WO2022109782A1 - 传输方法、发送端设备和接收端设备 - Google Patents

传输方法、发送端设备和接收端设备 Download PDF

Info

Publication number
WO2022109782A1
WO2022109782A1 PCT/CN2020/131143 CN2020131143W WO2022109782A1 WO 2022109782 A1 WO2022109782 A1 WO 2022109782A1 CN 2020131143 W CN2020131143 W CN 2020131143W WO 2022109782 A1 WO2022109782 A1 WO 2022109782A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
data
retransmission
end device
available
Prior art date
Application number
PCT/CN2020/131143
Other languages
English (en)
French (fr)
Inventor
崔胜江
左志松
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/131143 priority Critical patent/WO2022109782A1/zh
Priority to CN202080105341.9A priority patent/CN116114198A/zh
Publication of WO2022109782A1 publication Critical patent/WO2022109782A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present application relates to the field of communications, and more particularly, to a transmission method, a sending end device, a receiving end device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • a data repeat transmission mechanism In wireless communication systems, in order to improve the reliability of data transmission, a data repeat transmission mechanism is designed.
  • an Aggregation Factor (Aggregation Factor) is defined to control the number of repeated data transmissions.
  • the aggregation factor is greater than 1, the sender device sends the same data multiple times.
  • the embodiments of the present application provide a transmission method, a transmitting end device, a receiving end device, a chip, a computer-readable storage medium, a computer program product, and a computer program, which can be used to improve the utilization rate of transmission resources.
  • the embodiment of the present application provides a transmission method, including:
  • the receiving end device sends feedback information for the first data based on the first time domain position
  • the first time domain position is determined by the receiving end device based on the retransmission feedback factor, and the first time domain position is within the retransmission time domain range of the first data.
  • the embodiment of the present application also provides a transmission method, including:
  • the sending end device receives feedback information for the first data based on the first time domain position
  • the first time domain position is determined by the transmitting end device based on the retransmission feedback factor, and the first time domain position is within the retransmission time domain range of the first data.
  • the embodiment of the present application also provides a receiving end device, including:
  • a first communication module configured to send feedback information for the first data based on the first time domain position in the process of receiving the repeatedly transmitted first data
  • the first processing module is configured to determine the first time domain position based on the retransmission feedback factor, wherein the first time domain position is within the retransmission time domain range of the first data.
  • the embodiment of the present application also provides a sending end device, including:
  • a second communication module configured to receive feedback information for the first data based on the first time domain position in the process of sending the repeatedly transmitted first data
  • the second processing module is configured to determine the first time domain position based on the retransmission feedback factor, wherein the first time domain position is within the retransmission time domain range of the first data.
  • Embodiments of the present application further provide a receiving end device, including: a processor and a memory, where the memory is used to store a computer program, and the processor invokes and runs the computer program stored in the memory to execute the above transmission method.
  • Embodiments of the present application further provide a sending end device, including: a processor and a memory, where the memory is used to store a computer program, and the processor invokes and runs the computer program stored in the memory to execute the above transmission method.
  • An embodiment of the present application also provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a device on which the chip is installed executes the above transmission method.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program, wherein the computer program causes a computer to execute the above transmission method.
  • Embodiments of the present application also provide a computer program product, including computer program instructions, wherein the computer program instructions cause a computer to execute the above transmission method.
  • the embodiments of the present application also provide a computer program, the computer program enables a computer to execute the above transmission method.
  • the receiving end device can send feedback information for the first data within the retransmission time domain of the first data, which helps to reduce unnecessary repeated transmissions, and can Improve spectrum utilization.
  • FIG. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of a self-contained time slot.
  • FIG. 3 is a schematic diagram of the combination of a flexible time slot structure and a data repeat transmission mechanism.
  • FIG. 4 is a schematic diagram of scheduling timing of PDSCH and PUSCH in an NR system.
  • FIG. 5 is a schematic flowchart of a transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a transmission method according to another embodiment of the present application.
  • FIG. 7 is a schematic sequence diagram of repeatedly transmitting first data and sending feedback information in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a symbol configuration of an available time slot in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a symbol configuration of an available time slot in another embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a receiving end device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a transmitting end device according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 1 schematically shows one network device 1100 and two terminal devices 1200.
  • the wireless communication system 1000 may include a plurality of network devices 1100, and the coverage of each network device 1100 may include other numbers terminal equipment, which is not limited in this embodiment of the present application.
  • the wireless communication system 1000 shown in FIG. 1 may also include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF). This is not limited in the application examples.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the frame structure in the NR system has high flexibility, and the Orthogonal Frequency Division Multiplexing (OFDM) symbols in the slot (Slot) can be configured for uplink (Uplink, UL) or for Downlink (Downlink, DL), to achieve the effect of frequency division duplex (Frequency division duplex, FDD).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the uplink and downlink cycles of the time division duplex (TDD) frequency band can also be flexibly configured. 10ms, etc.
  • TDD time division duplex
  • Self-contained time slots are time slots that contain both data and feedback channels. Since the data and the feedback channel are included in one time slot, the delay between data transmission and acknowledgement/negative acknowledgement (Acknowledge/Negative Acknowledge, ACK/NACK) feedback can be reduced.
  • ACK/NACK acknowledgement/negative acknowledgement
  • the terminal device can receive downlink data and send uplink data in the same time slot. Control information, including ACK/NACK feedback on data reception.
  • the terminal equipment can receive downlink control information and send uplink data in the same time slot.
  • the flexible slot structure means that each symbol in a slot can be configured as an uplink symbol, a downlink symbol, or a symbol with a flexible (Flexible) attribute, respectively.
  • the symbols of flexible attributes can also be called flexible symbols.
  • the flexible symbol can be used as a guard symbol or guard interval for uplink and downlink conversion, and can also be used as a downlink symbol or an uplink symbol in real time based on the dynamic indication of the physical layer control channel, so as to achieve the effect of flexibly supporting service diversity.
  • the NR system includes all downlink time slots, all uplink time slots, all flexible time slots, and time slots including at least two kinds of symbols among uplink symbols, downlink symbols and flexible symbols. gap.
  • the symbol configuration may also be referred to as a symbol allocation scheme and a time slot structure, and refers to the configuration for the number and position of downlink symbols, uplink symbols, and flexible symbols in a time slot. Different symbol configurations correspond to different slot format indices.
  • the configuration of symbols for time slots may be implemented based on radio resource control (Radio Resource Control, RRC) signaling; the configuration of flexible symbols in time slots may be implemented based on downlink control information (Downlink Control Information, DCI).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • a data repeat transmission mechanism is designed.
  • the RRC defines the PDSCH-Aggregation Factor (PDSCH-Aggregation Factor) and The aggregation factor for PUSCH (PUSCH-Aggregation Factor) has two parameters. These two parameters are respectively used to control the number of times of data retransmission of PDSCH and PUSCH.
  • PDSCH-Aggregation Factor and PUSCH-Aggregation Factor are equal to 1 by default, and can be configured as 2, 4, or 8 in practical applications.
  • PDSCH-Aggregation Factor>1 or PUSCH-Aggregation Factor>1 the same symbol configuration will be used in PDSCH-Aggregation Factor or PUSCH-Aggregation Factor consecutive time slots, for the same Transport Block (Transport Block, TB) for multiple transmissions.
  • the number RV id of the redundancy version (Redundancy Version, redundancy version) is shown in the following table:
  • the symbols or time slots in the time slot that can be used for repeated transmission need to be determined according to certain rules.
  • FIG. 3 shows a schematic diagram of the combination of the flexible time slot structure and the data repetition transmission mechanism.
  • the aggregation factor PUSCH-Aggregation Factor is semi-statically configured and does not change flexibly due to the time slot structure, as shown in Figure 3, in the 4 consecutive time slots Slot0, Slot1, Slot2 and Slot3, since Slot1 , The symbol configuration of Slot2 is different from that of Slot1.
  • the scheduling timing of PDSCH and PUSCH in the NR system is the design shown in Figure 4.
  • a physical downlink control channel may include downlink grant (Downlink Grant, DL Grant) information for scheduling PDSCH transmission.
  • PDCCH Physical Downlink Control Channel
  • the terminal device determines the time domain position for starting to receive PDSCH based on the time domain position of the PDCCH and the preconfigured time interval K 0 , wherein the time interval between the time domain position of the PDCCH information and the time domain position for starting to receive the PDSCH is time slots, where n is the time domain position of the PDCCH, ⁇ PDSCH is the subcarrier spacing of the PDSCH, and ⁇ PDCCH is the subcarrier spacing of the PDCCH.
  • PDSCH-Aggregation Factor>1 PDSCH is repeatedly transmitted multiple times. After completing the transmission of the PDSCH, the terminal device performs ACK/NACK feedback, wherein the time interval between the end position of the PDSCH transmission and the time domain position of the ACK/NACK feedback is K 1 time slots.
  • the terminal device receives the next PDSCH, such as PDSCH (Re Tx) in FIG. 4 , wherein the time between the time domain position of receiving PDSCH (Re Tx) and the time domain position of ACK/NACK feedback
  • the interval is K 3 time slots.
  • the PDCCH may further include uplink grant (Uplink Grant, UL Grant) information for scheduling PUSCH transmission.
  • the terminal device determines the time domain position for sending the PDSCH based on the preconfigured time interval K 2 . In the case of PUSCH-Aggregation Factor>1, the PUSCH is repeatedly transmitted multiple times. After completing the transmission of the PUSCH, the terminal device performs the next transmission of the PUSCH, such as the PUSCH (Re Tx) in FIG. 4 , according to the scheduling of the network device.
  • the aggregation factor is semi-statically configured, when the repeated transmission mechanism and the flexible time slot structure are used at the same time, the repeated transmission of some time slots in the repeated transmission process will be ignored, and the ideal repeated transmission coverage cannot be achieved. Effect.
  • the configured aggregation factor is 4, Then, in four consecutive time slots, only one valid transmission can be performed at most, so the configured aggregation factor has no effect.
  • the flexible time slot is a time slot including at least two kinds of symbols among uplink symbols, downlink symbols and flexible symbols.
  • the actual number of repeated transmissions may not achieve the expected effect (that is, the actual number of repeated transmissions is less than the aggregation factor), or even repeated transmissions are not performed, and the coverage effect of repeated transmissions is greatly limited.
  • An embodiment of the present application provides a transmission method, as shown in FIG. 5 , the method includes:
  • Step S501 in the process of receiving the repeatedly transmitted first data, the receiving end device sends feedback information for the first data based on the first time domain position;
  • the first time domain position is determined by the receiving end device based on the retransmission feedback factor, and the first time domain position is within the retransmission time domain range of the first data.
  • the transmitting end device in the process of repeatedly transmitting the first data, also receives feedback information for the first data based on the first time domain position.
  • an embodiment of the present application further provides a transmission method, as shown in FIG. 6 , the method includes:
  • Step S601 in the process of sending the repeatedly transmitted first data, the sending end device receives feedback information for the first data based on the first time domain position;
  • the first time domain position is determined by the transmitting end device based on the retransmission feedback factor, and the first time domain position is within the retransmission time domain range of the first data.
  • the receiving end device is a device that receives the repeatedly transmitted first data, including a network device and/or a terminal device.
  • the sending end device is a device that sends the repeatedly transmitted first data, including a terminal device and/or a network device.
  • the receiving end device includes a terminal device
  • the transmitting end device includes a network device.
  • the terminal device receives the downlink data repeatedly sent by the network device, sends feedback information for the downlink data based on the first time domain position, and the network device receives the downlink data based on the first time domain position. Feedback.
  • the receiving end device includes a network device
  • the transmitting end device includes a terminal device.
  • the network device receives the uplink data repeatedly sent by the terminal device, sends feedback information for the uplink data based on the first time domain position, and the terminal device receives the uplink data based on the first time domain position. Feedback.
