WO2018082409A1 - 一种功率控制方法和通信设备 - Google Patents

一种功率控制方法和通信设备 Download PDF

Info

Publication number
WO2018082409A1
WO2018082409A1 PCT/CN2017/102779 CN2017102779W WO2018082409A1 WO 2018082409 A1 WO2018082409 A1 WO 2018082409A1 CN 2017102779 W CN2017102779 W CN 2017102779W WO 2018082409 A1 WO2018082409 A1 WO 2018082409A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
carrier
power
control mode
frequency band
Prior art date
Application number
PCT/CN2017/102779
Other languages
English (en)
French (fr)
Inventor
王亚飞
唐浩
龚政委
唐臻飞
克拉松布莱恩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17868336.3A priority Critical patent/EP3528573B1/en
Priority to JP2019522855A priority patent/JP2020500469A/ja
Publication of WO2018082409A1 publication Critical patent/WO2018082409A1/zh
Priority to US16/402,911 priority patent/US20190261359A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Definitions

  • the present application relates to the field of communications, and in particular, to a power control method and a communication device.
  • the Long Term Evolution-Advanced (LTE-Advanced) system introduces a technology that increases the transmission bandwidth, that is, the carrier.
  • Carrier Aggregation CA
  • the CA technology can aggregate 2 to 5 LTE carrier components (CCs) to achieve a maximum transmission bandwidth of 100 MHz, which effectively improves the uplink and downlink transmission rates.
  • Another way is to increase the throughput of user data through Dual Connectivity (DC) technology.
  • DC Dual Connectivity
  • the essence of DC technology is carrier aggregation between carrier aggregation sites under the premise of non-ideal backhaul (Backhaul).
  • the typical scenario is that there is one macro cell (primary cell) base station, and the other is a small cell (secondary cell) base station.
  • the macro cell base station and the small cell base station are connected through a standard X2 interface.
  • the scheduler of the macro cell base station and the small cell base station respectively manage the radio resources of the respective cells, and needs to coordinate with each other.
  • the dual connectivity is managed by the macrocell base station for mobility, while the aggregated small cells provide additional user capacity and increase user data throughput.
  • the multi-carrier power control mode has two modes in LTE/LTE-A: Mode1 and Mode2, and Mode1 adopts the Look ahead mode.
  • the power allocation of each different cell group (Cell Group, CG) is based on the priority of the channel type.
  • the guaranteed power and the sharable transmission power interval of each CG are allocated according to the Maximum Guaranteed Power (MGP) configured by the base station, and the power of the shareable power interval is allocated according to the type of the transmission channel.
  • Mode 2 adopts the Non-Look ahead mode, and the power allocation of each different CG is performed according to the time sequence.
  • the pre-defined guaranteed power of each CG and the sharable transmission power interval are allocated, and the power of the power interval can be shared according to the channel.
  • the order of transmission time is allocated, as shown in FIG. 1 is a schematic diagram of Mode1 and Mode2 in DC technology.
  • the power control mode of the CA adopts Mode1, and only considers the power control when one subframe overlaps in time, for example, the UE is configured with Multi-Timing Advance (MTA).
  • MTA Multi-Timing Advance
  • a cell in a Timing Advance Group (TAG) transmits a Physical Uplink Shared Channel (PUSCH) in subframe i and a different serving cell in another TAG in subframe i
  • PUSCH Physical Uplink Shared Channel
  • PUCCH physical layer uplink control channel
  • the UE adjusts the overall power of the TAG so that the power does not exceed the predetermined maximum power in any overlapping portion, such that only one subframe of the overlap is considered. The power situation cannot be satisfied.
  • the embodiment of the invention provides a power control method and a communication device, which can solve the problem that the power allocation in the CA technology and the DC technology is unreasonable when multiple subcarrier spacings are used in the new radio access technology (New RAT, NR).
  • New RAT new radio access technology
  • a power control method including: configuring a terminal that configures multiple cells, and dividing a cell group into multiple cells according to a subcarrier interval, where a power control mode between the cell groups is configured by the base station as a first power control mode or In the second power control mode, the plurality of cells are one of a carrier aggregation CA or a dual connectivity DC.
  • the first power control mode is configured to allocate transmission power according to a priority of a channel type or a priority of a cell group type, and may be a Look-ahead mode, where the second power control mode is used according to a time sequence of transmission channels or cell groups. Power allocation can be done in Non Look-ahead mode.
  • the cell is at least one of a carrier or a serving cell, so that the carriers in the same cell group are all carriers with the same subcarrier spacing, and the slots corresponding to the same subcarrier spacing have the same slot size, which can avoid multiple different
  • the time domain resource unit on one carrier corresponds to multiple time domain resource units on the other carrier, so that the power allocation of the carriers with the same subcarrier spacing in the same time domain resource unit is reasonable.
  • the grouping of the cells into the plurality of cells according to the subcarrier spacing includes: dividing cells of the same subcarrier spacing into the same cell group, and using the same power control mode between the cells in the cell group, the same The power control mode is a first power control mode or a second power control mode.
  • the second aspect provides a power control method, including: the terminal sends the first report information to the base station, where the first report information indicates a power allocation manner of different carrier sets or frequency band sets, the carrier set includes at least one carrier, and the frequency band set includes at least one One frequency band.
  • a low frequency band power sharing mechanism of a low frequency band that is, a carrier of less than 6 GHz
  • a carrier or a frequency band greater than 6 may be introduced in a next generation wireless communication technology such as 5G communication technology, for example, a carrier of 30 GHz, high
  • the power amplification of the carrier or the frequency band of the frequency band and the low frequency band has different requirements on the power amplifier efficiency of the power amplifier.
  • the power allocation mode includes different carrier sets or frequency band sets using independent power control, and independent power control including at least one carrier set or at least one frequency band set of maximum transmission power is independently predefined.
  • the terminal has a maximum transmission power of at least one carrier set or at least one frequency band set, and at least one carrier set of the shareable power or a total maximum transmission power of the at least one frequency band set.
  • a third aspect provides a base station, including: a determining unit, configured to determine a subcarrier spacing of a cell, and a grouping unit, configured to: for a terminal that configures multiple cells, divide a cell group, a cell for multiple cells according to a subcarrier spacing
  • the power control mode between the groups is configured by the base station as the first power control mode or the second power control mode, and the plurality of cells are one of carrier aggregation CA or dual connectivity DC.
  • the cell is at least one of a carrier or a serving cell.
  • the grouping unit is configured to divide cells of the same subcarrier spacing into the same cell group, and use the same power control mode between the cells in the cell group, and the same power control mode is the first power. Control mode or second power control mode.
  • the first power control mode is configured to allocate transmission power according to a priority of a channel type or a priority of a cell group type
  • the second power control mode is used according to a time sequence of transmission channel or cell group transmission. Power allocation.
  • a terminal includes: a determining unit, configured to determine first reporting information of at least one carrier set or at least one frequency band set; and a sending unit, configured to send first reporting information to the base station, where the first reporting information indicates A power allocation manner of different carrier sets or frequency band sets, the carrier set includes at least one carrier, and the frequency band set includes at least one frequency band.
  • the power allocation mode includes different carrier sets or frequency band sets using independent power control, and independent power control including at least one carrier set or at least one frequency band set of maximum transmission power is independently predefined.
  • the terminal has a maximum transmission power of at least one carrier set or at least one frequency band set, and at least one carrier set of the shareable power or a total maximum transmission power of the at least one frequency band set.
  • a fifth aspect provides a communication device, including: a processor, configured to: for a terminal that configures multiple cells, divide a cell group into multiple cells according to a subcarrier interval, and the power control mode between the cell groups is configured by the base station.
  • the plurality of cells are one of carrier aggregation CA or dual connectivity DC.
  • the first power control mode is configured to allocate transmission power according to a priority of a channel type or a priority of a cell group type
  • the second power control mode is configured to perform power allocation according to a time sequence of transmission channels or cell group transmissions.
  • the cell is at least one of a carrier or a serving cell.
  • the processor is further configured to: divide cells of the same subcarrier interval into the same cell group, use the same power control mode between cells in the cell group, and use the same power control mode as the first power. Control mode or second power control mode.
  • the sixth aspect provides a terminal, including: a transmitter, configured to send first report information to a base station, where the first report information indicates a power allocation mode of different carrier sets or frequency band sets, where the carrier set includes at least one carrier, a frequency band set Includes at least one frequency band.
