WO2021233217A1 - 能力信息上报方法及其装置 - Google Patents

能力信息上报方法及其装置 Download PDF

Info

Publication number
WO2021233217A1
WO2021233217A1 PCT/CN2021/093766 CN2021093766W WO2021233217A1 WO 2021233217 A1 WO2021233217 A1 WO 2021233217A1 CN 2021093766 W CN2021093766 W CN 2021093766W WO 2021233217 A1 WO2021233217 A1 WO 2021233217A1
Authority
WO
WIPO (PCT)
Prior art keywords
capability information
range
information
communication device
spectrum
Prior art date
Application number
PCT/CN2021/093766
Other languages
English (en)
French (fr)
Inventor
冯淑兰
陈宇
常俊仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21807788.1A priority Critical patent/EP4145745A4/en
Publication of WO2021233217A1 publication Critical patent/WO2021233217A1/zh
Priority to US17/988,529 priority patent/US20230089990A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • the embodiments of the present application relate to the field of communication technology, and specifically relate to a method and device for reporting capability information.
  • Carrier aggregation is a technology to increase transmission bandwidth. It is used in long-term evolution (LTE) systems, long-term evolution-advanced (LET-A) systems, and new radio (NR) systems. In the system, carrier aggregation is introduced, so that a terminal device can transmit data on multiple carriers at the same time.
  • LTE long-term evolution
  • LET-A long-term evolution-advanced
  • NR new radio
  • the capability information of the UE is determined according to the number of carriers supported by user equipment (UE) and the maximum supported channel bandwidth on each carrier.
  • the capabilities of each carrier are independent of each other, and there is a large redundancy in UE design. More information.
  • the UE reports carrier aggregation capability information, according to the existing protocol, the UE is based on each carrier in the band (in carrier aggregation, the carriers participating in the aggregation are also called component carriers).
  • the maximum support bandwidth of carrier, CC)) is designed to correspond to the processing capability, and the processing capability information is reported.
  • the bandwidth scheduled for a single carrier often does not reach the maximum supported bandwidth of the component carrier, which causes unnecessary waste of UE capabilities and increases the design cost of the UE.
  • the embodiment of the application provides a method for reporting capability information, which can be applied to communication systems, such as the long-term evolution system LTE, the new wireless NR system, the evolved universal land-based wireless access, and the dual connectivity of the new air interface (E-UTRA- NR dual connectivity, EN DC) communication system, high reliability and low latency communication system (ultra reliability low latency communication, URLLC), vehicle to everything (V2X) communication system, long-term evolution and vehicle (LTE-vehicle) , LTE-V) communication system, new wireless and vehicle (NR-vehicle, NR-V) communication system, vehicle-to-vehicle (V2V), Internet of Vehicles, massive machine type of communication , MMTC), Internet of Things (IoT), LTE-based IoT technology (LTE-machine to machine, LTE-M), machine to machine (M2M) equipment and equipment (device to device) , D2D) communication system, etc.
  • communication systems such as the long-term evolution system LTE, the
  • the method provided in the embodiments of the present application is used when a scheduled node sends capability information to a scheduling node, according to the capability information of the maximum aggregated spectrum contained in the capability information, reasonable scheduling resources, thereby reducing the capacity waste of terminal equipment and reducing the number of terminals The cost of the equipment.
  • an embodiment of the present application provides a method for reporting capability information.
  • the method includes: the first device determines the capability information of the first device, and the capability information of the first device is used to indicate that the first device supports The maximum aggregation capacity of the spectrum.
  • the first device sends the capability information to the second device.
  • the capability information when the first device reports the capability information to the second device, the capability information carries the capability information of the largest aggregated spectrum supported by the first device within the first range, thereby providing a new capability information reporting method .
  • This new method of reporting capability information avoids the need for the first device to report according to the reporting method of the maximum bandwidth corresponding to each component carrier supported by the first device. Therefore, when designing the capabilities supported by the first device, there is no need to design in the manner that each component carrier corresponds to the maximum bandwidth, which reduces the design cost of the first device, reduces the waste of terminal equipment capabilities, and makes scheduling resources more efficient. Reasonable.
  • the maximum aggregated spectrum is smaller than the first bandwidth
  • the first bandwidth is the sum of the maximum bandwidths of all aggregated carriers in the first range supported by the first device.
  • the maximum aggregated spectrum supported by the first device is less than the sum of the maximum bandwidths of all aggregated carriers in the first range, so that when designing the capabilities supported by the first device, the support of the first device is avoided. All aggregated carriers need to be designed according to the maximum bandwidth. The greater the capability supported by the first device, the higher the corresponding cost. Therefore, using the capability information reporting method provided in the embodiments of the present application to report, can avoid designing excessive capabilities at the stage of designing the first device, which is conducive to reducing the cost of the first device.
  • the capability information further includes first indication information, where the first indication information is used to indicate the first range supported by the first device.
  • the terminal device may determine the first range according to the application scenario and/or cost and/or function, etc., so that it has Better implementation flexibility.
  • the capability information further includes second indication information, and the second indication information is used to indicate the minimum guaranteed bandwidth of the carrier within the first range supported by the first device.
  • the second device when the capability information includes the minimum guaranteed bandwidth of at least one carrier within the first range supported by the first device, the second device can be allowed to reserve the minimum guaranteed bandwidth for at least one carrier when scheduling resources based on the capability information , When the terminal capabilities are shared, the basic communication function of at least one carrier is guaranteed.
  • the capability information further includes third indication information, and the third indication information is used to indicate that the first device supports the first device to schedule multiple resource units within the first range.
  • the sum of resource units is less than or equal to the maximum aggregated spectrum.
  • the capability information also includes the third indication information for instructing the first device to support the first device to schedule multiple resource units in the first range
  • the feasibility of the solution is increased, and the resource unit is avoided too much. Implementation complexity caused by small.
  • At least one of all carriers supported by the first device in the first range includes non-contiguous resource units.
  • frequency diversity gain can be used to improve the use efficiency of spectrum resources.
  • the first device after the first device sends the capability information, the first device receives first scheduling information sent by the second device, and the first scheduling information is used to determine A first frequency domain resource, where the first frequency domain resource is used for data transmission of the first device, and the first frequency domain resource is less than or equal to the maximum aggregated spectrum supported by the first device in the first range.
  • the first device performs data transmission through the first frequency domain resource scheduled by the second device, and the first frequency domain resource is less than or equal to the maximum aggregated spectrum supported by the first device in the first range to avoid exceeding the frequency of the first device. Processing capacity improves the feasibility of the solution.
  • the first device determines the first frequency domain resource according to the first scheduling information, and the first device determines the first frequency domain resource After the resource, the spectrum processing resource of the first device is determined according to the first frequency domain resource.
  • the spectrum processing resource includes the processing resource used when the first device receives the data carried on the first frequency domain resource, and/or the first device The processing resource used when sending the data carried on the first frequency domain resource.
  • the first device determines the spectrum processing resource of the first device according to the first frequency domain resource, avoiding an increase in power consumption caused by using excessive spectrum processing resources, and improving the efficiency of the solution.
  • the first device after sending the capability information, the first device also sends fourth indication information to the second device, and the fourth indication information is used to instruct the capability information of the first device to update .
  • the first device sends an instruction to update the capability information to the second device, which improves the flexibility of the solution.
  • the capability information includes a scaling factor, and the scaling factor is used to determine the maximum aggregated spectrum.
  • the capability information may also include a scaling factor, without the need to send specific values of the capability information, such as the value of the maximum aggregated spectrum, which saves traffic when sending capability information.
  • the received spectrum processing resources include at least one of the following: radio frequency processing resources, front-end processing resources, channel estimation processing resources, demodulation processing resources, decoding processing resources, decryption processing resources, measurement Processing resources, etc.
  • channel estimation processing resources it may include at least one of the following: physical downlink control channel (Physical Downlink Control Channel, PDCCH) channel estimation demodulation resources, physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) channel estimation resources, physical The channel estimation and demodulation resources of the Sidelink Control Channel (Physical Sidelink Control Channel, PSCCH), and the channel estimation resources of the Physical Sidelink Data Channel (PSDCH).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink shared channel
  • PSCCH Physical Sidelink Control Channel
  • PSDCH Physical Sidelink Data Channel
  • the demodulation processing resources may include at least one of the following: demodulation resources of the Physical Downlink Control Channel (PDCCH), demodulation resources of the Physical Downlink Shared Channel (PDSCH), and physical side line
  • the demodulation resources of the Link Control Channel Physical Sidelink Control Channel, PSCCH
  • PSCCH Physical Sidelink Control Channel
  • PSDCH Physical Sidelink Data Channel
  • the decoding processing resource may include a polar code (Polar code) decoding unit and/or a low density parity check code (Low Density Parity Check Code, LDPC) LDPC decoding unit.
  • the first device may determine that the received spectrum processing resource includes the one or more processing resources according to at least one factor such as application scenarios, requirements, functional requirements, and costs.
  • the first device can determine the processing resources included in the received spectrum processing resources, which improves the flexibility of the solution.
  • the transmitted spectrum processing resources may include at least one of the following: radio frequency processing resources, power amplifier processing resources, front-end processing resources, encryption processing resources, data packet processing resources, coding processing resources, modulation Processing resources, transmit power control processing resources, etc.
  • other resources may also be included, for example, resources required to process each channel, such as Physical Uplink Shared Channel (PUSCH) channel processing resources , Physical Uplink Control Channel (PUCCH) channel processing resources, Physical Sidelink Control Channel (PSCCH) channel processing resources, Physical Sidelink Data Channel (Physical Sidelink Data Channel) , PSDCH) channel processing resources, etc.
  • the first device may determine that the transmission spectrum processing resource includes the one or more processing resources according to at least one factor such as application scenarios, requirements, functional requirements, and costs.
  • the first device can determine the processing resources included in the transmission spectrum processing resources, which improves the flexibility of the solution.
  • the first range indicated in the capability information may be specifically determined according to at least one of the following methods: air interface access protocol, connection type, link type, application scenario, etc.
  • the first device determines the first range in multiple ways, and the terminal device can determine the first range according to different application scenarios and/or costs and/or functions, which improves the flexibility and feasibility of the solution.
  • the maximum aggregated spectrum within the first range supported by the first device included in the capability information may be the maximum uplink aggregated spectrum or the maximum downlink aggregated spectrum.
  • the aggregated spectrum is either the maximum aggregated spectrum of the side link (SL), or the maximum aggregated spectrum received by the side link, or the maximum aggregated spectrum transmitted by the side link.
  • the reception processing resources of the first device may be shared by at least two carriers, and the at least two carriers are frequency bands or combinations of frequency bands within the first range supported by the first device. Of aggregated carriers.
  • the first device supports the sharing of processing resources of at least two carriers in the frequency band or frequency band combination within the first range, which reduces the implementation complexity.
  • the first device when the primary carrier corresponding to the first device is changed to the secondary carrier, the first device updates the minimum guaranteed bandwidth of the primary carrier.
  • the capability information further includes fifth indication information, and the fifth indication information indicates the total number of multiple-input multiple-output MIMO layers in the first range supported by the first device.
  • the capability information of the first device when the capability information of the first device also indicates the total number of MIMO layers supported by the first device, the flexibility of the solution is improved.
  • the first device sends the capability information to the second device in a manner of reporting capability information.
  • the first device can send the capability information of the first device by means of reporting capability information, which improves the feasibility of the solution.
  • the capability information includes the value of the maximum aggregated spectrum.
  • the first device determines whether the first frequency domain resource is less than the maximum aggregated spectrum in the first range supported by the first device, if the first frequency domain resource is If the frequency domain resource is greater than the maximum aggregated spectrum in the first range supported by the first device, the first device determines that the scheduling of the second device is incorrect, and sends an error message to the second device.
  • the first device when the first frequency domain resource is greater than the maximum aggregated spectrum supported by the first device, the first device sends an error message to the second device, which improves the error tolerance rate of the solution.
  • the first device determines the first range according to the frequency band range that the device of the first device can support, and the device of the first device may include any one of the following: antenna, radio frequency device , Baseband processor.
  • the first device determines the first range according to the frequency band range that the device of the first device can support, which improves the feasibility of the solution.
  • the second aspect of the present application provides a method for reporting capability information.
  • the second device receives the capability information sent by the first device, and the capability information of the first device is used to indicate the maximum aggregated spectrum supported by the first device within the first range.
  • the second device receives the capability information sent by the first device, and the capability information indicates the maximum aggregated spectrum supported by the first device, so that the second device can determine the scheduling to the first device based on the capabilities of the first device Resources to avoid system errors.
  • the maximum aggregated spectrum is smaller than the first bandwidth, and the first bandwidth represents the sum of the maximum bandwidths of all aggregated carriers in the first range supported by the first device.
  • the maximum aggregated spectrum supported by the first device is less than the sum of the maximum bandwidths of all aggregated carriers in the first range, so that when designing the capabilities supported by the first device, it is avoided that all aggregated carriers supported by the first device are required Design the corresponding ability according to the maximum bandwidth.
  • the capability information further includes first indication information, where the first indication information is used to indicate the first range supported by the first device.
  • the capability information further includes indication information used to indicate the first range supported by the first device, the flexibility of the solution is improved.
  • the capability information further includes second indication information, and the second indication information is used to indicate the minimum guaranteed bandwidth of the carrier within the first range supported by the first device.
  • the second device may reserve the minimum guaranteed bandwidth for at least one carrier when scheduling resources based on the capability information to ensure The basic communication function of at least one carrier.
  • the capability information further includes third indication information, and the third indication information is used to indicate that the first device supports scheduling multiple resource units within the first range, and multiple resource units The sum of is less than or equal to the maximum aggregated spectrum.
  • the capability information further includes the third indication information used to indicate that the first device supports the first device to schedule multiple resource units within the first range, the feasibility of the solution is increased.
  • the third capability information further indicates that at least one of the aggregated carriers supported by the first device in the first range includes multiple non-contiguous resource units.
  • the first device when the first device supports the scheduling of non-contiguous resource units, it can make full use of the frequency diversity gain to improve the use efficiency of spectrum resources.
  • the second device determines the first frequency domain resource within the first range according to the capability information, and the first frequency domain resource is used for The first device and the second device perform data transmission, and the first frequency domain resource is less than or equal to the maximum aggregated spectrum supported by the first device.
  • the second device After the second device determines the first frequency domain resource that needs to be scheduled, the second device sends first scheduling information to the first device, where the first scheduling information is used for the first device to determine the first frequency domain resource.
  • the second device sends the scheduled first frequency domain resource to the first device for data transmission, which improves the feasibility of the solution.
  • the second device after receiving the capability information, the second device also receives fourth indication information sent by the first device, where the fourth indication information is used to indicate the capability information of the first device renew.
  • the second device determines the second frequency domain resource according to the fourth indication information, the second frequency domain resource is used for data transmission between the second device and the first device, and the second device sends second scheduling information to the first device,
  • the second scheduling information includes information about the second frequency domain resource.
  • the second device sends the updated second frequency domain resource to the first device by receiving the instruction of sending the capability information update from the first device, which improves the flexibility of the solution.
  • the capability information further includes a scaling factor, and the scaling factor is used by the second device to determine the maximum aggregated spectrum.
  • the capability information may also include a scaling factor
  • the second device can determine the maximum aggregated spectrum of the first device through the scaling factor, which improves the feasibility of the solution.
  • the first range indicated in the capability information may be specifically determined according to at least one of the following methods: air interface access protocol, connection type, link type, application scenario, etc.
  • the first range can be determined in multiple ways, and the terminal device can determine the first range according to different application scenarios and/or costs and/or functions, which improves the flexibility of the solution.
  • the maximum aggregated spectrum within the first range supported by the first device included in the capability information may be the maximum uplink aggregated spectrum, or the maximum aggregated downlink spectrum, or it may be a side chain The maximum aggregated spectrum of the channel, or the maximum aggregated spectrum received by the side link, or the maximum aggregated spectrum transmitted by the side link.
  • the capability information further includes fifth indication information, and the fifth indication information indicates the total number of multiple-input multiple-output MIMO layers supported by the first device within the first range.
  • the capability information of the first device when the capability information of the first device also indicates the total number of MIMO layers supported by the first device, the flexibility of the solution is improved.
  • the second device receives the capability information sent by the first device in a manner of reporting capability information.
  • the first device can send the capability information of the first device by means of reporting capability information, which improves the feasibility of the solution.
  • the first range may be determined according to the frequency band range supported by the device of the first device, and the device of the first device may include any one of the following: antenna, radio frequency device, baseband processor.
  • the first range can be determined according to the frequency band range that the device of the first device can support, which improves the feasibility of the solution.
  • the third aspect of the present application provides a communication device.
  • a processing unit configured to determine capability information of the communication device, where the capability information is used to indicate the capability of the largest aggregate spectrum supported by the communication device in the first range;
  • the sending unit is used to send capability information.
  • the maximum aggregated spectrum is smaller than the first bandwidth
  • the first bandwidth is the sum of the maximum bandwidths of all aggregated carriers in the first range supported by the communication device.
  • the capability information further includes first indication information, and the first indication information is used to indicate the first range of the communication device.
  • the capability information further includes second indication information, and the second indication information is used to indicate the minimum guaranteed bandwidth of the carrier within the first range of the communication device.
  • the capability information includes third indication information, and the third indication information is used to indicate that the communication device supports scheduling multiple resource units within the first range, and the sum of the multiple resource units is less than or Equal to the maximum aggregate spectrum.
  • At least one of all the carriers supported by the communication device within the first range includes non-contiguous resource units.
  • the communication device further includes:
  • the receiving unit is configured to receive first scheduling information, the first scheduling information is used to determine a first frequency domain resource within a first range, the first frequency domain resource is used for data transmission of the communication device, and the first frequency domain resource is less than or equal to Maximum aggregate spectrum.
  • the processing unit is further configured to determine the first frequency domain resource according to the first scheduling information
  • the processing unit is further configured to determine the spectrum processing resource of the communication device according to the first frequency domain resource.
  • the spectrum processing resource includes the processing resource used when the communication device receives and/or sends data carried on the first frequency domain resource.
  • the sending unit is further configured to send fourth indication information, and the fourth indication information is used to indicate an update of the capability information of the communication device.
  • the capability information includes a scaling factor, and the scaling factor is used to determine the maximum aggregated spectrum.
  • the fourth aspect of the present application provides a communication device.
  • a communication device includes:
  • the receiving unit is configured to receive capability information of the communication device, where the capability information is used to indicate the maximum aggregated spectrum supported by the communication device in the first range.
  • the maximum aggregated spectrum is less than the first bandwidth
  • the first bandwidth is the sum of the maximum bandwidths corresponding to all carriers supported by the communication device within the first range.
  • the capability information includes first indication information, and the first indication information is used to indicate the first range of the communication device.
  • the capability information further includes second indication information, and the second indication information is used to indicate the minimum guaranteed bandwidth of the carrier in the first range.
  • the capability information includes third indication information, and the third indication information is used to indicate that the communication device supports scheduling multiple resource units within the first range, and the sum of the multiple resource units is less than or Equal to the maximum aggregate spectrum.
  • At least one of all the carriers supported by the communication device within the first range includes non-contiguous resource units.
  • the communication device further includes:
  • a processing unit configured to determine a first frequency domain resource within a first range according to the capability information, the first frequency domain resource is used for data transmission of the communication device, and the first frequency domain resource is less than or equal to the maximum aggregated spectrum;
  • the communication device also includes:
  • the sending unit is configured to send the first scheduling information, and the first scheduling information is used to determine the first frequency domain resource.
  • the receiving unit is further configured to receive fourth indication information, and the fourth indication information is used to indicate capability information update.
  • the processing unit is further configured to determine a second frequency domain resource according to the fourth indication information, and the second frequency domain resource is used for data transmission;
  • the sending unit is further configured to send second scheduling information, where the second scheduling information includes information of the second frequency domain resource.
  • the capability information includes a scaling factor, and the scaling factor is used to determine the maximum aggregated spectrum.
  • a fifth aspect of the present application provides a communication device, including a processor and a memory, the processor stores program code, and the processor executes the program code to implement the method in the first aspect of the application and its implementation manners.
  • the sixth aspect of the present application provides a communication device, including a processor and a memory, the processor stores program code, and the processor executes the program code to implement the method in the second aspect of the application and its implementation manners.
  • the seventh aspect of the present application provides a communication system, including terminal equipment and network equipment;
  • the terminal device is used to execute the method as in the implementation manner of the first aspect of the present application;
