WO2019052370A1 - 用于进行数据传输的方法和装置 - Google Patents

用于进行数据传输的方法和装置 Download PDF

Info

Publication number
WO2019052370A1
WO2019052370A1 PCT/CN2018/103926 CN2018103926W WO2019052370A1 WO 2019052370 A1 WO2019052370 A1 WO 2019052370A1 CN 2018103926 W CN2018103926 W CN 2018103926W WO 2019052370 A1 WO2019052370 A1 WO 2019052370A1
Authority
WO
WIPO (PCT)
Prior art keywords
tbs
scheduling resource
layer
equal
data transmission
Prior art date
Application number
PCT/CN2018/103926
Other languages
English (en)
French (fr)
Inventor
葛士斌
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019052370A1 publication Critical patent/WO2019052370A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method and apparatus for performing data transmission in the field of communications.
  • the transport block size depends on the size of the scheduling resource.
  • the scheduling resource is composed of several resource blocks (RBs). Refer to LTE 36.211 for the following behavior example. One RB occupies in the time domain OFDM symbols, occupying in the frequency domain Subcarriers.
  • the number of OFDM symbols occupied by the scheduling resources in the time domain is fixed (typically 14 OFDM symbols), which can only vary in the frequency domain.
  • the schedulable resource is variable in frequency domain shift, and the number of RBs is used to indicate the size of the scheduling resource.
  • the scheduling resource sizes corresponding to UE1 and UE2 are represented by different RB numbers.
  • the TBS depends on the size of the scheduling resources, that is, the number of RBs included in the scheduling resources. Therefore, in the LTE/LTE-A system, the method used to determine the TBS is a one-dimensional mapping method that considers the number of RBs.
  • the new wireless technology scene New Radio, NR
  • the corresponding time-frequency resources may be different on the same bandwidth. Therefore, the NR system requires a new method of determining the TBS.
  • the method and apparatus for performing data transmission provided by the embodiments of the present application determine a transport block size according to a time-frequency resource size of a scheduling resource, and improve wireless transmission performance.
  • the data transmission method provided by the first aspect of the embodiment of the present invention first acquires a data transmission scheduling resource size. Then, according to the data transmission scheduling resource size, modulation order and transport block size (TBS) calculation factor, the TBS is calculated. The communication device then transmits the data through the transceiver in accordance with the TBS determined above.
  • TBS transport block size
  • a second aspect of the embodiments of the present invention provides a communication device, where the communication device includes a processing unit and a transceiver unit.
  • the processing unit acquires a data transmission scheduling resource size. Then, according to the data transmission scheduling resource size, modulation order and transport block size (TBS) calculation factor, the TBS is calculated. Then, the transceiver unit of the communication device transmits data through the transceiver according to the TBS determined above.
  • TBS transport block size
  • a third aspect of the embodiments of the present invention provides a communication device.
  • the communication device includes a processor and a transceiver.
  • the processor acquires a data transmission scheduling resource size. Then, according to the data transmission scheduling resource size, modulation order and transport block size (TBS) calculation factor, the TBS is calculated.
  • TBS transport block size
  • the transceiver of the communication device transmits data according to the TBS determined above.
  • a fourth aspect of the embodiments of the present invention provides a communication device.
  • the communication device includes a processor.
  • the processor is configured to obtain a data transmission scheduling resource size, and determine a TBS according to a data transmission scheduling resource size, a modulation order, and a transport block size (TBS) calculation factor.
  • TBS transport block size
  • the size of data transmission resources scheduled resource unit (resource element, RE) number N RE, the N RE is acquired according to one of the following ways: (1) according to configuration information, obtaining assigned The number of REs of the PxSCH in the scheduling resource of one user (2) is multiplied by the conversion factor according to the number of REs containing the PxSCH and the reference signal region, and (3) multiplied by the conversion factor according to the number of scheduling resources RE allocated to one user;
  • the PxSCH is a Physical Uplink Shared Channel (PUSCH) or a PDSCH or a Physical Downlink Shared Channel (PDSCH).
  • the calculated TBS is a formula or Where N RE is the data transmission scheduling resource size, L is the number of layers, Q m is the modulation order, C is the TBS calculation factor, m is the natural number greater than or equal to 1, and ⁇ is a constant greater than or equal to 0.
  • MCS Modulation and Coding Scheme
  • the number of available REs is different.
  • MCS Modulation and Coding Scheme
  • the calculated TBS adopts one of the following formulas.
  • N RE is the size of the data transmission scheduling resource
  • C l is the TBS calculation factor of layer 1
  • m is a natural number greater than or equal to 1
  • is a constant greater than or equal to 1
  • l is the layer number
  • L is the total number of layers.
  • the calculated TBS adopts one of the following formulas: or Where N RE is the size of the data transmission scheduling resource, For the modulation order of layer l, C is the TBS calculation factor, m is a natural number greater than or equal to 1, ⁇ is a constant greater than or equal to 0, l is the layer number, and L is the total number of layers.
  • the calculated TBS adopts one of the following formulas: or Where N RE is the data transmission scheduling resource size, Q m is the modulation order, C l is the first layer TBS calculation factor, m is the natural number greater than or equal to 1, ⁇ is a constant greater than or equal to 0, l is the layer number, L is total floors.
  • the code rate is the same, and the calculated TBS adopts one of the following formulas: or among them Scheduling resource size for Layer 1 data transfers,
  • C is the TBS calculation factor
  • m is a natural number greater than or equal to 1
  • is a constant greater than or equal to 1
  • l is the layer number
  • L is the total number of layers.
  • the method is characterized in that: when the available RE number and the code rate are different between the layers of the L layer, the modulation order is the same, and the calculating TBS adopts one of the following formulas: or among them
  • Q m is the modulation order
  • C l is the TBS calculation factor of the first layer
  • m is the natural number greater than or equal to 1
  • is a constant greater than or equal to 1
  • l is the layer serial number
  • L For the total number of layers.
  • the calculated TBS adopts one of the following formulas: or among them Scheduling resource size for Layer 1 data transfers,
  • C l is the TBS calculation factor of the first layer
  • m is a natural number greater than or equal to 1
  • is a constant greater than or equal to 1
  • l is the layer number
  • L is the total number of layers.
  • the data transmission scheduling resource size is the number of scheduling resource units N UNIT , the scheduling resource unit occupies several subcarriers in frequency, and occupies several OFDM symbols in the time domain, and the N
  • the UNIT is the number of REs contained in the PxSCH of the scheduling resource N RE divided by the number of REs included in the scheduling resource unit, or the product of the scheduling resource allocated to one user and the conversion factor divided by the number of REs included in the scheduling resource unit, or PxSCH and
  • the number of REs in the reference signal region is divided by the number of REs included in the scheduling resource unit, where the value of the conversion factor is greater than 0 and less than or equal to 1.
  • the data transmission scheduling resource size is the number of scheduling resource units N UNIT , the scheduling resource unit occupies several subcarriers in frequency, and occupies several OFDM symbols in the time domain, and the N The UNIT is a preset value of the number of REs included in the data transmission scheduling resource divided by the number of REs included in the scheduling resource unit, or the number of REs in the PxSCH region divided by the preset number of REs included in the scheduling resource unit, where the scheduling resource unit includes The default number of REs.
  • TBS calculates one of the following formulas by formula: or among them, The number of REs included in one scheduling resource unit, L is the number of layers L is the number of layers, Q m is the modulation order, C is the TBS calculation factor, m is a natural number greater than or equal to 1, and ⁇ is a constant greater than or equal to zero.
  • TBS is calculated by one of the following formulas: or or or or among them, RE is the number of resource units included in a schedule, the discount factor gamma] i is the i-th scheduling resource units, the value of gamma] i is greater than 0 and less than or equal to 1, L is the number of layers, Q m is a modulation order, C is TBS calculates the factor, m is a natural number greater than or equal to 1, and ⁇ is a constant greater than or equal to 0, where N is the type of the preset value, and Ni is the number of the i-th preset value. Is the size of the i-th type of preset value.
  • the calculating the TBS further includes: acquiring the first TBS by means of a formula calculation or a table lookup, and then comparing with the plurality of values, and selecting, among the plurality of values, the first TBS The closest value is used as the TBS, or the value closest to the first TBS and less than or equal to the first TBS is selected as the TBS; or the value closest to the first TBS and greater than or equal to the TBS is selected as the TBS.
  • the calculating the TBS comprises calculating the TBS by one of the following formulas, the formula comprising: or or or or or or
  • the N PRB is the number of physical resource blocks (PRBs) included in the scheduling resource.
  • PRBs physical resource blocks
  • the number of REs in a PRB N OFDMSymbol is the number of OFDM symbols included in the scheduling resource
  • N REperSymbol is the number of REs on one OFDM symbol included in the scheduling resource
  • Unit is the scheduling resource unit
  • the time is an OFDM symbol
  • the frequency The domain occupies several subcarriers
  • N REperUnit is the number of REs on each unit
  • L is the number of layers
  • Q m is the modulation order
  • C is the TBS calculation factor
  • m is the natural number greater than or equal to 1
  • is greater than or equal to 0. constant.
  • the calculation factor is determined by a code rate.
  • a fifth aspect of the embodiments of the present invention provides a data sending method.
  • the communication device acquires an MCS index, which is used for indication.
  • the communication device determines that the value of the MCS index falls within the first range or the second range, and if the value of the MCS index falls within the first range, the transport block size (TBS) is calculated using a formula, if If the value of the MCS index falls within the second range, the TBS is determined by looking up the table.
  • a sixth aspect of the embodiments of the present invention provides a communication device for data transmission.
  • the communication device includes a processing unit and a transceiver unit.
  • the processing unit is configured to acquire an MCS index, where the MCS index is used for indication.
  • the value of the MCS index is determined to fall in the first range or the second range. If the value of the MCS index falls within the first range, the transport block size (TBS) is calculated by using a formula. If the value of the MCS index falls within the second range, the TBS is determined by looking up the table.
  • the transceiver unit performs data transmission according to the TBS that the processing unit determines.
  • the formula calculates a TBS, and the calculation manner is one of the above possible implementation manners.
  • a seventh aspect of an embodiment of the present invention provides a program.
  • the program when executed by the processor, causes the communication device to perform the first aspect, the fifth aspect or any one of the possible embodiments.
  • a fourth aspect of an embodiment of the present invention provides a program product, such as a computer readable storage medium, comprising the program of the seventh aspect.
  • the embodiment of the invention provides a computer storage medium on which the program of the seventh aspect of the embodiment of the invention is stored.
  • FIG. 1 is a schematic diagram of resource blocks in a scheduling resource according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication scenario according to an embodiment of the present application.
  • FIG. 3 shows a schematic flow chart of calculating a TBS according to an embodiment of the present application.
  • FIG. 4 shows a schematic flow chart of calculating a TBS according to an embodiment of the present application.
  • FIG. 5 shows a schematic flow chart of calculating a TBS according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram showing an encoding process of data transmission in the embodiment of the present application.
  • FIG. 7 illustrates a schematic diagram of determining a TBS by a TBS calculation factor and a time-frequency resource according to an embodiment of the present application.
  • FIG. 8 shows a schematic flow chart of calculating a TBS according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • FIG. 2 shows a communication system 100 to which the embodiment of the present application is applied.
