传输资源的浪费,又能够在信道 状态变化时及时发送参考信号,以便网络设备及时获取下行信道状态,从而采用变化后的信道状态信息进行预编码,改善了信道老化问题,提升了UE吞吐率。
在一种可能的设计中,每个参考信号时间段的长度为N个连续时间单元持续的时间长度,N为大于等于2的整数。
在一种可能的设计中,每个参考信号时间段中包括M个时间单元用于承载参考信号,该M个时间单元为M个连续的时间单元或M个非连续的时间单元,M为大于等于2的整数。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述N的值的指示信息。可选的,所述指示信息可以直接指示所述N的值。所述指示信息也可以间接指示所述N的值,例如,所述指示信息可以指示所述N个连续时间单元持续的时间长度。直接指示所述N的值的方式相较于间接指示所述N的值的方式,可以节省指示开销。
可选的,N的值可以由网络设备配置给终端设备,配置更加灵活。此外,N的值还可以由协议预定义。
在一种可能的设计中,终端设备接收用于指示所述N的值的指示信息,包括:终端设备通过无线资源控制(radio resource control,RRC)信令、媒体接入控制(media access control,MAC)控制元素(control element,CE)信令或下行控制信息(downlink control information,DCI)接收用于指示所述N的值的指示信息。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述M的值的指示信息。这种情况中,M的值可以由网络设备配置给终端设备,配置更加灵活。此外,M的值还可以由协议预定义。
在一种可能的设计中,终端设备接收用于指示所述M的值的指示信息,包括:终端设备通过RRC信令、MACCE信令或DCI接收用于指示所述M的值的指示信息。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述第一周期的指示信息。这种情况中,第一周期可以由网络设备配置给终端设备,配置更加灵活。此外,第一周期还可以由协议预定义。
在一种可能的设计中,终端设备接收用于指示第一周期的指示信息,包括:终端设备通过RRC信令、MACCE信令或DCI接收用于指示所述第一周期的指示信息。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述第二周期的指示信息。这种情况中,第二周期可以由网络设备配置给终端设备,配置更加灵活。此外,第二周期还可以由协议预定义。
在一种可能的设计中,终端设备接收用于指示第二周期的指示信息,包括:终端设备通过RRC信令、MAC-CE信令或者DCI接收用于指示所述第二周期的指示信息。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示参考信号在每个参考信号时间段中的M个时间单元中的时频资源位置的指示信息。
在一种可能的设计中,在至少两个参考信号时间段上用于承载所述参考信号的频域资源的频段相同。这种情况下,可以减少网络设备配置跳频索引的过程,节省配置开销。
在一种可能的设计中,在至少两个参考信号时间段上用于承载所述参考信号的频域资源的频段不同。
在一种可能的设计中,在至少两个参考信号时间段上用于承载所述参考信号的频域资源的频段采用跳频(frequency hopping)。采用跳频方式可以避免每个参考信号时间段内占用整个带宽传输参考信号,即每个参考信号时间段上只需占用部分带宽传输参考信号即可,可以节省传输开销的同时也可以覆盖不同的带宽,并且能把干扰分散到不同的带宽上,可以降低多种类型的干扰,如同信道干扰,邻信道干扰,互调干扰等。
可选的,上述至少两个参考信号时间段上用于承载所述参考信号的频域资源的频段相同或不同可以网络设备配置或者协议预定义。例如,网络设备配置参考信号时间段上用于承载所述参考信号的频域资源的整个频段(即上述至少两个参考信号时间段上用于承载所述参考信号的频域资源占用的整个频段),如果该至少两个参考信号时间段上用于承载所述参考信号的频域资源的频段采用跳频,则网络设备还会向终端设备发送跳频索引,协议可以预定义几种不同的跳频图样(pattern),每个跳频图样用于指示一种频域资源位置(或频段)分布图,每个跳频图样对应一个索引值(即跳频索引),网络设备向终端设备发送索引值指示上述至少两个参考信号时间段上用于承载所述参考信号的频域资源所使用的跳频图样。若网络设备没有向终端设备发送跳频索引,则默认该至少两个参考信号时间段上用于承载所述参考信号的频域资源的频段相同。其中,网络设备在配置频段时可以配置频段的起始位置(例如起始RB的位置)、频段的终止位置(例如结束RB的位置)以及频段的带宽(例如几个RB)中的任意两种或三种。
在一种可能的设计中,在M个时间单元中的至少两个时间单元上,用于承载参考信号的时频资源的位置相同。这种情况下,可以减少网络设备配置跳频索引的过程,节省配置开销。
在一种可能的设计中,在M个时间单元中的至少两个时间单元上,用于承载参考信号的时域资源的位置相同且频域资源的位置不同。其中,频域资源的位置还可以称为频段,频域资源位置可以通过频段的起始位置(例如起始RB的位置)、频段的终止位置(例如结束RB的位置)以及频段的带宽(例如几个RB)中的任意两种或三种来确定。
在一种可能的设计中,在M个时间单元中的至少两个时间单元上,用于承载参考信号的频域资源的位置采用跳频(或交错)。采用跳频方式可以避免每个时间单元内占用整个带宽传输参考信号,即每个时间单元上只需占用部分带宽传输参考信号即可,可以节省传输开销的同时也可以覆盖不同的带宽,并且能把干扰分散到不同的带宽上,可以降低多种类型的干扰,如同信道干扰,邻信道干扰,互调干扰等。
在一种可能的设计中,在M个时间单元中的至少两个时间单元上,用于承载参考信号的时域资源的位置不同且频域资源的位置相同。
在一种可能的设计中,在M个时间单元中的至少两个时间单元上,用于承载参考信号的时域资源的位置和频域资源的位置均不同。
可选的,上述一个参考信号时间段内的至少两个时间单元上,用于承载参考信号的时频资源位置相同或不同可以网络设备配置或者协议预定义。例如,网络设备配置一个参考信号时间段内的时间单元上用于承载参考信号的频域占用的整个频段,如果该参考信号时间段内至少两个时间单元上承载参考信号的频域资源的位置采用跳频,则网络设备还会向终端设备发送跳频索引,协议可以预定义几种不同的跳频图样(pattern),每个跳频图样用 于指示一种频域资源位置(或频段)分布图,每个跳频图样对应一个索引值(即跳频索引),网络设备向终端设备发送索引值指示上述至少两个时间单元上承载参考信号的频域资源的位置所使用的跳频图样。若网络设备没有向终端设备发送跳频索引,则默认该至少两个时间单元上承载参考信号的频域资源的位置相同。
在一种可能的设计中,M个时间单元中的一个时间单元上用于承载参考信号的子载波包括一个或多个。
在一种可能的设计中,M个时间单元中的一个时间单元上用于承载参考信号的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号包括一个或多个。
在一种可能的设计中,若一个时间单元中用于承载参考信号的OFDM符号包括至少两个,则该至少两个OFDM符号上承载参考信号的子载波不同。
在一种可能的设计中,若一个时间单元中用于承载参考信号的OFDM符号包括至少两个,则该至少两个OFDM符号上承载参考信号的子载波采用跳频。采用跳频方式可以避免每个OFDM符号内占用整个带宽传输参考信号,即每个OFDM符号上只需占用部分带宽传输参考信号即可,可以节省传输开销的同时也可以覆盖不同的带宽,并且能把干扰分散到不同的带宽上,可以降低多种类型的干扰,如同信道干扰,邻信道干扰,互调干扰等。
在一种可能的设计中,若一个时间单元中用于承载参考信号的OFDM符号包括至少两个,则该至少两个OFDM符号上承载参考信号的子载波相同。
可选的,单个时间单元中至少两个OFDM符号各自承载参考信号的子载波相同或不同可以网络设备配置或者协议预定义。例如,网络设备配置单个时间单元占用的整个频段,如果该时间单元内至少两个OFDM符号上承载参考信号的子载波采用跳频,则网络设备还会向终端设备发送跳频索引,协议可以预定义几种不同的跳频图样(pattern),每个跳频图样用于指示一种频域资源位置(或频段)分布图,每个跳频图样对应一个索引值(即跳频索引),网络设备向终端设备发送索引值指示上述至少两个OFDM符号上承载参考信号的子载波所使用的跳频图样。若网络设备没有向终端设备发送跳频索引,则默认该至少两个OFDM符号上承载参考信号的子载波相同。
第二方面,本申请实施例提供了另一种参考信号传输方法,适用于上行参考信号传输过程,该方法可以应用于网络设备侧。该方法包括:网络设备以第一周期接收至少两个第一参考信号集合,该至少两个第一参考信号集合承载在至少两个参考信号时间段上。在每个参考信号时间段内,网络设备以第二周期接收至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,第一参考信号集合包括至少两个第二参考信号集合。实施本申请实施例,网络设备每间隔第一周期从终端设备接收第一参考信号集合,这第一参考信号集合是在一个参考信号时间段内发送的,在一个参考信号时间段内,网络设备每间隔第二周期从终端设备接收第二参考信号集合,既可以避免网络设备持续接收参考信号造成计算资源的浪费,又能够在信道状态变化时及时获取参考信号,以便网络设备及时获取下行信道状态,从而采用变化后的信道状态信息进行预编码,改善了信道老化问题,提升了UE吞吐率。
在一种可能的设计中,每个参考信号时间段的长度为N个连续时间单元持续的时间长度,N为大于等于2的整数。
在一种可能的设计中,每个参考信号时间段中包括M个时间单元用于承载参考信号,该M个时间单元为M个连续的时间单元或M个非连续的时间单元,M为大于等于2的整数。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述N的值的指示信息。可选的,所述指示信息可以直接指示所述N的值。所述指示信息也可以间接指示所述N的值,例如,所述指示信息可以指示所述N个连续时间单元持续的时间长度。直接指示所述N的值的方式相较于间接指示所述N的值的方式,可以节省指示开销。
可选的,N的值可以由网络设备配置给终端设备,配置更加灵活。此外,N的值还可以由协议预定义。
在一种可能的设计中,网络设备发送用于指示所述N的值的指示信息,包括:网络设备通过RRC信令、MACCE信令或DCI发送用于指示所述N的值的指示信息。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述M的值的指示信息。这种情况中,M的值可以由网络设备配置给终端设备,配置更加灵活。此外,M的值还可以由协议预定义。
在一种可能的设计中,网络设备发送用于指示所述M的值的指示信息,包括:网络设备通过RRC信令、MACCE信令或DCI发送用于指示所述M的值的指示信息。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述第一周期的指示信息。这种情况中,第一周期可以由网络设备配置给终端设备,配置更加灵活。此外,第一周期还可以由协议预定义。
在一种可能的设计中,网络设备发送用于指示第一周期的指示信息,包括:网络设备通过RRC信令、MACCE信令或者DCI发送用于指示所述第一周期的指示信息。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述第二周期的指示信息。这种情况中,第二周期可以由网络设备配置给终端设备,配置更加灵活。此外,第二周期还可以由协议预定义。
在一种可能的设计中,网络设备发送用于指示第二周期的指示信息,包括:网络设备通过RRC信令、MAC-CE信令或者DCI发送用于指示所述第二周期的指示信息。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示参考信号在每个参考信号时间段中的M个时间单元中的时频资源位置的指示信息。
在一种可能的设计中,在至少两个参考信号时间段上用于承载所述参考信号的频域资源的频段相同。这种情况下,可以减少网络设备配置跳频索引的过程,节省配置开销。
在一种可能的设计中,在至少两个参考信号时间段上用于承载所述参考信号的频域资源的频段不同。
在一种可能的设计中,在至少两个参考信号时间段上用于承载所述参考信号的频域资源的频段采用跳频(frequency hopping)。采用跳频方式可以避免每个参考信号时间段内占用整个带宽传输参考信号,即每个参考信号时间段上只需占用部分带宽传输参考信号即可,可以节省传输开销的同时也可以覆盖不同的带宽,并且能把干扰分散到不同的带宽上,可以降低多种类型的干扰,如同信道干扰,邻信道干扰,互调干扰等。
在一种可能的设计中,M个时间单元中的至少两个时间单元上用于承载参考信号的时 频资源的位置相同。这种情况下,可以减少网络设备配置跳频索引的过程,节省传输开销。
在一种可能的设计中,M个时间单元中的至少两个时间单元上用于承载参考信号的时域资源位置相同且频域资源位置不同。