  • the network device is used to execute the method as in the implementation manner of the second aspect of the present application.
  • the eighth aspect of the present application provides a computer storage medium in which instructions are stored in the computer storage medium.
  • the computer executes a method as in the first aspect and/or the second aspect of the present application.
  • the ninth aspect of the present application provides a computer program product.
  • the computer program product When the computer program product is executed on a computer, the computer executes the method as in the first aspect of the present application and/or the implementation manner of the second aspect.
  • a tenth aspect of the present application provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory, so that the communication device executes On the one hand, and/or, the method of the implementation of the second aspect.
  • An eleventh aspect of the present application provides a communication device, the communication device including: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run code instructions to execute the method in the implementation manner of the first aspect and/or the second aspect of the present application.
  • the twelfth aspect of the present application provides a readable storage medium for storing instructions, and when the instructions are executed, the implementation methods of the first aspect and/or the second aspect of the present application are realized.
  • the capability information carries the capability information of the largest aggregated spectrum supported by the first device within the first range.
  • This new method of reporting capability information avoids the need for the first device to report in accordance with the reporting method of the maximum bandwidth corresponding to each component carrier supported by the first device. Therefore, when designing the capabilities supported by the first device, there is no need to design in the manner that each component carrier corresponds to the maximum bandwidth, which reduces the design cost of the first device, reduces the capacity waste of terminal devices, and makes scheduling resources more efficient. Reasonable.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a method for reporting capability information according to an embodiment of the application
  • FIG. 3 is a schematic flowchart of another method for reporting capability information according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of a maximum aggregated spectrum supported by a terminal device according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of a maximum aggregated spectrum supported by a terminal device according to an embodiment of this application.
  • FIG. 7 is a schematic diagram of the maximum aggregated spectrum supported by another terminal device according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of the maximum aggregated spectrum supported by another terminal device according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of the maximum aggregated spectrum supported by another terminal device according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 15 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • the carrier in the embodiment of the present application refers to a continuous section of frequency spectrum in the frequency domain.
  • the carrier is equivalent to the carrier or component carrier (CC) defined in 3GPP NR.
  • the carrier can also refer to a bandwidth part (BWP), and the carrier can also Refers to a cell, a channel, a sub-channel, one or more resource blocks (resource block, RB), resource block group (resource block group, RBG), the resource block group can be a physical Continuously, such as physical resource lock (PRB), or physically discontinuous, but mapped to virtual continuous resources through certain mapping rules, such as virtual resource block (VRB) .
  • PRB physical resource lock
  • VRB virtual resource block
  • Data transmission includes sending data and/or receiving data.
  • Carrier validation Unless otherwise specified, the carrier validation in the embodiments of this application refers to the carrier (meaning including carrier, component carrier, BWP, resource block, resource block group, channel, sub-channel, and other continuous spectrum in various frequency domains). Different names) are determined by both the first device and the second device as the working state.
  • the working state may be one or more of configured, activated, or enabled.
  • the carrier validation includes:
  • the carrier is configured: the second device notifies the first device of the carrier configuration information (including information such as bandwidth, center frequency, etc.) through high-level signaling (such as a radio resource control message).
  • the carrier configuration information including information such as bandwidth, center frequency, etc.
  • high-level signaling such as a radio resource control message
  • the carrier is activated: the second device notifies the terminal device to activate the carrier through one of high-layer signaling, media access control (MAC) signaling, or physical layer signaling. Being activated can also be referred to as being enabled.
  • MAC media access control
  • the embodiment of the present application takes the carrier to take effect and the carrier is configured as an example for description.
  • Spectrum processing resources refer to the processing resources of the terminal equipment that are required by the terminal equipment to process the spectrum, such as the processing resources in the central processing unit of the terminal equipment. It can be understood that the spectrum processing The resources may also include other processing resources in the terminal device, such as memory resources, etc., which are not specifically limited here.
  • Carrier aggregation refers to that the terminal device supports more than one carrier to be scheduled or processed at the same time, and is not limited to one radio access technology.
  • the carrier here is also called component carrier (CC).
  • CC component carrier
  • these carriers can support the same radio access technology (RAT), such as carriers that support NR radio access technology; they can also support different RATs this time, for example, one carrier is LTE.
  • RAT radio access technology
  • One is an NR carrier; multiple carriers can belong to the same cell group (CG) or belong to different CGs, for example, one carrier is in the primary CG and one carrier is in the secondary CG; multiple carriers can belong to The same frequency band can also be in different frequency bands; multiple carriers can be used for communication with one connection or for communication with different connections, such as multi-radio dual connectivity (MR- DC), one carrier is used for LTE connection communication, and the other carrier is used for NR connection communication; multiple carriers can be used for communication on the same link or for communication on different links, such as one carrier Used for cellular link Uulink, one carrier is used for sidelink sidelink; multiple carriers can be used for communication of the same type of service, or used for communication of different services, for example, one carrier is used for enhanced mobile bandwidth Access (enhanced mobile broadband, eMBB) services, one carrier is used for IoV services, one carrier is used for high-reliability and low-latency communication services, and one carrier is used for massive internet of things (mIoT); or one Carriers
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the application.
  • the communication system may include, but is not limited to, one network device and one terminal device.
  • the number and form of the devices shown in FIG. 1 are only used as examples and do not constitute a limitation to the embodiment of the present application. In actual applications, it may include two or more Network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 is described by taking as an example a network device 102 and a plurality of terminal devices 101.
  • LTE system Long Term Evolution system
  • 5G NR system 5th generation 5G NR system
  • the communication system may also be a communication system that supports multiple wireless technologies, such as a communication system that supports LTE and NR; or, the communication system may also be a communication system that supports short-range communication, for example, a sidelink (sidelink, SL) technology communication system, wireless fidelity (wireless fidelity, WiFi) technology communication system, etc.
  • sidelink sidelink, SL
  • wireless fidelity wireless fidelity
  • WiFi wireless fidelity
  • the side link in the embodiment of the present application may also be referred to as a side link or a through link.
  • the network device 102 in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 102 may be an evolved base station (evolved NodeB, eNB), a transmission reception point (TRP), a next generation base station (gNB) in an NR system, and a transmission reception point (transmission reception point, TRP), relay node (RN), access point (access point, AP), base stations in other future mobile communication systems or access nodes in WiFi systems, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • TRP transmission reception point
  • RN relay node
  • access point access point
  • AP access point
  • base stations in other future mobile communication systems or access nodes in WiFi systems etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the terminal device 101 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • a terminal device may also be called a terminal (terminal), a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and so on.
  • Terminal devices can be cars with communication functions, smart cars, mobile phones, wearable devices, tablets (Pad), computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grids Wireless terminals in the transportation safety (transportation safety), wireless terminals in the smart city (smart city), wireless terminals in the smart home (smart home), and so on.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the terminal device 101 reports its own capability information to the network device 102, and the network device 102 performs resource scheduling based on the capability information reported by the terminal device 101, and then communicates with the terminal device 101. To communicate.
  • the terminal device 101 has a scheduling function.
  • the terminal device 101 receives the capability information sent by other terminal devices, and the terminal device 101 determines the resources that need to be scheduled according to the capability information sent by the other terminal devices, and according to the determination, it needs to be scheduled.
  • the resource communicates with other terminal devices.
  • the direct communication between the terminal device 101 and other terminal devices means that when the terminal device 101 and other terminal devices transmit information, the information does not need to be forwarded through the network device 102, but information is directly exchanged. For example, in the scenario of the vehicle-to-anything communication system V2X, or the machine-to-machine M2M scenario, and so on.
  • the corresponding capability information may change, and the new capability information needs to be reported to the second device again. Therefore, the corresponding methods are also different. Describe several different situations separately.
  • the first device reports capability information.
  • the first device is a terminal device and the second device is a network device as an example for description.
  • FIG. 2 is a schematic flowchart of a method for reporting capability information according to an embodiment of the present application.
  • step 201 the terminal device determines capability information.
  • the terminal device determines the capability information of the terminal device, and the capability information specifically includes the capability of the maximum aggregate spectrum supported by the terminal device in at least a first range, that is, the maximum aggregate spectrum represents the total spectrum that the terminal device can support in the first range, The total frequency spectrum is smaller than the first bandwidth, and the first bandwidth represents the sum of the maximum bandwidth of each aggregated carrier in the frequency band or frequency band combination supported by the terminal device in the first range.
  • the terminal device can calculate the maximum aggregated spectrum using the following formula:
  • J is the total number of aggregated carriers in the frequency band or combination of frequency bands in the first range supported by the terminal equipment
  • BW (j) is the maximum bandwidth of the terminal equipment carrier j
  • carrier j is the terminal equipment support in the first range
  • a carrier in the frequency band or combination of frequency bands Is the sum of the maximum bandwidth of each component carrier aggregated by all carriers in the frequency band or frequency band combination within the first range supported by the terminal device, Represents the sum of the maximum bandwidth of each component carrier supported by carrier aggregation of all frequency bands or frequency band combinations in the first range supported by the traversal terminal device.
  • the terminal device supports carrier aggregation of frequency band A, frequency band B, frequency band C, frequency band combination ⁇ frequency band A+frequency band B ⁇ and frequency band combination ⁇ frequency band A+frequency band B+frequency band C ⁇ .
  • J represents the number of component carriers supported by the terminal equipment in the corresponding frequency band.
  • Band A supports 1 carrier
  • band B supports 2 carriers
  • band C supports 1 carrier.
  • the terminal equipment is combined in the frequency band ⁇ frequency band A+frequency band B+frequency band C ⁇
  • the sum of the maximum bandwidth of each component carrier of the supported carrier aggregation is 400 MHz, and it can be known that the value is 400 MHz by traversing the carrier aggregation in all frequency bands and combinations of frequency bands supported by the terminal device. In the embodiment of the present invention, it is determined that the maximum aggregated frequency spectrum is less than 400 MHz.
  • Table 1 The corresponding table of the frequency bands supported by the terminal equipment and the maximum bandwidth of the frequency band combination
  • the maximum aggregated spectrum can also be expressed by the size of the PRB, for example, the maximum aggregated spectrum is calculated by the following formula:
  • J is the total number of carriers in the carrier aggregation in the frequency band or frequency band combination supported by the terminal equipment in the first range
  • represents the sub-carrier spacing
  • the values of N RB are shown in Table 2a and Table 2b, where ⁇ represents different subcarrier spacing SCS.
  • Table 2a Table of the maximum number of resource blocks corresponding to different sub-carrier intervals
  • Table 2b Table of the maximum number of resource blocks corresponding to different sub-carrier intervals
  • the capability information of the terminal device also includes information about the spectrum processing resource of the terminal device.
  • the spectrum processing resource refers to the local resource of the terminal device used when the terminal device receives and/or sends data.
  • the local resource may include, for example, a processor resource and/or a memory resource, which is not specifically limited here.
  • the spectrum processing resources may specifically include processing resources used to receive signals carried by a carrier (called equipment downlink spectrum processing resources or received spectrum processing resources), or processing resources used to transmit signals carried on a carrier (equipment uplink spectrum processing resources). Or send at least one of spectrum processing resources).
  • spectrum processing resources may also be referred to as side link processing resources.
  • the spectrum processing resource received by the device includes at least one of a receiving storage resource or a receiving processing resource.
  • the receiving storage resource may include at least one of the following: data storage resource after baseband sampling, data soft bit storage resource after demodulation, and transport block storage after decoding Resources, etc. It can be understood that the received storage resources may also include more resources, such as high-level data packet storage resources, which are not specifically limited here.
  • the receiving processing resources may include at least one of the following: radio frequency processing resources, front-end processing resources, channel estimation processing resources, demodulation processing resources, decoding processing resources, decryption processing resources, measurement processing resources, and the like.
  • the channel estimation processing resources may include at least one of the following: PDCCH channel estimation resources, PDSCH channel estimation resources, PSCCH channel estimation resources, and PSDCH channel estimation resources.
  • the demodulation processing resources may include at least one of the following: PDCCH demodulation resources, PDSCH demodulation resources, PSCCH demodulation resources, and PSDCH demodulation resources.
  • the decoding processing resource may include a polar code decoding unit and/or an LDPC decoding unit. It can be understood that the receiving processing resources may also include more resources, such as channel state calculation processing resources, protocol stack processing resources, etc., which are not specifically limited here.
  • the transmission of spectrum processing resources by the device includes transmission of storage resources and/or processing resources.
  • the sending storage resources may include at least one of the following: storage resources of high-level data packets, storage resources of MAC layer data packets, and storage resources of transmission blocks. It is understandable that the transmission storage resource may also include more resources, such as encoded data storage resources, modulated data storage resources, mapped data storage resources, etc., which are not specifically limited here.
  • the spectrum processing resources sent by the device may include at least one of the following: radio frequency processing resources, power amplifier processing resources, front-end processing resources, encryption processing resources, data packet processing resources, coding processing resources, modulation processing resources, transmission power control processing resources, and the like. It is understandable that the spectrum processing resources sent by the device may also include other resources, for example, including resources required for processing various channels, such as PUSCH channel processing resources, PUCCH channel processing resources, PSCCH processing resources, and PSDCH processing resources. In the actual application process, the spectrum processing resources sent by the device may also include more processing resources, which are not specifically limited here.
  • the capability information of the terminal device further includes first indication information, and the first indication information is used to indicate the first range of the terminal device.
  • the terminal device may support at least one first range.
  • the first range is a frequency range determined according to one or more frequency bands that the terminal device can support. For example, if the working range supported by the radio frequency device of the terminal equipment is frequency band A, the first range is frequency band A. It is understandable that the first range can also be determined according to the frequency band supported by other devices of the terminal device, such as the antenna and/or baseband processor of the terminal device, etc., which is not specifically limited here.
  • the division of the first range may be the same as the frequency range (FR) in the existing protocol, for example, the division of FR1 and FR2 in the 3GPP NR protocol, as shown in Table 3.
  • the first The range is the frequency range represented by FR1, or the first range is the frequency range represented by FR2, or the total frequency range represented by FR1 and FR2 are combined.
  • Table 3 The frequency range corresponding to FR1 and FR2 defined by the 3GPP NR protocol
  • the terminal device may support at least one first range. Specifically, in a possible implementation manner, as shown in Table 4, the terminal device supports FR1, or the terminal device supports FR2, or the terminal device supports FR1 and FR2.
  • the capability of the maximum aggregate spectrum supported by the terminal device in the first range for example, the maximum aggregate spectrum supported by the terminal device in FR1, or the maximum aggregate spectrum supported by the terminal device in FR2, or the terminal device is shared between FR1 and FR2
  • the determined range is the maximum aggregate spectrum supported in all frequency bands.
  • the first range may further include a set of one or more frequency bands.
  • the first range 1 is set A
  • the first range 2 is set B
  • set A ⁇ n34,n36,n40,n41 ⁇
  • set B ⁇ n77,n78,n79 ⁇
  • n34,n36,n40, n41, n77, n78, and n79 respectively represent different frequency bands.
  • n34, n36, n41, n77, n78, and n79 are the frequency band numbers defined in 3GPP NR 38.101, see TS 38.101-1 for details.
  • the first range may also be defined according to an air interface access protocol supported by the terminal device, such as radio access technology (RAT).
  • RAT radio access technology
  • LTE and NR if the terminal device supports all LTE frequency bands and/or frequency band combinations and some NR frequency bands and/or frequency band combinations share the spectrum processing resources of the terminal device, these can be
  • the frequency band and/or frequency band combination of LTE that share spectrum processing resources and the frequency band and/or frequency band combination of the NR part are defined as the first range. It is understandable that it can also be part of the LTE frequency band and/or frequency band combination and all NR.
  • the frequency band and/or frequency band combination is defined as the first range, as long as each air interface access protocol frequency band and/or frequency band combination can share the equipment spectrum processing resources of the terminal device, which is not specifically limited here.
  • terminal equipment that supports LTE and NR dual connectivity, it can also share equipment spectrum processing resources between all frequency bands or frequency band combinations in LTE, and all frequency bands or frequency band combinations in NR share processing capabilities between carriers, but LTE and Carriers between NRs cannot share processing capabilities.
  • Table 5 Several examples of defining the first range according to the air interface protocol supported by the terminal device are shown in Table 5 below.
  • the first range may also be defined according to the connection supported by the terminal device.
  • a terminal device that supports MR-DC supports the connection of two NRs. If the frequency band and/or combination of frequency bands supported by the terminal device can share spectrum processing resources in the two NR connections, the terminal device that supports MR-DC will be The frequency band where two NRs are connected, and/or the frequency band combination is defined as the first range. It is understandable that if frequency bands and frequency band combinations between multiple connections of a terminal device can share spectrum processing resources, then these connections that can share spectrum processing resources are defined as the first frequency resource. Of course, if processing resources cannot be shared between two NR connections, but spectrum processing resources can be shared within the connection, the frequency bands and/or frequency band combinations supported in the connection that can share processing resources are defined as a first range.
  • the first range may also be defined according to the link type supported by the terminal device.
  • the Uulink frequency band of the terminal equipment that supports the cellular air interface link Uulink and the sidelink sidelink, and/or the frequency band combination and the sidelink frequency band, and/or the frequency spectrum processing resources can be shared between the frequency band combinations, then Uu Link and sidelink are defined as the first range, or frequency bands of Uulink and sidelink that can share spectrum processing resources, and/or a combination of frequency bands are defined as the first range.
  • Spectrum processing resources can be shared between carriers in the frequency band and/or frequency band combination supported by Uulink and Sidelink. Examples are shown in Table 6 below.
  • the first range can also be defined according to the type of service supported by the terminal device, or called the supported application scenario or the supported feature. For example, for a terminal device that supports eMBB services and supports V2X features, the If the frequency band and/or frequency band combination supported by the terminal device in the eMBB scenario and the frequency band and/or frequency band combination supported in the V2X scenario have some or all of the frequency bands and/or frequency band combinations that can share spectrum processing resources, these can be shared The frequency band and/or frequency band combination of the spectrum processing resource is defined as the first range.
  • multiple frequency ranges can be defined through Table 7 below.
  • Table 7 is an example of dividing the frequency range according to whether most of the terminal equipment in the industry can share radio frequency devices. For example, for the reception of wireless signals with a frequency spectrum of less than 1 GHz, the same receiving radio frequency channel can be shared. Then divide the infinite signal less than 1GHz into a frequency range, and so on.
  • Frequency Range Spectrum range Frequency Range Frequency Range 1 ⁇ 1GHz Frequency Range Frequency Range 2 1GHz-3GHz Frequency Range Frequency Range 3 3GHz-5GHz Frequency Range Frequency Range 4 5GHz-8GHz Frequency Range Frequency Range 5 10GHz-30GHz Frequency Range Frequency Range 6 30GHz-45GHz Frequency Range Frequency Range 7 45GHz-75GHz Frequency Range Frequency Range 8 70GHz-80GHz
  • the first range can be defined as one or more frequency ranges.
  • the carriers in the first range can share spectrum processing resources.
  • the terminal The device shares spectrum processing resources among carriers supported by FR1, FR2, FR3, and FR4.
  • the spectrum range indicated by FR1, FR2, FR3, and FR4 is less than 8 GHz.
  • the first range is defined as FR1, FR2, FR3, and FR4, it means that spectrum processing resources are shared among aggregated carriers less than 8 GHz.
  • the first range is determined by the working mode of at least two carriers that can share spectrum processing resources.
  • the working mode is determined by the frequency band where the carrier is located, the frequency band combination, the supported air interface protocol, the supported connection type, At least one of the supported link type and the supported service type is determined.
  • the first range is defined by both the air interface protocol supported by the terminal device and the service type supported by the terminal device, or by the link type supported by the terminal device and the different connections supported by the terminal device, or according to the frequency band range supported by the operator To define, the specifics are not limited here.
  • the above-mentioned spectrum processing resources that can be shared between at least 2 carriers in the first range means that when a terminal device uses at least 2 carriers in the first range to transmit data, the terminal device can call When each of the at least two carriers is independently used for data transmission, the sum of the maximum spectrum processing resources required by the terminal device.
  • the capability information of the terminal device further includes second indication information, the second indication information is used to indicate the minimum guaranteed bandwidth of at least one carrier within the first range, and the minimum guaranteed bandwidth indicates that the terminal device is pre-determined for the carrier. Processing power to stay.
  • the spectrum processing resources that can be shared by the terminal equipment in the first range are less than or equal to the total aggregated spectrum minus the sum of the minimum guaranteed bandwidth of the at least one carrier, which can be expressed by the following formula, for example:
  • K is the number of carriers valid in the first range
  • channel bandwidth (k) is the spectrum allocated by the valid carrier k in the first range
  • L is the number of carriers with the minimum guaranteed bandwidth defined in the first range
  • the guaranteed bandwidth (l) is the minimum guaranteed bandwidth of carrier 1 in the first range. Represents the sum of the minimum guaranteed bandwidth of all carriers with the minimum guaranteed bandwidth in the first range. Indicates the sum of the spectrum that can be scheduled for all effective carriers in the first range.
  • the effective carrier here refers to the carrier that can be used for data transmission.
  • the minimum guaranteed bandwidth may be determined according to the channel that the terminal device needs to monitor and/or the communication that the terminal device needs to maintain, and/or the implementation architecture of the terminal device, according to predefined rules or independently determined by the terminal device.
  • the minimum guaranteed bandwidth corresponding to one carrier may be defined as the minimum bandwidth for the terminal device to maintain one or more communication functions of the one carrier.
  • the communication function may include at least one of the following: initial access, system message reception, paging message reception, random access, uplink signaling feedback, small packet reception or transmission, wake-up signal reception or transmission, downlink control channel monitoring, measurement, Mobility, channel quality detection, timing synchronization, frequency tracking, phase tracking, beam tracking and selection, etc. It is understandable that other communication functions may also be included, such as cell selection and reselection, which are not specifically limited here.
