WO2022109881A1 - 重复传输控制信道的方法、终端设备和网络设备 - Google Patents

重复传输控制信道的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022109881A1
WO2022109881A1 PCT/CN2020/131525 CN2020131525W WO2022109881A1 WO 2022109881 A1 WO2022109881 A1 WO 2022109881A1 CN 2020131525 W CN2020131525 W CN 2020131525W WO 2022109881 A1 WO2022109881 A1 WO 2022109881A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
uplink control
time slot
time
domain symbols
Prior art date
Application number
PCT/CN2020/131525
Other languages
English (en)
French (fr)
Inventor
左志松
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080104651.9A priority Critical patent/CN116114210A/zh
Priority to PCT/CN2020/131525 priority patent/WO2022109881A1/zh
Priority to EP20962772.8A priority patent/EP4255064A4/en
Publication of WO2022109881A1 publication Critical patent/WO2022109881A1/zh
Priority to US18/146,414 priority patent/US20230224908A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method, a terminal device, and a network device for repeatedly transmitting a control channel.
  • the terminal device can implement the repeated transmission of PUCCH according to the configuration parameters of the Physical Uplink Control Channel (PUCCH) resource (the number of time slots, namely nrofSlots).
  • the unit is time slot.
  • the NR system supports flexible time slot allocation.
  • a time slot can have some uplink time domain symbols and some downlink time domain symbols, and the PUCCH is only transmitted in the uplink time domain symbols.
  • the starting position and the number of available symbols in the time slot for PUCCH transmission must meet the resource configuration of the PUCCH, otherwise, the terminal device ignores the repeated transmission on the time slot.
  • TDD Time Division Duplex
  • most of the time slots may not meet the requirement for repeated PUCCH transmission, resulting in too few time slots for actual repeated transmission.
  • the coverage of the control channel cannot be improved. Therefore, how to perform repeated transmission of the PUCCH to improve the coverage of the control channel is an urgent problem to be solved.
  • the present application provides a method, terminal device and network device for repeatedly transmitting a control channel, which are beneficial to improve the transmission coverage of the uplink control channel.
  • a method for repeatedly transmitting a control channel including: a terminal device determining a time domain resource position for repeatedly transmitting an uplink control channel according to a time slot configuration in a frame structure used by the terminal device.
  • a method for repeatedly transmitting a control channel including: a network device determining a time domain resource location for the terminal device to repeatedly transmit an uplink control channel according to a time slot configuration in a frame structure used by the terminal device.
  • a terminal device for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device for executing the method in the second aspect or each of its implementations.
  • the network device includes functional modules for executing the methods in the second aspect or the respective implementation manners thereof.
  • a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or each of its implementations.
  • an apparatus for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the apparatus includes: a processor for calling and running a computer program from a memory, so that a device installed with the apparatus executes any one of the above-mentioned first to second aspects or each of its implementations method.
  • a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first aspect to the second aspect or each of its implementations.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above-mentioned first to second aspects or the implementations thereof.
  • a computer program which, when run on a computer, causes the computer to perform the method in any one of the above-mentioned first to second aspects or the respective implementations thereof.
  • the terminal device can realize the adaptive repeated transmission of the uplink control channel according to the time slot configuration in the frame structure, which increases the number of transmissions of the uplink control information in the same time period, which is beneficial to improve the coverage of the uplink control channel at the cell edge. scope.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is an example diagram of repeated transmission of PUCCH in the related art.
  • FIG. 3 is a schematic diagram of a method for repeatedly transmitting a control channel according to an embodiment of the present application.
  • FIG. 4 is an example diagram of repeated transmission of an uplink control channel according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a method for repeatedly transmitting a control channel according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a station (STATION, ST) in the WLAN, and may be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a Wireless Local Loop (WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, etc., which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • predefinition may be implemented by pre-saving corresponding codes, forms, or other means that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • predefined may refer to the definition in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not limited in this application.
  • the NR system can support the following long PUCCH formats, PUCCH formats 1, 3, and 4. Since the long PUCCH occupies more time domain symbols, the coverage is better than the short PUCCH format. Table 1 shows the characteristics of the three PUCCH formats.
  • the transmission in the long PUCCH format can occupy at most one time slot (slot).
  • the long PUCCH format transmission of more than one slot is realized by repeated transmission.
  • the terminal device can implement the repeated transmission of the PUCCH according to the configuration parameter (nrofSlots) of the PUCCH resource, and the unit of the repeated transmission is a time slot. Through repeated transmission of multiple time slots, the transmission coverage of the control channel can be improved.
  • the NR system supports flexible time slot allocation.
  • a time slot can have some uplink time domain symbols and some time domain symbols, and the PUCCH is only transmitted in the uplink time domain symbols.
  • the starting position and the number of available symbols in the time slot for PUCCH transmission must meet the resource configuration of the PUCCH, otherwise, the terminal device ignores the repeated transmission on the time slot.
  • FIG. 2 shows a schematic diagram of multi-slot transmission of a PUCCH.
  • the symbols in time slot 1 and time slot 2 are basically configured as downlink time domain symbols, the number of uplink time domain symbols does not meet the PUCCH transmission requirement. transmission on slot 2, but only repeat transmission on time slot 0 and time slot 3. Therefore, in the case where the terminal equipment is configured for four repeated transmissions, the terminal equipment actually performs only two repeated transmissions, reducing the Coverage of PUCCH transmissions.
  • an embodiment of the present application provides a method for repeated transmission of a control channel, which can adaptively determine the time-domain resource position of the repeated transmission of the control channel according to the time slot configuration (or time slot ratio) in the frame structure, The transmission times of the control channels in the same number of time slots can be increased, thereby improving the transmission coverage of the control channels.
  • FIG. 3 is a schematic diagram of a method 300 for repeatedly transmitting a control channel according to an embodiment of the present application.
  • the method 300 may be executed by a terminal device in the communication system shown in FIG. 1 .
  • the method 300 includes the following At least part of it:
  • the terminal device determines, according to the time slot configuration in the frame structure used by the terminal device, a time domain resource position for repeated transmission of the uplink control channel.
  • the uplink control channel may be, for example, a PUCCH, and the uplink control channel may be used to carry control information.
  • the control information may include feedback information of a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) scheduled by downlink control information (Downlink Control Information, DCI), such as an acknowledgment (Acknowledgement, ACK), or a negative acknowledgment ( Negative Acknowledgement, NACK), etc.
  • DCI Downlink Control Information
  • ACK acknowledgment
  • NACK Negative Acknowledgement
  • the terminal device may support flexible time slot configuration, where the time slot configuration is used to configure the symbol direction (or type) and arrangement of time domain symbols in one time slot,
  • the symbols in one slot may be configured to include at least one of uplink time domain symbols, downlink time domain symbols and flexible time domain symbols.
  • 14 symbols in a time slot may be configured as time domain symbols in the same direction.
  • Downlink time-domain symbols, uplink time-domain symbols or flexible time-domain symbols, or, 14 symbols of one slot can be configured as a combination of uplink time-domain symbols and downlink time-domain symbols, or 14 symbols of one slot can be configured as It is configured as a combination of uplink time-domain symbols and flexible time-domain symbols, or, 14 symbols in one slot can be configured as uplink time-domain symbols, a combination of downlink time-domain symbols and flexible time-domain symbols, and so on.
  • the embodiments of the present application do not limit the arrangement of time-domain symbols in a time slot, for example, the arrangement of uplink time-domain symbols, downlink time-domain symbols, and flexible time-domain symbols in a time slot may be continuous. , or it can be discrete.
  • the time-domain resource location for the repeated transmission of the uplink control channel may include at least one of the following:
  • the time domain symbols mapped to the uplink control channel in the time slot of the uplink control channel are repeatedly transmitted.
  • the time slot for repeated transmission of the uplink control channel may include each time slot used for repeated transmission of the uplink control channel, for example, including a start time slot, an end time slot, and the like.
  • the time-domain symbol mapped to the uplink control channel in the time slot for repeated transmission of the uplink control channel may refer to the time-domain symbol mapped to the uplink control channel in each time slot of the repeated transmission of the uplink control channel.
  • Which time domain symbols for example, include start time domain symbols, end time domain symbols, etc.
  • the starting time slot for repeated transmission of the uplink control channel may be determined according to the time slot used for PDSCH transmission indicated by the DCI and the time slot offset value K1, wherein the time slot offset value may be is an offset value of the time slot used for transmitting the control information corresponding to the PDSCH relative to the time slot used for transmitting the PDSCH, and the uplink control channel is used to carry the control information.
  • control information corresponding to the PDSCH may include feedback information of the PDSCH, such as ACK or NACK.
  • the terminal device may start from the initial time slot and determine the time slot for repeating the transmission of the uplink control channel according to the time slot configuration of each time slot.
  • the terminal device may determine that a time slot in which the available time domain symbols in a time slot satisfy a specific condition is a time slot for repeatedly transmitting the uplink control channel.
  • the uplink time domain symbols can be used to transmit uplink information, so it can be considered that the symbol direction of the uplink time domain symbols is the same as the transmission direction of the uplink information.