  • the embodiments of the present application can be applied to the process of repeatedly transmitting uplink data, and can also be applied to the process of repeatedly transmitting downlink data.
  • the receiving end device can send feedback information for the first data within the retransmission time domain of the first data, which helps to reduce unnecessary repeated transmissions, and can Improve spectrum utilization.
  • the retransmission time domain range is determined based on an aggregation factor (Aggregation Factor) of the first data.
  • the aggregation factor may represent the maximum number of repeated transmissions of the first data.
  • the retransmission time domain range is determined based on the PDSCH-aggregation factor PDSCH-Aggregation Factor; if the first data is PUSCH, the retransmission time domain range is based on the PUSCH aggregation factor PUSCH-Aggregation Factor Sure.
  • the number of time slots included in the retransmission time domain range is determined based on an aggregation factor of the first data. For example, if the aggregation factor is 4, the first data is repeatedly transmitted in 4 consecutive time slots, and it can be determined that the retransmission time domain range includes 4 time slots.
  • a configurable aggregation factor for high-layer signaling such as RRC signaling may include a value greater than 8, such as 16, 32, 64, and the like.
  • RRC signaling may include a value greater than 8, such as 16, 32, 64, and the like.
  • the starting position of the retransmission time domain range is determined based on the related time information of the scheduling information of the first data and the preconfigured second time interval.
  • the terminal device may determine the time domain position to start receiving PDSCH or the time domain range of PDSCH retransmission according to the time domain position of receiving DCI and the preconfigured second time interval K 0 starting position.
  • the time interval between the starting position and the time domain position where the DCI is received is time slots, where n is the time domain position where DCI is received, ⁇ PDSCH is the subcarrier spacing of PDSCH, and ⁇ PDCCH is the subcarrier spacing of PDCCH including DCI.
  • the terminal device can determine the time domain position of starting to send PUSCH or the time domain position of PUSCH according to the time domain position of receiving DCI and the preconfigured time interval K 2 between DCI and PUSCH.
  • the starting position of the retransmission time domain range can be determined.
  • the above-mentioned retransmission time domain range is the maximum range in which the first data is repeatedly transmitted.
  • the device at the receiving end of the first data can send feedback information for the first data within the retransmission time domain based on the retransmission feedback factor, the feedback information can be used to send the feedback information in the retransmission time domain.
  • the repeated transmission of the first data is terminated in time to reduce unnecessary repeated transmission. Even if the increase of the aggregation factor leads to the increase of the retransmission time domain range, because the repeated transmission can be terminated in time, it will not cause waste of resources. Therefore, it is also helpful to increase the aggregation factor and improve the coverage effect of repeated transmission.
  • the feedback information is confirmation information
  • the feedback information is used to instruct the transmitting end device to end the repeated transmission of the first data.
  • the acknowledgement information may be acknowledgement (Acknowledge, ACK) information.
  • the transmitting end device ends the repeated transmission of the first data.
  • the receiving end device sends confirmation information when the first data is correctly decoded. Therefore, in the embodiment of the present application, when the receiving end device correctly decodes the first data, the repeated transmission of the first data can be ended, unnecessary repeated transmission is reduced as much as possible, and the spectrum utilization rate is improved.
  • the sending end device continues to send the repeatedly transmitted first data within the retransmission time domain range.
  • the receiving end device continues to receive the repeatedly transmitted first data within the retransmission time domain range.
  • the non-acknowledgement information may be non-acknowledgement (Negative Acknowledge) information.
  • the non-acknowledgement information is sent by the receiving end device without correctly decoding the first data. Continuing the repeated transmission of the first data under the condition that the receiving end device does not correctly decode the first data can ensure the coverage effect of the repeated transmission.
  • the receiving end device sends the feedback information for the repeatedly transmitted first data at the second time domain position; wherein, the second time domain position is determined based on an aggregation factor and a preconfigured first time interval.
  • the first time interval is a time interval K 1 between the end position of the pre-configured retransmission time domain range and the second time domain position.
  • the receiving end device determines the end position of the retransmission time domain range based on the aggregation factor, and determines the second time domain position based on the end position of the retransmission time domain range and the first time interval.
  • the retransmission time domain range includes 16 time slots.
  • the above process of repeatedly transmitting the first data and sending the feedback information may refer to the following schematic description:
  • the terminal equipment receives the DCI in the time slot Slot n, and the DCI is Format1_0 or Format1_1, and the DCI is used for scheduling PDSCH. Based on information such as the time slot Slot n for receiving the DCI, the preconfigured first time interval K 0 and other information, the terminal device can determine that the time slot N is the starting position of the PDSCH retransmission time domain range, wherein the time slot N is the same as the time slot N of receiving the DCI.
  • the number of time slots spaced between time slots Slot n is ⁇ PDSCH is the subcarrier spacing of PDSCH, and ⁇ PDCCH is the subcarrier spacing of PDCCH including DCI.
  • the retransmission time domain range of PDSCH includes a total of 8 time slots from time slot N to (N+7). gap.
  • the TDD frame structure is DDDSU
  • the retransmission feedback factor Repetition Feedback Factor is configured as 5.
  • the fifth time slot N+4 in the retransmission time domain range is determined as the first time domain position.
  • the terminal device sends the feedback information ACK/NACK for the PDSCH at the first time domain position.
  • the retransmission feedback factor for determining the first time domain position may be determined based on the frame structure of the retransmission time domain range. Through such setting, the receiving end can send feedback information at the first time domain position, and the feasibility of sending feedback information within the retransmission time domain range is improved.
  • the determination of the first time domain position based on the retransmission feedback factor may include various implementations.
  • Various exemplary embodiments are provided below.
  • the above transmission method may include:
  • the receiving end device determines, based on the retransmission feedback factor and at least one available coefficient, at least one time slot within the retransmission time domain range as the first time domain position.
  • the available coefficients are related to the aggregation factor and the retransmission feedback factor.
  • At least one k satisfying k ⁇ Repetition Feedback Factor ⁇ Aggregation Factor is determined as an available coefficient.
  • k is a positive integer
  • Repetition Feedback Factor is the retransmission feedback factor
  • Aggregation Factor is the aggregation factor.
  • At least one k satisfying (k ⁇ Repetition Feedback Factor+d) ⁇ Aggregation Factor is determined as an available coefficient.
  • k is a positive integer
  • Repetition Feedback Factor is the retransmission feedback factor
  • Aggregation Factor is the aggregation factor
  • d is the pre-configured sliding factor.
  • the receiving end device determines, based on the retransmission feedback factor and at least one available coefficient, at least one time slot within the retransmission time domain range as the first time domain position, including:
  • the receiving end device determines at least one time slot interval based on the retransmission feedback factor and at least one available coefficient
  • the receiving end device determines at least one time slot within the retransmission time domain range as the first time domain position based on the start position of the retransmission time domain range and at least one time slot interval.
  • the above-mentioned time slot interval may be the time slot interval between the start position of the retransmission time domain range and the first time domain position.
  • the product of the available coefficient and the retransmission feedback factor may be determined as the above slot interval.
  • At least one available coefficient k satisfying k ⁇ Repetition Feedback Factor ⁇ Aggregation Factor includes 1, 2, and 3.
  • 3 slot intervals can be obtained: 5, 10 and 15.
  • the 5th, 10th, and 15th time slots in the retransmission time domain range may be used as the first time domain positions.
  • the above-mentioned time slot interval may be obtained by adding a preconfigured sliding factor to the product of the available coefficient and the retransmission feedback factor.
  • 2 time intervals: 7 and 12 Based on the product of the 2 available coefficients 1 and 2 and the retransmission feedback factor 5 respectively, plus the sliding factor 2, 2 time intervals: 7 and 12 can be obtained. Then, the 7th and 12th time slots in the retransmission time domain range may be used as the first time domain position.
  • the receiving end device determines at least one time slot interval based on the retransmission feedback factor and at least one available coefficient, including:
  • the receiving end device selects M available coefficients from at least one available coefficient
  • the receiving end device determines N time slot intervals based on the M available coefficients and the retransmission feedback factor, where N is less than or equal to M, and both M and N are positive integers.
  • M timeslot intervals may be obtained based on the product of each of the M available coefficients and the retransmission feedback factor, and then determined from the M timeslot intervals based on the frame structure within the retransmission time domain.
  • N slot intervals where N is less than M.
  • some time slot intervals of the M time slot intervals may correspond to time slots for reception in the retransmission time domain location, and these time slots cannot be used for sending feedback information. Therefore, it is necessary to select N time slot intervals from M time slot intervals to filter the time slots that cannot be used for sending feedback information.
  • M is determined based on the number of available coefficients of the retransmission feedback factor.
  • M may be 1/2, 2/3, or 3/4, etc., of the number of available coefficients for the retransmission feedback factor.
  • the receiving end device selects M available coefficients from at least one available coefficient, including:
  • the receiving end device selects M available coefficients from the at least one available coefficient.
  • the receiving end device determines at least one time slot interval based on all available coefficients in the at least one available coefficient and the retransmission feedback factor.
  • the first time domain position is determined based on all the available coefficients. Therefore, excessive resource overhead can be avoided, and feedback information can be sent in time, so as to terminate the repeated transmission in time.
  • the receiving end device selects M available coefficients from at least one available coefficient, including:
  • the receiving end device selects the largest M from at least one available coefficient.
  • a maximum value k max is determined in at least one k that satisfies k ⁇ Repetition Feedback Factor ⁇ Aggregation Factor, and a time slot interval is determined: k max ⁇ Repetition Feedback Factor.
  • the (k max ⁇ Repetition Feedback Factor)th time slot in the retransmission time domain range is taken as the first time domain position.
  • the transmitting end device may also determine the first time domain position based on the same or corresponding manner. It is not repeated here.
  • the transmission method may further include:
  • the receiving end device determines that the i-th time slot is an available time slot
  • the available time slot is used for receiving the repeatedly transmitted first data; i is an integer greater than or equal to 1.
  • the transmission method may further include:
  • the transmitting end device determines that the i-th time slot is an available time slot
  • the available time slot is used for sending the first data of repeated transmission; i is an integer greater than or equal to 1.
  • the preset condition includes: the i-th time slot has the same symbol configuration as the first time slot in the retransmission time domain that meets the transmission requirement of the first data.
  • the retransmission time domain range includes time slots Slot n to Slot n+7.
  • the frame structure of the retransmission time domain range is DDDSU, and specifically, the ratio of the numbers of downlink symbols, flexible symbols and uplink symbols is 5:1:1.
  • the first time slot Slot n is a full downlink time slot, which meets the transmission requirements of PDSCH.
  • the preset condition includes: the number of symbols used for reception in the ith time slot is greater than or equal to the number of symbols required for transmitting the first data.
  • the preset condition includes: the number of symbols used for transmission in the i-th time slot is greater than or equal to the number of symbols required for transmitting the first data.
  • the symbol configurations of at least two available time slots within the retransmission time domain range may be different.
  • both the terminal device serving as the receiving end device and the network device serving as the transmitting end device may determine the time slot with the number of downlink symbols greater than the number of symbols required for transmitting the first data as available time slot.
  • both the network device serving as the receiving end device and the terminal device serving as the sending end device may determine a time slot with a number of uplink symbols greater than the number of symbols required for transmitting the first data as an available time slot .
  • the retransmission time domain range includes time slots Slot n to Slot n+7.
  • the frame structure of the retransmission time domain range is DDDSU, and specifically, the ratio of the numbers of downlink symbols, flexible symbols and uplink symbols is 5:1:1.
  • the number of symbols required to transmit the first data is 10. Since the downstream symbols contained in Slot n to Slot n+3 and Slot n+5 to Slot n+7 are all greater than or equal to 10, therefore, when Slot n to Slot n+3 and Slot n+5 to Slot n+7 are available slot, the PDSCH can be repeatedly transmitted Repetition0 to Repetition3 and Repetition5 to Repetition7. Since the number of downlink symbols in Slot n+4 is less than 10, in Slot n+4, the repeated transmission Repetition4 of PDSCH is ignored, that is, there is no actual transmission in Slot n+4.
  • the number of symbols required for transmitting the first data is the number of symbols required to be occupied by the first data.
