WO2022077517A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2022077517A1
WO2022077517A1 PCT/CN2020/121701 CN2020121701W WO2022077517A1 WO 2022077517 A1 WO2022077517 A1 WO 2022077517A1 CN 2020121701 W CN2020121701 W CN 2020121701W WO 2022077517 A1 WO2022077517 A1 WO 2022077517A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
domain resource
length
sub
communication device
Prior art date
Application number
PCT/CN2020/121701
Other languages
English (en)
French (fr)
Inventor
余雅威
余健
郭志恒
谢信乾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/121701 priority Critical patent/WO2022077517A1/zh
Priority to CN202180069340.8A priority patent/CN116349352A/zh
Priority to PCT/CN2021/072220 priority patent/WO2022077792A1/zh
Publication of WO2022077517A1 publication Critical patent/WO2022077517A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of wireless communication, and in particular, to a communication method and apparatus.
  • 5G Fifth-Generation
  • NR new radio
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliability low-latency communication
  • mMTC massive machine-type communication
  • a time slot (ie slot) includes 14 orthogonal frequency division multiplexing time domain symbols (orthogonal frequency division multiplexing symbols, OS) (hereinafter referred to as symbols), and the network device single time
  • the length of the scheduled time domain resources will not exceed one slot.
  • the length of a certain time domain resource generally refers to the number of time domain symbols included in the time domain resource.
  • the length of the time domain resource scheduled by the network device at one time will not be greater than 14.
  • 5G technology the technical demand for time-domain resources with a single scheduling resource length greater than 14 has gradually emerged.
  • PUSCH physical uplink shared channel
  • PUSCH physical uplink shared channel
  • packets on multiple time slots can be aggregated into more than 14
  • the single-time scheduling resource length of time-domain symbols can obtain larger packets with better channel coding capability to improve transmission performance.
  • aggregating multiple small packets into larger packets can reduce the total packet header overhead and improve the transmission efficiency.
  • the existing NR standard cannot realize resource scheduling of more than 14 time-domain symbols and how to configure a demodulation reference signal (DMRS) at this time.
  • DMRS demodulation reference signal
  • the present application provides a communication method and apparatus. With the method provided in the present application, the overhead of reference signal configuration can be reduced, and the spectral efficiency of transmission can be improved.
  • an embodiment of the present application provides a communication method.
  • the first communication device determines at least two sub-time domain resources included in the first time domain resource.
  • the first time domain resource includes at least two consecutive sub-time domain resources
  • the at least two sub-time domain resources are time domain resources in at least two adjacent first time units
  • the at least two sub-time domain resources are The domain resources are in one-to-one correspondence with the at least two adjacent first time units, the sum of the lengths of the at least two sub-time domain resources is equal to the length of the first time domain resources, and the length of the time domain resources is the time domain resource The number of second time units included in .
  • the first communication device determines that the length of the first sub-time domain resource in the at least two sub-time domain resources is equal to or greater than the first length threshold, or determines that the length of the first sub-time domain resource in the at least two sub-time domain resources If the transmission code rate corresponding to the domain resource is smaller than the preset transmission code rate, the first communication device determines that a demodulation reference signal DMRS is configured on the first sub-time domain resource.
  • the time domain resources of more than 14 time domain symbols are included in at least two consecutive first time units (eg, time slots). Therefore, when the first time domain resource determined by the first communication device occupies at least two adjacent first time units, the first communication device may perform DMRS on the at least two consecutive sub-time domain resources respectively. Determination of resources. This solves the problem of resource allocation of DMRS for time domain resources with more than 14 time domain symbols.
  • the first communication device only determines that the length of the first sub-time domain resource is equal to or greater than the first length threshold, or determines that the transmission code rate corresponding to the first sub-time domain resource is smaller than the preset transmission code rate.
  • a demodulation reference signal DMRS is configured on one sub-time domain resource, which can make the number of DMRS configured on the first sub-time domain resource reasonable, and can avoid the transmission code rate of the first sub-time domain resource from being too large.
  • the first communication device determines that the length of the second sub-time-domain resource in the at least two sub-time-domain resources is smaller than the first length threshold, or determines The transmission code rate corresponding to the second sub-time-domain resource in the at least two sub-time-domain resources is equal to or higher than the preset transmission code rate, and the first communication device determines that the second sub-time-domain resource is not Configure DMRS.
  • the first communication device may determine not to configure the DMRS, which can also avoid excessive transmission code rate of the second sub-time domain resource after the DMRS configuration. The occurrence of large or uneven DMRS distribution.
  • the first communication device uses the second sub-time domain resource to perform Signal transmission.
  • the signal transmission performed by the first communication device through the second sub-time domain resource and the signal transmission performed through the first sub-time domain resource satisfy at least one of the following: the transmit power is the same, the precoding is the same , the transmitting port is the same.
  • constraining the transmission power, precoding or transmission port on the signal transmission performed by the first communication device through the second sub-time domain resource can make the first communication device's
  • the receiving end that is, the second communication device
  • the first communication device maps the first sub-time domain resource to the corresponding The channel estimation result of is determined to be the channel estimation result when the first communication device performs signal reception through the second sub-time domain resource.
  • the first communication device may perform joint channel estimation on the signal reception performed on the second sub-time domain resource and the first sub-time domain resource, which may enhance the reliability of signal reception. quality.
  • the first length threshold is determined by the length of the first time domain resource.
  • the first communication device may further acquire the start and duration indication parameters and the upper limit of the target length corresponding to the first time domain resource.
  • the upper limit of the target length is the maximum allowable number of second time units included in the first time domain resource, and the upper limit of the target length is greater than 14.
  • the first communication device determines the length and the start position of the first time domain resource according to the upper limit of the target length and the start and duration indication parameters.
  • the first communication device directly determines the length and starting position of the first time domain resource according to the size-adjustable upper limit of the target length and the start and duration indication parameters, so that the method for determining the time domain resource provided by the present application can be used. It can be compatible with the configuration process of the time domain resources provided by the existing protocol with less than or equal to 14 time domain symbols, which is beneficial to the practical application of the time domain resource determination method provided by the present application.
  • the first communication device may receive a first upper length limit indication parameter from the second communication device, and determine a target upper limit adjustment coefficient according to the first length upper limit indication parameter .
  • the first communication device determines the upper limit of the target length according to the target upper limit adjustment coefficient and the upper limit of the basic number of first time units corresponding to the first time domain resource. Wherein, the upper limit of the basic number is 14.
  • the first communication device determines a target corresponding to the first upper length upper limit indicator parameter from a preset upper limit adjustment coefficient set according to the first length upper limit indicator parameter Cap adjustment factor.
  • the upper limit adjustment coefficient set includes one or more upper limit adjustment coefficients corresponding to different length upper limit indication parameters.
  • the first communication device determines the value of the first length upper limit indication parameter as the target upper limit adjustment coefficient.
  • the first communication device uses the value of the first length upper limit indication parameter indicated by the second communication device as the target upper limit adjustment coefficient, and then the first communication device can determine the real target according to the target upper limit adjustment coefficient and the basic number upper limit
  • this method can facilitate the adjustment of the size of the upper limit of the target length, and on the other hand, it also makes the process of obtaining the upper limit of the target length by the first communication device simple and effective.
  • the first communication device receives a second upper length limit indication parameter from the second communication device.
  • the first communication device determines the target length upper limit corresponding to the second length upper limit indication parameter from a preset or configured length upper limit set according to the second length upper limit indication parameter.
  • the length upper limit set includes length upper limits corresponding to one or more different length upper limit indication parameters.
  • the first communication device receives a second upper length limit indication parameter from the second communication device.
  • the first communication device takes the value of the second length upper limit indication parameter as the target length upper limit.
  • the second communication device directly indicates the upper limit of the target length through the value of the second upper length limit indication parameter, and the method is simple and easy to implement.
  • the first communication device acquires the target index value.
  • the first communication device determines a target length and a target start position corresponding to the target index value from a preset time domain resource indication set according to the target index value, wherein the time domain resource indication set includes: One or more different index values and the corresponding length and starting position of each index value, the one or more index values include at least one index value with a corresponding length greater than 14.
  • the first communication device determines the target length and target start position information corresponding to the target index value as the length and start position of the first time domain resource.
  • the second communication device directly indicates the length and starting position of the first time domain resource through a target index value, which can reduce the signaling resources occupied by the indication of the length and starting position of the first time domain resource, and can improve the first time domain resource. Resource utilization efficiency of the second communication device and the first communication device.
  • the first time unit is a time slot
  • the second time unit is a time domain symbol
  • an embodiment of the present application provides a communication method.
  • the first communication device determines the length and the first number of the first time domain resource.
  • the first time domain resource includes at least two consecutive sub-time domain resources, the at least two sub-time domain resources are time domain resources in at least two adjacent first time units, and the at least two sub-time domain resources are The domain resources are in one-to-one correspondence with the at least two adjacent first time units, the sum of the lengths of the at least two sub-time domain resources is equal to the length of the first time domain resources, and the length of the time domain resources is the length of the time domain resources.
  • the number of included second time units, the length of the first time domain resource is greater than 14, and the first number is the maximum allowable number of first DMRS configured on the first time domain resource;
  • the first communication device determines the time domain resource of the demodulation reference signal DMRS on the first time domain resource according to the length of the first time domain resource and the first number.
  • the first communication device when the first time domain resource determined by the first communication device occupies at least two adjacent first time units (ie slots), the first communication device directly regards the first time domain resource as a Determining the time domain resources of the DMRS as a whole can make the DMRS configuration of each sub-time domain resource more reasonable in quantity and position.
  • the first number is greater than three.
  • the first communication device determines that no DMRS is configured on any sub-time domain resource in the at least two sub-time domain resources, the first communication device passes the The signal transmission performed by any of the sub-time domain resources and the signal transmission performed by the sub-time domain resources configured with DMRS satisfy at least one of the following: the same transmit power, the same precoding, and the same transmit port.
  • the first communication device determines that DMRS is not configured on any sub-time domain resource in the at least two sub-time domain resources, the first communication device will configure The channel estimation result corresponding to the sub-time domain resources of the DMRS is used to demodulate the signal received on any of the sub-time domain resources.
  • the first communication device acquires the start and duration indication parameters corresponding to the first time domain resource and the upper limit of the target length, where the upper limit of the target length is the specified upper limit of the target length.
  • the maximum allowable number of second time units included in the first time domain resource, and the upper limit of the target length is greater than 14.
  • the first communication device determines the length and the start position of the first time domain resource according to the upper limit of the target length and the start and duration indication parameters.
  • the first communication device may receive a first upper length limit indication parameter from the second communication device, and determine a target upper limit adjustment coefficient according to the first length upper limit indication parameter .
  • the first communication device determines the upper limit of the target length according to the target upper limit adjustment coefficient and the upper limit of the basic number of first time units corresponding to the first time domain resource. Wherein, the upper limit of the basic number is 14.
  • the first communication device determines the target corresponding to the first length upper limit indication parameter from a preset upper limit adjustment coefficient set according to the first length upper limit indication parameter Cap adjustment factor.
  • the upper limit adjustment coefficient set includes one or more upper limit adjustment coefficients corresponding to different length upper limit indication parameters.
  • the first communication device determines the value of the first length upper limit indication parameter as a target upper limit adjustment coefficient.
  • the first communication device receives the first length upper limit indication parameter from the second communication device.
  • the first communication device determines the target length upper limit corresponding to the first length upper limit indication parameter from a preset length upper limit set according to the first length upper limit indication parameter.
  • the length upper limit set includes length upper limits corresponding to one or more different length upper limit indication parameters.
  • the first communication device receives the first length upper limit indication parameter from the second communication device.
  • the first communication device determines the value of the first length upper limit indication parameter as the target length upper limit.
  • the first communication device acquires the target index value.
  • the first communication device determines a target length and a target start position corresponding to the target index value from a preset time domain resource indication set according to the target index value, wherein the time domain resource indication set includes: One or more different index values and the corresponding length and starting position of each index value, the one or more index values include at least one index value with a corresponding length greater than 14.
  • the first communication device determines the target length and target start position information corresponding to the target index value as the length and start position of the first time domain resource.
  • the first time unit is a time slot
  • the second time unit is a time domain symbol
  • Another communication method and apparatus provided by the present application realizes a single scheduling of time domain resources exceeding 14 symbols.
  • an embodiment of the present application provides a communication method.
  • the second communication device determines the initial and persistent length indication parameters and the upper limit of the target length corresponding to the first time domain resource.
  • the start and duration length indication parameters and the target length upper limit are used to indicate the length of the first time domain resource and the target start symbol parameter, and the resource length of the time domain resource is the second time domain resource included in the time domain resource.
  • the number of time units, and the length of the first time domain resource is greater than 14.
  • the second communication device sends the start and duration indication parameters and the target length upper limit to the first communication device.
  • the second communication device determines a target upper limit adjustment coefficient according to the upper limit of the basic number of second time units corresponding to the first time domain resource and the upper limit of the target length , wherein the upper limit of the basic number is 14; the second communication device determines the first upper length upper limit indication parameter corresponding to the target upper limit adjustment coefficient.
  • the second communication device sends the first length upper limit indication parameter to the first communication device.
  • the second communication device determines a first length upper limit indication parameter corresponding to the target upper limit adjustment coefficient from a preset upper limit adjustment coefficient set, wherein the upper limit The adjustment coefficient set includes length upper limit indication parameters corresponding to one or more different upper limit adjustment coefficients.
  • the second communication device determines the value of the target upper limit adjustment coefficient as the first length upper limit indication parameter.
  • the second communication device determines a second upper length limit indication parameter corresponding to the target length upper limit from a preset length upper limit set, wherein the length upper limit set including one or more length upper limit indication parameters corresponding to different length upper limits.
  • the second communication device sends the second length upper limit indication parameter to the first communication device.
  • the second communication device determines the value of the upper limit of the target length as the second upper length limit indication parameter.
  • the second communication device sends the second length upper limit indication parameter to the first communication device.
  • an embodiment of the present application provides a communication method.
  • the second communication device determines a target index value corresponding to the length and the starting position of the first time domain resource from a preset time domain resource indication set according to the length and starting position of the first time domain resource.
  • the time domain resource indication set includes one or more index values and the corresponding length and starting position of each index value, and the length of the time domain resource is the number of second time units included in the time domain resource.
  • the length of the first time domain resource is greater than 14.
  • the second communication device sends the target index value to the first communication device, where the target index value is used by the first communication device to determine the length and start position of the first time domain resource.