  • the power allocation mode includes different carrier sets or frequency band sets using independent power control, and independent power control including at least one carrier set or at least one frequency band set of maximum transmission power is independently predefined.
  • a maximum transmission power of at least one carrier set or at least one frequency band set and a total maximum transmission power of at least one carrier set or at least one frequency band set of the shareable power are predefined in the terminal.
  • An embodiment of the present invention provides a power allocation method and a communication device.
  • a cell group may be divided into multiple cells according to a subcarrier interval, and a power control mode between the cell groups is configured by the base station as a first power.
  • the plurality of cells are one of a carrier aggregation CA or a dual connectivity DC.
  • the cells with the same subcarrier spacing are the same, and the slots corresponding to the same subcarrier spacing have the same slot size.
  • the cell is a carrier, multiple carriers can be avoided.
  • the time domain resource unit on one carrier corresponds to multiple time domain resource units on another carrier, so that the power allocation of carriers with the same subcarrier spacing under the same time domain resource unit is reasonable.
  • FIG. 1 is a schematic diagram of Mode1 and Mode2 in a DC technology according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of an application scenario of a DC according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a DC network architecture according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of four main application scenarios of a CA according to an embodiment of the present disclosure.
  • FIG. 5a is a schematic flowchart diagram of a power control method according to an embodiment of the present disclosure
  • FIG. 5b is a schematic flowchart diagram of a power control method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a carrier with different subcarrier spacing according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a time length of a subframe corresponding to a subcarrier spacing according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of Mode1 and Mode2 after a carrier group is divided according to subcarrier spacing according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an application scenario of a DC.
  • the scheduling of the resources is jointly controlled by the master eNodeB (MeNB) and the secondary eNodeB (SeNB).
  • the user equipment (UE) can be connected to the MeNB and the SeNB at the same time to implement multi-carrier scheduling.
  • Figure 3 shows a schematic diagram of the network architecture of the DC.
  • Figure 4 shows the four main application scenarios of the CA, but not limited to the four application scenarios, including: a) In the most typical scenario, multiple CCs have the same beam direction or mode, and the coverage is basically the same; b) In the case of discrete spectrum deployment, multiple CCs have different transmission powers and different coverage areas; c) multiple CCs have different beam directions or modes, and coverage is complementary; d) macrocell (Macrocell) CC Provide coverage function, CC bearer throughput of Remote Radio Head (RRH).
  • RRH Remote Radio Head
  • the network element involved may include a base station and a terminal, and the base station may be one of an eNodeB or an evolved Node B (eNB) or a Transmission Rrception Point (TRP).
  • the terminal may be a UE, and the eNB may include the MeNB and the SeNB.
  • the eNB in the LTE is mainly responsible for radio resource management, quality of service (QoS) management, data compression, and encryption on the air interface side.
  • QoS quality of service
  • the eNB is mainly responsible for forwarding control plane signaling to the Mobile Management Entity (MME) and forwarding user plane service data to the S-GW.
  • MME Mobile Management Entity
  • the concept corresponding to the eNB is TRP.
  • the UE may be any of the user equipments, and the UE may be static or mobile.
  • the UE may include, but is not limited to, a station, a mobile station, a subscriber unit, a personal computer, a laptop computer, a tablet computer, a netbook. (Netbook), Terminal, Cellular Phone, Handheld, Cordless Phone, Personal Digital Assistant (PDA), Data Card, General Serial Serial Bus (USB) plug-in device, mobile WiFi hotspot device (MiFi Devices), smart watch, smart glasses, wireless modem (English: Modem), wireless router, wireless local loop (Wireless Local Loop, Abbreviations: WLL) Taiwan and so on.
  • Network Network
  • PDA Personal Digital Assistant
  • USB General Serial Serial Bus
  • a power control method For a terminal configured with multiple cells, a cell group is divided into multiple cells according to a subcarrier interval, and a power control mode between the cell groups is configured by the base station as a first power control.
  • the multiple cells are one of a carrier aggregation CA or a dual connectivity DC, so that the cells in the same cell group are all the cells with the same subcarrier spacing, and in the case that the cell is a carrier
  • the time slots of the carriers corresponding to the same subcarrier spacing are the same, and the time domain resource unit on one carrier corresponding to multiple time domain resource units on another carrier may be avoided when multiple different carriers coexist, so that the subcarrier spacing is the same.
  • the power allocation of the carrier under the same time domain resource unit is reasonable.
  • a cell is taken as an example for description.
  • An embodiment of the present invention provides a power control method, as shown in FIG. 5a, including:
  • the communication device determines a subcarrier spacing of the carrier.
  • the communication device allocates a carrier group to the carrier according to the subcarrier spacing according to the subcarrier spacing, and the multiple carriers are one of CA or DC.
  • the communication device may include a base station and/or a terminal, that is, the division of the group of carriers may be divided by the base station side, or the terminal side, or the base station and the terminal.
  • the base station determines that the terminal side includes carriers with different subcarrier spacings, and the base station may divide carriers of the same subcarrier spacing into the same carrier group.
  • the subcarrier spacings of the multiple CCs may be the same or different, and the base station may divide the CCs of the same subcarrier spacing into the same carrier group according to the subcarrier spacing;
  • the base station may divide the CCs of the same subcarrier spacing into the same carrier group according to the subcarrier spacing;
  • the subcarrier spacing in the carrier aggregation may be the same or different, and the base station may also be based on The subcarrier spacing in the carrier aggregation divides the CCs of the same subcarrier spacing into the same carrier group.
  • FIG. 6 when the carriers of the two subcarriers are coexisting, the CC1 to CC3 of the first seed carrier interval are divided into the first carrier group, and the CC4 to CC7 of the second seed carrier interval are divided into the second carrier group.
  • the first power control mode or the second power control mode is adopted between different carrier groups of the base station, the carriers in the carrier group adopt the same power control mode, and the same power control mode is the first power control mode or the second power control mode. mode.
  • the first power control mode may be a Mode1 mode, and the Mode1 mode is a Look-ahead mode, configured to allocate transmission power according to a priority of a channel type or a priority of a carrier group type, and the second power control mode may be a Mode2 mode, and the Mode2 mode is Non Look-ahead mode for power allocation according to the time sequence of transmission channel or carrier group transmission.
  • the time slots corresponding to different subcarrier spacings are different, that is, each time slot corresponding to the same subcarrier interval lasts for the same length of time.
  • the terminal will adjust its overall power so that the power in the overlapping portion does not exceed the maximum. Transmit power, but when there are different subcarrier spacing carriers, the time domain resource unit pair on one carrier may correspond to multiple time domain resource units on another carrier, for example, as shown in FIG.
  • the time length of the corresponding one subframe is as shown in (1), and represents the time length A of one subframe corresponding to the subcarrier spacing of 15 kHz, for transmitting uplink data, and the time length of multiple subframes corresponding to the second subcarrier interval.
  • Such as (2) shows the time lengths B, C, D, and E of the four subframes corresponding to the subcarrier spacing of 60 kHz for transmitting uplink or downlink data, and the length of one subframe of the subcarrier spacing of 15 kHz corresponds to 60 kHz.
  • the length of the four sub-frames of the subcarrier spacing, the existing power allocation may result in unreasonable power allocation.
  • the same carrier when the carriers of the same subcarrier spacing are divided into the same carrier group, the same carrier is used.
  • the carriers in the group are all carriers with the same sub-carrier spacing.
  • the slots of the same sub-carrier spacing have the same slot size, which enables the terminal to avoid the coexistence of multiple different carriers when the time domain resource unit on one carrier corresponds to another.
  • the multiple time domain resource units on the carrier make the power allocation of the carriers with the same subcarrier spacing in the same time domain resource unit reasonable.
  • the base station sends signaling to the terminal, where the signaling includes indication information of a power control mode between different carrier groups configured by the base station.
  • the terminal When the terminal receives the signaling, since the time slots corresponding to the carriers in the carrier group are the same, the time domain resource unit on one carrier is corresponding to multiple time domain resources on the other carrier when multiple different carriers coexist. In the case of the unit, the power control mode of the carrier corresponding to the same subcarrier interval is the same, so that the terminal can reasonably allocate the power of the carrier with the same subcarrier spacing.
  • the power allocation according to the channel type in the Look-ahead mode is not directly used to allocate power for the channel in the order of time in the Non Look-ahead mode in the prior art, but to increase the division of the carrier. Dimensions, the carriers of the same subcarrier spacing are divided into the same carrier group.