  • the number of symbols to be occupied by a demodulation reference signal may not be included in the number of symbols required to transmit the first data. Therefore, for the receiving end device, the requirement on the number of symbols used for reception in the available time slot is reduced, and for the transmitting end device, the requirement on the number of symbols used for transmission in the available time slot is reduced.
  • the influence of the TDD frame structure on the repeated transmission can be further reduced, and the coverage effect of the repeated transmission can be improved.
  • the DMRS configurations of at least two available time slots within the retransmission time domain are the same.
  • the DMRS configuration refers to the configuration of the number and position of the DMRS in the time slot.
  • the DMRS configurations of at least two available time slots within the retransmission time domain are different.
  • the influence of the TDD frame structure on the repeated transmission can be further reduced, and the coverage effect of the repeated transmission can be improved.
  • time slots in the retransmission time domain range may also be grouped.
  • the transmission method further includes:
  • the transmitting end device or the receiving end device groups the time slots in the retransmission time domain range based on the retransmission feedback factor to obtain at least one time slot group.
  • the time slots are numbered from 0, and the time slot number is greater than or equal to (k-1) Repetition Feedback Factor and less than k Repetition Feedback Factor at least one time slot is recorded as the first time slot.
  • k Repetition Feedback Factor
  • k is a positive integer
  • k ⁇ repetition feedback factor is less than the aggregation factor, that is, k can be an available coefficient.
  • the DMRS configurations of each time slot in the same time slot group may be the same, and the DMRS configurations of at least two time slots in different time slot groups may be different.
  • the above transmission method may further include:
  • the transmitting end device ends in the jth time slot group in the at least one time slot group and uses the first DMRS configuration to send the first data repeatedly transmitted, and does not receive the acknowledgment information, the transmitting end device is in the at least one time slot group.
  • the (j+1)th time slot group adopts the second DMRS configuration to send the first data of repeated transmission;
  • the number of DMRSs in the second DMRS configuration is less than the number of DMRSs in the first DMRS configuration, and the number of DMRSs in the second DMRS configuration is greater than or equal to 0, and j is an integer greater than or equal to 1.
  • the number of DMRSs in the DMRS configuration decreases as the number of repeated transmissions increases.
  • the pre-configured DMRS configuration is used to perform repeated transmission of the first data, and starting from the second time slot group, the number of DMRSs in the DMRS configuration is decremented, for example, the (j+1)th
  • the DMRS in the slot group is one less than the DMRS in the j-th slot group.
  • the number of DMRSs may remain always greater than zero. In other examples, the minimum number of DMRSs may be 0.
  • the number of DMRSs used for anti-interference in this embodiment of the present application can be gradually reduced, which can satisfy reliability requirements on the one hand.
  • it can reduce the occupation of transmission resources, reduce the influence of the TDD frame structure on repeated transmission, and improve the coverage effect of repeated transmission.
  • the receiving end device may send feedback information for the first data within the retransmission time domain range of the first data. Therefore, the feedback information can be used to terminate the repeated transmission of the first data in time within the retransmission time domain, so as to reduce unnecessary repeated transmission.
  • the configurable aggregation factor can be increased, which can not only reduce the number of repeated transmissions, improve spectrum utilization, but also achieve better coverage of repeated transmissions.
  • the embodiments of the present application allow different symbol configurations or DMRS configurations of available time slots for repeated transmission of data, and can also reduce the number of repeated transmissions that are ignored, and reduce the impact of the TDD frame structure on the effect of repeated transmissions.
  • the retransmission feedback factor can also be configured, so as to reduce the overhead of repeated transmission while increasing the aggregation factor.
  • the method of the embodiments of the present application can also be used to improve spectrum utilization. Rate.
  • an embodiment of the present application further provides a receiving end device 100, referring to FIG. 10, which includes:
  • a first communication module 101 configured to send feedback information for the first data based on the first time domain position in the process of receiving the repeatedly transmitted first data
  • the first processing module 102 is configured to determine the first time domain position based on a retransmission feedback factor, wherein the first time domain position is within the retransmission time domain range of the first data.
  • the retransmission time domain range is determined based on an aggregation factor of the first data.
  • the feedback information is confirmation information
  • the feedback information is used to instruct the transmitting end device to end the repeated transmission of the first data.
  • the first processing module 102 is configured to, based on the retransmission feedback factor and at least one available coefficient, determine at least one time slot within the retransmission time domain range as the first time domain position .
  • the available coefficients are related to the aggregation factor and the retransmission feedback factor.
  • the first processing module 102 is configured to determine at least one time slot interval based on the retransmission feedback factor and at least one available coefficient; and based on the starting position of the retransmission time domain range and the at least one available coefficient A time slot interval, and at least one time slot within the retransmission time domain range is determined as the first time domain position.
  • the first processing module 102 is configured to select M available coefficients from the at least one available coefficient, and determine N based on each available coefficient in the M available coefficients and the retransmission feedback factor. slot intervals, where N is less than or equal to M, and both M and N are positive integers.
  • M is determined based on the number of available coefficients of the retransmission feedback factor.
  • the first processing module 102 is configured to select M available coefficients from the at least one available coefficient when the number of the at least one available coefficient is greater than a preset number.
  • the first processing module 102 is configured to select the largest M from the at least one available coefficient.
  • the first processing module 102 is further configured to determine that the i-th time slot is an available time slot when the i-th time slot within the retransmission time domain meets a preset condition;
  • the available time slot is used for receiving the repeatedly transmitted first data; i is an integer greater than or equal to 1.
  • the preset condition includes: the number of symbols used for reception in the i-th time slot is greater than or equal to the number of symbols required for transmitting the first data.
  • the number of symbols required for transmitting the first data is the number of symbols to be occupied by the first data.
  • the symbol configurations of at least two available time slots within the retransmission time domain are different.
  • the demodulation reference signal DMRS configurations of at least two available time slots within the retransmission time domain range are different.
  • the first communication module 101 is further configured to send, at the second time domain position, the first message for repeated transmission in the case that the feedback information sent at the first time domain position is all non-acknowledgement information. Feedback information of the data; wherein the second time domain position is determined based on the aggregation factor and the preconfigured first time interval.
  • the retransmission feedback factor is determined based on the frame structure of the retransmission time domain range.
  • the starting position of the retransmission time domain range is determined based on time information related to scheduling information of the first data and a preconfigured second time interval.
  • the receiving end device 100 in this embodiment of the present application can implement the corresponding functions of the receiving end device in the foregoing method embodiments, and the corresponding processes, functions, and implementations of each module (submodule, unit, or component, etc.) in the receiving end device 100
  • each module submodule, unit, or component, etc.
  • the functions described by the respective modules (submodules, units, or components, etc.) in the receiving end device 100 in the embodiments of the present application may be implemented by different modules (submodules, units, or components, etc.), or may be implemented by The same module (sub-module, unit or component, etc.) is implemented.
  • the first communication module and the first processing module may be different modules, or may be the same module, both of which can implement the terminal equipment of the embodiments of the present application. corresponding functions.
  • the embodiment of the present application also provides a transmitting end device 110, referring to FIG. 11, which includes:
  • a second communication module 111 configured to receive feedback information for the first data based on the first time domain position in the process of sending the repeatedly transmitted first data
  • the second processing module 112 is configured to determine the first time domain position based on the retransmission feedback factor, where the first time domain position is within the retransmission time domain range of the first data.
  • the second communication module 111 is further configured to end sending the repeatedly transmitted first data when the feedback information received at the first time domain location is confirmation information.
  • the second communication module 111 is further configured to continue to send the repeated transmission within the retransmission time domain when the feedback information received at the first time domain location is non-acknowledgement information. first data.
  • the second processing module 112 is further configured to group the time slots in the retransmission time domain range based on the retransmission feedback factor to obtain at least one time slot group.
  • the second communication module 111 is further configured to use the first DMRS configuration to send the repeatedly transmitted first data in the jth time slot group ending in the at least one time slot group, and not receive the data.
  • the (j+1)th time slot group in the at least one time slot group adopts the second DMRS configuration to send the repeatedly transmitted first data;
  • the number of DMRSs in the second DMRS configuration is less than the number of DMRSs in the first DMRS configuration, and the number of DMRSs in the second DMRS configuration is greater than or equal to 0, and j is an integer greater than or equal to 1.
  • the second processing module 112 is further configured to determine that the i-th time slot is an available time slot when the i-th time slot within the retransmission time domain meets a preset condition;
  • the available time slot is used for sending the first data of repeated transmission; i is an integer greater than or equal to 1.
  • the preset condition includes: the number of symbols used for transmission in the i-th time slot is greater than or equal to the number of symbols required for transmitting the first data.
  • the number of symbols required for transmitting the first data is the number of symbols to be occupied by the first data.
  • the symbol configurations of at least two available time slots within the retransmission time domain are different.
  • the DMRS configurations of at least two available time slots within the retransmission time domain are different.
  • the transmitting end device 110 in this embodiment of the present application can implement the corresponding functions of the transmitting end device in the foregoing method embodiments, and the corresponding processes, functions, and implementations of each module (submodule, unit, or component, etc.) in the transmitting end device 110
  • each module submodule, unit, or component, etc.
  • the functions described by the respective modules (submodules, units, or components, etc.) in the transmitting-end device 110 in the embodiments of the present application may be implemented by different modules (submodules, units, or components, etc.), or may be implemented by The same module (sub-module, unit or component, etc.) is implemented.
  • the first communication module and the first processing module may be different modules, or may be the same module, both of which can implement the terminal equipment of the embodiments of the present application. corresponding functions.
  • FIG. 12 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application, wherein the communication device 600 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may also include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices .
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may be the receiving end device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the receiving end device in each method of the embodiment of the present application. Repeat.
  • the communication device 600 may be the sending end device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the sending end device in each method of the embodiment of the present application. Repeat.
  • FIG. 13 is a schematic structural diagram of a chip 700 according to an embodiment of the present application, wherein the chip 700 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the receiving end device in the embodiment of the present application as shown in FIG. 10 , and the chip can implement the corresponding processes implemented by the receiving end device in the various methods of the embodiments of the present application. Repeat.
  • the chip can be applied to the transmitting end device in the embodiment of the present application as shown in FIG. 11 , and the chip can implement the corresponding processes implemented by the transmitting end device in each method of the embodiments of the present application. Repeat.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the processor mentioned above may be a general-purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the memory mentioned above may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 14 is a schematic block diagram of a communication system 800 according to an embodiment of the present application, where the communication system 800 includes a receiving end device 810 and a transmitting end device 820 .
  • the receiving end device 810 may be used to implement the corresponding functions implemented by the receiving end device in the methods of the various embodiments of the present application
  • the transmitting end device 820 may be used to implement the methods of the various embodiments of the present application by the transmitting end device.
  • the corresponding function implemented by the device For brevity, details are not repeated here.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.