  • the communication system 100 can include at least one network device 110.
  • Network device 110 may be a device that communicates with a terminal device, such as a base station or base station controller, and the like. Each network device 110 can provide communication coverage for a particular geographic area and can communicate with terminal devices (e.g., UEs) located within the coverage area (cell).
  • the network device 110 may be a base transceiver station (BTS) in a GSM system or a code division multiple access (CDMA) system, or a base station (node B, NB) in a WCDMA system.
  • BTS base transceiver station
  • CDMA code division multiple access
  • NB base station
  • the network device may be a relay station or an access point.
  • PLMN public land mobile network
  • the wireless communication system 100 also includes a plurality of terminal devices 120 located within the coverage of the network device 110.
  • the terminal device 120 can be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device.
  • the access terminal can be a cellular telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a personal digital assistant (PDA), a handheld device with wireless communication capabilities, a computing device, or a connection to a wireless modem.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • Other processing devices in-vehicle devices, wearable devices, terminal devices in future 5G networks, or terminal devices in public evolved public land mobile networks (PLMNs).
  • PLMNs public evolved public land mobile networks
  • FIG. 2 exemplarily shows one network device 110 and two terminal devices 120.
  • the communication system 100 may include a plurality of network devices 110 and may include other numbers of terminals within the coverage of each network device 110.
  • the device 120 is not limited in this embodiment of the present application.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like. The embodiment of the present application is not limited thereto.
  • the network device 110 uses upper layer data, such as media access control (MAC) layer data, in the form of a transport block (TB), by the physical layer (Physical). Layer) for transmission.
  • the transport block size (TBS) can be determined in several ways. Referring to FIG. 3, the network device 110 first calculates a value 301 for determining the MCS, and then performs a lookup table 303 according to the MCS to obtain an index I TBS of the TBS . For a table look up, see Table 1, which is derived from Table 7.1.7.1-1A in 3GPP Protocol 36.213.
  • the TBS After acquiring the I TBS , in conjunction with the number of scheduling resource RBs (step 305), the TBS is obtained by looking up Table 2 (step 307).
  • Table 2 is derived from Table 7.1.7.2.1-1 in 3GPP Protocol 36.213. As shown in Table 2, the TBS is determined by the number of RBs N PRB of the I TBS and the scheduling resources.
  • the above mapping method is applicable to a system fixed to 14 OFDM symbols in the time domain.
  • 5G considers a variety of scenarios, in which an enhanced mobile broadband (eMBB) scenario will use a Long Transmission Time Interval (TTI).
  • the long TTI includes two or more slots. If the TBS determination method is to be used in an eMBB scenario using a long TTI, the long TTI needs to be divided into several sub-blocks in units of 14 OFDM symbols. The sub-blocks are mapped separately to obtain a number of small code blocks. Changing a large code block into a small code block has the risk of degrading FEC performance and affecting system performance.
  • a short TTI is required in the scenario of 5G large-scale machine type communication (mMTC) and ultra-reliable low-latency communication (URLLC).
  • the short TTI contains less than 14 OFDM symbols.
  • the TBS is determined by the above method, resources are wasted, and the feedback cannot be timely, which affects the delay.
  • the reference signal in the NR is configurable.
  • the De Modulation Reference Signal (DMRS) may occupy 1, 2, 3 or more OFDM symbols depending on the application scenario.
  • the Physical Downlink Control Channel (PDCCH) may occupy 1, 2 or 3 OFDM symbols.
  • the number of symbols included in the time domain of the resource blocks scheduled in the NR is no longer fixed, but variable.
  • the OFDM symbols occupied by the DMRS and the PDCCH are also variable.
  • the resources available for data transmission are different under different DMRS and PDCCH configurations. Therefore, the default time domain symbol number in LTE is unchanged, and the TBS determination mode in the scenario where the available transmission resources change little is no longer applicable, and a new TBS determination mode is needed.
  • mapping method For a transport block mapped to two or more layers, a mapping method considering the transport block size of the number of layers and the number of RBs is proposed in 3GPP protocol 36.213.
  • the processing flow of this method is shown in Figure 4.
  • TBS_L1 the number of scheduling resource blocks RB
  • TBS_L1 the number of scheduling resource blocks RB
  • Table 3 the number of layers is different, the content corresponding to Table 3 is different.
  • the TBS determination method described above considers the number of layers, the change in the number of time domain symbols is still not considered when mapping the transport block size.
  • a resource scheduling unit which is called a unit transmission time interval (Unit TTI), which is a basic unit for measuring the size of a scheduling resource. It occupies several subcarriers (for example, 12) in frequency and occupies several times in time.
  • the symbols (for example, seven) may be one OFDM symbol and may be one PRB.
  • the number of Unit TTIs N UTTI included in the resource block is calculated. According to (I TBS , N UTTI ), using Table 4, the mapping is obtained to obtain the transport block size.
  • the TBS acquisition process is shown in Figure 5.
  • the Unit TTI-based transport block size two-dimensional mapping method first calculates and determines the MCS value; then, according to the MCS value, look up Table 1 to obtain the I TBS .
  • the scheduling resource blocks in time domain L symbol (symbol number) and frequency domain N PRB (RB number) to calculate the scheduled resource blocks bear Unit Number TTI N UTTI;
  • table 4 is a transmission block size mapping table according to the number of Unit TTIs included in the scheduling resource block and the I TBS , as shown in FIG. 7.
  • the mapping method of the transport block size determines the number of Unit TTIs, not only considering the frequency domain RB number of the scheduling resource, but also considering the number of time domain symbols L symbol , which can adapt to the change of the TTI length in the 5G scenario.
  • the above method of determining the size of the transport block takes into account the change in the frame structure in the NR. However, considering the large bandwidth of the scheduling in NR, the frame structure is variable. If the table method is used, the table will be very large, and the tabulation work is very cumbersome.
  • the resource granularity in the time domain is one OFDM symbol (the uplink is an SC-FDMA symbol. Hereinafter referred to collectively as an OFDM symbol).
  • the granularity is one subcarrier.
  • a time-frequency resource unit (Resource Element, RE) consisting of one OFDM symbol and one subcarrier.
  • RE resource Element
  • the RE is the basic unit.
  • a resource block (RB) consisting of all OFDM symbols in a slot and 12 subcarriers in the frequency domain, and the radio transmission resource scheduling may perform resource scheduling in units of RBs.
  • a scheduling resource unit may also be used as a basic unit of scheduling resources.
  • a scheduling unit occupies several subcarriers (for example, one, twelve, or even the entire scheduling bandwidth) in frequency, and occupies several symbols in time (for example, one, 2, 7, 14).
  • the TBS determining manner provided by the embodiment of the present invention considers the change of the number of available resources in the scheduling resource, and calculates the TBS by using related variables such as available resources, modulation order, code rate, and scheduling layer.
  • the modulation order and the TBS calculation factor are determined based on the MCS or other index numbers associated with channel quality conditions.
  • the TBS calculation factor is characterized by the fact that the better the channel condition, the larger the factor, and the larger the TBS obtained according to the factor.
  • the TBS calculation factor may be a TB size Index (see ITBS in Table 1) or a code rate, or an index of code rates.
  • the number of REs available within the scheduling resource needs to be determined. For example, (1) according to the configuration information, obtain the number of REs of the PxSCH in the scheduling resource allocated to one user. (2) According to the number of REs containing the PxSCH and the reference signal region, combined with the conversion factor, the number of REs available for data transmission is obtained. (3) According to the scheduling resource allocated to one user, combined with the conversion factor, the number of REs available for data transmission is obtained.
  • the PxSCH may be a PDSCH or a PUSCH.
  • the MCS table has a bit rate or rate index.
  • the transport block occupies the L layer (L ⁇ 1), and the L layer has the same MCS and available resource elements.
  • the modulation order Q m and the TBS calculation factor C are obtained (see Table 4).
  • N RE based on the number of REs containing the PxSCH region, N RE , combined with the conversion factor ⁇ 1, an estimated number of available resources is obtained.
  • the conversion factor ⁇ 1 may be configured by Downlink Control Information (DCI), MAC Control Element (MAC CE), or Radio Resource Control (RRC).
  • DCI Downlink Control Information
  • MAC CE MAC Control Element
  • RRC Radio Resource Control
  • the configuration form can directly indicate the size of the conversion factor; it can also adopt the pre-stored conversion factor at both ends of the transceiver, and adopt the form of the index number. It is also possible to send and receive the agreed rules of both parties and calculate them separately.
  • FIG. 6 is a schematic diagram of a downlink physical channel processing procedure of existing data.
  • the processing object of the downlink physical channel processing procedure is a codeword.
  • the codeword is a bitstream that is encoded (including at least channel coding), ie, an encoded bitstream.
  • the code word is scrambled to generate a scrambled bit stream.
  • the scrambled bit stream passes through a modulation mapper to obtain a stream of modulation symbols.
  • the modulation symbol stream is mapped to a plurality of spatial streams (also referred to as a transport layer, a symbol layer, a spatial layer, hereinafter collectively referred to as a symbol layer) through a layer mapper.
  • the symbol layer is precoded to obtain a plurality of precoded symbol streams.
  • the precoded symbol stream is mapped to a plurality of Resource Elements (REs) via a Resource Element mapper.
  • REs Resource Elements
  • These resource fragments are then subjected to an OFDM signal generation phase (eg, IFFT) to obtain an OFDM symbol stream.
  • the OFDM symbol stream is then transmitted through an antenna port (Antenna Port).
  • the transport block occupies the L layer, ie is mapped to L spatial streams.
  • the modulation order Q m and the TB size calculation factor C are obtained based on the MCS or other index numbers of the reaction channel quality conditions.
  • m is a natural number greater than or equal to 1, for example, m can be taken as 8;
  • is a constant greater than or equal to 0, indicating the number of CRC bits.
  • ⁇ ,m will be used, and the meaning will be the same, and the definition will not be repeated. Or by rounding down, then:
  • the transport block occupies the L layer, and the L layer has the same MCS, but the number of available resource units is different.
  • the modulation order Q m and the TBS calculation factor C are obtained.
  • the above variables can be obtained according to other index numbers of the MCS or the quality of the reaction channel, or can be directly indicated.
  • the available RE number N RE of each layer PxSCH, combining Q m and C a TBS is obtained. There are two ways to calculate this situation, mode 1: or Method 2: or
  • each stream PxSCH occupies the same resource, and the code rate and modulation order are different.
  • the modulation order Q l m and the code rate C l of each layer it is necessary to obtain the modulation order Q l m and the code rate C l of each layer.
  • the MCS is different to support different layers.
  • One MCS indication per layer can be used, which is extremely expensive. It is also possible to use the MCS between the layers to have certain rules. At this time, only the MCS of one or a few layers is indicated, and the other layers are calculated by rules.
  • the rule may be preset or may be indicated by RRC, DCI, or MAC CE.
  • the MCS has a constraint relationship between the layers, although it may be different, but it may not be arbitrarily set, for example, 2 bits indicate the relationship between the layers, 00 indicates that the MCS of each layer is the same; 01 indicates that the modulation orders of the layers are different, and the code The rates are the same; 10 means that the code rates are different, the modulation order is the same; 11 means that the modulation order and the code rate are different.
  • the MCS table is split into two tables, one indicating the modulation order, one indicating the code rate, the code rate index or the TBS index. Save money by separately indicating.