  • the minimum guaranteed bandwidth may be the bandwidth that must be supported by a terminal that guarantees a successful initial access.
  • the value of the minimum guaranteed bandwidth can include any of the following: 5MHz, 10MHz, 20MHz, 40MHz.
  • at least one bandwidth of the initial BWP bandwidth that must be supported by the NR system is defined as the minimum guaranteed bandwidth.
  • the minimum guaranteed bandwidth can be the bandwidth of the synchronization channel, which is 1.4 MHz.
  • the control resource set is the frequency domain resource size of the downlink control channel PDCCH.
  • the minimum guaranteed bandwidth can also be defined in units of resource blocks actually used for data transmission. For example, in the 3GPP NR system, when the subcarrier spacing is 30 kHz, the minimum guaranteed bandwidth is 48 resource block RBs. In the 3GPP LTE system, when the subcarrier spacing is 15kHz, the minimum guaranteed bandwidth is 6RB.
  • the minimum guaranteed bandwidth of the carrier supported by the terminal equipment can be different value.
  • the minimum guaranteed bandwidth of the carrier in band A is 20 MHz
  • the minimum guaranteed bandwidth of the carrier in band B is 40 MHz.
  • the minimum guaranteed bandwidth of the LTE carrier is 1.4 MHz
  • the minimum guaranteed bandwidth of the carrier in the NR FR1 frequency band is 20 MHz
  • the minimum guaranteed bandwidth of the carrier in the NR FR2 frequency band is 50 MHz.
  • the minimum guaranteed bandwidth of the Uulink carrier is 40 MHz
  • the minimum guaranteed bandwidth of the side link carrier is 20 MHz.
  • the minimum guaranteed bandwidth of the eMBB carrier is 40MHz
  • the minimum guaranteed bandwidth of the NRV2X carrier is 40MHz
  • the minimum guaranteed bandwidth of the LTE V2X carrier is 20MHz
  • the minimum guaranteed bandwidth of the mIoT carrier is 5MHz
  • the minimum guaranteed bandwidth of the URLLC carrier The bandwidth is 20MHz and so on.
  • the minimum guaranteed bandwidth of the carrier can be zero. When the minimum guaranteed bandwidth of the carrier is 0, it means that the terminal device will not reserve spectrum processing resources for the carrier.
  • Fig. 5 is a schematic diagram of a maximum aggregated spectrum supported by a terminal device according to an embodiment of the application.
  • the terminal device is working in the LTE and NR dual connection mode, and the terminal device is configured or activated with one LTE carrier 1 and one NR carrier 2.
  • the minimum guaranteed bandwidth of carrier 1 is 10 MHz
  • the bandwidth of carrier 2 is 40 MHz
  • the maximum aggregated spectrum is 100 MHz.
  • Carrier 2 can be scheduled up to 90 MHz, and carrier 1 can be scheduled over 10 MHz. For example, carrier 1 can be scheduled to LTE's maximum bandwidth of 20 MHz.
  • the terminal equipment will reserve the corresponding minimum guaranteed bandwidth.
  • the terminal equipment supports carrier aggregation for frequency band A and frequency band B.
  • the maximum aggregated spectrum of the terminal equipment is 100MHz
  • the minimum guaranteed bandwidth of carrier A under frequency band A of the terminal equipment is 10MHz
  • the minimum guaranteed bandwidth of carrier B under frequency band B is 20MHz.
  • the total spectrum processing resources that can be used by terminal equipment for carrier B is 100 MHz.
  • the shared spectrum processing resource that the terminal device can use for carrier A is 100 MHz.
  • the maximum spectrum processing resource that the terminal device can use to process carrier A and carrier B at the same time is 100MHz.
  • the spectrum processing resource that the terminal device can share is 70MHz (100MHz-10MHz-20MHz)
  • the maximum spectrum processing resource that the terminal device can use to process carrier A is 80 MHz (100 MHz-20 MHz)
  • the maximum spectrum processing resource that the terminal device can use to process carrier B is 90 MHz (100 MHz-10 MHz).
  • the capability information of the terminal device also includes whether the terminal device supports adjusting the minimum guaranteed bandwidth corresponding to the carrier.
  • the terminal device adjusts the minimum bandwidth corresponding to the carrier according to a specific scenario.
  • the terminal device supports carrier aggregation of carrier A and carrier B.
  • the maximum channel bandwidth of carrier A is 100 MHz
  • the maximum channel bandwidth of carrier B is 100 MHz
  • the maximum aggregated spectrum of terminal equipment is 100 MHz.
  • the terminal equipment can determine that the minimum guaranteed bandwidth of the main carrier is 40MHz, the minimum guaranteed bandwidth of the subcarrier is 0MHz, the main carrier has a maximum of 100MHz spectrum for data transmission, and the subcarrier has a maximum of 60MHz (100MHz-40MHz) spectrum for data transmission. data transmission.
  • carrier A when carrier A is the primary carrier of the terminal equipment, the minimum guaranteed bandwidth of carrier A is 40 MHz, carrier A can have 100 MHz for data transmission, and carrier B can have up to 60 MHz for data transmission. If carrier A is updated from the primary carrier to the secondary carrier, and the guaranteed bandwidth of carrier A is 0 at this time, then carrier A can have a maximum of 60 MHz for data transmission.
  • the terminal device supports adjusting the minimum guaranteed bandwidth corresponding to the carrier, it can improve the efficiency of resource use when the application scenario changes.
  • the terminal device needs to send the minimum guaranteed bandwidth to the network device.
  • the terminal device does not need to report the Minimum guaranteed bandwidth.
  • the terminal equipment may set the first granularity of the capabilities.
  • the unit of the first granularity may be MHz, Hz, or GHz, etc., for example, the first granularity is 5 MHz or 10 MHz.
  • the unit of the first granularity may also be other units, such as RB or RBG as the unit.
  • the first granularity may be determined according to a predefined rule, for example, it is specified that the size of the first granularity is 5 MHz.
  • the first granularity may also be determined by the terminal device according to the capabilities of the terminal. It can be understood that when the value of the first granularity is larger, the scheduling complexity of the network device is reduced, and the signaling load is lower. When the value of the first granularity is smaller, the terminal device has greater flexibility.
  • the maximum aggregated spectrum capability of the terminal device is represented by the quantity of the second granularity.
  • the second granularity is an integer multiple of the first granularity or the same as the first granularity.
  • the terminal device determines that the size of the first granularity is 10MHz, the second granularity is 20MHz, and the information of the maximum aggregated spectrum capacity is defined by two second granularities, that is, an integer multiple of 20MHz, then the terminal device determines the maximum aggregated spectrum .
  • the value of the maximum aggregated spectrum can be expressed as an integer multiple of 20MHz, for example, the maximum aggregated spectrum is 80MHz, or 100MHz.
  • the terminal device may also determine the third granularity of sharing spectrum processing resources.
  • the third granularity is an integer multiple of the first granularity or the same as the first granularity.
  • the third granularity is equal to the first granularity, and the first granularity is 20 MHz.
  • the capability information of the terminal device further includes third indication information.
  • the third indication information is used to indicate that the terminal device supports scheduling of multiple non-contiguous resource units (RU) in a carrier within the first range, that is, the terminal device supports scheduling of multiple non-contiguous resource units in one carrier.
  • the total sum of multiple non-contiguous resource units that can be scheduled in the aggregated carrier within the first range is less than or equal to the maximum aggregated spectrum.
  • the size of the resource unit can be determined according to predefined rules. For example, the size of the resource unit is 5 MHz. Alternatively, the size of the resource unit is the size of a frequency domain block using the same precoding, for example, the size of the resource unit is one or more resource block groups (RBG). Or it can be determined according to the capabilities of the terminal device. Preferably, the size of the resource unit is equal to the first granularity or an integer multiple of the first granularity.
  • the third indication information is used to indicate that the terminal device supports scheduling of multiple non-contiguous resource units in a carrier within the first range, and the multiple resources that can be scheduled within the carrier within the first range The sum of the non-contiguous resource units is less than or equal to the maximum aggregated spectrum.
  • At least one carrier includes a non-contiguous resource unit.
  • each carrier includes non-contiguous resource units.
  • 2 carriers respectively include non-contiguous resource units.
  • the third indication information further includes at least one of the following information: a first granularity value, a second granularity value, a third granularity value, and the size of the resource unit.
  • the terminal equipment is determined to support continuous spectrum processing within the carrier.
  • the maximum aggregated spectrum supported by the terminal device in the first range is 100 MHz.
  • the bandwidth corresponding to carrier 1 activated by the terminal equipment in band A is a continuous 40MHz spectrum
  • the bandwidth corresponding to carrier 2 activated in band B is a continuous 60MHz spectrum.
  • the sum of the bandwidth corresponding to carrier 1 and the bandwidth corresponding to carrier 2 is equal to Maximum aggregate spectrum.
  • the terminal device determines to support the processing of multiple non-contiguous resource units in the carrier within the first range.
  • the value of the non-contiguous resource unit may be the smallest granularity of the maximum aggregate spectrum capability, or other values.
  • the terminal device supports the carrier aggregation of band A and band B in the first range.
  • the maximum aggregated spectrum supported in the first range is 100MHz
  • the size of the resource unit is 10MHz
  • the terminal device is activated in band A
  • Carrier 1 can schedule 2 discontinuous resource units in the frequency domain
  • the total frequency spectrum of 4 resource units is 40MHz.
  • Carrier 2 activated in frequency band B can schedule 6 discontinuous resource units in the frequency domain and 6 resources
  • the total frequency spectrum of the unit is 60MHz.
  • the carrier supported by the terminal device may include a carrier of a continuous spectrum or a carrier of a non-continuous spectrum, which is not limited herein.
  • the size of the resource unit of each carrier of the terminal device may be the same or different.
  • the design and implementation of the terminal device are simple and easy to implement.
  • the network device can determine different resource unit sizes for different types of terminal devices, which can increase the flexibility of the network device in scheduling resources.
  • the carrier aggregation described in the embodiments provided in this application is carrier aggregation in a broad sense. Any two or more carriers used for data transmission at the same time is called carrier aggregation of these carriers. Whether these carriers are in the same frequency band (for example, one is frequency band A and the other is frequency band B), whether they are the same air interface protocol (for example, they can be LTE air interface or NR air interface respectively), and whether they are in the same connection (for example, they can be two respectively) Different NR connections), whether they are the same link (for example, Uu link and side link respectively).
  • frequency band for example, one is frequency band A and the other is frequency band B
  • the same air interface protocol for example, they can be LTE air interface or NR air interface respectively
  • connection for example, they can be two respectively
  • Different NR connections whether they are the same link (for example, Uu link and side link respectively).
  • the capability information of the terminal device further includes fifth indication information, where the fifth indication information is used to indicate the maximum number of aggregation layers of the terminal device within the first range.
  • the maximum number of aggregation layers supported by the terminal device in the first range can be expressed by the following formula:
  • v (j) represents the maximum number of MIMO layers of carrier j
  • J represents the total number of aggregated carriers in the frequency band or combination of frequency bands of the carrier in the first range.
  • the capability information in the embodiment of the present application may include a specific value of the maximum aggregated spectrum, and may also include a scaling factor, which is used to determine the maximum aggregated spectrum.
  • the network device calculates the maximum aggregated spectrum of the terminal device according to the following formula:
  • BW (j) represents the maximum bandwidth of carrier j.
  • the maximum aggregated spectrum of the terminal device can also be expressed according to the following formula:
  • the terminal device determines the capability information of the terminal device, where the capability information specifically includes capability information of the largest aggregated spectrum supported by the terminal device in at least one first range.
  • the terminal device may determine more than one first frequency range, and the maximum aggregate spectrum capability information supported in each first frequency range may be the same or different. As shown in Table 8 below, it means that the terminal device has the ability to support three first ranges, and each first range has a corresponding maximum aggregated spectrum.
  • step 202 the terminal device sends capability information to the network device.
  • the terminal device After the terminal device determines the capability information, the terminal device sends the capability information to the network device.
  • the terminal device sends the capability information to the network device through high-level signaling in a manner of reporting the capability information of the terminal device.
  • the terminal device sends capability information to the network device by means of reporting capability information.
  • the terminal device sends the capability information to the network device through RRC configuration signaling.
  • the capability information can be expressed in a variety of different implementation manners.
  • the maximum aggregated spectrum in the first range included in the capability information can be reported according to the following format:
  • CA-AggregatedSpectrum:: ENUMERATED ⁇ 40MHz,50MHz,150MHz,200MHz,250MHz,300MHz,... ⁇
  • the reporting format of the maximum aggregated spectrum can also be represented by resource blocks.
  • the number of resource blocks may be different. For example: for a subcarrier interval of 30KHz, the maximum aggregated spectrum in the first range included in the capability information can be reported according to the following format:
  • CA-AggregatedSpectrum:: ENUMERATED ⁇ 25RB,50RB,65RB,135RB,273RB,... ⁇
  • the maximum aggregated spectrum in the first range contained in the capability information can be reported according to the following format:
  • CA-AggregatedSpectrum:: ENUMERATED ⁇ 12RB,25RB,50RB,135RB,... ⁇
  • the terminal device may also report the scaling factor to indicate the capability information of the largest aggregated spectrum in the capability information, for example:
  • CA-AggregatedSpectrumFactor:: ENUMERATED ⁇ 0.4,0.5,0.6,0.7,0.8,0.9,... ⁇
  • the value of the maximum aggregate spectrum in different first ranges may be different. It can be represented by different cells respectively.
  • the terminal device may report capability information to the network device, which are not specifically limited here.
  • the terminal device sending capability information to the network device further includes that the network device receives the capability information sent by the terminal device to the network device.
  • this embodiment further includes step 203.
  • the network device determines the first frequency domain resource in the first range according to the capability information.
  • the network device After the network device receives the capability information reported by the terminal device, the network device determines the scheduled first frequency domain resource in the first range according to the capability information.
  • the network device determines the first frequency domain resource that needs to be scheduled, it ensures that the first frequency domain resource scheduled in the first range does not exceed the maximum aggregation of carrier aggregation supported by the terminal device in the first range indicated by the capability information. Spectrum.
  • the network device configures the channel bandwidth of each carrier of the carrier aggregation in the first range, and the network device determines that the sum of the channel bandwidths of all configured carriers in the first range does not exceed the maximum indicated by the capability information Aggregate spectrum.
  • the network device activates the activated BWP bandwidth of each carrier in the first range, and determines that the sum of the channel bandwidths of all activated BWPs in the first range does not exceed the maximum aggregated spectrum indicated by the capability information.
  • the network device configures the channel bandwidth of the BWP of the configured carrier within the first range, and the network device determines the sum of the maximum BWP values of all configured carriers, and does not exceed the maximum aggregated spectrum indicated by the capability information.
  • the network device is configured with N carriers, where N is a positive integer greater than or equal to 1, and each carrier is configured with one or more BWPs, then Do not exceed the maximum aggregated spectrum indicated by the capability information.
  • the network device capability information and the effective carrier determine the first frequency range. For example, the network device learns from the capability information reported by the terminal device that the maximum aggregated spectrum supported by the terminal device in the first range is 100 MHz. Under the network of operator 1, the frequency spectrum allocated by the operator in frequency band A in the first range It is 40MHz; the frequency spectrum allocated in frequency band B is 60MHz. The network equipment is under the network of operator 1, and two carriers are configured for the terminal equipment. Carrier 1 is in frequency band A, the maximum BWP of carrier 1 is 40 MHz, and carrier 2 is in frequency band B, and the maximum BWP of carrier 2 is 60 MHz.
  • the frequency spectrum allocated to frequency band A in the first range by operator 2 is 80 MHz, and the frequency spectrum allocated to frequency band B is 40 MHz.
  • the network equipment configures two carriers for the terminal equipment under the network of operator 2.
  • Carrier 1 is in frequency band A, and the maximum BWP of carrier 1 is 60 MHz, and carrier 2 is in frequency band B, and the maximum BWP of carrier 2 is 40 MHz. That is, whether in the network of operator 1 or operator 2, the sum of the maximum BWP of the carrier configured by the network device for the terminal device does not exceed the maximum aggregated spectrum indicated in the capability information reported by the terminal device.
  • the network device further determines the size of the first range that needs to be scheduled according to the first indication information in the capability information, so as to determine the carrier that needs to be configured.
  • the network device determines that the first range is Uulink and sidelink according to the first indication information, and the maximum aggregated spectrum supported in the first range is 100MHz. If the network device does not configure sidelink for the terminal device, the network device configures carrier 1 for the terminal device, and the bandwidth of carrier 1 is less than or equal to 100 MHz. If the network device configures both Uulink and Sidelink for the terminal device, the bandwidth of carrier 1 in Uulink is less than or equal to 60MHz, and the bandwidth of carrier 2 of sidelink is less than or equal to 40MHz. The total configured bandwidth of Uulink's carrier 1 and Sidelink's carrier 2 does not exceed 100MHz.
  • the network device further determines the first frequency domain resource within the first range according to the second indication information in the capability information.
  • the network device determines the minimum guaranteed bandwidth of each carrier in the first range according to the second indication information in the capability information.
  • the network device determines that the frequency domain resource that can be shared by the carrier does not exceed the sum of the maximum aggregated spectrum minus the minimum guaranteed bandwidth of the effective carrier.
  • FIG. 8 is a schematic diagram of the maximum aggregated spectrum supported by another terminal device according to an embodiment of the application.
  • the network equipment knows that frequency band A and frequency band B can share frequency domain resources according to the capability information reported by the terminal equipment.
  • the network equipment can configure the bandwidth of the effective carrier of frequency band A Less than or equal to the maximum aggregated spectrum.
  • the bandwidth that the network device can configure for the band A carrier is less than or equal to the maximum aggregated spectrum minus the minimum guaranteed bandwidth of the band B carrier, and the bandwidth that the network device configures for the band B carrier is less than Or equal to the maximum aggregate spectrum minus the minimum guaranteed bandwidth of the band A carrier.
  • FIG. 9 is a schematic diagram of the maximum aggregated spectrum supported by another terminal device according to an embodiment of the application.
  • the network device knows that Uulink and Sidelink can share frequency domain resources based on the capability information reported by the terminal device.
  • the network device can give Uulink the effective carrier configuration. The bandwidth is less than or equal to the maximum aggregated spectrum.
  • the bandwidth that the network device can configure for the Uulink carrier is less than or equal to the maximum aggregate spectrum minus the minimum guaranteed bandwidth of the Sidelink carrier, and the network device configures the Sidelink carrier
  • the bandwidth is less than or equal to the maximum aggregated spectrum minus the minimum guaranteed bandwidth of the Uulink carrier.
  • the bandwidth that the network device can configure for the Sidelink valid carrier is less than or equal to the maximum aggregated spectrum.
  • the minimum guaranteed bandwidth of Uulink is 40MHz
  • the minimum guaranteed bandwidth of Sidelink is 20MHz
  • the maximum aggregated spectrum is 100MHz.
  • T1, t2, and t3 shown in FIG. 9 are three different time points. Sidelink and Uulink can belong to the same frequency band, or they can belong to different frequency bands, and the details are not limited here.
  • one of the specific application scenarios is that in the initial stage of terminal device access to the network, the total bandwidth of the carrier aggregation that the terminal device can use for Uulink data transmission is less than or equal to the maximum aggregated spectrum, for example The maximum aggregate spectrum is 100MHz.
  • the terminal device activates the sidelink, and the minimum guaranteed bandwidth of the sidelink is 40MHz, so the total bandwidth after carrier aggregation used for Uulink data transmission is less than or equal to 60MHz.
  • the network device further determines the first frequency domain resource within the first range according to the third indication information in the capability information.
  • the network device determines, according to the third indication information, that multiple non-contiguous resource units can be configured for the carrier of the terminal device within the first range.
  • the network device further determines the first frequency domain resource within the first range according to the fifth indication information in the capability information.
  • the network device determines the total number of MIMO layers supported by the terminal device within the first range according to the fifth indication information, and configures the total number of MIMO layers of each carrier so that the sum of the total number of MIMO layers on all configured carriers does not exceed Maximum number of aggregation layers.
  • the network device may also configure the first frequency domain resource according to more indication information in the capability information, which is not specifically limited here.
  • the network device After determining the first frequency domain resource, the network device generates first scheduling information according to the first frequency domain resource.
  • this embodiment further includes step 204.
  • the network device sends the first scheduling information to the terminal device.
  • the network device After the network device generates the first scheduling information, the network device sends the first scheduling information to the terminal device.
  • the network device may carry the first scheduling information through one or more of RRC signaling, MAC layer signaling, or physical layer signaling, and the first scheduling information may be sent in one signaling To the terminal device, it can also be sent to the terminal device in multiple signaling, which is not specifically limited here.
  • the network equipment configures the maximum BWP of carrier 1 to be 60 MHz, and the network equipment configures the maximum BWP of carrier 2 to 40 MHz.
  • the network equipment carries these two pieces of configuration information through RRC signaling and sends them to the terminal equipment.
  • the network equipment configures carrier 1 to have two BWPs through RRC signaling, the bandwidth of BWP1 is 80MHz, the bandwidth of BWP2 is 60MHz, and the network equipment configures carrier 2 to have two BWPs, the bandwidth of BWP3 is 20MHz, and the bandwidth of BWP4 is 40MHz.
  • the network device carries activation signaling through physical layer signaling or MAC signaling, and activates BWP1 and BWP3, and at time T2, carries activated signaling through physical layer signaling or MAC signaling to activate BWP2 and BWP4.
  • the network device may also send the first scheduling information in other ways, which is not specifically limited here.
  • the network device sending the first scheduling information to the terminal device further includes that the terminal device receives the first scheduling information.
  • this embodiment further includes step 205.
  • the terminal device determines the spectrum processing resource according to the first scheduling information.
  • the terminal device After receiving the first scheduling information, the terminal device determines the first frequency domain resource scheduled by the network device according to the first scheduling information.
  • the first frequency domain resource is used by the first device for data transmission, and the first frequency domain resource is less than or equal to Maximum aggregate spectrum.
  • the terminal device After determining the first frequency domain resource, the terminal device determines the spectrum processing resource of the terminal device according to the first frequency domain resource.
  • the spectrum processing resource includes the terminal device's use when receiving and/or sending data carried on the first frequency domain resource. The processing resources of the terminal equipment.
  • the terminal device determines the effective carrier in the first range according to the first frequency domain resource, and configures the corresponding spectrum processing resource according to the effective carrier. For example, in the first frequency domain resource, the network device is instructed to activate 2 carriers, namely Carrier 1 and Carrier 2, and the bandwidths of Carrier 1 and Carrier 2 are 20MHz and 40MHz, respectively, and the terminal device allocates Carrier 1 and Carrier 2 respectively 20MHz and 40MHz spectrum processing resources.
  • the network device is instructed to activate 2 carriers, namely Carrier 1 and Carrier 2, and the bandwidths of Carrier 1 and Carrier 2 are 20MHz and 40MHz, respectively, and the terminal device allocates Carrier 1 and Carrier 2 respectively 20MHz and 40MHz spectrum processing resources.
  • the network equipment configures two carriers for the terminal equipment.
  • Carrier 1 is in frequency band A and the maximum BWP is 40MHz.
  • Carrier 2 is in frequency band B and the maximum BWP is 60MHz.
  • the terminal equipment allocates 40MHz to carrier 1.
  • the frequency spectrum processing resources of the carrier 2 are allocated 60MHz frequency spectrum processing resources.
  • the terminal device when the terminal device determines from the first frequency domain resource that the effective carrier in the first range includes a non-contiguous resource unit, the terminal device configures the corresponding spectrum according to the effective non-contiguous carrier Processing resources. For example, in the first frequency domain resource, the network device configures two carriers for the terminal device. Carrier 1 includes a continuous resource unit, and carrier 2 includes a non-continuous resource unit. Then the terminal device allocates a corresponding part of the frequency spectrum to carrier 1. For processing resources, the non-contiguous resource units in carrier 2 are respectively allocated corresponding spectrum processing resources.
  • the terminal device learns that the first frequency domain resource indicates that the spectrum simultaneously received and/or transmitted within the first range exceeds that of the terminal device within the first range. If the maximum aggregated spectrum is supported, the terminal device determines that the first scheduling information is wrong, the terminal device can discard the first scheduling information, or send a prompt to the network device that the first scheduling information is wrong.