  • an embodiment of the present application provides an apparatus.
  • the device may be the first communication device itself, or may be an element or module such as a chip inside the first communication device.
  • the apparatus includes a unit for executing the communication method provided by any possible implementation manner of the first aspect or the second aspect, so it can also be beneficial for implementing the communication method provided by the first aspect or the second aspect effect (or advantage).
  • an embodiment of the present application provides an apparatus.
  • the device may be the second communication device itself, or may be an element or module such as a chip inside the second communication device.
  • the device includes a unit for executing the communication method provided by any possible implementation manner of the third aspect or the fourth aspect, so it can also be beneficial for implementing the communication method provided by the third aspect or the fourth aspect effect (or advantage).
  • an embodiment of the present application provides an apparatus, and the apparatus may be a first communication device.
  • the apparatus includes at least one memory, a processor, and a transceiver.
  • the processor is used for calling the code stored in the memory, and in combination with the transceiver, executes the communication method provided by any feasible implementation manner of the first aspect or the second aspect.
  • an embodiment of the present application provides an apparatus, and the apparatus may be a second communication device.
  • the apparatus includes at least one memory, a processor, and a transceiver.
  • the processor is used for calling the code stored in the memory, and in combination with the transceiver, executes the communication method provided by any feasible implementation manner of the third aspect or the fourth aspect.
  • an embodiment of the present application provides an apparatus, and the apparatus may be a first communication device.
  • the apparatus includes: at least one processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is configured to run the above code instructions to implement the communication method provided by any feasible implementation manner of the above first aspect or the second aspect, and can also implement the communication method provided by the above first aspect or the second aspect. beneficial effect (or advantage).
  • an embodiment of the present application provides an apparatus, and the apparatus may be a second communication device.
  • the apparatus includes: at least one processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is configured to run the above code instructions to implement the communication method provided by any feasible implementation manner of the third aspect or the fourth aspect, and can also implement the communication method provided by the third aspect or the fourth aspect. beneficial effect (or advantage).
  • an embodiment of the present application provides a computer-readable storage medium, where an instruction is stored in the computer-readable storage medium, and when the instruction is executed on a computer, any one of the first aspect or the second aspect is implemented
  • the communication method provided by a feasible implementation manner can also achieve the beneficial effects (or advantages) of the communication method provided by the first aspect or the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are run on a computer, any one of the third aspect or the fourth aspect is implemented
  • the communication method provided by a feasible implementation manner can also achieve the beneficial effects (or advantages) of the communication method provided by the third aspect or the fourth aspect.
  • an embodiment of the present application provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the communication method provided in the first aspect or the second aspect, and can also realize Advantageous effects of the communication method provided by the first aspect or the second aspect.
  • an embodiment of the present application provides a computer program product containing instructions.
  • the computer program product When the computer program product is run on a computer, the computer executes the communication method provided in the third aspect or the fourth aspect, and can also realize The beneficial effects provided by the communication method provided by the third aspect or the fourth aspect.
  • an embodiment of the present application provides a communication system, where the communication system includes the first communication device involved in the first aspect or the second aspect, and the second communication device involved in the third aspect or the fourth aspect .
  • the resource allocation problem of the DMRS with time domain resources exceeding 14 symbols can be solved, and the applicability of communication technologies such as 5G can be improved.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a first time domain resource provided by an embodiment of the present application.
  • FIG. 4 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 6 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • the communication methods provided in the embodiments of the present application can be applied to various communication systems, such as: for example, MTC systems, code division multiple access (CDMA) systems, wideband code division multiple access (WCDMA) systems ) system, general packet radio service (general packet radio service, GPRS), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, fifth generation (5th generation, 5G) system or new radio (new radio, NR) etc.
  • MTC systems code division multiple access (CDMA) systems, wideband code division multiple access (WCDMA) systems
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal
  • the communication methods provided in the embodiments of the present application are specifically executed by the first communication device and/or the second communication device.
  • the above-mentioned first communication device may be a terminal device in the above-mentioned various communication systems
  • the above-mentioned second communication device may be a network device in the above-mentioned various general systems.
  • the above terminal equipment may specifically refer to user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or terminals in the future evolution of the public land mobile network (PLMN) equipment, etc., which are not limited in this embodiment of the present application.
  • the network device involved in the embodiments of the present application may be a device used for communicating with a terminal device, which may specifically be a global system of mobile communication (GSM) system or a code division multiple access (code division multiple access, CDMA) system.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • NodeB can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evolutional nodeB) in an LTE system.
  • eNB or eNodeB it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, an in-vehicle device, a wearable device, and a 5G network
  • CRAN cloud radio access network
  • the network equipment in the PLMN network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiments of the present application.
  • the length of a certain time domain resource refers to the number of second time units included in a certain time domain resource.
  • the second time unit is a unit for measuring or indicating the length of time domain resources.
  • the second time unit may be a time domain symbol.
  • the second time unit will be replaced by a time domain symbol for description hereinafter.
  • the so-called first time unit is also a unit for measuring or indicating the length of time domain resources, and a first time unit may include a preset number of second time units.
  • the above-mentioned first time unit may be a time slot.
  • the corresponding symbol number of each time-domain symbol is used to indicate the arrangement order of the time-domain symbol in the time slot. The smaller the number of symbols, the earlier the position of the time domain symbol in the time slot. For example, symbol 11 is the 12th time domain symbol in the slot.
  • each time slot also corresponds to a time slot number to distinguish from each other. For the convenience of understanding, a time slot will be used instead of the second time unit for description hereinafter.
  • DMRS is a sequence known by the transceiver and mapped on time-frequency resources with known locations.
  • the transmitting end uses the same precoding and antenna port as the uplink transmission signal to send the DMRS. Since the DMRS and the uplink transmission signal experience the same fading channel, the receiving end can Based on the known DMRS sequence, the equivalent fading channel experienced by the uplink signal transmission is estimated, and the uplink data demodulation is completed based on the estimated equivalent channel state information.
  • DMRS In the current NR protocol, DMRS needs to be configured for each uplink transmission.
  • DMRS parameters are configured through radio resource control (radio resource control, RRC) signaling.
  • the DMRS parameters may include parameter fields as shown in Table 1-1.
  • Table 1-1 is an existing DMRS parameter table provided by this embodiment of the present application.
  • the parameters of the DMRS may include a type parameter DMRS-type, a maximum length parameter maxLength and a position parameter DMRS-additionalPosition.
  • the type parameter DMRS-type indicates the type of the DMRS, and can be selected as type 1 type1 and type 2 type2.
  • type1 indicates that the DMRS adopts two groups of orthogonal code groups in a comb-tooth-shaped frequency division manner. At this time, each group occupies 6 resource elements (resource elements, REs) in the frequency domain.
  • type2 indicates that the DMRS adopts three groups of orthogonal code groupings in a comb-shaped frequency division manner. At this time, each group can use four REs in the frequency domain.
  • the maximum length parameter maxLength indicates the maximum number of consecutive time-domain symbols that can be occupied by the configured pre-DMRS, and the selectable values are single and double.
  • maxLength When the value of maxLength is single, it means that each DMRS occupies one time-domain symbol.
  • maxLength When the value of maxLength is double, it means that each DMRS can occupy at most 2 consecutive time domain symbols. At this time, whether to occupy one time-domain symbol or two time-domain symbols may be further indicated by some fields in information such as downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the position parameter DMRS-additionalPosition indicates the maximum number of time-domain symbols occupied by the additional DMRS in the current uplink transmission, and the number of time-domain symbols occupied by each additional DMRS is the same as the number of time-domain symbols occupied by the pre-DMRS. Its selectable values are Pos0, Pos1, Pos2, and Pos3.
  • the configuration of the pre-DMRS in uplink transmission is necessary. It can be understood that in addition to the pre-DMRS, Pos0, Pos1, Pos2, and Pos3 indicate that the maximum number of additional DMRSs that can be configured is 0, 1, 2, and 3, respectively. .
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application. It can be known from FIG. 1 that the communication system mainly includes a first communication device and a second communication device.
  • the first communication device may establish a connection with the second communication device through wired connection, wireless connection or other connection methods.
  • the first communication device and the second communication device can communicate with each other.
  • the current communication protocol stipulates that when time domain resource scheduling is performed for a certain data transmission (such as PUSCH channel transmission), the maximum time domain resource that can be scheduled at a time The length will not exceed 14.
  • time domain resource scheduling such as PUSCH channel transmission
  • PUSCH physical uplink shared channel
  • PUSCH physical uplink shared channel
  • the packets in multiple time slots can be aggregated into larger packets with a single scheduling resource length greater than 14 time-domain symbols, so as to obtain better channel coding capabilities to improve transmission performance. Aggregating into larger packets can reduce the total packet header overhead and improve transmission efficiency.
  • DMRS demodulation reference signal
  • the technical problem to be solved by the embodiments of the present application is: how to determine the time domain resources of the DMRS in the time domain resources whose length exceeds 14.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the time domain resource determination method provided by the application embodiment will be described by taking a certain data transmission between the first communication device and the second communication device as a specific scenario.
  • the first communication device involved in the embodiments of the present application is a terminal device, and the second communication device is a network device. It can be seen from FIG. 2 that the communication method provided by the embodiment of the present application includes the following steps:
  • the second communication device determines the start and duration indication parameters and the upper limit of the target length corresponding to the first time domain resource.
  • the second communication device sends the start and duration length indication parameters and the upper limit of the target length to the first communication device.
  • the first communication device receives and determines the first time domain resource according to the start and duration length indication parameters and the upper limit of the target length.
  • the second communication device may first determine the time domain resources required for data transmission with the first communication device this time (for the convenience of understanding and distinction, the following will refer to the first time domain resource (replacement description) corresponding to the start and duration length indication parameters and the upper limit of the target length.
  • the length of the first time domain resource is greater than 14, that is, the number of time domain symbols included in the first time domain resource is greater than 14.
  • the start and duration length indication parameters and the target length upper limit corresponding to the first time domain resource are mainly used to indicate the length of the first time domain resource and the availability of the first time domain resource between the first communication device and the second communication device. The location in the time domain resource.
  • the second communication device may first determine the length and starting position of the first time domain resource according to the preset time domain resource scheduling algorithm and the current time domain resource utilization situation.
  • the length of the first time domain resource is the number of time domain symbols included in the first time domain resource.
  • the starting position of the first time domain resource is used to indicate the position of the first time domain symbol of the first time domain resource in the first time slot occupied by the first time domain symbol.
  • the starting position of the first time domain resource is the sequence number of the first time domain symbol of the first time domain resource in the first time slot occupied by the first time domain symbol.
  • the first time domain resource determined by the second communication device may include at least two consecutive sub-time domain resources.
  • the at least two sub-time domain resources are time domain resources in at least two adjacent first time units.
  • the at least two sub-time domain resources are in one-to-one correspondence with the at least two adjacent first time units.
  • the sum of the lengths of the at least two sub-time-domain resources is equal to the length of the first time-domain resources.
  • the at least two sub-time-domain resources are time-domain resources in at least two adjacent time slots.
  • one time slot includes one sub-time domain resource.
  • the resource length of each sub-time domain resource is less than or equal to 14. For example, please refer to FIG.
  • the above-mentioned first time domain resource may include at least two sub-time domain resources, and it is assumed here that the first time domain resource includes a sub-time domain resource j1 and a sub-time domain resource j2.
  • the sub-time domain resource j1 may be included in the time slot i1 occupied by the first time domain resource, and the sub-time domain resource j1 occupies the 11th, 12th, and 13th symbols in the time slot i1.
  • the sub-time domain resource j2 may be included in the time slot i2 occupied by the first time domain resource, and the sub-time domain resource j2 occupies the first to twelfth time domain symbols in the time slot i2.
  • Time slot i1 and time slot i2 are adjacent time slots. In the scenario shown in FIG. 3 , the length of the first time domain resource determined by the second communication device is 15, the starting position corresponding to the first time domain resource is 11, and the starting time corresponding to the first time domain resource is 11.
  • the gap parameter is i1.
  • the second communication device can determine the length of the first time domain resource and the starting position of the first time domain resource according to the length of the first time domain resource.
  • the initial and persistent length indication parameters and the upper limit of the target length corresponding to the first time domain resource are determined.
  • the second communication device indicates the length and the starting position of the first time domain resource to the first communication device by using the adjustable upper limit of the target length and the start and duration indication parameters already proposed in the existing protocol.
  • the method for determining time domain resources provided by the present application can be compatible with the configuration process of time domain resources with less than 14 time domain symbols provided by existing protocols, which facilitates the practical application of the method for determining time domain resources provided by the present application.
  • the second communication device may first determine an upper limit of the target length corresponding to the first time domain resource.
  • the upper limit of the target length is the maximum number of time domain symbols that can be included in the first time domain resource, and can also be understood as the maximum length of the first time domain resource.
  • the upper limit of the target length may be predefined by the second communication device, or configured for the second communication device by other communication devices other than the second communication device, or calculated by the second communication device according to a preset calculation rule , this application does not make any specific restrictions.
  • the above-mentioned initial and persistent length indication parameters and the target length upper limit may be It is sent to the first communication device, so that the first communication device can determine the length and start position of the first time domain resource based on the start and duration indication parameters and the upper limit of the target length.
  • the second communication device may send the above-mentioned start and duration length indication parameters and the upper limit of the target length to the first communication device through the same or different messages.
  • the second communication device may carry the above-mentioned start and duration indication parameters on the first message, and send the start and duration indication parameters to the first communication device through the first message.
  • the second communication device may also carry the above target length upper limit on the second message, and send the target length upper limit to the first communication device through the second message.
  • the second communication device may carry the above-mentioned start and duration length indication parameters and the target length upper limit at the same time on the first message, and send the target length upper limit and the start and duration length indication parameters to the first message through the first message.
  • the above-mentioned first message may specifically be radio resource control (radio resource control, RRC) signaling.
  • the above-mentioned second message may specifically be downlink control information (downlink control information, DCI).
  • the second communication device may carry the above-mentioned start and duration length indication parameters and the target length upper limit in medium RRC signaling, and send the above-mentioned start and duration length indication parameters and the target length upper limit to the above-mentioned No. 1 through RRC signaling.
  • a communication device may carry the above-mentioned start and duration length indication parameters and the target length upper limit in medium RRC signaling, and send the above-mentioned start and duration length indication parameters and the target length upper limit to the above-mentioned No. 1 through RRC signaling.