  • flexible time domain symbols can also be used for transmission. Uplink information, therefore, in some cases, it can also be considered that the symbol direction of the flexible time domain symbol is the same as the transmission direction of the uplink information.
  • the available time-domain symbols in a time slot may include time-domain symbols with the same symbol direction as the transmission direction of the uplink control channel, for example, may include uplink time-domain symbols and/or flexible time-domain symbols Domain notation.
  • the specific condition may include: the time-domain symbols available in the time slot are greater than or equal to the minimum number of time-domain symbols that can be transmitted by the uplink control channel format corresponding to the uplink control channel.
  • the uplink control channel format corresponding to the uplink control channel is the aforementioned PUCCH format 1, and the minimum number of time-domain symbols that can be transmitted by the PUCCH format 1 is 4. If the number of available time-domain symbols in a time slot is greater than or equal to 4 , it can be determined that the time slot can be used to repeatedly transmit the uplink control channel.
  • the specific condition may include that the time domain symbols available in the time slot are greater than or equal to a second threshold.
  • the second threshold may be 1, 2, 3 or 4, etc.
  • the terminal device may sequentially determine the time slot where each repeated transmission of the uplink control channel is located from the initial time slot according to the foregoing conditions.
  • the terminal device stops transmitting the uplink control channel. Then, the time slot in which the number of transmissions of the uplink control channel reaches the preconfigured number of repeated transmissions is the end time slot for the terminal device to repeatedly transmit the uplink control channel.
  • a preconfigured number of repeated transmissions e.g, nrofSlots
  • the pre-configured number of transmission time slots may be considered as the pre-configured number of repeated transmissions.
  • the number of repeated transmissions may be pre-configured by the network device through high-level signaling (for example, Radio Resource Control (RRC)), or may also be configured through a downlink control channel, or, is predefined, and this application does not limit the configuration of the number of repeated transmissions.
  • RRC Radio Resource Control
  • the terminal device may determine when to stop transmitting the uplink control channel according to a specific time slot offset threshold.
  • the time slot offset threshold may be based on an initial time slot.
  • the time slot offset threshold is greater than nrofSlots.
  • time-domain unit of repeated transmission as a time slot as an example for description, but the present application is not limited to this.
  • other time-domain units may be used as time-domain units for repeated transmissions according to actual resource allocation requirements, for example, OFDM symbols are used as time-domain units for repeated transmissions.
  • the terminal device stops transmitting the uplink control channel if the determined time slot offset of the time slot for repeated transmission of the uplink control channel relative to the initial time slot is greater than or equal to the time slot offset threshold.
  • the time slot offset threshold may be predefined, or may also be configured by a network device.
  • the network device may configure the time slot offset threshold together with the terminal device when configuring the number of repeated transmissions.
  • the above describes the method of determining the time slot of the uplink control channel for repeated transmission.
  • the time domain symbol mapped to the uplink control channel way of determining in each time slot of the repeated transmission of the uplink control channel, the time domain symbol mapped to the uplink control channel way of determining.
  • the terminal device determines, according to the symbol direction of the time-domain symbols in each time slot of the uplink control channel and the transmission direction of the uplink control channel, that in each time slot The time domain symbol to which the uplink control channel is mapped.
  • the terminal device can perform the mapping of the uplink control channel according to the time-domain symbol configuration in each time slot for repeated transmission of the uplink control channel.
  • the time-domain symbol configuration here may include, for example, the symbol direction configuration and the continuity of available time-domain symbols.
  • the starting symbol position at which the terminal device maps the uplink control channel may be a preconfigured starting symbol position (for example, the symbol position indicated by the high-level parameter startingSymbolIndex), or may also be other starting symbol positions,
  • the judgment condition for the availability of the time-domain symbol refers to the foregoing related description, which will not be repeated here.
  • the number of time domain symbols to which the uplink control channel is mapped in one time slot may be determined according to the arrangement of available symbols in the one time slot.
  • the number of time domain symbols to which the uplink control channel is mapped in a time slot can be N, where N is the number of time domain symbols that can be used to transmit the uplink control channel in a preconfigured time slot (for example, nrofSymbols), that is, the maximum number of time domain symbols used to transmit the uplink control channel in one time slot.
  • N is the number of time domain symbols that can be used to transmit the uplink control channel in a preconfigured time slot (for example, nrofSymbols), that is, the maximum number of time domain symbols used to transmit the uplink control channel in one time slot.
  • the number of time domain symbols to which the uplink control channel is mapped in a time slot may be the number of consecutive available time domain symbols starting from the preconfigured start symbol, or may also be the number of time domain symbols that are consecutive from the preconfigured start symbol.
  • Available Time Domain Symbols The number of consecutively available time domain symbols, or the maximum number of consecutively available time domain symbols within a slot.
  • the uplink control channel is mapped on N time domain symbols starting from a preconfigured start symbol, where the N is the pre-configured number of time-domain symbols (eg nrofSymbols) that can be used to transmit the uplink control channel in a time slot.
  • N is the pre-configured number of time-domain symbols (eg nrofSymbols) that can be used to transmit the uplink control channel in a time slot.
  • the terminal device can map the uplink control channel on N available time-domain symbols starting from the pre-configured time-domain symbols.
  • the terminal device may use the mapping method in Example 1 to perform uplink control channel mapping under the condition that the following conditions are met:
  • the symbol direction of the preconfigured start symbol is the same as the transmission direction of the uplink control channel, that is, the preconfigured start symbol is an available time domain symbol;
  • the symbol directions of the N time domain symbols starting from the preconfigured start symbol are the same as the transmission direction of the uplink control channel, where N is the time domain symbols that can be used to transmit the uplink control channel in a preconfigured time slot
  • N is the time domain symbols that can be used to transmit the uplink control channel in a preconfigured time slot
  • the number, that is, the number of time domain symbols available from the preconfigured start symbol is greater than or equal to N.
  • the uplink control channel is mapped on M time-domain symbols starting from the first start symbol.
  • the first start symbol is the first time-domain symbol in the time slot whose symbol direction is the same as the transmission direction of the uplink control channel, that is, the first available time-domain symbol in a time slot .
  • the first start symbol is a time domain symbol with the most forward time domain position among several available time domain symbols with the largest number of consecutively available time domain symbols in a time slot.
  • the M may be the number of time-domain symbols in a preconfigured time slot that can be used to transmit the uplink control channel, that is, the aforementioned N.
  • the M may be the number of available time domain symbols starting from the first starting symbol.
  • the M is the smaller value of the number of time domain symbols available for transmitting the uplink control channel in a preconfigured time slot and the number of available time domain symbols starting from the first start symbol.
  • the terminal device maps the uplink control channel by using the mapping method in Example 2 when at least one of the following conditions is not satisfied:
  • the symbol direction of the preconfigured start symbol is the same as the transmission direction of the uplink control channel
  • the symbol directions of the N time domain symbols starting from the preconfigured start symbol are the same as the transmission direction of the uplink control channel, where N is the time domain symbols that can be used to transmit the uplink control channel in a preconfigured time slot number.
  • FIG. 4 shows the repeated transmission mode of the uplink control channel according to the embodiment of the present application.
  • time slot 2 there are two uplink time domain symbols that can be used for uplink transmission. , but because the number of uplink time-domain symbols does not meet the requirement of the number of uplink control channels, the terminal device ignores the repeated transmission on this time slot 2.
  • the terminal device can The uplink control channel is mapped on the available time-domain symbols, which can make up for the lack of transmission of the uplink control channel in this time slot, which is equivalent to increasing the number of transmissions of the uplink control channel in the same four time slots.
  • the terminal device can also continue to determine the time slot that meets the conditions in the subsequent time slot, and further perform repeated transmission of the uplink control channel on the time slot, thereby improving the transmission of the uplink control channel. cover.
  • the terminal device can realize the adaptive repeated transmission of the uplink control channel according to the time slot configuration in the frame structure, which increases the number of transmissions of the uplink control information in the same time period, which is beneficial to improve the uplink control channel at the cell edge. coverage.
  • the receiving end may combine the information according to the received control information carried by multiple repeated transmissions of the uplink control channel, Improve reception performance. Therefore, in some embodiments, the terminal device may use the aforementioned adaptive repeated transmission method when the number of bits of the control information carried by the uplink control information is less than or equal to a certain threshold, and when the number of bits of the control information carried by the uplink control information is less than or equal to a certain threshold In this case, the repeated transmission method in the prior art is adopted.
  • the threshold may be 11, 22, or other positive integers.
  • the repeated transmission method of the uplink control channel may also be applicable to a downlink control channel (eg, a physical downlink control channel (Physical Downlink Control Channel, PDCCH)) or a sidelink control channel (eg, a physical sidelink control channel) (Physical Sidelink Control Channel, PSCCH)), or can also be applied to other channels, such as data channels (for example, Physical Uplink Shared Channel (PUSCH), Physical Downlink Shared Channel (PDSCH), Physical Sidelink Shared Channel (Physical Sidelink Shared Channel, PSSCH), etc.).
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • PSSCH Physical Sidelink Shared Channel
  • the method for repeatedly transmitting a control channel according to an embodiment of the present application is described in detail from the perspective of a terminal device, and the following describes in detail a method according to another embodiment of the present application from the perspective of a network device in conjunction with FIG. 5 .
