WO2022104650A1 - 上报直流载波位置的方法、终端设备和网络设备 - Google Patents

上报直流载波位置的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022104650A1
WO2022104650A1 PCT/CN2020/130140 CN2020130140W WO2022104650A1 WO 2022104650 A1 WO2022104650 A1 WO 2022104650A1 CN 2020130140 W CN2020130140 W CN 2020130140W WO 2022104650 A1 WO2022104650 A1 WO 2022104650A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
terminal device
carrier position
network device
bwp
Prior art date
Application number
PCT/CN2020/130140
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080103507.3A priority Critical patent/CN116057867A/zh
Priority to EP20961941.0A priority patent/EP4250617A4/en
Priority to PCT/CN2020/130140 priority patent/WO2022104650A1/zh
Publication of WO2022104650A1 publication Critical patent/WO2022104650A1/zh
Priority to US18/090,919 priority patent/US20230224879A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method, terminal device, and network device for reporting the location of a DC carrier.
  • the terminal device can report the position of the direct current (DC) carrier (DC position for short) based on the configured bandwidth part (also known as the bandwidth segment) (Band Width Part, BWP). If there are 4 BWPs, the terminal device can report up to 4 DC locations to the network device.
  • DC direct current
  • BWP Band Width Part
  • the terminal device can work on multiple carriers, each carrier can be configured with multiple BWPs, and every two BWPs can determine a DC position, so there are many potential DC positions. In this case, how to perform DC The reporting of locations is an urgent problem.
  • the present application provides a method, terminal device and network device for reporting the DC carrier position, which is beneficial to reduce the signaling overhead of the reported DC position.
  • a first aspect provides a method for reporting a DC carrier position, comprising: a terminal device determining at least one DC carrier position offset, wherein each DC carrier position offset in the at least one DC carrier position offset represents a The frequency offset of the DC carrier position used by the terminal device relative to the reference DC carrier position; the terminal device reports the at least one DC carrier position offset to the network device.
  • a method for reporting a DC carrier position including: a network device receiving at least one DC carrier position offset sent by a terminal device, wherein the position of each DC carrier in the at least one DC carrier position offset The offset represents the frequency offset of the DC carrier position used by the terminal device relative to the reference DC carrier position; the network device determines the frequency offset of the terminal device based on the reference DC carrier position and the at least one DC carrier position offset. The DC carrier position used.
  • a terminal device for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device for executing the method in the second aspect or each of its implementations.
  • the network device includes functional modules for executing the methods in the second aspect or the respective implementation manners thereof.
  • a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or each of its implementations.
  • a chip for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor for invoking and running a computer program from a memory, so that a device on which the chip is installed executes any one of the above-mentioned first to second aspects or each of its implementations method.
  • a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first aspect to the second aspect or each of its implementations.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above-mentioned first to second aspects or the implementations thereof.
  • a computer program which, when run on a computer, causes the computer to perform the method in any one of the above-mentioned first to second aspects or the respective implementations thereof.
  • the terminal equipment uses the reference DC carrier position plus the DC carrier position offset to report the DC carrier position.
  • the actual DC carrier position used by the terminal equipment is the reference reference DC carrier position
  • the reporting of the DC carrier position offset when the actual DC carrier position is adjusted, it is only necessary to report the frequency offset of the adjusted DC carrier position relative to the reference DC carrier position, thereby reducing signaling overhead.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a signal modulation provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a signal modulation spectrum provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an internal structure of a terminal device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of BWP in a carrier aggregation scenario.
  • FIG. 6 is a schematic interaction diagram of a method for reporting a DC carrier position provided by an embodiment of the present application.
  • FIG. 7 to 12 are schematic diagrams of reference DC positions according to embodiments of the present application.
  • FIG. 13 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a station (STATION, ST) in the WLAN, and may be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a Wireless Local Loop (WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, etc., which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • predefinition may be implemented by pre-saving corresponding codes, forms, or other means that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • predefined may refer to the definition in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not limited in this application.
  • modulation is the main method to accomplish signal spectrum shifting.
  • the low-frequency input signal F1 and the modulated carrier F0 can be nonlinearly operated by the mixer to generate a sum frequency signal or a difference frequency signal of the two signals, and the desired high-order frequency output signal F2 can be filtered out.
  • the center frequency point is called the DC carrier position, also known as the DC (Direct Current) position, as shown in F1 and F2 in Figure 3.
  • the modulation of the signal is implemented in the radio frequency chip (RFIC) of the terminal device.
  • the baseband chip (BBIC) of the terminal device inputs the baseband signal to the RFIC.
  • the input low-frequency baseband signal and the local oscillator signal (LO, frequency F0) of the RFIC are mixed to generate a radio frequency signal, which is amplified by a power amplifier (PA) and finally transmitted through the antenna of the terminal device.
  • PA power amplifier
  • Orthogonal frequency-division multiplexing (OFDM) modulation method there is usually strong signal interference at the DC position.
  • This carrier needs to be removed at the receiving end to improve the receiving signal-to-noise ratio. Therefore, the receiving end
  • the exact DC position needs to be known. This DC position is usually informed by the transmitter to the receiver.
  • the terminal device needs to inform the network device of the exact DC position of the signal it transmits, so that the network device can accurately remove the sub-carriers at the DC position.
  • the network device in order to save the power of the terminal, the concept of BWP is introduced, and the network device usually configures a smaller transmission and reception bandwidth for the terminal device, thereby reducing the complexity of the terminal device to transmit and receive signals. For example, there will be multiple channels in the entire frequency band. After the terminal device accesses a channel, the network device will further configure no more than 4 BWPs (only one BWP can be activated at the same time). Works in activated BWP. The terminal device can report the DC location based on the configured BWP. Assuming that four BWPs are configured on a single carrier, the terminal device can report at most four DC locations to the network device.
  • the terminal device may work on multiple carriers, each carrier may be configured with multiple BWPs, and the specific location of the DC will be affected by the specific location of the activated BWPs on the multiple carriers.
  • carrier 1 is configured with BWP1-BWP4
  • carrier 2 is configured with BWPx-BWPz
  • ... is configured with BWPa-BWPd
  • there are 4*3*...*4 potential BWP combinations In the case of a large number of configured carriers, the number of potential BWP combinations will be very large. In this case, how to report the DC position is an urgent problem to be solved.
  • FIG. 6 is a schematic interaction diagram of a method for reporting a DC carrier position according to an embodiment of the present application. As shown in FIG. 6 , the method 200 may include at least some of the following steps:
  • the terminal device determines at least one DC carrier position offset
  • the terminal device reports the position offset of the at least one DC carrier to the network device.
  • the DC carrier position offset represents a frequency offset of the DC carrier position used by the terminal device relative to the reference DC carrier position.
  • the DC carrier position or the DC position can be replaced with each other.
  • the DC carrier position offset is also called DC offset, and the two can be replaced with each other.
  • the reference DC carrier position or the reference DC position can be replaced by each other.
  • the DC offset can be positive, negative, or zero.
  • the DC offset may be a specific offset frequency value, such as 5khz, 15khz, and so on.
  • the DC offset may be the number of offset subcarriers, for example, with a 15khz subcarrier interval as a unit, offset by n subcarriers, where n may be a positive value or a negative value, or Can also be zero.
  • the DC offset may be an offset amount in units of a specific frequency interval, for example, in units of frequency intervals such as 100khz or 5khz or 15khz or 200khz, the offset may be n frequency intervals, where n can be It can be positive, it can be negative, or it can be zero.
  • the network device may consider the DC position actually used by the terminal device as the reference DC position. Interference cancellation is further performed according to the reference DC position.
  • the location of the DC carrier actually used by the terminal device is the same as the reference DC location, and in this case, the terminal device may not send the at least one DC offset to the network device.
  • the actual DC carrier location used by the terminal device is different from the reference DC location.
  • the DC position of the terminal device is affected by various factors, such as not only the lowest and highest frequency carrier, the lowest and highest frequency active carrier, the lowest and highest BWP, the lowest frequency And the influence of the highest activated BWP, in some scenarios, it is also affected by the intermediate carrier and the intermediate BWP, such as the need to adjust the DC position to avoid the influence of internal interference.
  • the terminal device can report at least one DC offset to the network device, so that the network device can determine the DC position actually used by the terminal device according to the reference DC position and the at least one DC offset, and further according to the reference DC position and the at least one DC offset The actual DC position used for interference cancellation.
  • the at least one DC offset may be sent through any uplink message or uplink signaling, such as an uplink radio resource control (Radio Resource Control, RRC) message, a media access control (Media Access Control) message. , MAC) signaling, Physical Uplink Control Channel (Physical Uplink Control Channel, PUCCH), etc., which are not limited in this application.
  • RRC Radio Resource Control
  • Media Access Control Media Access Control
  • MAC Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the terminal device may work on multiple carriers simultaneously, for example, the terminal device is configured to use carrier aggregation (Carrier Aggregation, CA) (for example, it may include in-band continuous CA and in-band discontinuous CA) ) or dual connection working mode.
  • carrier aggregation Carrier Aggregation, CA
  • CA Carrier Aggregation
  • the terminal device may use a single transmission link to support simultaneous operation on the multiple carriers, or may also use multiple transmission chains to support simultaneous operation on the multiple carriers.
  • the terminal device may adopt a single transmission chain architecture, or may also adopt a multi-transmission chain architecture, or in other words, the multiple carriers correspond to a single transmission chain, or correspond to multiple transmission chains.
  • a transmit chain may be used to implement modulation and power amplification of a carrier signal, and the transmit chain may include a power amplifier (PA) and a mixer.
  • the transmit chain architecture may refer to employing a PA architecture.
  • the reference DC carrier position may be one or more.
  • the reference DC carrier position when the terminal device adopts a single transmit chain architecture, may be one.
  • carrier 1 to carrier 4 are configured on the terminal device, and the four carriers correspond to a single transmission chain, and the reference DC carrier position may be one.
  • the terminal device adopts a multi-transmission chain architecture
  • the reference DC carrier positions may be multiple, and each transmission chain corresponds to a reference DC carrier position, or the reference DC carrier position may be For one, for example, multiple transmit chains correspond to the same reference DC carrier location.
  • the terminal equipment is configured with carrier 1 to carrier 4, wherein carrier 1 and carrier 2 correspond to transmit chain 1, carrier 3 and carrier 4 correspond to transmit chain 2, and transmit chain 1 and transmit Links 2 may correspond to respective reference DC locations, for example, transmit link 1 corresponds to reference DC location 1, and transmit link 2 corresponds to reference DC location 2.
  • the terminal device adopts a single transmission chain architecture
  • the number of the reference DC carrier positions is one
  • the at least one DC carrier position offset includes one DC carrier position offset.
  • the one reference DC carrier position and the one DC carrier position offset are used to determine the DC carrier position used by the single transmit chain
  • the terminal device adopts a multi-transmission chain architecture
  • the at least one DC carrier position offset includes multiple DC carrier position offsets
  • each transmission chain corresponds to one DC carrier position offset
  • each A DC carrier position offset is a frequency offset relative to the same reference DC carrier position.
  • the same reference DC carrier position and the DC carrier position offset corresponding to each transmission chain are used to determine the DC carrier position used by each transmission chain.
  • the terminal device adopts a multi-transmission chain architecture, each transmission chain corresponds to a reference DC carrier position, and the at least one DC carrier position offset includes a plurality of DC carrier position offsets, each The transmit chain corresponds to a DC carrier position offset.
  • the reference DC carrier position and the DC carrier position offset corresponding to each transmission chain are used to determine the DC carrier position used by each transmission chain.
  • the terminal device adopts a multi-transmission chain architecture, each transmission chain corresponds to a reference DC carrier position, and the at least one DC carrier position offset includes one DC carrier position offset.
  • the reference DC carrier position corresponding to each transmission chain and the one DC carrier position offset are used to determine the DC carrier position used by each transmission chain.
  • the terminal device may determine at least one DC carrier position, and the at least one DC carrier position may be predefined, or may also be determined based on the configuration of the network device, or, the It is determined by the terminal device itself, which is not limited in this application.
  • the method 200 further includes:
  • the terminal device may report the at least one DC location to a network device.
  • the at least one DC carrier position is sent through any uplink message or uplink signaling, such as an uplink RRC message, MAC signaling, PUCCH, etc., which is not limited in this application.
  • any uplink message or uplink signaling such as an uplink RRC message, MAC signaling, PUCCH, etc., which is not limited in this application.
  • the reference DC carrier position may be a DC carrier position used for determining a DC carrier position offset in the at least one DC carrier position.
  • the at least one DC carrier position may be considered as a candidate reference DC carrier position, and the reference DC carrier position is the target reference DC carrier position.
  • the reference DC position may include some or all of the at least one DC carrier position.
  • the terminal device may report a plurality of DC locations to the network device, and further indicate to the network device a reference DC location used in determining the DC offset.
  • the terminal device may report multiple reference DC positions to the network device, and further indicate to the network device the target reference DC position used when determining the DC offset.
  • the method 200 further includes:
  • the terminal device may send first indication information to the network device, where the first indication information is used to indicate a reference DC carrier position among the multiple DC carrier positions, that is, which DC carrier position is used as a reference DC position .
  • the first indication information includes a first bitmap
  • the first bitmap includes multiple bits
  • each bit in the multiple bits corresponds to the multiple DC carrier positions A DC carrier position in , the value of each bit is used to indicate whether the corresponding DC carrier position is a reference DC carrier position.
  • the first bitmap may include 4 bits, each corresponding to a DC position. If the first bitmap is 1000, it means that DC position 3 is used as the reference DC Location.
  • the first indication information is sent through any uplink message or uplink signaling, such as an uplink RRC message, MAC signaling, PUCCH, etc., which is not limited in this application.
  • the method further includes:
  • the terminal device sends first capability information to the network device, where the first capability information is used to indicate whether the terminal device supports reporting of the DC carrier position under CA.
  • the first capability information is sent through any uplink message or uplink signaling, such as an uplink RRC message, MAC signaling, PUCCH, etc., which is not limited in this application.
  • the first capability information may also be used to indicate whether the terminal device supports the existing reporting manner of the DC location or the reporting manner of the DC location based on the embodiment of the present application.