  • the time slots occupied by the CG_Num1 in the subframe are the same, the time slots occupied by the CG_Num2 in the subframe are the same, and carriers with multiple subcarrier spacing are avoided.
  • the time domain resource unit on one subcarrier corresponds to the time domain resource unit on the other carrier, and the Look-ahead power control mode or the Non Look-ahead power control mode may be used between the carrier group CG_Num1 and the carrier group CG_Num2.
  • the carrier in CG_Num1 uses the Look-ahead power control mode
  • the carrier in CG_Num2 uses the Look-ahead power control mode.
  • the power allocation in the CA mode may adopt a Look-ahead power control mode or a Non Look-ahead power control mode, and only Look-ahead is used in relation to the power allocation in the CA mode in the prior art. In terms of mode, the power allocation mode is more flexible.
  • the embodiment of the present invention provides a power control method.
  • a carrier group is divided into carriers according to a subcarrier interval, and a first power control mode or a second power control mode may be adopted between the carrier groups.
  • the base station side is configured, the first power control mode is different from the second power control mode, and the multiple carriers are one of CA or DC, and the base station sends signaling to the terminal, where the signaling includes a power control mode between different carrier groups determined by the base station.
  • the indication information is such that, for the carriers in the same carrier group, the carriers with the same sub-carrier spacing are the same, and the slots of the corresponding sub-carrier spacing have the same slot size, which can avoid the coexistence of multiple carriers on one carrier.
  • the time domain resource unit corresponds to multiple time domain resource units on another carrier, so that the power allocation of the carriers with the same subcarrier spacing under the same time domain resource unit is reasonable.
  • the embodiment of the invention further provides a power control method, as shown in FIG. 5b, including:
  • the terminal determines power sharing information of the at least one carrier set or the at least one frequency band set.
  • a carrier or frequency band greater than 6 GHz such as a carrier of 30 GHz
  • the power amplification of the carrier or frequency band of the high frequency band and the low frequency band has different power amplifier efficiency requirements for the power amplifier, and may exist.
  • the scenario of using different power amplifiers in the high frequency band and the low frequency band, how to implement the power allocation mechanism in this scenario requires the terminal side to report power sharing information, and the power sharing information indicates whether the transmission power can be shared between different carrier sets or frequency band sets. .
  • the terminal sends the first report information, where the first report information indicates a power allocation mode of different carrier sets or frequency band sets, where the carrier set includes at least one carrier, and the frequency band set includes at least one frequency band.
  • the power allocation mode includes different carrier sets or frequency band sets using independent power control, and independent control including at least one carrier set or at least one frequency band set of maximum transmission power is independently predefined.
  • the first report information is One bit indicates that the bit is 0, indicating that the shared transmission power is shared, and when it is 1, it indicates that the transmission power cannot be shared.
  • the carrier set of the high frequency band and the carrier set of the low frequency band, or the carrier set including the high frequency band, the middle frequency band, and the low frequency band, or a plurality of carrier sets divided by other frequency band regions may be included, which is not limited in this application. .
  • the first report information may be determined by the terminal according to the configured carrier type or the frequency band type, and the first report information may further include an identifier of the carrier set that can share the transmission power or an identifier of the frequency band set.
  • the set of carriers includes at least one carrier, and the set of frequency bands includes at least one frequency band.
  • the terminal may report the first report information to the base station according to the type of the CC.
  • the type of the CC may be different according to the application scenario in which the terminal is located.
  • the type of the CC may include the same beam direction.
  • the frequency band type may include the frequency band value or the frequency band range supported by the terminal, and the terminal may classify the CC of the carrier type capable of power sharing into one carrier set, for example, two types.
  • the carrier type CC can share a power amplifier (PA).
  • PA power amplifier
  • the CCs of the two carrier types can be classified into one carrier set, and the terminal can report the identity of each CC in the carrier set to the base station, so that the terminal can facilitate
  • the base station may configure the power control mode or the power control type of the terminal by the base station side.
  • the terminal may include a predefined maximum transmit power of at least one carrier set or at least one frequency band set, and a total maximum transmit power of the at least one carrier set of the predefined shareable power or the at least one frequency band set.
  • the terminal can report the power sharing information to the base station, so that the base station can reasonably configure an efficient power allocation mode for different carrier sets or carriers of different frequency bands.
  • each network element such as a base station, a UE, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present invention may divide the function module into the base station according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 9 is a schematic diagram showing a possible configuration of a communication device involved in the foregoing embodiment.
  • the communication device includes: a grouping unit 901, a determining unit 902, and a sending unit 903. .
  • the determining unit 902 is configured to support the communication device to perform the process 501, 503 in FIG. 5a
  • the grouping unit 901 is configured to support the base station to perform the process 502 in FIG. 5a
  • the transmitting unit 903 is configured to support the base station to perform the process 504 in FIG. 5a. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 10 shows a possible structural diagram of the communication device involved in the above embodiment.
  • the communication device 10 includes a processing module 1001 and a communication module 1002.
  • the processing module 1001 is configured to perform control management on the actions of the base station.
  • the processing module 1001 is configured to support the base station to perform the processes 501, 502, and 503 in FIG. 5a.
  • the communication module 1002 is configured to support communication between the base station and other network entities, for example, with the UE, specifically for supporting the base station to perform the process 504 of FIG. 5a.
  • the base station may further include a storage module 1003 for storing program codes and data of the base station.
  • the processing module 1001 may be a processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1002 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1003 can be a memory.
  • the processing module 1001 is a processor
  • the communication module 1002 is a transceiver
  • the storage module 1003 is a memory
  • the communication device according to the embodiment of the present invention may be the communication device shown in FIG.
  • the communication device 11 includes a processor 1112, a transceiver 1113, a memory 1111, and a bus 1114.
  • the transceiver 1113, the processor 1112, and the memory 1111 are connected to each other through a bus 1114.
  • the bus 1114 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus. Wait.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • Wait The bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • FIG. 12 is a schematic diagram showing a possible structure of a terminal involved in the foregoing embodiment, where the terminal includes: a determining unit 1201 and a sending unit 1202.
  • the determining unit 1201 is configured to support the terminal to perform the process 601 in FIG. 5b
  • the transmitting unit 1202 is configured to support the terminal to perform the process 602 in FIG. 5b. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 13 shows a possible structural diagram of the terminal involved in the above embodiment.
  • the terminal includes a processing module 1301 and a communication module 1302.
  • the processing module 1301 is used for the end
  • the action of the terminal performs control management.
  • the processing module 1301 is configured to support the terminal to execute the process 601 in FIG. 5b.
  • the communication module 1302 is configured to support communication between the terminal and other network entities, for example, with the base station, specifically for supporting the terminal to perform the process 602 of FIG. 5b.
  • the terminal may further include a storage module 1303 for storing program codes and data of the terminal.
  • the processing module 1301 can be a processor DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1302 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1303 may be a memory.
  • the terminal involved in the embodiment of the present invention may be the terminal shown in FIG.
  • the terminal 14 includes a processor 1412, a transceiver 1413, a memory 1411, and a bus 1414.
  • the transceiver 1413, the processor 1412, and the memory 1411 are connected to each other through a bus 1414.
  • the bus 1414 may be a peripheral component interconnect standard PCI bus or an extended industry standard structure EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 14, but it does not mean that there is only one bus or one type of bus.
  • Embodiments of the present invention also provide a computer storage medium for storing computer software instructions for use in the communication device of FIG. 5a, including programs for performing the processes 501-504 of FIG. 5a described above.
  • Embodiments of the present invention also provide a computer storage medium for storing computer software instructions for use in the communication device of FIG. 5b, including a program for performing the processes 601-602 of FIG. 5b described above.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种功率控制方法和通信设备,涉及通信领域,能够解决NR采用多种子载波间隔时CA和DC技术中功率分配不合理的问题。其方法为:对配置多个小区的终端,根据子载波间隔,对多个小区划分小区组,小区组间的功率控制模式由基站配置为第一功率控制模式或第二功率控制模式,多个小区为CA或DC中的一种。本发明实施例用于多种子载波间隔的载波共存时的功率控制。