Abstract

本申请涉及一种传输方法、发送端设备、接收端设备、芯片、计算机可读存储介质、计算机程序产品和计算机程序。该方法包括:接收端设备在接收重复传输的第一数据的过程中,基于第一时域位置发送针对第一数据的反馈信息;其中,第一时域位置是接收端设备基于重传反馈因子确定的,并且,第一时域位置处于第一数据的重传时域范围内。利用本申请实施例能够减少不必要的重复传输,可以提高频谱利用率。

Description

传输方法、发送端设备和接收端设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输方法、发送端设备、接收端设备、芯片、计算机可读存储介质、计算机程序产品和计算机程序。
背景技术
在无线通信系统中,为了提高数据传输的可靠性,设计了数据重复传输机制。例如,在新无线(New Radio,NR)系统中,针对数据传输,定义了聚合因子(Aggregation Factor),用于控制数据的重复传输次数。在聚合因子大于1的情况下,发送端设备对相同的数据进行多次发送。
然而,对数据进行多次重复传输,可能会造成传输资源的浪费。基于此,在数据重复传输机制下如何提高传输资源的利用率,成为亟待解决的问题。
发明内容
有鉴于此,本申请实施例提供一种传输方法、发送端设备、接收端设备、芯片、计算机可读存储介质、计算机程序产品和计算机程序,可用于提高传输资源的利用率。
本申请实施例提供一种传输方法,包括:
接收端设备在接收重复传输的第一数据的过程中,基于第一时域位置发送针对第一数据的反馈信息;
其中,第一时域位置是接收端设备基于重传反馈因子确定的,并且,第一时域位置处于第一数据的重传时域范围内。
本申请实施例还提供一种传输方法,包括:
发送端设备在发送重复传输的第一数据的过程中,基于第一时域位置接收针对第一数据的反馈信息;
其中,第一时域位置是发送端设备基于重传反馈因子确定的,并且,第一时域位置处于第一数据的重传时域范围内。
本申请实施例还提供一种接收端设备,包括:
第一通信模块,用于在接收重复传输的第一数据的过程中,基于第一时域位置发送针对第一数据的反馈信息;
第一处理模块,用于基于重传反馈因子确定第一时域位置,其中,第一时域位置处于第一数据的重传时域范围内。
本申请实施例还提供一种发送端设备,包括:
第二通信模块,用于在发送重复传输的第一数据的过程中,基于第一时域位置接收针对第一数据的反馈信息;
第二处理模块,用于基于重传反馈因子确定第一时域位置,其中,第一时域位置处于第一数据的重传时域范围内。
本申请实施例还提供一种接收端设备,包括:处理器和存储器,存储器用于存储计算机程序,处理器调用并运行存储器中存储的计算机程序,执行如上的传输方法。
本申请实施例还提供一种发送端设备,包括:处理器和存储器,存储器用于存储计算机程序,处理器调用并运行存储器中存储的计算机程序,执行如上的传输方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行如上的传输方法。
本申请实施例还提供一种计算机可读存储介质,用于存储计算机程序,其中,计算机程序使得计算机执行如上的传输方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,其中,计算机程序 指令使得计算机执行如上的传输方法。
本申请实施例还提供一种计算机程序,计算机程序使得计算机执行如上的传输方法。
根据本申请实施例的技术方案,基于重传反馈因子,接收端设备可以在第一数据的重传时域范围内发送针对第一数据的反馈信息,有助于减少不必要的重复传输,可以提高频谱利用率。
附图说明
图1是本申请实施例的通信系统架构的示意图。
图2是自包含时隙的示意图。
图3是灵活时隙结构和数据重复传输机制结合的示意图。
图4是NR系统中PDSCH和PUSCH的调度时序的示意图。
图5是本申请一个实施例的传输方法的流程示意图。
图6是本申请另一实施例的传输方法的流程示意图。
图7是本申请一个实施例中重复传输第一数据和发送反馈信息的时序示意图。
图8是本申请一个实施例中可用时隙的符号配置的示意图。
图9是本申请另一实施例中可用时隙的符号配置的示意图。
图10是本申请实施例的接收端设备的示意性框图。
图11是本申请实施例的发送端设备的示意性框图。
图12是本申请实施例的通信设备的示意性框图。
图13是本申请实施例的芯片的示意性框图。
图14是本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示意性地示出了一个网络设备1100和两个终端设备1200,可选地,该无线通信系统1000可以包括多个网络设备1100,并且每个网络设备1100的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。可选地,图1所示的无线通信系统1000还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常可互换使用。本文中术语“和/ 或”用来描述关联对象的关联关系,例如表示前后关联对象可存在三种关系,举例说明,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况。本文中字符“/”一般表示前后关联对象是“或”的关系。
为了清楚地阐述本申请实施例的思想,首先对NR系统的灵活帧结构及重复传输机制进行简要描述。
NR系统中的帧结构具有较高的灵活性,可以通过将时隙(Slot)中正交频分多址(Orthogonal Frequency Division Multiplexing,OFDM)符号配置为用于上行(Uplink,UL)或用于下行(Downlink,DL),实现频分双工(Frequency division duplex,FDD)的效果。此外,还可以灵活配置时分双工(Time division duplex,TDD)频段的上下行周期,例如可以通过信令将周期长度配置为0.5ms、0.625ms、1ms、1.25ms、2ms、2.5ms、5ms或10ms等。进一步地,在NR系统中还引入了自包含时隙以及灵活时隙结构的概念。
自包含时隙是指同时包含数据和反馈信道的时隙。由于将数据和反馈信道包含在一个时隙内,因此,可以降低数据发送和应答/非应答(Acknowledge/Negative Acknowledge,ACK/NACK)反馈之间的时延。例如,参考图2示出的自包含时隙的示意图,对于下行数据传输,由于存在保护间隔,可以进行上下行传输的转换,因此,终端设备可以在同一个时隙内接收下行数据和发送上行控制信息,包括对数据接收情况进行ACK/NACK反馈。此外,对于上行数据传输,由于存在保护间隔,终端设备可以在同一个时隙内接收下行控制信息和发送上行数据。
灵活时隙结构是指一个时隙中的各符号可以分别被配置为上行符号、下行符号或灵活(Flexible)属性的符号。其中,灵活属性的符号也可以称为灵活符号。灵活符号可作为保护符号或保护间隔,用于上下行转换,也可以基于物理层控制信道的动态指示,实时生效为下行符号或上行符号,从而达到灵活支持业务多样性的效果。
由于各时隙的符号配置允许存在不同,所以在NR系统中包括全下行时隙、全上行时隙、全灵活时隙,以及包括上行符号、下行符号和灵活符号中的至少两种符号的时隙。此处,符号配置也可以称为符号分配方案、时隙结构,指针对时隙中下行符号、上行符号、灵活符号的个数以及位置的配置。不同的符号配置,对应于不同的时隙格式索引。作为示例,可以基于无线资源控制(Radio Resource Control,RRC)信令,实现针对时隙的符号配置;基于下行控制信息(Downlink Control Information,DCI),实现针对时隙中的灵活符号的配置。
在NR系统中,为了提高数据传输的可靠性,设计了数据重复传输机制。针对物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的数据传输和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的数据传输,RRC中分别定义了针对PDSCH的聚合因子(PDSCH-Aggregation Factor)和针对PUSCH的聚合因子(PUSCH-Aggregation Factor)两个参数。这两个参数分别用于控制PDSCH和PUSCH的数据重复发送次数。
PDSCH-Aggregation Factor和PUSCH-Aggregation Factor默认等于1,实际应用中,可以配置为2、4或8。在PDSCH-Aggregation Factor>1或PUSCH-Aggregation Factor>1的情况下,将在PDSCH-Aggregation Factor或PUSCH-Aggregation Factor个连续的时隙内使用相同的符号配置,对同一个传输块(Transport Block,TB)进行多次发送。
在PDSCH-Aggregation Factor>1的情况下,针对同一TB的每次传输,冗余版本(Redundancy Version,冗余版本)的编号RV id如下表所示:
Figure PCTCN2020131143-appb-000001
Figure PCTCN2020131143-appb-000002
在PUSCH-AggregationFactor>1的情况下,针对同一TB的每次传输,冗余版本的编号RV id如下表所示:
Figure PCTCN2020131143-appb-000003
在灵活时隙结构和数据重复发送机制结合的情况下,需要按照一定的规则确定时隙中能够用于重复传输的符号或时隙。
图3示出了灵活时隙结构和数据重复传输机制结合的示意图。以PUSCH-Aggregation Factor=4为例,在4个连续的时隙的符号配置相同且每个时隙中的上行符号满足传输PUSCH的情况下,将在4个连续的时隙中进行4次上行传输Repetition0至Repetition3。然而,由于聚合因子PUSCH-Aggregation Factor是半静态配置的,不因时隙结构而灵活改变,因此,如图3所示,在4个连续的时隙Slot0、Slot1、Slot2和Slot3中,由于Slot1、Slot2的符号配置与Slot1不同,因此,在Slot1、Slot2中,上行传输Repetition1和Repetition2被忽略,即在Slot1和Slot2中实际无传输。由于Slot3的符号配置与Slot1相同,因此,在Slot3中可以进行上行传输Repetition3。
在NR系统中,考虑到调度的灵活性,特别是针对超高可靠低时延通信(Ultra-reliable & low-latency communication,URLLC)业务的低时延要求,NR系统PDSCH和PUSCH的调度时序进行了如图4所示的设计。
如图4所示,物理下行控制信道(Physical Downlink Control Channel,PDCCH)中可以包括下行授权(Downlink Grant,DL Grant)信息,用于调度PDSCH传输。
终端设备基于PDCCH的时域位置以及预先配置的时间间隔K 0,确定开始接收PDSCH的时域位置,其中,PDCCH信息的时域位置与开始接收PDSCH的时域位置之间的时间间隔为
Figure PCTCN2020131143-appb-000004
个时隙,其中,n为PDCCH的时域位置,μPDSCH为PDSCH的子载波间隔,μPDCCH为PDCCH的子载波间隔。
在PDSCH-Aggregation Factor>1的情况下,PDSCH被多次重复传输。在完成对PDSCH的传输之后,终端设备进行ACK/NACK反馈,其中,PDSCH传输的结束位置与ACK/NACK反馈的时域位置之间的时间间隔为K 1个时隙。
在进行ACK/NACK反馈后,终端设备接收下一次PDSCH例如图4中PDSCH(Re Tx),其中,接收PDSCH(Re Tx)的时域位置与进行ACK/NACK反馈的时域位置之间的时间间隔为K 3个时隙。
如图4所示,PDCCH中还可以包括上行授权(Uplink Grant,UL Grant)信息,用于调度PUSCH传输。终端设备基于预先配置的时间间隔K 2,确定发送PDSCH的时域位置。在PUSCH-Aggregation Factor>1的情况下,PUSCH被多次重复传输。在完成对PUSCH的传输之后,终端设备根据网络设备的调度,进行下一次PUSCH例如图4中的PUSCH(Re Tx)的传输。
经本申请发明人深入研究发现,根据上述数据重复传输机制,存在接收端设备已经可以正确解码数据,但仍耗费传输资源继续传输的情况。
此外,由于聚合因子的是半静态配置的,因此,当重复传输机制和灵活时隙结构同时使用时,会导致重复传输过程中的部分时隙的重复传输被忽略,无法达到理想的重复传输覆盖效果。
举例而言,在TDD的情况下,如果帧结构为DDDSU,即连续的五个时隙依次是三个 全下行时隙、一个灵活时隙和一个全上行时隙,配置的聚合因子为4,则在连续的4个时隙中,最多只能进行1次有效传输,因此,配置的聚合因子并没有起到作用。其中,灵活时隙为包括上行符号、下行符号和灵活符号中的至少两种符号的时隙。
可见,在TDD的情况下,实际的重复传输次数可能无法达到预期效果(即实际重复传输的次数小于聚合因子),甚至没有进行重复传输,重复传输的覆盖效果受到大幅限制。
本申请实施例提供的方案,主要用于解决上述问题中的至少一个。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本申请实施例提供一种传输方法,如图5所示,该方法包括:
步骤S501,接收端设备在接收重复传输的第一数据的过程中,基于第一时域位置发送针对第一数据的反馈信息;
其中,第一时域位置是接收端设备基于重传反馈因子确定的,并且,第一时域位置处于第一数据的重传时域范围内。