  • the first capability information may also be used to indicate whether a reporting manner based on a reference DC position and a DC offset is supported.
  • the terminal device may also implicitly indicate to the network device a DC carrier position serving as a reference DC carrier position among the multiple DC carrier positions.
  • the terminal device may implicitly indicate the reference DC location by whether to send the first capability information or the content indicated by the sent first capability information.
  • the reference DC carrier position is the first DC carrier position among the multiple DC carrier positions carrier position.
  • the reference DC carrier position is the second one of the multiple DC carrier positions DC carrier position, wherein the first DC carrier position and the second DC carrier position are different.
  • the reference DC carrier position is a third DC carrier position among the plurality of DC carrier positions.
  • the reference DC carrier position is a fourth DC carrier position among the multiple DC carrier positions, wherein the third DC carrier position is The carrier position is different from the fourth DC carrier position.
  • the terminal device sends the indication information indicating the reporting capability of the DC location, it implicitly indicates that the reference DC carrier location corresponds to different DC carrier locations according to different contents of the indication information of the reporting capability.
  • the terminal device may determine at least one reference DC position according to first information, where the first information includes at least one of the following:
  • the frequency band configuration on the terminal device The frequency band configuration on the terminal device, the carrier configuration on the terminal device, the bandwidth part BWP configuration on the terminal device, the activated BWP configuration of the terminal device, wherein the frequency band configuration is used to configure the terminal device working frequency band, the carrier configuration is used to configure multiple carriers on the working frequency band, the BWP configuration is used to configure multiple BWPs on each carrier in the multiple carriers, and the activated BWP configuration for configuring an active BWP of the plurality of BWPs.
  • the determination of the reference DC location by the terminal device according to the first information may be determined by the terminal device itself, or may also be based on an indication of the network device, or may also be predefined (or say, the default).
  • the network device may indicate to the terminal device the determination method of the reference DC position through existing signaling, for example, the determination method of the reference DC position may be configured to the terminal device through frequency band configuration, carrier configuration, BWP configuration, etc. .
  • a method for determining the reference DC location may also be configured for the terminal device through new signaling, which is not limited in this application.
  • the determination method of the reference DC position is predefined.
  • the terminal device may not need to report the reference DC position to the network device, and the network device can know that the terminal device determines the DC position.
  • the reference DC position used for offset.
  • the determination method of the reference DC position that is, the possible positions of the reference DC position, will be described.
  • the terminal device determines the reference DC position according to the frequency band configuration.
  • the terminal device may determine that the reference DC position is located at a specific position on the operating frequency band indicated by the frequency band configuration.
  • the specific location may be pre-agreed.
  • the reference DC position includes a preset position on the working frequency band indicated by the frequency band configuration.
  • the preset position on the working frequency band may be, for example, the position of the center frequency point of the working frequency band.
  • the DC position reported by the terminal device may not be affected by the carrier configuration, the BWP configuration and the activation of the BWP.
  • the terminal device determines the reference DC position according to the specific carrier configuration on the terminal device.
  • the reference DC location reported by the terminal device may not be affected by the BWP configuration and the activation of the BWP.
  • the specific carrier configuration may be any carrier configuration among all carrier configurations on the terminal device, or may also be a carrier configuration that satisfies a specific condition, for example, the carrier configuration corresponding to the carrier with the smallest carrier number, or The carrier configuration corresponding to the carrier with the largest carrier number may also be used.
  • the terminal device determines the reference DC position from the first carrier.
  • the reference DC position is a specific position on the first carrier.
  • the specific location may be pre-agreed. For example, it may be the position of the center frequency point of the first carrier.
  • the terminal device is configured with carrier 1 and carrier 2, and the target carrier used for determining the reference DC position may be carrier 1 or carrier 2. Therefore, the reference DC position may be located at the center frequency of carrier 1.
  • which carrier configuration the terminal device adopts to determine the reference DC position may be predefined (or default), for example, the carrier configuration corresponding to the carrier with the smallest carrier number is adopted by default, or it may also be indicated by the network device. or it can be determined through negotiation between the network device and the terminal device, or it can also be determined by the terminal device, and further notify the network device.
  • the terminal device may send second indication information to the network device, where the second indication information is used to indicate a target carrier or a target carrier configuration for determining the reference DC position.
  • the second indication information includes a second bitmap
  • the second bitmap includes a plurality of bits
  • each bit of the plurality of bits corresponds to one of the plurality of carriers A carrier
  • the value of each bit is used to indicate whether the DC carrier is located at the corresponding carrier, for example, a value of 1 indicates yes, and a value of 0 indicates no.
  • the first bitmap may include 8 bits (bit 7 to bit 0), corresponding to carrier 7 to carrier 0 respectively.
  • bit 1 can be set to 1
  • other bits can be set to 0, indicating that the reference DC position is on carrier 1.
  • the second indication information includes multiple bits, and different values of the multiple bits are used to indicate the carrier where the reference DC position is located.
  • the second indication information can be indicated by 3 bits, and the 8 values of the 3 bits correspond to the 8 carrier configurations. For example, when the reference DC position is located on the 4th carrier, Then set the 3bit to 100.
  • the second indication information is sent through any uplink message or uplink signaling, such as an uplink RRC message, which is not limited in this application.
  • the terminal device determines the reference DC position according to the specific activated BWP configuration.
  • the reference DC location reported by the terminal device is related to the BWP configuration and the activation of the BWP.
  • the specific activated BWP configuration may be any BWP configuration in all activated BWP configurations on the terminal device, or may also be a BWP configuration that satisfies a specific condition, such as a BWP identification (Identify, ID) The BWP configuration corresponding to the smallest BWP, or the BWP configuration corresponding to the BWP with the largest BWP ID.
  • a BWP identification Identify, ID
  • the terminal device determines a reference DC position according to the first BWP, in this case, the reference DC position is a specific position on the first BWP.
  • the specific location may be pre-agreed. For example, it may be the position of the center frequency point of the first BWP.
  • the terminal device is configured with carrier 1 and carrier 2
  • the BWP activated on carrier 1 is BWP1
  • the BWP activated on carrier 2 is BWPa
  • the target BWP used to determine the reference DC position may be BWP1 or BWPa
  • the reference DC position may be located at the center frequency point position DC4 of BWP1, or may also be located at the center frequency point position DC5 of BWPa.
  • which activated BWP configuration the terminal device adopts to determine the reference DC location may be predefined (or default), for example, the BWP configuration corresponding to the BWP with the smallest BWP ID among the activated BWPs is adopted by default, or It may also be indicated by the network device, or it may be determined through negotiation between the network device and the terminal device, or it may be determined by the terminal device, and the network device is further notified.
  • the terminal device may send third indication information to the network device, where the third indication information is used to indicate a target BWP or a target BWP configuration for determining the reference DC location.
  • the third indication information includes a third bitmap, the third bitmap includes a plurality of bits, and each bit of the plurality of bits corresponds to a signal on the plurality of carriers One of the activated BWPs, the value of each bit is used to indicate whether the reference DC position is located in the corresponding activated BWP.
  • the third bitmap may include 4 bits (bit 3 to bit 0), respectively corresponding to the 4 activated BWP configurations, or in other words, corresponding to the four carriers , when the reference DC position is on the activated BWP on the second carrier, bit 1 may be set to 1, and other bits are set to 0, indicating that the reference DC position is on the activated BWP on carrier 1.
  • the third indication information includes multiple bits, and different values of the multiple bits are used to indicate the BWP where the reference DC position is located.
  • the third indication information can be indicated by 2 bits, and the 4 values of the 2 bits correspond to 4 BWP configurations. For example, when the reference DC position is located on the second carrier When BWP is activated, set this 2bit to 010.
  • the third indication information is sent through an uplink RRC message, or may also be sent through other uplink messages or signaling, which is not limited in this application.
  • the terminal device determines the reference DC position according to all carrier configurations.
  • the reference DC position reported by the terminal device is related to the carrier configuration, but is not affected by the BWP configuration and the activation of the BWP.
  • the terminal device may determine the reference DC configuration according to the frequency band range occupied by the multiple carriers.
  • the frequency band range occupied by each of the multiple carriers may be continuous, or may also be discrete.
  • the frequency band range occupied by the multiple carriers may be, for example, the union of the frequency band ranges occupied by each carrier, or may be the lowest frequency point to the frequency range occupied by the multiple carriers.
  • the range of frequency bands between the highest frequency points That is, the frequency band range occupied by the multiple carriers may be a plurality of discrete frequency sub-band ranges, or may also be a continuous frequency band range.
  • the reference DC position includes a preset position in a first frequency range, where the first frequency range is a frequency range occupied by the plurality of carriers.
  • the first frequency range is a continuous frequency range
  • the preset position in the first frequency range may be the position of the center frequency point of the first frequency range.
  • the terminal device is configured with carrier 1 and carrier 2, and the frequency band range between the lowest frequency point and the highest frequency point occupied by carrier 1 and carrier 2 is the first frequency band range, and the reference The DC position may be the center frequency point position DC6 of the first frequency range.
  • the first frequency band range includes a plurality of discrete sub-band ranges
  • the preset position in the first frequency band range may include each of the plurality of discrete sub-band ranges The position of the center frequency point of the sub-band range.
  • the terminal device determines the reference DC position according to the active BWP configuration on all carriers.
  • the reference DC location reported by the terminal device is related to the activation of the BWP.
  • the terminal device may determine the reference DC configuration according to frequency bands occupied by activated BWPs on multiple carriers.
  • the frequency band range occupied by the activated BWPs on the multiple carriers may also be discrete multiple sub-band ranges, or may also be a continuous frequency band range, for example, the The frequency range between the lowest frequency point and the highest frequency point occupied by all active BWPs on multiple carriers.
  • the reference DC position includes a preset position in a second frequency band range, where the second frequency band range is a frequency band range occupied by the activated BWPs on the multiple carriers.
  • the second frequency band range is a continuous frequency band range.
  • the preset position in the second frequency band range may be the position of the center frequency point of the second frequency band range.
  • the terminal device is configured with carrier 1 and carrier 2, the BWP activated on carrier 1 is BWP1, the BWP activated on carrier 2 is BWPa, and the lowest frequency occupied by BWP1 and BWPa is the highest.
  • the frequency band range between the frequency points is the second frequency band range, and the reference DC position may be the center frequency point position DC7 of the second frequency band range.
  • the second frequency band range includes a plurality of discrete sub-band ranges.
  • the preset position in the second frequency band range may include each of the plurality of discrete sub-band ranges. The position of the center frequency point of the sub-band range.
  • the terminal device determines the reference DC position according to all BWP configurations on a specific carrier.
  • the reference DC location reported by the terminal device is related to the BWP configuration, but is not affected by the activation of the BWP.
  • the specific carrier can be any carrier among all the carriers on the terminal device, or can also be a carrier that satisfies a specific condition, for example, the carrier with the smallest carrier number, or can also be the carrier with the largest carrier number. Wait.
  • the terminal device may be predefined (or default) that the terminal device adopts all the BWP configurations on the carrier to determine the reference DC position, for example, the BWP configuration on the carrier with the smallest carrier number is adopted by default, or It may be indicated by the network device, or it may be determined through negotiation between the network device and the terminal device, or it may be determined by the terminal device, and further notified to the network device.
  • the terminal device may send third indication information to the network device, where the third indication information is used to indicate the target carrier used for determining the reference DC position.
  • the third indication information is used to indicate the target carrier used for determining the reference DC position.
  • the terminal device may determine the reference DC configuration according to the frequency band range occupied by all BWPs on a specific carrier.
  • the frequency band range occupied by all BWPs on the specific carrier may also be discrete multiple sub-band ranges, or may also be a continuous frequency band range, for example, on the specific carrier The frequency range between the lowest frequency point and the highest frequency point occupied by all BWPs.
  • the reference DC position includes a preset position in a third frequency band range, where the third frequency band range is a frequency band range occupied by multiple BWPs configured on a second carrier of the plurality of carriers.
  • the third frequency band range is a continuous frequency band range.
  • the preset position in the third frequency band range may be the position of the center frequency point of the third frequency band range.
  • the terminal device is configured with carrier 1 and carrier 2
  • carrier 1 is configured with BWP1-BWP4
  • carrier 2 is configured with BWPa-BWPd
  • the third frequency band range may be multiple on carrier 1
  • the reference The DC position may be located at the center frequency point position DC8 of the frequency band range occupied by multiple BWPs on carrier 1, or may be located at the center frequency point position DC9 of the frequency band range occupied by multiple BWPs on carrier 2.
  • the third frequency band range includes a plurality of discrete sub-band ranges.
  • the preset position in the third frequency band range may include each of the plurality of discrete sub-band ranges. The position of the center frequency point of the sub-band range.
  • the terminal device determines the reference DC position according to all BWP configurations on multiple carriers.
  • the reference DC location reported by the terminal device is related to the BWP configuration, but is not affected by the activation of the BWP.
  • the terminal device may determine the reference DC configuration according to frequency bands occupied by all BWPs on multiple carriers on the terminal device.
  • the frequency band range occupied by all BWPs on the multiple carriers may also be discrete multiple sub-band ranges, or may also be a continuous frequency band range, for example, the multiple frequency band ranges.
  • the reference DC position includes a preset position in the fourth frequency band range, where the fourth frequency band range is a frequency band range occupied by multiple BWPs configured on the multiple carriers.
  • the fourth frequency band range is a continuous frequency band range.
  • the preset position in the fourth frequency band range may be the position of the center frequency point of the fourth frequency band range.
  • the terminal device is configured with carrier 1 and carrier 2
  • carrier 1 is configured with BWP1-BWP4
  • carrier 2 is configured with BWPa-BWPd
  • the fourth frequency band range can be BWP1-BWP4 and BWPa- In the frequency band range between the lowest frequency point and the highest frequency point occupied by the BWPd
  • the reference DC position may be located at the center frequency point position DC10 of the fourth frequency band range.
  • the fourth frequency band range includes a plurality of discrete sub-band ranges.
  • the preset position in the fourth frequency band range may include each of the plurality of discrete sub-band ranges. The position of the center frequency point of the sub-band range.
  • the terminal device may determine that the reference DC position is the position of a specific frequency point.