  • the maximum aggregated spectrum supported, the data corresponding to the part of the first frequency domain resource that exceeds the maximum aggregated spectrum is not received and/or not sent, which is not specifically limited here.
  • the maximum aggregated spectrum supported by the terminal device is less than the sum of the maximum bandwidth corresponding to each carrier in the frequency band or combination of frequency bands in the first range, which reduces the spectrum processing capability that the terminal device needs to design, and is beneficial to the cost of the terminal device. reduce.
  • the reporting capability of the first device is updated.
  • the first device is a terminal device and the second device is a network device as an example for description.
  • the corresponding capability information changes.
  • the capability information of the terminal device changes due to multiple reasons, it may be the change of the terminal device under different air interface protocols, or it may be the change of the capability information caused by the change of the application scenario.
  • the update of the capability information includes the update of one or more of the capability information described in the first embodiment, such as the update of the maximum aggregate spectrum, the update of the first range, and the update of the third indication information.
  • the terminal device updates the first range as an example for description.
  • the process of updating other information in the capability information reported by the terminal device is similar and will not be described one by one.
  • FIG. 3 it is a schematic flowchart of another method for reporting capability information according to an embodiment of this application.
  • step 301 the terminal device determines capability information.
  • step 302 the terminal device sends capability information to the network device.
  • step 303 the network device determines the first frequency domain resource within the first range according to the capability information.
  • step 304 the network device sends the first scheduling information to the terminal device.
  • step 305 the terminal device determines a spectrum processing resource according to the first scheduling information.
  • Steps 301 to 305 in this embodiment are similar to steps 201 to 205 in the embodiment of FIG. 2 described above, and the details are not repeated here.
  • step 306 the terminal device sends fourth indication information to the network device.
  • the terminal device sends the updated capability information to the network device.
  • the terminal device can update all or part of the capability information. For example, when the first range changes, the terminal device sends fourth indication information to the network device.
  • the fourth indication information indicates the update of the capability information of the terminal device.
  • the first range is determined by the working mode of at least two carriers that can share spectrum processing resources.
  • the working mode is determined by the frequency band where the carrier is located, the frequency band combination, the supported air interface protocol, the supported connection type, and the supported link type.
  • At least one of the supported business types is determined.
  • the first range is defined by the air interface protocol supported by the terminal device and the service type supported by the terminal device, or defined by the link type supported by the terminal device and the different connections supported by the terminal device, or according to the frequency band range supported by the operator. definition.
  • the terminal equipment under the NSA network supports LTE and NR With two air interface protocols, the terminal equipment under the SA network supports the NR network. Then when the terminal device accesses the SA network from the NSA network, the determination of the first range is changed from the LTE air interface and the NR air interface to only the NR air interface, so the terminal device determines that the first range has changed. Or when the first range is defined according to a set of frequency bands supported by the terminal device, if the terminal device has newly added frequency bands and/or frequency band combinations that can be supported, the terminal device determines that the first range has changed. Or, the link type supported by the terminal device has changed, for example, from only supporting Uulink to supporting both Uulink and Sidelink, the terminal device determines that the first range has changed.
  • NSA non-standalone
  • SA standalone
  • the first range is defined according to the air interface access protocol supported by the terminal device
  • the terminal device is from NSA (Non-standalone) to SA (standalone) network
  • the NSA network terminal supports both LTE and NR air interface protocols
  • SA network If the terminal device supports the NR network, the first range is changed from the LTE air interface and the NR air interface to only the NR air interface. Therefore, the terminal device needs to update the capability information, and the network device needs to reschedule resources to perform corresponding matching.
  • the first range is defined based on the set of frequency bands supported by the terminal device, if there are newly added frequency bands and/or combinations of frequency bands that can be supported, the first range may change.
  • the terminal device needs to update the capability information, and the network device Resources need to be rescheduled to perform corresponding matching.
  • the link type supported by the terminal device changes, from only supporting Uulink to supporting both Uulink and Sidelink, resulting in a change in the first range, the terminal device needs to update its capability information, and the network device needs to be renewed. Scheduling resources to perform corresponding matching.
  • the terminal device can update the capability information to the network device by de-registration and/or detachment. It is understandable that the terminal device can also update the capability information to the network device in other ways.
  • the network device updates the capability information, for example, the capability information is updated by a registration and/or attachment method, and the terminal device updates the capability information by sending auxiliary information, etc. The specifics are not limited here.
  • step 307 the network device determines the second frequency domain resource according to the fourth indication information.
  • the network device After the network device receives the fourth instruction information sent by the terminal device, the network device determines the first range that needs to be updated according to the fourth instruction information, and then determines the second frequency domain resource according to the updated first range and the capability information of the terminal device , The second frequency domain resource is used for data transmission between the network device and the terminal device.
  • the network device determines the second frequency domain resource according to the updated first range and the capability information of the terminal device, and the network device determines the second frequency domain resource in step 203 in the embodiment of FIG. 2 according to the first range and the capability information of the terminal device.
  • the method of the first frequency resource is similar, and the details are not repeated here.
  • step 308 the network device sends second scheduling information to the terminal device.
  • step 309 the terminal device determines the second spectrum processing resource according to the second scheduling information.
  • Step 308 and step 309 in this embodiment are similar to step 204 and step 205 in the above-mentioned embodiment of FIG. 2, and details are not repeated here.
  • the terminal device may explicitly carry the updated first range information in the fourth indication information, or may not carry the updated first range information in the fourth indication information, but only carry the updated information information.
  • the network device After the network device receives the message indicating the update sent by the terminal device, it will send a query message to the terminal device.
  • the query message is used to query the updated capability information of the terminal device, or the terminal device can also use the terminal device auxiliary information (
  • the UE assisted information sends the updated information of the first range to the network device, which is not specifically limited here.
  • the terminal device sends to the network device the maximum aggregated spectrum supported by the terminal device in the first range, and the maximum aggregated spectrum is less than the sum of the maximum bandwidths of all aggregated carriers supported by the terminal device in the first range, so that When designing the capabilities supported by the terminal device, it is avoided that the terminal device needs to design the corresponding capabilities according to the maximum bandwidth of all the aggregated carriers supported.
  • FIG. 4 it is a schematic flowchart of another method for reporting capability information according to an embodiment of this application.
  • the first terminal device when the first terminal device is reporting capability information to the network device, the first terminal device corresponds to the first device, and the network device corresponds to the second device.
  • the first terminal device receives the capability information sent by the second terminal device, the first terminal device corresponds to the second device, and the second terminal device corresponds to the first device.
  • step 401 the first terminal device determines capability information.
  • step 402 the first terminal device sends capability information to the network device.
  • the network device determines the first frequency domain resource within the first range according to the first capability information.
  • step 404 the network device sends the first scheduling information to the first terminal device.
  • step 405 the first terminal device determines a spectrum processing resource according to the first scheduling information.
  • Steps 401 to 405 in this embodiment are similar to steps 201 to 205 in the foregoing FIG. 2, and details are not repeated here.
  • step 406 the second terminal device sends target capability information to the first terminal device.
  • the second terminal device needs to send the target capability information of the second terminal device to the first terminal device, and the target capability information is used by the first terminal device and the second terminal device to communicate directly.
  • the second terminal device and the first terminal device can use the mode 2 (mode2) resource to communicate between the two terminal devices through the PC5 interface.
  • mode2 mode 2
  • the first terminal device is already communicating with the network device. Therefore, the second terminal device is required to send the target capability information of the second terminal device to the first terminal device.
  • the first terminal device can The indication of the target capability information of the second terminal device avoids the subframes in which the network device message is received and/or the message is sent to the network device, and communicates with the second terminal device.
  • the method for the second terminal device to determine the target capability information is similar to the method for the first terminal device to determine the capability information in step 401, and the details are not repeated here.
  • the first terminal device determines the target spectrum processing resource according to the target capability information.
  • the first terminal device After the first terminal device receives the target capability information sent by the second terminal device, the first terminal device determines, according to the target capability information, target spectrum processing resources that can be used to communicate with the second terminal device.
  • the first terminal device After the first terminal device determines the target spectrum processing resource, the first terminal device updates the capability information of the first terminal device and generates fourth indication information, which indicates that the capability information of the first terminal device has changed.
  • step 408 the first terminal device sends fourth indication information to the network device.
  • step 409 the network device determines the second frequency domain resource according to the fourth indication information.
  • step 410 the network device sends second scheduling information to the first terminal device.
  • steps 408 to 410 are similar to steps 306 to 308 in the embodiment shown in FIG. 3, and the details are not repeated here.
  • step 411 the first terminal device determines the second spectrum processing resource according to the second scheduling information.
  • the first terminal device After receiving the second scheduling information, the first terminal device determines the second frequency domain resource configured by the network device according to the second scheduling information. After determining the second frequency domain resource, the first terminal device determines the second frequency domain resource according to the second frequency domain resource.
  • a second spectrum processing resource of a terminal device After receiving the second scheduling information, the first terminal device determines the second frequency domain resource configured by the network device according to the second scheduling information.
  • the first terminal device determines the updated carrier in the first range according to the second frequency domain resource, and configures the corresponding second spectrum processing resource according to the effective carrier.
  • the second frequency domain resource indicates that the network device has activated two carriers, namely Carrier 1 and Carrier 2.
  • the bandwidths of Carrier 1 and Carrier 2 are 20MHz and 40MHz, respectively, and the terminal device allocates 20MHz and Carrier 2 to Carrier 1 and Carrier 2, respectively. 40MHz spectrum processing resources.
  • the network device configures two carriers for the first terminal device.
  • Carrier 1 is in frequency band A and the maximum BWP is 40MHz.
  • Carrier 2 is in frequency band B and the maximum BWP is 60MHz.
  • Carrier 1 is allocated 40MHz spectrum processing resources, and Carrier 2 is allocated 60MHz spectrum processing resources.
  • the sum of the target spectrum processing resources used for communication between the first terminal device and the second terminal device and the second spectrum processing resources used by the first terminal device to communicate with the network device does not exceed the total spectrum processing resources of the first terminal device.
  • the first terminal device learns that the second frequency domain resource indicates that the spectrum received and/or transmitted simultaneously within the updated first range exceeds the first frequency domain resource. If the terminal device supports the largest aggregated spectrum within the updated first range, the first terminal device determines that the second scheduling information is wrong, and the first terminal device can discard the second scheduling information or send the second scheduling information to the network device. It’s understandable that the first terminal device may also not receive and/or not transmit data corresponding to the part of the first frequency domain resource that exceeds the maximum aggregated spectrum according to the maximum aggregated spectrum supported by itself. The details are here Not limited.
  • the first terminal device may explicitly carry the updated first range information in the fourth indication information, or may not carry the updated first range information in the fourth indication information, but only carries the indication Update message, after receiving the message indicating the update sent by the first terminal device, the network device will send a query message to the first terminal device, the query message is used to query the updated capability information of the first terminal device, or, The first terminal device may also send the updated information of the first range to the network device in a manner of first terminal device assistance information (UE assisted information), which is not specifically limited here.
  • UE assisted information first terminal device assistance information
  • the first terminal device can share the spectrum processing resources of the first terminal device between different carriers, which saves the cost of the first terminal device.
  • FIG. 10 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • a communication device includes:
  • the processing unit 1002 is configured to determine capability information of the communication device, where the capability information is used to indicate the maximum aggregated spectrum capability supported by the communication device in the first range;
  • the sending unit 1001 is used to send capability information.
  • the operations performed by the units of the communication device are similar to those described for the terminal device, the second terminal device, or the first terminal device in the embodiments shown in FIG. 2 to FIG. 4, and will not be repeated here.
  • the sending unit 1001 in the communication device shown in FIG. 10 may correspond to a transmitter, and the processing unit 1002 may correspond to a processor.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • a communication device includes:
  • the processing unit 1102 is configured to determine capability information of the communication device, where the capability information is used to indicate capability information of the largest aggregated spectrum supported by the communication device in the first range;
  • the sending unit 1101 is used to send capability information.
  • the maximum aggregated spectrum is smaller than the first bandwidth, and the first bandwidth is the sum of the maximum bandwidths of all aggregated carriers in the first range supported by the communication device.
  • the capability information further includes first indication information, and the first indication information is used to indicate the first range of the communication device.
  • the capability information further includes second indication information, and the second indication information is used to indicate the minimum guaranteed bandwidth of the carrier within the first range of the communication device.
  • the capability information includes third indication information, and the third indication information is used to indicate that the communication device supports scheduling of multiple resource units within the first range, and the sum of the multiple resource units is less than or equal to the maximum aggregated spectrum.
  • At least one of all the carriers supported by the communication device in the first range includes non-contiguous resource units.
  • the communication device further includes:
  • the receiving unit 1103 is configured to receive first scheduling information, where the first scheduling information is used to determine a first frequency domain resource within a first range, the first frequency domain resource is used for data transmission of the communication device, and the first frequency domain resource is less than or Equal to the maximum aggregate spectrum.
  • processing unit 1102 is further configured to determine the first frequency domain resource according to the first scheduling information
  • the processing unit 1102 is further configured to determine the spectrum processing resource of the communication device according to the first frequency domain resource.
  • the spectrum processing resource includes the processing resource used when the communication device receives data carried on the first frequency domain resource, and/or the communication device sends the first frequency domain resource.
  • the sending unit 1101 is further configured to send fourth indication information, and the fourth indication information is used to indicate an update of the capability information of the communication device.
  • the capability information includes a scaling factor, and the scaling factor is used to determine the maximum aggregated spectrum.
  • the operations performed by the units of the communication device are similar to those described for the terminal device, the second terminal device, or the first terminal device in the embodiments shown in FIG. 2 to FIG. 4, and will not be repeated here.
  • the sending unit 1101 in the communication device shown in FIG. 11 may correspond to a transmitter
  • the receiving unit 1103 may correspond to a receiver
  • the processing unit 1102 may correspond to a processor.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • FIG. 12 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • a communication device includes:
  • the receiving unit 1201 is configured to receive capability information of the communication device, where the capability information is used to indicate the maximum aggregated spectrum supported by the communication device within the first range.
  • the operations performed by the units of the communication device are similar to those described for the first terminal device or the network device in the embodiments shown in FIG. 2 to FIG. 4, and will not be repeated here.
  • the receiving unit 1201 in the communication device shown in FIG. 12 may correspond to a receiver.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • a communication device includes:
  • the receiving unit 1303 is configured to receive capability information of the communication device, where the capability information is used to indicate the maximum aggregated spectrum supported by the communication device in the first range.
  • the maximum aggregated spectrum is smaller than the first bandwidth, and the first bandwidth is the sum of the maximum bandwidths corresponding to all aggregated carriers in the first range supported by the communication device.
  • the capability information includes first indication information, and the first indication information is used to indicate the first range of the communication device.
  • the capability information further includes second indication information, and the second indication information is used to indicate the minimum guaranteed bandwidth of the carrier in the first range.
  • the capability information includes third indication information, and the third indication information is used to indicate that the communication device supports scheduling of multiple resource units within the first range, and the sum of the multiple resource units is less than or equal to the maximum aggregated spectrum.
  • At least one of all the carriers supported by the communication device in the first range includes non-contiguous resource units.
  • the communication device further includes:
  • the processing unit 1302 is configured to determine a first frequency domain resource within a first range according to the capability information, the first frequency domain resource is used for data transmission of the communication device, and the first frequency domain resource is less than or equal to the maximum aggregated spectrum;
  • the communication device also includes:
  • the sending unit 1301 is configured to send first scheduling information, and the first scheduling information is used to determine the first frequency domain resource.
  • the receiving unit 1303 is further configured to receive fourth indication information, where the fourth indication information is used to indicate capability information update.
  • the processing unit 1302 is further configured to determine a second frequency domain resource according to the fourth indication information, where the second frequency domain resource is used for data transmission;
  • the sending unit 1301 is further configured to send second scheduling information, where the second scheduling information includes second frequency domain resource information.
  • the capability information includes a scaling factor, and the scaling factor is used to determine the maximum aggregated spectrum.
  • the operations performed by the units of the communication device are similar to those described for the first terminal device or the network device in the embodiments shown in FIG. 2 to FIG. 4, and will not be repeated here.
  • the sending unit 1301 in the communication device shown in FIG. 13 may correspond to a transmitter
  • the receiving unit 1303 may correspond to a receiver
  • the processing unit 1302 may correspond to a processor.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • a terminal device including:
  • the processor 1440, the memory 1410, the receiving unit 1420, and the sending unit 1430 is connected to the memory 1410, the receiving unit 1420, and the sending unit 1430.
  • the receiving unit 1420 is used for receiving data
  • the sending unit 1430 is used for sending data
  • the memory 1410 is used for For storing data.
  • the processor 1440 is a single-core or multi-core central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement the embodiments provided in this application.
  • the memory 1410 may be a random access memory (RAM), or a non-volatile memory (non-volatile memory), such as at least one hard disk memory.
  • the memory 1410 is used to store execution instructions and data information.
  • the memory 1410 may be used to store capability information of the terminal device.
  • the processor 1440 also includes a capability determining unit 1441, a scheduling unit 1442, and a processing unit 1443.
  • the capability determining unit 1441 is configured to generate a report message according to the capability information of the terminal device stored in the memory, and then transmit the report message through the sending unit 1430 Send to the network device.
  • the scheduling unit 1442 is configured to determine a processing unit corresponding to each frequency domain block in the first frequency domain resource according to the first frequency domain resource in the first scheduling information sent by the network device.
  • the processing unit 1443 is configured to process downlink data and/or uplink data carried by frequency domain blocks.
  • the number of specific units is not limited.
  • the processor 1440 when the processor 1440 invokes the execution instruction, it can make the terminal device in FIG. 14 execute the operation performed by the terminal device, the second terminal device, or the first terminal device in the embodiments shown in FIGS. 2 to 4 , The details are not repeated here.
  • FIG. 15 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • a communication device includes:
  • the processor 1501 is connected to the receiving unit 1502 and the sending unit 1503.
  • the receiving unit 1502 is used for receiving data
  • the sending unit 1503 is used for sending data.
  • the processor 1501 is a single-core or multi-core central
  • the processing unit is either a specific integrated circuit or one or more integrated circuits configured to implement the embodiments provided in this application.
  • the processor 1501 is configured to obtain the capability information of the terminal from the data received by the receiving unit 1502, and generate the first scheduling information according to the capability information of the terminal, and transmit the first scheduling information through the sending unit 1503.
  • the first scheduling information is sent to the terminal device.
  • the communication device in FIG. 15 can execute the execution of the network device or the first terminal device in the embodiments shown in FIGS. 2 to 4 above. The specific operation will not be repeated here.
  • the sending unit 1503 in the communication device shown in FIG. 15 may correspond to a transmitter
  • the receiving unit 1502 may correspond to a receiver
  • the processing unit 1501 may correspond to a processor.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the processor mentioned in the above embodiments of this application may be a central processing unit (CPU), or may also be other general-purpose processors, digital signal processing DSP (digital signal processor, DSP), application-specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete Hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • processors in the above embodiments of the present application may be one or multiple, and may be adjusted according to actual application scenarios. This is only an exemplary description and is not limited.
  • the number of memories in the embodiment of the present application may be one or multiple, and may be adjusted according to actual application scenarios. This is only an exemplary description and is not limited.
  • the communication device, terminal device, or network device includes a processor (or processing unit) and a storage unit
  • the processor in this application may be integrated with the storage unit, or it may be a processor and a storage unit. Units are connected via interfaces, which can be adjusted according to actual application scenarios, and are not limited.
  • the processor in the embodiment of the present application may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces, or interface circuits used to implement the receiving and transmitting functions can be separate or integrated.
  • the foregoing transceiver circuit, interface, or interface circuit may be used for reading and writing of code and/or data, or the foregoing transceiver circuit, interface, or interface circuit may be used for signal transmission or transmission.
  • the embodiment of the present application also provides a computer program or a computer program product including a computer program.
  • the computer program When the computer program is executed on a computer, the computer will realize the interaction with the terminal device in any of the above-mentioned method embodiments. And/or the method flow of the network equipment.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, it implements the method flow related to a communication device, a terminal device, or a network device in any of the foregoing method embodiments. .
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.