与上述方法相应的,在重复传输第一数据的过程中,发送端设备也基于第一时域位置接收针对第一数据的反馈信息。具体的,本申请实施例还提供一种传输方法,如图6所示,该方法包括:
步骤S601,发送端设备在发送重复传输的第一数据的过程中,基于第一时域位置接收针对第一数据的反馈信息;
其中,第一时域位置是发送端设备基于重传反馈因子确定的,并且,第一时域位置处于第一数据的重传时域范围内。
本申请实施例中,接收端设备为接收重复传输的第一数据的设备,包括网络设备和/或终端设备。相应的,发送端设备为发送重复传输的第一数据的设备,包括终端设备和/或网络设备。
例如,接收端设备包括终端设备,发送端设备包括网络设备。在第一数据的重传时域范围内,终端设备接收网络设备重复发送的下行数据,基于第一时域位置发送针对下行数据的反馈信息,网络设备基于第一时域位置接收针对下行数据的反馈信息。
又如,接收端设备包括网络设备,发送端设备包括终端设备。在第一数据的重传时域范围内,网络设备接收终端设备重复发送的上行数据,基于第一时域位置发送针对上行数据的反馈信息,终端设备基于第一时域位置接收针对上行数据的反馈信息。
可见,本申请实施例可应用于重复传输上行数据的过程中,也可以应用于重复传输下行数据的过程中。根据本申请实施例的技术方案,基于重传反馈因子,接收端设备可以在第一数据的重传时域范围内发送针对第一数据的反馈信息,有助于减少不必要的重复传输,可以提高频谱利用率。
可选地,重传时域范围是基于第一数据的聚合因子(Aggregation Factor)确定的。其中,聚合因子可以表征第一数据的最大重复传输次数。
例如,若第一数据为PDSCH,则重传时域范围基于针对PDSCH的聚合因子PDSCH-Aggregation Factor确定;若第一数据为PUSCH,则重传时域范围基于针对PUSCH的聚合因子PUSCH-Aggregation Factor确定。
作为示例,重传时域范围所包括的时隙的数量是基于第一数据的聚合因子确定的。例如,若聚合因子为4,则在连续4个时隙中重复传输第一数据,可以确定重传时域范围包括4个时隙。
可选地,本申请实施例中,高层信令例如RRC信令可配置的聚合因子可以包括大于8的数值,例如16、32、64等。通过增加更大数值的可配置的聚合因子,可以保证在TDD帧结构的影响下,实际进行重复传输的次数可以满足覆盖要求。
作为示例,重传时域范围的起始位置是基于第一数据的调度信息的相关时间信息以及预先配置的第二时间间隔确定的。
例如,在第一数据为PDSCH的情况下,终端设备可以根据接收DCI的时域位置和预先配置的第二时间间隔K 0,确定开始接收PDSCH的时域位置或者说PDSCH的重传时域范围的起始位置。该起始位置与接收DCI的时域位置之间的时间间隔为
Figure PCTCN2020131143-appb-000005
个时隙,其中,n为接收DCI的时域位置,μPDSCH为PDSCH的子载波间隔,μPDCCH为包含DCI的PDCCH的子载波间隔。
又如,在第一数据为PUSCH的情况下,终端设备可以根据接收DCI的时域位置和预先配置的DCI与PUSCH之间的时间间隔K 2,确定开始发送PUSCH的时域位置或者说PUSCH的重传时域范围的起始位置。
上述重传时域范围为重复传输第一数据的最大范围。在本申请实施例中,由于第一数据的接收端设备可以基于重传反馈因子在重传时域范围内发送针对第一数据的反馈信息,因此,可以利用反馈信息,在重传时域范围内及时终止对第一数据的重复传输,减少不必要的重复传输。即使聚合因子增大导致重传时域范围增大,但因为可以及时终止重复传输,所以也不会造成资源浪费。因此,也有助于实现聚合因子增大,提高重复传输的覆盖效果。
具体的,在反馈信息为确认信息的情况下,反馈信息用于指示发送端设备结束第一数据的重复传输。其中,确认信息可以是应答(Acknowledge,ACK)信息。
相应的,若在第一时域位置接收的反馈信息为确认信息,则发送端设备结束第一数据的重复传输。
通常,接收端设备在正确解码第一数据的情况下,发送确认信息。因此,在本申请实施例中,在接收端设备正确解码第一数据的情况下,可以结束第一数据的重复传输,尽量减少不必要的重复传输,提高频谱利用率。
可选地,若在第一时域位置接收的反馈信息为非确认信息,则发送端设备在重传时域范围内继续发送重复传输的第一数据。
相应的,若在第一时域位置发送的反馈信息为非确认信息,则接收端设备在重传时域范围内继续接收重复传输的第一数据。
其中,非确认信息可以是非应答(Negative Acknowledge)信息。非确认信息是接收端设备在未正确解码第一数据的情况下发送的。在接收端设备未正确解码第一数据的情况下继续第一数据的重复传输,可以保障重复传输的覆盖效果。
可选地,若在第一时域位置发送的反馈信息均为非确认信息,则接收端设备在第二时域位置发送针对重复传输的第一数据的反馈信息;其中,第二时域位置是基于聚合因子以及预先配置的第一时间间隔确定的。
可选地,第一时间间隔是预先配置的重传时域范围的结束位置与第二时域位置之间的时间间隔K 1。接收端设备基于聚合因子确定重传时域范围的结束位置,基于重传时域范围的结束位置和第一时间间隔确定第二时域位置。
例如,聚合因子为16,则重传时域范围包括16个时隙。第一时域位置包括重传时域范围中的第6个时隙和第12个时隙,若在第6个时隙和第12个时隙发送的反馈信息均为非确认信息,预先配置的第一时间间隔K 1=2,则接收端设备在重传时域范围的起始位置起第18个时隙或者说重传时域范围的结束位置起第2个时隙,发送反馈信息,以确保对第13个时隙至第16个时隙中的重复传输进行反馈。
可见,本申请实施例中,除了在重传时域范围内的第一时域位置发送反馈信息,还在基于聚合因子以及第一时间间隔确定的第二时域位置发送反馈信息,因此,能够对所有重复传输的数据都进行反馈,提高通信的可靠性。
一种示例中,在接收端设备为终端设备的情况下,如图7所示,上述重复传输第一数据和发送反馈信息的过程可参考如下示意性说明:
终端设备在时隙Slot n中接收DCI,DCI为Format1_0或Format1_1,则DCI用于调度PDSCH。基于接收DCI的时隙Slot n、预先配置的第一时间间隔K 0等信息,终端设备可以确定时隙N为PDSCH的重传时域范围的起始位置,其中,时隙N与接收DCI的时隙Slot n之间间隔的时隙数量为
Figure PCTCN2020131143-appb-000006
μPDSCH为PDSCH的子载波间隔,μPDCCH为包含DCI的PDCCH的子载波间隔。
由于聚合因子PDSCH-Aggregation Factor=8,且PDSCH的重传时域范围的起始位置为时隙N,所以,PDSCH的重传时域范围包括时隙N至(N+7)共8个时隙。
由于TDD帧结构为DDDSU,因此,在PDSCH的重传时域范围中,每5个时隙包括一个上行时隙U。基于该帧结构,重传反馈因子Repetition Feedback Factor被配置为5。基于该重传反馈因子,将重传时域范围内第5个时隙N+4确定为第一时域位置。终端设备在第一时域位置发送针对PDSCH的反馈信息ACK/NACK。
在第一时域位置发送的反馈信息为NACK的情况下,终端设备在时隙N+5至时隙N+7继续PDSCH的重复传输。然后,基于预先配置的第一时间间隔K 1=2,将时隙N+7后第2个时隙N+9确定为第二时域位置,在第二时域位置再次发送反馈信息ACK/NACK。
通过上述示例性说明可知,用于确定第一时域位置的重传反馈因子,可以基于重传时域范围的帧结构确定。通过这样的设置,可以使接收端在第一时域位置能够发送反馈信息,提高在重传时域范围内发送反馈信息的可行性。
本申请实施例中,基于重传反馈因子确定第一时域位置,可以包括有多种实施方式。下面提供多种示例性的实施方式。
示例性地,上述传输方法可以包括:
接收端设备基于重传反馈因子及至少一个可用系数,确定在重传时域范围内的至少一个时隙,作为第一时域位置。
其中,可用系数与聚合因子以及重传反馈因子相关。
例如,将满足k·Repetition Feedback Factor<Aggregation Factor的至少一个k,确定为可用系数。其中,k为正整数,Repetition Feedback Factor为重传反馈因子,Aggregation Factor为聚合因子。
又如,将满足(k·Repetition Feedback Factor+d)<Aggregation Factor的至少一个k,确定为可用系数。其中,k为正整数,Repetition Feedback Factor为重传反馈因子,Aggregation Factor为聚合因子,d为预先配置的滑动因子。
示例性地,接收端设备基于重传反馈因子及至少一个可用系数,确定在重传时域范围内的至少一个时隙,作为第一时域位置,包括:
接收端设备基于重传反馈因子及至少一个可用系数,确定至少一个时隙间隔;
接收端设备基于重传时域范围的起始位置以及至少一个时隙间隔,确定在重传时域范围内的至少一个时隙,作为第一时域位置。
其中,上述时隙间隔可以是重传时域范围的起始位置与第一时域位置之间的时隙间隔。
一种示例中,可以将可用系数与重传反馈因子的乘积确定为上述时隙间隔。
例如,在Repetition Feedback Factor=5,Aggregation Factor=16的情况下,满足k·Repetition Feedback Factor<Aggregation Factor的至少一个可用系数k包括1、2和3。基于3个可用系数1、2和3分别与重传反馈因子5的乘积,可以得到3个时隙间隔:5、10和15。则可以将重传时域范围中第5、10、15个时隙作为第一时域位置。
另一种示例中,可以将可用系数与重传反馈因子的乘积加上预先配置的滑动因子,得到上述时隙间隔。
例如,在Repetition Feedback Factor=5,Aggregation Factor=16的情况下,设置滑动因子d=2,则满足(k·Repetition Feedback Factor+d)<Aggregation Factor的至少一个可用系数包括1和2。基于2个可用系数1和2分别与重传反馈因子5的乘积,再加上滑动因子2, 可以得到2个时间间隔:7和12。则可以将重传时域范围中第7、12个时隙作为第一时域位置。
实际应用中,基于全部的可用系数,可能能够确定多个时隙间隔,从而得到多个第一时域位置。由于发送反馈信息也会带来传输资源的开销,过多的第一时域位置会导致开销过大,因此,在一些实施方式中,可以仅选取部分可用系数用作确定第一时域位置,以减少资源开销。具体的,接收端设备基于重传反馈因子及至少一个可用系数,确定至少一个时隙间隔,包括:
接收端设备从至少一个可用系数中选取M个可用系数;
接收端设备基于M个可用系数与重传反馈因子,确定N个时隙间隔,其中,N小于等于M,且M和N均为正整数。
示例性地,在选取了M个可用系数后,可以根据前述示例方式,基于M个可用系数中的每个可用系数与重传反馈因子的乘积,确定N个时隙间隔,其中,N=M。
实际应用中,也可以采用其他的算法,基于M个可用系数与重传反馈因子,确定N个时隙间隔。
可选地,可以先基于M个可用系数中的每个可用系数与重传反馈因子的乘积,得到M个时隙间隔,再基于重传时域范围内的帧结构从M个时隙间隔确定出N个时隙间隔,其中,N小于M。例如,M个时隙间隔的某些时隙间隔,可能对应于重传时域位置中的用于接收的时隙,这些时隙无法用于发送反馈信息。因此,需要从M个时隙间隔中选取N个时隙间隔,以过滤不能用于发送反馈信息的时隙。
示例性地,M是基于重传反馈因子的可用系数的数量确定的。
例如,M可以是重传反馈因子的可用系数的数量的1/2、2/3或3/4等。
示例性地,接收端设备从至少一个可用系数中选取M个可用系数,包括:
在至少一个可用系数的数量大于预设数量的情况下,接收端设备从至少一个可用系数中选取M个可用系数。
可选地,在至少一个可用系数的数量小于预设数量的情况下,接收端设备基于至少一个可用系数中的全部可用系数与重传反馈因子,确定至少一个时隙间隔。
根据上述方式,在可用系数的数量过多时,选取部分可用系数用于确定第一时域位置;在可用系数的数量不多时,基于全部可用系数确定第一时域位置。因此,既可以避免产生过多资源开销,也可以及时发送反馈信息,以便于及时终止重复传输。
示例性地,接收端设备从至少一个可用系数中选取M个可用系数,包括:
接收端设备从至少一个可用系数中选取最大的M个。
例如,满足k·Repetition Feedback Factor<Aggregation Factor的至少一个k中确定最大值k max,确定出一个时隙间隔:k max·Repetition Feedback Factor。将重传时域范围中第(k max·Repetition Feedback Factor)个时隙作为第一时域位置。
一般来说,在传输次数较小时,通信可靠性较低,接收端设备正确解码数据的可能性较低,如果在传输次数较小的时域范围中确定第一时域位置,可能会造成不必要的资源开销。因此,仅在较大的可用系数对应的第一时域位置中发送反馈信息,可以减少不必要的资源开销。
应理解,以上内容虽然仅示意出接收端设备确定第一时域位置的方式,但实际处理中,发送端设备也可以基于相同或相应的方式确定第一时域位置。在此不进行赘述。
可选地,针对接收端设备,传输方法还可以包括:
在重传时域范围内的第i个时隙满足预设条件的情况下,接收端设备确定第i个时隙为可用时隙;
其中,可用时隙用于接收重复传输的第一数据;i为大于等于1的整数。
相应的,针对发送端设备,传输方法还可以包括:
在重传时域范围内的第i个时隙满足预设条件的情况下,发送端设备确定第i个时隙为可用时隙;
其中,可用时隙用于发送重复传输的第一数据;i为大于等于1的整数。
可选地,预设条件包括:第i个时隙与重传时域范围内的第一个符合第一数据的传输要求的时隙的符号配置相同。