  • the acquisition of the modulation order and the code rate information in the subsequent embodiments is similar, and will not be described again.
  • the MCS form can include 3 MCS forms.
  • One for downlink CP-OFDM one for uplink CP-OFDM and the other for DFT-s-OFDM.
  • the rate/modulation order of the uplink DFT-s-OFDM table is smaller than that of the uplink CP-OFDM; the rate/modulation order of the uplink CP-OFDM table is smaller than that of the downlink CP-OFDM.
  • the above code rate/modulation order may be the largest in the table; or may be the same MCS index.
  • the MCS can include two tables, no distinction between uplink and downlink, one for CP-OFDM and one for DFT-s-OFDM.
  • the MCS table may also include an uplink table and a downlink table, and the uplink does not distinguish between CP-OFDM and DFT-s-OFDM.
  • each stream PxSCH occupies resources, has the same code rate, and has different modulation orders. Get the modulation order of each layer Rate C. Then, according to the available RE number N RE of each layer PxSCH, combined C, according to the following company to get TBS.
  • TBS Such as or or or
  • each stream PxSCH occupies resources, has the same modulation order, and has different code rates.
  • the code rate C l of each layer and the modulation order Q m are obtained .
  • a TBS is obtained.
  • the calculation of TBS can use the following formula, such as or
  • each stream PxSCH occupies resources, has different modulation orders, and has the same code rate.
  • Number of available REs according to each layer PxSCH Combine C, get TBS.
  • the calculation formula is as follows: or
  • each stream PxSCH occupies a different resource and code rate, and the modulation order is the same.
  • the TBS calculation factor C l of each layer and the modulation order Q m are obtained .
  • TBS is obtained according to the number of available REs of each layer PxSCH Combining Q m and C l .
  • the calculation formula is as follows: or
  • each stream PxSCH occupies a different resource, modulation order, and code rate.
  • TBS calculates the factor C l .
  • C l the number of available REs of each layer PxSCH
  • the scheduling resource unit is defined, and then the number of scheduling resource units included is calculated according to the total number of REs of the entire scheduling resource, or the number of available REs of the scheduling resource, or the number of REs containing the PxSCH area.
  • the TBS is calculated using a formula or a table form.
  • the MCS table may contain a bit rate or a bit rate index, and may also be a TBS index.
  • the PxSCH may be a PDSCH or a PUSCH.
  • N UNIT uses N UNIT to obtain TBS by formula or table lookup.
  • the formula calculation can be: or among them, The number of REs contained in a scheduling resource unit.
  • the calculation formula may also consider the case where the different PxSCH occupy resources, the code rate, and the modulation order in different layers. These may refer to the foregoing embodiments, and are not described here.
  • the data transmission scheduling resource size is the number N UNIT of scheduling resource units, the scheduling resource unit occupies several subcarriers in frequency, and occupies several OFDM symbols in the time domain, and the N UNIT is a scheduling resource.
  • the number of REs contained in the PxSCH is divided by the number of REs included in the scheduling resource unit, or the product of the scheduling resource allocated to one user and the conversion factor divided by the number of REs included in the scheduling resource unit, or the PxSCH and the reference signal region.
  • the N UNIT may also be a preset value of the number of REs included in the PxSCH data of the scheduling resource divided by the number of REs included in the scheduling resource unit, or the number of REs allocated to the scheduling resource of one user divided by the content of the scheduling resource unit.
  • the number of REs is preset.
  • Preset value acquisition method The preset value can be configured by DCI, MAC CE, or RRC.
  • the configuration mode can directly indicate the preset value.
  • the preset value can be pre-stored at both ends of the sending and receiving, and the index value indicating the preset value is used. It is also possible to send and receive the agreed rules of both parties and calculate them separately.
  • the DCI, the MAC CE, or the RRC configuration information may carry one or more preset values, or indication information of one or more preset values.
  • TBS calculates one of the following formulas by formula: or among them,
  • the preset value can be configured by DCI, MAC CE, or RRC.
  • the configuration mode can directly indicate the preset value.
  • the preset value can be pre-stored at both ends of the sending and receiving, and the index value indicating the preset value is used. It is also possible to send and receive the agreed rules of both parties and calculate them separately.
  • the DCI, the MAC CE, or the RRC configuration information may carry one or more preset values, or indication information of one or more preset values.
  • TBS is calculated by one of the following formulas: or or or or among them,
  • ⁇ i is a conversion factor of the i-th scheduling resource unit
  • the value of ⁇ i is greater than 0, less than or equal to 1
  • L is a layer.
  • Number, Q m is the modulation order
  • C is the TBS calculation factor
  • m is the natural number greater than or equal to 1
  • is the constant greater than or equal to 0, where N is the type of the preset value, and Ni is the number of the i-th type preset value , Is the size of the i-th type of preset value.
  • the conversion factor and the preset value obtaining method may be: the preset value or the conversion factor may be configured by DCI, MAC CE, or RRC.
  • the configuration may directly indicate the preset value or the conversion factor size.
  • the pre-stored preset value or conversion factor may be used at both ends of the sending and receiving, and the index value indicating the preset value or the index value of the conversion factor may be used. It is also possible to send and receive the agreed rules of both parties and calculate them separately.
  • the DCI, MAC CE, or RRC configuration information may carry one or more preset values or conversion factors, or indication information of one or more preset values or indicator factors.
  • the table is used, because the scheduling bandwidth is large, the frame structure, the RS, and the like are varied, resulting in a complicated table design, and the formula is simple in design.
  • a special size TBS is required. If the formula is directly used, it is not necessarily a special size TBS. To solve this problem, you can use the form + formula.
  • the initial value of the TBS or the first TBS is calculated by using the formula in the previous embodiment. Then select the final TBS value based on the TBS initial value and a table, or array.
  • the array can be 16, 24, 32, 40, 56, N1, N2, N3.... Selection rule: select the closest value to the initial value of TBS; select the value closest to the initial value of TBS and less than or equal to TBS; select the value closest to the initial value of TBS and greater than or equal to TBS.
  • Another implementation can take the form of a formula and a table.
  • determine whether to use a formula or a table Specifically, the indication information may be used, or the value of the MCS may be used to imply the use of a formula or a table, and the formula or the table may be determined by the initial value of the TBS.
  • the value obtained by the MCS may be that if the MCS is smaller than a certain value, the TBS is calculated using the formula in the previous embodiment. If the MCS is greater than 10, the form is used. Note that in the form of a table, you can also use the form plus the formula.
  • the TBS is determined by considering the number of symbols of the scheduling resource and the two dimensions of the RB, calculating the number of REs included in the scheduling resource, or the number of REs included in the PxSCH region, or the number of available REs divided by the number of REs of the scheduling basic unit. Specifically, without considering rate matching, the formula can be: or or or or or or
  • the N PRB is the number of physical resource blocks (PRBs) included in the scheduling resource.
  • PRBs physical resource blocks
  • the number of REs in a PRB N OFDMSymbol is the number of OFDM symbols included in the scheduling resource
  • N REperSymbol is the number of REs on one OFDM symbol included in the scheduling resource
  • Unit is the scheduling resource unit
  • the time is an OFDM symbol
  • the domain occupies several subcarriers
  • N REperUnit is the number of REs on each unit
  • L is the number of layers
  • Q m is the modulation order
  • C is the TBS calculation factor
  • m is the natural number greater than or equal to 1
  • is greater than or equal to 0. constant.
  • the calculation formula may also consider the case where the different PxSCH occupy resources, the code rate, and the modulation order in different layers. These may refer to the foregoing embodiments, and are not described here.
  • the calculation of the TBS can also be multiplied by a conversion factor having a value greater than zero and less than or equal to one.
  • Another calculation method may be a method of adopting a preset value for the number of REs included in the PRB. Use preset values for the number of REs in a PRB Similarly, the default value of the number of REs on each resource block can also be used.
  • Preset value for the number of REs on an OFDM symbol on the scheduling resource Substitute the preset value into the above formula N REperRB , or N REperSymbol .
  • Preset value acquisition method The preset value can be configured by DCI, MAC CE, or RRC. The configuration mode can directly indicate the preset value.
  • the preset value can be pre-stored at both ends of the sending and receiving, and the index value indicating the preset value is used. It is also possible to send and receive the agreed rules of both parties and calculate them separately.
  • the DCI, the MAC CE, or the RRC configuration information may carry one or more preset values, or indication information of one or more preset values.
  • the foregoing embodiment provides various implementation manners in the 101 processing device acquiring data transmission scheduling resource size.
  • the TBS (805) is calculated by formula calculation or table lookup.
  • the method for calculating the TBS proposed by the embodiment of the present invention considers the time dimension to reflect the change of the number of symbols in the time domain, and adapts to the change of the length of the Transmission Time Interval (TTI) in the 5G.
  • TTI Transmission Time Interval
  • a short TTI is employed.
  • the TTI length of the original mapping mode is fixed, which is larger than the length of the short TTI.
  • the TBS cannot be mapped to the short TTI.
  • the mapping method proposed in the embodiment of the present invention adds a dimension, supports the TTI variable, and adapts to the short TTI. The size and time map are timely to obtain the TBS corresponding to the short TTI, ensuring short delay.
  • mapping method proposed by the present invention can map the long TTI into one large code block at a time to ensure system performance.
  • the embodiment of the present invention considers a 5G flexible framing mode, a mapping structure, and a multi-layer mapping scenario of a transport block, so that the transport block size mapping method proposed by the present invention has good robustness.
  • the structure of the network device implementing the above method will be described below with reference to Figs. 9 and 10.
  • the network device, or the processing device, that implements the foregoing method may be a communication device on the network side or a terminal.
  • the communication device that performs the method in the above embodiment includes a processing unit 902 and a transceiver unit 901.
  • the communication device may be the network device 110 in the above embodiment, or may be the terminal device 120.
  • the processing unit 902 is configured to perform the above step method.
  • the processing unit 902 of the communication device determines the data transmission scheduling resource size according to the various embodiments described above.
  • the processing unit 902 further acquires a modulation order and a TBS calculation factor, and calculates a TBS calculation factor according to the data transmission scheduling resource size and the modulation order, the TBS calculation factor according to the formula disclosed in the foregoing embodiment, or a table lookup, or a combination of formulas. Look up the table and calculate the TBS.
  • the transceiver unit 901 of the communication device then transmits data in accordance with the determined TBS.
  • the manner of the table lookup, and the manner of obtaining the data refer to the content of the foregoing embodiment, and the details are not described herein.
  • each unit of the above communication device is only a division of a logical function, and may be integrated into one physical entity or physically separated in whole or in part.
  • these units can be realized by software in the form of processing component calls; or all of them can be realized in the form of hardware; some units can be realized by software in the form of processing component calls, and some units are realized by hardware.
  • the processing unit 901 or the processing unit 902 may be a separately set processing element, or may be implemented in one of the chips on the communication device (which may be the network device 110 or the terminal 120). Such as baseband chips.
  • the communication device can receive the information sent by the base station 110 through the antenna, and the information is sent to the baseband device through the processing of the radio frequency device, and the above transceiver unit can receive/send the information through the interface between the radio frequency device and the baseband device.
  • the processing unit 902 and the transceiver unit 901 of the above communication device may be integrated in whole or in part, or may be implemented independently.