  • a method of repeating the transmission of the control channel It should be understood that the description on the side of the network device corresponds to the description on the side of the terminal device, and similar descriptions can be referred to above, which are not repeated here to avoid repetition.
  • FIG. 5 is a schematic flowchart of a method 300 for repeatedly transmitting a control channel according to another embodiment of the present application.
  • the method 300 may be executed by a network device in the communication system shown in FIG. 1 .
  • the method 300 includes the following:
  • the network device determines, according to the time slot configuration in the frame structure used by the terminal device, the time domain resource position where the terminal device repeatedly transmits the uplink control channel.
  • the network device can learn the time slot configuration of the terminal device. Therefore, the network device can determine the time-domain resource location where the terminal device transmits the uplink control channel in a similar manner to the terminal device, and further determine the time-domain resource location on the time-domain resource location. Receive the uplink control channel repeatedly transmitted by the terminal device.
  • the network device can learn the time slot configuration of the terminal device. Therefore, the network device can determine the time-domain resource location where the terminal device transmits the uplink control channel in a similar manner to the terminal device, and further determine the time-domain resource location on the time-domain resource location. Receive the uplink control channel repeatedly transmitted by the terminal device.
  • the time-domain resource location for the repeated transmission of the uplink control channel includes at least one of the following:
  • the time domain symbols mapped to the uplink control channel in the time slot of the uplink control channel are repeatedly transmitted.
  • the network device determines, according to the time slot configuration in the frame structure used by the terminal device, the time domain resource position where the terminal device repeatedly transmits the uplink control channel, including:
  • the network device determines, according to the time slot configuration in the frame structure used by the terminal device, the time slot in which the terminal device repeatedly transmits the uplink control channel for the kth time, wherein the k is a positive integer.
  • the starting time slot is determined according to a time slot and a time slot offset value indicated by the downlink control information DCI for transmitting the physical downlink shared channel PDSCH, wherein the time slot offset value is The offset value is an offset value of the time slot used for transmitting the control information corresponding to the PDSCH relative to the time slot used for transmitting the PDSCH, and the uplink control channel is used to carry the control information.
  • the time slot in which the terminal device repeatedly transmits the uplink control channel for the kth time satisfies at least one of the following conditions:
  • the available time-domain symbols in the time slot are greater than or equal to the minimum number of time-domain symbols that can be transmitted by the uplink control channel format corresponding to the uplink control channel;
  • the time domain symbols available in the time slot are greater than or equal to the second threshold.
  • the time domain symbols available in the time slot include: uplink time domain symbols and/or flexible time domain symbols in the time slot.
  • the time slot in which the number of transmissions of the uplink control channel reaches a preconfigured number of repeated transmissions is the end time slot for the terminal device to repeatedly transmit the uplink control channel.
  • the network device determines, according to the time slot configuration in the frame structure used by the terminal device, the time domain resource location for repeated transmission of the uplink control channel, including:
  • the network device determines, according to the symbol direction of the time domain symbols in each time slot in which the terminal device repeatedly transmits the uplink control channel and the transmission direction of the uplink control channel, the The time domain symbol to which the uplink control channel is mapped.
  • the uplink control channel is mapped on M time domain symbols starting from the first start symbol
  • the first start symbol is the first time domain symbol in the time slot whose symbol direction is the same as the transmission direction of the uplink control channel;
  • the M is the smaller of the first value and the second value, where the first value is the maximum number of time domain symbols that can be used to transmit uplink control channels in a preconfigured time slot, and the second value is The value is the number of symbols whose symbol direction from the first start symbol is the same as the transmission direction of the uplink control channel.
  • the uplink control channel is mapped on M time-domain symbols starting from the first start symbol:
  • the symbol direction of the preconfigured start symbol is the same as the transmission direction of the uplink control channel
  • the symbol directions of the N time domain symbols starting from the preconfigured start symbol are the same as the transmission direction of the uplink control channel, where N is the time domain symbols that can be used to transmit the uplink control channel in a preconfigured time slot number.
  • the uplink control channel in a time slot in which the terminal device repeatedly transmits the uplink control channel, is mapped on N time domain symbols starting from a preconfigured start symbol. , where N is the number of time domain symbols that can be used to transmit uplink control channels in a preconfigured time slot.
  • the uplink control channel is mapped on N time-domain symbols starting from a preconfigured start symbol:
  • the symbol direction of the preconfigured start symbol is the same as the transmission direction of the uplink control channel
  • the symbol directions of the N time domain symbols starting from the preconfigured start symbol are the same as the transmission direction of the uplink control channel, where N is the time domain symbols that can be used to transmit the uplink control channel in a preconfigured time slot number.
  • FIG. 6 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine, according to the time slot configuration in the frame structure used by the terminal device, the time domain resource position for repeated transmission of the uplink control channel.
  • the time-domain resource location for the repeated transmission of the uplink control channel includes at least one of the following:
  • the time domain symbols mapped to the uplink control channel in the time slot of the uplink control channel are repeatedly transmitted.
  • the processing unit 410 is further configured to:
  • the number of bits of the control information carried by the uplink control channel is less than or equal to the first threshold, determine the time to repeat the transmission of the uplink control channel according to the time slot configuration in the frame structure used by the terminal device Domain resource location.
  • the first threshold is 11 or 22.
  • the processing unit 410 is further configured to:
  • the terminal device Starting from the initial time slot, according to the time slot configuration in the frame structure used by the terminal device, determine the time slot for the k-th repeated transmission of the uplink control channel, where k is a positive integer.
  • the starting time slot is determined according to a time slot and a time slot offset value indicated by the downlink control information DCI for transmitting the physical downlink shared channel PDSCH, wherein the time slot offset value is The offset value is an offset value of the time slot used for transmitting the control information corresponding to the PDSCH relative to the time slot used for transmitting the PDSCH, and the uplink control channel is used to carry the control information.
  • the time slot in which the terminal device repeatedly transmits the uplink control channel for the kth time satisfies at least one of the following conditions:
  • the time-domain symbols available in the time slot are greater than or equal to the minimum number of time-domain symbols that can be transmitted by the uplink control channel format corresponding to the uplink control channel;
  • the time domain symbols available in the time slot are greater than or equal to the second threshold.
  • the time domain symbols available in the time slot include: uplink time domain symbols and/or flexible time domain symbols in the time slot.
  • the time slot in which the number of transmissions of the uplink control channel reaches a preconfigured number of repeated transmissions is the end time slot for the terminal device to repeatedly transmit the uplink control channel.
  • the terminal device 400 further includes:
  • a communication unit configured to stop the repeated transmission of the uplink control channel when the time slot offset of the time slot of the kth repeated transmission of the uplink control channel relative to the initial time slot exceeds a time slot offset threshold, wherein , the k is less than the preconfigured number of repeated transmissions.
  • the processing unit 410 is further configured to:
  • the uplink control channel is mapped on M time-domain symbols starting from the first start symbol, wherein , the first start symbol is the first time-domain symbol whose symbol direction in the time slot is the same as the transmission direction of the uplink control channel;
  • the M is the smaller of the first value and the second value, where the first value is the maximum number of time domain symbols that can be used to transmit uplink control channels in a preconfigured time slot, and the second value is The value is the number of symbols whose symbol direction from the first start symbol is the same as the transmission direction of the uplink control channel.
  • the uplink control channel is mapped on M time-domain symbols starting from the first start symbol:
  • the symbol direction of the preconfigured start symbol is the same as the transmission direction of the uplink control channel
  • the symbol directions of the N time domain symbols starting from the preconfigured start symbol are the same as the transmission direction of the uplink control channel, where N is the time domain symbols that can be used to transmit the uplink control channel in a preconfigured time slot number.
  • the uplink control channel in a time slot in which the terminal device repeatedly transmits the uplink control channel, is mapped on N time domain symbols starting from a preconfigured start symbol. , where N is the number of time domain symbols that can be used to transmit uplink control channels in a preconfigured time slot.
  • the uplink control channel is mapped on N time-domain symbols starting from a preconfigured start symbol:
  • the symbol direction of the preconfigured start symbol is the same as the transmission direction of the uplink control channel
  • the symbol directions of the N time domain symbols starting from the preconfigured start symbol are the same as the transmission direction of the uplink control channel, where N is the time domain symbols that can be used to transmit the uplink control channel in a preconfigured time slot number.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively for realizing the method shown in FIG. 3 .
  • the corresponding process of the terminal device in 200 is not repeated here for brevity.
  • FIG. 7 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 500 of FIG. 7 includes:
  • the processing unit 510 is configured to determine, according to the time slot configuration in the frame structure used by the terminal device, the time domain resource position where the terminal device repeatedly transmits the uplink control channel.
  • the time-domain resource location for the repeated transmission of the uplink control channel includes at least one of the following:
  • the time domain symbols mapped to the uplink control channel in the time slot of the uplink control channel are repeatedly transmitted.
  • the processing unit 510 is specifically configured to:
  • the terminal device Starting from the initial time slot, according to the time slot configuration in the frame structure used by the terminal device, determine the time slot in which the terminal device repeatedly transmits the uplink control channel for the kth time, where k is a positive integer .