  • any frequency point in the working frequency band or the position of any frequency point in the activated BWP, or the position of any frequency point on a certain carrier, and so on.
  • the terminal device may determine the reference DC position according to the first carrier and the second carrier in the first carrier set, where the first carrier is the carrier with the lowest frequency in the first carrier set, The second carrier is the carrier with the highest frequency in the first carrier set.
  • Example 1 The first carrier set includes multiple uplink carriers configured by the network device.
  • the terminal equipment is configured with uplink carrier 1 to uplink carrier 3, the uplink carrier with the lowest frequency is carrier 1, and the uplink carrier with the highest frequency is carrier 3, then the reference DC position can be the uplink carrier A specific position between 1 and upstream carrier 3, such as center frequency position DC position 1.
  • Example 2 The first carrier set includes multiple uplink carriers configured and activated by the network device.
  • uplink carrier 1 to uplink carrier 3 are configured on the terminal device, and the activated uplink carriers are uplink carrier 1 and uplink carrier 2, then the configured and activated uplink carrier with the lowest frequency is carrier 1.
  • Configure And the activated uplink carrier with the highest frequency is carrier 2, then the reference DC position may be a specific position between the uplink carrier 1 and the uplink carrier 2, such as the center frequency position DC position 2.
  • the uplink transmission and downlink reception of the terminal device do not share a DC location, that is, the terminal device uses an independent DC location for uplink transmission and downlink reception.
  • Independent DC positions are used for uplink and downlink, which is beneficial to avoid the influence of downlink CA on the uplink DC position.
  • the first carrier set includes multiple uplink carriers configured by the network device and multiple downlink carriers configured by the network device.
  • the first carrier set includes multiple uplink carriers configured and activated by the network device, and multiple downlink carriers configured and activated by the network device.
  • Example 3 and Example 4 the uplink transmission and downlink reception of the terminal equipment share a common DC position.
  • the influence of the downlink carrier needs to be considered when determining the uplink DC position.
  • the terminal device may determine according to the first BWP and the second BWP in the first BWP set of the terminal device, where the first BWP is the lowest frequency in the first BWP set BWP, the second BWP is the BWP with the highest frequency in the first BWP set.
  • Example 1 The first BWP set includes all uplink BWPs configured by the network device.
  • the terminal equipment is configured with uplink carrier 1 to uplink carrier 3, uplink carrier 1 is configured with BWP1 and BWP4, uplink carrier 2 is configured with BWP2, and uplink carrier 3 is configured with BWP3, wherein the terminal equipment is configured with The BWP with the lowest frequency among all the BWPs is BWP1, and the BWP with the highest frequency is BWP3, then the reference DC position can be a specific position between the BWP1 and BWP3, such as the center frequency position DC position 3.
  • Example 2 The first set of BWPs includes all uplink BWPs configured and activated by the network device.
  • the terminal equipment is configured with uplink carrier 1 to uplink carrier 3, and uplink carrier 1 is configured with BWP1 and BWP4, wherein the activated BWP is BWP4, and the activated BWP configured and activated on uplink carrier 2 is BWP2, the BWP configured and activated on the uplink carrier 3 is BWP3, wherein the BWP with the lowest frequency among all the BWPs activated by the terminal device is BWP4, and the BWP with the highest frequency is BWP2, then the reference DC position can be between the BWP4 and BWP2 specific position, such as center frequency position DC position 4.
  • the uplink transmission and downlink reception of the terminal device do not share a DC location, that is, the terminal device uses an independent DC location for uplink transmission and downlink reception.
  • Independent DC positions are used for uplink and downlink, which is beneficial to avoid the influence of downlink CA on the uplink DC position.
  • the first BWP set includes all uplink BWPs configured by the network device and all downlink BWPs configured by the network device.
  • the first BWP set includes all uplink BWPs configured and activated by the network device, and all downlink BWPs configured by the network device.
  • Example 3 and Example 4 the uplink transmission and downlink reception of the terminal equipment share a common DC position.
  • the influence of the downlink carrier needs to be considered when determining the uplink DC position.
  • the above determination method of the reference DC position is only an example.
  • the reference DC position may also be other frequency point information to determine the reference DC position, and the present application is not limited thereto.
  • the terminal device may report the reference DC position determined based on at least one of the foregoing manners 1 to 10 to the network equipment.
  • the terminal equipment reports the DC position by adding the DC offset to the reference DC position. In this way, when the actually used DC position is the reference DC position, the DC position report may not be performed. When adjustment occurs, it is only necessary to report the frequency offset of the adjusted DC position relative to the reference DC position, thereby reducing signaling overhead.
  • FIG. 13 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine at least one DC carrier position offset, wherein each DC carrier position offset in the at least one DC carrier position offset indicates that the DC carrier position used by the terminal device is relative to the reference DC carrier the frequency offset of the location;
  • the communication unit 420 is configured to report the position offset of the at least one DC carrier to the network device.
  • the position offset of each DC carrier is a specific frequency offset value
  • the position offset of each DC carrier is the number of specific frequency intervals.
  • the position offset of each DC carrier is the number of subcarriers.
  • the at least one DC carrier position offset is sent by at least one of the following signaling: radio resource control RRC signaling, medium access control MAC signaling, physical uplink control channel PUCCH .
  • multiple carriers configured on the terminal device correspond to a single transmission chain
  • the number of the reference DC carrier positions is one
  • the at least one DC carrier position offset includes one DC carrier. The position offset, the one reference DC carrier position and the one DC carrier position offset are used to determine the DC carrier position used by the single transmit chain.
  • multiple carriers configured on the terminal device correspond to multiple transmission chains
  • the number of the reference DC carrier positions is one
  • the at least one DC carrier position offset includes multiple DC carrier position offset
  • each transmit chain corresponds to a DC carrier position offset
  • each DC carrier position offset is a frequency offset relative to the one reference DC carrier position
  • the one reference DC carrier position and all The DC carrier position offset corresponding to each transmission chain is used to determine the DC carrier position used by each transmission chain;
  • the multiple carriers configured on the terminal device correspond to multiple transmission chains, the number of the reference DC carrier positions is multiple, each transmission chain corresponds to a reference DC carrier position, and the at least one DC carrier position is offset Including a plurality of DC carrier position offsets, each transmit chain corresponds to a DC carrier position offset, and the reference DC carrier position and DC carrier position offset corresponding to each transmit chain are used to determine the each transmit chain.
  • the DC carrier position used by the circuit is not limited to the circuit.
  • the reference DC carrier position is determined according to at least one of the following:
  • the frequency band configuration on the terminal device The frequency band configuration on the terminal device, the carrier configuration on the terminal device, the bandwidth part BWP configuration on the terminal device, the activated BWP configuration of the terminal device, wherein the frequency band configuration is used to configure the terminal device working frequency band, the carrier configuration is used to configure multiple carriers on the working frequency band, the BWP configuration is used to configure multiple BWPs on each carrier in the multiple carriers, and the activated BWP configuration for configuring an active BWP of the plurality of BWPs.
  • the reference DC carrier position is determined according to a first carrier and a second carrier in a first carrier set of the terminal device, where the first carrier is the first carrier The carrier with the lowest frequency in the set, and the second carrier is the carrier with the highest frequency in the first carrier set.
  • the first carrier set includes multiple uplink carriers configured by the network device; or
  • the first carrier set includes multiple uplink carriers configured and activated by the network device.
  • the uplink transmission and downlink reception of the terminal equipment do not share the DC carrier position.
  • the first carrier set includes multiple uplink carriers configured by the network device and multiple downlink carriers configured by the network device; or
  • the first carrier set includes multiple uplink carriers configured and activated by the network device, and multiple downlink carriers configured and activated by the network device.
  • the uplink transmission and the downlink reception of the terminal equipment share the location of the DC carrier.
  • the reference DC carrier position is determined according to a first BWP and a second BWP in a first BWP set of the terminal device, where the first BWP is the first BWP The BWP with the lowest frequency in the set, and the second BWP is the BWP with the highest frequency in the first BWP set.
  • the first BWP set includes all uplink BWPs configured by the network device; or
  • the first BWP set includes all uplink BWPs configured and activated by the network device.
  • the uplink transmission and downlink reception of the terminal equipment do not share the DC carrier position.
  • the first BWP set includes all uplink BWPs configured by the network device and all downlink BWPs configured by the network device; or
  • the first BWP set includes all uplink BWPs configured and activated by the network device, and all downlink BWPs configured by the network device.
  • the uplink transmission and the downlink reception of the terminal equipment share the location of the DC carrier.
  • the reference DC carrier position includes at least one specific DC carrier position.
  • the communication unit 420 is further configured to:
  • the first indication information includes a first bitmap
  • the first bitmap includes a plurality of bits
  • each bit of the plurality of bits corresponds to A DC carrier position among the plurality of DC carrier positions
  • the value of each bit is used to indicate whether the corresponding DC carrier position is a reference DC carrier position.
  • the first indication information is at least one of the following signaling: RRC signaling, MAC signaling, and PUCCH.
  • the communication unit 420 is further configured to:
  • the first capability information is at least one of the following signaling: RRC signaling, MAC signaling, and PUCCH.
  • the first capability information is further used to determine a reference DC carrier position among multiple DC carrier positions.
  • the reference DC carrier position is the first of the multiple DC carrier positions.
  • the reference DC carrier position is the second DC carrier in the multiple DC carrier positions position, wherein the first DC carrier position and the second DC carrier position are different.
  • the multiple DC carrier positions are predefined, or reported by the terminal device to the network device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are for the purpose of realizing FIG. 6 to FIG. 12 , respectively.
  • the corresponding process of the terminal device in the shown method 200 is not repeated here for brevity.
  • FIG. 14 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 500 of FIG. 14 includes:
  • the communication unit 510 is configured to receive at least one DC carrier position offset sent by the terminal device, wherein each DC carrier position offset in the at least one DC carrier position offset indicates that the position of the DC carrier used by the terminal device is relative to the DC carrier position offset. frequency offset from the reference DC carrier position;
  • the processing unit 520 is configured to determine the DC carrier position used by the terminal device according to the reference DC carrier position and the at least one DC carrier position offset.
  • the position offset of each DC carrier is a specific frequency offset value
  • the position offset of each DC carrier is the number of specific frequency intervals.
  • the position offset of each DC carrier is the number of subcarriers.
  • the at least one DC carrier position offset is sent by at least one of the following signaling: radio resource control RRC signaling, medium access control MAC signaling, physical uplink control channel PUCCH .
  • multiple carriers configured on the terminal device correspond to a single transmission chain
  • the number of the reference DC carrier positions is one
  • the at least one DC carrier position offset includes one DC carrier. The position offset, the one reference DC carrier position and the one DC carrier position offset are used to determine the DC carrier position used by the single transmit chain.
  • multiple carriers configured on the terminal device correspond to multiple transmission chains
  • the number of the reference DC carrier positions is one
  • the at least one DC carrier position offset includes multiple DC carrier position offset
  • each transmit chain corresponds to a DC carrier position offset
  • each DC carrier position offset is a frequency offset relative to the one reference DC carrier position
  • the one reference DC carrier position and all The DC carrier position offset corresponding to each transmission chain is used to determine the DC carrier position used by each transmission chain;
  • the multiple carriers configured on the terminal device correspond to multiple transmission chains, the number of the reference DC carrier positions is multiple, each transmission chain corresponds to a reference DC carrier position, and the at least one DC carrier position is offset Including a plurality of DC carrier position offsets, each transmit chain corresponds to a DC carrier position offset, and the reference DC carrier position and DC carrier position offset corresponding to each transmit chain are used to determine the each transmit chain.
  • the DC carrier position used by the circuit is not limited to the circuit.
  • the reference DC carrier position is determined according to at least one of the following:
  • the frequency band configuration on the terminal device The frequency band configuration on the terminal device, the carrier configuration on the terminal device, the bandwidth part BWP configuration on the terminal device, the activated BWP configuration of the terminal device, wherein the frequency band configuration is used to configure the terminal device working frequency band, the carrier configuration is used to configure multiple carriers on the working frequency band, the BWP configuration is used to configure multiple BWPs on each carrier in the multiple carriers, and the activated BWP configuration for configuring an active BWP of the plurality of BWPs.
  • the reference DC carrier position is determined according to a first carrier and a second carrier in a first carrier set of the terminal device, where the first carrier is the first carrier The carrier with the lowest frequency in the set, and the second carrier is the carrier with the highest frequency in the first carrier set.
  • the first carrier set includes multiple uplink carriers configured by the network device; or
  • the first carrier set includes multiple uplink carriers configured and activated by the network device.
  • the uplink transmission and downlink reception of the terminal equipment do not share the DC carrier position.
  • the first carrier set includes multiple uplink carriers configured by the network device and multiple downlink carriers configured by the network device; or
  • the first carrier set includes multiple uplink carriers configured and activated by the network device, and multiple downlink carriers configured and activated by the network device.
  • the uplink transmission and the downlink reception of the terminal equipment share the location of the DC carrier.
  • the reference DC carrier position is determined according to a first BWP and a second BWP in a first BWP set of the terminal device, where the first BWP is the first BWP The BWP with the lowest frequency in the set, and the second BWP is the BWP with the highest frequency in the first BWP set.
  • the first BWP set includes all uplink BWPs configured by the network device; or
  • the first BWP set includes all uplink BWPs configured and activated by the network device.
  • the uplink transmission and downlink reception of the terminal equipment do not share the DC carrier position.
  • the first BWP set includes all uplink BWPs configured by the network device and all downlink BWPs configured by the network device; or
  • the first BWP set includes all uplink BWPs configured and activated by the network device, and all downlink BWPs configured by the network device.
  • the uplink transmission and the downlink reception of the terminal equipment share the location of the DC carrier.
  • the reference DC carrier position includes at least one specific DC carrier position.
  • the communication unit 510 is further configured to:
  • the first indication information includes a first bitmap
  • the first bitmap includes a plurality of bits
  • each bit of the plurality of bits corresponds to A DC carrier position among the plurality of DC carrier positions
  • the value of each bit is used to indicate whether the corresponding DC carrier position is a reference DC carrier position.
  • the first indication information is at least one of the following signaling: RRC signaling, MAC signaling, and PUCCH.