  • the processing elements described herein can be an integrated circuit that has signal processing capabilities. In the implementation process, each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above processing unit 902 can be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors ( Digital singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP Digital singnal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a baseband processor, or a general purpose processor, such as a central processing unit (CPU) or other callable program. Device.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • a communication device (which may be the network device 110 or the terminal device 120 in the above embodiment) includes a transceiver 101 and a processor 102.
  • the processor 102 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a baseband processor, a digital signal processor (Digital Signal Processor, DSP), Application Specific Integrated Circuit (ASIC), and Field Programmable Gate Array (FPGA).
  • processor 102 can also be a combination of multiple processors.
  • the processor 102 may be configured to perform, for example, the steps performed by the processing unit 902 of the foregoing embodiment.
  • the processor 102 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing the instructions stored in the memory.
  • the transceiver 101 includes a transmitter and a receiver, wherein the transmitter is configured to transmit a signal through at least one of the plurality of antennas.
  • the receiver is configured to receive a signal through at least one of the plurality of antennas.
  • the transceiver 101 may be specifically configured to be executed by multiple antennas, for example, the function of the transceiver unit 901.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种用于进行数据传输的技术。通过获取调度资源的资源单元(Resource Element,RE)数目,结合调制阶数和传输块大小(Transport Block Size,TBS)计算因子,利用公式计算或查表的方式,确定TBS。

Description

用于进行数据传输的方法和装置
本申请要求于2017年9月12日提交中国专利局、申请号为201710818224.7、发明名称为“用于进行数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,特别涉及通信领域中的用于进行数据传输的方法和装置。
背景技术
在LTE/LTE-A系统中,对于确定的调制与编码策略(Modulating and Coding Scheme,MCS),传输块的大小(transport block size,TBS)取决于调度资源的大小。调度资源由若干个资源块(resource block,RB)构成。参考LTE36.211,以下行为例。一个RB在时域上占据
Figure PCTCN2018103926-appb-000001
个OFDM符号,在频域上占据
Figure PCTCN2018103926-appb-000002
个子载波。在LTE/LTE-A中调度资源在时域上占据的OFDM符号数目固定(一般为14个OFDM符号),其只能在频域上变化。此时可调度资源是频域移位可变的,用RB数目表示调度资源的大小。如图1中,UE1和UE2对应的调度资源大小不同用不同RB数目表示。
当MCS确定时,TBS取决于调度资源的大小,也就是取决于调度资源包涵的RB数目。所以在LTE/LTE-A系统中,确定TBS所采用的方法是考虑RB数目的一维映射方法。在新无线技术场景下(New Radio,NR),为适应多种场景,多种需求,会有多种帧结构。相同带宽上,对应的时频资源可能不相同。因此,NR系统需要一种新的确定TBS的方法。
发明内容
本申请实施例提供的用于进行数据传输的方法和装置,根据调度资源的时频资源大小确定传输块大小,提高无线传输性能。
本发明实施例第一方面提供的数据传输方法先获取数据传输调度资源大小。之后根据数据传输调度资源大小,调制阶数和传输块大小(transport block size,TBS)计算因子,计算TBS。之后通信设备照上述确定的TBS,通过收发器传输数据。
本发明实施例第二方面提供一种通信设备,所述通信设备包括处理单元和收发单元。所述处理单元获取数据传输调度资源大小。之后根据数据传输调度资源大小,调制阶数和传输块大小(transport block size,TBS)计算因子,计算TBS。之后通信设备的收发单元照上述确定的TBS,通过收发器传输数据。
本发明实施例第三方面提供一种通信设备。所述通信设备包括处理器和收发器。所述处理器获取数据传输调度资源大小。之后根据数据传输调度资源大小,调制阶数和传输块大小(transport block size,TBS)计算因子,计算TBS。通信设备的收发器照上述确定的TBS传输数据。
本发明实施例第四方面提供一种通信设备。所述通信设备包括处理器。所述处理器用于获取数据传输调度资源大小,根据数据传输调度资源大小,调制阶数和传输块大小(transport block size,TBS)计算因子,确定TBS。通信设备的处理器按照上述确定的TBS传输数据。
作为一种可能的实施方式,所述数据传输调度资源大小为资源单元(resource element,RE)的数量N RE,所述N RE根据以下方式之一获取:(1)根据配置信息,获取分配给一 个用户的调度资源中PxSCH的RE数目(2)根据含有PxSCH和参考信号区域的RE数目,乘以折算因子,(3)根据分配给一个用户的调度资源RE数,乘以折算因子;其中,折算因子的取值大于0,小于或等于1,PxSCH是物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或PDSCH或物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。
作为一种可能的实施方式,当L层有相同的调制与编码策略(Modulating and Coding Scheme,MCS)和可用RE数目N RE,所述计算TBS为通过公式
Figure PCTCN2018103926-appb-000003
Figure PCTCN2018103926-appb-000004
Figure PCTCN2018103926-appb-000005
其中N RE为数据传输调度资源大小,L为层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数。
作为一种可能的实施方式:当L层有相同的调制与编码策略(Modulating and Coding Scheme,MCS),不同的可用RE数目
Figure PCTCN2018103926-appb-000006
所述计算TBS为通过公式
Figure PCTCN2018103926-appb-000007
Figure PCTCN2018103926-appb-000008
Figure PCTCN2018103926-appb-000009
其中
Figure PCTCN2018103926-appb-000010
为第l层数据传输调度资源大小,l为层序号,L为总层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数。
作为一种可能的实施方式:当L层各层的可用RE数相同,码率,调制阶数不同,所述计算TBS采用以下公式之一
Figure PCTCN2018103926-appb-000011
Figure PCTCN2018103926-appb-000012
Figure PCTCN2018103926-appb-000013
其中N RE为数据传输调度资源大小,
Figure PCTCN2018103926-appb-000014
为l层的调制阶数,C l为l层的TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
作为一种可能的实施方式:当L层各层的可用RE数和码率相同,调制阶数不同,所述计算TBS采用以下公式之一:
Figure PCTCN2018103926-appb-000015
Figure PCTCN2018103926-appb-000016
Figure PCTCN2018103926-appb-000017
Figure PCTCN2018103926-appb-000018
其中N RE为数据传输调度资源大小,
Figure PCTCN2018103926-appb-000019
为l层的调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
作为一种可能的实施方式:当L层各层的可用RE数和调制阶数相同,码率不同,所述计算TBS采用以下公式之一:
Figure PCTCN2018103926-appb-000020
Figure PCTCN2018103926-appb-000021
Figure PCTCN2018103926-appb-000022
Figure PCTCN2018103926-appb-000023
其中N RE为数据传输调度资源大小,Q m为调制阶数,C l为第l层TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
作为一种可能的实施方式:当L层各层的可用RE数和调制阶数不同,码率相同,所述计算TBS采用以下公式之一:
Figure PCTCN2018103926-appb-000024
Figure PCTCN2018103926-appb-000025
Figure PCTCN2018103926-appb-000026
其中
Figure PCTCN2018103926-appb-000027
为第l层数据传输调度资源大小,
Figure PCTCN2018103926-appb-000028
为第l层的调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
作为一种可能的实施方式:其特征在于:当L层各层之间的可用RE数和码率不同, 调制阶数相同,所述计算TBS采用以下公式之一:
Figure PCTCN2018103926-appb-000029
Figure PCTCN2018103926-appb-000030
Figure PCTCN2018103926-appb-000031
Figure PCTCN2018103926-appb-000032
其中
Figure PCTCN2018103926-appb-000033
为第l层数据传输调度资源大小,Q m为调制阶数,C l为第l层的TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
作为一种可能的实施方式:当L层各层之间的可用RE数,码率,和调制阶数不同,所述计算TBS采用以下公式之一:
Figure PCTCN2018103926-appb-000034
Figure PCTCN2018103926-appb-000035
Figure PCTCN2018103926-appb-000036
Figure PCTCN2018103926-appb-000037
其中
Figure PCTCN2018103926-appb-000038
为第l层数据传输调度资源大小,
Figure PCTCN2018103926-appb-000039
为第l层调制阶数,C l为第l层的TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
作为一种可能的实施方式:所述数据传输调度资源大小为调度资源单元的数量N UNIT,所述调度资源单元在频率上占有若干个子载波,在时域上占据若干个OFDM符号,所述N UNIT为调度资源的PxSCH中包含的RE数量N RE除以调度资源单元包含的RE数量,或分配给一个用户的调度资源与折算因子的乘积再除以调度资源单元包含的RE数量,或PxSCH和参考信号区域的RE数量除以调度资源单元包含的RE数量,其中折算因子的取值大于0,小于或等于1。
作为一种可能的实施方式:所述数据传输调度资源大小为调度资源单元的数量N UNIT,所述调度资源单元在频率上占有若干个子载波,在时域上占据若干个OFDM符号,所述N UNIT为数据传输调度资源包含的RE数量N RE除以调度资源单元包含的RE数量预设值,或PxSCH区域的RE数量除以调度资源单元包含的RE数量预设值,所述调度资源单元包含的RE数量预设值。
作为一种可能的实施方式:TBS计算通过公式以下公式之一:
Figure PCTCN2018103926-appb-000040
Figure PCTCN2018103926-appb-000041
Figure PCTCN2018103926-appb-000042
其中,
Figure PCTCN2018103926-appb-000043