Description

一种功率控制方法和通信设备
本申请要求于2016年11月04日提交中国专利局、申请号为201610978238.0、申请名称为“一种功率控制方法和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种功率控制方法和通信设备。
背景技术
为了满足单用户峰值速率和系统容量提升的要求,一种方式是通过增加系统传输带宽,因此,长期演进(Long Term Evolution-Advanced,LTE-Advanced)系统引入一项增加传输带宽的技术,即载波聚合(Carrier Aggregation,CA),CA技术可以将2~5个LTE载波(Component Carrier,CC)聚合在一起,实现最大100MHz的传输带宽,有效提高了上下行传输速率。再一种方式是通过双连接(Dual Connectivity,DC)技术提升用户数据的吞吐量。DC技术的本质是在非理想回程线路(Backhaul)前提下的载波聚合站点间的载波聚合。其典型的场景是有一个宏蜂窝(主小区)基站,另一个为小蜂窝(辅小区)基站,宏蜂窝基站和小蜂窝基站通过标准的X2接口相连。宏蜂窝基站和小蜂窝基站的调度器分别管理各自小区的无线资源,需要相互之间进行协调。双连接通过宏蜂窝基站进行移动性管理,同时聚合小蜂窝提供额外的用户容量,提高用户数据吞吐量。
多载波的功率控制模式在LTE/LTE-A中有两种模式:Mode1和Mode2,Mode1采用Look ahead方式,各个不同小区组(Cell Group,CG)的功率分配是根据信道类型的优先级进行的,根据基站配置的最大保证功率(Maximum Guaranteed Power,MGP)分配预先定义的各个CG的保证功率和可共享传输功率区间,可共享功率区间的功率根据传输信道的类型进行分配。Mode2采用Non-Look ahead模式,各个不同CG的功率分配根据时间上的顺序进行,根据基站配置的MGP分配预先定义的各个CG的保证功率和可共享传输功率区间,可共享功率区间的功率根据信道传输时间上的顺序进行分配,如图1所示为DC技术中的Mode1和Mode2的一种示意图。
现有的LTE中CA的功率控制方式采用的是Mode1,且仅考虑了一个子帧在时间上存在部分重叠时的功率控制,例如UE配置了多时间提前量(Multi-Timing Advance,MTA),如果对于一个定时提前组(Timing Advance Group,TAG)中给定的小区在子帧i传输物理层上行共享信道(Physical Uplink Shared Channel,PUSCH)和在另一个TAG中的不同服务小区在子帧i+1传输的物理层上行控制信道(Physical Uplink Control Channel,PUCCH)重叠,UE将调整TAG的整体功率,使得在任意重叠部分功率不超过预定的最大功率,这种仅考虑重叠的一个子帧的功率的情况无法满足在采用不同的子载波间隔时,一个载波上的时域资源单元(slot)对应另一个载波上的多个时域资源单元时,将会导致功率分配不合理,使得传输性能下降。现有的LTE中DC 的功率控制可采用Mode1和Mode2,也仅考虑了一个子帧在时间上存在部分重叠时的功率控制,没有考虑多种子载波间隔共存时的功率控制,即一个载波上的时域资源单元对应另一个载波上的多个时域资源单元情况下的功率控制,也将导致功率分配不合理,使得传输性能下降。
发明内容
本发明实施例提供一种功率控制方法和通信设备,能够解决新无线接入技术(New RAT,NR)中采用多种子载波间隔时CA技术和DC技术中功率分配不合理的问题。
第一方面,提供一种功率控制方法,包括对配置多个小区的终端,根据子载波间隔,对多个小区划分小区组,小区组间的功率控制模式由基站配置为第一功率控制模式或第二功率控制模式,多个小区为载波聚合CA或双连接DC中的一种。其中,第一功率控制模式用于根据信道类型的优先级或小区组类型的优先级分配传输功率,可以为Look-ahead模式,第二功率控制模式用于根据传输信道或小区组发送的时间顺序进行功率分配,可以为Non Look-ahead模式。小区至少为载波或服务小区中的一种,这样,对于同一小区组内的载波,均为子载波间隔相同的载波,相同的子载波间隔对应的载波的时隙大小相同,可以避免多种不同的载波共存时一个载波上的时域资源单元对应另一个载波上的多个时域资源单元,使得子载波间隔相同的载波在相同的时域资源单元下的功率分配合理。
在一种可能的设计中,根据子载波间隔,对多个小区划分小区组包括:将相同子载波间隔的小区划分至同一小区组中,小区组内的小区间采用同一种功率控制模式,同一种功率控制模式为第一功率控制模式或第二功率控制模式。
第二方面,提供一种功率控制方法,包括:终端向基站发送第一上报信息,第一上报信息指示不同的载波集合或频段集合的功率分配方式,载波集合包括至少一个载波,频段集合包括至少一个频段。由于现有技术只考虑了低频段即小于6GHz的载波的一个低频段的功率共享机制,但是在下一代无线通信技术例如5G通信技术中会引入大于6的载波或频段,例如30GHz的载波,高频段与低频段的载波或频段的功率放大对功率放大器的功放效率要求不同,可能会存在高频段与低频段采用不同功率放大器的场景,如何在这种场景下实现功率分配机制需要终端侧上报功率共享信息,而此功率共享信息指示不同的载波集合或频段集合之间是否能够共享传输功率。功率分配方式包括不同的载波集合或频段集合采用独立功率控制,独立功率控制包括至少一个载波集合或至少一个频段集合的最大传输功率是独立预定义的。
在一种可能的设计中,终端中预定义有至少一个载波集合或至少一个频段集合的最大传输功率,以及可共享功率的至少一个载波集合或至少一个频段集合的总最大传输功率。
第三方面,提供一种基站,包括:确定单元,用于确定小区的子载波间隔;分组单元,用于对配置多个小区的终端,根据子载波间隔,对多个小区划分小区组,小区组间的功率控制模式由基站配置为第一功率控制模式或第二功率控制模式,多个小区为载波聚合CA或双连接DC中的一种。小区至少为载波或服务小区中的一种。
在一种可能的设计中,分组单元用于:将相同子载波间隔的小区划分至同一小区组中,小区组内的小区间采用同一种功率控制模式,同一种功率控制模式为第一功率 控制模式或第二功率控制模式。
在一种可能的设计中,第一功率控制模式用于根据信道类型的优先级或小区组类型的优先级分配传输功率,第二功率控制模式用于根据传输信道或小区组发送的时间顺序进行功率分配。
第四方面,提供一种终端,包括:确定单元,用于确定至少一个载波集合或至少一个频段集合的第一上报信息;发送单元,用于向基站发送第一上报信息,第一上报信息指示不同的载波集合或频段集合的功率分配方式,载波集合包括至少一个载波,频段集合包括至少一个频段。功率分配方式包括不同的载波集合或频段集合采用独立功率控制,独立功率控制包括至少一个载波集合或至少一个频段集合的最大传输功率是独立预定义的。
在一种可能的设计中,终端中预定义有至少一个载波集合或至少一个频段集合的最大传输功率,以及可共享功率的至少一个载波集合或至少一个频段集合的总最大传输功率。
第五方面,提供一种通信设备,包括:处理器,用于对配置多个小区的终端,根据子载波间隔,对多个小区划分小区组,小区组间的功率控制模式由基站配置为第一功率控制模式或第二功率控制模式,多个小区为载波聚合CA或双连接DC中的一种。第一功率控制模式用于根据信道类型的优先级或小区组类型的优先级分配传输功率,第二功率控制模式用于根据传输信道或小区组发送的时间顺序进行功率分配。小区至少为载波或服务小区中的一种。
在一种可能的设计中,处理器还用于:将相同子载波间隔的小区划分至同一小区组中,小区组内的小区间采用同一种功率控制模式,同一种功率控制模式为第一功率控制模式或第二功率控制模式。
第六方面,提供一种终端,包括:发送器,用于向基站发送第一上报信息,第一上报信息指示不同的载波集合或频段集合的功率分配方式,载波集合包括至少一个载波,频段集合包括至少一个频段。功率分配方式包括不同的载波集合或频段集合采用独立功率控制,独立功率控制包括至少一个载波集合或至少一个频段集合的最大传输功率是独立预定义的。终端中预定义有至少一个载波集合或至少一个频段集合的最大传输功率,以及可共享功率的至少一个载波集合或至少一个频段集合的总最大传输功率。