Abstract

本申请实施例公开了一种能力信息上报方法,用于通信系统,该方法包括:第一设备确定所述第一设备的能力信息,所述能力信息用于指示所述第一设备在第一范围内支持的最大聚合频谱的能力,所述第一设备发送所述能力信息。本申请实施例第一设备通过发送包含了最大聚合频谱的能力信息,降低了第一设备的成本。

Description

能力信息上报方法及其装置
本申请要求于2020年05月18日提交中国国家知识产权局、申请号为202010421049.X、发明名称为“能力信息上报方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,具体涉及一种能力信息上报方法及其装置。
背景技术
载波聚合(carrier aggregation,CA)是增加传输带宽的技术,在长期演进(long term evolution,LTE)系统、高级长期演进(long term evolution-advanced,LET-A)系统以及新无线(new radio,NR)系统中,都引入了载波聚合,从而使得一个终端设备可以同时在多个载波上进行数据传输。
现有技术中,按照用户设备(user equipment,UE)支持的载波个数和每个载波上最大支持的信道带宽确定UE的能力信息,各个载波之间能力相互独立,UE设计存在较大的冗余信息。在载波聚合场景,UE在上报载波聚合能力信息时,根据现有的协议规定,UE根据在频段(band)内的每个载波(在载波聚合中,参与聚合的载波也称为分量载波(component carrier,CC))的最大支持带宽设计对应的处理能力,上报该处理能力信息。但在实际数据传输的过程中,针对单一载波的调度的带宽往往达不到分量载波的最大支持带宽,这造成了UE能力不必要的浪费,导致UE的设计成本增加。
发明内容
本申请实施例提供了一种能力信息上报方法,可以应用于通信系统,例如,长期演进系统LTE、新无线NR系统、演进的通用陆基无线接入及新空口的双连接(E-UTRA-NR dual connectivity,EN DC)的通信系统,高可靠低时延通信系统(ultra reliability low latency communication,URLLC)、车与任何事物(vehicle to everything,V2X)通信系统、长期演进与车(LTE-vehicle,LTE-V)通信系统、新无线与车(NR-vehicle,NR-V)通信系统、车对车(vehicle-to-vehicle,V2V)、车联网、海量机器类通信(massive machine type of communication,mMTC)、物联网(internet of things,IoT)、基于LTE演进的物联网技术(LTE-machine to machine,LTE-M),机器与机器(machine to machine,M2M)设备与设备(device to device,D2D)通信系统等。本申请实施例提供的方法用于被调度节点向调度节点发送能力信息时,根据能力信息中包含的最大聚合频谱的能力信息,合理的调度资源,进而减少了终端设备的能力浪费,降低了终端设备的成本。
第一方面,本申请实施例提供了一种能力信息上报方法,该方法包括:第一设备确定第一设备的能力信息,第一设备的能力信息用于指示第一设备在第一范围内支持的最大聚合频谱的能力。第一设备向第二设备发送该能力信息。
本申请中,在第一设备向第二设备上报能力信息时,通过在能力信息中承载第一设备在第一范围内支持的最大聚合频谱的能力信息,提供了一种新的能力信息上报方式。这种新的能力信息上报方式,避免了第一设备需要按照第一设备支持的每条分量载波对应的最大带宽 的上报方式进行上报。因此,在设计第一设备支持的能力时,可以不需要按照每条分量载波对应最大带宽的方式进行设计,减少了第一设备对应的设计成本,降低了终端设备的能力浪费,使调度资源更加合理。
可选地,在一种可能的实现方式中,最大聚合频谱小于第一带宽,第一带宽为第一设备支持的在第一范围内所有聚合载波的最大带宽的和。
在本申请实施例提供的方法中,通过第一设备支持的最大聚合频谱小于第一范围内所有聚合载波的最大带宽的和,使得在设计第一设备支持的能力时,避免了第一设备支持的所有聚合载波均需要按照最大带宽来进行设计对应的能力。而第一设备支持的能力越大时,需要对应的成本就越高。因此通过本申请实施例提供的能力信息上报方法进行上报,可以在第一设备设计的阶段就避免设计过多的能力,有利于第一设备的成本的降低。
可选地,在一种可能的实现方式中,能力信息还包括了第一指示信息,该第一指示信息用于指示第一设备支持的第一范围。
本申请中,当能力信息还包括用于指示第一设备支持的第一范围的指示信息时,终端设备可以根据应用场景和/或成本和/或功能等的不同来确定第一范围,从而具有更好的实现灵活性。
可选地,在一种可能的实现方式中,能力信息还包括第二指示信息,第二指示信息用于指示第一设备在支持的第一范围内载波的最小保证带宽。
本申请中,当能力信息包括了第一设备在支持的第一范围内至少一个载波的最小保证带宽时,可以让第二设备在根据能力信息调度资源时,为至少一个载波预留最小保证带宽,可以让终端能力被共享时,保证了至少一个载波的基本通信功能。
可选地,在一种可能的实现方式中,能力信息还包括了第三指示信息,第三指示信息用于指示第一设备支持第一设备在第一范围内调度多个资源单元,多个资源单元的和小于或者等于最大聚合频谱。
本申请中,当能力信息还包括了用于指示第一设备支持第一设备在第一范围内调度多个资源单元的第三指示信息时,增加了方案的可实现性,避免了资源单元太小导致的实现复杂度。
可选地,在一种可能的实现方式中,第一设备在第一范围内支持的所有载波中至少一个载波包括非连续的资源单元。
本申请中,当第一设备支持调度非连续的资源单元的载波时,可以利用频率分集增益,提升频谱资源的使用效率。
可选地,在一种可能的实现方式中,第一设备在发送了能力信息之后,第一设备接收第二设备发送的第一调度信息,该第一调度信息用于确定第一范围内的第一频域资源,该第一频域资源用于第一设备的数据传输,第一频域资源小于或者等于第一设备在第一范围内支持的最大聚合频谱。
本申请中,第一设备通过第二设备调度的第一频域资源进行数据传输,第一频域资源小于或者等于第一设备在第一范围内支持的最大聚合频谱,避免超出第一设备的处理能力,提升了方案的可实现性。
可选地,在一种可能的实现方式中,第一设备在接收到第一调度信息之后,第一设备根据第一调度信息确定第一频域资源,第一设备在确定了第一频域资源之后,再根据第一频域 资源确定第一设备的频谱处理资源,该频谱处理资源包括第一设备接收第一频域资源上承载的数据时使用的处理资源,和/或,第一设备发送第一频域资源上承载的数据时使用的处理资源。
本申请中,第一设备根据第一频域资源确定第一设备的频谱处理资源,避免使用过多的频谱处理资源造成的功耗增加,提升了方案的效率。
可选的,在一种可能的实现方式中,第一设备在发送了能力信息之后,还向第二设备发送了第四指示信息,该第四指示信息用于指示第一设备的能力信息更新。
本申请中,第一设备通过向第二设备发送能力信息更新的指示,提升了方案的灵活性。
可选的,在一种可能的实现方式中,能力信息包括缩放因子,该缩放因子用于确定最大聚合频谱。
本申请中,说明了能力信息中还可以包括缩放因子,而不需要发送能力信息具体的取值,例如最大聚合频谱的取值,在发送能力信息时节省了流量。
可选的,在一种可能的实现方式中,接收频谱处理资源包括以下至少一个:射频处理资源、前端处理资源、信道估计处理资源、解调处理资源、译码处理资源、解密处理资源、测量处理资源等。对于信道估计处理资源,可以包括以下至少一种:物理下行控制信道(Physical Downlink Control Channel,PDCCH)的信道估计解调资源,物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的信道估计资源,物理侧行链路控制信道(Physical Sidelink Control Channel,PSCCH)的信道估计解调资源,物理侧行链路数据信道(Physical Sidelink Data Channel,PSDCH)的信道估计资源。对于解调处理资源,可以包括以下至少一种:物理下行控制信道(Physical Downlink Control Channel,PDCCH)的解调资源,物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的解调资源,物理侧行链路控制信道(Physical Sidelink Control Channel,PSCCH)的解调资源,物理侧行链路数据信道(Physical Sidelink Data Channel,PSDCH)的解调资源。译码处理资源可以包括极化码(Polar code)译码单元和/或低密度奇偶校验码(Low Density Parity Check Code,LDPC)LDPC译码单元。第一设备可以根据应用场景、需求、功能要求、成本等至少一个因素,确定接收频谱处理资源包括所述一个或多个处理资源。
本申请中,说明了接收处理资源可以包括的信息,提升了方案的可实现性。第一设备可以确定接收频谱处理资源所包括的处理资源,提升了方案的灵活性。
可选的,在一种可能的实现方式中,发送频谱处理资源可以包括以下至少一个:射频处理资源、功放处理资源、前端处理资源、加密处理资源、数据组包处理资源、编码处理资源、调制处理资源、发射功率控制处理资源等,可以理解的是,还可以包括其他资源,例如还包括处理各个信道所需要用到的资源,如上行物理共享信道(Physical Uplink Shared Channel,PUSCH)信道处理资源,物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)信道处理资源,物理侧行链路控制信道(Physical Sidelink Control Channel,PSCCH)信道处理资源,物理侧行链路数据信道(Physical Sidelink Data Channel,PSDCH)信道处理资源等。第一设备可以根据应用场景、需求、功能要求、成本等至少一个因素,确定发送频谱处理资源包括所述一个或多个处理资源。
本申请中,说明了发送频谱处理资源包括的信息,提升了方案的可实现性。第一设备可以确定发送频谱处理资源所包括的处理资源,提升了方案的灵活性。
可选的,在一种可能的实现方式中,能力信息中指示的第一范围,具体可以根据以下至少一种方式确定:空口接入协议,连接类型,链路类型,应用场景等。
本申请中,第一设备通过多种方式确定第一范围,终端设备可以根据应用场景和/或成本和/或功能等的不同来确定第一范围,提升了方案的灵活性和可实现性。
可选的,在一种可能的实现方式中,第一设备在上报能力信息时,能力信息包括的第一设备支持的第一范围内的最大聚合频谱可以是上行最大聚合频谱,或者是下行最大聚合频谱,或者是侧行链路(side link,SL)最大聚合频谱,或者是侧行链路接收最大聚合频谱,或者是侧行链路发送最大聚合频谱。
本申请中,说明了最大聚合频谱的多种可能性,提升了方案的灵活性。
可选的,在一种可能的实现方式中,第一设备的接收处理资源可以被至少两个载波共享,该至少两个载波为第一设备支持的在第一范围内的频段或者频段组合内的聚合载波。
本申请中,说明了第一设备支持在第一范围内的频段或者频段组合内至少两个载波共享处理资源,降低了实现复杂度。
可选的,在一种可能的实现方式中,当第一设备对应的主载波变更为辅载波时,第一设备更新主载波的最小保证带宽。
本申请中,说明了第一设备的载波变更时,同时也更新对应的最小保证带宽,提升了方案的灵活性。
可选的,在一种可能的实现方式中,能力信息还包括第五指示信息,第五指示信息表示第一设备支持的在第一范围内多输入多输出MIMO总层数。
本申请中,当第一设备的能力信息还指示第一设备支持的MIMO总层数,提升了方案的灵活性。
可选的,在一种可能的实现方式中,第一设备通过能力信息上报的方式,向第二设备发送能力信息。
本申请中,说明了第一设备可以通过能力信息上报的方式发送第一设备的能力信息,提升了方案的可实现性。
可选的,在一种可能的实现方式中,能力信息包括最大聚合频谱的取值。
本申请中,说明了能力信息中包括最大聚合频谱的取值,提升了方案的可实现性。
可选的,在一种可能的实现方式中,第一设备在接收到第一频域资源之后,判断第一频域资源是否小于第一设备支持的第一范围内的最大聚合频谱,若第一频域资源大于第一设备支持的第一范围内的最大聚合频谱,则第一设备确定第二设备的调度出错,则向第二设备发送出错消息。
本申请中,当第一频域资源大于第一设备支持的最大聚合频谱时,第一设备向第二设备发送错误消息,提升了方案的容错率。
可选的,在一种可能的实现方式中,第一设备根据第一设备的器件能够支持的频段范围来确定第一范围,该第一设备的器件可以包括以下任意一种:天线、射频器件、基带处理器。
本申请中,第一设备根据第一设备的器件能够支持的频段范围来确定第一范围,提升了方案的可实现性。
本申请第二方面提供了一种能力信息上报方法。
第二设备接收第一设备发送的能力信息,第一设备的能力信息用于指示第一设备在第一 范围内支持的最大聚合频谱。
本申请中,第二设备接收了第一设备发送的能力信息,且该能力信息说明了第一设备支持的最大聚合频谱,这样可以让第二设备根据第一设备的能力确定调度给第一设备的资源,避免系统出错。
可选地,在一种可能的实现方式中,最大聚合频谱小于第一带宽,第一带宽表示第一设备支持的在第一范围内的所有聚合载波的最大带宽的和。
本申请中,通过第一设备支持的最大聚合频谱小于第一范围内所有聚合载波的最大带宽的和,使得在设计第一设备支持的能力时,避免了第一设备支持的所有聚合载波均需要按照最大带宽来进行设计对应的能力。而第一设备支持的能力越大时,需要对应的成本就越高。因此通过本申请实施例提供的能力信息上报方法进行上报,可以在第一设备设计的阶段就避免设计过多的能力,有利于第一设备的成本的降低。
可选地,在一种可能的实现方式中,能力信息还包括了第一指示信息,该第一指示信息用于指示第一设备支持的第一范围。
本申请中,当能力信息还包括用于指示第一设备支持的第一范围的指示信息时,提升了方案的灵活性。
可选地,在一种可能的实现方式中,能力信息还包括第二指示信息,第二指示信息用于指示第一设备在支持的第一范围内载波的最小保证带宽。
本申请中,当能力信息包括了第一设备在支持的第一范围内载波的最小保证带宽时,可以让第二设备在根据能力信息调度资源时,为至少一个载波预留最小保证带宽,保证了至少一个载波的基本通信功能。
可选地,在一种可能的实现方式中,能力信息还包括了第三指示信息,第三指示信息用于指示第一设备支持的再第一范围内调度多个资源单元,多个资源单元的和小于或者等于最大聚合频谱。
本申请中,当能力信息还包括了用于指示第一设备支持第一设备在第一范围内调度多个资源单元的第三指示信息时,增加了方案的可实现性。
可选地,在一种可能的实现方式中,第三能力信息还指示第一设备支持在第一范围内支持的聚合载波中至少一个载波包括非连续的多个资源单元。
本申请中,当第一设备支持非连续的资源单元的调度时,可以充分利用频率分集增益,提升频谱资源的使用效率。
可选地,在一种可能的实现方式中,第二设备在接收了能力信息之后,第二设备根据能力信息确定在第一范围内的第一频域资源,该第一频域资源用于第一设备和第二设备进行数据传输,第一频域资源小于或者等于第一设备支持的最大聚合频谱。
第二设备在确定了需要调度的第一频域资源之后,第二设备向第一设备发送第一调度信息,该第一调度信息是用于让第一设备确定第一频域资源的。
本申请中,第二设备将调度的第一频域资源发送给第一设备用于进行数据传输,提升了方案的可实现性。
可选的,在一种可能的实现方式中,第二设备在接收了能力信息之后,还接收了第一设备发送的第四指示信息,该第四指示信息用于指示第一设备的能力信息更新。
第二设备根据第四指示信息确定了第二频域资源,该第二频域资源用于第二设备和第一 设备之间进行数据传输,第二设备向第一设备发送第二调度信息,该第二调度信息包括了第二频域资源的信息。
本申请中,第二设备通过接收第一设备发送能力信息更新的指示,向第一设备发送更新后的第二频域资源,提升了方案的灵活性。
可选的,在一种可能的实现方式中,能力信息还包括缩放因子,该缩放因子用于第二设备确定最大聚合频谱。
本申请中,说明了能力信息中还可以包括缩放因子,第二设备可以通过缩放因子确定第一设备的最大聚合频谱,提升了方案的可实现性。
可选的,在一种可能的实现方式中,能力信息中指示的第一范围,具体可以根据以下至少一种方式确定:空口接入协议,连接类型,链路类型,应用场景等。
本申请中,说明了可以通过多种方式确定第一范围,终端设备可以根据应用场景和/或成本和/或功能等的不同来确定第一范围,提升了方案的灵活性。
可选的,在一种可能的实现方式中,能力信息包括的第一设备支持的第一范围内的最大聚合频谱可以是上行最大聚合频谱,或者是下行最大聚合频谱,还可以是侧行链路最大聚合频谱,或者是侧行链路接收最大聚合频谱,或者是侧行链路发送最大聚合频谱。
本申请中,说明了最大聚合频谱的多种可能性,提升了方案的灵活性。
可选的,在一种可能的实现方式中,能力信息还包括第五指示信息,第五指示信息表示第一设备在第一范围内支持的多输入多输出MIMO总层数。
本申请中,当第一设备的能力信息还指示第一设备支持的MIMO总层数,提升了方案的灵活性。
可选的,在一种可能的实现方式中,第二设备接收第一设备通过能力信息上报的方式发送的能力信息。
本申请中,说明了第一设备可以通过能力信息上报的方式发送第一设备的能力信息,提升了方案的可实现性。
可选的,在一种可能的实现方式中,第一范围可以根据第一设备的器件能够支持的频段范围来确定,该第一设备的器件可以包括以下任意一种:天线、射频器件、基带处理器。
本申请中,说明了可以根据第一设备的器件能够支持的频段范围来确定第一范围,提升了方案的可实现性。
本申请第三方面提供了一种通信装置。
处理单元,用于确定通信装置的能力信息,能力信息用于指示通信装置在第一范围内支持的最大聚合频谱的能力;
发送单元,用于发送能力信息。
可选的,在一种可能的实现方式中,最大聚合频谱小于第一带宽,第一带宽为通信装置支持的在第一范围内的所有聚合载波的最大带宽的和。
可选的,在一种可能的实现方式中,能力信息还包括第一指示信息,第一指示信息用于指示通信装置的第一范围。
可选的,在一种可能的实现方式中,能力信息还包括第二指示信息,第二指示信息用于指示通信装置在第一范围内载波的最小保证带宽。
可选的,在一种可能的实现方式中,能力信息包括第三指示信息,第三指示信息用于指 示通信装置支持在第一范围内调度多个资源单元,多个资源单元的和小于或者等于最大聚合频谱。
可选的,在一种可能的实现方式中,通信装置在第一范围内支持的所有载波中的至少一个载波包括非连续的资源单元。
可选的,在一种可能的实现方式中,通信装置还包括:
接收单元,用于接收第一调度信息,第一调度信息用于确定第一范围内的第一频域资源,第一频域资源用于通信装置的数据传输,第一频域资源小于或者等于最大聚合频谱。
可选的,在一种可能的实现方式中,处理单元还用于根据第一调度信息确定第一频域资源;
处理单元还用于根据第一频域资源确定通信装置的频谱处理资源,频谱处理资源包括通信装置接收,和/或,发送第一频域资源上承载的数据时使用的处理资源。
可选的,在一种可能的实现方式中,发送单元还用于发送第四指示信息,第四指示信息用于指示通信装置的能力信息更新。
可选的,在一种可能的实现方式中,能力信息包括缩放因子,缩放因子用于确定最大聚合频谱。
本申请第四方面提供了一种通信装置。
一种通信装置,包括:
接收单元,用于接收通信装置的能力信息,能力信息用于指示通信装置在第一范围内支持的最大聚合频谱。
可选的,在一种可能的实现方式中,最大聚合频谱小于第一带宽,第一带宽为通信装置在第一范围内支持的所有载波对应最大带宽的和。
可选的,在一种可能的实现方式中,能力信息包括第一指示信息,第一指示信息用于指示通信装置的第一范围。
可选的,在一种可能的实现方式中,能力信息还包括第二指示信息,第二指示信息用于指示第一范围内载波的最小保证带宽。
可选的,在一种可能的实现方式中,能力信息包括第三指示信息,第三指示信息用于指示通信装置支持在第一范围内调度多个资源单元,多个资源单元的和小于或者等于最大聚合频谱。
可选的,在一种可能的实现方式中,通信装置在第一范围内支持的所有载波中的至少一个载波包括非连续的资源单元。
可选的,在一种可能的实现方式中,通信装置还包括:
处理单元,用于根据能力信息确定在第一范围内的第一频域资源,第一频域资源用于通信装置的数据传输,第一频域资源小于或者等于最大聚合频谱;
通信装置还包括:
发送单元,用于发送第一调度信息,第一调度信息用于确定第一频域资源。
可选的,在一种可能的实现方式中,接收单元还用于接收第四指示信息,第四指示信息用于指示能力信息更新。
处理单元还用于根据第四指示信息确定第二频域资源,第二频域资源用于数据传输;
发送单元还用于发送第二调度信息,第二调度信息包括第二频域资源的信息。
可选的,在一种可能的实现方式中,能力信息包括缩放因子,缩放因子用于确定最大聚合频谱。
本申请第五方面提供了一种通信装置,包括处理器和存储器,处理器存储程序代码,处理器执行程序代码以实现申请第一方面及其各实现方式中的方法。
本申请第六方面提供了一种通信装置,包括处理器和存储器,处理器存储程序代码,处理器执行程序代码以实现申请第二方面及其各实现方式中的方法。
本申请第七方面提供了一种通信系统,包括终端设备和网络设备;
终端设备用于执行如本申请第一方面实施方式的方法;
网络设备用于执行如本申请第二方面实施方式的方法。
本申请第八方面提供了一种计算机存储介质,计算机存储介质中存储有指令,指令在计算机上执行时,使得计算机执行如本申请第一方面,和/或,第二方面实施方式的方法。
本申请第九方面提供了一种计算机程序产品,计算机程序产品在计算机上执行时,使得计算机执行如本申请第一方面,和/或,第二方面实施方式的方法。
本申请第十方面提供了一种通信装置,所述通信装置包括处理器和存储器,存储器中存储有计算机程序,处理器执行存储器中存储的计算机程序,以使所述通信装置执行如本申请第一方面,和/或,第二方面实施方式的方法。
本申请第十一方面提供了一种通信装置,该通信装置包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行代码指令以执行如本申请第一方面,和/或,第二方面实施方式的方法。
本申请第十二方面提供了一种可读存储介质,用于存储有指令,当所述指令被执行时,使本申请第一方面和/或第二方面的实施方法被实现。
通过本申请实施例提供的能力信息上报的方法及其装置,在第一设备向第二设备上报能力信息时,在能力信息中承载第一设备在第一范围内支持的最大聚合频谱的能力信息,提供了一种新的能力信息上报方式。这种新的能力信息上报方式,避免了第一设备需要按照第一设备支持的每条分量载波对应的最大带宽的上报方式进行上报。因此,在设计第一设备支持的能力时,可以不需要按照每条分量载波对应最大带宽的方式进行设计,减少了第一设备对应的设计成本,降低了终端设备的能力浪费,使调度资源更加合理。
附图说明
图1为本申请实施例提供的一种的通信系统的架构示意图;
图2为本申请实施例提供的一种能力信息上报方法的流程示意图;
图3为本申请实施例提供的另一种能力信息上报方法的流程示意图;
图4为本申请实施例提供的另一种能力信息上报方法的流程示意图;
图5为本申请实施例提供的一种终端设备支持的最大聚合频谱的示意图;
图6为本申请实施例提供的一种终端设备支持的最大聚合频谱的示意图;
图7为本申请实施例提供的另一种终端设备支持的最大聚合频谱的示意图;
图8为本申请实施例提供的另一种终端设备支持的最大聚合频谱的示意图;
图9为本申请实施例提供的另一种终端设备支持的最大聚合频谱的示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图;
图12为本申请实施例提供的另一种通信装置的结构示意图;
图13为本申请实施例提供的另一种通信装置的结构示意图;
图14为本申请实施例提供的一种终端设备的结构示意图;
图15为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了方便理解本申请实施例,首先介绍本申请涉及的术语。
载波:如无特别说明,本申请实施例中的载波指频域上连续的一段频谱。例如,在3GPP NR协议下,载波就等同于3GPP NR中定义的载波(carrier)或者分量载波(component carrier,CC),载波还可以指代一个带宽部分(band width part,BWP),载波还可以指代对应于一个小区cell、一个信道channel、一个子信道sub-channel、一个或者多个资源块(resource block,RB)、资源块组(resource block group,RBG),该资源块组可以是物理上连续的,如物理资源块(physical resource lock,PRB),或者是物理上不连续,但是通过一定的映射规则映射到虚拟的连续的资源上的,例如虚拟资源块(virtual resource block,VRB)。对于本申请提供的实施例,分量载波,BWP,资源块,资源块组、信道、子信道等各种频域上一段连续频谱的不同称谓,实施效果相同。为了方便描述,不做重复说明。
数据传输:数据传输包括发送数据和/或接收数据。
载波生效:如无特别说明,本申请实施例中的载波生效,指该载波(含义包括载波,分量载波,BWP,资源块,资源块组、信道、子信道等各种频域上一段连续频谱的不同称谓)被第一设备和第二设备双方确定为工作状态,该工作状态可以是被配置、被激活或者被使能中的一个或者多个,具体的,该载波生效包括:
载波被配置:第二设备通过高层信令(如无线资源控制消息)通知第一设备该载波的配置信息(包括带宽、中心频率等信息)。
载波被激活:第二设备通过高层信令、媒体接入控制(media access control,MAC)信令或者物理层信令中的一个通知终端设备激活该载波,被激活也可称为被使能。
如无特别说明,为了方便描述,本申请实施例中以载波生效以载波被配置为例进行说明。
频谱处理资源:本申请实施例中所述的频谱处理资源,指终端设备处理频谱所需要用到的终端设备的处理资源,例如终端设备中央处理器中的处理资源,可以理解的是,频谱处理资源还可以包括终端设备中其它的处理资源,例如存储器资源等,具体此处不做限定。
载波聚合:本申请实施例中所述的载波聚合,是指终端设备支持多余一个载波的同时被调度或被处理,并不限定在一个无线接入技术下。这里的载波,又称分量载波(component carrier,CC)。例如这些载波可以是支持同一个无线接入技术(radio access technology,RAT)的,如都是支持NR无线接入技术的载波;也可以是这次支持不同RAT的,例如一个是LTE的载波,一个是NR的载波;多个载波可以是属于同一个小区组(cell group,CG),也可以是属于不同CG的,例如一个载波在主CG,一个载波在辅CG;多个载波可以是属于同一个频段的,也可以是不同的频段的;多个载波可以是用于用一个连接的通信,也可以是用于不同连接的通信,例如多模双连接(multi-radio dual connectivity,MR-DC),一个载波用于LTE连接的通信,另一个载波用于NR连接的通信;多个载波可以是用于相同链路的通信,也可以是用于不同的链路的通信,例如一个载波用于蜂窝链路Uulink,一个载波用于侧行链路 sidelink;多个载波可以是用于同一类型业务的通信,也可以是用于不同的业务的通信,例如一个载波用于增强型移动带宽接入(enhanced mobile broadband,eMBB)业务,一个载波用于车联网业务,一个载波用于高可靠低时延通信业务,一个载波用于海量物联网业务(massive internet of thing,mIoT);或者一个载波用于eMBB业务和URLLC业务,一个载波用于V2X业务,等等。
为了更好的理解本申请实施例公开的一种能力信息上报的方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备102和多个终端设备101为例进行说明。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:LTE系统、第五代(5th generation,5G)移动通信系统、5G NR系统,或者其他未来的新型移动通信系统等。该通信系统还可以是支持多种无线技术的通信系统,例如支持LTE和NR的通信系统;或者,该通信系统还可以是支持近距离通信的通信系统,例如,支持侧行链路(sidelink,SL)技术的通信系统,支持无线保真(wireless fidelity,WiFi)技术的通信系统等等。还需要说明的是,本申请实施例中的侧行链路还可以称为侧链路或直通链路。
本申请实施例中的网络设备102是网络侧的一种用于发射或接收信号的实体。例如,网络设备102可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node,RN)、接入点(access point,AP)、其他未来移动通信系统中的基站或WiFi系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中的终端设备101是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在图1的通信系统中,一种可选的实现方式中,终端设备101向网络设备102上报自己的能力信息,网络设备102根据终端设备101上报的能力信息进行资源调度,进而和终端设备101进行通信。