为一个调度资源单元所包含的RE数量,L为层数L为层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数。
作为一种可能的实施方式:TBS计算通过以下公式之一:
Figure PCTCN2018103926-appb-000044
Figure PCTCN2018103926-appb-000045
Figure PCTCN2018103926-appb-000046
Figure PCTCN2018103926-appb-000047
Figure PCTCN2018103926-appb-000048
其中,
Figure PCTCN2018103926-appb-000049
为一个调度资源单元所包含的RE数量,γ i为第i个调度资源单元的折算因子,γ i的值大于0,小于或等于1,L为层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,其中N是预设值的种类,Ni是第i类预设值的数目,
Figure PCTCN2018103926-appb-000050
是第i类预设值的大小。
作为一种可能的实施方式:所述计算TBS进一步包括:通过公式计算或查表的方式获取第一TBS,之后与多个数值进行比较,并在所述多个数值中,选择与第一TBS最接近的的数值作为TBS,或选择与所述第一TBS最接近,且小于等于第一TBS的数值作为TBS;或选最接近第一TBS,且大于等于TBS的数值作为TBS。
1.作为一种可能的实施方式:所述计算TBS包括通过以下公式中的一种计算TBS,公式包括:
Figure PCTCN2018103926-appb-000051
Figure PCTCN2018103926-appb-000052
Figure PCTCN2018103926-appb-000053
Figure PCTCN2018103926-appb-000054
Figure PCTCN2018103926-appb-000055
Figure PCTCN2018103926-appb-000056
其中,N PRB为调度资源包含的物理资源块(Physical Resource Block,PRB)的数量,
Figure PCTCN2018103926-appb-000057
为一个PRB中RE的数量,N OFDMSymbol为调度资源中包含的OFDM符号数量,N REperSymbol为调度资源所包含的一个OFDM符号上RE的数量,Unit为调度资源单位,时间上占一个OFDM符号,频域上占若干个子载波,N REperUnit为每个Unit上RE的数量,L为层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数。
作为一种可能的实施方式:所述计算因子由码率(Code Rate)决定。
作为一种可能的实施方式:所述计算因子为:C=R×12×1024,其中,R为码率。
本发明实施例第五方面提供一种数据发送方法。通信装置获取MCS索引,所述MCS索引用于指示。通信装置判断MCS索引的值落在第一范围或第二范围,如果所述所述MCS索引的值落在第一范围,则采用公式计算传输块大小(Transport Block Size,TBS),如果所述MCS索引的值落在第二范围,则采用查表的方式确定TBS。
本发明实施例第六方面提供一种数据传输的通信装置。所述通信装置包括处理单元和收发单元。所述处理单元用于获取MCS索引,所述MCS索引用于指示。判断MCS索引的值落在第一范围或第二范围,如果所述所述MCS索引的值落在第一范围,则采用公式计算传输块大小(Transport Block Size,TBS)。如果如果所述MCS索引的值落在第二范围,则采用查表的方式确定TBS。所述收发单元根据处理单元你确定的TBS进行数据传输。
作为一种可能的实施方式,所述公式计算TBS,计算方式为上述可能实施方式中的一种。
本发明实施例的第七方面提供一种程序。该程序在被处理器执行时,使通信设备执行第一方面,第五方面或以上任一种一种可能的实施方式。
本发明实施例的第四方面提供一种程序产品,例如计算机可读存储介质,包括第七方面的程序。
本发明实施例提供一种计算机存储介质,该计算机存储介质上存储有本发明实施例第七方面的程序。
附图说明
图1示出了本申请实施例调度资源中资源块的示意图。
图2为本申请实施例提供的一种通信场景的示意图。
图3示出了根据本申请实施例的计算TBS的流程示意图。
图4示出了根据本申请实施例的计算TBS的流程示意图。
图5示出了根据本申请实施例的计算TBS的流程示意图。
图6示出了本申请实施例数据传输的编码过程示意图。
图7示出了根据本申请实施例的通过TBS计算因子和时频资源确定TBS示意图。
图8示出了根据本申请实施例的计算TBS的流程示意图。
图9是本申请实施例提供的一种设备的结构示意图。
图10是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
图2示出了本申请实施例应用的通信系统100。该通信系统100可以包括至少一个网络设备110。网络设备110可以是与终端设备通信的设备,如基站或基站控制器等。每个网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端设备(例如UE)进行通信。该网络设备110可以是GSM系统或码分多址(code division multiple access,CDMA)系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(node B,NB),还可以是LTE系统中的演进型基站(evolutional node B,eNB或eNodeB),或者是云无线接入网络(cloud radio access network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的多个终端设备120。该终端设备120可以是移动的或固定的。该终端设备120可以指接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
图2示例性地示出了一个网络设备110和两个终端设备120,可选地,该通信系统100可以包括多个网络设备110并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
网络设备110与终端设备120进行数据通信时,网络设备110将上层数据,如介质访问控制(Media Access Control,MAC)层的数据以传输块(transport block,TB)的形式,由物理层(Physical Layer)进行传输。传输块的大小(transport block size,TBS)有几种方式可以确定。请参见图3,网络设备110先计算确定MCS的值301,之后根据MCS进行查表303,获取TBS的索引I TBS。查表请参见表1,该表信息来源于3GPP协议36.213中的表格7.1.7.1-1A。
Figure PCTCN2018103926-appb-000058
表1
在获取I TBS之后,结合调度资源RB数(步骤305),通过查表2获取TBS(步骤307)。表2来源于3GPP协议36.213中的表格7.1.7.2.1-1如表2所示,TBS由I TBS和调度资源的RB数量N PRB决定。
Figure PCTCN2018103926-appb-000059
Figure PCTCN2018103926-appb-000060
表2
上述映射方法适用于在时域固定为14个OFDM符号的系统。5G考虑了多种场景,其中增强移动宽带(enhanced Mobile Broadband,eMBB)场景下将使用长传输时间间隔(Transmission Time Interval,TTI)。长TTI包括2个以上时隙(slot),如果要在使用长TTI的eMBB场景下,使用上述的TBS确定方式,则需要将长TTI以14个OFDM符号为单位,划分为几个子块,各子块分别映射得到若干个小的码块。将大码块变为小码块,有使FEC性能下降的风险,影响系统性能。在5G大规模机器类型通信(massive Machine Type Communications,mMTC)和超可靠低时延通信URLLC(Ultra-Reliable and Low Latency Communications,URLLC)场景中需要采用短TTI,短TTI包含的OFDM符号数小于14,此时如果采用上述方式确定TBS,会浪费资源,且不能及时反馈,影响时延。另外,NR中的参考信号是可配置的,例如解调参考信号(De Modulation Reference Signal,DMRS)根据应用场景的不同,也可能占据1个,2个,3个或更多的OFDM符号。物理下行控制信道(Physical Downlink Control Channel,PDCCH)可能占据1个,2个或三个OFDM符号。
因此NR中被调度的资源块在时域上包含的符号数不再是固定的,而是可变的。且DMRS和PDCCH占据的OFDM符号也是可变的,即便相同的帧结构,在不同DMRS、PDCCH配置下,可用于数据传输的资源也不同。因此LTE中默认时域符号数不变,可用传输资源变化不大场景下的TBS确定方式不再适用,需要一种新的TBS确定方式。
对于映射到两层或更多层的传输块,3GPP协议36.213中提出了一种考虑层数和RB数目的传输块大小的映射方法。该方法的处理流程如图4所示。此种方法映射方法首先也是确定MCS值,并根据MCS值,查表1获得I TBS。然后判断调度资源的N PRB大小,若
Figure PCTCN2018103926-appb-000061
(
Figure PCTCN2018103926-appb-000062
与层数L有关,例如L=2时,
Figure PCTCN2018103926-appb-000063
),则根据(I TBS,L×N PRB),查表2获得TBS;若
Figure PCTCN2018103926-appb-000064
(
Figure PCTCN2018103926-appb-000065
表示可调度的最大RB数目),则先根据I TBS和N PRB(调度资源块RB数目),查表2获得TBS_L1,接下来根据TBS_L1,查表3获得TBS。层数不同,表3对应的内容不同,当层数L=2时,表3为协议36.213中的Table 7.1.7.2.2-1,如图表6所示;当层数L=3时,表3为协议36.213中的Table 7.1.7.2.4-1;当层数L=4时,表3为协议36.213中的Table 7.1.7.2.5-1。
TBS_L1 TBS_L2 TBS_L1 TBS_L2
1544 3112 3752 7480
1608 3240 3880 7736
1672 3368 4008 7992
1736 3496 4136 8248
1800 3624 4264 8504
1864 3752 4392 8760
1928 3880 4584 9144
1992 4008 4776 9528
2024 4008 4968 9912
2088 4136 5160 10296
2152 4264 5352 10680
2216 4392 5544 11064
2280 4584 5736 11448
2344 4776 5992 11832
2408 4776 6200 12576
2472 4968 6456 12960
2536 5160 6712 13536
2600 5160 6968 14112
2664 5352 7224 14688
2728 5544 7480 14688
2792 5544 7736 15264
2856 5736 7992 15840
2984 5992 8248 16416
3112 6200 8504 16992
3240 6456 8760 17568
3368 6712 9144 18336
3496 6968 9528 19080
3624 7224 9912 19848
表3
上面介绍的TBS确定方式虽然考虑了层数,但在映射传输块大小时仍然没有考虑时域符号数目的变化。
另外一种TBS确定方式介绍如下。首先定义一种资源调度单元,称为单位传输时间间隔(Unit TTI),作为衡量调度资源大小的一种基本单位,其在频率上占有若干个子载波(例如12个),在时间上占据若干个符号(例如7个),可以为1个OFDM符号,可以为1个PRB。在这种情况下,考虑符号数L symbol、RB数N PRB两个维度,计算资源块包涵的Unit TTI数量N UTTI。根据(I TBS,N UTTI),利用表4,映射得到传输块大小。TBS获得流程如图5所示。
基于Unit TTI的传输块大小二维映射方法首先计算确定MCS值;然后根据MCS值,查表1获得I TBS。接下来根据调度资源块时域L symbol(符号数)和频域N PRB(RB数),计算调度资源块包涵的Unit TTI数目N UTTI;最后根据I TBS与N UTTI,查表获得TBS,表4是根据调度资源块包涵的Unit TTI数目以及I TBS制作的传输块大小映射表,如图7所示。此种传输块大小的映射方法确定Unit TTI数目,不仅考虑调度资源的频域RB数,而且考虑时域符号数目L symbol,可以适应5G场景中TTI长度的变化。
上述传输块大小的确定方法,考虑到了NR中帧结构的变化。但考虑到NR中调度带 宽大,帧结构多变,若用表格方法,表格会非常庞大,制表工作很繁琐。
下面提供多种TBS的确定方式。在进行进一步介绍之前对基本概念进行介绍。在时域上的资源粒度是一个OFDM符号(上行是SC-FDMA符号。下文统一称为OFDM符号)。在频域上,粒度是一个子载波。一个OFDM符号与一个子载波组成的一个时频资源单元(Resource Element,RE)。物理层在进行资源映射的时候,是以RE为基本单位的。一个时隙内所有的OFDM符号与频域上12个子载波组成的一个资源块(resource block,RB),无线传输资源调度可以以RB为基本单位进行资源调度的。也可以采用调度资源单元作为调度资源的基本单位,一个调度单元其在频率上占有若干个子载波(例如1个,12个,甚至整个调度带宽),在时间上占据若干个符号(例如1个,2个,7个,14个)。
本发明实施例提供的TBS确定方式考虑虑调度资源内可用资源数目的变化,利用可用资源、调制阶数、码率、调度层数等相关变量,计算TBS。
根据MCS或其他与信道质量状况相关的索引号,确定调制阶数和TBS计算因子。TBS计算因子特点是信道条件越好该因子越大,依据该因子得到的TBS越大。TBS计算因子可以是TB size Index(参见表1中的ITBS)也可以是码率(code rate),或者码率的索引。
确定TBS的方式1
需要确定调度资源内可用的RE数目。如:(1)根据配置信息,获取分配给一个用户的调度资源中PxSCH的RE数目。(2)根据含有PxSCH和参考信号区域的RE数目,结合折算因子,得到可用于数据传输的RE数目。(3)根据分配给一个用户的调度资源,结合折算因子,得到可用与数据传输的RE数目。在下面的公式计算中,N RE可以代表根据配置信息,直接得到的PxSCH的可用RE数目,也可以代表根据PxSCH区域的RE数目N’ RE乘以折算因子γ1之后的乘积,即N RE=N’ RE×γ1,作为另外一种实施方式,N RE也可以是根据分配的调度资源