在一种可能的设计中,M个时间单元中的至少两个时间单元上用于承载参考信号的频域资源位置采用跳频(或交错)。采用跳频方式可以避免每个时间单元内占用整个带宽传输参考信号,即每个时间单元上只需占用部分带宽传输参考信号即可,可以节省传输开销的同时也可以覆盖不同的带宽,并且能把干扰分散到不同的带宽上,可以降低多种类型的干扰,如同信道干扰,邻信道干扰,互调干扰等。
在一种可能的设计中,M个时间单元中的至少两个时间单元上用于承载参考信号的时域资源位置不同且频域资源位置相同。
在一种可能的设计中,M个时间单元中的至少两个时间单元上用于承载参考信号的时域资源位置和频域资源位置均不同。
在一种可能的设计中,M个时间单元中的一个时间单元上用于承载参考信号的子载波包括一个或多个。
在一种可能的设计中,M个时间单元中的一个时间单元上用于承载参考信号的OFDM符号包括一个或多个。
在一种可能的设计中,若一个时间单元中用于承载参考信号的OFDM符号包括至少两个,则该至少两个OFDM符号上承载参考信号的子载波不同。
在一种可能的设计中,若一个时间单元中用于承载参考信号的OFDM符号包括至少两个,则该至少两个OFDM符号上承载参考信号的子载波采用跳频。采用跳频方式可以避免每个OFDM符号内占用整个带宽传输参考信号,即每个OFDM符号上只需占用部分带宽传输参考信号即可,可以节省传输开销的同时也可以覆盖不同的带宽,并且能把干扰分散到不同的带宽上,可以降低多种类型的干扰,如同信道干扰,邻信道干扰,互调干扰等。
在一种可能的设计中,若一个时间单元中用于承载参考信号的OFDM符号包括至少两个,则该至少两个OFDM符号上承载参考信号的子载波相同。
第三方面,本申请实施例提供了另一种参考信号传输方法,适用于下行参考信号传输过程,该方法可以应用于网络设备侧,该方法包括:网络设备确定发送参考信号的第一周期和第二周期。网络设备以第一周期发送至少两个第一参考信号集合,该至少两个第一参考信号集合承载在至少两个参考信号时间段上。在每个参考信号时间段内,网络设备以第二周期发送至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,第一参考信号集合包括至少两个第二参考信号集合。实施本申请实施例,网络设备每间隔第一周期向终端设备发送第一参考信号集合,该第一参考信号集合是在一个参考信号时间段内发送的,在参考信号时间段内,网络设备每间隔第二周期向终端设备发送第二参考信号集合,既可以避免网络设备持续发送参考信号造成传输资源的浪费,又能够在信道状态变化时及时发送参考信号,以便终端设备及时获取上行信道状态。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示第一周期的指示信息,和/或用于指示第二周期的指示信息。
在一种可能的设计中,每个参考信号时间段的长度为N个连续时间单元持续的时间长 度,N为大于等于2的整数。
在一种可能的设计中,每个参考信号时间段中包括M个时间单元用于承载参考信号,该M个时间单元为M个连续的时间单元或M个非连续的时间单元,M为大于等于2的整数。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述N的值的指示信息。可选的,所述指示信息可以直接指示所述N的值。所述指示信息也可以间接指示所述N的值,例如,所述指示信息可以指示所述N个连续时间单元持续的时间长度。直接指示所述N的值的方式相较于间接指示所述N的值的方式,可以节省指示开销。可选的,N的值可以由网络设备配置给终端设备,配置更加灵活。此外,N的值还可以由协议预定义。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述M的值的指示信息。这种情况中,M的值可以由网络设备配置给终端设备,配置更加灵活。此外,M的值还可以由协议预定义。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示参考信号在每个参考信号时间段中的M个时间单元中的时频资源位置的指示信息。
关于至少两个参考信号时间段上用于承载参考信号的频域资源所在的频段相同或不同、至少两个时间单元上用于承载参考信号的频域资源位置相同或不同、一个时间单元内至少两个OFDM符号上承载参考信号的子载波相同或不同的相关描述可以参考前述第一方面的相关描述,此处不再赘述。
第四方面,本申请实施例提供了另一种参考信号传输方法,适用于下行参考信号传输过程,该方法可以应用于终端设备侧,该方法包括:终端设备以第一周期接收至少两个第一参考信号集合,该至少两个第一参考信号集合承载在至少两个参考信号时间段上。在每个参考信号时间段内,终端设备以第二周期接收至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,第一参考信号集合包括至少两个第二参考信号集合。实施本申请实施例,终端设备每间隔第一周期接收网络设备发送的第一参考信号集合,该第一参考信号集合是在一个参考信号时间段内发送的,在参考信号时间段内,终端设备每间隔第二周期接收网络设备发送的第二参考信号集合,既可以避免终端设备持续接收参考信号造成传输资源的浪费,又能够在信道状态变化时及时发送参考信号,以便终端设备及时获取上行信道状态。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示第一周期和/或第二周期的指示信息。
在一种可能的设计中,每个参考信号时间段的长度为N个连续时间单元持续的时间长度,N为大于等于2的整数。
在一种可能的设计中,每个参考信号时间段中包括M个时间单元用于承载参考信号,该M个时间单元为M个连续的时间单元或M个非连续的时间单元,M为大于等于2的整数。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述N的值的指示信息。这种情况中,N的值可以由网络设备配置给终端设备,配置更加灵活。此外,N的值还可以由协议预定义。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述M的值的指示信息。这种情况中,M的值可以由网络设备配置给终端设备,配置更加灵活。此外,M的值还可以由协议预定义。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示参考信号在每个参考信号时间段中的M个时间单元中的时频资源位置的指示信息。
关于至少两个参考信号时间段上用于承载参考信号的频域资源所在的频段相同或不同、至少两个时间单元上用于承载参考信号的频域资源位置相同或不同、一个时间单元内至少两个OFDM符号上承载参考信号的子载波相同或不同的相关描述可以参考前述第一方面的相关描述,此处不再赘述。
第五方面,本申请实施例提供了另一种参考信号传输方法,适用于上行参考信号传输过程,该方法应用于终端设备侧,该方法包括:终端设备确定发送参考信号的第二周期。终端设备在参考信号时间段内以所述第二周期发送至少两个第二参考信号集合,其中,每个第二参考信号集合包括至少一个参考信号。实施本申请实施例,终端设备在一个参考信号时间段内,周期性向网络设备发送参考信号集合,既可以避免终端设备持续发送参考信号造成传输资源的浪费,又能够在信道状态变化时及时发送参考信号,以便网络设备及时获取下行信道状态,从而采用变化后的信道状态信息进行预编码,改善了信道老化问题,提升了UE吞吐率。
在一种可能的设计中,上述参考信号时间段的长度为N个连续时间单元持续的时间长度,N为大于等于2的整数。
在一种可能的设计中,上述参考信号时间段中包括M个时间单元用于承载参考信号,该M个时间单元为M个连续的时间单元或M个非连续的时间单元,M为大于等于2的整数。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述N的值的指示信息。这种情况中,N的值可以由网络设备配置给终端设备,配置更加灵活。此外,N的值还可以由协议预定义。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述M的值的指示信息。这种情况中,M的值可以由网络设备配置给终端设备,配置更加灵活。此外,M的值还可以由协议预定义。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述第二周期的指示信息。这种情况中,第二周期可以由网络设备配置给终端设备,配置更加灵活。此外,该第二周期还可以由协议预定义。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示参考信号在上述M个时间单元中的时频资源位置的指示信息。
关于至少两个时间单元上用于承载参考信号的频域资源位置相同或不同、一个时间单元内至少两个OFDM符号上承载参考信号的子载波相同或不同的相关描述可以参考前述第一方面的相关描述,此处不再赘述。
第六方面,本申请实施例提供了另一种参考信号传输方法,适用于上行参考信号传输过程,该方法应用于网络设备侧,该方法包括:网络设备在参考信号时间段内以第二周期 接收至少两个第二参考信号集合,其中,每个第二参考信号集合包括至少一个参考信号。实施本申请实施例,网络设备在一个参考信号时间段内,周期性接收终端设备发送的参考信号集合,既可以避免终端设备持续发送参考信号造成传输资源的浪费,又能够在信道状态变化时及时发送参考信号,以便网络设备及时获取下行信道状态,从而采用变化后的信道状态信息进行预编码,改善了信道老化问题,提升了UE吞吐率。
在一种可能的设计中,上述参考信号时间段的长度为N个连续时间单元持续的时间长度,N为大于等于2的整数。
在一种可能的设计中,上述参考信号时间段中包括M个时间单元用于承载参考信号,该M个时间单元为M个连续的时间单元或M个非连续的时间单元,M为大于等于2的整数。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述N的值的指示信息。这种情况中,N的值可以由网络设备配置给终端设备,配置更加灵活。此外,N的值还可以由协议预定义。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述M的值的指示信息。这种情况中,M的值可以由网络设备配置给终端设备,配置更加灵活。此外,M的值还可以由协议预定义。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述第二周期的指示信息。这种情况中,第二周期可以由网络设备配置给终端设备,配置更加灵活。此外,该第二周期还可以由协议预定义。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示参考信号在上述M个时间单元中的时频资源位置的指示信息。
关于至少两个时间单元上用于承载参考信号的频域资源位置相同或不同、一个时间单元内至少两个OFDM符号上承载参考信号的子载波相同或不同的相关描述可以参考前述第一方面的相关描述,此处不再赘述。
第七方面,本申请实施例提供了另一种参考信号传输方法,适用于下行参考信号传输过程,该方法应用于网络设备侧,该方法包括:网络设备确定发送参考信号的第二周期。网络设备在参考信号时间段内以所述第二周期发送至少两个第二参考信号集合,其中,第二参考信号集合包括至少一个参考信号。实施本申请实施例,网络设备在一个参考信号时间段内,周期性向终端设备发送参考信号集合,既可以避免网络设备持续发送参考信号造成传输资源的浪费,又能够在信道状态变化时及时发送参考信号,以便终端设备及时获取上行信道状态。
在一种可能的设计中,上述参考信号时间段的长度为N个连续时间单元持续的时间长度,N为大于等于2的整数。
在一种可能的设计中,上述参考信号时间段中包括M个时间单元用于承载参考信号,该M个时间单元为M个连续的时间单元或M个非连续的时间单元,M为大于等于2的整数。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述N的值的指示信息。这种情况中,N的值可以由网络设备配置给终端设备,配置更加灵活。此外,N的值 还可以由协议预定义。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述M的值的指示信息。这种情况中,M的值可以由网络设备配置给终端设备,配置更加灵活。此外,M的值还可以由协议预定义。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示所述第二周期的指示信息。这种情况中,第二周期可以由网络设备配置给终端设备,配置更加灵活。此外,该第二周期还可以由协议预定义。
在一种可能的设计中,上述方法还包括:网络设备发送用于指示参考信号在上述M个时间单元中的时频资源位置的指示信息。
关于至少两个时间单元上用于承载参考信号的频域资源位置相同或不同、一个时间单元内至少两个OFDM符号上承载参考信号的子载波相同或不同的相关描述可以参考前述第一方面的相关描述,此处不再赘述。
第八方面,本申请实施例提供了另一种参考信号传输方法,适用于下行参考信号传输过程,该方法应用于终端设备侧,该方法包括:终端设备在参考信号时间段内以第二周期接收至少两个第二参考信号集合,其中,第二参考信号集合包括至少一个参考信号。实施本申请实施例,终端设备在一个参考信号时间段内,周期性接收网络设备发送的参考信号集合,可以避免网络设备持续发送参考信号造成传输资源的浪费,又能够在信道状态变化时终端设备及时获取参考信号,以便终端设备及时获取上行信道状态。