在另一种可选的实现方式中,终端设备101具有调度功能。在终端设备101和其他终端设备直接进行通信的过程中,终端设备101接收其他终端设备发送的能力信息,终端设备101 根据其他终端设备发送的能力信息确定需要调度的资源,并根据该确定需要调度的资源与其他终端设备进行通信。其中,终端设备101和其他终端设备直接进行通信表示终端设备101和其他终端设备传输信息时,不需要经过网络设备102进行信息的转发,而直接进行信息的交互。例如在车与任何事物通信系统V2X的场景下,或者机器与机器M2M的场景下等等。
下面结合附图对本申请实施例提供的能力信息上报方法及其装置进行详细地描述。
本申请实施例中,第一设备在上报能力信息之后,对应的能力信息可能会发生变化,需要重新向第二设备上报新的能力信息,因此,对应的方法也有所不同,本申请实施例将对几种不同的情况分别进行描述。
一、第一设备上报能力信息。
本实施例中,以第一设备为终端设备、第二设备为网络设备为例进行描述。请参见图2,图2是本申请实施例提供的一种能力信息上报方法的流程示意图。
在步骤201中,终端设备确定能力信息。
终端设备确定终端设备的能力信息,该能力信息具体包括终端设备在至少一个第一范围内支持的最大聚合频谱的能力,即该最大聚合频谱表示终端设备在第一范围内能够支持的总频谱,该总频谱小于第一带宽,该第一带宽表示终端设备在第一范围内支持的频段或者频段组合内各个聚合载波的最大带宽的和。
需要说明的是,在本申请的全部实施例中,载波的概念可以等同于分量载波,以下全部用载波来描述,本申请并不局限于此,在此不再赘述。
终端设备可以通过如下公式计算该最大聚合频谱:
Figure PCTCN2021093766-appb-000001
其中,J为终端设备支持的在第一范围内的频段或者频段组合内总的聚合载波的数量,BW (j)为终端设备载波j的最大带宽,载波j为终端设备支持的在第一范围内的频段或者频段组合内的一个载波,
Figure PCTCN2021093766-appb-000002
为终端设备支持的在第一范围内的频段或频段组合内的所有载波聚合的各个分量载波的最大带宽的和,
Figure PCTCN2021093766-appb-000003
表示遍历终端设备支持的,在第一范围内的所有频段或频段组合的所支持的载波聚合的各个分量载波的最大带宽的和。
举例来说,如表1所示,如终端设备支持频段A,频段B,频段C,频段组合{频段A+频段B}和频段组合{频段A+频段B+频段C}的载波聚合。J表示终端设备在对应的频段中支持的分量载波数。频段A内支持1个载波,频段B内支持2个载波,频段C内支持1个载波,若每个分量载波的最大带宽均为100MHz,则在终端设备在频段组合{频段A+频段B+频段C}所支持的载波聚合的各个分量载波的最大带宽的和为400MHz,遍历终端设备所支持的所有的频段和频段组合内的载波聚合,可知该值为400MHz。本发明的实施例,确定最大聚合频谱小于400MHz。
表1终端设备支持的频段和频段组合的最大带宽对应示意表
Figure PCTCN2021093766-appb-000004
本申请实施例中,还可以通过PRB的大小来表示最大聚合频谱,例如通过如下公式计算该最大聚合频谱:
Figure PCTCN2021093766-appb-000005
其中,J为终端设备支持的在第一范围内所的频段或者频段组合内的载波聚合总的载波的数量,μ表示子载波间隔,
Figure PCTCN2021093766-appb-000006
表示对于参数μ,载波j的信道带宽BW对应的最大RB数量,在一种可实现的方式中,
Figure PCTCN2021093766-appb-000007
N RB的取值如表2a和表2b所示,其中,μ表示不同的子载波间隔SCS。
表2a不同的子载波间隔对应的最大资源块数量表
Figure PCTCN2021093766-appb-000008
表2b不同的子载波间隔对应的最大资源块数量表
Figure PCTCN2021093766-appb-000009
在一种可能的实现方式中,终端设备的能力信息还包括终端设备的频谱处理资源的信息。该频谱处理资源表示终端设备接收和/或发送数据时使用的终端设备的本地资源,该本地资源可以包括例如处理器资源,和/或存储器资源,具体此处不做限定。该频谱处理资源具体可以包括接收一个载波承载的信号所用的处理资源(称为设备下行频谱处理资源或接收频谱处理资源),或者发送一个载波上承载的信号所用的处理资源(设备上行频谱处理资源或者发送频 谱处理资源)中的至少一种。在设备与设备通信(如D2D场景或者V2V场景)中,频谱处理资源还可以称为侧行链路处理资源。
其中,设备接收频谱处理资源包括接收存储资源或接收处理资源中的至少一个,接收存储资源可以包括以下至少一个:基带采样后数据存储资源、解调后数据软比特存储资源、解码后传输块存储资源等,可以理解的是,接收存储资源还可以包括更多的资源,例如高层数据包存储资源,具体此处不做限定。
接收处理资源可以包括以下至少一个:射频处理资源、前端处理资源、信道估计处理资源、解调处理资源、译码处理资源、解密处理资源、测量处理资源等。对于信道估计处理资源,可以包括以下至少一种:PDCCH的信道估计资源,PDSCH的信道估计资源,PSCCH的信道估计资源,PSDCH的信道估计资源。对于解调处理资源,可以包括以下至少一种:PDCCH的解调资源,PDSCH的解调资源,PSCCH的解调资源,PSDCH的解调资源。译码处理资源可以包括polar码译码单元和/或LDPC译码单元。可以理解的是,接收处理资源还可以包括更多的资源,例如信道状态计算处理资源,协议栈处理资源等,具体此处不做限定。
设备发送频谱处理资源包括发送存储资源和/或处理资源。发送存储资源可以包括以下至少一个:高层数据包的存储资源,MAC层数据包的存储资源,传输块的存储资源。可以理解的是,发送存储资源还可以包括更多的资源,例如编码后的数据存储资源,调制后的数据存储资源,映射后的数据存储资源等,具体此处不做限定。
设备发送频谱处理资源可以包括以下至少一个:包括射频处理资源、功放处理资源、前端处理资源、加密处理资源、数据组包处理资源、编码处理资源、调制处理资源、发射功率控制处理资源等。可以理解的是,设备发送频谱处理资源还可以包括其他资源,例如包括处理各个信道所需要用到的资源,如PUSCH信道处理资源,PUCCH信道处理资源,PSCCH处理资源,PSDCH处理资源。在实际应用过程中,设备发送频谱处理资源还可以包括更多的处理资源,具体此处不做限定。
在一种可能的实现方式中,终端设备的能力信息还包括第一指示信息,第一指示信息用于指示该终端设备的第一范围。终端设备可以支持至少一个第一范围。第一范围为终端设备可以支持的根据一个或者多个频段所确定的频率范围。例如,终端设备的射频器件工作支持的范围是频段A,则第一范围为频段A。可以理解的是,还可以根据终端设备的其他器件能够支持的频段来确定第一范围,例如终端设备的天线和/或基带处理器等,具体此处不做限定。
可选地,第一范围的划分可以和现有协议中的频率范围(frequency range,FR)相同,例如和3GPP NR协议中的FR1和FR2划分一致,如表3所示,此时,第一范围为FR1所表示的频率范围,或者第一范围为FR2所表示的频率范围,或者合并FR1和FR2所表示的总的频率范围。
表3 3GPP NR协议定义的FR1和FR2对应的频率的范围
Figure PCTCN2021093766-appb-000010
终端设备可以支持至少一个第一范围。具体的,在一种可能的实现方式中,如表4所示,终端设备支持FR1,或终端设备支持FR2,或终端设备支持FR1和FR2。终端设备在第一范围 内支持的最大聚合频谱的能力,例如,终端设备在FR1内支持的最大聚合频谱,或者,终端设备在FR2内支持的最大聚合频谱,或者,终端设备在FR1和FR2共同确定的范围,也就是所有的频段范围内支持的最大聚合频谱。
表4第一范围与最大聚合频谱的对应关系示意表
Figure PCTCN2021093766-appb-000011
可选的,在一种可能的实现方式中,第一范围还可以包括一个或者多个频段的集合。例如,第一范围1为集合A,第一范围2为集合B,集合A={n34,n36,n40,n41},集合B={n77,n78,n79},其中,n34,n36,n40,n41,n77,n78,n79分别表示不同的频段,需要说明的是,多个第一范围包括的集合中的频段可以是重叠的,例如集合A={n34,n36,n40,n41},集合B={n41,n77,n78,n79},即n41这个频段既在第一范围1中,也在第一范围2中。其中,n34,n36,n41,n77,n78和n79为按照3GPP NR 38.101所定义的频段编号,详见TS 38.101-1。
在一种可能的实现方式中,第一范围还可以根据终端设备支持的空口接入协议,例如无线接入技术(radio access technology,RAT)来定义。例如,对于支持LTE和NR双连接的终端设备,如果终端设备支持所有LTE的频段和/或频段组合与NR的部分频段和/或频段组合之间共享终端设备的频谱处理资源,则将这些可以共享频谱处理资源的LTE的频段和/或频段组合与NR部分的频段和/或频段组合定义为第一范围,可以理解的是,还可以是部分LTE的频段和/或频段组合与全部NR的频段和/或频段组合定义为第一范围,只要各个空口接入协议频段和/或频段组合之间可以共享终端设备的设备频谱处理资源即可,具体此处不做限定。对于支持LTE和NR双连接的终端设备,还可以是在LTE内的所有频段或频段组合的载波间共享设备频谱处理资源,NR内的所有频段或频段组合的载波间共享处理能力,但LTE和NR之间的载波不能共享处理能力。其中几个根据终端设备支持的空口协议来定义第一范围的例子如下表5所示。
表5第一范围与最大聚合频谱的对应关系示意表
Figure PCTCN2021093766-appb-000012
在一种可能的实现方式中,第一范围还可以根据终端设备支持的连接(connection)来定义。例如,支持MR-DC的终端设备,支持两个NR的连接,若两个NR连接中,终端设备支持的频段和/或频段组合可以共享频谱处理资源,则将支持MR-DC的终端设备的两个NR连接的频段,和/或,频段组合定义为第一范围。可以理解的是,如果终端设备的多个连接之间的频段和频段组合可以共享频谱处理资源,则将这些可以共享频谱处理资源的连接定义为第一频率资源。当然如果两条NR连接之间不能共享处理资源,但连接内可以共享频谱处理资源,则可以共享处理资源的连接内所支持的频段和/或频段组合定义为一个第一范围。
在一种可能的实现方式中,第一范围还可以根据终端设备支持的链路类型来定义。例如支持蜂窝空口链路Uu link和侧行链路sidelink的终端设备的Uulink的频段,和/或,频段组合与sidelink的频段,和/或,频段组合之间可以共享频谱处理资源,则将Uu link和sidelink定义为第一范围,或者将可以共享频谱处理资源的Uu link和sidelink的频段,和/或,频段组合定义为第一范围。Uu link和Sidelink所支持的频段和/或频段组合内的载波间可以共享频谱处理资源。举例如下表6所示。
表6第一范围与最大聚合频谱的对应关系示意表
Figure PCTCN2021093766-appb-000013
在一种可能的实现方式中,第一范围还可以根据终端设备支持的业务类型,或者称为支持的应用场景或者支持的特性来定义,例如对于支持eMBB业务和支持V2X特性的终端设备,该终端设备在eMBB场景下支持的频段和/或频段组合与在V2X场景下支持的频段和/或频段组合有部分或者全部的频段和/或频段组合可以共享频谱处理资源的,则将这些可以共享频谱处理资源的频段和/或频段组合定义为第一范围。
在一种可能的实现方式中,可以通过以下表7来定义多个频率范围。这里的频率范围的划分的举例,根据业界大部分终端设备是否能够共享射频器件划分。例如对频谱小于1GHz的无线信号的接收,可以共用相同的接收射频通道。则将小于1GHz的无限信号划分为一个频率范围,以此类推。
表7频率范围和对应频谱范围对应示意表
频率范围 频谱范围
频率范围Frequency Range 1 <1GHz
频率范围Frequency Range 2 1GHz-3GHz
频率范围Frequency Range 3 3GHz-5GHz
频率范围Frequency Range 4 5GHz-8GHz
频率范围Frequency Range 5 10GHz-30GHz
频率范围Frequency Range 6 30GHz-45GHz
频率范围Frequency Range 7 45GHz-75GHz
频率范围Frequency Range 8 70GHz-80GHz
第一范围可以定义为一个或多个频率范围,第一范围内的载波可以进行频谱处理资源的共享,例如当第一范围包括按照表7所指示的FR1,FR2,FR3,FR4时,则终端设备在FR1、FR2,FR3和FR4中支持的载波间共享频谱处理资源。FR1,FR2,FR3,FR4所指示的频谱范围为小于8GHz,当第一范围定义为FR1,FR2,FR3,FR4时,即表示在小于8GHz的聚合载波间共 享频谱处理资源。
可以理解的是,第一范围由可以共享频谱处理资源的至少2个载波的工作方式所确定,所述的工作方式,由载波所在的频段、频段组合、支持的空口协议、支持的连接类型、支持的链路类型、支持的业务类型中的至少一个确定。例如第一范围通过终端设备支持的空口协议与终端设备支持的业务类型二者来定义,或者通过终端设备支持的链路类型和终端设备支持的不同连接来定义,或者根据运营商支持的频段范围来定义,具体此处不做限定。
需要说明的是,以上所述的在第一范围的至少2个载波间可以共享频谱处理资源是指:终端设备在使用第一范围内的至少2个载波传输数据时,终端设备可以调用小于该至少两个载波的各个载波分别独立用于传输数据时,终端设备所需的最大频谱处理资源的和。
在一种可能的实现方式中,终端设备的能力信息还包括第二指示信息,第二指示信息用于指示第一范围内至少一个载波的最小保证带宽,最小保证带宽表示终端设备为该载波预留的处理能力。
终端设备在第一范围内可以共享的频谱处理资源小于或者等于总的聚合频谱减去该至少一个载波的最小保证带宽之和,例如可以通过如下公式表示:
Figure PCTCN2021093766-appb-000014
其中,K为在第一范围内生效的载波数,信道带宽 (k)为在第一范围内的生效载波k分配的频谱,L为在第一范围内定义了最小保证带宽的载波数量,最小保证带宽 (l)为第一范围内载波l的最小保证带宽。
Figure PCTCN2021093766-appb-000015
表示第一范围内所有具有最小保证带宽的载波的的最小保证带宽的和。
Figure PCTCN2021093766-appb-000016
表示第一范围内所有生效载波可被调度频谱之和。这里的生效载波,指的是能够用于数据传输的载波。
最小保证带宽可以根据终端设备需要监听的信道和/或终端设备需要维持的通信和/或终端设备的实现架构,按照预定义的规则来确定或者由终端设备自主确定。例如,一个载波对应的最小保证带宽可以定义为终端设备维持该一个载波的一个或者多个通信功能的最小带宽。其中,通信功能可以包括以下至少一个:初始接入、接收系统消息、接收寻呼消息、随机接入、上行信令反馈、小包接收或者发送、唤醒信号接收或者发送、下行控制信道监听、测量、移动性、信道质量检测、定时同步、频率跟踪、相位跟踪、波束跟踪和选择等。可以理解的是,还可以包括其他通信功能,例如小区选择和重选,具体此处不做限定。
在一种可能的实现方式中,在3GPP NR系统中,最小保证带宽可以是保证初始接入成功的终端必须支持的带宽。例如,编号为零的控制资源集(control resource set,CORESET)所定义的带宽。在NR所定义的FR1内,最小保证带宽的取值可以包括以下任意一个:5MHz,10MHz,20MHz,40MHz。或者,将NR系统规定的必须支持的初始BWP的带宽的至少一个带宽,定义为最小保证带宽。
在3GPP LTE系统中,最小保证带宽可以是同步信道的带宽,为1.4MHz。其中控制资源 集为下行控制信道PDCCH的频域资源大小。最小保证带宽还可以以实际用于传输数据的资源块为单位定义。例如,在3GPP NR系统中,子载波间隔为30kHz时,最小保证带宽的取值为48资源块RB。在3GPP LTE系统中,子载波间隔为15kHz时,最小保证带宽为6RB。根据终端设备支持的载波所在的频段、所采用的空口协议、连接(Connection)的属性、链路(link)的属性、支持的业务类型等,终端设备支持的载波的最小保证带宽可以有不同的值。如在频段A的载波的最小保证带宽为20MHz,在频段B的载波的最小保证带宽为40MHz。又如,LTE载波的最小保证带宽为1.4MHz,NR的FR1的频段内的载波的最小保证带宽为20MHz,NR FR2的频段内的载波的最小保证带宽为50MHz。或者,Uu link的载波的最小保证带宽为40MHz,侧行链路的载波的最小保证带宽为20MHz。或者,eMBB的载波的最小保证带宽为40MHz,NR V2X的载波的最小保证带宽为40MHz,LTE V2X的载波的最小保证带宽为20MHz,mIoT的载波的最小保证带宽为5MHz,URLLC的载波的最小保证带宽为20MHz等等。
需要说明的是,载波的最小保证带宽可以为零。当载波的最小保证带宽为0时,表示终端设备不会为该载波预留频谱处理资源。
图5为本申请实施例提供的一种终端设备支持的最大聚合频谱的示意图。在图5中,终端设备工作在LTE和NR双连接模式下,终端设备被配置或者激活了一个LTE载波1和一个NR载波2。载波1的最小保证带宽为10MHz,载波2的带宽为40MHz,最大聚合频谱为100MHz,则终端设备可以共享的频谱处理资源为:100MHz-10MHz-40MHz=50MHz。载波2最大可以调度到90MHz,载波1的调度可以超过10MHz。例如,载波1可以调度到LTE的最大带宽20MHz。
需要说明的是,只有在载波生效时,终端设备才会预留对应的最小保证带宽。
例如,终端设备支持频段A和频段B的载波聚合,终端设备的最大聚合频谱为100MHz,终端设备在频段A下的载波A的最小保证带宽是10MHz,频段B下的载波B的最小保证带宽是20MHz。
当载波A未生效,载波B生效时,终端设备可以用于载波B的总的频谱处理资源为100MHz。
当载波B未生效,载波A生效时,终端设备可以用于载波A的共享的频谱处理资源为100MHz。
当载波A和载波B都生效时,终端设备可以用于同时处理载波A和载波B的最大频谱处理资源为100MHz,其中,终端设备可以共享的频谱处理资源为70MHz(100MHz-10MHz-20MHz),终端设备可以用于处理载波A的最大频谱处理资源为80MHz(100MHz-20MHz),终端设备可以用于处理载波B的最大频谱处理资源为90MHz(100MHz-10MHz)。
在一种可能的实现方式中,终端设备的能力信息还包括终端设备是否支持调整载波对应的最小保证带宽。
例如,终端设备根据特定的场景,调整载波对应的最小带宽,例如终端设备支持载波A和载波B的载波聚合。载波A的最大信道带宽为100MHz,载波B的最大信道带宽为100MHz,终端设备的最大聚合频谱为100MHz。终端设备可以确定主载波的最小保证带宽为40MHz,副载波的最小保证带宽为0MHz,主载波最多会有100MHz的频谱用于数据传输,副载波则最多有60MHz(100MHz-40MHz)的频谱用于数据传输。则当载波A为终端设备的主载波,载波A的最小保证带宽为40MHz,载波A可以有100MHz用于数据传输,而载波B最多可以有60MHz用于数据传输。如果载波A从主载波更新为副载波,此时载波A的保证带宽为0,则载波A最多可以有60MHz用于数据传输。
终端设备如果支持调整载波对应的最小保证带宽,则可以在应用场景发生改变时,提高资源使用的效率。
需要说明的是,当最小保证带宽为终端设备自主确定时,则终端设备需要向网络设备发送该最小保证带宽,当最小保证带宽为根据预定义的规则来确定时,则终端设备不需要上报该最小保证带宽。
为了降低终端设备和网络设备的调度复杂度以及减少信令负载,终端设备可以设定能力的第一粒度。该第一粒度的单位可以是MHz、Hz或者是GHz等,例如第一粒度为5MHz或者10MHz。或者,第一粒度的单位还可以是其他单位,例如以RB或者RBG为单位。第一粒度可以根据预定义的规则确定,例如规定第一粒度的大小为5MHz。第一粒度还可以根据终端的能力由终端设备确定。可以理解的是,当第一粒度的取值较大时,网络设备的调度复杂度降低,信令负载较低。当第一粒度的取值较小时,终端设备具有更大的灵活度。
在一种可能的实现方式中,终端设备的最大聚合频谱能力用第二粒度的数量来表示。第二粒度为第一粒度的整数倍或与第一粒度相同。例如,终端设备确定第一粒度的大小为10MHz,第二粒度为20MHz,最大聚合频谱能力的信息用2个第二粒度,也就是20MHz的整数倍来定义,则终端设备在确定最大聚合频谱时,最大聚合频谱的取值可以表示为20MHz的整数倍,例如最大聚合频谱为80MHz,或者100MHz。
可以理解的是,终端设备还可以确定共享频谱处理资源的第三粒度。第三粒度为第一粒度的整数倍或与第一粒度相同。例如,第三粒度等于第一粒度,第一粒度为20MHz,则终端设备在第一范围内可以共享的频谱处理资源的第三粒度为20MHz,终端设备在第一范围内支持的最大聚合频谱为100MHz,且终端设备支持两个载波的载波聚合,则终端设备可以支持的频谱处理资源的组合{载波1,载波2}={(0,20),(0,40),(0,60),(0,80),(0,100),(20,0),(20,20),(20,40)(20,60)(20,80)(40,0)(40,20),(40,40),(40,60),(60,0)(60,20),(60,40),(80,0)(80,20),(100,0)},其中,频谱处理资源的组合的单位为MHz。
在一种可能的实现方式中,终端设备的能力信息还包括第三指示信息。该第三指示信息用于指示终端设备支持在第一范围内的载波内调度多个非连续的资源单元(resource unit,RU),即终端设备支持一个载波内调度多个非连续的资源单元。该在第一范围内的聚合载波内总的可被调度的多个非连续的资源单元之和,小于或者等于最大聚合频谱。资源单元的大小,可以根据预定义的规则确定。例如资源单元的大小为5MHz。或者,资源单元的大小为采用了相同预编码的频域块的大小,例如资源单元的大小为1个或多个资源块组(resource block group,RBG)。或者可以根据终端设备的能力确定。优选的,资源单元的大小等于第一粒度或第一粒度的整数倍。
在一种可能的实现方式中,第三指示信息用于指示终端设备支持在第一范围内的载波内调度多个非连续的资源单元,该第一范围内的载波内的可被调度的多个非连续的资源单元之和小于或者等于所述最大聚合频谱。
在一种可能的实现方式中,终端设备在第一范围内支持的所有载波中,至少有一个载波包括非连续的资源单元。例如,终端设备在第一范围内支持的所有载波中,每条载波都分别包括非连续的资源单元。或者,终端设备在第一范围内支持的5个载波中,有2个载波分别包括非连续的资源单元。
在一种可能的实现方式中,第三指示信息还包括以下至少一种信息:第一粒度值,第二粒度值,第三粒度值,资源单元的大小。
为了降低终端设备和网路设备的调度复杂度,终端设备确定支持载波内的连续频谱处理。如图6所示,终端设备在第一范围内支持的最大聚合频谱为100MHz。终端设备在频段A激活的载波1对应的带宽为连续的40MHz的频谱,在频段B激活的载波2对应的带宽为连续的60MHz的频谱,载波1对应的带宽和载波2对应的带宽之和等于最大聚合频谱。为了提升系统的性能,充分利用分集增益,终端设备确定支持第一范围内的载波内的多个非连续资源单元的处理。该非连续资源单元的取值可以为最大聚合频谱能力的最小粒度,或者为其他的取值。如图7所示,终端设备支持在第一范围内频段A和频段B的载波聚合,在第一范围内支持的最大聚合频谱为100MHz,资源单元的大小为10MHz,终端设备在频段A中激活的载波1可调度2个频域上不连续的资源单元,4个资源单元总的频谱为40MHz,在频段B中激活的载波2可调度6个频域上不连续的资源单元,6个资源单元总频谱为60MHz。
需要说明的是,本申请提供的实施例中,终端设备支持的载波可以包括连续频谱的载波,也可以包括非连续频谱的载波,在此不做限定。
需要说明的是,终端设备的各个载波的资源单元的大小可以相同,也可以不同。当各个载波的资源单元大小相同时,终端设备的设计实现简单易行。当各个载波的资源单元大小不同时,网络设备可以为不同的类型的终端设备确定不同的资源单元大小,可以增加网络设备调度资源的灵活性。
需要说明的是,本申请提供的实施例所述的载波聚合是广泛意义上的载波聚合,任何同时有两个或者两个以上的载波用于数据传输,就称为这些载波的载波聚合,不论这些载波是否在同一个频段(例如一个是频段A,一个是频段B),是否是同一个空口协议(例如可以分别是LTE空口或者NR空口),是否是同一个连接(例如可以分别是两个不同的NR connection),是否是同一个link(例如分别是Uu link和侧行链路)。
在一种可能的实现方式中,终端设备的能力信息还包括第五指示信息,所述第五指示信息用于指示终端设备在第一范围内的最大聚合层数。
终端设备在第一范围内支持的最大聚合层数可以通过以下公式表示:
Figure PCTCN2021093766-appb-000017
其中,v (j)表示载波j的最大MIMO层数,J表示在第一范围内载波的频段或频段组合的总的聚合载波数。
需要说明的是,本申请实施例中能力信息可以包括最大聚合频谱的具体取值,也可以包括缩放因子,该缩放因子用于确定最大聚合频谱。
例如,当能力信息包括缩放因子时,网络设备在接收到终端设备上报的能力信息后,根据以下公式计算出终端设备的最大聚合频谱:
Figure PCTCN2021093766-appb-000018
其中,BW (j)表示载波j的最大带宽。或者,还可以根据以下公式表示终端设备的最大聚合频谱:
Figure PCTCN2021093766-appb-000019
其中,
Figure PCTCN2021093766-appb-000020
表示载波j对应的最大资源块。
可以理解的是,还可以通过其他公式计算终端设备的最大聚合频谱,具体此处不做限定。
终端设备确定终端设备的能力信息,该能力信息具体包括终端设备在至少一个第一范围内支持的最大聚合频谱的能力信息。终端设备可以确定一个以上的第一频率范围,各第一频率范围内支持的最大聚合频谱能力信息,可以相同,也可以不同。如下表8所示,表示终端设备具有支持3个第一范围的能力,在每个第一范围内各自有定义对应的最大聚合频谱。
表8第一范围和最大聚合频谱的对应示意表
Figure PCTCN2021093766-appb-000021
在步骤202中,终端设备向网络设备发送能力信息。
终端设备在确定了能力信息后,终端设备向网络设备发送该能力信息。
在一种可能的实现方式中,终端设备通过终端设备能力信息上报的方式通过高层信令向网络设备发送能力信息。在终端设备初始接入过程中,终端设备通过能力信息上报的方式,向网络设备发送能力信息,例如,终端设备通过RRC配置信令向网络设备发送该能力信息。
进一步的,终端设备向网络设备发送能力信息时,能力信息的表示方式可以有多种不同的实施方式。例如,能力信息中包含的在第一范围内的最大聚合频谱可以根据以下格式上报:
CA-AggregatedSpectrum::=ENUMERATED{40MHz,50MHz,150MHz,200MHz,250MHz,300MHz,...}
可选地,最大聚合频谱的上报格式还可以通过资源块来表示,此时,对应不同的子载波间隔,资源块的数目可能不同。例如:对于子载波间隔为30KHz,能力信息中包含的在第一范围内的最大聚合频谱可以根据以下格式上报:
CA-AggregatedSpectrum::=ENUMERATED{25RB,50RB,65RB,135RB,273RB,…}
对于子载波间隔为15KHz,能力信息中包含的在第一范围内的最大聚合频谱可以根据以下格式上报:
CA-AggregatedSpectrum::=ENUMERATED{12RB,25RB,50RB,135RB,…}
在一种可能的实现方式中,终端设备还可以通过上报缩放因子的方式来表示能力信息中最大聚合频谱的能力信息,例如:
CA-AggregatedSpectrumFactor::=ENUMERATED{0.4,0.5,0.6,0.7,0.8,0.9,...}
最大聚合频谱在不同的第一范围内的取值可以不同。可以分别用不同的信元来表示。
可以理解的是,终端设备向网络设备上报能力信息的方式有很多种,具体此处不做限定。
终端设备向网络设备发送能力信息,进一步,还包括,网络设备接收终端设备向网络设备发送的能力信息。
进一步的,在一种可能的实现方式中,该实施例还包括步骤203,在步骤203中,网络设备根据能力信息确定第一范围内的第一频域资源。
网络设备在接收到终端设备上报的能力信息之后,网络设备根据能力信息确定调度的第一范围内的第一频域资源。
具体的,网络设备在确定需要调度的第一频域资源时,确保在第一范围内调度的第一频域资源不超过能力信息指示的终端设备在第一范围内支持的载波聚合的最大聚合频谱。
在一种可能的实现方式中,网络设备配置在第一范围内载波聚合的各个载波的信道带宽,并且网络设备确定在第一范围内所有配置载波的信道带宽的总和不超过能力信息指示的最大聚合频谱。