  • the starting time slot is determined according to a time slot and a time slot offset value indicated by the downlink control information DCI for transmitting the physical downlink shared channel PDSCH, wherein the time slot offset value is The offset value is an offset value of the time slot used for transmitting the control information corresponding to the PDSCH relative to the time slot used for transmitting the PDSCH, and the uplink control channel is used to carry the control information.
  • the time slot in which the terminal device repeatedly transmits the uplink control channel for the kth time satisfies at least one of the following conditions:
  • the time-domain symbols available in the time slot are greater than or equal to the minimum number of time-domain symbols that can be transmitted by the uplink control channel format corresponding to the uplink control channel;
  • the time domain symbols available in the time slot are greater than or equal to the second threshold.
  • the time domain symbols available in the time slot include: uplink time domain symbols and/or flexible time domain symbols in the time slot.
  • the time slot in which the number of transmissions of the uplink control channel reaches a preconfigured number of repeated transmissions is the end time slot for the terminal device to repeatedly transmit the uplink control channel.
  • the processing unit 510 is further configured to:
  • the terminal equipment According to the symbol direction of the time-domain symbols in each time slot of the uplink control channel and the transmission direction of the uplink control channel, the terminal equipment repeatedly transmits the direction of the time domain symbols of the uplink control channel, and determines the location of the uplink control channel in each time slot. Mapped time domain symbols.
  • the uplink control channel is mapped on M time domain symbols starting from the first start symbol
  • the first start symbol is the first time domain symbol in the time slot whose symbol direction is the same as the transmission direction of the uplink control channel;
  • the M is the smaller of the first value and the second value, where the first value is the maximum number of time domain symbols that can be used to transmit uplink control channels in a preconfigured time slot, and the second value is The value is the number of symbols whose symbol direction from the first start symbol is the same as the transmission direction of the uplink control channel.
  • the uplink control channel is mapped on M time-domain symbols starting from the first start symbol:
  • the symbol direction of the preconfigured start symbol is the same as the transmission direction of the uplink control channel
  • the symbol directions of the N time domain symbols starting from the preconfigured start symbol are the same as the transmission direction of the uplink control channel, where N is the time domain symbols that can be used to transmit the uplink control channel in a preconfigured time slot number.
  • the uplink control channel in a time slot in which the terminal device repeatedly transmits the uplink control channel, is mapped on N time domain symbols starting from a preconfigured start symbol. , where N is the number of time domain symbols that can be used to transmit uplink control channels in a preconfigured time slot.
  • the uplink control channel is mapped on N time-domain symbols starting from a preconfigured start symbol:
  • the symbol direction of the preconfigured start symbol is the same as the transmission direction of the uplink control channel
  • the symbol directions of the N time domain symbols starting from the preconfigured start symbol are the same as the transmission direction of the uplink control channel, where N is the time domain symbols that can be used to transmit the uplink control channel in a preconfigured time slot number.
  • the above-mentioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are respectively for realizing the method shown in FIG. 5 .
  • the corresponding process of the network device in 300 is not repeated here for brevity.
  • FIG. 8 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 8 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may specifically be the network device in this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 9 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in this embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 10 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 10 , the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

一种重复传输控制信道的方法、终端设备和网络设备,有利于提升上行控制信道的传输覆盖,该方法包括:终端设备根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输所述上行控制信道的时域资源位置。

Description

重复传输控制信道的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种重复传输控制信道的方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)系统中,终端设备可以根据物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源的配置参数(时隙个数,即nrofSlots)实现PUCCH的重复传输,重复传输的单位为时隙。通过多时隙的重复传输,可以提高控制信道传输的覆盖。
NR系统支持灵活的时隙配比,一个时隙可以有部分上行时域符号和部分下行时域符号,PUCCH只在上行时域符号中传输。要实现PUCCH的重复传输,传输PUCCH的时隙中的可用符号的起始位置和数量都要满足PUCCH的资源配置,否则,终端设备忽略在该时隙上的重复传输。在实际应用中,对于时分双工(Time Division Duplex,TDD)帧结构和其他动态帧结构,可能大部分时隙都达不到传输重复PUCCH的要求,造成实际重复传输的时隙数太少而不能提高控制信道的覆盖,因此,如何进行PUCCH的重复传输以提升控制信道的覆盖是一项亟需解决的问题。
发明内容
本申请提供了一种重复传输控制信道的方法、终端设备和网络设备,有利于提升上行控制信道的传输覆盖。
第一方面,提供了一种重复传输控制信道的方法,包括:终端设备根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输上行控制信道的时域资源位置。
第二方面,提供了一种重复传输控制信道的方法,包括:网络设备根据终端设备所使用的帧结构中的时隙配置,确定所述终端设备重复传输上行控制信道的时域资源位置。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方 法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,终端设备可以根据帧结构中的时隙配置实现上行控制信道自适应的重复传输,增加了相同时间内的上行控制信息的传输次数,有利于提升上行控制信道在小区边沿的覆盖范围。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是相关技术中的PUCCH的重复传输的示例图。
图3是根据本申请一实施例的重复传输控制信道的方法的示意性图。
图4是根据本申请实施例的上行控制信道的重复传输的示例图。
图5是根据本申请一实施例的重复传输控制信道的方法的示意性图。
图6是根据本申请实施例提供的一种终端设备的示意性框图。