Figure PCTCN2018103926-appb-000066
乘以折算因子γ2之后的乘积,即
Figure PCTCN2018103926-appb-000067
其中γ1和γ2的取值大于0,小于或等于1。
PxSCH可以是PDSCH或PUSCH。其中MCS表格,会有码率或码率索引。传输块占据L层(L≥1),且L层有相同MCS和可用资源单元。首先根据MCS或反应信道质量状况的其他索引号,得到调制阶数Q m和TBS计算因子C(可参见表4)。然后根据含有PxSCH区域的RE数目N RE,结合折算因子γ1,得到可用资源数目估算值。结合Q m、C,得到TBS。其中折算因子γ1可以由下行控制信息(Downlink Control Information,DCI),MAC控制单元(MAC Control Element,MAC CE)或者无线资源控制(Radio Resource Control,RRC)配置。配置形式可以直接指示折算因子大小;也可以采用收发两端预存折算因子,采用指示索引号的形式。还可以收发双方约定规则,各自计算。
在得到可用RE数N RE之后,根据码率,和公式计算TBS大小。其中MCS表格包含码率或码率索引。传输块占据L层(L≥1),且L个Layer有相同MCS和可用资源单元。请参见图6,图6是现有数据的下行物理信道处理过程的示意图。下行物理信道处理过程的处理对象为码字(Codeword)。码字为经过编码(至少包括信道编码)的比特流,即编码比特流。码字经过加扰(Scrambling),生成加扰比特流。加扰比特流经过调制映射(Modulation mapper),得到调制符号流。调制符号流经过层映射(Layer mapper),被映射到多个空间流(也称为传输层,符号层,空间层,以下统称符号层)。符号层经过预编码(Precoding),得到多个预编码符号流。预编码符号流经过资源粒映射(Resource element mapper),被映射到多个资源粒(Resource Element,RE)上。这些资源粒随后经过OFDM信号生成(OFDM signal generation)阶段(例如IFFT),得到OFDM符号流。OFDM符号流随后通过天线端口(Antenna Port)进行传输。传输块占据L层,即被映射到L个空间流。
首先根据MCS或反应信道质量状况的其他索引号,得到调制阶数Q m和TB size计算 因子C。
Figure PCTCN2018103926-appb-000068
表4
然后根据PXSCH的可用RE数目N RE,结合Q m、C,得到TBS。若用公式,可表示为:
Figure PCTCN2018103926-appb-000069
m为大于等于1的自然数,例如m可以取为8;Δ为大于等于0的常数,表示CRC比特数。后面其他计算方式中也会用到Δ,m,含义相同,不再重复定义。或采用向下取整的方式,则:
Figure PCTCN2018103926-appb-000070
在另外一种情况下,传输块占据L层,L层有相同MCS,但可用资源单元数目不同。首先得到调制阶数Q m和TBS计算因子C。上述变量可以根据MCS或反应信道质量状况的其他索引号得到,也可以直接指示得到。然后根据各层PxSCH的可用RE数目N RE,结合Q m、C,得到TBS。这种情况有2种计算方式,方式1:
Figure PCTCN2018103926-appb-000071
Figure PCTCN2018103926-appb-000072
方式2:
Figure PCTCN2018103926-appb-000073
Figure PCTCN2018103926-appb-000074
Figure PCTCN2018103926-appb-000075
在另外一种情况下:各流PxSCH占据资源相同,码率、调制阶数均不同。首先,需要得到各层的调制阶数Q l m和码率C l
然后根据各层PxSCH的可用RE数目N RE,结合
Figure PCTCN2018103926-appb-000076
C l,得到TBS大小。计算方式参见以下公式:
Figure PCTCN2018103926-appb-000077
或,
Figure PCTCN2018103926-appb-000078
Figure PCTCN2018103926-appb-000079
Figure PCTCN2018103926-appb-000080
Figure PCTCN2018103926-appb-000081
为支持不同层数的MCS不同。可以采用每层一个MCS指示,这种方法开销极大。还 可以利用各层之间的MCS有一定规则,此时仅指示某个或者某几个层的MCS,其他层通过规则算出。该规则可以是预先设定好的,也可以是RRC、DCI、MAC CE指示的。另外,各层之间MCS有制约关系,虽然可以不同,但是不能随便任意设置,比如有2比特指示各层之间的关系,00表示各层MCS相同;01表示各层调制阶数不同,码率相同;10表示码率不相同,调制阶数相同;11表示调制阶数、码率均不相同。当各层MCS,仅有调制阶数或者码率其中一个相同时。MCS表格拆为2个表格,一个指示调制阶数,一个指示码率,码率索引或TBS索引。通过分别指示,节约开销。后续实施方式中调制阶数和码率信息的获取采用类似的方式,不再赘述。
MCS表格可以包括3个MCS表格。一个用于下行CP-OFDM,一个用于上行CP-OFDM,另外一个用于DFT-s-OFDM。上行DFT-s-OFDM表格的码率/调制阶数较上行CP-OFDM小;上行CP-OFDM表格的码率/调制阶数较下行CP-OFDM小。上述码率/调制阶数,可以是表格中最大的;也可以是相同MCS索引对应的。MCS可以包括2种表格,不区分上下行,一种用于CP-OFDM,一种用于DFT-s-OFDM。MCS表格也可以包括上行表格和下行表格,上行不区分CP-OFDM和DFT-s-OFDM。
在另外一种情况下,各流PxSCH占据资源、码率相同,调制阶数不同。得到各层的调制阶数
Figure PCTCN2018103926-appb-000082
码率C。然后根据各层PxSCH的可用RE数目N RE,结合
Figure PCTCN2018103926-appb-000083
C,根据以下公司得到TBS。如
Figure PCTCN2018103926-appb-000084
Figure PCTCN2018103926-appb-000085
Figure PCTCN2018103926-appb-000086
Figure PCTCN2018103926-appb-000087
在另外一种情况下,各流PxSCH占据资源、调制阶数相同,码率不同。首先得到各层的码率C l,调制阶数Q m。然后根据各层PxSCH的可用RE数目N RE,结合Q m、C l,得到TBS。计算TBS可以采用以下公式,如
Figure PCTCN2018103926-appb-000088
Figure PCTCN2018103926-appb-000089
Figure PCTCN2018103926-appb-000090
在另外一种情况下,各流PxSCH占据资源、调制阶数不同,码率相同。根据各层PxSCH的可用RE数目
Figure PCTCN2018103926-appb-000091
结合
Figure PCTCN2018103926-appb-000092
C,得到TBS。计算公式如:
Figure PCTCN2018103926-appb-000093
Figure PCTCN2018103926-appb-000094
Figure PCTCN2018103926-appb-000095
Figure PCTCN2018103926-appb-000096
在另外一种情况下,各流PxSCH占据资源、码率不同,调制阶数相同。根据上述方式,得到各层的TBS计算因子C l,和调制阶数Q m。然后根据各层PxSCH的可用RE数目
Figure PCTCN2018103926-appb-000097
结合Q m、C l,得到TBS。计算公式参见:
Figure PCTCN2018103926-appb-000098
Figure PCTCN2018103926-appb-000099
Figure PCTCN2018103926-appb-000100
Figure PCTCN2018103926-appb-000101
在另外一种情况下,各流PxSCH占据资源、调制阶数、码率均不同。首先,得到各层的调制阶数
Figure PCTCN2018103926-appb-000102
和TBS计算因子C l。然后根据各层PxSCH的可用REs数目
Figure PCTCN2018103926-appb-000103
结合
Figure PCTCN2018103926-appb-000104
C l得到TBS。可以采用以下公式计算
Figure PCTCN2018103926-appb-000105
Figure PCTCN2018103926-appb-000106
Figure PCTCN2018103926-appb-000107
确定TBS的方式2
定义调度资源单元,然后根据整个调度资源的RE总数,或调度资源可用RE数目,或含有PxSCH区域的RE数目,计算含有的调度资源单元数目。根据调度资源单元数目,采用公式或者表格形式,计算TBS。其中MCS表格,可能包含码率或码率索引,也可能时TBS索引。
TBS计算如下。首先,调度资源单元数目N UNIT=(调度资源RE总数或调度资源可用RE数目或含有PxSCH和参考信号区域的RE数目)/调度资源单元包含的RE数目。其中PxSCH可以是PDSCH或PUSCH。之后利用N UNIT通过公式或查表的方式,获得TBS。公式计算可以是:
Figure PCTCN2018103926-appb-000108
Figure PCTCN2018103926-appb-000109
其中,
Figure PCTCN2018103926-appb-000110
为一个调度资源单元所包含的RE数量。该计算公式也可以考虑不同层不同PxSCH占据资源、码率、调制阶数的情况,这些可以参考前面的实施例,此处不赘述。
在为一种实施方式数据传输调度资源大小为调度资源单元的数量N UNIT,所述调度资源单元在频率上占有若干个子载波,在时域上占据若干个OFDM符号,所述N UNIT为调度资源的PxSCH中包含的RE数量N RE除以调度资源单元包含的RE数量,或分配给一个用户的调度资源与折算因子的乘积再除以调度资源单元包含的RE数量,或PxSCH和参考信号区域的RE数量除以调度资源单元包含的RE数量,其中折算因子的取值大于0,小于或等于1。
所述N UNIT也可以为调度资源的PxSCH数据中包含的RE数量N RE除以调度资源单元包含的RE数量预设值,或分配给一个用户的调度资源的RE数量除以调度资源单元包含的RE数量预设值。预设值获得方法:预设值可以由DCI,MAC CE,或RRC配置。配置形式可以直接指示预设值大小;也可以采用收发两端预存预设值,采用指示预设值索引号的方式。还可以收发双方约定规则,各自计算。上述DCI,MAC CE,或RRC配置信息中可以承载一个或多个预设值,或一个或多个预设值的指示信息。
TBS计算通过公式以下公式之一:
Figure PCTCN2018103926-appb-000111
Figure PCTCN2018103926-appb-000112
Figure PCTCN2018103926-appb-000113
其中,
Figure PCTCN2018103926-appb-000114
为一个调度资源单元所包含的RE数量或调度资源单元包含的RE数量预设值,L为层数L为层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数。预设值获得方法:预设值可以由DCI,MAC CE,或RRC配置。配置形式可以直接指示预设值大小;也可以采用收发两端预存预设值,采用指示预设值索引号的方式。还可以收发双方约定规则,各自计算。上述DCI,MAC CE,或RRC配置信息中可以承载一个或多个预设值,或一个或多个预设值的指示信息。
或者TBS计算通过以下公式之一:
Figure PCTCN2018103926-appb-000115
Figure PCTCN2018103926-appb-000116
Figure PCTCN2018103926-appb-000117
Figure PCTCN2018103926-appb-000118
Figure PCTCN2018103926-appb-000119
其中,
Figure PCTCN2018103926-appb-000120
为一个调度资源单元所包含的RE数量或调度资源单元包含的RE数量预设值,γ i为第i个调度资源单元的折算因子,γ i的值大于0,小于或等于1,L为层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,其中N是预设值的种类,Ni是第i类预设值的数目,
Figure PCTCN2018103926-appb-000121
是第i类预设值的大小。这里折算因子和预设值获得方法可以是:预设值或折算因子可以由DCI,MAC CE,或RRC配置。配置 形式可以直接指示预设值或折算因子大小;也可以采用收发两端预存预设值或折算因子,采用指示预设值索引号或折算因子索引号的方式。还可以收发双方约定规则,各自计算。上述DCI,MAC CE,或RRC配置信息中可以承载一个或多个预设值或折算因子,或一个或多个预设值或指示因子的指示信息。
TBS确定方式3
NR中,利用表格,因为调度带宽大,帧结构、RS等配置多变,导致表格设计复杂,而利用公式,设计简单。NR中有些情况,比如VoIP等,需要特殊大小的TBS,如果直接利用公式,算出来不一定为特殊大小的TBS。为解决这一问题,可以使用表格+公式的方式。
公式加表格的方式。先利用前面实施方式中的公式,计算出TBS初始值或叫第一TBS。然后根据TBS初始值和一个表格,或数组,选择最终的TBS值。数组可以是16,24,32,40,56,N1,N2,N3…。选取规则:选与TBS初始值最接近的;选最接近TBS初始值,且小于等于TBS的值;选最接近TBS初始值,且大于等于TBS的值。
也可以首先根据业务或场景,确定是利用公式,还是表格。具体可以通过指示信息,也可以通过MCS取值指示利用公式还是表格。通过MCS取值指示的方式请参见表5。如果MCS小于某个值,如表中的11,则采用上述实施例中的公式计算TBS;若MCS大于10,则利用查表的方式确定TBS。
Figure PCTCN2018103926-appb-000122
表5
另外一种实现方式可以采用公式和表格的形式。首先根据业务或场景,确定是利用公式,还是表格。具体可以通过指示信息,也可以通过MCS取值暗指利用公式还是表格,还可以通过TBS初始值大小决定采用公式,还是表格。通过MCS取值可以是如果MCS小于某值,则利用前面实施例中的公式计算TBS。若MCS大于10,则利用表格形式。注意利用表格形式,也可以采用该表格加公式的方式。
TBS确定方式4