如图8所示,以PDSCH-Aggregation Factor=8为例,重传时域范围包括时隙Slot n至Slot n+7。重传时域范围的帧结构为DDDSU,具体的,下行符号、灵活符号与上行符号的数量比例为5:1:1。其中第1个时隙Slot n为全下行时隙,符合PDSCH的传输要求。由于Slot n至Slot n+2以及Slot n+5至Slot n+7的符号配置与Slot n相同,因此,Slot n至Slot n+2以及Slot n+5至Slot n+7为可用时隙,可以进行PDSCH的重复传输Repetition0至Repetition2以及Repetition5至Repetition7。由于Slot n+3、Slot n+4的符号配置与Slot n不同,因此,在Slot n+3、Slot n+4中,PDSCH的重复传输Repetition3和Repetition4被忽略,即在Slot n+3、Slot n+4中实际无传输。
可选地,对于接收端设备,预设条件包括:第i个时隙中用于接收的符号的数量大于等于传输第一数据所需的符号数量。
相应的,对于发送端设备,预设条件包括:第i个时隙中用于发送的符号的数量大于等于传输第一数据所需的符号数量。
示例性地,重传时域范围内的至少两个可用时隙的符号配置可以不同。
例如,在第一数据为下行传输的情况下,作为接收端设备的终端设备以及作为发送端设备的网络设备均可以将下行符号数量大于传输第一数据所需的符号数量的时隙确定为可用时隙。在第一数据为上行传输的情况下,作为接收端设备的网络设备以及作为发送端设备的终端设备均可以将上行符号数量大于传输第一数据所需的符号数量的时隙确定为可用时隙。
如图9所示,以PDSCH-Aggregation Factor=8为例,重传时域范围包括时隙Slot n至Slot n+7。重传时域范围的帧结构为DDDSU,具体的,下行符号、灵活符号与上行符号的数量比例为5:1:1。传输第一数据所需的符号数量为10。由于Slot n至Slot n+3以及Slot n+5至Slot n+7中包含的下行符号均大于等于10,因此,Slot n至Slot n+3以及Slot n+5至Slot n+7为可用时隙,可以进行PDSCH的重复传输Repetition0至Repetition3以及Repetition5至Repetition7。由于Slot n+4中下行符号的数量小于10,因此,在Slot n+4中,PDSCH的重复传输Repetition4被忽略,即在Slot n+4中实际无传输。
可见,由于重复传输的各时隙不需要符号配置相同,因此,可以降低TDD帧结构对重复传输的影响,使重传时域范围内被忽略的重复传输次数减少,提升重复传输的覆盖效果。
可选地,传输第一数据所需的符号数量为第一数据需占用的符号数量。
基于此,解调参考信号(Demodulation Reference Signal,DMRS)需占用的符号数量可以不计入传输第一数据所需的符号数量。因此,对接收端设备而言,对可用时隙中用于接收的符号的数量的要求降低,对发送端设备而言,对可用时隙中用于发送的符号的数量的要求降低。可以进一步降低TDD帧结构对重复传输的影响,提升重复传输的覆盖效果。
可选地,重传时域范围内的至少两个可用时隙的DMRS配置相同。
其中,DMRS配置指针对时隙中DMRS的个数以及位置的配置。
可选地,重传时域范围内的至少两个可用时隙的DMRS配置不同。
由于允许DMRS配置不同,因此,可以进一步降低TDD帧结构对重复传输的影响,提升重复传输的覆盖效果。
为提供优选的DMRS配置,本申请实施例中还可以对重传时域范围中的时隙进行分组。具体的,传输方法还包括:
发送端设备或接收端设备基于重传反馈因子,对重传时域范围中的时隙进行分组,得到至少一个时隙组。
例如,在重传时域范围内,从0开始对时隙进行编号,将时隙编号大于等于(k-1)·Repetition Feedback Factor且小于k·Repetition Feedback Factor的至少一个时隙,记为第k个时隙组Group k,其中Repetition Feedback Factor为重传反馈因子,k为正整数,且k·repetition feedback factor小于聚合因子,即k可以是可用系数。
可选地,同一时隙组中的各时隙的DMRS配置可以相同,不同时隙组的至少两个时隙的DMRS配置可以不同。
可选地,上述传输方法还可以包括:
若发送端设备结束在至少一个时隙组中的第j个时隙组采用第一DMRS配置发送重复传输的第一数据,且未接收到确认信息,则发送端设备在至少一个时隙组中的第(j+1)个时隙组采用第二DMRS配置发送重复传输的第一数据;
其中,第二DMRS配置中DMRS的个数小于第一DMRS配置中DMRS的个数,且第二DMRS配置中DMRS的个数大于等于0,j为大于等于1的整数。
也就是说,DMRS配置中DMRS的个数随重复传输次数的增大而减少。
作为示例,针对第1个时隙组,采用预先配置的DMRS配置进行第一数据的重复传输,从第2个时隙组起,DMRS配置中DMRS的个数递减,例如第(j+1)个时隙组中的DMRS比第j个时隙组中的DMRS少1个。在一些示例中,DMRS的个数可以保持始终大于0。在另一些示例中,DMRS的个数最小可以为0。
随着重复传输次数的增加,发送端设备与接收端设备之间的通信越来越稳定,因此,本申请实施例中用于抗干扰的DMRS个数可以逐渐减少,一方面能够满足可靠性的要求,另一方面能够减少对传输资源的占用,同时降低TDD帧结构对重复传输的影响,提升重复传输的覆盖效果。
以上通过多个实施例从不同角度描述了本申请实施例的具体设置和实现方式。利用上述至少一个实施例,基于重传反馈因子,接收端设备可以在第一数据的重传时域范围内发送针对第一数据的反馈信息。因此,可以利用反馈信息,在重传时域范围内及时终止对第一数据的重复传输,减少不必要的重复传输。
通过设置合适的重传反馈因子,使得可以增加可配置的聚合因子,不仅可以降低重复传输次数,提高频谱利用率,还可以达到更好的重复传输覆盖效果。
进一步地,本申请实施例允许用于重复传输数据的可用时隙的符号配置或DMRS配置不同,还可以减少被忽略的重复传输次数,降低TDD帧结构对重复传输效果的影响。
需要说明的是,对于FDD通信,虽然不需要考虑帧结构的限制,但也可以配置重传反馈因子,以便于在增加聚合因子的同时减少重复传输的开销。
在结合混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)传输和重复传输的情况下,即每一次HARQ内进行多次重复传输的情况下,也可以采用本申请实施例的方法,提高频谱利用率。
与上述至少一个实施例的处理方法相对应地,本申请实施例还提供一种接收端设备100,参考图10,其包括:
第一通信模块101,用于在接收重复传输的第一数据的过程中,基于第一时域位置发送针对所述第一数据的反馈信息;
第一处理模块102,用于基于重传反馈因子确定所述第一时域位置,其中,所述第一时域位置处于所述第一数据的重传时域范围内。
可选地,所述重传时域范围是基于所述第一数据的聚合因子确定的。
可选地,在所述反馈信息为确认信息的情况下,所述反馈信息用于指示发送端设备结束所述第一数据的重复传输。
可选地,所述第一处理模块102用于基于所述重传反馈因子及至少一个可用系数,确定在所述重传时域范围内的至少一个时隙,作为所述第一时域位置。
可选地,所述可用系数与所述聚合因子以及所述重传反馈因子相关。
可选地,所述第一处理模块102用于基于所述重传反馈因子及至少一个可用系数,确定至少一个时隙间隔;以及基于所述重传时域范围的起始位置以及所述至少一个时隙间隔,确定在所述重传时域范围内的至少一个时隙,作为所述第一时域位置。
可选地,所述第一处理模块102用于从所述至少一个可用系数中选取M个可用系数,基于所述M个可用系数中的每个可用系数与所述重传反馈因子,确定N个时隙间隔,其中,N小于等于M,且M和N均为正整数。
可选地,M是基于所述重传反馈因子的可用系数的数量确定的。
可选地,所述第一处理模块102用于在所述至少一个可用系数的数量大于预设数量的情况下,从所述至少一个可用系数中选取M个可用系数。
可选地,所述第一处理模块102用于从所述至少一个可用系数中选取最大的M个。
可选地,所述第一处理模块102还用于在所述重传时域范围内的第i个时隙满足预设条件的情况下,确定所述第i个时隙为可用时隙;
其中,所述可用时隙用于接收重复传输的所述第一数据;i为大于等于1的整数。
可选地,所述预设条件包括:所述第i个时隙中用于接收的符号的数量大于等于传输所述第一数据所需的符号数量。
可选地,所述传输所述第一数据所需的符号数量为所述第一数据需占用的符号数量。
可选地,所述重传时域范围内的至少两个可用时隙的符号配置不同。
可选地,所述重传时域范围内的至少两个可用时隙的解调参考信号DMRS配置不同。
可选地,所述第一通信模块101还用于在所述第一时域位置发送的反馈信息均为非确认信息的情况下,在第二时域位置发送针对重复传输的所述第一数据的反馈信息;其中,所述第二时域位置是基于聚合因子以及预先配置的第一时间间隔确定的。
可选地,所述重传反馈因子是基于所述重传时域范围的帧结构确定的。
可选地,所述重传时域范围的起始位置是基于所述第一数据的调度信息的相关时间信息以及预先配置的第二时间间隔确定的。
本申请实施例的接收端设备100能够实现前述的方法实施例中的接收端设备的对应功能,该接收端设备100中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,此处不进行赘述。
需要说明,关于本申请实施例的接收端设备100中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,第一通信模块与第一处理模块可以是不同的模块,也可以是同一个模块,均能够实现本申请实施例的终端设备的相应功能。
本申请实施例还提供一种发送端设备110,参考图11,其包括:
第二通信模块111,用于在发送重复传输的第一数据的过程中,基于第一时域位置接收针对所述第一数据的反馈信息;
第二处理模块112,用于基于重传反馈因子确定所述第一时域位置,其中,所述第一时域位置处于所述第一数据的重传时域范围内。
可选地,所述第二通信模块111还用于在所述第一时域位置接收的反馈信息为确认信息的情况下,结束发送重复传输的所述第一数据。
可选地,所述第二通信模块111还用于在所述第一时域位置接收的反馈信息为非确认信息的情况下,在所述重传时域范围内继续发送重复传输的所述第一数据。
可选地,所述第二处理模块112还用于基于重传反馈因子,对所述重传时域范围中的时隙进行分组,得到至少一个时隙组。
可选地,所述第二通信模块111还用于在结束在所述至少一个时隙组中的第j个时隙组采用第一DMRS配置发送重复传输的所述第一数据,且未接收到确认信息的情况下,在所述至少一个时隙组中的第(j+1)个时隙组采用第二DMRS配置发送重复传输的所述第一数据;
其中,所述第二DMRS配置中DMRS的个数小于所述第一DMRS配置中DMRS的个数,且所述第二DMRS配置中DMRS的个数大于等于0,j为大于等于1的整数。
可选地,所述第二处理模块112还用于在所述重传时域范围内的第i个时隙满足预设条件的情况下,确定所述第i个时隙为可用时隙;
其中,所述可用时隙用于发送重复传输的所述第一数据;i为大于等于1的整数。
可选地,所述预设条件包括:所述第i个时隙中用于发送的符号的数量大于等于传输所述第一数据所需的符号数量。
可选地,所述传输所述第一数据所需的符号数量为所述第一数据需占用的符号数量。
可选地,所述重传时域范围内的至少两个可用时隙的符号配置不同。
可选地,所述重传时域范围内的至少两个可用时隙的DMRS配置不同。
本申请实施例的发送端设备110能够实现前述的方法实施例中的发送端设备的对应功能,该发送端设备110中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,此处不进行赘述。
需要说明,关于本申请实施例的发送端设备110中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,第一通信模块与第一处理模块可以是不同的模块,也可以是同一个模块,均能够实现本申请实施例的终端设备的相应功能。
图12是根据本申请实施例的通信设备600示意性结构图,其中通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的接收端设备,并且该通信设备600可以实现本申请实施例的各个方法中由接收端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的发送端设备,并且该通信设备600可以实现本申请实施例的各个方法中由发送端设备实现的相应流程,为了简洁,在此不再赘述。
图13是根据本申请实施例的芯片700的示意性结构图,其中芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请如图10实施例中的接收端设备,并且该芯片可以实现本申请实施例的各个方法中由接收端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请如图11实施例中的发送端设备,并且该芯片可以实现本申请实施例的各个方法中由发送端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图14是根据本申请实施例的通信系统800的示意性框图,该通信系统800包括接收端设备810和发送端设备820。
其中,该接收端设备810可以用于实现本申请各个实施例的方法中由接收端设备实现的相应的功能,以及该发送端设备820可以用于实现本申请各个实施例的方法中由发送端设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、 装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (62)