  • the second communication device may carry the above-mentioned start and duration indication parameters in the RRC signaling, carry the above-mentioned target length upper limit in the middle DCI, and then use the RRC signaling and DCI to indicate the above-mentioned start and duration lengths.
  • the parameter and the first length upper limit indication parameter are sent to the first communication device.
  • the process of sending the above-mentioned upper limit of the target length by the second communication device may have various implementation manners. The various implementations will be described in detail below.
  • the second communication device may directly carry the value of the upper limit of the target length in the first message or the second message, and send it to the first communication device. For example, assuming that the upper limit value of the target length determined by the second communication device is 2, the second communication device can convert the value 2 of the upper limit of the target length into a binary number 11, and carry the binary number 11 in the first message or the second communication device. In the second message, the upper limit of the target length is sent to the first communication device.
  • the second communication device directly sends the upper limit of the target length to the first communication device, and the method is simple and easy to implement.
  • the second communication device may obtain an index value corresponding to the value of the target length upper limit from a preset or configured length upper limit set according to the target length upper limit.
  • the length upper limit set includes one or more index values corresponding to different length upper limits, and the index value may also be referred to as a second length upper limit indication parameter.
  • Table 1-2 is a length upper limit set provided by the embodiment of the present application. As shown in Table 1-2, the length upper limit set includes 4 length upper limit values of a1, a2, a3 and a4 and a second length upper limit indication parameter 00 corresponding to 2 bits of a1, a2, a3 and a4 respectively , 01, 10, 11.
  • the second communication device may determine that the above-mentioned second upper length limit indication parameter is 01. Then, the second communication device may carry the second upper length limit indication parameter corresponding to the upper limit of the target length in the first message or the second message, so as to send the upper limit of the target length to the first communication device.
  • the second communication device indicates the target length upper limit from the length upper limit set of the first communication device through a second length upper limit indication parameter (ie an index value) with a small amount of data.
  • the method is simple and easy to implement, and can reduce the first length limit. Signaling overhead between the communication device and the second communication device.
  • the second communication device may acquire the basic upper limit of the number of time-domain symbols corresponding to the first time-domain resource.
  • the upper limit of the basic number may be 14.
  • the second communication device may determine a target upper limit adjustment coefficient corresponding to the target length upper limit according to the basic number upper limit and the target length upper limit.
  • the second communication device may determine the ratio between the target length upper limit and the number of basic upper limits as the target upper limit adjustment coefficient corresponding to the target length upper limit. It should be noted here that the ratio between the upper limit of the target length and the number of basic upper limits may be an integer greater than or equal to 1, such as 2 or 3, or a decimal greater than or equal to 1, such as 1.1, 1.2, etc.
  • the second communication device may determine the length upper limit indication parameter corresponding to the above target upper limit adjustment coefficient (for ease of understanding and distinction, the description will be replaced by the first length upper limit indication parameter below). For example, the second communication device may find the length upper limit indication parameter corresponding to the above target upper limit adjustment coefficient from a preset upper limit adjustment coefficient set according to the above target upper limit adjustment coefficient.
  • the above-mentioned upper limit adjustment coefficient may include one or more upper limit adjustment coefficients with different values, and a length upper limit indication parameter corresponding to each upper limit adjustment coefficient.
  • the second communication device may also directly determine the target adjustment coefficient as the first length upper limit indication parameter.
  • the second communication device may determine the binary number 11 corresponding to 2 as the above-mentioned first length upper limit indication parameter. Then, the second communication device may carry the first length indication parameter corresponding to the upper limit of the target length in the first message or the second message, so as to send the upper limit of the target length to the first communication device.
  • the second communication device can indicate the target upper limit adjustment coefficient to the first communication device through a first length upper limit indication parameter, and then the first communication device can subsequently determine the real target length according to the target upper limit adjustment coefficient and the basic number upper limit
  • this method can facilitate the adjustment of the size of the upper limit of the target length, and on the other hand, it also simplifies the process of obtaining the upper limit of the target length by the first communication device.
  • the above-mentioned second communication device may also determine the initial time slot parameter of the above-mentioned first time-domain resource.
  • the initial time slot parameter of the first time domain resource is used to indicate the position of the time slot where the first time domain symbol of the first time domain resource is located.
  • the initial time slot parameter of the first time domain resource is the sequence number of the time slot where the first time domain symbol of the first time domain resource is located in the entire time domain resource. Then, the second communication device can send the above-mentioned starting time slot parameter to the first communication device, so that the first communication device can determine the position of the time slot where the first time-domain symbol of the above-mentioned first time-domain resource is located.
  • the second communication device may determine the starting time slot of the time domain resource (for convenience of distinction, the description will be replaced by the second time domain resource below) used by the second communication device to send the first message and/or the second message. Location. It can be understood that the second time domain resource used by the second communication device to send the first message and/or the second message is the time domain used by the first communication device to receive the first message and/or the second message. resource. Then, the second communication device may determine the number of timeslot offsets between the first timeslot of the first time-domain resource and the first timeslot of the second time-domain resource, and offset the timeslot by the number of timeslots sent to the first communication device. In this way, the subsequent first communication device can determine the initial time slot parameter of the first time domain resource according to the number of time slot offsets and the position of the first time slot of the second time domain resource.
  • the first communication device may receive and determine the first time domain resource according to the start and duration length indication parameters and the upper limit of the target length.
  • the first communication device can extract the above-mentioned start and duration length indication parameters from the message .
  • the first communication device may directly extract the upper limit of the target length . For example, if the first communication device determines that the upper limit of the target length is 11 in the first message or the second message, it can be converted from binary to decimal to determine the real upper limit of the target length to be 2.
  • the first communication device may also extract the upper limit of the target length.
  • the second length upper limit indication parameter, and the length upper limit corresponding to the second length upper limit indication parameter is extracted from the corresponding length upper limit set, and the length upper limit is the target length upper limit.
  • the length upper limit set used by the second communication device and the length upper limit set used by the first communication device are the same, and the length upper limit set used by the first communication device may be the same as the length upper limit set used by the second communication device. configured.
  • the first communication device may first extract the above The first length upper limit indication parameter. Then, the second communication device may find the target upper limit adjustment coefficient corresponding to the first length upper limit indication parameter from the preset upper limit adjustment coefficient set according to the first length upper limit set.
  • the upper limit adjustment coefficient set and the upper limit adjustment coefficient set used by the second communication device are the same.
  • the second communication device may directly determine the value of the first length upper limit indication parameter as the above-mentioned target adjustment coefficient.
  • the first communication device may further determine the upper limit of the target length according to the upper limit of the target upper limit adjustment coefficient and the upper limit of the basic number of time domain symbols corresponding to the first time domain resource.
  • the upper limit of the basic number may be 14.
  • the first communication device may first calculate the product of the above-mentioned target upper limit adjustment coefficient and the basic number of time domain symbols corresponding to the first time domain resource, and then perform rounding up, rounding down or rounding off the product. Perform operations such as rounding, and use the processed product as the upper limit of the target length above.
  • the first communication device may determine the length and start position of the first time domain resource according to the start and duration length indication parameters and the upper limit of the target length. Specifically, it is assumed that the length of the above-mentioned first time domain resource is L, the starting position is S, and the upper limit of the target length is a. After acquiring the above-mentioned start and duration indication parameters SLIV, the first communication device can divide SLIV by a to obtain the divisor D1 and the remainder D2, and then the first communication device can determine whether the divisor D1 is less than or equal to a/2. If the determination is yes, the first communication device may determine D1+1 as the length L of the first time domain resource, and determine the remainder D2 as the starting position S.
  • the first communication device may also obtain the offset number of the corresponding time slot that carries the above-mentioned first time domain resource. Then, the initial time slot parameter of the first time domain resource is determined based on the position of the first time slot for receiving the second time domain resource used and the number of time slot offsets. It can be understood that, the corresponding number of time slot offsets carrying the first time domain resource may also be indicated by the first message or the second message.
  • the first communication device After the first communication device obtains the above-mentioned length, starting position, and starting time slot parameters of the first time domain resource, it can completely determine from the available time domain resources between the first communication device and the second communication device.
  • the above-mentioned first time domain resource The above-mentioned first time domain resource.
  • FIG. 4 is another schematic flowchart of a communication method provided by an embodiment of the present application. As shown in FIG. 4, the above steps S10, S20 and S30 can also be replaced by the following steps:
  • the second communication device determines a target index value corresponding to the length and the starting position of the first time domain resource from a preset time domain resource indication set according to the length and starting position of the first time domain resource.
  • the second communication device sends the target index value to the first communication device.
  • the first communication device receives and determines the first time domain resource according to the target index value.
  • the second communication device may first determine the length and starting position of the first time domain resource. Then, the target index value corresponding to the length and the starting position of the first time domain resource is determined from the preset time domain resource indication set according to the length and starting position of the first time domain resource.
  • the second communication device may determine the length and starting position of the first time domain resource.
  • the second communication device can determine the target corresponding to the length and starting position of the first time domain resource from the preset or configured time domain resource indication set according to the length and starting position of the first time domain resource index value.
  • the time domain resource indication set includes one or more index values with different values and the lengths and start positions of the different values corresponding to each index value.
  • the time domain resource indication set should include at least one index value, and the length of the corresponding time domain resource should be greater than 14.
  • Table 1-3 is a time domain resource indication set provided by this embodiment of the present application. As shown in Table 1-3, the time domain resource set includes a total of 16 index values from 1 to 16, and the lengths and start positions corresponding to the 16 index values respectively. Among them, the length corresponding to some index values is greater than 14. For example, the length of the corresponding time domain resource for an index value of 1 is greater than 14.
  • index value Length of time domain resource The starting position of the time domain resource 1 17 0 2 15 0 3 10 1 4 10 2 ... ... ... 15 18 5 16 12 4
  • the time domain resource indication set provided by the embodiment of the present application can be obtained by extending or modifying the time domain resource indication set provided by the prior art.
  • one or more index values may be added to the time domain resource indication set provided by the current NR standard, and the length of the time domain resource corresponding to the one or more index values added must be greater than 14.
  • the length of the time domain resource corresponding to some index values in the time domain resource indication set provided by the current NR standard may also be modified to a length greater than 14.
  • the second communication device after the second communication device determines the target index value, the second communication device sends the target index value to the first communication device.
  • the second communication device may carry the above target index value in the DCI, and send the target index value to the first communication device through the DCI.
  • the second communication device may further carry the above target index value in the RRC signaling, and send the target index value to the first communication device through the RRC signaling.
  • the second communication device may further determine the initial time slot parameter of the first time domain resource, and send the initial time slot parameter of the first time domain resource to the first communication device.
  • the process of determining and sending the first time slot parameter of the first time domain resource by the second communication device to the first communication device reference may be made to the process of determining and sending the first time domain resource to the first communication device described in step S20 above. The process of starting time slot parameters is not repeated here.
  • the first communication device may receive the above-mentioned target index value, and determine the above-mentioned first time domain resource according to the target index value. Specifically, after receiving the above target index value through RRC signaling or DCI message, the first communication device can find the length and start position corresponding to the target index value from the corresponding time domain resource indication set according to the above target index value , and the length and starting position corresponding to the target index value are the length and starting position of the above-mentioned first time domain resource. It should be noted here that the time domain resource indication set used by the first communication device and the time domain resource indication set used by the second communication device are the same.
  • the time domain resource indication set used by the first communication device may be obtained by configuring the second communication device. Then, the first communication device can completely determine the above-mentioned time domain resources from the available time-domain resources between the first communication device and the second communication device according to the length, start position, and start time slot parameters of the above-mentioned first time-domain resource. The first time domain resource.
  • the second communication device directly indicates the length and starting position of the first time domain resource through a target index value to the first communication device, which can reduce the need for the second communication device to indicate the first time domain for the first communication.
  • the length of the resource and the signaling resources occupied by the starting position can improve the resource utilization efficiency of the second communication device and the first communication device.
  • FIG. 5 is another schematic flowchart of a communication method provided by an embodiment of the present application. It can be seen from FIG. 5 that the time-domain resource scheduling method provided by the present application may further include steps:
  • the first communication device determines that the length of the first sub-time domain resource in the at least two sub-time domain resources in the first time-domain resource is equal to or greater than the first length threshold, or determines the first sub-time domain resource If the corresponding transmission code rate is smaller than the preset transmission code rate, it is determined that a demodulation reference signal DMRS is configured on the first sub-time domain resource.
  • the first communication device may further determine at least two sub-time domain resources included in the first time domain resource (for the convenience of understanding, the following will be shown in FIG. 3 ).
  • the structure of the first time domain resource shown is described as an example).
  • the first communication device may determine whether each sub-time domain resource is configured with a DMRS according to the length of each sub-time domain resource or the transmission code rate.
  • the transmission code rate corresponding to each sub-time domain resource included in the first time domain resource is determined by the transmission code rate obtained by the first communication device transmitting on the first time domain resource.
  • the size of the transport block transmitted on each sub-time-domain resource is equal to the size of the transport block transmitted on the first time-domain resource, but the length of each sub-time-domain resource is smaller than the length of the first time-domain resource. Therefore, the transmission code rate of each sub-time domain resource will be higher than the transmission code rate of the first time domain resource.
  • the first communication device can calculate and determine the transmission code rate on each sub-time domain resource.
  • the first communication device may determine whether the sub-time domain resource j1 is the first sub-time domain resource. For example, if the first communication device determines that the length of the sub-time domain resource j1 is equal to or greater than the first length threshold, it may determine that the sub-time domain resource j1 is the first sub-time domain resource. For another example, if the first communication device determines that the transmission code rate of the sub-time domain resource j1 is smaller than the preset transmission code rate, it may determine that the time-domain resource j1 is the first sub-time domain resource. After the first communication device determines that the sub-time domain resource j1 is the first sub-time domain resource, it is determined that the demodulation reference signal DMRS is configured on the sub-time domain resource j1. Then, the first communication device
  • the length of the sub-time domain resource j1 and the first number corresponding to the above-mentioned first time domain resource can be obtained.
  • the first number is the maximum number of additional DMRSs that can be configured on the first time domain resource, which is usually indicated by the location parameter DMRS-additionalPosition corresponding to the first time domain resource.
  • Pos0 the position parameter DMRS-additionalPosition corresponding to the first time domain resource takes a value of Pos0
  • Pos1 the position parameter DMRS-additionalPosition corresponding to the first time domain resource takes a value of Pos1
  • the above-mentioned first number takes a value of 1.
  • the first communication device may determine, according to the length of the sub-time-domain resource j1, the first number corresponding to the first time-domain resource, and the preset or configured DMRS resource mapping set, the length of the DMRS in the funding time-domain resource j1. time domain resources.