在一种可能的设计中,上述参考信号时间段的长度为N个连续时间单元持续的时间长度,N为大于等于2的整数。
在一种可能的设计中,上述参考信号时间段中包括M个时间单元用于承载参考信号,该M个时间单元为M个连续的时间单元或M个非连续的时间单元,M为大于等于2的整数。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述N的值的指示信息。这种情况中,N的值可以由网络设备配置给终端设备,配置更加灵活。此外,N的值还可以由协议预定义。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述M的值的指示信息。这种情况中,M的值可以由网络设备配置给终端设备,配置更加灵活。此外,M的值还可以由协议预定义。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示所述第二周期的指示信息。这种情况中,第二周期可以由网络设备配置给终端设备,配置更加灵活。此外,该第二周期还可以由协议预定义。
在一种可能的设计中,上述方法还包括:终端设备接收用于指示参考信号在上述M个时间单元中的时频资源位置的指示信息。
关于至少两个时间单元上用于承载参考信号的频域资源位置相同或不同、一个时间单元内至少两个OFDM符号上承载参考信号的子载波相同或不同的相关描述可以参考前述第一方面的相关描述,此处不再赘述。
第九方面,本申请实施例提供了一种通信装置,该通信装置可用是终端设备,也可以 是终端设备中的装置(例如芯片或者电路),或者是能够和终端设备匹配使用的装置。一种设计中,该通信装置可以包括执行第一方面、第四方面、第五方面或者第八方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理单元和发送单元。示例性地,
处理单元,用于确定发送参考信号的第一周期和第二周期;
发送单元,用于以所述第一周期发送至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;
在所述至少两个参考信号时间段中的每个参考信号时间段内,所述发送单元,用于以所述第二周期发送至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
可选的,上述发送单元可以通过发射器实现,发射器可以为发射电路等。处理单元可以通过处理器实现。可选的,该通信装置还可以包括接收单元,接收单元可以通过接收器实现,接收器可以为接收电路等。该通信装置还可以包括存储单元,存储单元可以通过存储器实现,用于存储计算机程序或者数据。
第十方面,本申请实施例提供了一种通信装置,该通信装置可用是网络设备,也可以是网络设备中的装置(例如芯片或者电路),或者是能够和网络设备匹配使用的装置。一种设计中,该通信装置可以包括执行第二方面、第三方面、第六方面或者第七方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括接收单元。示例性地,
接收单元,用于以第一周期接收至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;
在所述至少两个参考信号时间段中的每个参考信号时间段内,所述接收单元,用于以第二周期接收至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
可选的,上述接收单元可以通过接收器实现,接收器可以为接收电路等,可选的,该通信装置还可以包括发送单元,该发送单元可以通过发射器实现,发射器可以为发射电路等。可选的,该通信装置还可以包括处理单元,该处理单元可以通过处理器实现。可选的,该通信装置还可以包括存储单元,存储单元可以通过存储器实现,用于存储计算机程序或者数据。
第十一方面,本申请实施例提供了另一种通信装置,该用于执行第一方面、第四方面、第五方面或者第八方面描述的参考信号传输方法。该通信装置可包括:存储器以及与所述存储器耦合的处理器、发射器、接收器。示例性的,所述发射器用于支持通信装置执行上述任一方面所提供的参考信号传输方法中终端设备发送信息的步骤。所述接收器用于支持通信装置执行上述任一方面所提供的参考信号传输方法中终端设备接收信息的步骤。处理器用于支持通信装置执行上述任一方面所提供的参考信号传输方法中终端设备除发送信息以及接收信息以外的其他处理步骤。需要说明的是,本申请实施例中的发射器和接收器可以集成在一起,也可以通过耦合器耦合。所述存储器用于存储上述任一方面描述的参考信 号传输方法的程序指令,所述处理器用于执行所述存储器中存储的程序指令,使得该通信装置执行上述任一方面所提供的参考信号传输方法。存储器和处理器可以集成在一起,也可以通过耦合器耦合。
第十二方面,本申请实施例提供了另一种通信装置,该用于执行第二方面、第三方面、第六方面或者第七方面描述的参考信号传输方法。该通信装置可包括:存储器以及与所述存储器耦合的处理器、发射器、接收器。示例性的,所述发射器用于支持通信装置执行上述任一方面所提供的参考信号传输方法中网络设备发送信息的步骤。所述接收器用于支持通信装置执行上述任一方面所提供的参考信号传输方法中网络设备接收信息的步骤。处理器用于支持通信装置执行上述任一方面所提供的参考信号传输方法中网络设备除发送信息以及接收信息以外的其他处理步骤。需要说明的是,本申请实施例中的发射器和接收器可以集成在一起,也可以通过耦合器耦合。所述存储器用于存储上述任一方面描述的参考信号传输方法的程序指令,所述处理器用于执行所述存储器中存储的程序指令,即执行上述任一方面所提供的参考信号传输方法。存储器和处理器可以集成在一起,也可以通过耦合器耦合。
第十三方面,本申请实施例提供了一种通信系统,包括终端设备和网络设备。示例性的,所述终端设备可以是如前述第九方面或第十一方面所描述的通信装置,网络设备可以是如前述第十方面或第十二方面所描述的通信装置。
第十四方面,本申请实施例提供了一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述任一方面描述的参考信号传输方法。
第十五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面描述的参考信号传输方法。
第十六方面,本申请实施例提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。示例性的,所述处理器可用于从存储器中调用上述任一方面所提供的参考信号传输方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的处理结果。
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的无线通信系统的架构示意图;
图2是本申请实施例提供的一种参考信号传输方法的流程示意图;
图3A是本申请实施例提供的一种参考信号的资源映射示意图;
图3B是本申请实施例提供的另一种参考信号的资源映射示意图;
图3C是本申请实施例提供的另一种参考信号的资源映射示意图;
图3D是本申请实施例提供的另一种参考信号的资源映射示意图;
图3E是本申请实施例提供的另一种参考信号的资源映射示意图;
图3F是本申请实施例提供的另一种参考信号的资源映射示意图;
图3G是本申请实施例提供的另一种参考信号的资源映射示意图;
图3H是本申请实施例提供的另一种参考信号的资源映射示意图;
图3I是本申请实施例提供的另一种参考信号的资源映射示意图;
图3J是本申请实施例提供的另一种参考信号的资源映射示意图;
图3K是本申请实施例提供的另一种参考信号的资源映射示意图;
图4是本申请实施例提供的另一种参考信号传输方法的流程示意图;
图5是本申请实施例提供的另一种参考信号传输方法的流程示意图;
图6是本申请实施例提供的另一种参考信号的资源映射示意图;
图7是本申请实施例提供的另一种参考信号传输方法的流程示意图;
图8是本申请实施提供的一种通信装置的逻辑结构示意图;
图9是本申请实施例提供的一种通信装置的硬件结构示意图;
图10是本申请实施例提供的另一种通信装置的逻辑结构示意图;
图11是本申请实施例提供的另一种通信装置的硬件结构示意图;
图12是本申请实施例提供的一种通信芯片的结构示意图。
本申请的实施方式部分选择的术语仅用于对本申请的具体实施例进行说明。
参考图1,图1示出了本申请实施例涉及的无线通信系统的示例。在无线通信系统100中,包括通信设备,通信设备间可以利用空口资源进行无线通信。其中,通信设备可以包括网络设备101和终端设备102,网络设备101还可以称为网络侧设备。空口资源可以包括时域资源、频域资源、码域资源和空间资源中至少一种。
网络设备101可以通过一个或多个天线来和终端设备102进行无线通信。各个网络设备101均可以为各自对应的覆盖范围104提供通信覆盖。网络设备101对应的覆盖范围104可以被划分为多个小区或多个扇区(sector),其中,一个小区或一个扇区对应一部分覆盖范围(未示出)。网络设备101可以通过无线空口105与终端设备102通信。网络设备101与网络设备101之间也可以通过接口107(如X2/Xn接口)直接地或者间接地相互通信。图1中网络设备101和终端设备102的数量仅用于示例,其不构成对本申请实施例的应用范围的限制。
本申请实施例涉及到的终端设备102还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是机器类通信(machine type communication,MTC)终端、手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的 装置,例如芯片系统,该装置可以被安装在终端中或者和终端匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端或UE为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G中的基站或LTE中的基站,其中,5G中的基站还可以称为传输接收点(transmission reception point,TRP)或下一代节点(next-generation Node B,gNB)。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中或者和网络设备匹配使用。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备或基站为例,描述本申请实施例提供的技术方案。
在一些部署中,网络设备可以包括集中式单元(centralized unit,CU)和分布式单元(DU,distributed unit)等。网络设备还可以包括射频单元(radio unit,RU)。CU实现网络设备的部分功能,DU实现网络设备的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成物理层的信息,或者,由物理层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,基站可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网(Core network,CN)中的网络设备,在此不做限制。
本申请中,无线通信系统100不限于长期演进(long term evolution,LTE)系统,还可以是未来演进的5G系统、NR系统、无线高保真(wireless fidelity,Wi-Fi)系统等。无线通信系统100还可以是物联网(internet of things,IoT)系统、MTC系统、海量机器类通信(massive machine type communication,mMTC)系统、增强型机器类通信(enhanced machine type communication,eMTC)系统等。
本申请的技术方案还可应用到车联网(vehicle to everything,V2X)技术(X代表任何事物)中,V2X系统中的通信方式统称为V2X通信。V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)之间的通信,车辆与路边基础设施(vehicle to infrastructure,V2I)之间的通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)之间的通信等。V2X系统中所涉及的终端设备之间进行的通信被广泛称为侧行链路(slide link,SL)通信。也就是说,本申请所述的终端也可以为车辆或应用于车辆中的车辆组件。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线 通信可以包括:网络设备和终端间的无线通信、网络设备和网络设备间的无线通信以及终端和终端间的无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。该技术方案可用于进行调度实体和从属实体间的无线通信,本领域技术人员可以将本申请实施例提供的技术方案用于进行其它调度实体和从属实体间的无线通信,例如宏基站和微基站之间的无线通信,例如第一终端和第二终端间的无线通信。