  1. 一种传输方法,包括:
    接收端设备在接收重复传输的第一数据的过程中,基于第一时域位置发送针对所述第一数据的反馈信息;
    其中,所述第一时域位置是所述接收端设备基于重传反馈因子确定的,并且,所述第一时域位置处于所述第一数据的重传时域范围内。
  2. 根据权利要求1所述的方法,其中,所述重传时域范围是基于所述第一数据的聚合因子确定的。
  3. 根据权利要求1或2所述的方法,其中,在所述反馈信息为确认信息的情况下,所述反馈信息用于指示发送端设备结束所述第一数据的重复传输。
  4. 根据权利要求1-3中任一项所述的方法,其中,所述方法还包括:
    所述接收端设备基于所述重传反馈因子及至少一个可用系数,确定在所述重传时域范围内的至少一个时隙,作为所述第一时域位置。
  5. 根据权利要求4所述的方法,其中,所述可用系数与聚合因子以及所述重传反馈因子相关。
  6. 根据权利要求4或5所述的方法,其中,所述接收端设备基于所述重传反馈因子及至少一个可用系数,确定在所述重传时域范围内的至少一个时隙,作为所述第一时域位置,包括:
    所述接收端设备基于所述重传反馈因子及至少一个可用系数,确定至少一个时隙间隔;
    所述接收端设备基于所述重传时域范围的起始位置以及所述至少一个时隙间隔,确定在所述重传时域范围内的至少一个时隙,作为所述第一时域位置。
  7. 根据权利要求6所述的方法,其中,所述接收端设备基于所述重传反馈因子及至少一个可用系数,确定至少一个时隙间隔,包括:
    所述接收端设备从所述至少一个可用系数中选取M个可用系数;
    所述接收端设备基于所述M个可用系数与所述重传反馈因子,确定N个时隙间隔,其中,N小于等于M,且M和N均为正整数。
  8. 根据权利要求7所述的方法,其中,M是基于所述重传反馈因子的可用系数的数量确定的。
  9. 根据权利要求7或8所述的方法,其中,所述接收端设备从所述至少一个可用系数中选取M个可用系数,包括:
    在所述至少一个可用系数的数量大于预设数量的情况下,所述接收端设备从所述至少一个可用系数中选取M个可用系数。
  10. 根据权利要求7-9中任一项所述的方法,其中,所述接收端设备从所述至少一个可用系数中选取M个可用系数,包括:
    所述接收端设备从所述至少一个可用系数中选取最大的M个。
  11. 根据权利要求1-10中任一项所述的方法,其中,所述方法还包括:
    在所述重传时域范围内的第i个时隙满足预设条件的情况下,所述接收端设备确定所述第i个时隙为可用时隙;
    其中,所述可用时隙用于接收重复传输的所述第一数据;i为大于等于1的整数。
  12. 根据权利要求11所述的方法,其中,所述预设条件包括:所述第i个时隙中用于接收的符号的数量大于等于传输所述第一数据所需的符号数量。
  13. 根据权利要求12所述的方法,其中,所述传输所述第一数据所需的符号数量为所述第一数据需占用的符号数量。
  14. 根据权利要求11-13中任一项所述的方法,其中,所述重传时域范围内的至少两 个可用时隙的符号配置不同。
  15. 根据权利要求11-14中任一项所述的方法,其中,所述重传时域范围内的至少两个可用时隙的解调参考信号DMRS配置不同。
  16. 根据权利要求1-15中任一项所述的方法,其中,所述方法还包括:
    若在所述第一时域位置发送的反馈信息均为非确认信息,则所述接收端设备在第二时域位置发送针对重复传输的所述第一数据的反馈信息;其中,所述第二时域位置是基于聚合因子以及预先配置的第一时间间隔确定的。
  17. 根据权利要求1-16中任一项所述的方法,其中,所述重传反馈因子是基于所述重传时域范围的帧结构确定的。
  18. 根据权利要求1-17中任一项所述的方法,其中,所述重传时域范围的起始位置是基于所述第一数据的调度信息的相关时间信息以及预先配置的第二时间间隔确定的。
  19. 一种传输方法,包括:
    发送端设备在发送重复传输的第一数据的过程中,基于第一时域位置接收针对所述第一数据的反馈信息;
    其中,所述第一时域位置是所述发送端设备基于重传反馈因子确定的,并且,所述第一时域位置处于所述第一数据的重传时域范围内。
  20. 根据权利要求19所述的方法,其中,所述方法还包括:
    若在所述第一时域位置接收的反馈信息为确认信息,则所述发送端设备结束所述第一数据的重复传输。
  21. 根据权利要求19或20所述的方法,其中,所述方法还包括:
    若在所述第一时域位置接收的反馈信息为非确认信息,则所述发送端设备在所述重传时域范围内继续发送重复传输的所述第一数据。
  22. 根据权利要求19-21中任一项所述的方法,其中,所述方法还包括:
    所述发送端设备基于重传反馈因子,对所述重传时域范围中的时隙进行分组,得到至少一个时隙组。
  23. 根据权利要求22所述的方法,其中,所述方法还包括:
    若所述发送端设备结束在所述至少一个时隙组中的第j个时隙组采用第一DMRS配置发送重复传输的所述第一数据,且未接收到确认信息,则所述发送端设备在所述至少一个时隙组中的第(j+1)个时隙组采用第二DMRS配置发送重复传输的所述第一数据;
    其中,所述第二DMRS配置中DMRS的个数小于所述第一DMRS配置中DMRS的个数,且所述第二DMRS配置中DMRS的个数大于等于0,j为大于等于1的整数。
  24. 根据权利要求19-23所述的方法,其中,所述方法还包括:
    在所述重传时域范围内的第i个时隙满足预设条件的情况下,所述发送端设备确定所述第i个时隙为可用时隙;
    其中,所述可用时隙用于发送重复传输的所述第一数据;i为大于等于1的整数。
  25. 根据权利要求24所述的方法,其中,所述预设条件包括:所述第i个时隙中用于发送的符号的数量大于等于传输所述第一数据所需的符号数量。
  26. 根据权利要求25所述的方法,其中,所述传输所述第一数据所需的符号数量为所述第一数据需占用的符号数量。
  27. 根据权利要求24-26中任一项所述的方法,其中,所述重传时域范围内的至少两个可用时隙的符号配置不同。
  28. 根据权利要求24-27中任一项所述的方法,其中,所述重传时域范围内的至少两个可用时隙的DMRS配置不同。
  29. 一种接收端设备,包括:
    第一通信模块,用于在接收重复传输的第一数据的过程中,基于第一时域位置发送针 对所述第一数据的反馈信息;
    第一处理模块,用于基于重传反馈因子确定所述第一时域位置,其中,所述第一时域位置处于所述第一数据的重传时域范围内。
  30. 根据权利要求29所述的接收端设备,其中,所述重传时域范围是基于所述第一数据的聚合因子确定的。
  31. 根据权利要求29或30所述的接收端设备,其中,在所述反馈信息为确认信息的情况下,所述反馈信息用于指示发送端设备结束所述第一数据的重复传输。
  32. 根据权利要求29-31中任一项所述的接收端设备,其中,所述第一处理模块用于基于所述重传反馈因子及至少一个可用系数,确定在所述重传时域范围内的至少一个时隙,作为所述第一时域位置。
  33. 根据权利要求32所述的接收端设备,其中,所述可用系数与聚合因子以及所述重传反馈因子相关。
  34. 根据权利要求32或33所述的接收端设备,其中,所述第一处理模块用于基于所述重传反馈因子及至少一个可用系数,确定至少一个时隙间隔;以及基于所述重传时域范围的起始位置以及所述至少一个时隙间隔,确定在所述重传时域范围内的至少一个时隙,作为所述第一时域位置。
  35. 根据权利要求34所述的接收端设备,其中,所述第一处理模块用于从所述至少一个可用系数中选取M个可用系数,基于所述M个可用系数与所述重传反馈因子,确定N个时隙间隔,其中,N小于等于M,且M和N均为正整数。
  36. 根据权利要求35所述的接收端设备,其中,M是基于所述重传反馈因子的可用系数的数量确定的。
  37. 根据权利要求35或36所述的接收端设备,其中,所述第一处理模块用于在所述至少一个可用系数的数量大于预设数量的情况下,从所述至少一个可用系数中选取M个可用系数。
  38. 根据权利要求35-37中任一项所述的接收端设备,其中,所述第一处理模块用于从所述至少一个可用系数中选取最大的M个。
  39. 根据权利要求29-38中任一项所述的接收端设备,其中,所述第一处理模块还用于在所述重传时域范围内的第i个时隙满足预设条件的情况下,确定所述第i个时隙为可用时隙;
    其中,所述可用时隙用于接收重复传输的所述第一数据;i为大于等于1的整数。
  40. 根据权利要求39所述的接收端设备,其中,所述预设条件包括:所述第i个时隙中用于接收的符号的数量大于等于传输所述第一数据所需的符号数量。
  41. 根据权利要求40所述的接收端设备,其中,所述传输所述第一数据所需的符号数量为所述第一数据需占用的符号数量。
  42. 根据权利要求39-41中任一项所述的接收端设备,其中,所述重传时域范围内的至少两个可用时隙的符号配置不同。
  43. 根据权利要求39-42中任一项所述的接收端设备,其中,所述重传时域范围内的至少两个可用时隙的解调参考信号DMRS配置不同。
  44. 根据权利要求29-43中任一项所述的接收端设备,其中,所述第一通信模块还用于在所述第一时域位置发送的反馈信息均为非确认信息的情况下,在第二时域位置发送针对重复传输的所述第一数据的反馈信息;其中,所述第二时域位置是基于聚合因子以及预先配置的第一时间间隔确定的。
  45. 根据权利要求29-44中任一项所述的接收端设备,其中,所述重传反馈因子是基于所述重传时域范围的帧结构确定的。
  46. 根据权利要求29-45中任一项所述的接收端设备,其中,所述重传时域范围的起 始位置是基于所述第一数据的调度信息的相关时间信息以及预先配置的第二时间间隔确定的。
  47. 一种发送端设备,包括:
    第二通信模块,用于在发送重复传输的第一数据的过程中,基于第一时域位置接收针对所述第一数据的反馈信息;
    第二处理模块,用于基于重传反馈因子确定所述第一时域位置,其中,所述第一时域位置处于所述第一数据的重传时域范围内。
  48. 根据权利要求47所述的发送端设备,其中,所述第二通信模块还用于在所述第一时域位置接收的反馈信息为确认信息的情况下,结束发送重复传输的所述第一数据。
  49. 根据权利要求47或48所述的发送端设备,其中,所述第二通信模块还用于在所述第一时域位置接收的反馈信息为非确认信息的情况下,在所述重传时域范围内继续发送重复传输的所述第一数据。
  50. 根据权利要求47-49中任一项所述的发送端设备,其中,所述第二处理模块还用于基于重传反馈因子,对所述重传时域范围中的时隙进行分组,得到至少一个时隙组。
  51. 根据权利要求50所述的发送端设备,其中,所述第二通信模块还用于在结束在所述至少一个时隙组中的第j个时隙组采用第一DMRS配置发送重复传输的所述第一数据,且未接收到确认信息的情况下,在所述至少一个时隙组中的第(j+1)个时隙组采用第二DMRS配置发送重复传输的所述第一数据;
    其中,所述第二DMRS配置中DMRS的个数小于所述第一DMRS配置中DMRS的个数,且所述第二DMRS配置中DMRS的个数大于等于0,j为大于等于1的整数。
  52. 根据权利要求47-51所述的发送端设备,其中,所述第二处理模块还用于在所述重传时域范围内的第i个时隙满足预设条件的情况下,确定所述第i个时隙为可用时隙;
    其中,所述可用时隙用于发送重复传输的所述第一数据;i为大于等于1的整数。
  53. 根据权利要求52所述的发送端设备,其中,所述预设条件包括:所述第i个时隙中用于发送的符号的数量大于等于传输所述第一数据所需的符号数量。
  54. 根据权利要求53所述的发送端设备,其中,所述传输所述第一数据所需的符号数量为所述第一数据需占用的符号数量。
  55. 根据权利要求52-54中任一项所述的发送端设备,其中,所述重传时域范围内的至少两个可用时隙的符号配置不同。
  56. 根据权利要求52-55中任一项所述的发送端设备,其中,所述重传时域范围内的至少两个可用时隙的DMRS配置不同。
  57. 一种接收端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求1-18中任一项所述的传输方法的步骤。
  58. 一种发送端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求19-28中任一项所述的传输方法的步骤。
  59. 一种芯片,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-28中任一项所述的传输方法的步骤。
  60. 一种计算机可读存储介质,用于存储计算机程序,其中,
    所述计算机程序使得计算机执行如权利要求1-28中任一项所述的传输方法的步骤。
  61. 一种计算机程序产品,包括计算机程序指令,其中,
    所述计算机程序指令使得计算机执行如权利要求1-28中任一项所述的传输方法的步骤。
  62. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-28中任一项所述的传输方法的步骤。
PCT/CN2020/131143 2020-11-24 2020-11-24 传输方法、发送端设备和接收端设备 WO2022109782A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/131143 WO2022109782A1 (zh) 2020-11-24 2020-11-24 传输方法、发送端设备和接收端设备
CN202080105341.9A CN116114198A (zh) 2020-11-24 2020-11-24 传输方法、发送端设备和接收端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/131143 WO2022109782A1 (zh) 2020-11-24 2020-11-24 传输方法、发送端设备和接收端设备