  • the DMRS resource mapping set may include the length of one or more different values, the value of one or more different position parameters DMRS-additionalPosition, and the length of any value and the length of any value.
  • the DMRS resource indication information corresponding to the position parameter DMRS-additionalPosition under the value.
  • the above one or more position parameters DMRS-additionalPosition with different values includes a certain position parameter DMRS-additionalPosition
  • the value is Pos1 (that is, the first one above The value of the number is 1)
  • the DMRS resource indication information corresponding to the position parameter DMRS-additionalPosition of the length L1 and the value of Pos1 is used to indicate the time domain resources of the length L1, the pre-DMRS and the additional DMRS occupied The location of the time domain resource.
  • Table 1-4 is a DMRS resource mapping set provided by the embodiment of the present application.
  • the DMRS resource mapping set includes 14 lengths of 1, 2, . value, and DMRS resource indication information corresponding to different length values and different position parameter DMRS-additionalPosition values.
  • l 0 is the relative position between the time domain symbol occupied by the pre-DMRS and the first time domain symbol of the time domain resource of a certain length.
  • the mapping type of PUSCH is Type A (TypeA)
  • the number of time domain resources required for a single transmission is not less than 4 time domain symbols.
  • the communication device itself decides, or is configured by the second communication device for the first communication device).
  • the transmission of any symbol length can be performed (that is, the length ld of the configured time domain resource can be less than 4).
  • the value of l0 is 0, that is, the preamble
  • the time domain symbol occupied by the DMRS is the first time domain symbol in the to-be-configured time domain resource.
  • the first communication device may determine that the length of the above sub-time domain resource j1 is 3. If the first communication device determines that the position parameter DMRS-additionalPosition corresponding to the first time domain resource is Pos3 (that is, the above first value is 3), the sub-time domain resource j1 can be found from Table 1-4 The corresponding DMRS resource indication information is l 0 . Assuming that the first communication device determines that l0 is 2, the first communication device may determine that the second time domain symbol in the sub-time domain resource j1 is the time domain resource of the DMRS corresponding to the sub-time domain resource j1.
  • the first communication device determines that the length of the sub-time domain resource j1 is less than the first length threshold, or determines that the transmission code rate of the sub-time domain resource j1 is equal to or greater than the preset transmission code rate, the sub-time domain resource can be determined.
  • j1 is the second sub-time domain resource, then it is determined that no DMRS is configured on the sub-time domain resource j1.
  • the first communication device can also use the same process to determine whether the sub-time domain resource j2 is configured with DMRS. Since this process is the same as the process for the first communication device to determine whether the sub-time domain resource j1 is configured with DMRS, here It will not be described in detail.
  • the above-mentioned first length threshold may be a preset fixed value, or may be determined by the length of the first time domain resource.
  • the first communication device may use the product of a preset coefficient and the length of the first time domain resource as the above-mentioned first length threshold.
  • the corresponding first thresholds are different.
  • a first time domain resource satisfying a first length range corresponds to a first threshold
  • a first time domain resource satisfying a second length range corresponds to another first threshold.
  • the preset transmission code rate may be a preset fixed value, or may be related to the length of the first time domain resource.
  • the preset transmission code rate is determined by the length of the first time domain resource, and when the length of the first time domain resource is different, the corresponding first threshold is different.
  • the first time domain resource satisfying the first length range corresponds to one preset transmission code rate
  • the first time domain resource satisfying the second length range corresponds to another preset transmission code rate.
  • FIG. 6 is another schematic flowchart of a communication method provided by an embodiment of the present application. It can be seen from FIG. 6 that the above step S40 can be replaced by the following steps:
  • the first communication device determines the length and the first number of the first time domain resource.
  • the first communication device may determine the length of the first time domain resource according to the number of time domain symbols included in the first time domain resource.
  • the first communication device may also obtain the first number corresponding to the first time domain resource.
  • the description of the first number reference may be made to the description in the foregoing step S40, and details are not repeated here.
  • the first communication device determines the time domain resource of the demodulation reference signal DMRS on the first time domain resource according to the length and the first number of the first time domain resource.
  • the first communication device may The time domain resource of the DMRS is determined on the resource. In other words, the first communication device will determine the time domain resource of the DMRS as a whole for the first time domain resource, instead of determining the time domain resource of the DMRS separately for each sub-time domain resource.
  • the first communication device determines the time domain resource of the sub-time domain resource j1 according to the length of the sub-time domain resource j1 and the first number
  • the first communication device Specifically, the time domain resource of the DMRS in the first time domain resource may also be determined according to the length of the first time domain resource, the first number, and the corresponding DMRS resource mapping set.
  • the DMRS resource mapping set used by the first communication device should include at least one length with a value greater than 14, and the location parameter
  • the values of DMRS-additionalPosition are not limited to Pos0, Pos1, Pos2, and Pos3.
  • the value of the position parameter DMRS-additionalPosition may also include Pos4, Pos5, etc. (that is, the value of the first number above may be greater than 3).
  • Table 1-5 is another DMRS resource mapping set provided by the embodiment of the present application.
  • the DMRS resource mapping set includes not only multiple lengths with a value less than 14, but also multiple lengths with a value greater than 14.
  • the value of the position parameter DMRS-additionalPosition is not limited to the original Pos0, Pos1, Pos2, and Pos3, but also includes Pos4 and Pos5.
  • Table 1-5 is only an example of the DMRS resource mapping set involved in this step.
  • the value of the length of time domain resources may be more or less than Table 1-5.
  • the value of the position parameter DMRS-additionalPosition may be more or less than that shown in Table 1-5, which is not specifically limited in this application.
  • the first communication device After the first communication device obtains the above DMRS resource mapping set, it can determine the first time domain resource from the DMRS resource mapping set by using the length of the first time domain resource and the value of the position parameter DMRS-additionalPosition corresponding to the first number.
  • DMRS resource indication information corresponding to a time domain resource. Then, here, the first communication device determines the time domain resource of the DMRS on the first time domain resource according to the DMRS resource indication information.
  • the specific process refer to the process in which the first communication device determines the time domain resource of the sub-time domain resource j1 according to the length and the first number of the sub-time domain resource j1 described above, and will not be repeated here.
  • the determination of the time domain resource of the DMRS on the first time domain resource can be equivalent to each sub-time domain resource.
  • the time domain resources of the DMRS on the domain resources are also determined.
  • FIG. 7 is another schematic flowchart of a communication method provided by an embodiment of the present application. It can be seen from FIG. 7 that in the case where the first communication device is the sender (that is, the second communication device is the receiver), the first communication device determines whether each sub-time domain resource is configured with DMRS through the above step S40, or through the above steps. After S40 and S41' determine the time domain resources of the DMRS on the first time domain resources, the following steps may be performed:
  • the first communication device performs signal transmission through a second sub-time domain resource in the at least two sub-time domain resources.
  • the signal sent by the first communication device through the second sub-time-domain resource should satisfy at least one of the following: the same transmit power, the same precoding, and the same transmit port.
  • the signal transmission performed by the first communication device through the sub-time domain resource j1 should be It is guaranteed that at least one of transmit power, precoding or transmit port used for signal transmission through sub-time domain resource j1 is the same.
  • the first communication device when the first communication device performs at least two signal transmissions to the second communication device through the at least two sub-time-domain resources, if the first communication device determines that any sub-time-domain resource in the at least two sub-time-domain resources If no DMRS is configured, the signal transmission performed by the first communication device through any sub-time domain resource and the signal transmission performed through the sub-time domain resource configured with DMRS should satisfy at least one of the following: the same transmit power and the same precoding , the transmitting port is the same. It should be noted here that one sub-time domain resource is only used for one signal transmission.
  • the second communication device when the second communication device is the receiver, the second communication device can also use the same method as the above-mentioned first communication to determine whether each sub-time domain resource in the first time domain resource is configured with DMRS, Then, the signal reception to the first communication device is completed.
  • the process for the second communication device to determine the time domain resources of the DMRS on the first time domain resources is the same as the process for the first communication device to determine the time domain resources for the DMRS on the first time domain resources, and will not be repeated here.
  • FIG. 8 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • the first communication device when the first communication device is the receiver, the first communication device After the DMRS configuration is performed on each sub-time domain resource through the time domain resource of the DMRS determined by the above step S40 or steps S40 and S41', the steps can also be performed:
  • the first communication device determines the channel estimation result corresponding to the first sub-time domain resource as the channel estimation result when the signal is received through the second sub-time domain resource.
  • the channel estimation result obtained when the signal is received through the sub-time domain resource j1 can be reused.
  • the first communication device when the first communication device receives signals from the second communication device at least twice through the at least two sub-time domain resources, if the first communication device determines any sub-time domain in the at least two sub-time domain resources No DMRS is configured on the resource, then the first communication device may determine the channel estimation result corresponding to the sub-time domain resource configured with DMRS as the channel estimation result when the signal is received through any of the sub-time domain resources, and then complete the channel estimation result in this sub-time domain resource. Signal reception on any sub-time domain resource.
  • the second communication device can also use the same method as the above-mentioned first communication to determine the time domain resource on the first time domain resource. time domain resources of the DMRS, and then complete the signal transmission to the first communication device.
  • the process for the second communication device to determine the time domain resources of the DMRS on the first time domain resources is the same as the process for the first communication device to determine the time domain resources for the DMRS on the first time domain resources, and will not be repeated here.
  • this time of data transmission may be a certain uplink or downlink repeated transmission between the first communication device and the second communication device.
  • the data transmission this time may also be another uplink or downlink data transmission process between the first communication device and the second communication device except repeated transmission, which is not specifically limited in this application.
  • the object to be transmitted may be a PUSCH, a physical uplink control channel (PUCCH), a physical downlink shared channel (PDSCH) or a physical uplink control channel (PDSCH).
  • FIG. 9 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • the apparatus can be used to perform the function of the first communication device in the above-mentioned first embodiment.
  • the apparatus may be the first communication device itself, or may be an element or module inside the first communication device.
  • the device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, control the device, execute the software program, process the data of the software program, and the like.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as a touch screen, a display screen, a keyboard, etc., are mainly used for receiving data input by a user using the device and outputting data to the user. It should be noted that, in some scenarios, the communication device may not include an input and output device.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 9 only one memory and processor are shown in FIG. 9 . In an actual device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and/or a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire device.
  • the software program is executed, and the data of the software program is processed.
  • the processor in FIG. 9 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • the device may include multiple baseband processors to adapt to different network standards, the device may include multiple central processors to enhance its processing capability, and various components of the device may be connected through various buses.
  • the above baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the above-mentioned central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the radio frequency circuit with a transceiver function may be regarded as a transceiver unit of the device, and the processor with a processing function may be regarded as a processing unit of the device.
  • the apparatus includes a transceiver unit 910 and a processing unit 920 .
  • the device for implementing the receiving function in the transceiver unit 910 may be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 910 may be regarded as a transmitting unit, that is, the transceiver unit 910 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be sometimes referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the processing unit 920 is configured to determine the first time domain resource.
  • the first time domain resource includes at least two consecutive sub-time domain resources, the at least two sub-time domain resources are time domain resources in at least two adjacent first time units, and the at least two sub-time domain resources are The domain resources are in one-to-one correspondence with the at least two adjacent first time units, the sum of the lengths of the at least two sub-time domain resources is equal to the length of the first time domain resources, and the length of the time domain resources is the time domain resource The number of second time units included in .
  • the processing unit 920 is further configured to, if it is determined that the length of the first sub-time domain resource in the at least two sub-time domain resources is equal to or greater than the first length threshold, or, determine the first sub-time domain resource in the at least two sub-time domain resources. If the transmission code rate corresponding to the sub-time domain resource is smaller than the preset transmission code rate, it is determined that a demodulation reference signal DMRS is configured on the first sub-time domain resource.
  • the above-mentioned processing unit 920 and the transceiver unit 910 may also execute the methods in the following examples.
  • the processing unit 920 is further configured to, if it is determined that the length of the second sub-time domain resource in the at least two sub-time domain resources is smaller than the first length threshold, or, to determine the at least two sub-time domain resources
  • the transmission code rate corresponding to the second sub-time domain resource in the sub-time domain resources is equal to or higher than the preset transmission code rate, and the determined second sub-time domain resource is not configured with DMRS.
  • the transceiver unit 910 is configured to perform signal transmission through the second sub-time domain resource.
  • the signal transmission performed by the transceiver unit 910 through the second sub-time domain resource and the signal transmission performed through the first sub-time domain resource satisfy at least one of the following: the transmit power is the same, the precoding is the same, The transmit ports are the same.
  • the processing unit 920 is further configured to determine the channel estimation result corresponding to the first sub-time domain resource as the channel estimation result when the signal is received through the second sub-time domain resource.
  • the first length threshold is determined by the length of the first time domain resource.
  • the processing unit 920 is further configured to acquire the start and duration length indication parameters and the upper limit of the target length corresponding to the first time domain resource.
  • the upper limit of the target length is the maximum allowable number of second time units included in the first time domain resource, and the upper limit of the target length is greater than 14.
  • the length and the starting position of the first time domain resource are determined according to the upper limit of the target length and the starting and continuing length indication parameters.
  • the transceiving unit 910 may be configured to receive the first upper length limit indication parameter from the second communication device.
  • the processing unit 920 is configured to determine a target upper limit adjustment coefficient according to the first length upper limit indication parameter.
  • the processing unit 920 is further configured to determine the upper limit of the target length according to the target upper limit adjustment coefficient and the upper limit of the basic number of first time units corresponding to the first time domain resource. Wherein, the upper limit of the basic number is 14.
  • the processing unit 920 is further configured to determine a target upper limit adjustment coefficient corresponding to the first length upper limit indication parameter from a preset upper limit adjustment coefficient set according to the first length upper limit indication parameter.
  • the upper limit adjustment coefficient set includes one or more upper limit adjustment coefficients corresponding to different length upper limit indication parameters.
  • processing unit 920 is further configured to determine the value of the first length upper limit indication parameter as the target upper limit adjustment coefficient.
  • the transceiving unit 910 is configured to receive the second upper length limit indication parameter from the second communication device.
  • the processing unit 920 is configured to determine the target length upper limit corresponding to the second length upper limit indication parameter from a preset or configured length upper limit set according to the second length upper limit indication parameter.
  • the transceiving unit 910 is configured to receive the second upper length limit indication parameter from the second communication device.