本申请实施例中,为避免信道老化问题,网络设备需要跟踪时变信道,进行信道测量。示例性的,终端设备102可以向网络设备101发送参考信号,网络设备101基于参考信号进行上行信道质量测量,并根据TDD系统的信道互益性估计下行信道质量,根据下行信道的CSI来对下行数据进行预编码。其中,参考信号包括但不限于:信道探测参考信号(sound reference signal,SRS)或(doppler tracking reference signal,DT-RS)。另外,除背景技术中所提及的网络设备需要跟踪信道变化的情况以外,还存在其他网络设备需要跟踪信道变化的情况,例如,终端设备出于节电的目的,可能在不发送SRS时控制射频器件进入休眠状态,直至终端设备发送SRS前再控制射频器件进入工作状态,这会造成网络设备测量SRS获得的信道发生相位旋转。这也是一种需要跟踪的信道变化的情况,不然会对信道估计时的滤波(例如SRS的联合滤波,又例如信道预测)等的使用造成限制。本申请实施例中,进行信道测量包括测量多普勒信息等。
本申请实施例中,参考信号还可以称为导频、序列等等。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换选择。信号还可以描述为序列、数据等。至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不作限制。鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少两个”可以是两个、三个、四个或者更多个,本申请不作限制。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
基于前述无线通信系统100,本申请实施例提供了一种参考信号传输方法。参见图2,该参考信号传输方法包括但不限于如下步骤:
S201、终端设备确定发送参考信号的第一周期和第二周期。
S202、终端设备以第一周期发送至少两个第一参考信号集合,网络设备以第一周期接收至少两个第一参考信号集合,该至少两个第一参考信号集合承载在至少两个参考信号时间段上,在每个参考信号时间段内,终端设备以第二周期发送至少两个第二参考信号集合,网络设备以第二周期接收至少两个第二参考信号集合,其中,每个第二参考信号集合包括至少一个参考信号,第一参考信号集合包括至少两个第二参考信号集合。
示例性的,本申请实施例中提及的“承载”也可以称为“映射”。
示例性的,参考信号时间段又可称为导频段、导频时间段;段又可以称为分片(segment)、突发(burst)等等。每个参考信号时间段的长度为N个连续的时间单元持续的时间长度。或者,每个参考信号时间段中包括M个时间单元用于承载参考信号,该M个时间单元可以是M个连续的时间单元,也可以是M个非连续的时间单元。其中,N为正整数,例如1、2、3、4或者更大的整数,本申请实施例不做限制。M为小于等于N的正整数。如果N的值和第二周期是已知的,则可以推导出M的值。例如,N个连续时间单元为5个slot,第二周期为2个slot,则可以计算出M个非连续的时间单元为3个slot。
本申请实施例中,第二参考信号集合用于表征一个时间单元上承载的所有参考信号,第二参考信号集合包括至少一个参考信号。第一参考信号集合用于表征一个参考信号时间段内承载的所有参考信号,第一参考信号集合包括至少两个第二参考信号集合。参考信号集合又可称为参考信号组。终端设备以第一周期发送第一参考信号集合,也可以理解为,终端设备每间隔第一周期就在M个连续或者非连续的时间单元上发送参考信号集合。每个时间单元上承载的参考信号的个数不限制,可以是一个也可以是多个。两个时间单元上承载的参考信号的个数可以相同,也可以不同。两个参考信号时间段内承载的参考信号的个数可以相同,也可以不同。
可选的,参考信号时间段的粒度可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、时隙(slot)、子帧(subframe)或者帧(frame)等。时间单元的粒度也可以是OFDM符号、时隙、子帧或者帧等。参考信号时间段的粒度与时间单元的粒度可以相同,也可以不同。例如参考信号时间段和时间单元的粒度均为slot。
可选的,第一周期和第二周期的粒度可以是OFDM符号、时隙、子帧或者帧等,且第一周期的时间长度大于第二周期的时间长度。第一周期和第二周期的粒度可以相同,也可以不同。例如,参见图3A,是一种参考信号的资源映射示意图,如图3A所示,第一周期为100个slot,第二周期为2个slot,每个参考信号时间段的持续时间为5个slot(即N=5),每个参考信号时间段包括3个非连续的slot(即M=3),这3个非连续的slot(例如slot0、slot2和slot4)用于承载参考信号。终端设备每隔100个slot就在一个参考信号时间段中的3个slot上发送参考信号,以slot0开始为例,承载有参考信号的时隙分别是slot0、slot2、slot4、slot100、slot102、slot104、slot200、slot202、slot204等等,每个时隙上承载的参考信号可以是一个也可以是多个。
图3A是以每个参考信号时间段包括M(=3)个非连续时隙为例进行的说明,在其他可选的实现方式中,每个参考信号时间段也可以包括M个连续时间单元,例如,参见图3B,第二周期为1个slot,每个参考信号时间段包括7个连续slot(即M=7),这7个连续的slot(例如slot0、slot1、slot2、slot3、slot4、slot5和slot6)用于承载参考信号。
其中,上述参考信号时间段的粒度可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。上述时间单元的粒度可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。
示例性的,上述N的值(或者上述N个连续时间单元持续的时长)或者上述M的值可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。示例性的,网络设备向终端发送的信令可以是系统消息、广播消息、无线资源控制(radio resource control, RRC)信令、媒体接入控制(media access control,MAC)控制元素(control element,CE)信令和下行控制信息(downlink control information,DCI)中的一种或多种的组合。终端设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种接收用于指示上述N的值或者上述M的值的指示信息。该指示信息可以直接指示N或M的值,也可以间接指示N或M的值。例如,参见图3A,网络设备配置的M的值等于3,且第二周期为2个slot,假设时间单元的粒度为slot,则终端设备可以确定出这3个非连续的slot持续的总的时域长度为5个slot,或者,网络设备配置的参考信号时间段包括的时间单元的数量N等于5,且第二周期为2个slot,则终端设备可以确定出5个连续的slot中用于承载参考信号的slot为其中的3个非连续的slot。本申请实施例中,参考信号时间段可以理解为是在第一周期内,首个承载参考信号的时间单元到最后一个承载参考信号的时间单元之间的时间段。
示例性的,第一周期可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。例如,网络设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种将用于指示第一周期的指示信息发送给终端设备。终端设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种接收用于指示该第一周期的指示信息。其中,该指示信息可以指示第一周期的值,也可以间接指示该第一周期的值。同样的,第二周期可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。例如,网络设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种将用于指示第二周期的指示信息发送给终端设备。终端设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种接收用于指示该第二周期的指示信息。其中,该指示信息可以指示第二周期的值,也可以间接指示该第二周期的值。在一种可能的实现中,终端设备确定了第一周期和第二周期后,会一直按照第一周期发送第一参考信号集合,这可以认为是周期性的参考信号。在另一种可能的实现中,终端设备确定了第一周期和第二周期后,终端设备在接收到网络设备发送的激活信令后,按照第一周期发送第一参考信号集合,当终端设备接收到网络设备发送的去激活信令后,停止发送第一参考信号集合,这可以认为是半静态(或者半持续)参考信号。
其中,每个时间单元内承载参考信号的时频资源位置可以由协议预定义,也可以由网络设备通过信令配置给终端设备。
本申请实施例中,网络设备配置的方式相较于协议预定义的方式,可以实现配置更灵活。
在本申请实施例中,上述至少两个参考信号时间段上用于承载参考信号的频域资源所在的频段相同或者不同,以下分别进行说明。
在一种实现方式中,该至少两个参考信号时间段上用于承载参考信号的频域资源所在的频段相同。也可以理解为,该至少两个参考信号时间段上承载的参考信号占用的频域资源位置相同且带宽相同。例如,参见图3A所示,每个参考信号时间段上用于承载参考信号的频域资源所在的频段都相同。
在另一种实现方式中,该至少两个参考信号时间段上用于承载参考信号的频域资源所在的频段不同。也可以理解为,该至少两个参考信号时间段上承载的参考信号占用的频域 资源位置不同。频域资源位置不同可以包括无规则的不同,也可以包括有规则的不同,有规则的不同包括跳频(frequency hopping)。例如,上述至少两个参考信号时间段上用于承载参考信号的频域资源所在频段按照一定的图案进行跳频。在一个跳频周期内,多个参考信号时间段的频段可以覆盖一个连续的带宽,或者覆盖一个非连续的带宽。例如,参见图3C所示,上述至少两个参考信号时间段按照一定的跳频图样进行跳频。其中,跳频图样用于表征参考信号所占的频域资源。在一个跳频周期内,参考信号时间段上用于承载参考信号的频域资源所在的频段跳了2次,占用3个频段,则第一个参考信号时间段(包括slot0、slot2和slot4这三个时间单元)、第二个参考信号时间段(包括slot100、slot102和slot104这三个时间单元)和第三个参考信号时间段(包括slot200、slot202和slot204这三个时间单元)所在的频段覆盖一个连续的带宽。
参见图3D所示,上述至少两个参考信号时间段按照一定的图案进行跳频。在一个跳频周期内参考信号时间段跳了2次,占用3个频段,则第一个参考信号时间段(包括slot0、slot2和slot4这三个时间单元)、第二个参考信号时间段(包括slot100、slot102和slot104这三个时间单元)和第三个参考信号时间段(包括slot200、slot202和slot204这三个时间单元)所在的频段覆盖一个非连续的带宽。本申请实施例中,跳频周期可以理解为参考信号时间段所在的频段在整个带宽遍历一次的周期,例如在图3C中,三个参考信号时间段所在的频段覆盖一个连续的带宽,且三个参考信号时间段所在的频段在整个带宽遍历一次的周期是300个slot,或者在图3D中,三个参考信号时间段所在的频段覆盖一个非连续的带宽,且三个参考信号时间段所在的频段在整个带宽遍历一次的周期是300个slot。
可选的,上述至少两个参考信号时间段上用于承载参考信号的频域资源所在的频段相同或不同可以网络设备配置或者协议预定义。例如,网络设备配置参考信号时间段上用于承载参考信号的频域资源所在的整个频段(即上述至少两个参考信号时间段上用于承载参考信号的频域资源所占用的整个频段),如果该至少两个参考信号时间段上用于承载参考信号的频域资源所在的频段采用跳频,则网络设备还会向终端设备发送跳频索引,协议可以预定义几种不同的跳频图样(pattern),每个跳频图样用于指示一种参考信号所占用的频域资源位置(或频段)分布图,每个跳频图样对应一个索引值(即跳频索引),网络设备向终端设备发送索引值指示上述至少两个参考信号时间段上用于承载参考信号的频域资源所使用的跳频图样。若网络设备没有向终端设备发送跳频索引,则默认该至少两个参考信号时间段上用于承载参考信号的频域资源所在的频段相同。其中,网络设备在配置频段时可以配置频段的起始位置(例如起始RB的位置)、频段的终止位置(例如结束RB的位置)以及频段的带宽(例如几个RB)中的任意两种或三种。
在本申请实施例中,一个参考信号时间段内的M个时间单元上用于承载参考信号的时频资源的位置可以相同或不同,以下分别进行说明。