  • the communication unit 510 is further configured to:
  • Receive first capability information sent by the terminal device where the first capability information is used to indicate whether the terminal device supports reporting of the DC carrier position under carrier aggregation CA.
  • the first capability information is at least one of the following signaling: RRC signaling, MAC signaling, and PUCCH.
  • the first capability information is further used to determine a reference DC carrier position among multiple DC carrier positions.
  • the reference DC carrier position is the first of the multiple DC carrier positions.
  • the reference DC carrier position is the second DC carrier in the multiple DC carrier positions position, wherein the first DC carrier position and the second DC carrier position are different.
  • the multiple DC carrier locations are predefined, or reported by the terminal device to the network device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are for the purpose of realizing FIG. 6 to FIG. 12 , respectively.
  • the corresponding flow of the network device in the illustrated method 200 is not repeated here for brevity.
  • FIG. 15 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 15 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may specifically be the network device in this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • FIG. 16 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 16 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 17 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 17 , the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上报直流载波位置的方法、终端设备和网络设备,有利于降低上报的DC位置的信令开销,该方法包括:终端设备确定至少一个直流载波位置偏移,其中,所述至少一个直流载波位置偏移中的每个直流载波位置偏移表示所述终端设备使用的直流载波位置相对于参考直流载波位置的频率偏移;所述终端设备向网络设备上报所述至少一个直流载波位置偏移。

Description

上报直流载波位置的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种上报直流载波位置的方法、终端设备和网络设备。
背景技术
在通信系统中,终端设备可以基于配置的带宽部分(又称带宽分段)(Band Width Part,BWP)进行直流(Direct Current,DC)载波位置(简称DC位置)的上报,假设单载波上配置有4个BWP,则终端设备最多上报4个DC位置给网络设备。
在一些场景中,终端设备可以工作在多个载波上,每个载波又可以配置多个BWP,每两个BWP可以确定一个DC位置,则潜在的DC位置非常多,此情况下,如何进行DC位置的上报是一项急需解决的问题。
发明内容
本申请提供了一种上报直流载波位置的方法、终端设备和网络设备,有利于降低上报的DC位置的信令开销。
第一方面,提供了一种上报直流载波位置的方法,包括:终端设备确定至少一个直流载波位置偏移,其中,所述至少一个直流载波位置偏移中的每个直流载波位置偏移表示所述终端设备使用的直流载波位置相对于参考直流载波位置的频率偏移;所述终端设备向网络设备上报所述至少一个直流载波位置偏移。
第二方面,提供了一种上报直流载波位置的方法,包括:网络设备接收终端设备发送的至少一个直流载波位置偏移,其中,所述至少一个直流载波位置偏移中的每个直流载波位置偏移表示所述终端设备使用的直流载波位置相对于参考直流载波位置的频率偏移;所述网络设备根据所述参考直流载波位置和所述至少一个直流载波位置偏移确定所述终端设备所使用的直流载波位置。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,终端设备采用参考直流载波位置加直流载波位置偏移的方式进行直流载波位置的上报,这样,在终端设备实际使用的直流载波位置为该参考参考直流载波位置时,可以不进行直流载波位置偏移的上报,在实际使用的直流载波位置发生调整时,只需上报调整后的直流载波位置相对于参考直流载波位置的频率偏移,从而能够降低信令开销。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种信号调制的示意图。
图3是本申请实施例提供的一种信号调制频谱示意图。
图4是本申请实施例提供的一种终端设备内部结构示意图。
图5是载波聚合场景中的BWP的示意图。
图6是本申请实施例提供的一种上报直流载波位置的方法的示意性交互图。
图7至图12是根据本申请实施例的参考DC位置的示意图。
图13是根据本申请实施例提供的一种终端设备的示意性框图。
图14是根据本申请实施例提供的一种网络设备的示意性框图。
图15是根据本申请实施例提供的一种通信设备的示意性框图。
图16是根据本申请实施例提供的一种芯片的示意性框图。
图17是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功 能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于更好的理解本申请实施例,首先对相关的技术作一说明。
在无线通信中,调制是完成信号频谱搬移的主要方法。例如,如图2所示,可以通过混频器将低频输入信号F1跟调制载波F0进行非线性操作产生两个信号的和频率信号或差频率信号,从中筛选出需要的高阶频率输出信号F2,即完成了从低频到高频的频谱搬移,其中,频率关系为F2=F1+F0。
对于宽带信号来说,其中心频点称为直流载波位置,也称DC(Direct Current)位置,如图3中的F1及F2。
在具体实现中,信号的调制是在终端设备的射频芯片(RFIC)中实现的,如图4所示,终端设备的基带芯片(BBIC)将基带信号输入至RFIC,进一步地,在RFIC中,输入的低频基带信号和该RFIC的本振信号(LO,频率为F0),混频产生射频信号,经过功率放大器(PA)放大后,最后通过该终端设备的天线发射出去。
在正交频分复用(Orthogonal frequency-division multiplexing,OFDM)调制方式中,通常DC位置会有比较强的信号干扰,在接收端中需要将这个载波去掉以提高接收信噪比,因此接收端需要知道准确的DC位置。该DC位置通常由发射端告知接收端。以上行为例,终端设备需要告知网络设备其发射信号的准确的DC位置,便于网络设备准确的将DC位置的子载波去掉。
在NR系统中,为了终端的省电,引入了BWP的概念,网络设备通常会给终端设备配置一个较小的发射和接收带宽,从而减少终端设备发射和接收信号的复杂度。例如在整个频段内会有多个信道,终端设备接入一个信道后,网络设备会进一步配置不超过4个BWP(在同一时间只能激活一个BWP),终端设备在后续的通信中将在这个激活的BWP中工作。终端设备可以基于配置的BWP进行DC位置的上报,假设单载波上配置有4个BWP,则终端设备最多上报4个DC位置给网络设备。
在一些场景中,终端设备可以工作在多个载波上,每个载波又可以配置多个BWP,DC的具体位置会受到该多个载波上的激活的BWP的具体位置的影响。如图5所示,载波1配置有BWP1~BWP4,载波2上配置有BWPx~BWPz,……,载波n上配置有BWPa~BWPd,则潜在的BWP组合有4*3*…*4种,在配置的载波数较多的情况下,潜在的BWP组合的数量会非常庞大,此情况下,如何进行DC位置的上报是一项急需解决的问题。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
图6是根据本申请实施例的上报直流载波位置的方法的示意性交互图,如图6所示,该方法200可以包括如下至少部分步骤:
S204,终端设备确定至少一个直流载波位置偏移;
S205,所述终端设备向网络设备上报所述至少一个直流载波位置偏移。
在本申请实施例中,所述直流载波位置偏移表示所述终端设备使用的直流载波位置相对于参考直流载波位置的频率偏移。
需要说明的是,在本申请实施例中,直流载波位置或称DC位置,二者可以相互替换。直流载波位置偏移又称DC偏移,二者可以相互替换。参考直流载波位置或称参考DC位置,二者可以相互替换。
应理解,本申请实施例并不限定所述DC偏移的表达方式。所述DC偏移可以为正值,也可以为负值,或者也可以为零。
作为一个示例,所述DC偏移可以为具体的偏移频率值,例如5khz,15khz等。
作为另一示例,所述DC偏移可以为偏移的子载波数量,例如,以15khz子载波间隔为单位,偏移n个子载波,其中,n可以为正值,也可以为负值,或者也可以为零。
作为又一示例,所述DC偏移可以为以特定的频率间隔为单位的偏移数量,如以100khz或5khz或15khz或200khz等频率间隔为单位,偏移n个频率间隔,其中,n可以为正值,也可以为负值,或者也可以为零。
可选地,在一些实施例中,若所述终端设备未向所述网络设备发送所述至少一个DC偏移,该网络设备可以认为该终端设备实际使用的DC位置为该参考DC位置。进一步根据该参考DC位置进行干扰消除。
在一些实施例中,终端设备实际使用的直流载波位置与参考DC位置相同,此情况下,所述终端设备可以不向所述网络设备发送所述至少一个DC偏移。
在另一些实施例中,终端设备实际使用的直流载波位置与参考DC位置不同。例如,在多载波场景下,所述终端设备的DC位置受多种因素的影响,例如不仅会受到频率最低及最高的载波、频率最低及最高的激活载波、频率最低及最高的BWP、频率最低及最高的激活BWP的影响,在一些场景中,也会受到中间载波以及中间BWP的影响,比如需要调整DC位置来规避内部干扰的影响等。此情况下,所述终端设备可以向所述网络设备上报至少一个DC偏移,从而网络设备可以根据该参考DC位置和该至少一个DC偏移确定该终端设备实际使用的DC位置,进一步根据该实际使用的DC位置进行干扰消除。
可选地,在一些实施例中,所述至少一个DC偏移可以通过任意上行消息或上行信令发送,例如上行无线资源控制(Radio Resource Control,RRC)消息,媒体接入控制(Media Access Control,MAC)信令,物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)等,本申请对此不作限定。
在本申请实施例中,所述终端设备可以在多个载波上同时工作,例如该终端设备被配置为采用载波聚合(Carrier Aggregation,CA)(例如可以包括带内连续CA和带内非连续CA)或双连接工作模 式。
在本申请实施例中,所述终端设备可以采用单发射链路支持在所述多个载波上同时工作,或者也可以采用多个发射链路支持在所述多个载波上同时工作。换言之,所述终端设备可以采用单发射链路架构,或者也可以采用多发射链路架构,或者说,所述多个载波对应单个发射链路,或者对应多个发射链路。
在本申请实施例中,发射链路可以用于实现载波信号的调制和功率放大,该发射链路可以包括功率放大器(PA)和混频器。在一些情况下,发射链路架构可以指采用PA架构。
在本申请实施例中,所述参考直流载波位置可以为一个,或者多个。
在一些实施例中,在所述终端设备采用单发射链路架构的情况下,所述参考直流载波位置可以为一个。
例如,如图7所示,终端设备上配置有载波1~载波4,该4个载波对应单个发射链路,则参考直流载波位置可以为一个。
在另一些实施例中,所述终端设备采用多发射链路架构,所述参考直流载波位置可以为多个,每个发射链路对应一个参考直流载波位置,或者,所述参考直流载波位置可以为一个,例如,多个发射链路对应同一参考直流载波位置。
例如,如图8所示,终端设备上配置有载波1~载波4,其中,载波1和载波2对应发射链路1,载波3和载波4对应发射链路2,该发射链路1和发射链路2可以分别对应各自的参考DC位置,例如发射链路1对应参考DC位置1,发射链路2对应参考DC位置2。
在一些实施例中,所述终端设备采用单发射链路架构,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括一个直流载波位置偏移。所述一个参考直流载波位置和所述一个直流载波位置偏移用于确定所述单个发射链路所使用的直流载波位置
在另一些实施例中,所述终端设备采用多发射链路架构,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,每个直流载波位置偏移为相对于同一个参考直流载波位置的频率偏移。所述同一个参考直流载波位置和所述每个发射链路对应的直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置。
在又一些实施例中,所述终端设备采用多发射链路架构,每个发射链路对应一个参考直流载波位置,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移。所述每个发射链路对应的参考直流载波位置和直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置。
在又一些实施例中,所述终端设备采用多发射链路架构,每个发射链路对应一个参考直流载波位置,所述至少一个直流载波位置偏移包括一个直流载波位置偏移。所述每个发射链路对应的参考直流载波位置和所述一个直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置。
以下,以单个发射链路为例,说明每个发射链路的参考DC位置的具体实现方式,当存在多个发射链路时,其他发射链路的参考DC位置的实现方式类似,这里不作赘述。
可选地,在一些实施例中,所述终端设备可以确定至少一个直流载波位置,该至少一个直流载波位置可以是预定义的,或者也可以是基于网络设备的配置确定的,或者,所述终端设备自行确定的,本申请对此不作限定。
可选地,在一些实施例中,如图6所示,所述方法200还包括:
S201,所述终端设备可以向网络设备上报所述至少一个DC位置。
可选地,在一些实施例中,所述至少一个直流载波位置通过任意上行消息或上行信令发送,例如上行RRC消息,MAC信令,PUCCH等,本申请对此不作限定。
所述参考直流载波位置可以为所述至少一个直流载波位置中用于确定直流载波位置偏移的直流载波位置。所述至少一个直流载波位置可以认为是候选参考直流载波位置,该参考直流载波位置为目标参考直流载波位置。
可选地,所述参考DC位置可以包括所述至少一个直流载波位置中的部分或全部。
在一些实施例中,所述终端设备可以向网络设备上报多个DC位置,进一步向网络设备指示确定DC偏移时所使用的参考DC位置。
也就是说,终端设备可以向网络设备上报多个参考DC位置,进一步向网络设备指示确定DC偏移时所使用的目标参考DC位置。
在一些实施例中,如图6所示,所述方法200还包括:
S202,所述终端设备可以向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述多个直流载波位置中的参考直流载波位置,即哪个直流载波位置作为参考DC位置。
作为一个示例,所述第一指示信息包括第一比特位图,所述第一比特位图包括多个比特位,所述多个比特位中的每个比特位对应所述多个直流载波位置中的一个直流载波位置,所述每个比特位的取值用于指示对应的直流载波位置是否为参考直流载波位置。
例如,比特位取值为1表示是,取值为0,表示否。若终端设备上报了DC位置0~DC位置3,则该第一比特位图可以包括4个比特位,分别对应一个DC位置,若第一比特位图为1000,则表示DC位置3作为参考DC位置。
可选地,在一些实施例中,所述第一指示信息通过任意上行消息或上行信令发送,例如上行RRC消息,MAC信令,PUCCH等,本申请对此不作限定。
可选地,在一些实施例中,如图6所示,所述方法还包括:
S203,所述终端设备向网络设备发送第一能力信息,所述第一能力信息用于指示所述终端设备是否支持CA下的直流载波位置的上报。
可选地,在一些实施例中,所述第一能力信息通过任意上行消息或上行信令发送,例如上行RRC消息,MAC信令,PUCCH等,本申请对此不作限定。
可选地,所述第一能力信息也可以用于指示所述终端设备支持现有的DC位置的上报方式,还是支持基于本申请实施例的DC位置的上报方式。或者,所述第一能力信息也可以用于指示是否支持基于参考DC位置和DC偏移的上报方式。