  • the processing unit 920 is configured to determine the value of the second length indication parameter as the upper limit of the target length.
  • the processing unit 920 is further configured to obtain the target index value. Then, according to the target index value, the target length and target start position corresponding to the target index value are determined from the preset time domain resource indication set.
  • the time domain resource indication set includes one or more different index values and the corresponding length and starting position of each index value, and the one or more index values include at least one index with a corresponding length greater than 14 value.
  • the target length and target start position information corresponding to the target index value are determined as the length and start position of the first time domain resource.
  • the processing unit 920 is configured to determine the length and the first number of the first time domain resource.
  • the first time domain resource includes at least two consecutive sub-time domain resources, the at least two sub-time domain resources are time domain resources in at least two adjacent first time units, and the at least two sub-time domain resources are The domain resources are in one-to-one correspondence with the at least two adjacent first time units, the sum of the lengths of the at least two sub-time domain resources is equal to the length of the first time domain resources, and the length of the time domain resources is the length of the time domain resources.
  • the number of second time units to include.
  • the first number is the maximum allowable number of first DMRSs configured on the first time domain resource.
  • the processing unit 920 is further configured to determine the time domain resource of the demodulation reference signal DMRS on the first time domain resource according to the length of the first time domain resource and the first number pair.
  • the above-mentioned processing unit 920 and the transceiver unit 910 may also execute the methods in the following examples.
  • the first number is greater than three.
  • the transceiver unit 920 is configured to, when the processing unit determines that any sub-time domain resource in the at least two sub-time domain resources is not configured with a DMRS, perform the transmission through the any sub-time domain resource.
  • Signal transmission and signal transmission through sub-time domain resources configured with DMRS satisfy at least one of the following: the same transmit power, the same precoding, and the same transmit port.
  • the processing unit 920 is further configured to, if it is determined that no DMRS is configured on any sub-time resource in the at least two sub-time resources, configure the channel corresponding to the sub-time resource configured with the DMRS The estimation result is used to demodulate the signal received at any of the sub-time domain resources.
  • the processing unit 920 is further configured to acquire the start and duration length indication parameters and the upper limit of the target length corresponding to the first time domain resource.
  • the upper limit of the target length is the maximum allowable number of second time units included in the first time domain resource, and the upper limit of the target length is greater than 14.
  • the length and the starting position of the first time domain resource are determined according to the upper limit of the target length and the starting and continuing length indication parameters.
  • the transceiving unit 910 may be configured to receive the first upper length limit indication parameter from the second communication device.
  • the processing unit 920 is configured to determine a target upper limit adjustment coefficient according to the first length upper limit indication parameter.
  • the processing unit 920 is further configured to determine the upper limit of the target length according to the target upper limit adjustment coefficient and the upper limit of the basic number of first time units corresponding to the first time domain resource. Wherein, the upper limit of the basic number is 14.
  • the processing unit 920 is further configured to determine a target upper limit adjustment coefficient corresponding to the first length upper limit indication parameter from a preset upper limit adjustment coefficient set according to the first length upper limit indication parameter.
  • the upper limit adjustment coefficient set includes one or more upper limit adjustment coefficients corresponding to different length upper limit indication parameters.
  • processing unit 920 is further configured to determine the value of the first length upper limit indication parameter as the target upper limit adjustment coefficient.
  • the transceiving unit 910 is configured to receive the second upper length limit indication parameter from the second communication device.
  • the processing unit 920 is configured to determine the target length upper limit corresponding to the second length upper limit indication parameter from a preset or configured length upper limit set according to the second length upper limit indication parameter.
  • the transceiving unit 910 is configured to receive the second upper length limit indication parameter from the second communication device.
  • the processing unit 920 is configured to determine the value of the second length indication parameter as the upper limit of the target length.
  • the processing unit 920 is further configured to obtain the target index value. Then, according to the target index value, the target length and target start position corresponding to the target index value are determined from the preset time domain resource indication set.
  • the time domain resource indication set includes one or more different index values and the corresponding length and starting position of each index value, and the one or more index values include at least one index with a corresponding length greater than 14 value.
  • the target length and target start position information corresponding to the target index value are determined as the length and start position of the first time domain resource.
  • the first time unit is a time slot
  • the second time unit is a time domain symbol
  • FIG. 10 is another schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • the communication apparatus can be applied to the communication system as shown in FIG. 1 to perform the function of the second communication device in the above-mentioned first embodiment.
  • the apparatus may be the second communication device itself, or may be a component or module inside the second communication device.
  • the apparatus may include one or more transceiver units 1010 and one or more processing units 1020 .
  • the above-mentioned transceiver unit 1010 may be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna and a radio frequency unit.
  • the above-mentioned part of the transceiver unit 1010 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals to baseband signals, for example, for sending the indication information in the above embodiments to the terminal device.
  • the above-mentioned part of the processing unit 1020 is mainly used to perform baseband processing, control the device, and the like.
  • the above-mentioned transceiver unit 1010 and the processing unit 1020 may be physically set together, or may be physically separated, that is, a distributed device.
  • the above-mentioned processing unit 1020 may be used to control the apparatus to perform the process of determining the indication information in the above-mentioned first embodiment.
  • the above-mentioned processing unit 1020 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as an NR network) with a single access indication, or may respectively support a wireless access network with different access standards. wireless access network.
  • the above-mentioned processing unit 1020 further includes a memory and a processor, and the above-mentioned memory is used for storing necessary instructions and data.
  • the above-mentioned processor is used to control the apparatus to perform necessary actions, for example, to control the apparatus to execute the operation flow of the apparatus in the above-mentioned method embodiments.
  • the memory and processor described above may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the processor may include a baseband processor and/or a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire device.
  • the software program is executed, and the data of the software program is processed.
  • the processor in FIG. 10 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • the device may include multiple baseband processors to adapt to different network standards, the device may include multiple central processors to enhance its processing capability, and various components of the device may be connected through various buses.
  • the above baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the above-mentioned central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the processing unit 1020 is configured to determine the start and duration length indication parameters and the target length upper limit corresponding to the first time domain resource, wherein the start and duration length indication parameters and the target length upper limit are used for Indicates the length of the first time domain resource and the target start symbol parameter, the resource length of the time domain resource is the number of second time units included in the time domain resource, and the length of the first time domain resource is greater than 14 .
  • the transceiver unit 1010 is configured to send the start and duration length indication parameters and the upper limit of the target length to the first communication device.
  • processing unit 1020 and the transceiver unit 1010 can also be used to execute the methods in the following examples.
  • the processing unit 1020 determines a first upper length limit indication parameter corresponding to the target upper limit adjustment coefficient from a preset upper limit adjustment coefficient set.
  • the upper limit adjustment coefficient set includes length upper limit indication parameters corresponding to one or more different upper limit adjustment coefficients.
  • the processing unit 1020 determines the value of the target upper limit adjustment coefficient as the first length upper limit indication parameter.
  • the processing unit 1020 determines a second upper length limit indication parameter corresponding to the target length upper limit from a preset length upper limit set.
  • the length upper limit set includes one or more length upper limit indication parameters corresponding to different length upper limits.
  • the transceiver unit 1010 sends the second length upper limit indication parameter to the first communication device.
  • the processing unit 1020 determines the value of the upper limit of the target length as the second upper length limit indication parameter.
  • the transceiver unit 1010 sends the second length upper limit indication parameter to the first communication device.
  • the processing unit 1020 determines, according to the length and starting position of the first time domain resource, from a preset time domain resource indication set, the corresponding length of the first time domain resource and the starting position. target index value.
  • the time domain resource indication set includes one or more index values and the corresponding length and starting position of each index value, and the length of the time domain resource is the number of second time units included in the time domain resource.
  • the length of the first time domain resource is greater than 14.
  • the transceiver unit 1010 sends the target index value to the first communication device, where the target index value is used by the first communication device to determine the length and start position of the first time domain resource.
  • FIG. 11 is another schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • the apparatus may be the first communication device in Embodiment 1, and may be used to implement the communication method described in Embodiment 1 above.
  • the apparatus includes: a processor 111 , a memory 112 , and a transceiver 113 .
  • the memory 111 includes but is not limited to RAM, ROM, EPROM or CD-ROM, and the memory 111 is used for storing related instructions and data.
  • the memory 111 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set of them:
  • Operation instructions including various operation instructions, which are used to realize various operations.
  • Operating System Includes various system programs for implementing various basic services and handling hardware-based tasks.
  • the transceiver 113 may be a communication module, a transceiver circuit. Application In this embodiment of the present application, the transceiver 113 is configured to perform the process of sending and receiving data or signals performed by the first communication device in the first embodiment.
  • the processor 111 may be a controller, CPU, general purpose processor, DSP, ASIC, FPGA or other programmable logic device, transistor logic device, hardware component or any combination thereof. It may implement or execute various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of this application.
  • the processor 111 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • various components of the device are coupled to each other.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices discrete gate or transistor logic devices, discrete hardware components.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • Embodiments of the present application further provide a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, implements the methods or steps performed by the first communication device in the above-mentioned first embodiment.
  • An embodiment of the present application further provides a computer program product, which implements the method or step performed by the first communication device in the first embodiment above when the computer program product is executed by a computer.
  • An embodiment of the present application further provides an apparatus, and the apparatus may be the first communication device in Embodiment 1.
  • the apparatus includes a processor and an interface.
  • the processor is configured to execute the method or step executed by the first communication device in the first embodiment.
  • the above-mentioned apparatus may be a chip, and the above-mentioned processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor can be a general-purpose processor, which is implemented by reading the software codes stored in the memory, and the memory can be integrated in the processor, and can be located outside the above-mentioned processor and exist independently.
  • FIG. 12 is another schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • the apparatus may be the second communication device in the first embodiment, and may be used to implement the steps of the communication method performed by the second communication device in the above-mentioned first embodiment.
  • the apparatus includes: a processor 121 , a memory 122 , and a transceiver 123 .
  • the memory 121 includes but is not limited to RAM, ROM, EPROM or CD-ROM, and the memory 121 is used for storing related instructions and data.
  • the memory 121 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set of them:
  • Operation instructions including various operation instructions, which are used to realize various operations.
  • Operating System Includes various system programs for implementing various basic services and handling hardware-based tasks.
  • the transceiver 123 may be a communication module, a transceiver circuit. Application In this embodiment of the present application, the transceiver 123 is configured to perform the signal or data sending and receiving process performed by the second communication device in the first embodiment.
  • the processor 121 may be a controller, CPU, general purpose processor, DSP, ASIC, FPGA or other programmable logic device, transistor logic device, hardware component or any combination thereof. It may implement or execute various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of this application.
  • the processor 121 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the various components of the device are coupled together.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices discrete gate or transistor logic devices, discrete hardware components.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SCRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • Embodiments of the present application further provide a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, implements the method or steps performed by the second communication device in the above-mentioned first embodiment.
  • An embodiment of the present application further provides a computer program product, which implements the method or step performed by the second communication device in the first embodiment above when the computer program product is executed by a computer.
  • An embodiment of the present application further provides an apparatus, and the apparatus may be the second communication device in Embodiment 1.
  • the apparatus includes a processor and an interface.
  • the processor is configured to execute the method or step executed by the second communication device in the first embodiment.
  • the above-mentioned apparatus may be a chip, and the above-mentioned processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor can be a general-purpose processor, which can be implemented by reading software codes stored in the memory, and the memory can be integrated in the processor, and can be located outside the processor and exist independently.
  • the above method embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product described above includes one or more computer instructions. When the above-mentioned computer instructions are loaded and executed on a computer, all or part of the above-mentioned processes or functions according to the embodiments of the present application are generated.
  • the aforementioned computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the above-mentioned computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the above-mentioned computer instructions may be transmitted from a website site, computer, server or data center via wired communication. (e.g. coaxial cable, fiber optic, digital subscriber Line (DSL) or wireless (e.g. infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the above computer readable storage The medium can be any available medium that can be accessed by a computer or a data storage device that contains one or more of the available media integration servers, data centers, etc.
  • the aforementioned available media can be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (For example, a high-density digital video disc (DVD), or a semiconductor medium (for example, a solid state disk (SSD), etc.).
  • magnetic media eg, floppy disks, hard disks, magnetic tapes
  • optical media For example, a high-density digital video disc (DVD), or a semiconductor medium (for example, a solid state disk (SSD), etc.
  • SSD solid state disk
  • system and “network” in the embodiments of the present application can often be used interchangeably.
  • the term “and/or” in this embodiment is only an association relationship to describe associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, There are three cases of B alone.
  • the character "/" in this document generally indicates that the related objects are an "or” relationship.