本发明实施例提供一种功率分配方法和通信设备,对配置多个小区的终端,可根据子载波间隔,对多个小区划分小区组,小区组间的功率控制模式由基站配置为第一功率控制模式或第二功率控制模式,多个小区为载波聚合CA或双连接DC中的一种。这样,对于同一小区组内的小区,均为子载波间隔相同的小区,相同的子载波间隔对应的小区的时隙大小相同,在小区为载波的情况下,可以避免多种不同的载波共存时一个载波上的时域资源单元对应另一个载波上的多个时域资源单元,使得子载波间隔相同的载波在相同的时域资源单元下的功率分配合理。
附图说明
图1为本发明实施例提供的一种DC技术中的Mode1和Mode2的示意图;
图2为本发明实施例提供的一种DC的应用场景的示意图;
图3为本发明实施例提供的一种DC的网络架构的示意图;
图4为本发明实施例提供的一种CA的四种主要应用场景示意图;
图5a为本发明实施例提供的一种功率控制方法的流程示意图;
图5b为本发明实施例提供的一种功率控制方法的流程示意图;
图6为本发明实施例提供的一种不同子载波间隔的载波的示意图;
图7为本发明实施例提供的一种子载波间隔对应的子帧的时间长度的示意图;
图8为本发明实施例提供的一种按照子载波间隔划分载波组后的Mode1和Mode2的示意图;
图9为本发明实施例提供的一种通信设备的结构示意图;
图10为本发明实施例提供的一种通信设备的结构示意图;
图11为本发明实施例提供的一种通信设备的结构示意图;
图12为本发明实施例提供的一种终端的结构示意图;
图13为本发明实施例提供的一种终端的结构示意图;
图14为本发明实施例提供的一种终端的结构示意图。
具体实施方式
本发明的技术方法可以应用于新无线接入技术(New RAT(Radio Access Technology,无线接入技术),NR)中的CA或DC场景中,如图2所示为DC的应用场景的示意图,资源的调度由主基站(Master eNodeB,MeNB)和辅基站(Secondary eNodeB,SeNB)共同控制,终端(User Equipment,UE)可同时与MeNB和SeNB进行连接,实现多载波的调度。图3所示为DC的网络架构的示意图。如图4所示为CA的四种主要应用场景,但不限于这四种应用场景,包括:a)最典型的场景下,多个CC具有相同的波束方向或模式,且覆盖范围基本相同;b)在频谱离散部署的情况下,多个CC的传输功率不同,覆盖范围也不同;c)多个CC具有不同的波束方向或模式,且覆盖范围互补;d)宏小区(Macrocell)的CC提供覆盖功能,射频拉远(Remote Radio Head,RRH)的CC承载吞吐量。
在本发明实施例中,涉及的网元可以包括基站和终端,基站可以为eNodeB或演进型Node B(eNB)或传输接收点(Transmission Rrception Point,TRP)中的一种。终端可以为UE,eNB可以包括MeNB和SeNB,eNB时LTE中的基站,主要负责空口侧的无线资源管理、服务质量(Quality of Service,QoS)管理、数据压缩和加密等功能。在核心网侧,eNB主要负责向移动管理实体(Mobile Managenment Entity,MME)转发控制面信令以及向S-GW转发用户面业务数据,在NR中,与eNB对应的概念为TRP。UE可以为用户设备中的任意一种,并且UE可以是静态的,也可以是移动的。UE可以包括但不限于:站台(Station)、移动台(Mobile Station)、用户单元(Subscriber Unit)、个人电脑(Personal Computer)、膝上型电脑(Laptop Computer)、平板电脑(Tablet Computer)、上网本(Netbook)、终端(Terminal)、蜂窝电话(Cellular Phone)、手持设备(Handheld)、无绳电话(Cordless Phone)、个人数字助理(Personal Digital Assistant,缩写:PDA)、数据卡(Data Card)、通用串行总线(Universal Serial Bus,缩写:USB)插入设备、移动WiFi热点设备(MiFi Devices)、智能手表、智能眼镜、无线调制解调器(英文:Modem)、无线路由器、无线本地环路(Wireless Local Loop, 缩写:WLL)台等。
在本发明实施例中,提供一种功率控制方法,对配置多个小区的终端,根据子载波间隔,对多个小区划分小区组,小区组间的功率控制模式由基站配置为第一功率控制模式或第二功率控制模式,多个小区为载波聚合CA或双连接DC中的一种,这样,对于同一小区组内的小区,均为子载波间隔相同的小区,在小区为载波的情况下,相同的子载波间隔对应的载波的时隙大小相同,可以避免多种不同的载波共存时一个载波上的时域资源单元对应另一个载波上的多个时域资源单元,使得子载波间隔相同的载波在相同的时域资源单元下的功率分配合理。
在本发明实施例中,以小区为载波为例进行说明。
本发明实施例提供一种功率控制方法,如图5a所示,包括:
501、通信设备确定载波的子载波间隔。
502、通信设备对配置的多个载波的终端,根据子载波间隔,对载波划分载波组,多个载波为CA或DC中的一种。
该通信设备可以包括基站和/或终端,即对载波的组的划分可以是由基站侧、或终端侧、或基站和终端进行交互后划分的。
示例性的,基站在确定终端侧包括有不同子载波间隔的载波,基站可以将相同子载波间隔的载波划分至同一载波组。
例如在CA模式中,是将多个载波CC聚合在一起,该多个CC的子载波间隔可能相同,也可能不同,基站可以根据子载波间隔将相同子载波间隔的CC划分至同一载波组;在DC模式中,其本质也是在非理想Backhaul前提下的载波聚合站点间的载波聚合,在不同的应用场景中,该载波聚合中的子载波间隔也可能相同,也可能不同,基站也可以根据该载波聚合中子载波间隔将相同子载波间隔的CC划分至同一载波组。如图6所示,当两种子载波间隔的载波共存时,将第一种子载波间隔的CC1~CC3划分至第一载波组,将第二种子载波间隔的CC4~CC7划分至第二载波组。
503、基站配置不同的载波组间采用第一功率控制模式或第二功率控制模式,载波组内的载波采用同一种功率控制模式,同一种功率控制模式为第一功率控制模式或第二功率控制模式。
第一功率控制模式可以为Mode1模式,Mode1模式为Look-ahead模式,用于根据信道类型的优先级或载波组类型的优先级分配传输功率,第二功率控制模式可以为Mode2模式,Mode2模式为Non Look-ahead模式,用于根据传输信道或载波组发送的时间顺序进行功率分配。
不同的子载波间隔对应的时隙大小不同,即同一子载波间隔对应的每个时隙持续的时间长度相同,现有技术的功率控制方法中,仅考虑了重叠的一个子帧的功率,例如对于一个TAG中给定小区在子帧i传输PUCCH和在另一个TAG中的不同服务小区在子帧i+1传输的PUSCH重叠,终端将调整其整体功率,使得在重叠部分功率都不超过最大传输功率,但是当存在不同的子载波间隔的载波时,一个载波上的时域资源单元对可能对应另一个载波上的多个时域资源单元,例如如图7所示,第一子载波间隔对应的一个子帧的时间长度如(1)所示,表示15kHz的子载波间隔对应的一个子帧的时间长度A,用于传输上行数据,第二子载波间隔对应的多个子帧的时间长度如 (2)所示,表示60kHz的子载波间隔对应的四个子帧的时间长度B、C、D和E,用于传输上行或下行数据,15kHz的子载波间隔的一个子帧的时间长度对应60kHz的子载波间隔的四个子帧的时间长度,现有的功率分配会导致功率分配不合理,而在本发明中,当将相同子载波间隔的载波划分至同一载波组中时,则对于同一载波组内的载波,均为子载波间隔相同的载波,相同的子载波间隔对应的载波的时隙大小相同,可以使得终端避免多种不同的载波共存时一个载波上的时域资源单元对应另一个载波上的多个时域资源单元,使得子载波间隔相同的载波在相同的时域资源单元下的功率分配合理。
504、基站向终端发送信令,信令包括基站配置的不同的载波组间的功率控制模式的指示信息。
当终端接收到该信令时,由于载波组中的载波对应的时隙大小相同,避免了多种不同的载波共存时一个载波上的时域资源单元对应另一个载波上的多个时域资源单元的情况,又由于同一子载波间隔对应的载波的功率控制模式相同,可使得终端合理分配子载波间隔相同的载波的功率。