可选地,在一些实施例中,所述终端设备也可以向网络设备隐式指示多个直流载波位置中作为参考直流载波位置的直流载波位置。
例如,终端设备可以通过是否发所述送第一能力信息或者发送的所述第一能力信息所指示的内容隐式指示参考DC位置。
作为一个示例,若所述第一能力信息指示所述终端设备支持CA下的直流载波位置的上报,此情况下,所述参考直流载波位置为所述多个直流载波位置中的第一直流载波位置。
作为另一示例,若所述第一能力信息指示所述终端设备不支持CA下的直流载波位置的上报,此情况下,所述参考直流载波位置为所述多个直流载波位置中的第二直流载波位置,其中,所述第一直流载波位置和所述第二直流载波位置不同。
作为又一示例,所述终端设备未发送指示DC位置的上报能力的指示信息时,所述参考直流载波位置为所述多个直流载波位置中的第三直流载波位置。
作为又一示例,所述终端设备发送指示DC位置的上报能力的指示信息时,所述参考直流载波位置为所述多个直流载波位置中的第四直流载波位置,其中,所述第三直流载波位置和所述第四直流载波位置不同。或者,所述终端设备发送指示DC位置的上报能力的指示信息时,根据所述上报能力的指示信息的不同内容隐式指示所述参考直流载波位置对应不同的直流载波位置。
在一些实施例中,所述终端设备可以根据第一信息确定至少一个参考DC位置,其中,所述第一信息包括如下中的至少一项:
终端设备上的频段配置,所述终端设备上的载波配置,所述终端设备上的带宽部分BWP配置,所述终端设备的激活的BWP配置,其中,所述频段配置用于配置所述终端设备的工作频段,所述载波配置用于配置所述工作频段上的多个载波,所述BWP配置用于配置所述多个载波中的每个载波上的多个BWP,所述激活的BWP配置用于配置所述多个BWP中的激活的BWP。
可选地,在本申请实施例中,所述终端设备根据第一信息确定参考DC位置可以是终端设备自行决定的,或者也可以是基于网络设备的指示,或者也可以是预定义的(或者说,默认的)。
可选地,所述网络设备可以通过已有信令向终端设备指示参考DC位置的确定方式,例如,可以通过频段配置,载波配置、BWP配置等给所述终端设备配置参考DC位置的确定方式。或者,也可以通过新增信令给终端设备配置参考DC位置的确定方式,本申请对此不作限定。
应理解,在一些实施例中,所述参考DC位置的确定方式是预定义的,此情况下,所述终端设备可以不必向网络设备上报该参考DC位置,网络设备即可知道终端设备确定DC偏移所使用的参考DC位置。
以下,结合具体实施例,说明所述参考DC位置的确定方式,即所述参考DC位置的可能位置。
方式1
在该方式1中,所述终端设备根据频段配置确定参考DC位置。
在一些实施例中,所述终端设备可以确定参考DC位置位于频段配置所指示的工作频段上的特定位置。该特定位置可以是预先约定的。
作为一个示例,所述参考DC位置包括所述频段配置所指示的工作频段上的预设位置。所述工作频段上的预设位置例如可以为所述工作频段的中心频点位置。如图9所示的中心频点位置D1。
此情况下,终端设备上报的DC位置可以不随载波配置、BWP配置和BWP的激活情况的影响。
方式2
在该方式2中,终端设备根据所述终端设备上的特定载波配置确定参考DC位置。
此情况下,终端设备上报的参考DC位置可以不随BWP配置和BWP的激活情况的影响。
可选地,所述特定载波配置可以为所述终端设备上的所有载波配置中的任一载波配置,或者也可以是满足特定条件的载波配置,例如载波号最小的载波对应的载波配置,或者也可以为载波号最大的载波对应的载波配置等。
在一些实施例中,所述终端设备根据第一载波确定参考DC位置。此情况下,所述参考DC位置为所述第一载波上的特定位置。该特定位置可以是预先约定的。例如可以为第一载波的中心频点位置。
例如,如图9所示,所述终端设备配置有载波1和载波2,用于确定参考DC位置的目标载波可以为载波1或载波2,因此,参考DC位置可以位于载波1上的中心频点位置DC2,或者也可以位于载波2上的中心频点位置DC3。
可选地,所述终端设备采用哪个载波配置确定参考DC位置可以是预定义的(或者说,默认的),例如,默认采用载波号最小的载波对应的载波配置,或者也可以是网络设备指示的,或者也可以是网络设备和终端设备协商确定的,或者也可以由终端设备自行决定的,进一步通知给网络设备。例如,所述终端设备可以向网络设备发送第二指示信息,所述第二指示信息用于指示用于确定参考DC位置的目标载波或者目标载波配置。
应理解,本申请并不具体限定所述第二指示信息的指示方式。
作为一个示例,所述第二指示信息包括第二比特位图,所述第二比特位图包括多个比特位,所述多个比特位中的每个比特位对应所述多个载波中的一个载波,所述每个比特位的取值用于指示直流载波位置是否位于对应的载波,例如取值为1表示是,取值为0表示否。
例如,所述终端设备上配置有8个载波配置,则第一比特位图可以包括8个比特(比特7~比特0),分别对应载波7~载波0,当参考DC位置处于载波1上时,可以将比特1设置为1,其他比特设置为0,表示该参考DC位置处于载波1上。
作为另一示例,所述第二指示信息包括多个比特位,所述多个比特位中的不同取值用于指示所述参考DC位置所位于的载波。
例如,所述终端设备上配置有8个载波配置,则可以第二指示信息可以采用3bit指示,该3比特的8个数值对应8个载波配置,例如当参考DC位置位于第4个载波时,则将该3bit的设置为100。
可选地,在一些实施例中,所述第二指示信息通过任意上行消息或上行信令发送,例如上行RRC消息,本申请对此不作限定。
方式3
在该方式3中,终端设备根据特定激活的BWP配置确定参考DC位置。
此情况下,终端设备上报的参考DC位置与BWP配置和BWP的激活情况相关。
可选地,所述特定激活的BWP配置可以为所述终端设备上的所有激活的BWP配置中的任一BWP配置,或者也可以是满足特定条件的BWP配置,例如BWP标识(Identify,ID)最小的BWP对应的BWP配置,或者也可以为BWP ID最大的BWP对应的BWP配置。
在一些实施例中,所述终端设备根据第一BWP确定参考DC位置,此情况下,所述参考DC位置为所述第一BWP上的特定位置。该特定位置可以是预先约定的。例如可以为第一BWP的中心频点位置。
例如,如图9所示,所述终端设备配置有载波1和载波2,载波1上激活的BWP为BWP1,载波2上激活的BWP为BWPa,用于确定参考DC位置的目标BWP可以为BWP1或BWPa,则参考DC位置可以位于BWP1的中心频点位置DC4,或者也可以位于BWPa的中心频点位置DC5。
可选地,所述终端设备采用哪个激活的BWP配置确定参考DC位置可以是预定义的(或者说,默认的),例如,默认采用激活的BWP中BWP ID最小的BWP对应的BWP配置,或者也可以是网络设备指示的,或者也可以是网络设备和终端设备协商确定的,或者也可以由终端设备自行决定的,进一步通知给网络设备。例如,所述终端设备可以向网络设备发送第三指示信息,所述第三指示信息用于指示用于确定参考DC位置的目标BWP或者目标BWP配置。
应理解,本申请并不具体限定所述第三指示信息的指示方式。
作为一个示例,所述第三指示信息包括第三比特位图,所述第三比特位图包括多个比特位,所述多个比特位中的每个比特位对应所述多个载波上的激活的BWP中的一个,所述每个比特位的取值用于指示所述参考DC位置是否位于对应的激活的BWP。
例如,所述终端设备上配置有4个激活的BWP配置,则第三比特位图可以包括4个比特(比特 3~比特0),分别对应4个激活BWP配置,或者说,对应四个载波,当参考DC位置处于第二载波上的激活的BWP上时,可以将比特1设置为1,其他比特设置为0,表示该参考DC位置处于载波1上的激活的BWP。
作为另一示例,所述第三指示信息包括多个比特位,所述多个比特位中的不同取值用于指示所述参考DC位置所位于的BWP。
例如,所述终端设备上配置有4个BWP配置,则可以第三指示信息可以采用2bit指示,该2比特的4个数值对应4个BWP配置,例如当参考DC位置位于第2个载波上的激活的BWP时,则将该2bit的设置为010。
可选地,在一些实施例中,所述第三指示信息通过上行RRC消息发送,或者也可以通过其他上行消息或信令发送,本申请对此不作限定。
方式4
在该方式4中,终端设备根据所有的载波配置确定参考DC位置。
此情况下,终端设备上报的参考DC位置与载波配置相关,但不受BWP配置和BWP的激活情况的影响。
在一些实施例中,所述终端设备可以根据多个载波所占的频段范围确定参考DC配置。
应理解,在本申请实施例中,所述多个载波中的每个载波所占的频段范围可以是连续的,或者也可以是离散的。在一些实施例中,所述多个载波所占的频段范围例如可以为所述每个载波所占的频段范围的并集,或者,也可以为所述多个载波所占的最低频点到最高频点之间的频段范围。即所述多个载波所占的频段范围可以是离散的多个子频段范围,或者也可以一个连续的频段范围。
作为一个示例,所述参考DC位置包括第一频段范围中的预设位置,所述第一频段范围为所述多个载波所占的频段范围。
在一种情况中,所述第一频段范围为一个连续的频段范围,此情况下,所述第一频段范围中的预设位置可以为所述第一频段范围的中心频点位置。例如,如图10所示,所述终端设备配置有载波1和载波2,载波1和载波2所占的最低频点到最高频点之间的频段范围为第一频段范围,所述参考DC位置可以为第一频段范围的中心频点位置DC6。
在另一种情况中,所述第一频段范围包括多个离散的子频段范围,此情况下,所述第一频段范围中的预设位置可以包括该多个离散的子频段范围中的每个子频段范围的中心频点位置。
方式5
在该方式5中,终端设备根据所有载波上的激活的BWP配置确定参考DC位置。
此情况下,终端设备上报的参考DC位置与BWP的激活情况相关。
在一些实施例中,所述终端设备可以根据多个载波上的激活的BWP所占的频段范围确定参考DC配置。
与所述多个载波所占的频段范围类似,所述多个载波上的激活的BWP所占的频段范围也可以是离散的多个子频段范围,或者也可以一个连续的频段范围,例如所述多个载波上的所有激活的BWP所占的最低频点到最高频点之间的频段范围。
作为一个示例,所述参考DC位置包括第二频段范围中的预设位置,所述第二频段范围为所述多个载波上的激活的BWP所占的频段范围。
在一种情况中,所述第二频段范围为一个连续的频段范围,此情况下,所述第二频段范围中的预设位置可以为所述第二频段范围的中心频点位置。例如,如图10所示,所述终端设备配置有载波1和载波2,载波1上激活的BWP为BWP1,载波2上激活的BWP为BWPa,BWP1和BWPa所占的最低频点到最高频点之间的频段范围为所述第二频段范围,则所述参考DC位置可以为第二频段范围的中心频点位置DC7。
在另一种情况中,所述第二频段范围包括多个离散的子频段范围,此情况下,所述第二频段范围中的预设位置可以包括该多个离散的子频段范围中的每个子频段范围的中心频点位置。
方式6
在该方式6中,终端设备根据特定载波上的所有的BWP配置确定参考DC位置。
此情况下,终端设备上报的参考DC位置与BWP配置相关,但不受BWP的激活情况的影响。
可选地,所述特定载波可以为所述终端设备上的所有载波中的任一载波,或者也可以是满足特定条件的载波,例如载波号最小的载波,或者也可以为载波号最大的载波等。
可选地,所述终端设备采用哪个载波上的所有的BWP配置确定参考DC位置可以是预定义的(或者说,默认的),例如,默认采用载波号最小的载波上的BWP配置,或者也可以是网络设备指示的,或者也可以是网络设备和终端设备协商确定的,或者也可以由终端设备自行决定的,进一步通知给网 络设备。例如,所述终端设备可以向网络设备发送第三指示信息,所述第三指示信息用于指示用于确定参考DC位置的目标载波。具体指示方式参考方式2中第二指示信息的相关描述,为了简洁,这里不再赘述。
在一些实施例中,所述终端设备可以根据特定载波上的所有BWP所占的频段范围确定参考DC配置。
与方式4和方式5中的频段范围类似,所述特定载波上的所有BWP所占的频段范围也可以是离散的多个子频段范围,或者也可以一个连续的频段范围,例如所述特定载波上的所有BWP所占的最低频点到最高频点之间的频段范围。
作为一个示例,所述参考DC位置包括第三频段范围中的预设位置,所述第三频段范围为所述多个载波中的第二载波上配置的多个BWP所占的频段范围。
在一种情况中,所述第三频段范围为一个连续的频段范围,此情况下,所述第三频段范围中的预设位置可以为所述第三频段范围的中心频点位置。例如,如图11所示,所述终端设备配置有载波1和载波2,载波1上配置有BWP1~BWP4,载波2上配置有BWPa~BWPd,第三频段范围可以为载波1上的多个BWP所占的最低频点到最高频点之间的频段范围,或者也可以为载波2上的多个BWP所占的最低频点到最高频点之间的频段范围,则所述参考DC位置可以位于载波1上的多个BWP所占的频段范围的中心频点位置DC8,或者也可以位于载波2上的多个BWP所占的频段范围的中心频点位置DC9。
在另一种情况中,所述第三频段范围包括多个离散的子频段范围,此情况下,所述第三频段范围中的预设位置可以包括该多个离散的子频段范围中的每个子频段范围的中心频点位置。
方式7
在该方式7中,所述终端设备根据多个载波上的所有BWP配置确定参考DC位置。
此情况下,终端设备上报的参考DC位置与BWP配置相关,但不受BWP的激活情况的影响。
在一些实施例中,所述终端设备可以根据所述终端设备上的多个载波上的所有BWP所占的频段范围确定参考DC配置。
与方式4至方式6中的频段范围类似,所述多个载波上的所有BWP所占的频段范围也可以是离散的多个子频段范围,或者也可以一个连续的频段范围,例如所述多个载波上的所有BWP所占的最低频点到最高频点之间的频段范围。
作为一个示例,所述参考DC位置包括所述第四频段范围中的预设位置,所述第四频段范围为所述多个载波上配置的多个BWP所占的频段范围。
在一种情况中,所述第四频段范围为一个连续的频段范围,此情况下,所述第四频段范围中的预设位置可以为所述第四频段范围的中心频点位置。例如,如图11所示,所述终端设备配置有载波1和载波2,载波1上配置有BWP1~BWP4,载波2上配置有BWPa~BWPd,第四频段范围可以为BWP1~BWP4以及BWPa~BWPd所占的最低频点到最高频点之间的频段范围,则所述参考DC位置可以位于第四频段范围的中心频点位置DC10。
在另一种情况中,所述第四频段范围包括多个离散的子频段范围,此情况下,所述第四频段范围中的预设位置可以包括该多个离散的子频段范围中的每个子频段范围的中心频点位置。
方式8
在该方式8中,所述终端设备可以确定参考DC位置为特定频点位置。
例如,工作频段中的任意频点位置,或者激活的BWP中的任意频点位置,或者某个载波上的任意频点位置等。
方式9
在该方式9中,所述终端设备可以根据第一载波集合中的第一载波和第二载波确定参考DC位置,其中,所述第一载波为所述第一载波集合中频率最低的载波,所述第二载波为所述第一载波集合中频率最高的载波。
示例1:所述第一载波集合包括所述网络设备配置的多个上行载波。
举例说明,如图12所示,终端设备上配置有上行载波1~上行载波3,频率最低的上行载波为载波1,频率最高的上行载波为载波3,则该参考DC位置可以为该上行载波1和上行载波3之间的特定位置,如中心频率位置DC位置1。
示例2:所述第一载波集合包括所述网络设备配置并且激活的多个上行载波。
举例说明,如图12所示,终端设备上配置有上行载波1~上行载波3,激活的上行载波为上行载波1和上行载波2,则配置并且激活的频率最低的上行载波为载波1,配置并且激活的频率最高的上行载波为载波2,则该参考DC位置可以为该上行载波1和上行载波2之间的特定位置,如中心频率 位置DC位置2。
可选地,在该示例1和示例2中,所述终端设备的上行发射和下行接收不公用DC位置,即终端设备的上行发射和下行接收采用的是独立的DC位置。上下行采用独立的DC位置,有利于避免下行CA对上行DC位置的影响。
示例3:所述第一载波集合包括所述网络设备配置的多个上行载波,以及所述网络设备配置的多个下行载波。
示例4:所述第一载波集合包括所述网络设备配置并且激活的多个上行载波,以及所述网络设备配置并且激活的多个下行载波。
可选地,在该示例3和示例4中,所述终端设备的上行发射和下行接收公用DC位置,此情况下,确定上行DC位置时需要考虑下行载波的影响。
方式10
在该方式10中,所述终端设备可以根据所述终端设备的第一BWP集合中的第一BWP和第二BWP确定,其中,所述第一BWP为所述第一BWP集合中频率最低的BWP,所述第二BWP为所述第一BWP集合中频率最高的BWP。
示例1:所述第一BWP集合包括所述网络设备配置的所有上行BWP。
举例说明,如图12所示,终端设备上配置有上行载波1~上行载波3,上行载波1配置有BWP1和BWP4,上行载波2配置有BWP2,上行载波3配置有BWP3,其中,终端设备配置的所有BWP中频率最低的BWP为BWP1,频率最高的BWP为BWP3,则该参考DC位置可以为该BWP1和BWP3之间的特定位置,如中心频率位置DC位置3。
示例2:所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP。
举例说明,如图12所示,终端设备上配置有上行载波1~上行载波3,上行载波1上配置有BWP1和BWP4,其中,激活的BWP为BWP4,上行载波2上配置并且激活的BWP为BWP2,上行载波3上配置并且激活的BWP为BWP3,其中,终端设备激活的所有BWP中频率最低的BWP为BWP4,频率最高的BWP为BWP2,则该参考DC位置可以为该BWP4和BWP2之间的特定位置,如中心频率位置DC位置4。
可选地,在该示例1和示例2中,所述终端设备的上行发射和下行接收不公用DC位置,即终端设备的上行发射和下行接收采用的是独立的DC位置。上下行采用独立的DC位置,有利于避免下行CA对上行DC位置的影响。
示例3:所述第一BWP集合包括所述网络设备配置的所有上行BWP,以及所述网络设备配置的所有下行BWP。
示例4:所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP,以及所述网络设备配置的所有下行BWP。
可选地,在该示例3和示例4中,所述终端设备的上行发射和下行接收公用DC位置,此情况下,确定上行DC位置时需要考虑下行载波的影响。