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the apparatus described above is only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated into another A system, or some feature, can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • each functional unit in the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法和装置。第一通信设备确定第一时域资源。其中,第一时域资源包括连续的至少两个子时域资源,该至少两个子时域资源为至少两个相邻第一时间单元中的时域资源,且所述至少两个子时域资源与所述至少两个相邻第一时间单元一一对应。若所述第一通信设备确定这至少两个子时域资源中的第一子时域资源的长度等于或者大于第一长度阈值,或者,确定所述至少两个子时域资源中第一子时域资源对应的传输码率小于预设传输码率,则第一通信设备确定在所述第一子时域资源上配置有解调参考信号DMRS。采用本申请提供的方法,可解决超过14个符号的时域资源的DMRS的资源配置问题。

Description

一种通信方法和装置 技术领域
本申请涉及无线通信领域,尤其涉及一种通信方法和装置。
背景技术
随着移动通信技术的不断发展,第五代(the Fifth-Generation,5G)移动通信技术(又称为新无线(new radio,NR))已经被提出。实际应用中,5G技术的业务非常多样,比如面向增强型移动宽带(enhanced mobile broadband,eMBB)业务、超可靠低延时通信(ultra-reliability low-latency communication,URLLC)业务以及大规模机器通信(massive machine-type communication,mMTC)业务等。
在现有的NR协议中规定,一个时隙(即slot)中包括14个正交频分复用时域符号(orthogonal frequency division multiplexing symbols,OS)(以下简称为符号),并且网络设备单次调度的时域资源的长度不会超过一个时隙。这里,某一时域资源的长度通常指的是该时域资源中包含的时域符号的个数。换言之,就是网络设备单次调度的时域资源的长度不会大于14。然而,随着5G技术的不断发展,单次调度资源长度大于14的时域资源的技术需求也逐渐出现。例如,为了实现上行增强,人们就提出了支持超过14个时域符号的物理上行共享信道(physical uplink shared channel,PUSCH)的资源调度,一方面能够将多个时隙上的包聚合成大于14时域符号的单次调度资源长度上的更大的包,获取更好的信道编码能力来改善传输性能,另一方面将多个小包聚合成更大的包,能够降低总的包头开销,改善传输的效率。但是,现有NR标准还无法实现超14个时域符号的资源调度及此时如何配置解调参考信号(demodulation reference signal,DMRS)。
发明内容
本申请提供一种通信方法和装置。通过本申请提供的方法,能够减小参考信号配置的开销,改善传输的频谱效率。
第一方面,本申请实施例提供一种通信方法。第一通信设备确定第一时域资源包括的至少两个子时域资源。其中,所述第一时域资源包括连续的至少两个子时域资源,所述至少两个子时域资源为至少两个相邻第一时间单元中的时域资源,且所述至少两个子时域资源与所述至少两个相邻第一时间单元一一对应,所述至少两个子时域资源的长度之和等于所述第一时域资源的长度,时域资源的长度为时域资源中包括的第二时间单元的个数。若所述第一通信设备确定所述至少两个子时域资源中的第一子时域资源的长度等于或者大于第一长度阈值,或者,确定所述至少两个子时域资源中第一子时域资源对应的传输码率小于预设传输码率,则所述第一通信设备确定在所述第一子时域资源上配置有解调参考信号DMRS。
在如上述实现中,由于超14个时域符号的时域资源会包含于至少两个连续的第一时间单元(例如,时隙)。因此,在第一通信设备确定的第一时域资源占据了至少两个相邻的第一时间单元的情况下,第一通信设备可分别对这至少两个连续的子时域资源进行DMRS的 资源的确定。这便解决了超过14个时域符号的时域资源的DMRS的资源配置问题。此外,第一通信设备只有在确定第一子时域资源的长度等于或者大于第一长度阈值,或者,确定第一子时域资源对应的传输码率小于预设传输码率,才确定在第一子时域资源上配置有解调参考信号DMRS,这样可以使得第一子时域资源上配置的DMRS的数量较为合理,可避免第一子时域资源的传输码率过大。
结合第一方面,在一种可能的设计中,若所述第一通信设备确定所述至少两个子时域资源中的第二子时域资源的长度小于所述第一长度阈值,或者,确定所述至少两个子时域资源中的第二子时域资源对应的传输码率等于或者高于所述预设传输码率,则所述第一通信设备确定所述第二子时域资源不配置DMRS。这里,对于长度较小或者传输码率较大的第二子时域资源,第一通信设备可确定不配置DMRS,这样也可避免经过DMRS配置后的第二子时域资源的传输码率过大或者DMRS分布不均匀等情况的发生。
结合第一方面,在一种可能的设计中,在所述第一通信设备确定所述第二子时域资源不配置DMRS之后,所述第一通信设备通过所述第二子时域资源进行信号传输。其中,所述第一通信设备通过所述第二子时域资源进行的信号传输以及通过所述第一子时域资源进行的信号传输满足以下中的至少一项:发射功率相同、预编码相同、发射端口相同。
这里,当第一通信设备为发送方时,对第一通信设备通过所述第二子时域资源所进行的信号传输进行发射功率、预编码或者发射端口的约束,可使得第一通信设备的接收端(即第二通信设备)能够对通过所述第二子时域资源进行的信号传输以及通过所述第一子时域资源进行的信号传输进行联合信道估计,可改善信道估计准确性,并提升传输效率。
结合第一方面,在一种可能的设计中,在所述第一通信设备确定所述第二子时域资源不配置DMRS之后,所述第一通信设备将所述第一子时域资源对应的信道估计结果确定为所述第一通信设备通过所述第二子时域资源进行信号接收时的信道估计结果。这里,当第一通信设备为接收方时,第一通信设备可对所述第二子时域资源和所述第一子时域资源上进行的信号接收进行联合信道估计,可增强信号接收的质量。结合第一方面,在一种可能的设计中,所述第一长度阈值由所述第一时域资源的长度确定。
结合第一方面,在一种可能的设计中,所述第一通信设备还可获取所述第一时域资源对应的起始和持续长度指示参量和目标长度上限。其中,所述目标长度上限为所述第一时域资源包含的第二时间单元的最大允许个数,所述目标长度上限大于14。所述第一通信设备根据所述目标长度上限和所述起始和持续长度指示参量确定所述第一时域资源的长度和起始位置。这里,第一通信设备直接根据大小可调的目标长度上限和起始和持续长度指示参量来确定所述第一时域资源的长度和起始位置,可使得本申请提供的时域资源确定方法能够兼容现有协议所提供的小于或等于14个时域符号的时域资源的配置过程,有利于本申请提供的时域资源确定方法的实际应用。
结合第一方面,在一种可能的设计中,所述第一通信设备可接收来自于第二通信设备的第一长度上限指示参量,并根据所述第一长度上限指示参量确定目标上限调整系数。所述第一通信设备根据所述目标上限调整系数和所述第一时域资源对应的第一时间单元的基本个数上限确定出所述目标长度上限。其中,所述基本个数上限为14。
结合第一方面,在一种可能的设计中,所述第一通信设备根据所述第一长度上限指示 参量从预设的上限调整系数集合中确定出所述第一长度上限指示参量对应的目标上限调整系数。其中,所述上限调整系数集合中包括一个或者多个不同的长度上限指示参量对应的上限调整系数。
结合第一方面,在一种可能的设计中,所述第一通信设备将第一长度上限指示参量的取值确定为目标上限调整系数。
这里,第一通信设备根据第二通信设备指示的第一长度上限指示参量的取值作为目标上限调整系数,然后第一通信设备即可根据目标上限调整系数和基本个数上限确定出真正的目标长度上限,这种方式一方面可便于目标长度上限的大小的调整,另一方面也使得第一通信设备获取目标长度上限的过程变得简单且有效。
结合第一方面,在一种可能的设计中,所述第一通信设备接收来自于第二通信设备的第二长度上限指示参量。所述第一通信设备根据所述第二长度上限指示参量从预设或配置的长度上限集合中确定出所述第二长度上限指示参量对应目标长度上限。其中,所述长度上限集合中包括一个或者多个不同的长度上限指示参量对应的长度上限。
结合第一方面,在一种可能的设计中,所述第一通信设备接收来自于第二通信设备的第二长度上限指示参量。所述第一通信设备将所述第二长度上限指示参量的取值作为目标长度上限。
这里,第二通信设备直接通过第二长度上限指示参量的取值指示为目标长度上限,方法简单且易于实现。
结合第一方面,在一种可能的设计中,所述第一通信设备获取目标索引值。所述第一通信设备根据所述目标索引值从预设的时域资源指示集合中确定出所述目标索引值对应的目标长度和目标起始位置,其中,所述时域资源指示集合中包括一个或者多个不同的索引值以及各索引值对应的长度和起始位置,所述一个或者多个索引值中至少包括一个对应的长度大于14的索引值。所述第一通信设备将所述目标索引值对应的目标长度和目标起始位置信息确定为所述第一时域资源的长度和起始位置。
这里,第二通信设备直接通过一个目标索引值指示第一时域资源的长度和起始位置,可减少第一时域资源的长度和起始位置的指示所占用的信令资源,可提升第二通信设备和第一通信设备的资源利用效率。
结合第一方面,在一种可能的设计中,所述第一时间单元为时隙,所述第二时间单元为时域符号。
第二方面,本申请实施例提供一种通信方法。第一通信设备确定第一时域资源的长度和第一个数。其中,所述第一时域资源包括连续的至少两个子时域资源,所述至少两个子时域资源为至少两个相邻第一时间单元中的时域资源,且所述至少两个子时域资源与上述至少两个相邻第一时间单元一一对应,所述至少两个子时域资源的长度之和等于所述第一时域资源的长度,时域资源的长度为时域资源中包括的第二时间单元的个数,所述第一时域资源的长度大于14,所述第一个数为在所述第一时域资源上配置的第一DMRS的最大允许个数;
所述第一通信设备根据第一时域资源的长度和所述第一个数在所述第一时域资源上进行解调参考信号DMRS的时域资源的确定。
如上述实现中,在第一通信设备确定的第一时域资源占据了至少两个相邻的第一时间单元(即时隙)的情况下,第一通信设备直接将第一时域资源作为一个整体进行DMRS的时域资源的确定,可使得每个子时域资源的DMRS的配置在数量上和位置上都较为合理。
结合第二方面,在一种可能的设计中,所述第一个数大于3。
结合第二方面,在一种可能的设计中,若所述第一通信设备确定所述至少两个子时域资源中任一子时域资源上没有配置DMRS,则所述第一通信设备通过所述任一子时域资源进行的信号传输与配置有DMRS的子时域资源进行的信号传输满足以下中的至少一个:发射功率相同、预编码相同、发射端口相同。
结合第二方面,在一种可能的设计中,若所述第一通信设备确定所述至少两个子时域资源中任一子时域资源上没有配置DMRS,则所述第一通信设备将配置有DMRS的子时域资源对应的信道估计结果用于解调在所述任一子时域资源上接收的信号。
结合第二方面,在一种可能的设计中,所述第一通信设备获取所述第一时域资源对应的起始和持续长度指示参量和目标长度上限,其中,所述目标长度上限为所述第一时域资源包含的第二时间单元的最大允许个数,所述目标长度上限大于14。所述第一通信设备根据所述目标长度上限和所述起始和持续长度指示参量确定所述第一时域资源的长度和起始位置。
结合第二方面,在一种可能的设计中,所述第一通信设备可接收来自于第二通信设备的第一长度上限指示参量,并根据所述第一长度上限指示参量确定目标上限调整系数。所述第一通信设备根据所述目标上限调整系数和所述第一时域资源对应的第一时间单元的基本个数上限确定出所述目标长度上限。其中,所述基本个数上限为14。
结合第二方面,在一种可能的设计中,所述第一通信设备根据所述第一长度上限指示参量从预设的上限调整系数集合中确定出所述第一长度上限指示参量对应的目标上限调整系数。其中,所述上限调整系数集合中包括一个或者多个不同的长度上限指示参量对应的上限调整系数。
结合第二方面,在一种可能的设计中,所述第一通信设备将所述第一长度上限指示参量的取值确定为目标上限调整系数。
结合第二方面,在一种可能的设计中,所述第一通信设备接收来自于第二通信设备的第一长度上限指示参量。所述第一通信设备根据所述第一长度上限指示参量从预设的长度上限集合中确定出所述第一长度上限指示参量对应目标长度上限。其中,所述长度上限集合中包括一个或者多个不同的长度上限指示参量对应的长度上限。
结合第二方面,在一种可能的设计中,所述第一通信设备接收来自于第二通信设备的第一长度上限指示参量。所述第一通信设备将所述第一长度上限指示参量的取值确定为目标长度上限。
结合第二方面,在一种可能的设计中,所述第一通信设备获取目标索引值。所述第一通信设备根据所述目标索引值从预设的时域资源指示集合中确定出所述目标索引值对应的目标长度和目标起始位置,其中,所述时域资源指示集合中包括一个或者多个不同的索引值以及各索引值对应的长度和起始位置,所述一个或者多个索引值中至少包括一个对应的长度大于14的索引值。所述第一通信设备将所述目标索引值对应的目标长度和目标起始位 置信息确定为所述第一时域资源的长度和起始位置。
结合第二方面,在一种可能的设计中,所述第一时间单元为时隙,所述第二时间单元为时域符号。
本申请提供的另一种通信方法和装置,实现了超过14个符号的时域资源的单次调度。
第三方面,本申请实施例提供一种通信方法。第二通信设备确定第一时域资源对应的起始和持续长度指示参量和目标长度上限。其中,所述起始和持续长度指示参量和目标长度上限用于指示所述第一时域资源的长度和目标起始符号参量,时域资源的资源长度为所述时域资源包括的第二时间单元的个数,所述第一时域资源的长度大于14。第二通信设备向第一通信设备发送所述起始和持续长度指示参量和目标长度上限。
结合第三方面,在一种可能的设计中,所述第二通信设备根据所述第一时域资源对应的第二时间单元的基本个数上限和所述目标长度上限确定出目标上限调整系数,其中,所述基本个数上限为14;所述第二通信设备确定所述目标上限调整系数对应的第一长度上限指示参量。所述第二通信设备向所述第一通信设备发送所述第一长度上限指示参量。
结合第三方面,在一种可能的设计中,所述第二通信设备从预设的上限调整系数集合中确定出所述目标上限调整系数对应的第一长度上限指示参量,其中,所述上限调整系数集合中包括一个或者多个不同的上限调整系数对应的长度上限指示参量。
结合第三方面,在一种可能的设计中,所述第二通信设备将所述目标上限调整系数的取值确定为第一长度上限指示参量。
结合第三方面,在一种可能的设计中,所述第二通信设备从预设的长度上限集合中确定出所述目标长度上限对应的第二长度上限指示参量,其中,所述长度上限集合中包括一个或者多个不同的长度上限对应的长度上限指示参量。所述第二通信设备向所述第一通信设备发送所述第二长度上限指示参量。