在一种实现方式中,上述M个时间单元中的至少两个时间单元上用于承载参考信号的时频资源的位置相同。也可以理解为,上述M个时间单元中的至少两个时间单元上用于承载参考信号的时频资源图样相同,还可以理解为,上述M个时间单元中的至少两个时间单元中相同OFDM符号上承载参考信号的子载波相同。上述M个时间单元中的至少两个时间单元上用于承载参考信号的时频资源位置相同,包括:该M个时间单元中的两个时间单 元上用于承载参考信号的时频资源位置相同、该M个时间单元中的三个时间单元上用于承载参考信号的时频资源位置相同、或者该M个时间单元中的全部时间单元上用于承载参考信号的时频资源位置均相同等等。例如,参见图3A或图3C所示,每个时间单元内用于映射参考信号的时频资源位置均相同。以图3A中的第一个参考信号时间段内的3个时间单元slot0、slot2、slot4为例,slot0、slot2和slot4中用于承载参考信号的时域资源均为OFDM符号7,频域资源均为子载波3和子载波9。
在另一种实现方式中,上述M个时间单元中的至少两个时间单元上用于承载参考信号的频域资源位置不同。该M个时间单元中的至少两个时间单元上用于承载参考信号的频域资源位置不同包括:该M个时间单元中的2个时间单元上用于承载参考信号的频域资源位置不同、该M个时间单元中的3个时间单元上用于承载参考信号的频域资源位置不同或者该M个时间单元上用于承载参考信号的频域资源位置均不同等等。频域资源位置不同可以包括无规则的不同,也可以包括有规则的不同,无规则的不同包括跳频(或交错(staggered))。例如,该M个时间单元上用于承载参考信号的频域资源位置按照一定的图案进行跳频。该M个时间单元上用于承载参考信号的频域资源位置可以覆盖一个连续的带宽,也可以覆盖一个非连续的带宽。例如,参见图3E所示,M(=3)个时间单元上用于承载参考信号的频域资源位置按照一定的图案进行跳频。在一个跳频周期内参考信号时间段所在的频段跳了2次,占用3个频段,覆盖一个非连续的带宽。以slot0、slot2、slot4这三个时间单元为例进行说明,slot0中用于承载参考信号的时域资源位置为符号7,频域资源位置分别为子载波3和子载波9,slot2中用于承载参考信号的时域资源位置为符号7,频域资源位置分别为子载波1和子载波7,slot4中用于承载参考信号的时域资源位置为符号7,频域资源位置分别为子载波5和子载波11。在其他可选的实现方式中,该M个时间单元上用于承载参考信号的频域资源位置也可以覆盖一个连续的带宽。
在另一种实现方式中,上述M个时间单元中的至少两个时间单元上用于承载参考信号的时域资源位置不同。该M个时间单元中的至少两个时间单元上用于承载参考信号的时域资源位置不同包括:该M个时间单元中的2个时间单元上用于承载参考信号的时域资源位置不同、该M个时间单元中的3个时间单元上用于承载参考信号的时域资源位置不同或者该M个时间单元上用于承载参考信号的时域资源位置均不同等等。例如,以slot0、slot2、slot4这三个时间单元为例进行说明,slot0中用于承载参考信号的时域资源位置为符号0,频域资源位置分别为子载波3和子载波9,slot2中用于承载参考信号的时域资源位置为符号2,频域资源位置分别为子载波3和子载波9,slot4中用于承载参考信号的时域资源位置为符号4,频域资源位置分别为子载波3和子载波9。
在另一种实现方式中,上述M个时间单元中的至少两个时间单元上用于承载参考信号的时频资源位置均不同。该M个时间单元中的至少两个时间单元上用于承载参考信号的时频资源位置均不同包括:该M个时间单元中的2个时间单元上用于承载参考信号的时频资源位置均不同、该M个时间单元中的3个时间单元上用于承载参考信号的时频资源位置均不同或者该M个时间单元上用于承载参考信号的时频资源位置均不同等等。其中,每个时间单元上用于承载参考信号的时频资源位置可以由协议预定义,也可以由网络设备通过信令配置给终端设备。例如,每个时间单元中用于承载参考信号的时域资源位置包括OFDM 符号、时隙等,频域资源位置包括子载波、RB等。
可选的,上述一个参考信号时间段内的M个时间单元上用于承载参考信号的时频资源位置相同或不同可以网络设备配置或者协议预定义。例如,网络设备配置一个参考信号时间段内的时间单元上用于承载参考信号的频域资源占用的整个频段,如果该参考信号时间段内至少两个时间单元上承载参考信号的频域资源位置采用跳频,则网络设备还会向终端设备发送跳频索引,协议可以预定义几种不同的跳频图样(pattern),每个跳频图样用于指示一种频域资源位置(或频段)分布图,每个跳频图样对应一个索引值(即跳频索引),网络设备向终端设备发送索引值指示上述至少两个时间单元上承载参考信号的频域资源位置所使用的跳频图样。若网络设备没有向终端设备发送跳频索引,则默认该至少两个时间单元上承载参考信号的频域资源位置相同。
需要说明的是,上述是以单个参考信号时间段内的M个时间单元上用于承载参考信号的时频资源位置为例进行的说明,不同参考信号时间段内的M个时间单元上用于承载参考信号的时频资源位置也可以相同或不同,例如参见图3A,三个参考信号时间段中,每个参考信号时间段内的3个时间单元上用于承载参考信号的时频资源位置均相同。
在本申请实施例中,单个时间单元中用于承载参考信号的OFDM符号上承载参考信号的子载波可以相同或不同,以下分别进行说明。
在一种实现方式中,单个时间单元中用于承载参考信号的至少两个OFDM符号上承载参考信号的子载波相同。
上述用于承载参考信号的至少两个OFDM符号上承载参考信号的子载波相同,包括:单个时间单元中用于承载参考信号的两个OFDM上承载参考信号的子载波相同、单个时间单元中用于承载参考信号的三个OFDM符号上承载参考信号的子载波相同、或者单个时间单元中用于承载参考信号的全部OFDM符号上承载参考信号的子载波相同等等。例如,参见图3F所示,单个时间单元中用于承载参考信号的两个OFDM符号上承载参考信号的子载波相同,以slot0为例,slot0中的OFDM符号4上承载参考信号的子载波为子载波9,slot0中的OFDM符号7上承载参考信号的子载波也为子载波9。
在另一种实现方式中,单个时间单元中用于承载参考信号的至少两个OFDM符号上承载参考信号的子载波不同。单个时间单元中用于承载参考信号的至少两个OFDM符号上承载参考信号的子载波不同,包括:单个时间单元中用于承载参考信号的两个OFDM符号上承载参考信号的子载波不同、单个时间单元中用于承载参考信号的三个OFDM符号上承载参考信号的子载波不同或者单个时间单元中用于承载参考信号的全部OFDM符号上承载参考信号的子载波均不同等等。例如,参见图3G所示,单个时间单元中用于承载参考信号的两个OFDM符号上承载参考信号的子载波不同,以slot0为例,slot0中的OFDM符号4上承载参考信号的子载波为子载波3,slot0中的OFDM符号7上承载参考信号的子载波为子载波9。
可选的,单个时间单元中至少两个OFDM符号各自承载参考信号的子载波相同或不同可以网络设备配置或者协议预定义。例如,网络设备配置单个时间单元占用的整个频段,如果该时间单元内至少两个OFDM符号上承载参考信号的子载波采用跳频,则网络设备还会向终端设备发送跳频索引,协议可以预定义几种不同的跳频图样(pattern),每个跳频图 样用于指示一种频域资源位置(或频段)分布图,每个跳频图样对应一个索引值(即跳频索引),网络设备向终端设备发送索引值指示上述至少两个OFDM符号上承载参考信号的子载波所使用的跳频图样。若网络设备没有向终端设备发送跳频索引,则默认该至少两个OFDM符号上承载参考信号的子载波相同。
可选的,单个时间单元上用于承载参考信号的子载波可以是一个,也可以是多个,本申请实施例对此不作限定。例如,以图3F为例,在一个时间单元内,用于承载参考信号的2个OFDM符号上承载参考信号的子载波均为同一个。以图3G为例,在一个时间单元内,用于承载参考信号的2个OFDM符号上承载参考信号的子载波为两个不同的子载波。单个时间单元上用于承载参考信号的子载波为一个这种实现方式可以节省传输开销,在每个参考信号时间段上只需要占用一个子载波来承载参考信号即可,这种实现方式适用于但不限于如下需要跟踪的信道变化的场景:终端设备出于节电的目的,可能在不发送SRS时控制射频器件进入休眠状态,直至终端设备发送SRS前再控制射频器件进入工作状态,这会造成网络设备测量SRS获得的信道发生相位旋转,这种情况需要网络设备跟踪信道变化,不然会对信道估计时的滤波(例如SRS的联合滤波,又例如信道预测)等的使用造成限制。针对这种场景,只需要在一个或少数几个(例如2个、3个等)子载波上承载参考信号就能满足网络设备跟踪信道变化的需求。针对背景技术中所提及的避免信道老化的场景,终端设备可以采用一个或多个子载波或者一个或多个RB等向网络设备传输参考信号。
可选的,用于承载参考信号的子载波的位置可以是唯一也可以是跳频的,用于承载参考信号的子载波的位置唯一的情况可以参见图3K所示。可选的,用于承载参考信号的子载波的位置可以是网络设备配置给终端设备的,也可以是协议中预定义的,本申请对此不作限定。
可选的,上述参考信号时间段进行跳频、时间单元进行跳频以及单个时间单元内不同OFDM符号上承载参考信号的子载波进行跳频这三种跳频方式可以任意组合。
示例性的,上述参考信号时间段进行跳频的同时,参考信号时间段内的时间单元也可以进行跳频。例如,参见图3H所示,参考信号时间段按照一定的图案进行跳频。在一个跳频周期内,参考信号时间段上用于承载参考信号的频域资源所在的频段跳了2次,占用3个频段,覆盖一个非连续的带宽。同时,M个时间单元各自承载参考信号的频域资源位置按照一定的图案进行跳频,以slot0、slot2、slot4这三个时间单元为例进行说明,slot0中用于承载参考信号的时域资源位置为符号7,频域资源位置分别为子载波3和子载波9,slot2中用于承载参考信号的时域资源位置为符号7,频域资源位置分别为子载波1和子载波7,slot4中用于承载参考信号的时域资源位置为符号7,频域资源位置分别为子载波5和子载波11。
示例性的,上述参考信号时间段进行跳频的同时,单个时间单元内不同OFDM符号上承载参考信号的子载波也可以进行跳频。例如,参见图3I所示,参考信号时间段按照一定的图案进行跳频。在一个跳频周期内,参考信号时间段上用于承载参考信号的频域资源所在的频段跳了2次,占用3个频段,覆盖一个连续的带宽。同时,单个时间单元内不同OFDM符号上承载参考信号的子载波也可以进行跳频,以slot0为例,slot0中的OFDM符号4上承载参考信号的子载波为子载波3,slot0中的OFDM符号7上承载参考信号的子载波为子 载波9。
示例性的,上述参考信号时间段进行跳频的同时,参考信号时间段内的M个时间单元也可以进行跳频,单个时间单元内不同OFDM符号上承载参考信号的子载波也可以进行跳频。例如,参见图3J所示,参考信号时间段按照一定的图案进行跳频。在一个跳频周期内,参考信号时间段上用于承载参考信号的频域资源所在的频段跳了2次,占用3个频段,覆盖一个连续的带宽。同时,参考信号时间段内的M个时间单元各自承载参考信号的频域资源位置按照一定的图案进行跳频,以slot0、slot2、slot4这三个时间单元为例进行说明,slot0中用于承载参考信号的时域资源位置为符号2、符号7,频域资源位置分别为子载波3和子载波9,slot2中用于承载参考信号的时域资源位置为符号2、符号7,频域资源位置分别为子载波1和子载波7,slot4中用于承载参考信号的时域资源位置为符号2、符号7,频域资源位置分别为子载波5和子载波11。同时,单个时间单元内不同OFDM符号上承载参考信号的子载波也可以进行跳频,以slot0为例,slot0中的OFDM符号2上承载参考信号的子载波为子载波3,slot0中的OFDM符号7上承载参考信号的子载波为子载波9。
实施本申请实施例,终端设备每间隔第一周期向网络设备发送第一参考信号集合,这第一参考信号集合是在一个参考信号时间段内发送的,在一个参考信号时间段内,终端设备每间隔第二周期向网络设备发送第二参考信号集合,既可以避免终端设备持续发送参考信号造成传输资源的浪费,又能够在信道状态变化时及时发送参考信号,以便网络设备及时获取下行信道状态,从而采用变化后的信道状态信息进行预编码,改善了信道老化问题,提升了UE吞吐率。
需要说明的是,本申请实施例中所提及的参考信号为上行参考信号,包括但不限于SRS、DT-RS,还可以是其它上行参考信号。
前述图2所示方法实施例是以上行参考信号传输为例进行的说明,下面结合图4对下行参考信号传输过程进行描述。参见图4,该参考信号传输方法包括但不限于如下步骤:
S401、网络设备确定发送参考信号的第一周期和第二周期。
S402、网络设备以第一周期发送至少两个第一参考信号集合,终端设备以第一周期接收至少两个第一参考信号集合,该至少两个第一参考信号集合承载在至少两个参考信号时间段上,在每个参考信号时间段内,网络设备以第二周期发送第二参考信号集合,终端设备以第二周期接收第二参考信号集合,其中,第一参考信号集合包括至少两个参考信号,第二参考信号集合包括至少一个参考信号,第一参考信号集合包括至少两个第二参考信号集合。
示例性的,每个参考信号时间段的持续时间为N个连续时间单元持续的时间长度。或者,每个参考信号时间段中用于承载参考信号的时间单元的数量为M个,该M个时间单元可以是M个连续的时间单元,也可以是M个非连续的时间单元。其中,N为正整数,例如1、2、3、4或者更大的整数,本申请实施例不做限制。M为小于等于N的正整数。本申请实施例中,关于参考信号时间段与时间单元的相关描述可以参考前述图2所示实施例,此处不再赘述。
其中,上述参考信号时间段的粒度可以是协议中预定义的,也可以是网络设备通过信 令配置给终端设备的。上述时间单元的粒度可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。