图7是根据本申请实施例提供的一种网络设备的示意性框图。
图8是根据本申请实施例提供的一种通信设备的示意性框图。
图9是根据本申请实施例提供的一种芯片的示意性框图。
图10是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine  Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设 备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本 申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
NR系统可以支持如下长PUCCH格式,PUCCH格式1、3、4。由于长PUCCH占用较多的时域符号,覆盖比短PUCCH格式更好。表1示出了三种PUCCH格式的特性。
表1
Figure PCTCN2020131525-appb-000001
从表1可知,长PUCCH格式的传输最多可以占一个时隙(slot)。超过一个slot的长PUCCH格式传输通过重复传输实现。
终端设备可以根据PUCCH资源的配置参数(nrofSlots)实现PUCCH的重复传输,重复传输的单位为时隙。通过多时隙的重复传输,可以提高控制信道的传输覆盖。
NR系统支持灵活的时隙配比,一个时隙可以有部分上行时域符号和部分时域符号,PUCCH只在上行时域符号中传输。要实现PUCCH的重复传输,传输PUCCH的时隙中的可用符号的起始位置和数量都要满足PUCCH的资源配置,否则,终端设备忽略在该时隙上的重复传输。
图2示出了一种PUCCH的多时隙传输的示意图。如图2所示,由于时隙1和时隙2中的符号配置基本为下行时域符号,上行时域符号的数量不满足PUCCH的传输需求,因此,终端设备忽略在该时隙1和时隙2上的传输,而只在时隙0和时隙3上进行重复传输,因此,在配置终端设备进行四次重复传输的情况下,终端设备实际上只进行了两次重复传输,降低了PUCCH传输的覆盖。
有鉴于此,本申请实施例提供了一种重复传输控制信道的方法,能够根据帧结构中的时隙配置(或称时隙配比),自适应确定重复传输控制信道的时域资源位置,能够提升相同数量时隙内的控制信道的传输次数,从而提升控制信道的传输覆盖。
图3是根据本申请实施例的重复传输控制信道的方法300的示意性图,该方法300可以由图1所示的通信系统中的终端设备执行,如图3所示,该方法300包括如下至少部分内容:
S310,终端设备根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输所述上行控制信道的时域资源位置。
可选地,在一些实施例中,所述上行控制信道例如可以为PUCCH,该上行控制信道可以用于承载控制信息。作为一个示例,该控制信息可以包括下行控制信息(Downlink Control Information,DCI)调度的传输物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的反馈信息,例如确认(Acknowledgement,ACK),或否定确认(Negative Acknowledgement,NACK)等。
可选地,在本申请实施例中,终端设备可以支持灵活的时隙配置,所述时隙配置用于配置一个时隙内的时域符号的符号方向(或者说,类型)和排布,一个时隙内的符号 可以被配置为包括上行时域符号,下行时域符号和灵活时域符号中的至少一种。
应理解,本申请实施例并不具体限定一个时隙中所包括的时域符号的类型和个数,例如一个时隙的14个符号可以被配置为同一方向的时域符号,例如,均为下行时域符号,上行时域符号或者灵活时域符号,或者,一个时隙的14个符号可以被配置为上行时域符号和下行时域符号的组合,或者一个时隙的14个符号可以被配置为上行时域符号和灵活时域符号的组合,或者,一个时隙的14个符号可以被配置为上行时域符号,下行时域符号和灵活时域符号的组合等。
还应理解,本申请实施例并不限定一个时隙内的时域符号的排布方式,例如一个时隙内的上行时域符号、下行时域符号和灵活时域符号的排布可以是连续的,或者也可以是离散的。
可选地,在一些实施例中,所述重复传输所述上行控制信道的时域资源位置可以包括以下中的至少一项:
重复传输所述上行控制信道的时隙;
重复传输所述上行控制信道的时隙中所述上行控制信道所映射的时域符号。
可选地,所述重复传输所述上行控制信道的时隙可以包括每个用于重复传输所述上行控制信道的时隙,例如包括起始时隙,结束时隙等。
可选地,所述重复传输所述上行控制信道的时隙中所述上行控制信道所映射的时域符号可以指重复传输所述上行控制信道的每个时隙中,该上行控制信道映射到哪些时域符号,例如包括起始时域符号,结束时域符号等。
以下,结合具体实施例,说明重复传输的该上行控制信道的时隙的确定方式。
在一些实施例中,用于重复传输上行控制信道的起始时隙可以根据DCI所指示的用于传输PDSCH的时隙和时隙偏移值K1确定,其中,所述时隙偏移值可以为用于传输所述PDSCH对应的控制信息的时隙相对于用于传输所述PDSCH的时隙的偏移值,所述上行控制信道用于承载所述控制信息。
可选地,所述PDSCH对应的控制信息可以包括所述PDSCH的反馈信息,例如ACK或NACK等。
在一些实施例中,所述终端设备可以从起始时隙开始,根据每个时隙的时隙配置,确定重复传输所述上行控制信道的时隙。
可选地,所述终端设备可以确定一个时隙内的可用时域符号满足特定条件的时隙为用于重复传输所述上行控制信道的时隙。
在本申请实施例中,上行时域符号可以用于传输上行信息,故可以认为上行时域符号的符号方向和上行信息的传输方向相同,在一些情况中,灵活时域符号也可以用于传输上行信息,因此,在一些情况中,也可以认为灵活时域符号的符号方向和上行信息的传输方向相同。
对于上行控制信道的传输而言,一个时隙内的可用的时域符号可以包括符号方向与该上行控制信道的传输方向相同的时域符号,例如,可以包括上行时域符号和/或灵活时域符号。
作为一个示例,所述特定条件可以包括:所述时隙中可用的时域符号大于或等于所述上行控制信道对应的上行控制信道格式所能传输的最小时域符号数量。
例如,上行控制信道对应的上行控制信道格式为前述的PUCCH格式1,该PUCCH格式1所能传输的最小时域符号数量为4,若一个时隙内的可用时域符号的数量大于或等于4,则可以确定该时隙可以用于重复传输该上行控制信道。
作为又一示例,所述特定条件可以包括:所述时隙中可用的时域符号大于或等于第二阈值。可选地,所述第二阈值可以为1,2,3或4等。
所述终端设备可以按照前述条件从所述起始时隙开始依次确定所述上行控制信道的每一次重复传输所在的时隙。
在一些实施例中,所述上行控制信道的传输次数达到预配置的重复传输次数(例如nrofSlots)的情况下,所述终端设备停止传输所述上行控制信道。则所述上行控制信道的传输次数达到预配置的重复传输次数的时隙为所述终端设备重复传输所述上行控制信道的结束时隙。
应理解,由于上行控制信道的重复传输是以时隙为单位进行的,故预配置的传输时隙数可以认为是预配置的重复传输次数。
需要说明的是,该重复传输次数可以是网络设备通过高层信令(例如,无线资源控制(Radio Resource Control,RRC))预配置的,或者也可以是通过下行控制信道配置的,或者,也可以是预定义的,本申请对于该重复传输次数的配置方式不作限定。
在另一些实施例中,所述终端设备可以根据特定的时隙偏移门限确定何时停止传输上行控制信道。
可选地,所述时隙偏移门限可以以起始时隙为参考。
可选地,该时隙偏移门限大于nrofSlots。
应理解,本申请实施例仅以重复传输的时域单位为时隙为例进行说明,但本申请并不限于此。在其他实施例中,可以根据实际的资源分配需要采用其他时域单位作为重复传输的时域单位,例如以OFDM符号为重复传输的时域单位等。
在一些实施例中,若确定的重复传输所述上行控制信道的时隙相对于该起始时隙的时隙偏移大于或等于该时隙偏移门限,终端设备停止传输该上行控制信道。
可选地,所述时隙偏移门限可以是预定义的,或者也可以是网络设备配置的。
例如,网络设备可以在配置重复传输次数时将该时隙偏移门限一起配置给终端设备。
以上,说明了重复传输的该上行控制信道的时隙的确定方式,以下,结合具体实施例说明,在重复传输该上行控制信道的每个时隙内,该上行控制信道所映射的时域符号的确定方式。
在一些实施例中,所述终端设备根据重复传输所述上行控制信道的每个时隙中的时域符号的符号方向和所述上行控制信道的传输方向,确定在所述每个时隙内所述上行控制信道所映射的时域符号。
也就是说,所述终端设备可以根据用于重复传输上行控制信道的每个时隙内的时域符号配置,进行上行控制信道的映射。这里的时域符号配置例如可以包括符号方向配置以及可用时域符号的连续性。
可选地,所述终端设备映射所述上行控制信道的起始符号位置可以为预配置的起始符号位置(例如高层参数startingSymbolIndex所指示的符号位置),或者也可以是其他起始符号位置,例如,该时隙中第一个可用的时域符号,时域符号的可用性的判断条件参考前文的相关描述,这里不再赘述。
可选地,所述上行控制信道在一个时隙内所映射的时域符号的数量可以根据该一个时隙内的可用符号的排布情况确定。
可选地,所述上行控制信道在一个时隙内所映射的时域符号的数量可以为N,该N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数(例如nrofSymbols),即一个时隙内用来传输上行控制信道的最大时域符号个数。
可选地,所述上行控制信道在一个时隙内所映射的时域符号的数量可以为从预配置的起始符号开始连续的可用时域符号的数量,或者,也可以为从第一个可用的时域符号开始连续的可用时域符号的数量,或者,一个时隙内连续可用的时域符号的最大数量。
作为示例1,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上,其中,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数(例如nrofSymbols)。
即终端设备可以在从预配置的时域符号开始的N个可用时域符号上映射上行控制信道。
在一些实施例中,所述终端设备可以在满足以下条件的情况下,采用示例1中的映射方式进行上行控制信道的映射:
所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同,即预配置的起始符号为可用时域符号;
从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数,即从预配置的起始符号开始可用的时域符号的数量大于或等于N。
作为示例2:在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从第一起始符号开始的M个时域符号上。
作为一个示例,所述第一起始符号为所述时隙中符号方向与所述上行控制信道的传输方向相同的第一个时域符号,即一个时隙内的第一个可用的时域符号。
作为另一示例,所述第一起始符号为一个时隙内连续可用时域符号数量最多的几个可用时域符号中的时域位置最靠前的时域符号。
作为一个示例,所述M可以为预配置的一个时隙中可用于传输上行控制信道的时域符号个数,即前述的N。
作为另一示例,所述M可以为从所述第一起始符号开始的可用时域符号的数量。
作为又一示例,所述M为预配置的一个时隙中可用于传输上行控制信道的时域符号个数和从所述第一起始符号开始的可用时域符号的数量中的较小值。
可选地,在一些实施例中,所述终端设备在不满足以下条件中的至少一个的情况下,采用示例2中的映射方式映射上行控制信道:
所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
以图2的场景为例,图4示出了根据本申请实施例的上行控制信道的重复传输方式,如图2所示,在时隙2中,有两个上行时域符号可用于上行传输,但由于上行时域符号的数量不满足上行控制信道的数量需求,终端设备忽略在该时隙2上的重复传输,在本申请实施例中,终端设备可以在该时隙2中的这2个可用时域符号上映射上行控制信道,能够弥补上行控制信道在该时隙上的传输缺失,相当于在同样的四个时隙内,该上行控制信道的传输次数提升,并且,在未达到预配置的传输次数的情况下,所述终端设备还可以在后续的时隙中继续确定满足条件的时隙,进一步在该时隙上进行上行控制信道的重复传输,从而提升上行控制信道的传输覆盖。
因此,基于上述技术方案,终端设备可以根据帧结构中的时隙配置实现上行控制信道自适应的重复传输,增加了相同时间内的上行控制信息的传输次数,有利于提升上行控制信道在小区边沿的覆盖范围。
在一些场景中,在上行控制信道所承载的控制信息的比特数小于一定门限的情况下,接收端可以根据接收到的该上行控制信道的多次重复传输所承载的控制信息进行信息的合并,提升接收性能。因此,在一些实施例中,所述终端设备可以在所述上行控制信息所承载的控制信息的比特数小于或等于一定门限的情况下,采用前述的自适应重复传输方式,在大于该门限的情况下,采用现有技术中的重复传输方式。
可选地,该门限可以为11,22,或者,其他正整数。
需要说明的是,本申请实施例仅以上行控制信道的重复传输为例进行说明,但本申请并不限于此。在其他实施例中,该上行控制信道的重复传输方法也可以适用于下行控制信道(例如,物理下行控制信道(Physical Downlink Control Channel,PDCCH))或侧行控制信道(例如,物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)),或者也可以适用于其他信道,如数据信道(例如,物理上行共享信道(Physical Uplink Shared Channel,PUSCH),物理下行共享信道(Physical Downlink Shared Channel,PDSCH),物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)等)。如解决因时域资源不够通过重复传输数据提升传输性能的问题。