如图8所示,当存在第一子载波间隔的载波CG_Num1和第二子载波间隔的载波CG_Num2时,为CG_Num1分配保证功率(Guaranteed power),并为CG_Num1分配Guaranteed power,但是,本申请不是直接如现有技术中在Look-ahead模式中按照信道类型进行功率分配,也不是直接如现有技术中在Non Look-ahead模式中按照时间的先后顺序为信道进行功率分配,而是增加载波的划分维度,将相同子载波间隔的载波划分至同一载波组,由于CG_Num1在子帧上所占用的时隙大小相同,CG_Num2在子帧上所占用的时隙大小相同,避免了多种子载波间隔的载波共存时一个子载波上的时域资源单元对应另一个载波上的时域资源单元的情况,且载波组CG_Num1和载波组CG_Num2间可以使用Look-ahead功率控制模式或Non Look-ahead功率控制模式,CG_Num1内的载波使用Look-ahead功率控制模式,CG_Num2内的载波使用Look-ahead功率控制模式,以使得多种子载波间隔共存时功率分配合理,提高传输性能。
需要说明的是,在本发明中,CA模式下的功率分配可以采用Look-ahead功率控制模式或Non Look-ahead功率控制模式,相对于现有技术中CA模式下的功率分配仅采用Look-ahead模式来说功率分配模式更为灵活。
因此,本发明实施例提供一种功率控制方法,对配置多个小区的终端,根据子载波间隔,对载波划分载波组,载波组间可采用第一功率控制模式或第二功率控制模式,由基站侧配置,第一功率控制模式与第二功率控制模式不同,多个载波为CA或DC中的一种,基站向终端发送信令,信令包括基站确定的不同载波组间的功率控制模式的指示信息,这样,对于同一载波组内的载波,均为子载波间隔相同的载波,相同的子载波间隔对应的载波的时隙大小相同,可以避免多种不同的载波共存时一个载波上的时域资源单元对应另一个载波上的多个时域资源单元,使得子载波间隔相同的载波在相同的时域资源单元下的功率分配合理。
本发明实施例还提供一种功率控制方法,如图5b所示,包括:
601、终端确定至少一个载波集合或至少一个频段集合的功率共享信息。
由于现有技术中仅考虑了低频段即6GHz以下的载波的功率共享机制,即为6GHz以下的载波如何共享功率分配。但是在下一代无线通信技术例如5G通信技术中会引入大于6GHz的载波或频段,例如30GHz的载波,高频段与低频段的载波或频段的功率放大对功率放大器的功放效率要求不同,可能会存在高频段与低频段采用不同功率放大器的场景,如何在这种场景下实现功率分配机制需要终端侧上报功率共享信息,而此功率共享信息指示不同的载波集合或频段集合之间是否能够共享传输功率。
602、终端发送第一上报信息,第一上报信息指示不同的载波集合或频段集合的功率分配方式,载波集合包括至少一个载波,频段集合包括至少一个频段。
功率分配方式包括不同载波集合或频段集合采用独立功率控制,独立控制包括至少一个载波集合或至少一个频段集合的最大传输功率是独立预定义的。
示例性的,假设存在两个频段集合,低频段的频段集合,和高频段的频段集合,终端在确定低频段的频段集合与高频段的频段集合是否可共享传输功率时,第一上报信息以1个bit来指示,该bit为0时表示可共享传输功率,为1时表示不可共享传输功率。同理,也可以包括高频段的载波集合和低频段的载波集合,或包括高频段、中频段和低频段的载波集合,或者包括以其他频段区域划分的多种载波集合,本申请不做限定。
也就是说,第一上报信息可以是终端根据配置的载波类型或频段类型确定的,第一上报信息还可以包括可以共享传输功率的载波集合的标识或频段集合的标识。载波集合包括至少一个载波,频段集合包括至少一个频段。
示例性的,终端可以根据CC的类型向基站上报第一上报信息,CC的类型可以根据终端所处的应用场景的不同而不同,例如在CA场景中,CC的类型可以包括具有相同波束方向的载波,传输功率不同的载波,具有不同波束方向的载波等,频段类型可以包括终端支持的频段值或频段范围,终端可以将能够进行功率共享的载波类型的CC归为一个载波集合,例如两种载波类型的CC可共用一个功率放大器(Power Amplifier,PA),这两种载波类型的CC可归为一个载波集合中,终端可以将该载波集合中每个CC的标识上报给基站,这样以便于基站在接收到终端发送的N个载波集合或N个频段集合的功率共享信息时,可由基站侧配置终端的功率控制模式或功率控制类型。
在本发明实施例中,终端可以包括预定义的至少一个载波集合或至少一个频段集合的最大传输功率,以及预定义的可共享功率的至少一个载波集合或至少一个频段集合的总最大传输功率。
由此,通过终端向基站上报功率共享信息,可以使得基站合理地为不同载波集合或不同频段集合的载波配置高效的功率分配模式。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站、UE等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对基站进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述实施例中所涉及的通信设备的一种可能的结构示意图,通信设备包括:分组单元901、确定单元902、发送单元903。确定单元902用于支持通信设备执行图5a中的过程501,503,分组单元901用于支持基站执行图5a中的过程502,发送单元903用于支持基站执行图5a中的过程504。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的通信设备的一种可能的结构示意图。通信设备10包括:处理模块1001和通信模块1002。处理模块1001用于对基站的动作进行控制管理,例如,处理模块1001用于支持基站执行图5a中的过程501、502、503。通信模块1002用于支持基站与其他网络实体的通信,例如与UE进行通信,具体用于支持基站执行图5a中的过程504。基站还可以包括存储模块1003,用于存储基站的程序代码和数据。
其中,处理模块1001可以是处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1002可以是收发器、收发电路或通信接口等。存储模块1003可以是存储器。
当处理模块1001为处理器,通信模块1002为收发器,存储模块1003为存储器时,本发明实施例所涉及的通信设备可以为图11所示的通信设备。
参阅图11所示,该通信设备11包括:处理器1112、收发器1113、存储器1111以及总线1114。其中,收发器1113、处理器1112以及存储器1111通过总线1114相互连接;总线1114可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用对应各个功能划分各个功能模块的情况下,图12示出了上述实施例中所涉及的终端的一种可能的结构示意图,终端包括:确定单元1201和发送单元1202。确定单元1201用于支持终端执行图5b中的过程601,发送单元1202用于支持终端执行图5b中的过程602。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的终端的一种可能的结构示意图。终端包括:处理模块1301和通信模块1302。处理模块1301用于对终 端的动作进行控制管理,例如,处理模块1301用于支持终端执行图5b中的过程601。通信模块1302用于支持终端与其他网络实体的通信,例如与基站进行通信,具体用于支持终端执行图5b中的过程602。终端还可以包括存储模块1303,用于存储终端的程序代码和数据。
其中,处理模块1301可以是处理器DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1302可以是收发器、收发电路或通信接口等。存储模块1303可以是存储器。
当处理模块1301为处理器,通信模块1302为收发器,存储模块1303为存储器时,本发明实施例所涉及的终端可以为图14所示的终端。
参阅图14所示,该终端14包括:处理器1412、收发器1413、存储器1411以及总线1414。其中,收发器1413、处理器1412以及存储器1411通过总线1414相互连接;总线1414可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供一种计算机存储介质,用于存储图5a中的通信设备所用的计算机软件指令,其包括用于执行上述图5a的过程501~504所设计的程序。
本发明实施例还提供一种计算机存储介质,用于存储图5b中的通信设备所用的计算机软件指令,其包括用于执行上述图5b的过程601~602所设计的程序。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、 改进等,均应包括在本发明的保护范围之内。