Publications (1)

Publication Number Publication Date
WO2022109782A1 true WO2022109782A1 (zh) 2022-06-02

Family

ID=81755248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131143 WO2022109782A1 (zh) 2020-11-24 2020-11-24 传输方法、发送端设备和接收端设备

Country Status (2)

Country Link
CN (1) CN116114198A (zh)
WO (1) WO2022109782A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091330A (zh) * 2004-12-30 2007-12-19 艾利森电话股份有限公司 无线通信方法和系统
CN101674168A (zh) * 2008-09-11 2010-03-17 中兴通讯股份有限公司 一种恒定调度下基于混合自动重传的通信方法及系统
CN103312474A (zh) * 2012-03-16 2013-09-18 华为技术有限公司 定时参考信息发送、接收、确定方法、设备及系统
CN106413106A (zh) * 2015-07-28 2017-02-15 电信科学技术研究院 一种上行数据的传输方法及装置
WO2018063485A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Link monitoring repetition level feedback for communication systems
WO2020065617A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Signalling for repetition
CN111435868A (zh) * 2019-01-11 2020-07-21 电信科学技术研究院有限公司 混合自动重传反馈信息的传输方法、网络设备及终端
CN111919405A (zh) * 2018-02-14 2020-11-10 夏普株式会社 用于不具有授权的上行链路传输的用户设备、基站和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9722732B2 (en) * 2014-09-26 2017-08-01 Alcatel Lucent Method and apparatus for terminating repetition of data packet transmission
WO2016073591A1 (en) * 2014-11-06 2016-05-12 Intel IP Corporation Early termination of repeated transmissions for mtc
RU2671051C1 (ru) * 2015-08-06 2018-10-29 Телефонактиеболагет Лм Эрикссон (Пабл) Процедура harq для восходящего канала для работы мтс
EP4135233A1 (en) * 2017-03-24 2023-02-15 Apple Inc. Design of early termination signal and harq-ack feedback for pusch
CN110800235B (zh) * 2017-05-04 2022-05-24 Lg电子株式会社 无线通信系统中的信号发送和接收方法以及装置
US20200099477A1 (en) * 2018-09-25 2020-03-26 Mediatek Singapore Pte. Ltd. Hybrid Automatic Repeat Request Feedback Procedures For Uplink Transmission In Mobile Communications

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091330A (zh) * 2004-12-30 2007-12-19 艾利森电话股份有限公司 无线通信方法和系统
CN101674168A (zh) * 2008-09-11 2010-03-17 中兴通讯股份有限公司 一种恒定调度下基于混合自动重传的通信方法及系统
CN103312474A (zh) * 2012-03-16 2013-09-18 华为技术有限公司 定时参考信息发送、接收、确定方法、设备及系统
CN106413106A (zh) * 2015-07-28 2017-02-15 电信科学技术研究院 一种上行数据的传输方法及装置
WO2018063485A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Link monitoring repetition level feedback for communication systems
CN111919405A (zh) * 2018-02-14 2020-11-10 夏普株式会社 用于不具有授权的上行链路传输的用户设备、基站和方法
WO2020065617A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Signalling for repetition
CN111435868A (zh) * 2019-01-11 2020-07-21 电信科学技术研究院有限公司 混合自动重传反馈信息的传输方法、网络设备及终端

Also Published As

Publication number Publication date
CN116114198A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
WO2019213971A1 (zh) 上行信号的发送方法和终端设备
WO2019213968A1 (zh) 上行信道的发送方法和终端设备
CN115136646A (zh) 数据传输方法、装置及设备
WO2020063838A1 (zh) 传输数据的方法及装置
US20220394738A1 (en) Feedback resource determining method and apparatus
WO2019192153A1 (zh) 一种资源确定方法、指示方法及装置
WO2022134076A1 (zh) 无线通信的方法和终端设备
WO2022056877A1 (zh) 信息传输方法、终端设备和网络设备
WO2022109782A1 (zh) 传输方法、发送端设备和接收端设备
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2022032515A1 (zh) 无线通信方法、终端设备和网络设备
WO2022036523A1 (zh) 数据传输的方法及设备
TW202017424A (zh) 用於非授權頻譜的通訊方法、終端設備和網路設備
WO2022109881A1 (zh) 重复传输控制信道的方法、终端设备和网络设备
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
WO2023065363A1 (zh) 无线通信的方法和终端设备
WO2023279303A1 (zh) 传输上行反馈信息的方法及装置
WO2022077191A1 (zh) 资源调度方法、终端设备和网络设备
WO2023123199A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023092264A1 (zh) 无线通信方法、终端设备及网络设备
WO2022141652A1 (zh) 无线通信的方法和设备
WO2023035251A1 (zh) 无线通信的方法和通信设备
WO2024016121A1 (zh) 侧行传输方法、终端和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962673

Country of ref document: EP

Kind code of ref document: A1