在一种可能的实现方式中,网络设备激活在第一范围内各个载波的激活BWP的带宽,并且确定在第一范围内所有激活BWP的信道带宽的总和不超过能力信息指示的最大聚合频谱。
在一种可能的实现方式中,网络设备配置在第一范围内的配置载波的BWP的信道带宽,网络设备确定所有配置载波的最大BWP取值的和,不超过能力信息指示的最大聚合频谱。例如,网络设备配置了N个载波,所述N为大于等于1的正整数,每个载波配置了一个或者多个BWP,则
Figure PCTCN2021093766-appb-000022
不超过能力信息指示的最大聚合频谱。
在一种可能的实现方式中,网络设备能力信息和生效的载波确定第一频率范围。例如,网络设备从终端设备上报的能力信息中获知终端设备在第一范围内支持的最大聚合频谱是100MHz,在运营商1的网络下,运营商在第一范围内的频段A分配到的频谱为40MHz;在频段B分配到的频谱为60MHz。网络设备在运营商1的网络下,给终端设备配置了两个载波。载波1在频段A中,载波1的最大的BWP为40MHz,载波2在频段B中,载波2的最大的BWP为60MHz。若在运营商2的网络下,运营商2在第一范围内的频段A分配到的频谱为80MHz,在频段B分配到的频谱为40MHz。网络设备在运营商2的网络下,给终端设备配置了两个载波,载波1在频段A中,载波1的最大BWP为60MHz,载波2在频段B下,载波2的最大BWP为40MHz。即不论是在运营商1或者是运营商2的网络下,网络设备给终端设备配置的载波的最大BWP的和不超过终端设备上报的能力信息中指示的最大聚合频谱。
在一种可能的实现方式中,网络设备还根据能力信息中的第一指示信息确定需要调度的第一范围的大小,从而确定需要配置的载波。
例如,网络设备根据第一指示信息确定第一范围为Uu link和sidelink,在第一范围内 支持的最大聚合频谱为100MHz。若网络设备没有为终端设备配置sidelink,则网络设备为终端设备配置载波1,载波1的带宽小于等于100MHz。若网络设备同时为终端设备配置了Uu link和Sidelink,则在Uu link的载波1的带宽小于等于60MHz,sidelink的载波2的带宽小于等于40MHz。Uu link的载波1和Sidelink的载波2总的配置的带宽不超过100MHz。
在一种可能的实现方式中,网络设备还根据能力信息中的第二指示信息确定在第一范围内的第一频域资源。
具体的,网络设备根据能力信息中的第二指示信息确定第一范围内每个载波的最小保证带宽。网络设备在给终端设备配置第一频域资源时,确定可被载波共享的频域资源不超过最大聚合频谱减去生效载波的最小保证带宽之和。
图8为本申请实施例提供的另一种终端设备支持的最大聚合频谱的示意图。在图8中,网络设备根据终端设备上报的能力信息,获知频段A和频段B可以共享频域资源,在只有频段A的载波生效的情况下,网络设备可以给频段A的生效载波配置的带宽小于或者等于最大聚合频谱。在频段A载波和频段B载波同时生效的情况下,网络设备可以给频段A载波配置的带宽小于或者等于最大聚合频谱减去频段B载波的最小保证带宽,网络设备给频段B载波配置的带宽小于或者等于最大聚合频谱减去频段A载波的最小保证带宽。
图9为本申请实施例提供的另一种终端设备支持的最大聚合频谱的示意图。在图9中,网络设备根据终端设备上报的能力信息,获知Uulink和Sidelink可以共享频域资源,在t1到t2时间段下,只有Uulink载波生效的情况下,网络设备可以给Uulink生效载波配置的带宽小于或者等于最大聚合频谱。在t2到t3时间段下,Uulink载波和Sidelink载波同时生效的情况下,网络设备可以给Uulink载波配置的带宽小于或者等于最大聚合频谱减去Sidelink载波的最小保证带宽,网络设备给Sidelink载波配置的带宽小于或者等于最大聚合频谱减去Uulink载波的最小保证带宽。在t2到t3时间段下,只有Sidelink载波生效的情况下,网络设备可以给Sidelink生效载波配置的带宽小于或者等于最大聚合频谱。其中,如图9所示,Uulink的最小保证带宽为40MHz,Sidelink的最小保证带宽为20MHz,最大聚合频谱为100MHz。图9所示的t1、t2及t3为不同的三个时间点。Sidelink和Uulink可以属于同一个频段,也可以属于不同的频段,具体此处不做限定。
图9所示的实现方式,其中一种具体的应用场景为在终端设备初始接入网络阶段,终端设备可以用于Uu link数据传输的载波聚合后的总的带宽小于或者等于最大聚合频谱,例如最大聚合频谱为100MHz。在接入网络之后,终端设备激活sidelink,sidelink的最小保证带宽为40MHz,则用于Uu link的数据传输的载波聚合后的总带宽小于等于60MHz。
在一种可能的实现方式中,网络设备还根据能力信息中的第三指示信息确定在第一范围内的第一频域资源。
具体的,网络设备根据第三指示信息确定在第一范围内可以给终端设备的载波配置多个非连续的资源单元。
在一种可能的实现方式中,网络设备还根据能力信息中的第五指示信息确定在第一范围内的第一频域资源。
具体的,网络设备根据第五指示信息确定在第一范围内终端设备支持的MIMO总层数,并配置各个载波的MIMO总层数,使得所有配置载波上的MIMO总层数之和,不超过最大聚合层数。
可以理解的是,在实际应用过程中,网络设备还可以根据能力信息中更多的指示信息配置第一频域资源,具体此处不做限定。
网络设备在确定了第一频域资源后,根据第一频域资源生成第一调度信息。
进一步的,在一种可能的实现方式中,该实施例还包括步骤204,在步骤204中,网络设备向终端设备发送第一调度信息。
网络设备生成了第一调度信息之后,网络设备向终端设备发送第一调度信息。
在一种可能的实现方式中,网络设备可以通过RRC信令、MAC层信令或者物理层信令中的一个或者多个来承载第一调度信息,第一调度信息可以在一个信令中发送给终端设备,也可以在多个信令中发送给终端设备,具体此处不做限定。
例如,网络设备配置载波1的最大BWP为60MHz,网络设备配置载波2的最大BWP为40MHz,网络设备通过RRC信令承载这两条配置信息并向终端设备发送。
例如,网络设备通过RRC信令配置载波1有两个BWP,BWP1的带宽为80MHz,BWP2的带宽为60MHz,网络设备配置载波2有两个BWP,BWP3的带宽为20MHz,BWP4的带宽为40MHz,网络设备在T1时间,通过物理层信令或者MAC信令承载激活的信令,激活BWP1和BWP3,在T2时间,通过物理层信令或者MAC信令承载激活的信令,激活BWP2和BWP4。
可以理解的是,在实际应用过程中,网络设备还可以通过其他方式发送第一调度信息,具体此处不做限定。
网络设备向终端设备发送第一调度信息,进一步的,还包括,终端设备接收第一调度信息。
进一步的,在一种可能的实现方式中,该实施例还包括步骤205,在步骤205中,终端设备根据第一调度信息确定频谱处理资源。
终端设备接收到第一调度信息之后,根据第一调度信息确定网络设备调度的第一频域资源,该第一频域资源用于第一设备进行数据传输,该第一频域资源小于或者等于最大聚合频谱。在确定了第一频域资源之后,终端设备根据第一频域资源确定终端设备的频谱处理资源,该频谱处理资源包括终端设备接收和/或发送第一频域资源上所承载的数据时使用的终端设备的处理资源。
在一种可能的实现方式中,终端设备根据第一频域资源确定第一范围内生效的载波,并根据生效的载波配置对应的频谱处理资源。例如,在第一频域资源中指示网络设备激活了2个载波,分别为载波1和载波2,载波1和载波2的带宽分别为20MHz和40MHz,则终端设备分别给载波1和载波2分配20MHz和40MHz的频谱处理资源。
例如,在第一频域资源中,网络设备给终端设备配置两个载波,载波1在频段A,最大BWP为40MHz,载波2在频段B,最大BWP为60MHz,则终端设备给载波1分配40MHz的频谱处理资源,给载波2分配60MHz的频谱处理资源。
在一种可能的实现方式中,当终端设备根据第一频域资源确定第一范围内生效的载波包括了非连续的资源单元时,则终端设备根据该生效的非连续的载波配置对应的频谱处理资源。例如,在第一频域资源中,网络设备给终端设备配置两个载波,载波1包括了连续的资源单元,载波2包括了非连续的资源单元,则终端设备给载波1分配对应的一部分频谱处理资源,给载波2中非连续的资源单元分别分配对应的频谱处理资源。
在一种可能的实现方式中,终端设备在确定了第一频域资源之后,获知第一频域资源指 示在第一范围内同时接受和/或发送的频谱超过了终端设备在第一范围内支持的最大聚合频谱,则终端设备确定第一调度信息出错,终端设备可以丢弃该第一调度信息,或者向网络设备发送第一调度信息出错的提示,可以理解的是,终端设备还可以根据自己支持的最大聚合频谱,不接收和/或不发送第一频域资源中超过最大聚合频谱那部分的频谱对应的数据,具体此处不做限定。
本申请实施例中,终端设备支持的最大聚合频谱小于第一范围内频段或者频段组合内每个载波对应的最大带宽的和,减少了终端设备需要设计的频谱处理能力,有利于终端设备成本的降低。
二、第一设备上报能力更新。
本实施例中,以第一设备为终端设备、第二设备为网络设备为例进行描述。本申请实施例中,当第一设备上报能力信息之后,对应的能力信息发生了变化。当终端设备的能力信息变化的原因有多种情况,可以是终端设备在不同的空口协议下发生的变化,也可能是应用场景发生变化导致的能力信息变化。
能力信息的更新包括实施例一中所述的能力信息中的一个或多个信息的更新,如最大聚合频谱的更新,第一范围的更新,第三指示信息的更新等。这里以终端设备更新第一范围为例进行说明,终端设备上报的能力信息中的其他信息更新的流程类似,不再一一表述。
如图3所示,为本申请实施例另一能力信息上报方法的流程示意图。
在步骤301中,终端设备确定能力信息。
在步骤302中,终端设备向网络设备发送能力信息。
在步骤303中,网络设备根据能力信息确定在第一范围内的第一频域资源。
在步骤304中,网络设备向终端设备发送第一调度信息。
在步骤305中,终端设备根据第一调度信息确定频谱处理资源。
本实施例中的步骤301至步骤305与上述图2实施例中的步骤201至步骤205类似,具体此处不再赘述。
在步骤306中,终端设备向网络设备发送第四指示信息。
当能力信息发生改变时,终端设备向网络设备发送更新后的能力信息。终端设备可以更新全部或部分能力信息,例如当第一范围发生改变时,终端设备会向网络设备发送第四指示信息,该第四指示信息指示终端设备的能力信息的更新。
第一范围由可以共享频谱处理资源的至少2个载波的工作方式所确定,所述的工作方式,由载波所在的频段、频段组合、支持的空口协议、支持的连接类型、支持的链路类型、支持的业务类型中的至少一个确定。例如,第一范围通过终端设备支持的空口协议与终端设备支持的业务类型来定义,或者通过终端设备支持的链路类型和终端设备支持的不同连接来定义,或者根据运营商支持的频段范围来定义。当工作方式发生改变时,第一范围会发生变化。例如,当第一范围是根据终端设备支持的空口接入协议定义的,如果终端设备支持非独立(non-standalone,NSA)和独立(standalone,SA)网络,NSA网络下终端设备支持LTE和NR两个空口协议,SA网络下终端设备支持NR网络。则当终端设备从NSA网络接入到SA网络后,第一范围的确定从LTE空口和NR空口改为只有NR空口,因此终端设备确定第一范围发生变化。或者当第一范围为根据终端设备支持的频段集合定义,如果终端设备有新增的可以支持的频段和/或频段组合,则终端设备确定第一范围发生变化。或者,终端设备支持的链路类型 发生了变化,例如从仅支持Uu link到既支持Uu link,也支持Sidelink,则终端设备确定第一范围发生变化。
可以理解的是,在实际应用过程中,还可以有更多的第一范围发生变化的情况,具体此处不做限定。
例如,当第一范围是根据终端设备支持的空口接入协议定义的,如果终端设备从NSA(Non-standalone)到SA(standalone)网络,NSA网络终端支持LTE和NR两个空口协议,SA网络终端设备支持NR网络,则第一范围从LTE空口和NR空口改为只有NR空口,因此终端设备需要更新能力信息,网络设备需要重新调度资源来进行对应的匹配。或者当第一范围是根据终端设备支持的频段集合定义的,如有新增的可以支持的频段和/或频段组合,则第一范围可能会发生变化,因此终端设备需要更新能力信息,网络设备需要重新调度资源来进行对应的匹配。又或者,当终端设备支持的链路类型发生了变化,从仅支持Uu link到既支持Uu link,也支持Sidelink,导致了第一范围发生变化,则终端设备需要更新能力信息,网络设备需要重新调度资源来进行对应的匹配。
在一种可能的实现方式中,终端设备可以通过去注册网络(de-registration)和/或去附着网络(detach)的方式向网络设备更新能力信息,可以理解的是,还可以通过其他方式向网络设备更新能力信息,例如通过注册网络(registration)和/或附着网络(attach)的方式更新能力信息,终端设备通过发送辅助信息的方式更新能力信息等,具体此处不做限定。
在步骤307中,网络设备根据第四指示信息确定第二频域资源。
网络设备在接收到终端设备发送的第四指示信息之后,网络设备根据第四指示信息确定需要更新的第一范围,进而根据更新后的第一范围和终端设备的能力信息确定第二频域资源,该第二频域资源用于网络设备和终端设备之间进行数据传输。
本实施例中,网络设备根据更新后的第一范围和终端设备的能力信息确定第二频域资源的方法和图2实施例中步骤203中网络设备根据第一范围和终端设备的能力信息确定第一频率资源的方法类似,具体此处不再赘述。
在步骤308中,网络设备向终端设备发送第二调度信息。
在步骤309中,终端设备根据第二调度信息确定第二频谱处理资源。
本实施例中的步骤308和步骤309与上述图2实施例中的步骤204和步骤205类似,具体此处不再赘述。
本实施例中,终端设备可以明确的在第四指示信息中携带已经更新的第一范围的信息,也可以不在第四指示信息中携带已经更新的第一范围的信息,而只携带指示更新的消息。网络设备在接收到终端设备发送的指示更新的消息之后,会向终端设备发送一个查询消息,该查询消息用于查询终端设备的更新的能力信息,或者,终端设备也可以通过终端设备辅助信息(UE assisted information)的方式向网络设备发送更新后的第一范围的信息,具体此处不做限定。
本申请实施例中,终端设备向网络设备发送终端设备在第一范围内支持的最大聚合频谱,且该最大聚合频谱小于终端设备在第一范围内支持的所有聚合载波的最大带宽的和,使得在设计终端设备支持的能力时,避免了终端设备需要按照支持的所有聚合载波的最大带宽来设计对应的能力。而第一设备支持的能力越大时,需要对应的成本就越高。因此通过本申请实施例提供的能力信息上报方法进行上报,可以在第一设备设计的阶段就避免设计过多的能力, 有利于第一设备的成本的降低。
如图4所示,为本申请实施例另一能力信息上报方法的流程示意图。
需要说明的是,本实施例中,当第一终端设备在向网络设备上报能力信息时,第一终端设备对应为第一设备,网络设备对应为第二设备。当第一终端设备接收第二终端设备发送的能力信息时,则第一终端设备对应为第二设备,第二终端设备对应为第一设备。
在步骤401中,第一终端设备确定能力信息。
在步骤402中,第一终端设备向网络设备发送能力信息。
在步骤403中,网络设备根据第一能力信息确定在第一范围内的第一频域资源。
在步骤404中,网络设备向第一终端设备发送第一调度信息。
在步骤405中,第一终端设备根据第一调度信息确定频谱处理资源。
本实施例中的步骤401至步骤405与前述图2中的步骤201至步骤205类似,具体此处不再赘述。
在步骤406中,第二终端设备向第一终端设备发送目标能力信息。
在特殊的场景模式下,第二终端设备需要向第一终端设备发送第二终端设备的目标能力信息,该目标能力信息用于第一终端设备和第二终端设备可以进行直接通信。
在一种可能的实现方式中,在空闲(idle)或者非激活(inactive)模式下,第二终端设备和第一终端设备通过PC5接口,利用模式2(mode2)资源两个终端设备之间可以直接通信,但是在这种情况下,第一终端设备已经在和网络设备进行通信,因此,需要第二终端设备向第一终端设备发送第二终端设备的目标能力信息,第一终端设备可以根据第二终端设备的目标能力信息的指示,避开接收网络设备消息和/或向网络设备发送消息的子帧,和第二终端设备进行通信。
可以理解的是,还有更多的场景模式下,第二终端设备向第一终端设备发送目标能力信息,例如在V2X场景下,具体此处不再赘述。
本实施例中,第二终端设备确定目标能力信息的方法和步骤401中第一终端设备确定能力信息的方法类似,具体此处不再赘述。
在步骤407中,第一终端设备根据目标能力信息确定目标频谱处理资源。
第一终端设备在接收到第二终端设备发送的目标能力信息之后,第一终端设备根据目标能力信息确定可以用于和第二终端设备进行通信的目标频谱处理资源。
第一终端设备在确定了目标频谱处理资源之后,第一终端设备更新了第一终端设备的能力信息,并且生成第四指示信息,第四指示信息指示第一终端设备的能力信息发生了变化。
在步骤408中,第一终端设备向网络设备发送第四指示信息。
在步骤409中,网络设备根据第四指示信息确定第二频域资源。
在步骤410中,网络设备向第一终端设备发送第二调度信息。
本实施例中,步骤408至410与图3所述实施例中的步骤306至步骤308类似,具体此处不再赘述。
在步骤411中,第一终端设备根据第二调度信息确定第二频谱处理资源。
第一终端设备接收到第二调度信息之后,根据第二调度信息确定网络设备配置的第二频域资源,在确定了第二频域资源之后,第一终端设备根据第二频域资源确定第一终端设备的第二频谱处理资源。
在一种可能的实现方式中,第一终端设备根据第二频域资源确定更新后的第一范围内生效的载波,并根据生效的载波配置对应的第二频谱处理资源。例如,第二频域资源指示网络设备激活了2个载波,分别为载波1和载波2,载波1和载波2的带宽分别为20MHz和40MHz,则终端设备分别给载波1和载波2分配20MHz和40MHz的频谱处理资源。
例如,在第二频域资源中,网络设备给第一终端设备配置两个载波,载波1在频段A,最大BWP为40MHz,载波2在频段B,最大BWP为60MHz,则第一终端设备给载波1分配40MHz的频谱处理资源,给载波2分配60MHz的频谱处理资源。
需要说明的是,第一终端设备和第二终端设备通信使用的目标频谱处理资源和第一终端设备与网络设备通信的第二频谱处理资源的和不超过第一终端设备总的频谱处理资源。
在一种可能的实现方式中,第一终端设备在确定了第二频域资源之后,获知第二频域资源指示在更新后的第一范围内同时接收和/或发送的频谱超过了第一终端设备在更新后的第一范围内支持的最大聚合频谱,则第一终端设备确定第二调度信息出错,第一终端设备可以丢弃该第二调度信息,或者向网络设备发送第二调度信息出错的提示,可以理解的是,第一终端设备还可以根据自己支持的最大聚合频谱,不接收和/或不发送第一频域资源中超过最大聚合频谱那部分的频谱对应的数据,具体此处不做限定。
本实施例中,第一终端设备可以明确的在第四指示信息中携带已经更新的第一范围的信息,也可以不在第四指示信息中携带已经更新的第一范围的信息,而只携带指示更新的消息,网络设备在接收到第一终端设备发送的指示更新的消息之后,会向第一终端设备发送一个查询消息,该查询消息用于查询第一终端设备的更新的能力信息,或者,第一终端设备也可以通过第一终端设备辅助信息(UE assisted information)的方式向网络设备发送更新后的第一范围的信息,具体此处不做限定。
本实施例中,第一终端设备可以在不同的载波之间共享第一终端设备的频谱处理资源,节省了第一终端设备的成本。
上面对本申请实施例中的能力信息上报方法进行了描述,下面对本申请实施例中的设备进行描述,请参阅图10,为本申请实施例提供的一种通信装置的结构示意图。
一种通信装置,包括:
处理单元1002,用于确定通信装置的能力信息,能力信息用于指示通信装置在第一范围内支持的最大聚合频谱的能力;
发送单元1001,用于发送能力信息。
本实施例中,通信装置各单元所执行的操作与前述图2至图4所示实施例中终端设备、第二终端设备或第一终端设备描述的类似,此处不再赘述。
需要说明的是,图10所示的通信装置中的发送单元1001可以对应发送器,处理单元1002可以对应处理器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
请参阅图11,为本申请实施例提供的另一种通信装置的结构示意图。
一种通信装置,包括:
处理单元1102,用于确定通信装置的能力信息,能力信息用于指示通信装置在第一范围内支持的最大聚合频谱的能力信息;
发送单元1101,用于发送能力信息。
可选地,最大聚合频谱小于第一带宽,第一带宽为通信装置支持的在第一范围内的所有 聚合载波的最大带宽的和。
可选地,能力信息还包括第一指示信息,第一指示信息用于指示通信装置的第一范围。
可选地,能力信息还包括第二指示信息,第二指示信息用于指示通信装置在第一范围内载波的最小保证带宽。
可选地,能力信息包括第三指示信息,第三指示信息用于指示通信装置支持在第一范围内调度多个资源单元,多个资源单元的和小于或者等于最大聚合频谱。
可选地,通信装置在第一范围内支持的所有载波中的至少一个载波包括非连续的资源单元。
可选地,通信装置还包括:
接收单元1103,用于接收第一调度信息,第一调度信息用于确定第一范围内的第一频域资源,第一频域资源用于通信装置的数据传输,第一频域资源小于或者等于最大聚合频谱。
可选地,处理单元1102还用于根据第一调度信息确定第一频域资源;
处理单元1102还用于根据第一频域资源确定通信装置的频谱处理资源,频谱处理资源包括通信装置接收第一频域资源上承载的数据时使用的处理资源,和/或,通信装置发送第一频域资源上承载的数据时使用的处理资源。
可选地,发送单元1101还用于发送第四指示信息,第四指示信息用于指示通信装置的能力信息更新。
可选地,能力信息包括缩放因子,缩放因子用于确定最大聚合频谱。
本实施例中,通信装置各单元所执行的操作与前述图2至图4所示实施例中终端设备、第二终端设备或第一终端设备描述的类似,此处不再赘述。
需要说明的是,图11所示的通信装置中的发送单元1101可以对应发送器,接收单元1103可以对应接收器,处理单元1102可以对应处理器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
请参阅图12,为本申请实施例提供的另一种通信装置的结构示意图。
一种通信装置,包括:
接收单元1201,用于接收通信装置的能力信息,能力信息用于指示通信装置在第一范围内支持的最大聚合频谱。
本实施例中,通信装置各单元所执行的操作与前述图2至图4所示实施例中第一终端设备或者网络设备描述的类似,此处不再赘述。
需要说明的是,图12所示的通信装置中的接收单元1201可以对应接收器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
请参阅图13,为本申请实施例提供的另一种通信装置的结构示意图。
一种通信装置,包括:
接收单元1303,用于接收通信装置的能力信息,能力信息用于指示通信装置在第一范围内支持的最大聚合频谱。
可选地,最大聚合频谱小于第一带宽,第一带宽为通信装置支持的在第一范围内的所有聚合载波对应最大带宽的和。
可选地,能力信息包括第一指示信息,第一指示信息用于指示通信装置的第一范围。
可选地,能力信息还包括第二指示信息,第二指示信息用于指示第一范围内载波的最小 保证带宽。
可选地,能力信息包括第三指示信息,第三指示信息用于指示通信装置支持在第一范围内调度多个资源单元,多个资源单元的和小于或者等于最大聚合频谱。
可选地,通信装置在第一范围内支持的所有载波中的至少一个载波包括非连续的资源单元。
可选地,通信装置还包括:
处理单元1302,用于根据能力信息确定在第一范围内的第一频域资源,第一频域资源用于通信装置的数据传输,第一频域资源小于或者等于最大聚合频谱;
通信装置还包括:
发送单元1301,用于发送第一调度信息,第一调度信息用于确定第一频域资源。
可选地,接收单元1303还用于接收第四指示信息,第四指示信息用于指示能力信息更新。
处理单元1302还用于根据第四指示信息确定第二频域资源,第二频域资源用于数据传输;
发送单元1301还用于发送第二调度信息,第二调度信息包括第二频域资源的信息。
可选地,能力信息包括缩放因子,缩放因子用于确定最大聚合频谱。
本实施例中,通信装置各单元所执行的操作与前述图2至图4所示实施例中第一终端设备或者网络设备描述的类似,此处不再赘述。
需要说明的是,图13所示的通信装置中的发送单元1301可以对应发送器,接收单元1303可以对应接收器,处理单元1302可以对应处理器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
请参阅图14,为本申请实施例提供的一种终端设备的结构示意图。
一种终端设备,包括:
处理器1440、存储器1410、接收单元1420、发送单元1430,处理器1440与存储器1410、接收单元1420、发送单元1430相连,接收单元1420用于接收数据,发送单元1430用于发送数据,存储器1410用于存储数据。处理器1440是单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本申请提供的实施例的一个或多个集成电路。存储器1410可以为随机存取存储器(random access memory,RAM),也可以为非易失性存储器(non-volatile memory),例如至少一个硬盘存储器。存储器1410用于存储执行指令以及数据信息。
具体的,存储器1410可以用于存储终端设备的能力信息。
处理器1440还包括能力确定单元1441、调度单元1442及处理单元1443,其中,能力确定单元1441用于根据存储器存储的终端设备的能力信息,生成上报消息,再通过发送单元1430将所述上报消息发送给网络设备。
调度单元1442用于根据网络设备发送的第一调度信息中的第一频域资源,确定第一频域资源中每个频域块对应的处理单元。
处理单元1443用于处理频域块承载的下行数据和/或上行数据。
可以理解的是,本实施例中,并不限定具体单元的数量,例如处理器1440在实际应用过程中可以有多个,或者处理器1440中包括多个处理单元1443,此处不做限定。
本实施例中,该处理器1440调用执行指令时,可以使图14中的终端设备执行前述图2至图4所示实施例中终端设备、第二终端设备或第一终端设备所执行的操作,具体此处不再赘述。
请参阅图15,为本申请实施例提供的另一种通信装置的结构示意图。
一种通信装置,包括:
处理器1501、接收单元1502、发送单元1503,处理器1501与接收单元1502、发送单元1503相连,接收单元1502用于接收数据,发送单元1503用于发送数据,处理器1501是单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本申请提供的实施例的一个或多个集成电路。
具体的,在一种可实现的方式中,处理器1501用于从接受单元1502接收到的数据中获得终端的能力信息,并根据终端的能力信息生成第一调度信息,并通过发送单元1503将第一调度信息发送给终端设备。
本实施例中,通过处理器1501、接收单元1502及发送单元1503的配合工作,可以使图15中的通信装置执行前述图2至图4所示实施例中网络设备或者第一终端设备所执行的操作,具体此处不再赘述。
需要说明的是,图15所示的通信装置中的发送单元1503可以对应发送器,接收单元1502可以对应接收器,处理单元1501可以对应处理器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
应理解,本申请以上实施例中提及的处理器,或者本申请上述实施例提供的处理器,可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请中以上实施例中的处理器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。本申请实施例中的存储器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。
需要说明的是,当通信装置、终端设备或网络设备包括处理器(或处理单元)与存储单元时,本申请中的处理器可以是与存储单元集成在一起的,也可以是处理器与存储单元通过接口连接,可以根据实际应用场景调整,并不作限定。
本申请实施例中的处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码和/或数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
本申请实施例还提供了一种计算机程序或包括计算机程序的一种计算机程序产品,该计算机程序在某一计算机上执行时,将会使所述计算机实现上述任一方法实施例中与终端设备和/或网络设备的方法流程。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中与通信装置、终端设备或网络设备相关的方法流程。
在上述图2-图4中各个实施例中,可以全部或部分地通过软件、硬件、固件或者其任意 组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请提供的实施例。在本申请实施例中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。