Claims (21)

  1. 一种功率控制方法,其特征在于,包括:
    对配置多个小区的终端,根据子载波间隔,对所述多个小区划分小区组,所述小区组间的功率控制模式由基站配置为第一功率控制模式或第二功率控制模式,所述多个小区为载波聚合CA或双连接DC中的一种。
  2. 根据权利要求1所述的方法,其特征在于,所述根据子载波间隔,对所述多个小区划分小区组包括:
    将相同所述子载波间隔的小区划分至同一所述小区组中,所述小区组内的小区间采用同一种功率控制模式,所述同一种功率控制模式为所述第一功率控制模式或所述第二功率控制模式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一功率控制模式用于根据信道类型的优先级或小区组类型的优先级分配传输功率,所述第二功率控制模式用于根据传输信道或小区组发送的时间顺序进行功率分配。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述小区至少为载波或服务小区中的一种。
  5. 一种功率控制方法,其特征在于,所述方法包括:
    终端向基站发送第一上报信息,所述第一上报信息指示不同的载波集合或频段集合的功率分配方式,所述载波集合包括至少一个载波,所述频段集合包括至少一个频段。
  6. 根据权利要求5所述的方法,其特征在于,所述功率分配方式包括不同的载波集合或频段集合采用独立功率控制,所述独立功率控制包括至少一个所述载波集合或至少一个所述频段集合的最大传输功率是独立预定义的。
  7. 根据权利要求5或6所述的方法,其特征在于,所述终端中预定义有所述至少一个载波集合或所述至少一个频段集合的最大传输功率,以及可共享功率的所述至少一个载波集合或所述至少一个频段集合的总最大传输功率。
  8. 一种通信设备,其特征在于,包括:
    分组单元,用于对配置多个小区的终端,根据子载波间隔,对所述多个小区划分小区组,所述小区组间的功率控制模式由基站配置为第一功率控制模式或第二功率控制模式,所述多个小区为载波聚合CA或双连接DC中的一种。
  9. 根据权利要求8所述的通信设备,其特征在于,所述分组单元用于:
    将相同所述子载波间隔的小区划分至同一所述小区组中,所述小区组内的小区间采用同一种功率控制模式,所述同一种功率控制模式为所述第一功率控制模式或所述第二功率控制模式。
  10. 根据权利要求8或9所述的通信设备,其特征在于,所述第一功率控制模式用于根据信道类型的优先级或小区组类型的优先级分配传输功率,所述第二功率控制模式用于根据传输信道或小区组发送的时间顺序进行功率分配。
  11. 根据权利要求8-10任一项所述的通信设备,其特征在于,所述小区至少为载波或服务小区中的一种。
  12. 一种终端,其特征在于,包括:
    发送单元,用于向基站发送第一上报信息,所述第一上报信息指示不同的载波集合或频段集合的功率分配方式,所述载波集合包括至少一个载波,所述频段集合包括至少一个频段。
  13. 根据权利要求12所述的终端,其特征在于,所述功率分配方式包括不同的载波集合或频段集合采用独立功率控制,所述独立功率控制包括至少一个所述载波集合或至少一个所述频段集合的最大传输功率是独立预定义的。
  14. 根据权利要求12或13所述的终端,其特征在于,所述终端中预定义有所述至少一个载波集合或所述至少一个频段集合的最大传输功率,以及可共享功率的所述至少一个载波集合或所述至少一个频段集合的总最大传输功率。
  15. 一种通信设备,其特征在于,包括:
    处理器,用于对配置多个小区的终端,根据子载波间隔,对所述多个小区划分小区组,所述小区组间的功率控制模式由基站配置为第一功率控制模式或第二功率控制模式,所述多个小区为载波聚合CA或双连接DC中的一种。
  16. 根据权利要求15所述的通信设备,其特征在于,所述处理器还用于:
    将相同所述子载波间隔的小区划分至同一所述小区组中,所述小区组内的小区间采用同一种功率控制模式,所述同一种功率控制模式为所述第一功率控制模式或所述第二功率控制模式。
  17. 根据权利要求15或16所述的通信设备,其特征在于,所述第一功率控制模式用于根据信道类型的优先级或小区组类型的优先级分配传输功率,所述第二功率控制模式用于根据传输信道或小区组发送的时间顺序进行功率分配。
  18. 根据权利要求15-17任一项所述的通信设备,其特征在于,所述小区至少为载波或服务小区中的一种。
  19. 一种终端,其特征在于,包括:
    发送器,用于向基站发送第一上报信息,所述第一上报信息指示不同的载波集合或频段集合的功率分配方式,所述载波集合包括至少一个载波,所述频段集合包括至少一个频段。
  20. 根据权利要求19所述的终端,其特征在于,所述功率分配方式包括不同的载波集合或频段集合采用独立功率控制,所述独立功率控制包括至少一个所述载波集合或至少一个所述频段集合的最大传输功率是独立预定义的。
  21. 根据权利要求19或20所述的终端,其特征在于,所述终端中预定义有所述至少一个载波集合或所述至少一个频段集合的最大传输功率,以及可共享功率的所述至少一个载波集合或所述至少一个频段集合的总最大传输功率。
PCT/CN2017/102779 2016-11-04 2017-09-21 一种功率控制方法和通信设备 WO2018082409A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17868336.3A EP3528573B1 (en) 2016-11-04 2017-09-21 Power control method and communication device
JP2019522855A JP2020500469A (ja) 2016-11-04 2017-09-21 電力制御方法および通信デバイス
US16/402,911 US20190261359A1 (en) 2016-11-04 2019-05-03 Power control method and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610978238.0 2016-11-04
CN201610978238.0A CN108377552B (zh) 2016-11-04 2016-11-04 一种功率控制方法和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/402,911 Continuation US20190261359A1 (en) 2016-11-04 2019-05-03 Power control method and communications device