示例性的,上述N的值(或N个连续时间单元持续的时间长度)或者上述M的值可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。示例性的,网络设备向终端发送的信令可以是系统消息、广播消息、RRC信令、MACCE信令和DCI中的一种或多种的组合。终端设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种接收用于指示上述N的值或者上述M的值的指示信息。
第一周期可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。例如,网络设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种将用于指示第一周期的指示信息发送给终端设备。终端设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种接收用于指示该第一周期的指示信息。同样的,第二周期可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。例如,网络设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种将用于指示第二周期的指示信息发送给终端设备。终端设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种接收用于指示该第二周期的指示信息。可选的,上述第一周期还可以是半静态配置的,网络设备还可以通过RRC信令、MAC信令等将第一周期和第二周期配置给终端设备,再通过DCI激活/去激活该配置。
其中,每个时间单元内用于承载参考信号的时频资源位置可以由协议预定义,也可以由网络设备通过信令配置给终端设备。
本申请实施例中关于不同参考信号时间段上用于承载参考信号的频域资源所在的频段相同或不同、不同时间单元内承载参考信号的时频资源相同或不同以及单个时间单元内不同OFDM符号上承载参考信号的子载波相同或不同的相关实现方式可以参考前述图2所示实施例,此处不再赘述。
需要说明的是,本申请实施例中所提及的参考信号为下行参考信号,包括但不限于信道状态信息参考信号(channel state information reference signal,CSI-RS),还可以是其它下行参考信号。
实施本申请实施例,网络设备每间隔第一周期向终端设备发送第一参考信号集合,该第一参考信号集合是在一个参考信号时间段内发送的,在参考信号时间段内,网络设备每间隔第二周期向终端设备发送第二参考信号集合,可以避免网络设备持续发送参考信号造成传输资源的浪费,又能够在信道状态变化时及时发送参考信号,以便终端设备及时获取上行信道状态。
除上述实施例以外,本申请实施例还提供了另一种参考信号传输方法,参见图5,该参考信号传输方法包括但不限于如下步骤:
S501、终端设备确定发送参考信号的第二周期。
S502、终端设备在参考信号时间段内以所述第二周期发送至少两个第二参考信号集合,网络设备在参考信号时间段内以所述第二周期接收第二参考信号集合,其中,第二参考信 号集合包括至少一个参考信号。
本申请实施例相较于图2所示实施例来说,终端设备在一个参考信号时间段内按照第二周期发送第二参考信号集合后,就结束参考信号的发送。相较于图2所示实施例,本申请实施例占用的传输资源会更少。例如参见图6,是本申请实施例提供的参考信号的资源映射示意图。图6中,终端设备仅通过一个参考信号时间段向网络设备周期性发送参考信号。
示例性的,本申请实施例中的唯一的参考信号时间段的持续时间为N个连续时间单元持续的时间长度。或者,这唯一的参考信号时间段中用于承载参考信号的时间单元的数量为M个,该M个时间单元可以是M个连续的时间单元,也可以是M个非连续的时间单元。其中,N为正整数,例如1、2、3、4或者更大的整数,本申请实施例不做限制。M为小于等于N的正整数。本申请实施例中,关于参考信号时间段与时间单元的相关描述可以参考前述图2所示实施例,此处不再赘述。
其中,上述参考信号时间段的粒度可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。上述时间单元的粒度可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。
示例性的,上述N的值(或N个连续时间单元持续的时间长度)或者上述M的值可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。示例性的,网络设备向终端发送的信令可以是系统消息、广播消息、RRC信令、MACCE信令和DCI中的一种或多种的组合。终端设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种接收用于指示上述N的值或者上述M的值的指示信息。
本申请实施例中的第二周期可以理解为上述图2所示实施例中的第二周期,该周期可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。例如,网络设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种将用于指示该第二周期的指示信息发送给终端设备。
其中,每个时间单元内用于承载参考信号的时频资源位置可以由协议预定义,也可以由网络设备通过信令配置给终端设备。
本申请实施例中关于参考信号时间段中不同时间单元内承载参考信号的时频资源相同或不同以及单个时间单元内不同OFDM符号上承载参考信号的子载波相同或不同的相关实现方式可以参考前述图2所示实施例,此处不再赘述。
可选的,终端设备在按照上述第二周期向网络设备发送参考信号集合后,网络设备还可以再次配置第二周期以及参考信号时间段的持续时间等,以使得终端设备后续继续在一个参考信号时间段内周期性发送参考信号,以使得网络设备可以及时获知终端设备的信道状态信息。
实施本申请实施例,终端设备在参考信号时间段内,周期性向网络设备发送参考信号集合,既可以避免终端设备持续发送参考信号造成传输资源的浪费,又能够在信道状态变化时及时发送参考信号,以便网络设备及时获取下行信道状态,从而采用变化后的信道状态信息进行预编码,改善了信道老化问题,提升了UE吞吐率。
同样的,前述图5所示方法实施例是以上行参考信号传输为例进行的说明,下面结合图7对下行参考信号传输过程进行描述。参见图7,该参考信号传输方法包括但不限于如下步骤:
S601、网络设备确定发送参考信号的第二周期。
S602、网络设备在参考信号时间段内以所述第二周期发送参考信号集合,终端设备在参考信号时间段内以所述第二周期接收至少两个第二参考信号集合,其中,第二参考信号集合包括至少一个参考信号。
本申请实施例相较于图4所示实施例来说,网络设备在一个参考信号时间段内按照第二周期发送参考信号后,就可以结束参考信号的发送。相较于图4所示实施例,本申请实施例占用的传输资源会更少。
示例性的,本申请实施例中的唯一的参考信号时间段的持续时间为N个连续时间单元持续的时间长度。或者,唯一的参考信号时间段中用于承载参考信号的时间单元的数量为M个,该M个时间单元可以是M个连续的时间单元,也可以是M个非连续的时间单元。其中,N为正整数,例如1、2、3、4或者更大的整数,本申请实施例不做限制。M为小于等于N的正整数。本申请实施例中,关于参考信号时间段与时间单元的相关描述可以参考前述图2所示实施例,此处不再赘述。
其中,上述参考信号时间段的粒度可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。上述时间单元的粒度可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。
示例性的,上述N的值(或N个连续时间单元的持续时间)或者上述M的值可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。示例性的,网络设备向终端发送的信令可以是系统消息、广播消息、RRC信令、MACCE信令和DCI中的一种或多种的组合。终端设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种接收用于指示上述N的值或者上述M的值的指示信息。
本申请实施例中的周期可以理解为上述图2所示实施例中的第二周期,该周期可以是协议中预定义的,也可以是网络设备通过信令配置给终端设备的。例如,网络设备可以通过系统消息、广播消息、RRC信令、MAC CE信令和DCI中的一种或多种将用于指示该第二周期的指示信息发送给终端设备。
其中,每个时间单元内承载参考信号的时频资源位置可以由协议预定义,也可以由网络设备通过信令配置给终端设备。
本申请实施例中关于参考信号时间段中不同时间单元内承载参考信号的时频资源相同或不同以及单个时间单元内不同OFDM符号上承载参考信号的子载波相同或不同的相关实现方式可以参考前述图2所示实施例,此处不再赘述。
可选的,网络设备在按照上述第二周期向网络设备发送参考信号集合后,网络设备还可以再次向终端设备配置周期以及参考信号时间段的持续时间等,以使得终端设备后续继续在一个参考信号时间段内周期性接收参考信号。
实施本申请实施例,网络设备在参考信号时间段内,周期性向终端设备发送参考信号集合,既可以避免网络设备持续发送参考信号造成传输资源的浪费,又能够在信道状态变 化时及时发送参考信号,以便终端设备及时获取上行信道状态。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端设备和网络设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
可以理解的是,上述方法中,由终端设备实现的方法,也可以由可配置于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法,也可以由可配置于网络设备的部件(例如芯片或者电路)实现。
本申请实施例可以根据上述方法示例对终端设备和网络设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图8示出了上述实施例中所涉及的终端设备的一种可能的逻辑结构示意图,通信装置700包括:处理单元701和发送单元702。该通信装置可以是前述方法实施例中的终端设备,也可以是配置于终端设备的部件(例如芯片系统、硬件电路等)。示例性的,发送单元702用于支持通信装置700执行前述图2、图4、图5或图7所示方法实施例中对应终端设备发送信息的步骤。处理单元701,用于支持通信装置700执行前述图2、图4、图5或图7所示方法实施例中对应终端设备相关的处理步骤,例如实现除发送单元和接收单元功能以外的其他功能等。可选的,该通信装置700还可以包括接收单元,用于支持通信装置700执行前述图2、图4、图5或图7所示方法实施例中对应终端设备接收信息的步骤。可选的,该通信装置700还可以包括存储单元,用于存储代码(程序)或者数据。例性地,处理单元701,用于确定发送参考信号的第一周期和第二周期;发送单元702,用于以所述第一周期发送至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;在所述至少两个参考信号时间段中的每个参考信号时间段内,所述发送单元702,用于以所述第二周期发送至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
在硬件实现上,发送单元702可以为发射器或者发射电路等。上述处理单元701可以为处理器或者处理电路等。接收单元可以为接收器或者接收电路等。存储单元可以为存储器。上述处理单元、发送单元、接收单元和存储单元可以集成在一起,也可以分离。
如图9所示,为本申请的实施例提供的上述实施例中所涉及的终端设备的一种可能的硬件结构示意图。如图9所示,通信装置800可包括:输入输出模块(例如音频输入输出模块805、按键输入模块806以及显示器807等)、用户接口808、一个或多个处理器801、收 发器802、天线803以及存储器804。这些部件可通过总线或者其它方式连接,图9以通过总线连接为例。其中:
天线803可用于将电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。收发器802可用于对处理器801输出的信号进行发射处理,也可用于对天线803接收的移动通信信号进行接收处理。在本申请实施例中,收发器802可看作一个无线调制解调器。在通信装置800中,收发器802的数量可以是一个或者多个。
除了图9所示的收发器802,通信装置800还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(wireless fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,通信装置800还可以支持其他无线通信信号,例如卫星信号、短波信号等等。