考虑调度资源的符号数、和RB两个维度,计算调度资源包含的RE数量,或PxSCH区域含有的RE数量,或可用RE数目除以调度基本单元的RE数之后的数量,来确定TBS。具体的,在不考虑速率匹配的情况下,公式可以是:
Figure PCTCN2018103926-appb-000123
Figure PCTCN2018103926-appb-000124
Figure PCTCN2018103926-appb-000125
Figure PCTCN2018103926-appb-000126
Figure PCTCN2018103926-appb-000127
Figure PCTCN2018103926-appb-000128
Figure PCTCN2018103926-appb-000129
Figure PCTCN2018103926-appb-000130
其中,N PRB为调度资源包含的物理资源块(Physical Resource Block,PRB)的数量,
Figure PCTCN2018103926-appb-000131
为一个PRB中RE的数量,N OFDMSymbol为调度资源中包含的OFDM符号数量,N REperSymbol为调度资源所包含的一个OFDM符号上RE的数量,Unit为调度资源单位,时间上占一个OFDM符号,频域上占若干个子载波,N REperUnit为每个Unit上RE的数量,L为层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数。该计算公式也可以考虑不同层不同PxSCH占据资源、码率、调制阶数的情况,这些可以参考前面的实施例,此处不赘述。
TBS的计算还可以乘以折算因子,所述折算因子的值大于0,小于或等于1。另外一种计算方式可以是对采用对PRB中包含的RE数采用预设值的方式。即用对一个PRB中的RE数量采用预设值
Figure PCTCN2018103926-appb-000132
同理的,也可以对每个资源块上的RE数量采用预设值
Figure PCTCN2018103926-appb-000133
对调度资源上一个OFDM符号上的RE数量采用预设值
Figure PCTCN2018103926-appb-000134
将预设值代入上述公式中的
Figure PCTCN2018103926-appb-000135
N REperRB,或N REperSymbol。预设值获得方法:预设值可以由DCI,MAC CE,或RRC配置。配置形式可以直接指示预设值大小;也可以采用收发两端预存预设值,采用指示预设值索引号的方式。还可以收发双方约定规则,各自计算。上述DCI,MAC CE,或RRC配置信息中可以承载一个或多个预设值,或一个或多个预设值的指示信息。
请参见图8,上述实施例在101处理设备获取数据传输调度资源大小方面,提供了多种实施方式。并在获取调制阶数和TBS计算因子(803)之后,通过公式计算或查表的方式计算TBS(805)。本发明实施例提出的计算TBS的方式,考虑时间维度,以反映时域上符号数目的变化,适应5G中传输时间间隔(Transmission Time Interval,TTI)长度的变化。
在5G mMTC/cMTC(UR/LL)场景中,采用短TTI。原有映射方式的TTI长度是固定的,大于短TTI的长度,对于短TTI无法映射得到相应的TBS;而本发明实施例提出的映射方法,增加了一个维度,支持TTI可变,适应短TTI大小,及时映射得到短TTI对应的TBS,保证短时延。
对于eMBB场景,需要采用长TTI。原有映射方法,需要以LTE中规定的固定TTI长度为单位,将大码块变为小码块,有使FEC性能下降的风险,影响系统性能。而本发明提出的映射方法,可一次性将长TTI映射为一个大码块,保证系统性能。
另外,本发明实施例考虑了5G灵活多变的组帧方式、映射结构和传输块的多层映射场景,使得本发明提出的传输块大小的映射方法具有很好的鲁棒性。
上文中结合图1至图8,描述了根据本申请实施例的用于进行数据传输的方法。下面将结合图9和图10,描述实现上述方法的网络设备的结构。实现上述方法的网络设备,或叫处理设备,可以是网络侧的通信设备,也可以是终端。
请参见图9,执行上述实施例中的方法的通信设备包括处理单元902和收发单元901。 通信设备可以是上述实施例中的网络设备110,也可以是终端设备120。处理单元902用于执行上述步骤方法。按照上述实施例的描述,通信设备的处理单元902根据上述多种实施方式,确定数据传输调度资源大小。处理单元902进一步获取调制阶数和TBS计算因子,并根据数据传输调度资源大小和调制阶数,TBS计算因子,根据上述的实施例中所揭示的公式计算得到TBS,或查表,或公式结合查表的方式,计算TBS。之后通信设备的收发单元901依照确定的TBS,传输数据。具体的公式,查表的方式,获取数据的方式可以参见上述实施例的内容,次不赘述。
应理解以上通信装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,处理单元901或处理单元902可以为单独设立的处理元件,也可以集成在通信设备(可以是网络设备110或终端120)上的某一个芯片中实现。如基带芯片。此外,也可以以程序的形式存储于通讯设备的存储器中,由通讯设备的某一个处理元件调用并执行处理单元的功能。其它单元的实现与之类似。通讯设备可以通过天线接收基站110发送的信息,该信息通过射频装置处理发送给基带装置,以上收发单元可以通过射频装置与基带装置之间的接口接收/发送信息。此外上述通信设备的处理单元902和收发单元901可以全部或部分集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上处理单元902可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是基带处理器,或通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现
请查阅图10,作为另外一个实施方式,通信设备(可以是上面实施例中的网络设备110或终端设备120)包括收发器101和处理器102。处理器102可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,基带处理器,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器102还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器102可以用于执行,例如,上述实施例处理单元902所执行的步骤。处理器102可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器中存储的指令来执行上述步骤和/或操作的处理器。
收发器101包括发射器和接收器,其中,发射器用于通过多根天线之中的至少一根天线发送信号。接收器用于通过多根天线之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,收发器101具体可以用于通过多根天线执行,例如,收发单元901的功能。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (29)

  1. 一种数据发送方法,其特征在于,包括
    获取数据传输调度资源大小;
    根据所述数据传输调度资源大小,调制阶数,和传输块大小TBS计算因子,确定TBS;
    按照上述确定的TBS,通过收发器传输数据。
  2. 如权利要求1所述的方法,其特征在于:所述数据传输调度资源大小为资源单元RE的数量N RE,所述N RE根据以下方式之一获取:(1)根据配置信息,获取分配给一个用户的调度资源中PxSCH的RE数目;(2)根据含有PxSCH和参考信号区域的RE数目,乘以折算因子,(3)根据分配给一个用户的调度资源RE数,乘以折算因子;其中,折算因子的取值大于0,小于等于1,PxSCH是物理上行共享信道PUSCH或物理下行共享信道PDSCH。
  3. 如权利要求1或2所述的方法,其特征在于:当L层有相同的调制与编码策略(Modulating and Coding Scheme,MCS)和可用RE数目N RE,所述计算TBS为通过公式
    Figure PCTCN2018103926-appb-100001
    Figure PCTCN2018103926-appb-100002
    其中N RE为数据传输调度资源大小,L为层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数。
  4. 如权利要求1或2所述的方法,其特征在于:当L层有相同的调制与编码策略(Modulating and Coding Scheme,MCS),不同的可用RE数目
    Figure PCTCN2018103926-appb-100003
    所述计算TBS为通过公式
    Figure PCTCN2018103926-appb-100004
    Figure PCTCN2018103926-appb-100005
    Figure PCTCN2018103926-appb-100006
    其中
    Figure PCTCN2018103926-appb-100007
    为第l层数据传输调度资源大小,l为层序号,L为总层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数。
  5. 如权利要求1或2所述的方法,其特征在于:当L层各层的可用RE数相同,码率,调制阶数不同,所述计算TBS采用以下公式之一:
    Figure PCTCN2018103926-appb-100008
    Figure PCTCN2018103926-appb-100009
    Figure PCTCN2018103926-appb-100010
    Figure PCTCN2018103926-appb-100011
    其中N RE为数据传输调度资源大小,
    Figure PCTCN2018103926-appb-100012
    为l层的调制阶数,C l为l层的TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
  6. 如权利要求1或2所述的方法,其特征在于:当L层各层的可用RE数和码率相同,调制阶数不同,所述计算TBS采用以下公式之一:
    Figure PCTCN2018103926-appb-100013
    Figure PCTCN2018103926-appb-100014
    Figure PCTCN2018103926-appb-100015
    Figure PCTCN2018103926-appb-100016
    其中N RE为数据传输调度资源大小,
    Figure PCTCN2018103926-appb-100017
    为l层的调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
  7. 如权利要求1或2所述的方法,其特征在于:当L层各层的可用RE数和调制阶数相同,码率不同,所述计算TBS采用以下公式之一:
    Figure PCTCN2018103926-appb-100018
    Figure PCTCN2018103926-appb-100019
    Figure PCTCN2018103926-appb-100020
    Figure PCTCN2018103926-appb-100021
    其中N RE为数据传输调度资源大小,Q m为调制阶数,C l为第l层TBS计 算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
  8. 如权利要求1或2所述的方法,其特征在于:当L层各层的可用RE数和调制阶数不同,码率相同,所述计算TBS采用以下公式之一:
    Figure PCTCN2018103926-appb-100022
    Figure PCTCN2018103926-appb-100023
    Figure PCTCN2018103926-appb-100024
    Figure PCTCN2018103926-appb-100025
    其中
    Figure PCTCN2018103926-appb-100026
    为第l层数据传输调度资源大小,
    Figure PCTCN2018103926-appb-100027
    为第l层的调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
  9. 如权利要求1或2所述的方法,其特征在于:当L层各层之间的可用RE数和码率不同,调制阶数相同,所述计算TBS采用以下公式之一:
    Figure PCTCN2018103926-appb-100028
    Figure PCTCN2018103926-appb-100029
    Figure PCTCN2018103926-appb-100030
    Figure PCTCN2018103926-appb-100031
    其中
    Figure PCTCN2018103926-appb-100032
    为第l层数据传输调度资源大小,Q m为调制阶数,C l为第l层的TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
  10. 如权利要求1或2所述的方法,其特征在于:当L层各层之间的可用RE数,码率,和调制阶数不同,所述计算TBS采用以下公式之一:
    Figure PCTCN2018103926-appb-100033
    Figure PCTCN2018103926-appb-100034
    Figure PCTCN2018103926-appb-100035
    Figure PCTCN2018103926-appb-100036
    其中
    Figure PCTCN2018103926-appb-100037
    为第l层数据传输调度资源大小,
    Figure PCTCN2018103926-appb-100038
    为第l层调制阶数,C l为第l层的TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,l为层序号,L为总层数。
  11. 如权利要求1所述的方法,其特征在于:所述数据传输调度资源大小为调度资源单元的数量N UNIT,所述调度资源单元在频率上占有若干个子载波,在时域上占据若干个OFDM符号,所述N UNIT为调度资源的PxSCH中包含的RE数量N RE除以调度资源单元包含的RE数量,或分配给一个用户的调度资源与折算因子的乘积再除以调度资源单元包含的RE数量,或PxSCH和参考信号区域的RE数量除以调度资源单元包含的RE数量,其中折算因子的取值大于0,小于或等于1。
  12. 如权利要求1所述的方法,其特征在于:所述数据传输调度资源大小为调度资源单元的数量N UNIT,所述调度资源单元在频率上占有若干个子载波,在时域上占据若干个OFDM符号,所述N UNIT为调度资源的PxSCH数据中包含的RE数量N RE除以调度资源单元包含的RE数量预设值,或分配给一个用户的调度资源的RE数量除以调度资源单元包含的RE数量预设值。