上文结合图3和图4,从终端设备的角度详细描述了根据本申请实施例的重复传输控制信道的方法,下文结合图5,从网络设备的角度详细描述根据本申请另一实施例的重复传输控制信道的方法。应理解,网络设备侧的描述与终端设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图5是根据本申请另一实施例的重复传输控制信道的方法300的示意性流程图,该方法300可以由图1所示的通信系统中的网络设备执行,如图5所示,该方法300包括如下内容:
S310,网络设备根据终端设备所使用的帧结构中的时隙配置,确定所述终端设备重复传输上行控制信道的时域资源位置。
在本申请实施例中,网络设备可以获知终端设备的时隙配置,因此,网络设备可以按照终端设备类似的方式确定终端设备传输上行控制信道的时域资源位置,进一步在该时域资源位置上接收该终端设备重复传输的上行控制信道。具体实现参考方法200的相关实现,为了简洁,这里不再赘述。
可选地,在一些实施例中,所述重复传输上行控制信道的时域资源位置包括以下中的至少一项:
重复传输所述上行控制信道的时隙;
重复传输所述上行控制信道的时隙中所述上行控制信道所映射的时域符号。
可选地,在一些实施例中,所述网络设备根据终端设备所使用的帧结构中的时隙配置,确定所述终端设备重复传输上行控制信道的时域资源位置,包括:
所述网络设备从起始时隙开始,根据所述终端设备所使用的帧结构中的时隙配置,确定所述终端设备第k次重复传输所述上行控制信道的时隙,其中,所述k为正整数。
可选地,在一些实施例中,所述起始时隙根据下行控制信息DCI所指示的用于传输物理下行共享信道PDSCH的时隙和时隙偏移值确定,其中,所述时隙偏移值为用于传输所述PDSCH对应的控制信息的时隙相对于用于传输所述PDSCH的时隙的偏移值,所述上行控制信道用于承载所述控制信息。
可选地,在一些实施例中,所述终端设备第k次重复传输所述上行控制信道的时隙满足如下条件中的至少之一:
所述时隙中可用的时域符号大于或等于所述上行控制信道对应的上行控制信道格式 所能传输的最小时域符号数量;
所述时隙中可用的时域符号大于或等于第二阈值。
可选地,在一些实施例中,所述时隙中可用的时域符号包括:所述时隙中的上行时域符号和/或灵活时域符号。
可选地,在一些实施例中,所述上行控制信道的传输次数达到预配置的重复传输次数的时隙为所述终端设备重复传输所述上行控制信道的结束时隙。
可选地,在一些实施例中,所述网络设备根据终端设备所使用的帧结构中的时隙配置,确定重复传输所述上行控制信道的时域资源位置,包括:
所述网络设备根据所述终端设备重复传输所述上行控制信道的每个时隙中的时域符号的符号方向和所述上行控制信道的传输方向,确定在所述每个时隙内所述上行控制信道所映射的时域符号。
可选地,在一些实施例中,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从第一起始符号开始的M个时域符号上,
其中,所述第一起始符号是所述时隙中符号方向与所述上行控制信道的传输方向相同的第一个时域符号;
所述M为第一值和第二值中的较小值,其中,所述第一值是预配置的一个时隙中可用于传输上行控制信道的最大时域符号个数,所述第二值为从所述第一起始符号开始符号方向与所述上行控制信道的传输方向相同的符号个数。
可选地,在一些实施例中,在不满足以下条件中的至少一个的情况下,所述上行控制信道映射在从所述第一起始符号开始的M个时域符号上:
所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
可选地,在一些实施例中,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上,其中,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
可选地,在一些实施例中,在满足以下条件的情况下,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上:
所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
上文结合图3至图5,详细描述了本申请的方法实施例,下文结合图6至图10,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图6示出了根据本申请实施例的终端设备400的示意性框图。如图6所示,该终端设备400包括:
处理单元410,用于根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输上行控制信道的时域资源位置。
可选地,在一些实施例中,所述重复传输所述上行控制信道的时域资源位置包括以下中的至少一项:
重复传输所述上行控制信道的时隙;
重复传输所述上行控制信道的时隙中所述上行控制信道所映射的时域符号。
可选地,在一些实施例中,所述处理单元410还用于:
在所述上行控制信道所承载的控制信息的比特数小于或等于第一阈值的情况下,根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输所述上行控制信道的时域资源位置。
可选地,在一些实施例中,所述第一阈值为11或者22。
可选地,在一些实施例中,所述处理单元410还用于:
从起始时隙开始,根据所述终端设备所使用的帧结构中的时隙配置,确定第k次重复传输所述上行控制信道的时隙,其中,所述k为正整数。
可选地,在一些实施例中,所述起始时隙根据下行控制信息DCI所指示的用于传输物理下行共享信道PDSCH的时隙和时隙偏移值确定,其中,所述时隙偏移值为用于传输所述PDSCH对应的控制信息的时隙相对于用于传输所述PDSCH的时隙的偏移值,所述上行控制信道用于承载所述控制信息。
可选地,在一些实施例中,所述终端设备第k次重复传输所述上行控制信道的时隙满足如下条件中的至少之一:
所述时隙中可用的时域符号大于或等于所述上行控制信道对应的上行控制信道格式所能传输的最小时域符号数量;
所述时隙中可用的时域符号大于或等于第二阈值。
可选地,在一些实施例中,所述时隙中可用的时域符号包括:所述时隙中的上行时域符号和/或灵活时域符号。
可选地,在一些实施例中所述上行控制信道的传输次数达到预配置的重复传输次数的时隙为所述终端设备重复传输所述上行控制信道的结束时隙。
可选地,在一些实施例中,所述终端设备400还包括:
通信单元,用于在第k次重复传输所述上行控制信道的时隙相对于起始时隙的时隙偏移超过时隙偏移门限的情况下,停止重复传输所述上行控制信道,其中,所述k小于预配置的重复传输次数。
可选地,在一些实施例中,所述处理单元410还用于:
根据重复传输所述上行控制信道的每个时隙中的时域符号的符号方向和所述上行控制信道的传输方向,确定在所述每个时隙内所述上行控制信道所映射的时域符号。
可选地,在一些实施例中,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从第一起始符号开始的M个时域符号上,其中,所述第一起始符号是所述时隙中符号方向与所述上行控制信道的传输方向相同的第一个时域符号;
所述M为第一值和第二值中的较小值,其中,所述第一值是预配置的一个时隙中可用于传输上行控制信道的最大时域符号个数,所述第二值为从所述第一起始符号开始符号方向与所述上行控制信道的传输方向相同的符号个数。
可选地,在一些实施例中,在不满足以下条件中的至少一个的情况下,所述上行控制信道映射在从所述第一起始符号开始的M个时域符号上:
所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
可选地,在一些实施例中,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上,其中,所述 N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
可选地,在一些实施例中,在满足以下条件的情况下,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上:
所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图7是根据本申请实施例的网络设备的示意性框图。图7的网络设备500包括:
处理单元510,用于根据终端设备所使用的帧结构中的时隙配置,确定所述终端设备重复传输上行控制信道的时域资源位置。
可选地,在一些实施例中,所述重复传输上行控制信道的时域资源位置包括以下中的至少一项:
重复传输所述上行控制信道的时隙;
重复传输所述上行控制信道的时隙中所述上行控制信道所映射的时域符号。
可选地,在一些实施例中,所述处理单元510具体用于:
从起始时隙开始,根据所述终端设备所使用的帧结构中的时隙配置,确定所述终端设备第k次重复传输所述上行控制信道的时隙,其中,所述k为正整数。
可选地,在一些实施例中,所述起始时隙根据下行控制信息DCI所指示的用于传输物理下行共享信道PDSCH的时隙和时隙偏移值确定,其中,所述时隙偏移值为用于传输所述PDSCH对应的控制信息的时隙相对于用于传输所述PDSCH的时隙的偏移值,所述上行控制信道用于承载所述控制信息。
可选地,在一些实施例中,所述终端设备第k次重复传输所述上行控制信道的时隙满足如下条件中的至少之一:
所述时隙中可用的时域符号大于或等于所述上行控制信道对应的上行控制信道格式所能传输的最小时域符号数量;
所述时隙中可用的时域符号大于或等于第二阈值。
可选地,在一些实施例中,所述时隙中可用的时域符号包括:所述时隙中的上行时域符号和/或灵活时域符号。
可选地,在一些实施例中,所述上行控制信道的传输次数达到预配置的重复传输次数的时隙为所述终端设备重复传输所述上行控制信道的结束时隙。
可选地,在一些实施例中,所述处理单元510还用于:
根据所述终端设备重复传输所述上行控制信道的每个时隙中的时域符号的符号方向和所述上行控制信道的传输方向,确定在所述每个时隙内所述上行控制信道所映射的时域符号。
可选地,在一些实施例中,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从第一起始符号开始的M个时域符号上,
其中,所述第一起始符号是所述时隙中符号方向与所述上行控制信道的传输方向相同的第一个时域符号;
所述M为第一值和第二值中的较小值,其中,所述第一值是预配置的一个时隙中可用于传输上行控制信道的最大时域符号个数,所述第二值为从所述第一起始符号开始符号方向与所述上行控制信道的传输方向相同的符号个数。
可选地,在一些实施例中,在不满足以下条件中的至少一个的情况下,所述上行控制信道映射在从所述第一起始符号开始的M个时域符号上:
所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
可选地,在一些实施例中,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上,其中,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
可选地,在一些实施例中,在满足以下条件的情况下,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上:
所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
可选地,在一些实施例中,上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图5所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例提供的一种通信设备600示意性结构图。图8所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图8所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的芯片的示意性结构图。图9所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图10是本申请实施例提供的一种通信系统900的示意性框图。如图10所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct  Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一 点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (64)

  1. 一种重复传输控制信道的方法,其特征在于,包括:
    终端设备根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输上行控制信道的时域资源位置。
  2. 根据权利要求1所述的方法,其特征在于,所述重复传输所述上行控制信道的时域资源位置包括以下中的至少一项:
    重复传输所述上行控制信道的时隙;
    重复传输所述上行控制信道的时隙中所述上行控制信道所映射的时域符号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输所述上行控制信道的时域资源位置,包括:
    在所述上行控制信道所承载的控制信息的比特数小于或等于第一阈值的情况下,根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输所述上行控制信道的时域资源位置。
  4. 根据权利要求3所述的方法,其特征在于,所述第一阈值为11或者22。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述终端设备根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输所述上行控制信道的时域资源位置,包括:
    所述终端设备从起始时隙开始,根据所述终端设备所使用的帧结构中的时隙配置,确定第k次重复传输所述上行控制信道的时隙,其中,所述k为正整数。
  6. 根据权利要求5所述的方法,其特征在于,所述起始时隙根据下行控制信息DCI所指示的用于传输物理下行共享信道PDSCH的时隙和时隙偏移值确定,其中,所述时隙偏移值为用于传输所述PDSCH对应的控制信息的时隙相对于用于传输所述PDSCH的时隙的偏移值,所述上行控制信道用于承载所述控制信息。
  7. 根据权利要求5或6所述的方法,其特征在于,所述终端设备第k次重复传输所述上行控制信道的时隙满足如下条件中的至少之一:
    所述时隙中可用的时域符号大于或等于所述上行控制信道对应的上行控制信道格式所能传输的最小时域符号数量;
    所述时隙中可用的时域符号大于或等于第二阈值。
  8. 根据权利要求7所述的方法,其特征在于,所述时隙中可用的时域符号包括:所述时隙中的上行时域符号和/或灵活时域符号。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述上行控制信道的传输次数达到预配置的重复传输次数的时隙为所述终端设备重复传输所述上行控制信道的结束时隙。
  10. 根据权利要求1-8中任一项所述的方法,其特征在于,所述方法还包括:
    若第k次重复传输所述上行控制信道的时隙相对于起始时隙的时隙偏移超过时隙偏移门限,所述终端设备停止重复传输所述上行控制信道,其中,所述k小于预配置的重复传输次数。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述终端设备根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输所述上行控制信道的时域资源位置,包括:
    所述终端设备根据重复传输所述上行控制信道的每个时隙中的时域符号的符号方向和所述上行控制信道的传输方向,确定在所述每个时隙内所述上行控制信道所映射的时 域符号。
  12. 根据权利要求11所述的方法,其特征在于,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从第一起始符号开始的M个时域符号上,其中,所述第一起始符号是所述时隙中符号方向与所述上行控制信道的传输方向相同的第一个时域符号;
    所述M为第一值和第二值中的较小值,其中,所述第一值是预配置的一个时隙中可用于传输上行控制信道的最大时域符号个数,所述第二值为从所述第一起始符号开始符号方向与所述上行控制信道的传输方向相同的符号个数。
  13. 根据权利要求12所述的方法,其特征在于,在不满足以下条件中的至少一个的情况下,所述上行控制信道映射在从所述第一起始符号开始的M个时域符号上:
    所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
    从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  14. 根据权利要求11所述的方法,其特征在于,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上,其中,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  15. 根据权利要求14所述的方法,其特征在于,在满足以下条件的情况下,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上:
    所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
    从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  16. 一种重复传输控制信道的方法,其特征在于,包括:
    网络设备根据终端设备所使用的帧结构中的时隙配置,确定所述终端设备重复传输上行控制信道的时域资源位置。
  17. 根据权利要求16所述的方法,其特征在于,所述重复传输上行控制信道的时域资源位置包括以下中的至少一项:
    重复传输所述上行控制信道的时隙;
    重复传输所述上行控制信道的时隙中所述上行控制信道所映射的时域符号。
  18. 根据权利要求16或17所述的方法,其特征在于,所述网络设备根据终端设备所使用的帧结构中的时隙配置,确定所述终端设备重复传输上行控制信道的时域资源位置,包括:
    所述网络设备从起始时隙开始,根据所述终端设备所使用的帧结构中的时隙配置,确定所述终端设备第k次重复传输所述上行控制信道的时隙,其中,所述k为正整数。
  19. 根据权利要求18所述的方法,其特征在于,所述起始时隙根据下行控制信息DCI所指示的用于传输物理下行共享信道PDSCH的时隙和时隙偏移值确定,其中,所述时隙偏移值为用于传输所述PDSCH对应的控制信息的时隙相对于用于传输所述PDSCH的时隙的偏移值,所述上行控制信道用于承载所述控制信息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述终端设备第k次重复传输所述上行控制信道的时隙满足如下条件中的至少之一:
    所述时隙中可用的时域符号大于或等于所述上行控制信道对应的上行控制信道格式所能传输的最小时域符号数量;
    所述时隙中可用的时域符号大于或等于第二阈值。
  21. 根据权利要求20所述的方法,其特征在于,所述时隙中可用的时域符号包括:所述时隙中的上行时域符号和/或灵活时域符号。
  22. 根据权利要求16-21中任一项所述的方法,其特征在于,所述上行控制信道的传输次数达到预配置的重复传输次数的时隙为所述终端设备重复传输所述上行控制信道的结束时隙。
  23. 根据权利要求16-22中任一项所述的方法,其特征在于,所述网络设备根据终端设备所使用的帧结构中的时隙配置,确定重复传输所述上行控制信道的时域资源位置,包括:
    所述网络设备根据所述终端设备重复传输所述上行控制信道的每个时隙中的时域符号的符号方向和所述上行控制信道的传输方向,确定在所述每个时隙内所述上行控制信道所映射的时域符号。
  24. 根据权利要求23所述的方法,其特征在于,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从第一起始符号开始的M个时域符号上,
    其中,所述第一起始符号是所述时隙中符号方向与所述上行控制信道的传输方向相同的第一个时域符号;
    所述M为第一值和第二值中的较小值,其中,所述第一值是预配置的一个时隙中可用于传输上行控制信道的最大时域符号个数,所述第二值为从所述第一起始符号开始符号方向与所述上行控制信道的传输方向相同的符号个数。
  25. 根据权利要求24所述的方法,其特征在于,在不满足以下条件中的至少一个的情况下,所述上行控制信道映射在从所述第一起始符号开始的M个时域符号上:
    所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
    从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  26. 根据权利要求23所述的方法,其特征在于,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上,其中,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  27. 根据权利要求26所述的方法,其特征在于,在满足以下条件的情况下,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上:
    所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
    从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  28. 一种终端设备,其特征在于,包括:
    处理单元,用于根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输上行控制信道的时域资源位置。
  29. 根据权利要求28所述的终端设备,其特征在于,所述重复传输所述上行控制信道的时域资源位置包括以下中的至少一项:
    重复传输所述上行控制信道的时隙;
    重复传输所述上行控制信道的时隙中所述上行控制信道所映射的时域符号。
  30. 根据权利要求28或29所述的终端设备,其特征在于,所述处理单元还用于:
    在所述上行控制信道所承载的控制信息的比特数小于或等于第一阈值的情况下,根据所述终端设备所使用的帧结构中的时隙配置,确定重复传输所述上行控制信道的时域 资源位置。
  31. 根据权利要求30所述的终端设备,其特征在于,所述第一阈值为11或者22。
  32. 根据权利要求28-31中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    从起始时隙开始,根据所述终端设备所使用的帧结构中的时隙配置,确定第k次重复传输所述上行控制信道的时隙,其中,所述k为正整数。
  33. 根据权利要求32所述的终端设备,其特征在于,所述起始时隙根据下行控制信息DCI所指示的用于传输物理下行共享信道PDSCH的时隙和时隙偏移值确定,其中,所述时隙偏移值为用于传输所述PDSCH对应的控制信息的时隙相对于用于传输所述PDSCH的时隙的偏移值,所述上行控制信道用于承载所述控制信息。
  34. 根据权利要求32或33所述的终端设备,其特征在于,所述终端设备第k次重复传输所述上行控制信道的时隙满足如下条件中的至少之一:
    所述时隙中可用的时域符号大于或等于所述上行控制信道对应的上行控制信道格式所能传输的最小时域符号数量;
    所述时隙中可用的时域符号大于或等于第二阈值。
  35. 根据权利要求34所述的终端设备,其特征在于,所述时隙中可用的时域符号包括:所述时隙中的上行时域符号和/或灵活时域符号。
  36. 根据权利要求28-35中任一项所述的终端设备,其特征在于,所述上行控制信道的传输次数达到预配置的重复传输次数的时隙为所述终端设备重复传输所述上行控制信道的结束时隙。
  37. 根据权利要求28-35中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于在第k次重复传输所述上行控制信道的时隙相对于起始时隙的时隙偏移超过时隙偏移门限的情况下,停止重复传输所述上行控制信道,其中,所述k小于预配置的重复传输次数。
  38. 根据权利要求28-37中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    根据重复传输所述上行控制信道的每个时隙中的时域符号的符号方向和所述上行控制信道的传输方向,确定在所述每个时隙内所述上行控制信道所映射的时域符号。
  39. 根据权利要求38所述的终端设备,其特征在于,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从第一起始符号开始的M个时域符号上,其中,所述第一起始符号是所述时隙中符号方向与所述上行控制信道的传输方向相同的第一个时域符号;
    所述M为第一值和第二值中的较小值,其中,所述第一值是预配置的一个时隙中可用于传输上行控制信道的最大时域符号个数,所述第二值为从所述第一起始符号开始符号方向与所述上行控制信道的传输方向相同的符号个数。
  40. 根据权利要求39所述的终端设备,其特征在于,在不满足以下条件中的至少一个的情况下,所述上行控制信道映射在从所述第一起始符号开始的M个时域符号上:
    所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
    从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  41. 根据权利要求38所述的终端设备,其特征在于,在所述终端设备重复传输所述 上行控制信道的一个时隙内,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上,其中,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  42. 根据权利要求41所述的终端设备,其特征在于,在满足以下条件的情况下,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上:
    所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
    从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  43. 一种网络设备,其特征在于,包括:
    处理单元,用于根据终端设备所使用的帧结构中的时隙配置,确定所述终端设备重复传输上行控制信道的时域资源位置。
  44. 根据权利要求43所述的网络设备,其特征在于,所述重复传输上行控制信道的时域资源位置包括以下中的至少一项:
    重复传输所述上行控制信道的时隙;
    重复传输所述上行控制信道的时隙中所述上行控制信道所映射的时域符号。
  45. 根据权利要求43或44所述的网络设备,其特征在于,所述处理单元具体用于:
    从起始时隙开始,根据所述终端设备所使用的帧结构中的时隙配置,确定所述终端设备第k次重复传输所述上行控制信道的时隙,其中,所述k为正整数。
  46. 根据权利要求45所述的网络设备,其特征在于,所述起始时隙根据下行控制信息DCI所指示的用于传输物理下行共享信道PDSCH的时隙和时隙偏移值确定,其中,所述时隙偏移值为用于传输所述PDSCH对应的控制信息的时隙相对于用于传输所述PDSCH的时隙的偏移值,所述上行控制信道用于承载所述控制信息。
  47. 根据权利要求45或46所述的网络设备,其特征在于,所述终端设备第k次重复传输所述上行控制信道的时隙满足如下条件中的至少之一:
    所述时隙中可用的时域符号大于或等于所述上行控制信道对应的上行控制信道格式所能传输的最小时域符号数量;
    所述时隙中可用的时域符号大于或等于第二阈值。
  48. 根据权利要求47所述的网络设备,其特征在于,所述时隙中可用的时域符号包括:所述时隙中的上行时域符号和/或灵活时域符号。
  49. 根据权利要求43-48中任一项所述的网络设备,其特征在于,所述上行控制信道的传输次数达到预配置的重复传输次数的时隙为所述终端设备重复传输所述上行控制信道的结束时隙。
  50. 根据权利要求43-49中任一项所述的网络设备,其特征在于,所述处理单元还用于:
    根据所述终端设备重复传输所述上行控制信道的每个时隙中的时域符号的符号方向和所述上行控制信道的传输方向,确定在所述每个时隙内所述上行控制信道所映射的时域符号。
  51. 根据权利要求50所述的网络设备,其特征在于,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从第一起始符号开始的M个时域符号上,
    其中,所述第一起始符号是所述时隙中符号方向与所述上行控制信道的传输方向相同的第一个时域符号;
    所述M为第一值和第二值中的较小值,其中,所述第一值是预配置的一个时隙中可用于传输上行控制信道的最大时域符号个数,所述第二值为从所述第一起始符号开始符号方向与所述上行控制信道的传输方向相同的符号个数。
  52. 根据权利要求51所述的网络设备,其特征在于,在不满足以下条件中的至少一个的情况下,所述上行控制信道映射在从所述第一起始符号开始的M个时域符号上:
    所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
    从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  53. 根据权利要求50所述的网络设备,其特征在于,在所述终端设备重复传输所述上行控制信道的一个时隙内,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上,其中,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  54. 根据权利要求53所述的网络设备,其特征在于,在满足以下条件的情况下,所述上行控制信道映射在从预配置的起始符号开始的N个时域符号上:
    所述预配置的起始符号的符号方向与所述上行控制信道的传输方向相同;
    从预配置的起始符号开始的N个时域符号的符号方向和所述上行控制信道的传输方向均相同,所述N是预配置的一个时隙中可用于传输上行控制信道的时域符号个数。
  55. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的方法。
  56. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法。
  57. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  58. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法。
  59. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  60. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求16至27中任一项所述的方法。
  61. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求16至27中任一项所述的方法。
  62. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求16至27中任一项所述的方法。
  63. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求16至27中任一项所述的方法。
  64. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求16至27中任一项所述的方法。
PCT/CN2020/131525 2020-11-25 2020-11-25 重复传输控制信道的方法、终端设备和网络设备 WO2022109881A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080104651.9A CN116114210A (zh) 2020-11-25 2020-11-25 重复传输控制信道的方法、终端设备和网络设备
PCT/CN2020/131525 WO2022109881A1 (zh) 2020-11-25 2020-11-25 重复传输控制信道的方法、终端设备和网络设备
EP20962772.8A EP4255064A4 (en) 2020-11-25 2020-11-25 METHOD FOR REPEATED TRANSMISSION OF A CONTROL CHANNEL, TERMINAL DEVICE AND NETWORK DEVICE
US18/146,414 US20230224908A1 (en) 2020-11-25 2022-12-26 Method for repeatedly transmitting control channel, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/131525 WO2022109881A1 (zh) 2020-11-25 2020-11-25 重复传输控制信道的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/146,414 Continuation US20230224908A1 (en) 2020-11-25 2022-12-26 Method for repeatedly transmitting control channel, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2022109881A1 true WO2022109881A1 (zh) 2022-06-02

Family

ID=81755004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131525 WO2022109881A1 (zh) 2020-11-25 2020-11-25 重复传输控制信道的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20230224908A1 (zh)
EP (1) EP4255064A4 (zh)
CN (1) CN116114210A (zh)
WO (1) WO2022109881A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803383A (zh) * 2017-11-16 2019-05-24 华为技术有限公司 发送和接收信息的方法及装置
WO2020007340A1 (zh) * 2018-07-04 2020-01-09 维沃移动通信有限公司 Pucch冲突的处理方法和终端
CN111417204A (zh) * 2019-01-07 2020-07-14 株式会社Kt 用于发射和接收上行链路控制信息的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113924813B (zh) * 2019-05-02 2023-07-11 韦勒斯标准与技术协会公司 在无线通信系统中发送和接收共享信道的方法以及支持该方法的装置
US11902027B2 (en) * 2020-07-01 2024-02-13 Samsung Electronics Co., Ltd. Mechanisms and conditions for supporting repetitions for a PUCCH transmission
WO2022086228A1 (ko) * 2020-10-22 2022-04-28 엘지전자 주식회사 무선 통신 시스템에서 물리 상향링크 제어 채널의 송수신 방법 및 그 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803383A (zh) * 2017-11-16 2019-05-24 华为技术有限公司 发送和接收信息的方法及装置
WO2020007340A1 (zh) * 2018-07-04 2020-01-09 维沃移动通信有限公司 Pucch冲突的处理方法和终端
CN111417204A (zh) * 2019-01-07 2020-07-14 株式会社Kt 用于发射和接收上行链路控制信息的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4255064A4 *

Also Published As

Publication number Publication date
US20230224908A1 (en) 2023-07-13
EP4255064A1 (en) 2023-10-04
CN116114210A (zh) 2023-05-12
EP4255064A4 (en) 2024-01-24
CN116114210A8 (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
WO2022110233A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021237702A1 (zh) Harq-ack码本的反馈方法和终端设备
WO2021217378A1 (zh) 无线通信方法、终端设备和网络设备
US20230362915A1 (en) Method and device for repeatedly transmitting data channel
CN115136523A (zh) 反馈资源的确定方法和装置
US11856595B2 (en) Wireless communication method and apparatus
WO2022036523A1 (zh) 数据传输的方法及设备
WO2022155975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
WO2022109881A1 (zh) 重复传输控制信道的方法、终端设备和网络设备
WO2021000954A1 (zh) 一种数据传输方法及通信装置
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2023123199A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备
WO2023077369A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022141652A1 (zh) 无线通信的方法和设备
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023108638A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022109782A1 (zh) 传输方法、发送端设备和接收端设备
WO2022236697A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022151080A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022056725A1 (zh) 信道反馈方法、终端设备和网络设备
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备
WO2024026678A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020962772

Country of ref document: EP

Effective date: 20230626