输入输出模块可用于实现通信装置800和用户/外部环境之间的交互,可主要包括音频输入输出模块805、按键输入模块806以及显示器807等。具体的,输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,输入输出模块均通过用户接口808与处理器801进行通信。
存储器804可以和处理器801通过总线或者输入输出端口耦合,存储器804也可以与处理器801集成在一起。存储器804用于存储各种软件程序、多组指令中的至少一种。具体的,存储器804可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器804可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器804还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请实施例中,存储器804可用于存储本申请的一个或多个实施例提供的参考信号传输方法在终端设备侧的实现程序。关于本申请的一个或多个实施例提供的参考信号传输方法的实现,请参考前述实施例。
处理器801可用于读取和执行计算机可读指令。具体的,处理器801可用于调用存储于存储器804中的程序,例如本申请的一个或多个实施例提供的参考信号传输方法在终端设备侧的实现程序,并执行该程序包含的指令以实现前续实施例涉及的方法。处理器801可支持:长期演进(long term evolution,LTE)(4G)通信、5G通信以及未来演进的通信技术等等中的一个或多个。可选地,当处理器801发送任何消息或数据时,其具体通过驱动或控制收发器802做发送。可选地,当处理器801接收任何消息或数据时,其具体通过驱动或控制收发器802做接收。因此,处理器801可以被视为是执行发送或接收的控制中心,收发器802是发送和接收操作的具体执行者。
可以理解的,通信装置800可以是图1示出的无线通信系统100中的终端设备102,可实施为eMTC设备、移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
需要说明的,图9所示的通信装置800仅仅是本申请实施例的一种实现方式,实际应用中,通信装置800还可以包括更多或更少的部件,这里不作限制。关于通信装置800的具体实现可以参考前述方法实施例中关于终端设备的相关描述,此处不再赘述。
在采用对应各个功能划分各个功能模块的情况下,图10示出了上述实施例中所涉及的网络设备的一种可能的逻辑结构示意图,通信装置900包括:接收单元901。该通信装置900可以是前述方法实施例中的网络设备,也可以是配置于网络设备的部件(例如芯片系统、硬件电路等)。示例性的,接收单元901用于支持通信装置90执行前述图2、图4、图5或图7所示方法实施例中对应网络设备接收信息的步骤。可选的,该通信装置900还可以包括发送单元,用于支持通信装置90执行前述图2、图4、图5或图7所示方法实施例中对应网络设备发送信息的步骤。可选的,该通信装置900还可以包括处理单元,用于支持网络设备执行前述图2、图4、图5或图7所示方法实施例中网络设备相关的处理步骤,例如实现除发送单元和接收单元功能以外的其他功能等。可选的,该通信装置900还可以包括存储单元,用于存储代码(程序)或者数据。示例性的,接收单元901,用于以第一周期接收至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;在所述至少两个参考信号时间段中的每个参考信号时间段内,所述接收单元901,用于以第二周期接收至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
在硬件实现上,上述处理单元可以为处理器或者处理电路等。接收单元901可以为接收器或者接收电路等。发送单元可以为发射器或者发射电路等。存储单元可以为存储器。上述处理单元、发送单元、接收单元和存储单元可以集成在一起,也可以分离。
图11示出了上述实施例中所涉及的网络设备的一种可能的硬件结构示意图。如图11所示,通信装置1000可包括:一个或多个处理器1001、存储器1002、网络接口1003、收发器1005和天线1008。这些部件可通过总线1004或者其他方式连接,图11以通过总线连接为例。其中:
网络接口1003可用于通信装置1000与其他通信设备,例如其他网络设备,进行通信。具体的,网络接口1003可以是有线接口。
收发器1005可用于对处理器1001输出的信号进行发射处理,例如信号调制。收发器1005还可用于对天线1008接收的移动通信信号进行接收处理。例如信号解调。在本申请的一些实施例中,收发器1005可看作一个无线调制解调器。在通信装置1000中,收发器1005的数量可以是一个或者多个。天线1008可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。
存储器1002可以和处理器1001通过总线1004或者输入输出端口耦合,存储器1002也可以与处理器1001集成在一起。存储器1002用于存储各种软件程序和/或多组指令或者数据。具体的,存储器1002可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器1002可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。
处理器1001可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现确定功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。
本申请实施例中,处理器1001可用于读取和执行计算机可读指令。具体的,处理器1001可用于调用存储于存储器1002中的程序,例如本申请的一个或多个实施例提供的参考信号传输方法在网络设备侧的实现程序,并执行该程序包含的指令。
可以理解的,通信装置1000可以是图1示出的无线通信系统100中的网络设备101,可实施为基站收发台,无线收发器,一个基本服务集(basic service set,BSS),一个扩展服务集(extended service set,ESS),NodeB,eNodeB,gNB等等。
需要说明的是,图11所示的通信装置1000仅仅是本申请实施例的一种实现方式,实际应用中,通信装置1000还可以包括更多或更少的部件,这里不作限制。关于通信装置1000的具体实现可以参考前述方法实施例中关于网络设备的相关描述,此处不再赘述。
参见图12,图12示出了本申请提供的一种通信芯片的结构示意图。如图12所示,通信芯片1100可包括:处理器1101,以及耦合于处理器1101的一个或多个接口1102。示例性的:
处理器1101可用于读取和执行计算机可读指令。具体实现中,处理器1101可主要包括控制器、运算器和寄存器。示例性的,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器1101的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、无互锁管道阶段架构的微处理器(microprocessor without interlocked piped stages architecture,MIPS)架构、进阶精简指令集机器(advanced RISC machines,ARM)架构或者网络处理器(network processor,NP)架构等等。处理器1101可以是单核的,也可以是多核的。
示例性的,接口1102可用于输入待处理的数据至处理器1101,并且可以向外输出处理器1101的处理结果。具体实现中,接口1102可以是通用输入输出(general purpose input output,GPIO)接口,可以和至少一个外围设备(如显示器(LCD)、摄像头(camara)、射频(radio frequency,RF)模块等等)连接。接口1102通过总线1103与处理器1101相连。
一种可能的实现方式中,处理器1101可用于从存储器中调用本申请的一个或多个实施例提供的参考信号传输方法在终端设备侧的实现程序或者数据,使得该芯片可以实现前述图2、图4、图5或图7所示的参考信号传输方法在终端设备的相关功能。在另一种可能的实现方式中,处理器1101可用于从存储器中调用本申请的一个或多个实施例提供的参考信号传输方法在网络设备侧的实现程序或者数据,使得该芯片可以实现前述图2、图4、图5或图7所示的参考信号传输方法在网络设备的相关操作。存储器可以和处理器1101集成在一起,也可以通过接口1102与通信芯片1100相耦合,也就是说存储器可以是通信芯片1100的一部分,也可以独立于该通信芯片110。接口1102可用于输出处理器1101的执行结果。关于本申请的一个或多个实施例提供的参考信号传输方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器1101、接口1102各自对应的功能既可以通过硬件设计实现,也可 以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
在本申请的另一实施例中,还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器可以调用可读存储介质中存储的计算机执行指令,从而使得该设备或者处理器来执行图2、图4、图5或图7所提供的参考信号传输方法中终端设备、网络设备的步骤。前述的计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施图2、图4、图5或图7所提供的参考信号传输方法中终端设备、网络设备的步骤。
在本申请的另一实施例中,还提供一种通信系统,该通信系统包括多个设备,该多个设备包括终端设备和网络设备。示例性的,终端设备可以为图8或图10所提供的通信装置,且用于执行图2、图4、图5或图7所提供的参考信号传输方法中对应终端设备的步骤。和/或,网络设备可以为图9或图11所提供的网络设备,且用于执行图2、图4、图5或图7所提供的参考信号传输方法中对应网络设备的步骤。
最后应说明的是:以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
综上,以上仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (28)
- 一种参考信号传输方法,其特征在于,包括:终端设备确定发送参考信号的第一周期和第二周期;所述终端设备以所述第一周期发送至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;在所述至少两个参考信号时间段中的每个参考信号时间段内,所述终端设备以所述第二周期发送至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
- 一种参考信号传输装置,其特征在于,包括:处理单元,用于确定发送参考信号的第一周期和第二周期;发送单元,用于以所述第一周期发送至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;在所述至少两个参考信号时间段中的每个参考信号时间段内,所述发送单元以所述第二周期发送至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
- 根据权利要求1所述的方法或权利要求2所述的装置,其特征在于,所述每个参考信号时间段的长度为N个连续时间单元持续的时间长度,N为大于等于2的整数。
- 根据权利要求1至3任一项所述的方法或装置,其特征在于,所述每个参考信号时间段中包括M个时间单元用于承载所述参考信号,所述M个时间单元为M个连续的时间单元或M个非连续的时间单元,M为大于等于2的整数。
- 根据权利要求3所述的方法,其特征在于,还包括:所述终端设备接收用于指示所述N的值的指示信息。
- 根据权利要求4所述的方法,其特征在于,还包括:所述终端设备接收用于指示所述M的值的指示信息。
- 根据权利要求1、3、4、5或6任一项所述的方法,其特征在于,还包括:所述终端设备接收用于指示所述第一周期的指示信息。
- 根据权利要求1、3、4、5、6或7任一项所述的方法,其特征在于,还包括:所述终端设备接收用于指示所述第二周期的指示信息。
- 根据权利要求4或6所述的方法,其特征在于,还包括:所述终端设备接收用于指示所述参考信号在所述M个时间单元中的时频资源位置的指示信息。
- 根据权利要求1至9任一项所述的方法或装置,其特征在于,所述至少两个参考信号时间段上用于承载所述参考信号的频域资源所在的频段不同。
- 根据权利要求4、6或9任一项所述的方法,其特征在于,所述M个时间单元中的至少两个时间单元上用于承载所述参考信号的频域资源所在的频段不同。
- 根据权利要求4、6、9或11任一项所述的方法,其特征在于,所述M个时间单元中的一个时间单元中的至少两个OFDM符号上,用于承载所述参考信号的子载波不同。
- 一种参考信号传输方法,其特征在于,包括:网络设备以第一周期接收至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;在所述至少两个参考信号时间段中的每个参考信号时间段内,所述网络设备以第二周期接收至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