Publications (1)

Publication Number Publication Date
WO2018082409A1 true WO2018082409A1 (zh) 2018-05-11

Family

ID=62076719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102779 WO2018082409A1 (zh) 2016-11-04 2017-09-21 一种功率控制方法和通信设备

Country Status (5)

Country Link
US (1) US20190261359A1 (zh)
EP (1) EP3528573B1 (zh)
JP (1) JP2020500469A (zh)
CN (1) CN108377552B (zh)
WO (1) WO2018082409A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534889B (zh) * 2018-08-09 2024-04-26 联想(新加坡)私人有限公司 用于上行链路传输功率分配的装置及其方法
CN109644468B (zh) * 2018-09-27 2020-08-25 Oppo广东移动通信有限公司 功率分配的方法、终端设备和网络设备
WO2020144824A1 (ja) * 2019-01-10 2020-07-16 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2020164106A1 (en) * 2019-02-15 2020-08-20 Zte Corporation System and method for determining uplink transmission priority
CN111586819B (zh) * 2019-02-15 2023-10-20 华为技术有限公司 一种上行保证功率信息发送、接收方法及设备
WO2021031004A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 载波测量方法和装置
CN113473602A (zh) * 2020-03-30 2021-10-01 维沃移动通信有限公司 传输控制方法及设备
CN114765844B (zh) * 2021-01-14 2024-06-07 维沃移动通信有限公司 上行功率控制方法、上行功率控制处理方法及相关设备
US12003438B2 (en) * 2021-08-04 2024-06-04 Qualcomm Incorporated Aggregate component carrier for full-duplex operation
US11632776B2 (en) * 2021-09-03 2023-04-18 Qualcomm Incorporated Techniques for handling overlapping transmissions after timing adjustment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101715207A (zh) * 2009-11-04 2010-05-26 中兴通讯股份有限公司 一种功率上升空间的测量、上报方法及终端
CN102118843A (zh) * 2009-12-31 2011-07-06 华为技术有限公司 载波聚合功率控制方法及功率控制装置
US20150334708A1 (en) * 2014-05-09 2015-11-19 Newracom, Inc. Method for transmitting and receiving frame
CN106063353A (zh) * 2014-03-07 2016-10-26 华为技术有限公司 具有灵活子载波间隔和符号持续时间的用于正交频分复用的系统和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8150478B2 (en) * 2008-07-16 2012-04-03 Marvell World Trade Ltd. Uplink power control in aggregated spectrum systems
US8358614B2 (en) * 2008-10-31 2013-01-22 Interdigital Patent Holdings, Inc. Method and apparatus for handling uplink transmissions using multiple uplink carriers
US9288808B2 (en) * 2009-08-14 2016-03-15 Blackberry Limited Method and apparatus for power sharing carrier set for carrier aggregation
EP2606687B1 (en) * 2010-08-17 2016-10-12 Google Technology Holdings LLC Method and apparatus for power headroom reporting during multi-carrier operation
CN110708753A (zh) * 2014-01-29 2020-01-17 交互数字专利控股公司 无线通信中的上行链路传输
CN106031256B (zh) * 2014-02-11 2019-07-23 Lg电子株式会社 在无线中控制上行链路功率的方法和设备
US10057861B2 (en) * 2014-06-03 2018-08-21 Qualcomm Incorporated Techniques for reporting power headroom in multiple connectivity wireless communications
WO2016040290A1 (en) * 2014-09-08 2016-03-17 Interdigital Patent Holdings, Inc. Systems and methods of operating with different transmission time interval (tti) durations
KR101672120B1 (ko) * 2014-09-26 2016-11-04 주식회사 케이티 상향링크 채널 및 신호의 전송전력 제어방법 및 그 장치
EP3035758B1 (en) * 2014-12-15 2020-11-18 Alcatel Lucent Coexistence of cellular and non-cellular systems
CN105992325B (zh) * 2015-02-03 2019-08-27 上海诺基亚贝尔股份有限公司 用于载波聚合增强中的功率控制的方法和设备
US9749970B2 (en) * 2015-02-27 2017-08-29 Qualcomm Incorporated Power control and power headroom for component carrier
JP7085723B2 (ja) * 2016-02-02 2022-06-17 シャープ株式会社 端末装置、および通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101715207A (zh) * 2009-11-04 2010-05-26 中兴通讯股份有限公司 一种功率上升空间的测量、上报方法及终端
CN102118843A (zh) * 2009-12-31 2011-07-06 华为技术有限公司 载波聚合功率控制方法及功率控制装置
CN106063353A (zh) * 2014-03-07 2016-10-26 华为技术有限公司 具有灵活子载波间隔和符号持续时间的用于正交频分复用的系统和方法
US20150334708A1 (en) * 2014-05-09 2015-11-19 Newracom, Inc. Method for transmitting and receiving frame

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). and Evolved Universal Terrestrial Radio Access Network (E-UTRAN). Overall description; Stage 2 (Release 12", 3GPP TS 36.300 V 12.10.0. 3RD GENERATION PARTNERSHIP PROJECT, 1 July 2016 (2016-07-01), XP055501620 *
SAMSUNG: "Aggregation of NR Carriers", 3GPP DRAFT; 3GPPTSG RAN WG1 #86; R1-166806 , 3RD GENERATION PARTNERSHIP PROJECT (3GPP, 21 August 2016 (2016-08-21), pages 1 and 2, XP051125564 *

Also Published As

Publication number Publication date
EP3528573A4 (en) 2020-02-26
EP3528573A1 (en) 2019-08-21
JP2020500469A (ja) 2020-01-09
CN108377552B (zh) 2023-10-24
EP3528573B1 (en) 2022-05-25
US20190261359A1 (en) 2019-08-22
CN108377552A (zh) 2018-08-07

Similar Documents

Publication Publication Date Title
WO2018082409A1 (zh) 一种功率控制方法和通信设备
US10085280B2 (en) Group carrier scheduling for unlicensed long term evolution network
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
WO2020248897A1 (zh) 功率配置方法及装置
CN106877993B (zh) 一种配置方法和装置
CN110972279B (zh) 传输数据的方法和装置
EP3726767B1 (en) Data transmission method and device and communication apparatus
CN111436089B (zh) 通信的方法和装置
US20160128046A1 (en) Bearer Configuration in Dual Connectivity Communication
WO2019095953A1 (zh) 一种资源配置方法及装置、计算机存储介质
WO2021233217A1 (zh) 能力信息上报方法及其装置
US20220173845A1 (en) Communication method and apparatus
WO2022028361A1 (zh) 一种无线接入的方法以及装置
WO2019096232A1 (zh) 通信方法和通信装置
CN110557833A (zh) 资源配置方法、网络设备和终端
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
JP7205557B2 (ja) リソーススケジューリング指示方法及びその装置、通信システム
WO2019223558A1 (zh) 一种通信方法、装置及系统
WO2019129253A1 (zh) 一种通信方法及装置
JP7043413B2 (ja) 端末、無線通信方法、基地局及びシステム
CN114270945A (zh) 一种通信方法及装置
WO2024011553A9 (zh) 无线通信的方法、终端设备和网络设备
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2022252211A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023143007A1 (zh) 信息传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522855

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017868336

Country of ref document: EP

Effective date: 20190513