应理解,以上参考DC位置的确定方式仅为示例,在其他实施例中,所述参考DC位置也可以为其他频点信息确定所述参考DC位置,本申请并不限于此。
在本申请实施例中,所述终端设备可以向网络设备上报基于前述方式1至方式10中的至少一种方式所确定的参考DC位置。
综上,终端设备采用参考DC位置加DC偏移的方式进行DC位置的上报,这样,在实际使用的DC位置为该参考DC位置时,可以不进行DC位置的上报,在实际使用的DC位置发生调整时,只需上报调整后的DC位置相对于参考DC位置的频率偏移,从而能够降低信令开销。
上文结合图6至图12,详细描述了本申请的方法实施例,下文结合图13至图17,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图13示出了根据本申请实施例的终端设备400的示意性框图。如图13所示,该终端设备400包括:
处理单元410,用于确定至少一个直流载波位置偏移,其中,所述至少一个直流载波位置偏移中的每个直流载波位置偏移表示所述终端设备使用的直流载波位置相对于参考直流载波位置的频率偏移;
通信单元420,用于向网络设备上报所述至少一个直流载波位置偏移。
可选地,在一些实施例中,所述每个直流载波位置偏移为特定的频率偏移值;或者
所述每个直流载波位置偏移为特定频率间隔的数量;或者
所述每个直流载波位置偏移为子载波的数量。
可选地,在一些实施例中,所述至少一个直流载波位置偏移通过以下信令中的至少一种发送:无线资源控制RRC信令,媒体接入控制MAC信令,物理上行控制信道PUCCH。
可选地,在一些实施例中,所述终端设备上配置的多个载波对应单个发射链路,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括一个直流载波位置偏移,所述一个参考直流载波位置和所述一个直流载波位置偏移用于确定所述单个发射链路所使用的直流载波位置。
可选地,在一些实施例中,所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,每个直流载波位置偏移为相对于所述一个参考直流载波位置的频率偏移,所述一个参考直流载波位置和所述每个发射链路对应的直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置;或者
所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为多个,每个发射链路对应一个参考直流载波位置,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,所述每个发射链路对应的参考直流载波位置和直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置。
可选地,在一些实施例中,所述参考直流载波位置根据以下中的至少一项确定:
终端设备上的频段配置,所述终端设备上的载波配置,所述终端设备上的带宽部分BWP配置,所述终端设备的激活的BWP配置,其中,所述频段配置用于配置所述终端设备的工作频段,所述载波配置用于配置所述工作频段上的多个载波,所述BWP配置用于配置所述多个载波中的每个载波上的多个BWP,所述激活的BWP配置用于配置所述多个BWP中的激活的BWP。
可选地,在一些实施例中,所述参考直流载波位置根据所述终端设备的第一载波集合中的第一载波和第二载波确定,其中,所述第一载波为所述第一载波集合中频率最低的载波,所述第二载波为所述第一载波集合中频率最高的载波。
可选地,所述第一载波集合包括所述网络设备配置的多个上行载波;或者
所述第一载波集合包括所述网络设备配置并且激活的多个上行载波。
可选地,所述终端设备的上行发射和下行接收不共用直流载波位置。
可选地,在一些实施例中,所述第一载波集合包括所述网络设备配置的多个上行载波,以及所述网络设备配置的多个下行载波;或者
所述第一载波集合包括所述网络设备配置并且激活的多个上行载波,以及所述网络设备配置并且激活的多个下行载波。
可选地,在一些实施例中,所述终端设备的上行发射和下行接收共用直流载波位置。
可选地,在一些实施例中,所述参考直流载波位置根据所述终端设备的第一BWP集合中的第一BWP和第二BWP确定,其中,所述第一BWP为所述第一BWP集合中频率最低的BWP,所述第二BWP为所述第一BWP集合中频率最高的BWP。
可选地,所述第一BWP集合包括所述网络设备配置的所有上行BWP;或者
所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP。
可选地,所述终端设备的上行发射和下行接收不共用直流载波位置。
可选地,在一些实施例中,所述第一BWP集合包括所述网络设备配置的所有上行BWP,以及所述网络设备配置的所有下行BWP;或者
所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP,以及所述网络设备配置的所有下行BWP。
可选地,在一些实施例中,所述终端设备的上行发射和下行接收共用直流载波位置。
可选地,在一些实施例中,所述参考直流载波位置包括至少一个特定直流载波位置。
可选地,在一些实施例中,所述通信单元420还用于:
向所述网络设备发送第一指示信息,所述第一指示信息用于指示多个直流载波位置中的参考直流载波位置。
可选地,在一些实施例中,所述第一指示信息包括第一比特位图,所述第一比特位图包括多个比特位,所述多个比特位中的每个比特位对应所述多个直流载波位置中的一个直流载波位置,所述每个比特位的取值用于指示对应的直流载波位置是否为参考直流载波位置。
可选地,在一些实施例中,所述第一指示信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
可选地,在一些实施例中,所述通信单元420还用于:
向所述网络设备发送第一能力信息,所述第一能力信息用于指示所述终端设备是否支持载波聚合 CA下的直流载波位置的上报。
可选地,在一些实施例中,所述第一能力信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
可选地,在一些实施例中,所述第一能力信息还用于确定多个直流载波位置中的参考直流载波位置。
可选地,在一些实施例中,若所述第一能力信息指示所述终端设备支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第一直流载波位置,或者,若所述第一能力信息指示所述终端设备不支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第二直流载波位置,其中,所述第一直流载波位置和所述第二直流载波位置不同。
可选地,在一些实施例中,所述多个直流载波位置是预定义的,或者是所述终端设备上报给所述网络设备的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图6至图12所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图14是根据本申请实施例的网络设备的示意性框图。图14的网络设备500包括:
通信单元510,用于接收终端设备发送的至少一个直流载波位置偏移,其中,所述至少一个直流载波位置偏移中的每个直流载波位置偏移表示所述终端设备使用的直流载波位置相对于参考直流载波位置的频率偏移;
处理单元520,用于根据所述参考直流载波位置和所述至少一个直流载波位置偏移确定所述终端设备所使用的直流载波位置。
可选地,在一些实施例中,所述每个直流载波位置偏移为特定的频率偏移值;或者
所述每个直流载波位置偏移为特定频率间隔的数量;或者
所述每个直流载波位置偏移为子载波的数量。
可选地,在一些实施例中,所述至少一个直流载波位置偏移通过以下信令中的至少一种发送:无线资源控制RRC信令,媒体接入控制MAC信令,物理上行控制信道PUCCH。
可选地,在一些实施例中,所述终端设备上配置的多个载波对应单个发射链路,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括一个直流载波位置偏移,所述一个参考直流载波位置和所述一个直流载波位置偏移用于确定所述单个发射链路所使用的直流载波位置。
可选地,在一些实施例中,所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,每个直流载波位置偏移为相对于所述一个参考直流载波位置的频率偏移,所述一个参考直流载波位置和所述每个发射链路对应的直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置;或者
所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为多个,每个发射链路对应一个参考直流载波位置,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,所述每个发射链路对应的参考直流载波位置和直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置。
可选地,在一些实施例中,所述参考直流载波位置根据以下中的至少一项确定:
终端设备上的频段配置,所述终端设备上的载波配置,所述终端设备上的带宽部分BWP配置,所述终端设备的激活的BWP配置,其中,所述频段配置用于配置所述终端设备的工作频段,所述载波配置用于配置所述工作频段上的多个载波,所述BWP配置用于配置所述多个载波中的每个载波上的多个BWP,所述激活的BWP配置用于配置所述多个BWP中的激活的BWP。
可选地,在一些实施例中,所述参考直流载波位置根据所述终端设备的第一载波集合中的第一载波和第二载波确定,其中,所述第一载波为所述第一载波集合中频率最低的载波,所述第二载波为所述第一载波集合中频率最高的载波。
可选地,所述第一载波集合包括所述网络设备配置的多个上行载波;或者
所述第一载波集合包括所述网络设备配置并且激活的多个上行载波。
可选地,所述终端设备的上行发射和下行接收不共用直流载波位置。
可选地,在一些实施例中,所述第一载波集合包括所述网络设备配置的多个上行载波,以及所述网络设备配置的多个下行载波;或者
所述第一载波集合包括所述网络设备配置并且激活的多个上行载波,以及所述网络设备配置并且激活的多个下行载波。
可选地,在一些实施例中,所述终端设备的上行发射和下行接收共用直流载波位置。
可选地,在一些实施例中,所述参考直流载波位置根据所述终端设备的第一BWP集合中的第一BWP和第二BWP确定,其中,所述第一BWP为所述第一BWP集合中频率最低的BWP,所述第二BWP为所述第一BWP集合中频率最高的BWP。
可选地,所述第一BWP集合包括所述网络设备配置的所有上行BWP;或者
所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP。
可选地,所述终端设备的上行发射和下行接收不共用直流载波位置。
可选地,在一些实施例中,所述第一BWP集合包括所述网络设备配置的所有上行BWP,以及所述网络设备配置的所有下行BWP;或者
所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP,以及所述网络设备配置的所有下行BWP。
可选地,在一些实施例中,所述终端设备的上行发射和下行接收共用直流载波位置。
可选地,在一些实施例中,所述参考直流载波位置包括至少一个特定直流载波位置。
可选地,在一些实施例中,所述通信单元510还用于:
接收所述终端设备发送的第一指示信息,所述第一指示信息用于指示多个直流载波位置中的参考直流载波位置。
可选地,在一些实施例中,所述第一指示信息包括第一比特位图,所述第一比特位图包括多个比特位,所述多个比特位中的每个比特位对应所述多个直流载波位置中的一个直流载波位置,所述每个比特位的取值用于指示对应的直流载波位置是否为参考直流载波位置。
可选地,在一些实施例中,所述第一指示信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
可选地,在一些实施例中,所述通信单元510还用于:
接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示所述终端设备是否支持载波聚合CA下的直流载波位置的上报。
可选地,在一些实施例中,所述第一能力信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
可选地,在一些实施例中,所述第一能力信息还用于确定多个直流载波位置中的参考直流载波位置。
可选地,在一些实施例中,若所述第一能力信息指示所述终端设备支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第一直流载波位置,或者,若所述第一能力信息指示所述终端设备不支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第二直流载波位置,其中,所述第一直流载波位置和所述第二直流载波位置不同。
可选地,在一些实施例中,所述多个直流载波位置是预定义的,或者是所述终端设备上报给所述网络设备的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图6至图12所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例提供的一种通信设备600示意性结构图。图15所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图15所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图16是本申请实施例的芯片的示意性结构图。图16所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图16所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图17是本申请实施例提供的一种通信系统900的示意性框图。如图17所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (110)

  1. 一种上报直流载波位置的方法,其特征在于,包括:
    终端设备确定至少一个直流载波位置偏移,其中,所述至少一个直流载波位置偏移中的每个直流载波位置偏移表示所述终端设备使用的直流载波位置相对于参考直流载波位置的频率偏移;
    所述终端设备向网络设备上报所述至少一个直流载波位置偏移。
  2. 根据权利要求1所述的方法,其特征在于,
    所述每个直流载波位置偏移为特定的频率偏移值;或者
    所述每个直流载波位置偏移为特定频率间隔的数量;或者
    所述每个直流载波位置偏移为子载波的数量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述至少一个直流载波位置偏移通过以下信令中的至少一种发送:
    无线资源控制RRC信令,媒体接入控制MAC信令,物理上行控制信道PUCCH。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述终端设备上配置的多个载波对应单个发射链路,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括一个直流载波位置偏移,所述一个参考直流载波位置和所述一个直流载波位置偏移用于确定所述单个发射链路所使用的直流载波位置。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,
    所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,每个直流载波位置偏移为相对于所述一个参考直流载波位置的频率偏移,所述一个参考直流载波位置和所述每个发射链路对应的直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置;或者
    所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为多个,每个发射链路对应一个参考直流载波位置,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,所述每个发射链路对应的参考直流载波位置和直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述参考直流载波位置根据以下中的至少一项确定:
    终端设备上的频段配置,所述终端设备上的载波配置,所述终端设备上的带宽部分BWP配置,所述终端设备的激活的BWP配置,其中,所述频段配置用于配置所述终端设备的工作频段,所述载波配置用于配置所述工作频段上的多个载波,所述BWP配置用于配置所述多个载波中的每个载波上的多个BWP,所述激活的BWP配置用于配置所述多个BWP中的激活的BWP。
  7. 根据权利要求6所述的方法,其特征在于,所述参考直流载波位置根据所述终端设备的第一载波集合中的第一载波和第二载波确定,其中,所述第一载波为所述第一载波集合中频率最低的载波,所述第二载波为所述第一载波集合中频率最高的载波。
  8. 根据权利要求7所述的方法,其特征在于,所述第一载波集合包括所述网络设备配置的多个上行载波;或者
    所述第一载波集合包括所述网络设备配置并且激活的多个上行载波。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备的上行发射和下行接收不共用直流载波位置。
  10. 根据权利要求7所述的方法,其特征在于,所述第一载波集合包括所述网络设备配置的多个上行载波,以及所述网络设备配置的多个下行载波;或者
    所述第一载波集合包括所述网络设备配置并且激活的多个上行载波,以及所述网络设备配置并且激活的多个下行载波。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备的上行发射和下行接收共用直流载波位置。