结合第三方面,在一种可能的设计中,所述第二通信设备将目标长度上限的取值确定为第二长度上限指示参量。所述第二通信设备向所述第一通信设备发送所述第二长度上限指示参量。
第四方面,本申请实施例提供一种通信方法。第二通信设备根据第一时域资源的长度和起始位置从预设的时域资源指示集合中确定出所述第一时域资源的长度和起始位置对应的目标索引值。其中,所述时域资源指示集合中包括一个或者多个索引值以及各索引值对应的长度和起始位置,时域资源的长度为时域资源中包括的第二时间单元的个数,所述第一时域资源的长度大于14。所述第二通信设备向所述第一通信设备发送所述目标索引值,所述目标索引值用于所述第一通信设备确定所述第一时域资源的长度和起始位置。
第五方面,本申请实施例提供了一种装置。该装置可为第一通信设备本身,也可为第一通信设备内部的如芯片等元件或者模块。该装置包括用于执行上述第一方面或者第二方面的任意一种可能的实现方式所提供的通信方法的单元,因此也能是实现第一方面或者第二方面提供的通信方法所具备的有益效果(或者优点)。
第六方面,本申请实施例提供了一种装置。该装置可为第二通信设备本身,也可为第二通信设备内部的如芯片等元件或者模块。该装置包括用于执行上述第三方面或者第四方面的任意一种可能的实现方式所提供的通信方法的单元,因此也能是实现第三方面或者第 四方面提供的通信方法所具备的有益效果(或者优点)。
第七方面,本申请实施例提供了一种装置,该装置可为第一通信设备。该装置包括至少一个存储器、处理器以及收发器。其中,该处理器用于调用存储器存储的代码,并结合收发器执行上述第一方面或者第二方面中任意一种可行的实现方式所提供的通信方法。
第八方面,本申请实施例提供了一种装置,该装置可为第二通信设备。该装置包括至少一个存储器、处理器以及收发器。其中,该处理器用于调用存储器存储的代码,并结合收发器执行上述第三方面或者第四方面中任意一种可行的实现方式所提供的通信方法。
第九方面,本申请实施例提供了一种装置,该装置可为第一通信设备。该装置包括:至少一个处理器和接口电路。该接口电路用于接收代码指令并传输至该处理器。该处理器用于运行上述代码指令以实现上述第一方面或者第二方面中任意一种可行的实现方式所提供的通信方法,也能实现上述第一方面或者第二方面提供的通信方法所具备的有益效果(或者优点)。
第十方面,本申请实施例提供了一种装置,该装置可为第二通信设备。该装置包括:至少一个处理器和接口电路。该接口电路用于接收代码指令并传输至该处理器。该处理器用于运行上述代码指令以实现上述第三方面或者第四方面中任意一种可行的实现方式所提供的通信方法,也能实现上述第三方面或者第四方面提供的通信方法所具备的有益效果(或者优点)。
第十一方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,实现上述第一方面或者第二方面中任意一种可行的实现方式所提供的通信方法,也能实现上述第一方面或者第二方面提供的通信方法所具备的有益效果(或者优点)。
第十二方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,实现上述第三方面或者第四方面中任意一种可行的实现方式所提供的通信方法,也能实现上述第三方面或者第四方面提供的通信方法所具备的有益效果(或者优点)。
第十三方面,本申请实施例提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或者第二方面提供的通信方法,也能实现第一方面或者第二方面提供的通信方法所具备的有益效果。
第十四方面,本申请实施例提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第三方面或者第四方面提供的通信方法,也能实现第三方面或者第四方面提供的通信方法所具备的有益效果。
第十五方面,本申请实施例提供了一种通信系统,该通信系统包括上述第一方面或者第二方面涉及的第一通信设备,以及,第三方面或者第四方面涉及的第二通信设备。
采用本申请实施例提供的方法,可解决超过14个符号的时域资源的DMRS的资源分配问题,可提升了5G等通信技术的适用性。
附图说明
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种通信方法一流程示意图;
图3是本申请实施例提供的一种第一时域资源的结构示意图;
图4是本申请实施例提供的一种通信方法又一流程示意图;
图5是本申请实施例提供的一种通信方法又一流程示意图;
图6是本申请实施例提供的一种通信方法又一流程示意图;
图7是本申请实施例提供的一种通信方法又一流程示意图;
图8是本申请实施例提供的一种通信方法又一流程示意图;
图9是本申请实施例提供的一种装置一结构示意图;
图10是本申请实施例提供的一种装置又一结构示意图;
图11是本申请实施例提供的一种装置又一结构示意图;
图12是本申请实施例提供的一种装置又一结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的提供的通信方法可以应用于各种通信系统,例如:例如MTC系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例提供的通信方法具体由第一通信设备和/或第二通信设备来执行。上述第一通信设备可以是上述各种通信系统中的终端设备,上述第二通信设备可以是上述各种通常系统中的网络设备。上述终端设备具体可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。本申请实施例涉及的网络设备可以是用于与终端设备通信的设备,其具体可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
为了方便对本申请实施例的理解,下面将对本申请实施例涉及到的几个概念进行解释 和说明。
1、时域资源的长度和第二时间单元
在本申请实施例中,某一时域资源的长度指代的就是某一时域资源中包括的第二时间单元的个数。该第二时间单元就是一种用于度量或者指示时域资源的长度的单元。优选的,该第二时间单元可以为时域符号。为了方便理解,后文将以时域符号来代替第二时间单元来进行描述。
2、第一时间单元
在本申请实施例中,所谓的第一时间单元也是一种用于度量或者指示时域资源的长度的单元,一个第一时间单元中可包括预设个数第二时间单元。优选的,上述第一时间单元可以为时隙。在本申请实施例中,一个时隙内符号0、符号1、符号2直至符号13共14个时域符号。每个时域符号的对应的符号数用于指示该时域符号在时隙内的排列顺序。符号数越小的时域符号在时隙内的位置越靠前。例如,符号11就是时隙中的第12个时域符号。另外,每个时隙也会对应一个时隙数以相互区别。为了方便理解,后文将以时隙来代替第二时间单元来进行描述。
3、解调参考信号DMRS
DMRS是收发端已知的序列,映射在位置已知的时频资源上。以上行传输为例,发送端采用和上行传输的信号相同的预编码和天线端口发送DMRS,由于DMRS和上行传输的信号经历相同的衰落信道,因此,接收端可以基于接收到的DMRS信号和已知的DMRS序列,估计出上行信号传输经历的等效衰落信道,基于估计出的等效的信道状态信息,完成对上行数据的解调。
当前的NR协议中,每次上行传输都需要配置DMRS。例如,通过无线资源控制(radio resource control,RRC)信令配置DMRS参数。其中,DMRS参数可以包括如表1-1示出的参数字段。表1-1为本申请实施例提供的一种现有的DMRS参数表格。
表1-1现有的DMRS参数
Figure PCTCN2020121701-appb-000001
其中,DMRS的参数可包括类型参数DMRS-type、最大长度参数maxLength和位置参数DMRS-additionalPosition。其中,类型参数DMRS-type表示DMRS的类型,可选取值为类型1type1和类型2type2。type1表示DMRS采用梳齿状的频分方式的2组正交码分组,此时,每组在频域上占用6个资源单元(resource element,RE)。type2表示DMRS采用梳齿状的频分方式的3组正交码分组,此时,每组在频域上能用4个RE。当采用type2的DMRS配置时,正交码分组较多,能够支持更多层数据的并行发送。
最大长度参数maxLength表示配置的前置DMRS最多能够占据的连续时域符号数目,可选取值为single和double。当maxLength取值为single时,表示每个DMRS占据1个时域符号。当maxLength取值为double时,表示每个DMRS最大能占据2个连续的时域符号。此时,具体是占用1个时域符号还是2个时域符号,可通过诸如下行控制信息(downlink  control information,DCI)等信息中的一些字段来进一步指示。
位置参数DMRS-additionalPosition表示当前上行传输中,附加DMRS可以占用的时域符号的最大个数,每个附加DMRS占用的时域符号数目和前置DMRS占用的时域符号数目相同。其可选取值为Pos0,Pos1,Pos2,Pos3。上行传输中前置DMRS的配置是必须的,可以理解为,除前置DMRS外,Pos0,Pos1,Pos2,Pos3表示最多还能够配置的附加DMRS的个数分别为0,1,2,3个。
请参见图1,图1是本申请实施例提供的一种通信系统的结构示意图。由图1可知,该通信系统中主要包括第一通信设备和第二通信设备。第一通信设备可通过有线连接、无线连接或者其他连接方式与第二通信设备建立连接。第一通信设备和第二通信设备之间可相互进行通信。针对于第一通信设备和第二通信设备之间的通信,当前通信协议中规定,针对某一次数据传输(如PUSCH信道的传输)进行时域资源调度时,单次可调度的最大时域资源的长度不会超过14。然而,随着5G技术的不断发展,单次调度资源长度大于14的时域资源的技术需求也逐渐出现。例如,为了实现上行增强,人们就提出了支持超过14个时域符号的物理上行共享信道(physical uplink shared channel,PUSCH)的资源调度。一方面能够将多个时隙上的包聚合成大于14时域符号的单次调度资源长度上的更大的包,获取更好的信道编码能力来改善传输性能,另一方面将多个小包聚合成更大的包,能够降低总的包头开销,改善传输的效率。但是,现有NR标准还无法实现超14个时域符号的资源调度及此时如何配置解调参考信号(demodulation reference signal,DMRS)。
因此,本申请实施例要解决的技术问题是:如何确定长度超过14的时域资源中DMRS的时域资源。
实施例一
请参见图2,图2是本申请实施例提供的一种通信方法一流程示意图。本实施例将以第一通信设备和第二通信设备之间的某一次数据传输为具体场景对申请实施例提供的时域资源确定方法进行描述。本申请实施例中涉及的第一通信设备为终端设备,第二通信设备为网络设备。由图2可知,本申请实施例提供的通信方法包括以下步骤:
S10,第二通信设备确定第一时域资源对应的起始和持续长度指示参量和目标长度上限。
S20,第二通信设备向第一通信设备发送起始和持续长度指示参量和目标长度上限。
S30,第一通信设备接收并根据起始和持续长度指示参量和目标长度上限确定第一时域资源。
在一些可行的实现方式中,如步骤S10所述,第二通信设备可先确定本次与第一通信设备进行数据传输所需的时域资源(为方便理解和区别,下文将以第一时域资源代替描述)所对应的起始和持续长度指示参量和目标长度上限。这里,上述第一时域资源的长度是大于14,也就是说,上述第一时域资源中包括的时域符号的个数要大于14。第一时域资源对应的起始和持续长度指示参量和目标长度上限主要用于指示上述第一时域资源的长度以及第一时域资源在第一通信设备与第二通信设备之间的可用时域资源中的位置。
具体实现中,第二通信设备可先根据预设的时域资源调度算法以及当前的时域资源利用情况确定出上述第一时域资源的长度和起始位置。这里,第一时域资源的长度就是第一时域资源中包括的时域符号的个数。上述第一时域资源的起始位置用于指示第一时域资源 的首个时域符号在其所占用的首个时隙中的位置。可选的,在实际应用中,第一时域资源的起始位置就是第一时域资源的首个时域符号在其所占用的首个时隙内的排列序号。
进一步需要说明的是,在第一时域资源的资源长度大于14的情况下,第二通信设备确定出的第一时域资源可包括连续的至少两个子时域资源。这至少两个子时域资源为至少两个相邻第一时间单元中的时域资源。并且,这至少两个子时域资源与上述至少两个相邻第一时间单元一一对应。所述至少两个子时域资源的长度之和等于所述第一时域资源的长度。换句话说,就是这至少两个子时域资源为至少两个相邻时隙中的时域资源。并且,一个时隙中包括一个子时域资源。每个子时域资源的资源长度小于或者等于14。例如,请参见图3,图3是本申请实施例提供的一种第一时域资源的结构示意图。如图3所示,上述第一时域资源可包括至少两个子时域资源,这里假设为第一时域资源包括子时域资源j1和子时域资源j2。上述子时域资源j1可包含于上述第一时域资源占用的时隙i1内,子时域资源j1占用了时隙i1内的第11、第12以及第13这三个符号。上述子时域资源j2可包含于上述第一时域资源占用的时隙i2内,子时域资源j2占用了时隙i2内的第1个到第12个时域符号。时隙i1和时隙i2为相邻的时隙。在如图3所述的场景下,上述第二通信设备确定出的第一时域资源的长度15,第一时域资源对应的起始位置为11,第一时域资源对应的起始时隙参量为i1。
进一步的,第二通信设备在确定出第一时域资源的长度、上述第一时域资源的起始位置之后,可根据第一时域资源的长度、上述第一时域资源的起始位置确定出第一时域资源对应的起始和持续长度指示参量和目标长度上限。这里,第二通信设备通过大小可调的目标长度上限和现有协议中已经提出的起始和持续长度指示参量来为第一通信设备指示所述第一时域资源的长度和起始位置,可使得本申请提供的时域资源确定方法能够兼容现有协议所提供的小于14个时域符号的时域资源的配置过程,可便于本申请提供的时域资源确定方法的实际应用。
具体实现中,第二通信设备在确定出上述第一时域资源的长度和起始位置后,可先确定上述第一时域资源对应的目标长度上限。这里,该目标长度上限即为第一时域资源能够包含的时域符号的最大个数,也可以理解成第一时域资源的最大长度。该目标长度上限可以是第二通信设备预定义的,也可以是第二通信设备以外的其他通信设备为第二通信设备配置的,还可以是第二通信设备根据预设的计算规则计算得到的,本申请不作具体限制。然后,第二通信设备可根据第一时域资源的长度、起始位置以及目标长度上限确定出第一时域资源对应的起始和持续长度指示参量(start and length indicator value,SLIV)。例如,假设第一时域资源的长度为L,起始位置为S,目标长度上限为a。在第一时域资源的长度L满足0≤L≤a-S的情况下,若第二通信设备确定
Figure PCTCN2020121701-appb-000002
则第二通信设备可通过公式SLIV=a×(L-1)+S计算得到第一时域资源对应的起始和持续长度指示参量SLIV。若第二通信设备确定
Figure PCTCN2020121701-appb-000003