Claims (41)

  1. 一种能力信息上报方法,其特征在于,包括:
    第一设备确定所述第一设备的能力信息,所述能力信息用于指示所述第一设备在第一范围内支持的最大聚合频谱的能力;
    所述第一设备发送所述能力信息。
  2. 根据权利要求1所述的方法,其特征在于,所述最大聚合频谱小于第一带宽,所述第一带宽为所述第一设备支持的在所述第一范围内的所有聚合载波的最大带宽的和。
  3. 根据权利要求1或2所述的方法,其特征在于,所述能力信息包括第一指示信息,所述第一指示信息用于指示所述第一设备的第一范围。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述能力信息还包括第二指示信息,所述第二指示信息用于指示所述第一设备在所述第一范围内载波的最小保证带宽。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述能力信息包括第三指示信息,所述第三指示信息用于指示所述第一设备支持在所述第一范围内调度多个资源单元,所述多个资源单元的和小于或者等于所述最大聚合频谱。
  6. 根据权利要求5所述的方法,其特征在于,所述第一设备在所述第一范围内支持的所有载波中的至少一个载波包括非连续的所述资源单元。
  7. 根据权利要求1至6中的任一项所述的方法,其特征在于,所述第一设备发送所述能力信息之后,所述方法还包括:
    所述第一设备接收第一调度信息,所述第一调度信息用于确定所述第一范围内的第一频域资源,所述第一频域资源用于所述第一设备的数据传输,所述第一频域资源小于或者等于所述最大聚合频谱。
  8. 根据权利要求7所述的方法,其特征在于,所述第一设备接收第一调度信息之后,所述方法还包括:
    所述第一设备根据所述第一调度信息确定所述第一频域资源;
    所述第一设备根据所述第一频域资源确定所述第一设备的频谱处理资源,所述频谱处理资源包括所述第一设备接收和/或发送所述第一频域资源上承载的数据时使用的处理资源。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一设备发送所述能力信息之后,所述方法还包括:
    所述第一设备发送第四指示信息,所述第四指示信息用于指示所述第一设备的能力信息更新。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述能力信息还包括缩放因子,所述缩放因子用于确定所述最大聚合频谱。
  11. 一种能力信息上报方法,其特征在于,包括:
    第二设备接收第一设备的能力信息,所述能力信息用于指示所述第一设备在第一范围内支持的最大聚合频谱。
  12. 根据权利要求11所述的方法,其特征在于,所述最大聚合频谱小于第一带宽,所述第一带宽为所述第一设备支持的在所述第一范围内的所有聚合载波的最大带宽的和。
  13. 根据权利要求11或12所述的方法,其特征在于,所述能力信息包括第一指示信息, 所述第一指示信息用于指示所述第一设备的第一范围。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述能力信息还包括第二指示信息,所述第二指示信息用于指示所述第一范围内载波的最小保证带宽。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述能力信息包括第三指示信息,所述第三指示信息用于指示所述第一设备支持在所述第一范围内调度多个资源单元,所述多个资源单元的和小于或者等于所述最大聚合频谱。
  16. 根据权利要求15所述的方法,其特征在于,所述第一设备在所述第一范围内支持的所有载波中的至少一个载波包括非连续的所述资源单元。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,第二设备接收第一设备的能力信息之后,所述方法还包括:
    所述第二设备根据所述能力信息确定在所述第一范围内的第一频域资源,所述第一频域资源用于所述第二设备和所述第一设备的数据传输,所述第一频域资源小于或者等于所述最大聚合频谱;
    所述第二设备向所述第一设备发送第一调度信息,所述第一调度信息用于所述第一设备确定所述第一频域资源。
  18. 根据权利要求17所述的方法,其特征在于,所述第二设备接收所述能力信息之后,所述方法还包括:
    所述第二设备接收所述第一设备发送的第四指示信息,所述第四指示信息用于指示所述第一设备的能力信息更新;
    所述第二设备根据所述第四指示信息确定第二频域资源,所述第二频域资源用于所述第二设备和所述第一设备的数据传输;
    所述第二设备向所述第一设备发送第二调度信息,所述第二调度信息包括所述第二频域资源的信息。
  19. 根据权利要求11至18中任一项所述的方法,其特征在于,所述能力信息包括缩放因子,所述缩放因子用于确定所述最大聚合频谱。
  20. 一种通信装置,其特征在于,包括:
    处理单元,用于确定所述通信装置的能力信息,所述能力信息用于指示所述通信装置在第一范围内支持的最大聚合频谱的能力;
    发送单元,用于发送所述能力信息。
  21. 根据权利要求20所述的通信装置,其特征在于,所述最大聚合频谱小于第一带宽,所述第一带宽为所述通信装置支持的在所述第一范围内的所有聚合载波的最大带宽的和。
  22. 根据权利要求20或21所述的通信装置,其特征在于,所述能力信息包括第一指示信息,所述第一指示信息用于指示所述通信装置的第一范围。
  23. 根据权利要求20至22中任一项所述的通信装置,其特征在于,所述能力信息还包括第二指示信息,所述第二指示信息用于指示所述通信装置在所述第一范围内载波的最小保证带宽。
  24. 根据权利要求20至23中任一项所述的通信装置,其特征在于,所述能力信息包括第三指示信息,所述第三指示信息用于指示所述通信装置支持在所述第一范围内调度多个资源 单元,所述多个资源单元的和小于或者等于所述最大聚合频谱。
  25. 根据权利要求24所述的通信装置,其特征在于,所述通信装置在所述第一范围内支持的所有载波中的至少一个载波包括非连续的所述资源单元。
  26. 根据权利要求20至25中的任一项所述的通信装置,其特征在于,所述通信装置还包括:
    接收单元,用于接收第一调度信息,所述第一调度信息用于确定所述第一范围内的第一频域资源,所述第一频域资源用于所述通信装置的数据传输,所述第一频域资源小于或者等于所述最大聚合频谱。
  27. 根据权利要求26所述的通信装置,其特征在于,所述处理单元还用于根据所述第一调度信息确定所述第一频域资源;
    所述处理单元还用于根据所述第一频域资源确定所述通信装置的频谱处理资源,所述频谱处理资源包括所述通信装置接收所述第一频域资源上承载的数据时使用的处理资源,和/或,所述通信装置发送所述第一频域资源上承载的数据时使用的处理资源。
  28. 根据权利要求20至27中任一项所述的通信装置,其特征在于,所述发送单元还用于发送第四指示信息,所述第四指示信息用于指示所述通信装置的能力信息更新。
  29. 根据权利要求20至28中任一项所述的通信装置,其特征在于,所述能力信息包括缩放因子,所述缩放因子用于确定所述最大聚合频谱。
  30. 一种通信装置,其特征在于,包括:
    接收单元,用于接收通信装置的能力信息,所述能力信息用于指示所述通信装置在第一范围内支持的最大聚合频谱。
  31. 根据权利要求30所述的通信装置,其特征在于,所述最大聚合频谱小于第一带宽,所述第一带宽为所述通信装置支持的在所述第一范围内的所有聚合载波最大带宽的和。
  32. 根据权利要求30或31所述的通信装置,其特征在于,所述能力信息包括第一指示信息,所述第一指示信息用于指示所述通信装置的第一范围。
  33. 根据权利要求30至32中任一项所述的通信装置,其特征在于,所述能力信息还包括第二指示信息,所述第二指示信息用于指示所述第一范围内载波的最小保证带宽。
  34. 根据权利要求30至33中任一项所述的通信装置,其特征在于,所述能力信息包括第三指示信息,所述第三指示信息用于指示所述通信装置支持在所述第一范围内调度多个资源单元,所述多个资源单元的和小于或者等于所述最大聚合频谱。
  35. 根据权利要求34所述的通信装置,其特征在于,所述通信装置在所述第一范围内支持的所有载波中的至少一个载波包括非连续的所述资源单元。
  36. 根据权利要求30至35中任一项所述的通信装置,其特征在于,所述通信装置还包括:
    处理单元,用于根据所述能力信息确定在所述第一范围内的第一频域资源,所述第一频域资源用于所述通信装置的数据传输,所述第一频域资源小于或者等于所述最大聚合频谱;
    所述通信装置还包括:
    发送单元,用于发送第一调度信息,所述第一调度信息用于确定所述第一频域资源。
  37. 根据权利要求36所述的通信装置,其特征在于,所述接收单元还用于接收第四指示信息,所述第四指示信息用于指示能力信息更新;
    所述处理单元还用于根据所述第四指示信息确定第二频域资源,所述第二频域资源用于数据传输;
    所述发送单元还用于发送第二调度信息,所述第二调度信息包括所述第二频域资源的信息。
  38. 根据权利要求30至37中任一项所述的通信装置,其特征在于,所述能力信息包括缩放因子,所述缩放因子用于确定所述最大聚合频谱。
  39. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1-19中任一项所述的方法。
  40. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1-19中任一项所述的方法。
  41. 一种可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1-19中任一项所述的方法被实现。
PCT/CN2021/093766 2020-05-18 2021-05-14 能力信息上报方法及其装置 WO2021233217A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21807788.1A EP4145745A4 (en) 2020-05-18 2021-05-14 METHOD AND APPARATUS FOR REPORTING CAPACITY INFORMATION
US17/988,529 US20230089990A1 (en) 2020-05-18 2022-11-16 Capability information reporting method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010421049.X 2020-05-18
CN202010421049.XA CN113691358A (zh) 2020-05-18 2020-05-18 能力信息上报方法及其装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/988,529 Continuation US20230089990A1 (en) 2020-05-18 2022-11-16 Capability information reporting method and apparatus

Publications (1)

Publication Number Publication Date
WO2021233217A1 true WO2021233217A1 (zh) 2021-11-25

Family

ID=78575609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093766 WO2021233217A1 (zh) 2020-05-18 2021-05-14 能力信息上报方法及其装置

Country Status (4)

Country Link
US (1) US20230089990A1 (zh)
EP (1) EP4145745A4 (zh)
CN (1) CN113691358A (zh)
WO (1) WO2021233217A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550497A (zh) * 2022-01-05 2022-12-30 荣耀终端有限公司 消息协同方法和装置
WO2023143007A1 (zh) * 2022-01-30 2023-08-03 华为技术有限公司 信息传输方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11917652B2 (en) * 2020-10-22 2024-02-27 Apple Inc. Carrier aggregation in a high speed mode of a user equipment
CN114731260A (zh) * 2022-02-14 2022-07-08 北京小米移动软件有限公司 一种传输载波聚合能力的方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888646A (zh) * 2009-05-12 2010-11-17 中国移动通信集团公司 一种信道质量反馈信息获得方法、系统以及基站
US20130329665A1 (en) * 2012-06-12 2013-12-12 Qualcomm Incorporated Dynamic ue scheduling with shared antenna and carrier aggregation
CN108234091A (zh) * 2016-12-13 2018-06-29 中国移动通信集团终端有限公司 多频段重叠频谱的处理方法和装置
CN108934005A (zh) * 2017-05-27 2018-12-04 维沃移动通信有限公司 一种能力信息上报方法、相关设备和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8514793B2 (en) * 2008-10-31 2013-08-20 Interdigital Patent Holdings, Inc. Method and apparatus for monitoring and processing component carriers
CN109587679B (zh) * 2017-09-28 2023-12-08 华为技术有限公司 信息传输的方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888646A (zh) * 2009-05-12 2010-11-17 中国移动通信集团公司 一种信道质量反馈信息获得方法、系统以及基站
US20130329665A1 (en) * 2012-06-12 2013-12-12 Qualcomm Incorporated Dynamic ue scheduling with shared antenna and carrier aggregation
CN108234091A (zh) * 2016-12-13 2018-06-29 中国移动通信集团终端有限公司 多频段重叠频谱的处理方法和装置
CN108934005A (zh) * 2017-05-27 2018-12-04 维沃移动通信有限公司 一种能力信息上报方法、相关设备和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550497A (zh) * 2022-01-05 2022-12-30 荣耀终端有限公司 消息协同方法和装置
CN115550497B (zh) * 2022-01-05 2023-06-27 荣耀终端有限公司 消息协同方法和装置
WO2023143007A1 (zh) * 2022-01-30 2023-08-03 华为技术有限公司 信息传输方法和装置

Also Published As

Publication number Publication date
CN113691358A (zh) 2021-11-23
EP4145745A1 (en) 2023-03-08
EP4145745A4 (en) 2023-11-01
US20230089990A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2021233217A1 (zh) 能力信息上报方法及其装置
CN106559872B (zh) 一种资源分配方法、装置及无线接入系统
CN111149383B (zh) 用于在无线通信系统中发送分组的方法和设备
US11647527B2 (en) Method and apparatus for allocating dynamic resources of integrated access and backhaul nodes in wireless communication system
US10917303B2 (en) Data transmission method and device
WO2018082409A1 (zh) 一种功率控制方法和通信设备
WO2019029269A1 (zh) 信息指示方法及相关设备
US20220312459A1 (en) Enhanced Configured Grants
CN112469025B (zh) 一种通信方法及装置
WO2019015445A1 (zh) 一种通信方法及装置
CN111132324B (zh) 一种旁链路资源的配置方法及装置
US20210281357A1 (en) Bandwidth Puncture and Response Rules
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2019223558A1 (zh) 一种通信方法、装置及系统
WO2021226794A1 (zh) 数据传输方法及相关装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
US20220304042A1 (en) Enhanced Configured Grants
WO2020156214A1 (zh) 功率控制方法及终端设备
WO2024011553A1 (zh) 无线通信的方法、终端设备和网络设备
US20240147514A1 (en) Inter-ue communication coordination and collision response
CN115189851B (zh) 频域资源位置确定方法与装置、终端和网络设备
WO2023143007A1 (zh) 信息传输方法和装置
WO2023024982A1 (zh) 一种通信方法及装置
WO2022252211A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021807788

Country of ref document: EP

Effective date: 20221202

NENP Non-entry into the national phase

Ref country code: DE