  12. 根据权利要求6所述的方法,其特征在于,所述参考直流载波位置根据所述终端设备的第一BWP集合中的第一BWP和第二BWP确定,其中,所述第一BWP为所述第一BWP集合中频率最低的BWP,所述第二BWP为所述第一BWP集合中频率最高的BWP。
  13. 根据权利要求12所述的方法,其特征在于,所述第一BWP集合包括所述网络设备配置的所有上行BWP;或者
    所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP。
  14. 根据权利要求13所述的方法,其特征在于,所述终端设备的上行发射和下行接收不共用直流载波位置。
  15. 根据权利要求12所述的方法,其特征在于,所述第一BWP集合包括所述网络设备配置的所有上行BWP,以及所述网络设备配置的所有下行BWP;或者
    所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP,以及所述网络设备配置的所有下行BWP。
  16. 根据权利要求15所述的方法,其特征在于,所述终端设备的上行发射和下行接收共用直流载波位置。
  17. 根据权利要求1-5中任一项所述的方法,其特征在于,所述参考直流载波位置包括至少一个特定直流载波位置。
  18. 根据权利要求1-17中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第一指示信息,所述第一指示信息用于指示多个直流载波位置中的参考直流载波位置。
  19. 根据权利要求18所述的方法,其特征在于,所述第一指示信息包括第一比特位图,所述第一比特位图包括多个比特位,所述多个比特位中的每个比特位对应所述多个直流载波位置中的一个直流载波位置,所述每个比特位的取值用于指示对应的直流载波位置是否为参考直流载波位置。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一指示信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
  21. 根据权利要求1-20中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第一能力信息,所述第一能力信息用于指示所述终端设备是否支持载波聚合CA下的直流载波位置的上报。
  22. 根据权利要求21所述的方法,其特征在于,所述第一能力信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第一能力信息还用于确定多个直流载波位置中的参考直流载波位置。
  24. 根据权利要求23所述的方法,其特征在于,若所述第一能力信息指示所述终端设备支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第一直流载波位置,或者,
    若所述第一能力信息指示所述终端设备不支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第二直流载波位置,其中,所述第一直流载波位置和所述第二直流载波位置不同。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述多个直流载波位置是预定义的,或者是所述终端设备上报给所述网络设备的。
  26. 一种上报直流载波位置的方法,其特征在于,包括:
    网络设备接收终端设备发送的至少一个直流载波位置偏移,其中,所述至少一个直流载波位置偏移中的每个直流载波位置偏移表示所述终端设备使用的直流载波位置相对于参考直流载波位置的频率偏移;
    所述网络设备根据所述参考直流载波位置和所述至少一个直流载波位置偏移确定所述终端设备所使用的直流载波位置。
  27. 根据权利要求26所述的方法,其特征在于,
    所述每个直流载波位置偏移为特定的频率偏移值;或者
    所述每个直流载波位置偏移为特定频率间隔的数量;或者
    所述每个直流载波位置偏移为子载波的数量。
  28. 根据权利要求26或27所述的方法,其特征在于,所述至少一个直流载波位置偏移通过以下信令中的至少一种发送:
    无线资源控制RRC信令,媒体接入控制MAC信令,物理上行控制信道PUCCH。
  29. 根据权利要求26-28中任一项所述的方法,其特征在于,所述终端设备上配置的多个载波对应单个发射链路,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括一个直流载波位置偏移,所述一个参考直流载波位置和所述一个直流载波位置偏移用于确定所述单个发射链路所使用的直流载波位置。
  30. 根据权利要求26-28中任一项所述的方法,其特征在于,
    所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为一个,所述 至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,每个直流载波位置偏移为相对于所述一个参考直流载波位置的频率偏移,所述一个参考直流载波位置和所述每个发射链路对应的直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置;或者
    所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为多个,每个发射链路对应一个参考直流载波位置,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,所述每个发射链路对应的参考直流载波位置和直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置。
  31. 根据权利要求26-30中任一项所述的方法,其特征在于,所述参考直流载波位置根据以下中的至少一项确定:
    终端设备上的频段配置,所述终端设备上的载波配置,所述终端设备上的带宽部分BWP配置,所述终端设备的激活的BWP配置,其中,所述频段配置用于配置所述终端设备的工作频段,所述载波配置用于配置所述工作频段上的多个载波,所述BWP配置用于配置所述多个载波中的每个载波上的多个BWP,所述激活的BWP配置用于配置所述多个BWP中的激活的BWP。
  32. 根据权利要求31所述的方法,其特征在于,所述参考直流载波位置根据所述终端设备的第一载波集合中的第一载波和第二载波确定,其中,所述第一载波为所述第一载波集合中频率最低的载波,所述第二载波为所述第一载波集合中频率最高的载波。
  33. 根据权利要求32所述的方法,其特征在于,所述第一载波集合包括所述网络设备配置的多个上行载波;或者
    所述第一载波集合包括所述网络设备配置并且激活的多个上行载波。
  34. 根据权利要求33所述的方法,其特征在于,所述终端设备的上行发射和下行接收不共用直流载波位置。
  35. 根据权利要求32所述的方法,其特征在于,所述第一载波集合包括所述网络设备配置的多个上行载波,以及所述网络设备配置的多个下行载波;或者
    所述第一载波集合包括所述网络设备配置并且激活的多个上行载波,以及所述网络设备配置并且激活的多个下行载波。
  36. 根据权利要求35所述的方法,其特征在于,所述终端设备的上行发射和下行接收共用直流载波位置。
  37. 根据权利要求31所述的方法,其特征在于,所述参考直流载波位置根据所述终端设备的第一BWP集合中的第一BWP和第二BWP确定,其中,所述第一BWP为所述第一BWP集合中频率最低的BWP,所述第二BWP为所述第一BWP集合中频率最高的BWP。
  38. 根据权利要求37所述的方法,其特征在于,所述第一BWP集合包括所述网络设备配置的所有上行BWP;或者
    所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP。
  39. 根据权利要求38所述的方法,其特征在于,所述终端设备的上行发射和下行接收不共用直流载波位置。
  40. 根据权利要求37所述的方法,其特征在于,所述第一BWP集合包括所述网络设备配置的所有上行BWP,以及所述网络设备配置的所有下行BWP;或者
    所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP,以及所述网络设备配置的所有下行BWP。
  41. 根据权利要求40所述的方法,其特征在于,所述终端设备的上行发射和下行接收共用直流载波位置。
  42. 根据权利要求26-30中任一项所述的方法,其特征在于,所述参考直流载波位置包括至少一个特定直流载波位置。
  43. 根据权利要求26-42中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第一指示信息,所述第一指示信息用于指示多个直流载波位置中的参考直流载波位置。
  44. 根据权利要求43所述的方法,其特征在于,所述第一指示信息包括第一比特位图,所述第一比特位图包括多个比特位,所述多个比特位中的每个比特位对应所述多个直流载波位置中的一个直流载波位置,所述每个比特位的取值用于指示对应的直流载波位置是否为参考直流载波位置。
  45. 根据权利要求43或44所述的方法,其特征在于,所述第一指示信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
  46. 根据权利要求26-45中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示所述终端设备是否支持载波聚合CA下的直流载波位置的上报。
  47. 根据权利要求46所述的方法,其特征在于,所述第一能力信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
  48. 根据权利要求46或47所述的方法,其特征在于,所述第一能力信息还用于确定多个直流载波位置中的参考直流载波位置。
  49. 根据权利要求48所述的方法,其特征在于,若所述第一能力信息指示所述终端设备支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第一直流载波位置,或者,
    若所述第一能力信息指示所述终端设备不支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第二直流载波位置,其中,所述第一直流载波位置和所述第二直流载波位置不同。
  50. 根据权利要求43至49中任一项所述的方法,其特征在于,所述多个直流载波位置是预定义的,或者是所述终端设备上报给所述网络设备的。
  51. 一种终端设备,其特征在于,包括:
    处理单元,用于确定至少一个直流载波位置偏移,其中,所述至少一个直流载波位置偏移中的每个直流载波位置偏移表示所述终端设备使用的直流载波位置相对于参考直流载波位置的频率偏移;
    通信单元,用于向网络设备上报所述至少一个直流载波位置偏移。
  52. 根据权利要求51所述的终端设备,其特征在于,
    所述每个直流载波位置偏移为特定的频率偏移值;或者
    所述每个直流载波位置偏移为特定频率间隔的数量;或者
    所述每个直流载波位置偏移为子载波的数量。
  53. 根据权利要求51或52所述的终端设备,其特征在于,所述至少一个直流载波位置偏移通过以下信令中的至少一种发送:
    无线资源控制RRC信令,媒体接入控制MAC信令,物理上行控制信道PUCCH。
  54. 根据权利要求51-53中任一项所述的终端设备,其特征在于,所述终端设备上配置的多个载波对应单个发射链路,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括一个直流载波位置偏移,所述一个参考直流载波位置和所述一个直流载波位置偏移用于确定所述单个发射链路所使用的直流载波位置。
  55. 根据权利要求51-53中任一项所述的终端设备,其特征在于,
    所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,每个直流载波位置偏移为相对于所述一个参考直流载波位置的频率偏移,所述一个参考直流载波位置和所述每个发射链路对应的直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置;或者
    所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为多个,每个发射链路对应一个参考直流载波位置,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,所述每个发射链路对应的参考直流载波位置和直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置。
  56. 根据权利要求51-55中任一项所述的终端设备,其特征在于,所述参考直流载波位置根据以下中的至少一项确定:
    终端设备上的频段配置,所述终端设备上的载波配置,所述终端设备上的带宽部分BWP配置,所述终端设备的激活的BWP配置,其中,所述频段配置用于配置所述终端设备的工作频段,所述载波配置用于配置所述工作频段上的多个载波,所述BWP配置用于配置所述多个载波中的每个载波上的多个BWP,所述激活的BWP配置用于配置所述多个BWP中的激活的BWP。
  57. 根据权利要求56所述的终端设备,其特征在于,所述参考直流载波位置根据所述终端设备的第一载波集合中的第一载波和第二载波确定,其中,所述第一载波为所述第一载波集合中频率最低的载波,所述第二载波为所述第一载波集合中频率最高的载波。
  58. 根据权利要求57所述的终端设备,其特征在于,所述第一载波集合包括所述网络设备配置的多个上行载波;或者
    所述第一载波集合包括所述网络设备配置并且激活的多个上行载波。
  59. 根据权利要求58所述的终端设备,其特征在于,所述终端设备的上行发射和下行接收不共用直流载波位置。
  60. 根据权利要求57所述的终端设备,其特征在于,所述第一载波集合包括所述网络设备配置的多个上行载波,以及所述网络设备配置的多个下行载波;或者
    所述第一载波集合包括所述网络设备配置并且激活的多个上行载波,以及所述网络设备配置并且激活的多个下行载波。
  61. 根据权利要求60所述的终端设备,其特征在于,所述终端设备的上行发射和下行接收共用直流载波位置。
  62. 根据权利要求56所述的终端设备,其特征在于,所述参考直流载波位置根据所述终端设备的第一BWP集合中的第一BWP和第二BWP确定,其中,所述第一BWP为所述第一BWP集合中频率最低的BWP,所述第二BWP为所述第一BWP集合中频率最高的BWP。
  63. 根据权利要求62所述的终端设备,其特征在于,所述第一BWP集合包括网络设备配置的所有上行BWP;或者
    所述第一BWP集合包括网络设备配置并且激活的所有上行BWP。
  64. 根据权利要求63所述的终端设备,其特征在于,所述终端设备的上行发射和下行接收不共用直流载波位置。
  65. 根据权利要求62所述的终端设备,其特征在于,所述第一BWP集合包括所述网络设备配置的所有上行BWP,以及所述网络设备配置的所有下行BWP;或者
    所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP,以及所述网络设备配置的所有下行BWP。
  66. 根据权利要求65所述的终端设备,其特征在于,所述终端设备的上行发射和下行接收共用直流载波位置。
  67. 根据权利要求51-55中任一项所述的终端设备,其特征在于,所述参考直流载波位置包括至少一个特定直流载波位置。
  68. 根据权利要求51-67中任一项所述的终端设备,其特征在于,所述通信单元还用于:向所述网络设备发送第一指示信息,所述第一指示信息用于指示多个直流载波位置中的参考直流载波位置。
  69. 根据权利要求68所述的终端设备,其特征在于,所述第一指示信息包括第一比特位图,所述第一比特位图包括多个比特位,所述多个比特位中的每个比特位对应所述多个直流载波位置中的一个直流载波位置,所述每个比特位的取值用于指示对应的直流载波位置是否为参考直流载波位置。
  70. 根据权利要求68或69所述的终端设备,其特征在于,所述第一指示信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
  71. 根据权利要求51-70中任一项所述的终端设备,其特征在于,所述通信单元还用于:向所述网络设备发送第一能力信息,所述第一能力信息用于指示所述终端设备是否支持载波聚合CA下的直流载波位置的上报。
  72. 根据权利要求71所述的终端设备,其特征在于,所述第一能力信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
  73. 根据权利要求71或72所述的终端设备,其特征在于,所述第一能力信息还用于确定多个直流载波位置中的参考直流载波位置。
  74. 根据权利要求73所述的终端设备,其特征在于,若所述第一能力信息指示所述终端设备支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第一直流载波位置,或者,
    若所述第一能力信息指示所述终端设备不支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第二直流载波位置,其中,所述第一直流载波位置和所述第二直流载波位置不同。
  75. 根据权利要求68至74中任一项所述的终端设备,其特征在于,所述多个直流载波位置是预定义的,或者是所述终端设备上报给所述网络设备的。
  76. 一种网络设备,其特征在于,包括:
    通信单元,用于接收终端设备发送的至少一个直流载波位置偏移,其中,所述至少一个直流载波位置偏移中的每个直流载波位置偏移表示所述终端设备使用的直流载波位置相对于参考直流载波位置的频率偏移;