- 一种参考信号传输装置,其特征在于,包括:接收单元,用于以第一周期接收至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;在所述至少两个参考信号时间段中的每个参考信号时间段内,所述接收单元以第二周期接收至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
- 根据权利要求13所述的方法或14所述的装置,其特征在于,所述每个参考信号时间段的长度为N个连续时间单元持续的时间长度,N为大于等于2的整数。
- 根据权利要求13至15任一项所述的方法或装置,其特征在于,所述每个参考信号时间段中包括M个时间单元用于承载所述参考信号,所述M个时间单元为M个连续的时间单元或M个非连续的时间单元,M为大于等于2的整数。
- 根据权利要求16所述的方法,其特征在于,还包括:所述网络设备发送用于指示所述参考信号在所述M个时间单元中的时频资源位置的指示信息。
- 根据权利要求13至17任一项所述的方法或装置,其特征在于,所述至少两个参 考信号时间段上用于承载所述参考信号的频域资源所在的频段不同。
- 根据权利要求16或17所述的方法,其特征在于,所述M个时间单元中的至少两个时间单元上用于承载所述参考信号的频域资源所在的频段不同。
- 根据权利要求16、17或19所述的方法,其特征在于,所述M个时间单元中的一个时间单元中的至少两个OFDM符号上,用于承载所述参考信号的子载波不同。
- 一种参考信号传输方法,其特征在于,包括:网络设备确定发送参考信号的第一周期和第二周期;所述网络设备以所述第一周期发送至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;在所述至少两个参考信号时间段中的每个参考信号时间段内,所述网络设备以所述第二周期发送至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
- 根据权利要求21所述的方法,其特征在于,还包括:所述网络设备发送用于指示所述第一周期的指示信息,和/或用于指示所述第二周期的指示信息。
- 一种参考信号传输方法,其特征在于,包括:终端设备以第一周期接收至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;在所述至少两个参考信号时间段中的每个参考信号时间段内,所述终端设备以第二周期接收至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
- 根据权利要求23所述的方法,其特征在于,还包括:所述终端设备接收用于指示所述第一周期的指示信息,和/或用于指示所述第二周期的指示信息。
- 一种参考信号传输装置,其特征在于,包括:处理单元,用于确定发送参考信号的第一周期和第二周期;发送单元,用于以所述第一周期发送至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;在所述至少两个参考信号时间段中的每个参考信号时间段内,所述发送单元以所述第二周期发送至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
- 一种参考信号传输装置,其特征在于,包括:接收单元,用于以第一周期接收至少两个第一参考信号集合;所述至少两个第一参考信号集合承载在至少两个参考信号时间段上;在所述至少两个参考信号时间段中的每个参考信号时间段内,所述接收单元以第二周期接收至少两个第二参考信号集合,每个第二参考信号集合包括至少一个参考信号,所述第一参考信号集合包括至少两个所述第二参考信号集合。
- 一种芯片,其特征在于,包括处理器,以及耦合于所述处理器的一个或多个接口,所述处理器用于从所述存储器中调用权利要求1、13、21或23任一项所述的参考信号传输方法的实现程序,并执行该程序包含的指令,所述接口可用于输出所述处理器的处理结果。
- 一种计算机可读存储介质,其特征在于,所述可读存储介质上存储有指令,当其在计算机上运行时,使得所述计算机执行权利要求1、13、21或23任一项所述的参考信号传输方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910851689.1A CN112468274B (zh) | 2019-09-09 | 2019-09-09 | 参考信号传输方法及相关设备 |
CN201910851689.1 | 2019-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021047457A1 true WO2021047457A1 (zh) | 2021-03-18 |
Family
ID=74807490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/113627 WO2021047457A1 (zh) | 2019-09-09 | 2020-09-04 | 参考信号传输方法及相关设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112468274B (zh) |
WO (1) | WO2021047457A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115811452A (zh) * | 2022-11-23 | 2023-03-17 | 哲库科技(北京)有限公司 | 下行控制信道的信道估计方法、装置、设备及存储介质 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115883290A (zh) * | 2021-09-30 | 2023-03-31 | 华为技术有限公司 | 一种通信方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104080119A (zh) * | 2013-03-29 | 2014-10-01 | 华为技术有限公司 | 信号发送方法及设备 |
CN106998248A (zh) * | 2016-01-26 | 2017-08-01 | 中兴通讯股份有限公司 | 一种信号发送方法和用户设备 |
WO2018063074A1 (en) * | 2016-09-30 | 2018-04-05 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and devices for reference signal transmission and measurement |
WO2019029632A1 (zh) * | 2017-08-10 | 2019-02-14 | 株式会社Ntt都科摩 | 一种用于波束管理的参考信号发送与接收方法及装置 |
CN109792359A (zh) * | 2016-09-30 | 2019-05-21 | 高通股份有限公司 | 上行链路中预编码和未预编码探通参考信号的联合传输 |
-
2019
- 2019-09-09 CN CN201910851689.1A patent/CN112468274B/zh active Active
-
2020
- 2020-09-04 WO PCT/CN2020/113627 patent/WO2021047457A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104080119A (zh) * | 2013-03-29 | 2014-10-01 | 华为技术有限公司 | 信号发送方法及设备 |
CN106998248A (zh) * | 2016-01-26 | 2017-08-01 | 中兴通讯股份有限公司 | 一种信号发送方法和用户设备 |
WO2018063074A1 (en) * | 2016-09-30 | 2018-04-05 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and devices for reference signal transmission and measurement |
CN109792359A (zh) * | 2016-09-30 | 2019-05-21 | 高通股份有限公司 | 上行链路中预编码和未预编码探通参考信号的联合传输 |
WO2019029632A1 (zh) * | 2017-08-10 | 2019-02-14 | 株式会社Ntt都科摩 | 一种用于波束管理的参考信号发送与接收方法及装置 |
Non-Patent Citations (1)
Title |
---|
ZTE: "Multiplexing Capability of Uplink SRS in LTE-A", 3GPP DRAFT; R1-094743, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Jeju; 20091109, 9 November 2009 (2009-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050389140 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115811452A (zh) * | 2022-11-23 | 2023-03-17 | 哲库科技(北京)有限公司 | 下行控制信道的信道估计方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112468274B (zh) | 2022-04-29 |
CN112468274A (zh) | 2021-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102305312B1 (ko) | 신호 전송을 위한 방법, 장치, 및 시스템 | |
TWI731385B (zh) | 側邊鏈路車聯網傳輸方法及其使用者設備 | |
EP3681082A1 (en) | Signal configuration method and related device | |
WO2018082544A1 (zh) | 无线通信的方法和装置 | |
WO2019136723A1 (zh) | 上行数据传输方法及相关设备 | |
WO2019214740A1 (zh) | 信号传输方法、相关设备及系统 | |
WO2023226046A1 (zh) | Tci状态的指示方法、装置、设备及介质 | |
CN110351058B (zh) | 一种信号传输方法及通信设备 | |
WO2021047457A1 (zh) | 参考信号传输方法及相关设备 | |
JP2021531687A (ja) | 情報送受信方法及び装置 | |
WO2018171783A1 (zh) | 信号传输方法、装置及系统 | |
CN113366779B (zh) | 一种信息传输方法、相关设备及系统 | |
WO2021129229A1 (zh) | 一种通信方法和装置 | |
CN113785644B (zh) | 一种信息传输方法、相关设备及系统 | |
CN112564873A (zh) | 参考信号传输方法及通信装置 | |
CN113273121B (zh) | 用于测量侧链路接收信号强度的方法、设备和计算机可读介质 | |
CN112583536A (zh) | 反馈信息处理方法及通信装置 | |
US20210068116A1 (en) | Reference signal transmission method and communications device | |
CN113273098B (zh) | 一种信号传输方法、相关设备及系统 | |
CN114846872A (zh) | 一种资源指示方法、装置和系统 | |
EP3576474A1 (en) | Information transmission method and device, information processing method and device | |
WO2022262467A1 (zh) | 一种信息传输方法及通信装置 | |
WO2024208079A1 (zh) | 一种信号传输方法、装置及系统 | |
WO2024077612A1 (zh) | 一种通信方法及装置 | |
WO2023122996A1 (en) | Method, device and computer readable medium for communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20863230 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20863230 Country of ref document: EP Kind code of ref document: A1 |