  13. 如权利要求11或12所述的方法,其特征在于:TBS计算通过公式以下公式之一:
    Figure PCTCN2018103926-appb-100039
    Figure PCTCN2018103926-appb-100040
    其中,
    Figure PCTCN2018103926-appb-100041
    为一个调度资源单元所包含的RE数量或调度资源单元包含的RE数量预设值,L为层数L为层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数。
  14. 如权利要求11或12所述的方法,其特征在于:TBS计算通过以下公式之一:
    Figure PCTCN2018103926-appb-100042
    Figure PCTCN2018103926-appb-100043
    Figure PCTCN2018103926-appb-100044
    Figure PCTCN2018103926-appb-100045
    Figure PCTCN2018103926-appb-100046
    其中,
    Figure PCTCN2018103926-appb-100047
    为一个调度资源单元所包含的RE数量或调度资源单元包含的RE数量预设值,γ i为第i个调度资源单元的折算因子,γ i的值大于0,小于或等于1,L为层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数,其中N是预设值的种类,Ni是第i类预设值的数目,
    Figure PCTCN2018103926-appb-100048
    是第i类预设值的大小。
  15. 如权利要求1-14中任一项所述的方法,其特征在于:所述计算TBS进一步包括:通过公式计算或查表的方式获取第一TBS,之后与多个数值进行比较,并在所述多个数值中,选择与第一TBS最接近的数值作为TBS,或选择与所述第一TBS最接近,且小于等于第一TBS的数值作为TBS;或选最接近第一TBS,且大于等于TBS的数值作为TBS。
  16. 如权利要求1-2所述的方法,其特征在于,所述计算TBS包括通过以下公式中的一种计算TBS,公式包括:
    Figure PCTCN2018103926-appb-100049
    Figure PCTCN2018103926-appb-100050
    Figure PCTCN2018103926-appb-100051
    Figure PCTCN2018103926-appb-100052
    Figure PCTCN2018103926-appb-100053
    Figure PCTCN2018103926-appb-100054
    其中,N PRB为调度资源包含的物理资源块PRB的数量,
    Figure PCTCN2018103926-appb-100055
    为一个PRB中RE的数量,N OFDMSymmol为调度资源中包含的OFDM符号数量,N REperSymbol为调度资源所包含的一个OFDM符号上RE的数量,Unit为调度资源单位,时间上占一个OFDM符号,频域上占若干个子载波,N REperUnit为每个Unit上RE的数量,L为层数,Q m为调制阶数,C为TBS计算因子,m为大于等于1的自然数,Δ为大于等于0的常数。
  17. 如权利要求1-16所述的方法,其特征在于:所述计算因子由码率决定。
  18. 如权利要求17所述的方法,其特征在于:所述计算因子为:C=R×12×1024,其中,R为码率。
  19. 一种数据发送方法,其特征在于:
    获取调制与编码策略MCS索引,所述MCS索引用于查找调制阶数;
    判断MCS索引的值落在第一范围或第二范围;
    如果所述MCS索引的值落在第一范围,则采用公式计算传输块大小TBS;
    如果所述MCS索引的值落在第二范围,则采用查表的方式确定TBS。
  20. 如权利要求19所述的方法,其特征在于,所述公式计算TBS,计算方式为权利要求3-18中的一种。
  21. 一种数据传输的装置,其特征在于,包括:
    处理单元,用于获取数据传输调度资源大小,根据所述数据传输调度资源大小,调制阶数,和传输块大小TBS计算因子,确定TBS;
    收发单元,用于按照上述确定的TBS,通过收发器传输数据。
  22. 如权利要求21所述的数据传输装置,其特征在于,所述处理单元采用权利要求2-18中任一方式确定TBS。
  23. 一种数据传输的装置,其特征在于,包括:
    处理器,用于获取数据传输调度资源大小,根据所述数据传输调度资源大小,调制阶 数,和传输块大小TBS计算因子,确定TBS;
    收发器,用于按照上述确定的TBS,通过收发器传输数据。
  24. 一种数据传输的通信装置,其特征在于,包括:
    处理单元,用于获取调制与编码策略MCS索引,所述MCS索引用于查找调制阶数;判断MCS索引的值落在第一范围或第二范围;如果所述MCS索引的值落在第一范围,则采用公式计算传输块大小TBS;如果所述MCS索引的值落在第二范围,则采用查表的方式确定TBS;
    收发单元,用于根据处理单元确定的TBS进行数据传输。
  25. 一种数据传输的通信装置,其特征在于,包括:
    处理器,用于获取调制与编码策略MCS索引,所述MCS索引用于查找调制阶数;判断MCS索引的值落在第一范围或第二范围;如果所述MCS索引的值落在第一范围,则采用公式计算传输块大小TBS;如果所述MCS索引的值落在第二范围,则采用查表的方式确定TBS;
    收发器,用于根据处理单元确定的TBS进行数据传输。
  26. 一种通信设备,其特征在于,所述通信设备包括处理器,所述处理器用于执行权利要求1-20中任一项所述的方法。
  27. 一种通信设备,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于读取存储器中存储的计算机指令,以执行权利要求1-20中任一项所述的方法。
  28. 一种计算机存储介质,其特征在于,该计算机存储介质存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行权利要求1-20中任一项所述的方法。
  29. 一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序被处理器执行时用于执行如权利要求1-20中任意一项所述的方法。
PCT/CN2018/103926 2017-09-12 2018-09-04 用于进行数据传输的方法和装置 WO2019052370A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710818224.7A CN109495968B (zh) 2017-09-12 2017-09-12 用于进行数据传输的方法和装置
CN201710818224.7 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019052370A1 true WO2019052370A1 (zh) 2019-03-21

Family

ID=65687893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103926 WO2019052370A1 (zh) 2017-09-12 2018-09-04 用于进行数据传输的方法和装置

Country Status (2)

Country Link
CN (1) CN109495968B (zh)
WO (1) WO2019052370A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166168B (zh) * 2018-02-14 2021-12-03 华为技术有限公司 确定传输块大小的方法、装置以及系统
WO2020199044A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 一种tbs的确定方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644413B2 (en) * 2012-05-29 2014-02-04 Magnolia Broadband Inc. Implementing blind tuning in hybrid MIMO RF beamforming systems
CN103634851A (zh) * 2012-08-27 2014-03-12 重庆重邮信科通信技术有限公司 一种传输块大小的获取方法和装置
CN104243086A (zh) * 2013-06-09 2014-12-24 华为技术有限公司 调制编码方案确定方法、基站及通信系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651515B (zh) * 2008-08-15 2012-12-12 电信科学技术研究院 自适应调制和编码方法、系统及装置
CN103378924B (zh) * 2012-04-18 2018-09-11 中兴通讯股份有限公司 传输块大小的确定方法及装置、同步方法、装置及系统
WO2014146277A1 (zh) * 2013-03-21 2014-09-25 华为终端有限公司 数据传输方法、基站及用户设备
US20150215068A1 (en) * 2014-01-29 2015-07-30 Htc Corporation Method of Selecting Modulation and Transport Block Size Index Table
AU2016265051B2 (en) * 2015-05-15 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Communicating a transport block in a wireless network
CN106559898B (zh) * 2015-09-28 2020-08-11 中兴通讯股份有限公司 数据传输方法及装置
CN106685611B (zh) * 2015-11-06 2019-08-23 上海诺基亚贝尔股份有限公司 配置dl突发数据传输的初始子帧的方法和装置
CN105577324B (zh) * 2015-12-22 2018-11-27 京信通信系统(中国)有限公司 通信链路自适应调整方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644413B2 (en) * 2012-05-29 2014-02-04 Magnolia Broadband Inc. Implementing blind tuning in hybrid MIMO RF beamforming systems
CN103634851A (zh) * 2012-08-27 2014-03-12 重庆重邮信科通信技术有限公司 一种传输块大小的获取方法和装置
CN104243086A (zh) * 2013-06-09 2014-12-24 华为技术有限公司 调制编码方案确定方法、基站及通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Transport Block Size Determination", 3GPP TSG RAN WG1 NR AD-HOC#2 RI-1710720, 30 June 2017 (2017-06-30), XP051299925 *

Also Published As

Publication number Publication date
CN109495968A (zh) 2019-03-19
CN109495968B (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
CN109803426B (zh) 传输数据的方法和装置
US11736170B2 (en) Data transmission method, terminal device, and network device
WO2018202096A1 (zh) 传输数据的方法、终端设备和网络设备
EP3553980B1 (en) Method for transmitting data, terminal device and network device
US10390337B2 (en) Aperiodic channel state information (CSI) reporting for carrier aggregation
WO2019029473A1 (zh) 传输数据的方法、终端设备和网络设备
WO2016101107A1 (zh) 传输指示信息的方法和装置
US20220272710A1 (en) Method for Transmitting Signal, Network Device and Terminal Device
WO2018202163A1 (zh) 一种资源指示方法及装置
WO2018112700A1 (zh) 传输信息的方法、网络设备和终端设备
WO2019238131A1 (zh) 一种确定传输块大小的方法、传输方法及装置
CN111034287A (zh) 资源配置方法、确定方法及其装置、通信系统
EP3726760B1 (en) Communication and mcs receiving and notification method and device
WO2019052370A1 (zh) 用于进行数据传输的方法和装置
WO2018171742A1 (zh) 无线通信的方法和装置
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2018228296A1 (zh) 用于进行数据传输的方法和装置
CN115567890A (zh) 通信方法和通信装置
WO2019178736A1 (zh) 控制信息的接收和发送方法、装置及通信系统
WO2018028315A1 (zh) 一种信道质量信息的反馈方法及装置
CN111865519B (zh) 一种v2x通信方法及装置
WO2023001284A1 (en) Method and apparatus for tboms transmission
WO2022077517A1 (zh) 一种通信方法和装置
WO2021032167A1 (zh) 传输块大小确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856097

Country of ref document: EP

Kind code of ref document: A1