    处理单元,用于根据所述参考直流载波位置和所述至少一个直流载波位置偏移确定所述终端设备所使用的直流载波位置。
  77. 根据权利要求76所述的网络设备,其特征在于,
    所述每个直流载波位置偏移为特定的频率偏移值;或者
    所述每个直流载波位置偏移为特定频率间隔的数量;或者
    所述每个直流载波位置偏移为子载波的数量。
  78. 根据权利要求76或77所述的网络设备,其特征在于,所述至少一个直流载波位置偏移通过以下信令中的至少一种发送:
    无线资源控制RRC信令,媒体接入控制MAC信令,物理上行控制信道PUCCH。
  79. 根据权利要求76-78中任一项所述的网络设备,其特征在于,所述终端设备上配置的多个载波对应单个发射链路,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括一个直流载波位置偏移,所述一个参考直流载波位置和所述一个直流载波位置偏移用于确定所述单个发射链路所使用的直流载波位置。
  80. 根据权利要求76-78中任一项所述的网络设备,其特征在于,
    所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为一个,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,每个直流载波位置偏移为相对于所述一个参考直流载波位置的频率偏移,所述一个参考直流载波位置和所述每个发射链路对应的直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置;或者
    所述终端设备上配置的多个载波对应多个发射链路,所述参考直流载波位置的数量为多个,每个发射链路对应一个参考直流载波位置,所述至少一个直流载波位置偏移包括多个直流载波位置偏移,每个发射链路对应一个直流载波位置偏移,所述每个发射链路对应的参考直流载波位置和直流载波位置偏移用于确定所述每个发射链路所使用的直流载波位置。
  81. 根据权利要求76-80中任一项所述的网络设备,其特征在于,所述参考直流载波位置根据以下中的至少一项确定:
    终端设备上的频段配置,所述终端设备上的载波配置,所述终端设备上的带宽部分BWP配置,所述终端设备的激活的BWP配置,其中,所述频段配置用于配置所述终端设备的工作频段,所述载波配置用于配置所述工作频段上的多个载波,所述BWP配置用于配置所述多个载波中的每个载波上的多个BWP,所述激活的BWP配置用于配置所述多个BWP中的激活的BWP。
  82. 根据权利要求81所述的网络设备,其特征在于,所述参考直流载波位置根据所述终端设备的第一载波集合中的第一载波和第二载波确定,其中,所述第一载波为所述第一载波集合中频率最低的载波,所述第二载波为所述第一载波集合中频率最高的载波。
  83. 根据权利要求82所述的网络设备,其特征在于,所述第一载波集合包括所述网络设备配置的多个上行载波;或者
    所述第一载波集合包括所述网络设备配置并且激活的多个上行载波。
  84. 根据权利要求83所述的网络设备,其特征在于,所述终端设备的上行发射和下行接收不共用直流载波位置。
  85. 根据权利要求82所述的网络设备,其特征在于,所述第一载波集合包括所述网络设备配置的多个上行载波,以及所述网络设备配置的多个下行载波;或者
    所述第一载波集合包括所述网络设备配置并且激活的多个上行载波,以及所述网络设备配置并且激活的多个下行载波。
  86. 根据权利要求85所述的网络设备,其特征在于,所述终端设备的上行发射和下行接收共用直流载波位置。
  87. 根据权利要求81所述的网络设备,其特征在于,所述参考直流载波位置根据所述终端设备的第一BWP集合中的第一BWP和第二BWP确定,其中,所述第一BWP为所述第一BWP集合中频率最低的BWP,所述第二BWP为所述第一BWP集合中频率最高的BWP。
  88. 根据权利要求87所述的网络设备,其特征在于,所述第一BWP集合包括所述网络设备配置的所有上行BWP;或者
    所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP。
  89. 根据权利要求88所述的网络设备,其特征在于,所述终端设备的上行发射和下行接收不共用直流载波位置。
  90. 根据权利要求87所述的网络设备,其特征在于,所述第一BWP集合包括所述网络设备配置的所有上行BWP,以及所述网络设备配置的所有下行BWP;或者
    所述第一BWP集合包括所述网络设备配置并且激活的所有上行BWP,以及所述网络设备配置的 所有下行BWP。
  91. 根据权利要求90所述的网络设备,其特征在于,所述终端设备的上行发射和下行接收共用直流载波位置。
  92. 根据权利要求76-80中任一项所述的网络设备,其特征在于,所述参考直流载波位置包括至少一个特定直流载波位置。
  93. 根据权利要求76-92中任一项所述的网络设备,其特征在于,所述通信单元还用于:
    接收所述终端设备发送的第一指示信息,所述第一指示信息用于指示多个直流载波位置中的参考直流载波位置。
  94. 根据权利要求93所述的网络设备,其特征在于,所述第一指示信息包括第一比特位图,所述第一比特位图包括多个比特位,所述多个比特位中的每个比特位对应所述多个直流载波位置中的一个直流载波位置,所述每个比特位的取值用于指示对应的直流载波位置是否为参考直流载波位置。
  95. 根据权利要求93或94所述的网络设备,其特征在于,所述第一指示信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
  96. 根据权利要求76-95中任一项所述的网络设备,其特征在于,所述通信单元还用于:
    接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示所述终端设备是否支持载波聚合CA下的直流载波位置的上报。
  97. 根据权利要求96所述的网络设备,其特征在于,所述第一能力信息通过以下信令中的至少一种:RRC信令,MAC信令,PUCCH。
  98. 根据权利要求96或97所述的网络设备,其特征在于,所述第一能力信息还用于确定多个直流载波位置中的参考直流载波位置。
  99. 根据权利要求98所述的网络设备,其特征在于,若所述第一能力信息指示所述终端设备支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第一直流载波位置;或者,
    若所述第一能力信息指示所述终端设备不支持CA下的直流载波位置的上报,所述参考直流载波位置为所述多个直流载波位置中的第二直流载波位置,其中,所述第一直流载波位置和所述第二直流载波位置不同。
  100. 根据权利要求93至99中任一项所述的网络设备,其特征在于,所述多个直流载波位置是预定义的,或者是所述终端设备上报给所述网络设备的。
  101. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至25中任一项所述的方法。
  102. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至25中任一项所述的方法。
  103. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法。
  104. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至25中任一项所述的方法。
  105. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法。
  106. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求26至50中任一项所述的方法。
  107. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求26至50中任一项所述的方法。
  108. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求26至50中任一项所述的方法。
  109. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求26至50中任一项所述的方法。
  110. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求26至50中任一项所述的方法。
PCT/CN2020/130140 2020-11-19 2020-11-19 上报直流载波位置的方法、终端设备和网络设备 WO2022104650A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080103507.3A CN116057867A (zh) 2020-11-19 2020-11-19 上报直流载波位置的方法、终端设备和网络设备
EP20961941.0A EP4250617A4 (en) 2020-11-19 2020-11-19 DC CARRIER LOCATION REPORTING METHOD, TERMINAL DEVICE AND NETWORK DEVICE
PCT/CN2020/130140 WO2022104650A1 (zh) 2020-11-19 2020-11-19 上报直流载波位置的方法、终端设备和网络设备
US18/090,919 US20230224879A1 (en) 2020-11-19 2022-12-29 Method for Reporting Direct Current Carrier Location, Terminal Device, and Network Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130140 WO2022104650A1 (zh) 2020-11-19 2020-11-19 上报直流载波位置的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/090,919 Continuation US20230224879A1 (en) 2020-11-19 2022-12-29 Method for Reporting Direct Current Carrier Location, Terminal Device, and Network Device

Publications (1)

Publication Number Publication Date
WO2022104650A1 true WO2022104650A1 (zh) 2022-05-27

Family

ID=81708114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130140 WO2022104650A1 (zh) 2020-11-19 2020-11-19 上报直流载波位置的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20230224879A1 (zh)
EP (1) EP4250617A4 (zh)
CN (1) CN116057867A (zh)
WO (1) WO2022104650A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230090288A1 (en) * 2021-09-21 2023-03-23 Qualcomm Incorporated Direct current location with bandwidth part (bwp) hopping

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604161A (zh) * 2009-04-17 2009-12-16 北京铱钵隆芯科技有限责任公司 位同步解码方法
CN103986686A (zh) * 2014-06-05 2014-08-13 北京科技大学 一种载波频率偏移、直流偏移以及i/q不平衡的盲估计方法
CN108023715A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 同步信号接收、发送方法及相应装置
WO2018231005A1 (en) * 2017-06-15 2018-12-20 Innovative Technology Lab Co., Ltd. Method and apparatus for wideband operation in nr communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11160055B2 (en) * 2018-04-10 2021-10-26 Qualcomm Incorporated Communication of direct current (DC) tone location

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604161A (zh) * 2009-04-17 2009-12-16 北京铱钵隆芯科技有限责任公司 位同步解码方法
CN103986686A (zh) * 2014-06-05 2014-08-13 北京科技大学 一种载波频率偏移、直流偏移以及i/q不平衡的盲估计方法
CN108023715A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 同步信号接收、发送方法及相应装置
WO2018231005A1 (en) * 2017-06-15 2018-12-20 Innovative Technology Lab Co., Ltd. Method and apparatus for wideband operation in nr communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Corrections to 38.211", 3GPP DRAFT; R1-1810599 DRAFT CR 38.211, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 28 September 2018 (2018-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051518005 *
See also references of EP4250617A4 *

Also Published As

Publication number Publication date
EP4250617A4 (en) 2023-12-27
CN116057867A (zh) 2023-05-02
EP4250617A1 (en) 2023-09-27
US20230224879A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
EP4145745A1 (en) Capability information reporting method and apparatus
WO2022011555A1 (zh) 用于确定上行传输参数的方法和终端设备
WO2019096232A1 (zh) 通信方法和通信装置
WO2022104650A1 (zh) 上报直流载波位置的方法、终端设备和网络设备
WO2022088085A1 (zh) 上报直流载波位置的方法、终端设备和网络设备
US20220394503A1 (en) Wireless communication method and device
WO2022155975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022082511A1 (zh) 无线通信的方法及设备
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2022147797A1 (zh) 信道接入方法及设备
WO2022067532A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022036523A1 (zh) 数据传输的方法及设备
WO2022099515A1 (zh) 上报直流载波位置的方法、终端设备和网络设备
WO2023142123A1 (zh) 无线通信的方法、终端设备和网络设备
CN115669200A (zh) 无线通信方法、终端设备和网络设备
WO2023141760A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022236697A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022110072A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022056870A1 (zh) 无线通信方法、终端设备和网络设备
WO2022087970A1 (zh) 无线通信的方法和通信设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
WO2022141103A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022133956A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022077140A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020961941

Country of ref document: EP

Effective date: 20230619