则可通过公式SLIV=a×(a-L+1)+(a-1-S)计算得到第一时域资源对应的起始和持续长度指示参量SLIV。例如,假设第二通信设备确定第一 时域资源的资源长度为15,起始位置为5,并且目标长度上限为28。第二通信设备可确定起始和持续长度指示参量SLIV等于28*(15-1)+5,即等于397。当然,第二通信设备也可采用其他方法对第一时域资源的长度、起始位置以及目标长度上限进行处理以得到第一时域资源的起始和持续长度指示参量,本申请不作具体限制。
在一些可行的实现方式中,如前文步骤S20所述,第二通信设备在确定出上述起始和持续长度指示参量和目标长度上限后,可将上述起始和持续长度指示参量和目标长度上限发送给第一通信设备,以使得第一通信设备能够基于上述起始和持续长度指示参量和目标长度上限确定出上述第一时域资源的长度和起始位置。
具体实现中,第二通信设备可通过相同的或者不同的消息将上述起始和持续长度指示参量和目标长度上限发送给第一通信设备。例如,第二通信设备可将上述起始和持续长度指示参量承载于第一消息上,并通过第一消息将该起始和持续长度指示参量发送给第一通信设备。同时,第二通信设备也可将上述目标长度上限承载于第二消息上,并通过第二消息将目标长度上限发送给第一通信设备。又例如,第二通信设备可将上述起始和持续长度指示参量和目标长度上限同时承载于第一消息上,并通过该第一消息将目标长度上限和起始和持续长度指示参量发送给第一通信设备。可选的,上述第一消息具体可以为无线资源控制(radio resource control,RRC)信令。上述第二消息具体可以为下行控制信息(downlink control information,DCI)。例如,第二通信设备可将上述起始和持续长度指示参量以及目标长度上限承载于中RRC信令中,并通过RRC信令将上述起始和持续长度指示参量以及目标长度上限发送给上述第一通信设备。又例如,第二通信设备可将上述起始和持续长度指示参量承载于RRC信令中,将上述目标长度上限承载于中DCI中,然后通过RRC信令和DCI将上述起始和持续长度指示参量以及第一长度上限指示参量发送给第一通信设备。
尤其需要说明的是,第二通信设备发送上述目标长度上限的过程可具备多种实现方式。下面将分别对这多种实现方式进行详细描述。
实现方式1:
第二通信设备可直接将上述目标长度上限的取值承载于上述第一消息或者第二消息中,并发送给第一通信设备。例如,假设第二通信设备确定出的目标长度上限取值为2,则第二通信设备可将目标长度上限的取值2转换成二进制数11,并将二进制数11承载于第一消息或者第二消息中,以将目标长度上限发送给第一通信设备。这里,第二通信设备直接目标长度上限发送给第一通信设备,方法简单且易于实现。
实现方式2:
第二通信设备可依据目标长度上限从预设或者配置的长度上限集合中获取与目标长度上限的取值对应的索引值。所述长度上限集合中包括一个或者多个不同的长度上限对应的索引值,该索引值也可称为第二长度上限指示参量。例如,请参见表1-2,表1-2是本申请实施例提供的一种长度上限集合。如表1-2所示,该长度上限集合中包括了a1、a2、a3以及a4共4个长度上限取值以及与a1、a2、a3以及a4分别对应2比特的第二长度上限指示参量00、01、10、11。例如,假设第二通信设备确定出的目标长度上限为a2,则第二通信设备可确定上述第二长度上限指示参量为01。然后,第二通信设备可将目标长度上限对应的第二长度上限指示参量承载于上述第一消息或者第二消息中,以将上述目标长度上限发 送给第一通信设备。这里,第二通信设备通过一个数据量较小的第二长度上限指示参量(即索引值)从第一通信设备的长度上限集合指示出目标长度上限,方法简单且易于实现,并且可以减少第一通信设备和第二通信设备之间的信令开销。
表1-2长度上限集合
Figure PCTCN2020121701-appb-000004
实现方式3:
第二通信设备可获取第一时域资源对应的时域符号的基本个数上限。这里,该基本个数上限可以为14。然后,第二通信设备可根据该基本个数上限和目标长度上限确定出该目标长度上限对应的目标上限调整系数。例如,第二通信设备可将目标长度上限与基本上限个数之间的比值确定为目标长度上限对应的目标上限调整系数。这里需要说明的是,目标长度上限与基本上限个数之间的比值可以为大于或者等于1的整数,如2或3等,也可以为大于或者等于1的小数,如1.1,1.2等。然后,第二通信设备可确定出上述目标上限调整系数对应的长度上限指示参量(为方便理解和区别,下文将以第一长度上限指示参量代替描述)。例如,第二通信设备可根据上述目标上限调整系数从预设的上限调整系数集合中查找到上述目标上限调整系数对应的长度上限指示参量。这里,该上述上限调整系数中可包括一个或者多个不同取值的上限调整系数,以及,每个上限调整系数所对应的长度上限指示参量。又例如,第二通信设备也可直接目标调整系数确定为第一长度上限指示参量。比如,假设得到的目标上限调整系数为2,则第二通信设备可将2对应的二进制数11确定为上述第一长度上限指示参量。然后,第二通信设备可将目标长度上限对应的第一长度指示参量承载于上述第一消息或者第二消息中,以将上述目标长度上限发送给第一通信设备。这里,第二通信设备可通过一个第一长度上限指示参量为第一通信设备指示目标上限调整系数,然后后续第一通信设备即可根据目标上限调整系数和基本个数上限确定出真正的目标长度上限,这种方式一方面可便于目标长度上限的大小的调整,另一方面也使得第一通信设备获取目标长度上限的过程变得更加简单。
需要补充说明的,上述第二通信设备还可确定出上述第一时域资源的起始时隙参量。这里,该第一时域资源的起始时隙参量用于指示第一时域资源的首个时域符号所在的时隙的位置。可选的,第一时域资源的起始时隙参量就是第一时域资源的首个时域符号所在的时隙在整个时域资源中的排列序号。然后,第二通信设备可将上述起始时隙参量发送给第一通信设备,以使得第一通信设备可确定出上述第一时域资源的首个时域符号所在的时隙的位置。具体的,第二通信设备可确定出其发送上述第一消息和/或第二消息所采用的时域资源(为方便区别,下文将以第二时域资源代替描述)的起始时隙的位置。可以理解的是,第二通信设备发送上述第一消息和/或第二消息所采用的第二时域资源也就是第一通信设备接收上述第一消息和/或第二消息所采用的时域资源。然后,第二通信设备可确定上述第一时域资源的首个时隙与上述第二时域资源的首个时隙之间的时隙偏移个数,并将该时隙偏移个数发送给第一通信设备。这样可使得后续第一通信设备即可根据该时隙偏移个数和第二时域资源的首个时隙的位置确定出上述第一时域资源的起始时隙参量。
在一些可行的实现方式中,如前文步骤S30所述,第一通信设备可接收并根据起始和持续长度指示参量和目标长度上限确定第一时域资源。
具体实现中,第一通信设备在接收到承载有上述起始和持续长度指示参量的消息(如前文所述的第一消息)后,可从该消息中提取出上述起始和持续长度指示参量。
然后,在第二通信设备采用前文所述实现方式1发送目标长度上限的场景下,第一通信设备在接收到承载有目标长度上限的第一消息或者第二消息后,可直接提取目标长度上限。例如,假设第一通信设备确定目标长度上限在上述第一消息或者第二消息中的取值为11,则可将其由二进制转换成十进制,从而确定真正的目标长度上限取值为2。
在第二通信设备采用前文所述实现方式2发送目标长度上限的场景下,第一通信设备在接收到承载有第二长度上限指示参量的第一消息或者第二消息后,还可提取出该第二长度上限指示参量,并从相应的长度上限集合中提取出上述第二长度上限指示参量所对应的长度上限,该长度上限即为目标长度上限。这里需要说明的是,第二通信设备所使用的长度上限集合和第一通信设备所使用的长度上限集合为同一个,并且第一通信设备所使用的长度上限集合可以是第二通信设备为其配置的。
在第二通信设备采用前文所述实现方式3发送目标长度上限的场景下,第一通信设备在接收到承载有第一长度上限指示参量的第一消息或者第二消息后,可先提取出上述第一长度上限指示参量。然后,第二通信设备可根据上述第一长度上限集合从预设的上限调整系数集合中查找到上述第一长度上限指示参量所对应的目标上限调整系数。这里,该上限调整系数集合与第二通信设备所使用的上限调整系数集合为同一个。或者,第二通信设备也可直接将第一长度上限指示参量的取值确定为上述目标调整系数。
进一步的,第一通信设备还可根据上述目标上限调整系数和第一时域资源对应的时域符号的基本个数上限确定出上述目标长度上限。这里,该基本个数上限可以为14。可选的,第一通信设备可先计算出上述目标上限调整系数和第一时域资源对应的时域符号的基本个数的乘积,再对该乘积进行向上取整、向下取整或者四舍五入取整等操作,并将处理后的乘积作为上述目标长度上限。例如,假设第一通信设备获取到的目标上限调整系数为2,则第一通信设备可确定目标上限调整系数和第一时域资源对应的时域符号的基本个数的乘积为2*14=28。然后,第一通信设备可确定目标长度上限确定为28。
接下来,第一通信设备可根据起始和持续长度指示参量和目标长度上限确定出第一时域资源的长度和起始位置。具体的,假设上述第一时域资源的长度为L,起始位置为S,目标长度上限为a。第一通信设备在获取到上述起始和持续长度指示参量SLIV之后,可用SLIV除以a,以得到除数D1和余数D2,然后,第一通信设备可判断除数D1是否小于或者等于a/2。若确定为是,则第一通信设备可将D1+1确定为第一时域资源的长度L,并将余数D2确定为起始位置S。若确定为否,则第一通信设备可将a-D1+1确定为第一时域资源的长度L,并将a-(D2+1)确定为起始位置S。例如,假设第一通信设备获取到的SLIV的取值为397,目标长度上限为28,则第一通信设备可确定SLIV/a的除数D1等于14,余数D2等于5。由于14等于a/2,则第一通信设备可将14+1=15确定为第一时域资源的长度L,并将预设D2确定为第一时域资源的起始位置S。
另外,还需要补充的是,第一通信设备还可获取承载有上述第一时域资源的对应的时 隙偏移个数的。再基于其接收该所采用的第二时域资源的首个时隙位置和上述时隙偏移个数来确定出上述第一时域资源的起始时隙参量。可以理解的是,承载第一时域资源的对应的时隙偏移个数也可以是上述第一消息或者第二消息进行指示。
第一通信设备在获取到上述第一时域资源的长度、起始位置以及起始时隙参量后,即可完整从第一通信设备和第二通信设备之间的可用时域资源中确定出上述第一时域资源。
可选的,请参见图4,图4是本申请实施例提供的一种通信方法又一流程示意图,如图4所示,上述步骤S10、步骤S20和步骤S30也可由以下步骤代替:
S10’,第二通信设备根据第一时域资源的长度和起始位置从预设的时域资源指示集合中确定出第一时域资源的长度和起始位置所对应的目标索引值。
S20’,第二通信设备向第一通信设备发送目标索引值。
S30’,第一通信设备接收并根据目标索引值确定第一时域资源。
在一些可行的实现方式中,如步骤S10’所描述,第二通信设备可先确定出第一时域资源的长度和起始位置。然后再根据第一时域资源的长度和起始位置从预设的时域资源指示集合中确定出第一时域资源的长度和起始位置所对应的目标索引值。
具体实现中,第二通信设备可确定出第一时域资源的长度和起始位置。这里,第二通信设备确定第一时域资源的长度和起始位置的过程可参见前文步骤S10中所描述的确定第一时域资源的长度和起始位置的过程,此处便不再赘述。然后,第二通信设备即可根据第一时域资源的长度和起始位置从预设的或者配置的时域资源指示集合中确定出第一时域资源的长度和起始位置所对应的目标索引值。其中,该时域资源指示集合中包括一个或者多个取值不同的索引值以及各索引值对应的不同取值的长度和起始位置。需要说明的是,该时域资源指示集合应包括至少一个索引值,其对应的时域资源的长度要大于14。下面,请参见表1-3,表1-3是本申请实施例提供的一种时域资源指示集合。如表1-3所示,该时域资源集合中就包括由1到16共16个索引值,以及这16个索引值分别对应的长度和起始位置。其中,某些索引值对应的长度就大于14。例如,取值为1的索引值其对应的时域资源的长度就大于14。以表1-3为例,假设第二通信设备确定出的第一时域资源的长度为17,起始位置为0,则由上述表1-3所示的时域资源指示集合可知,第一时域资源的长度和起始位置对应的目标索引值即为1。
表1-3时域资源指示集合
索引值 时域资源的长度 时域资源的起始位置
1 17 0
2 15 0
3 10 1
4 10 2
15 18 5
16 12 4
需要说明的是,由于当前NR标准中规定的时域资源指示集合中,任一索引值对应的时域资源的长度都是小于或者等于14。因此,本申请实施例提供的时域资源指示集合可由 现有技术提供的时域资源指示集合扩展或者修改得到。比如,可在当前NR标准所提供的时域资源指示集合中增加一个或者多个索引值,并且这增加的一个或者多个索引值对应的时域资源的长度都要大于14。或者,也可将当前NR标准所提供的时域资源指示集合中的某些索引值对应的时域资源的长度修改为大于14的长度。
在一些可行的实现方式中,如前文步骤S20’所述,在第二通信设备确定出上述目标索引值之后,第二通信设备将上述目标索引值发送给第一通信设备。例如,第二通信设备可将上述目标索引值承载于DCI中,并通过DCI将目标索引值发送给第一通信设备。又例如,第二通信设备还可将上述目标索引值承载于RRC信令中,并通过RRC信令将目标索引值发送给第一通信设备。
这里需要补充说明的是,上述第二通信设备还可确定出上述第一时域资源的起始时隙参量,并将该第一时域资源的起始时隙参量发送给第一通信设备。这里,第二通信设备确定并向第一通信设备发送上述第一时域资源的起始时隙参量过程可参见前文步骤S20中所描述的确定以及向第一通信设备发送上述第一时域资源的起始时隙参量的过程,此处便不再赘述。
在一些可行的实现方式中,如前文步骤S30’所述,第一通信设备可接收上述目标索引值,并根据目标索引值确定出上述第一时域资源。具体的,第一通信设备通过RRC信令或者DCI消息接收到上述目标索引值之后,可根据上述目标索引值从相应的时域资源指示集合中查找到该目标索引值对应的长度和起始位置,该目标索引值对应的长度和起始位置即为上述第一时域资源的长度和起始位置。这里需要说明的是,第一通信设备所使用的时域资源指示集合与第二通信设备所使用的时域资源指示集合为同一个。第一通信设备所使用的时域资源指示集合可由第二通信设备配置得到。然后,第一通信设备即可根据上述第一时域资源的长度、起始位置以及起始时隙参量从第一通信设备和第二通信设备之间的可用时域资源中完整的确定出上述第一时域资源。
如上实现中,第二通信设备直接通过一个目标索引值为第一通信设备指示出所述第一时域资源的长度和起始位置,可减少第二通信设备为第一通信指示第一时域资源的长度和起始位置所占用的信令资源,可提升第二通信设备和第一通信设备的资源利用效率。
接下来,请一并参见图5,图5是本申请实施例提供的一种通信方法又一流程示意图,由图5可知,本申请提供的时域资源调度方法还可包括步骤:
S40,若所述第一通信设备确定第一时域资源中的至少两个子时域资源中的第一子时域资源的长度等于或者大于第一长度阈值,或者,确定第一子时域资源对应的传输码率小于预设传输码率,则确定在所述第一子时域资源上配置有解调参考信号DMRS。
在一些可行的实现方式中,第一通信设备在确定出第一时域资源后,可进一步确定出第一时域资源中包括的至少两个子时域资源(为方便理解,下文将图3所示的第一时域资源的结构为例进行描述)。然后,第一通信设备可根据各子时域资源的长度或者传输码率确定各子时域资源上是否配置有DMRS。可选的,所述第一时域资源中包括的各子时域资源对应的传输码率是通过第一通信设备在第一时域资源上传输获取的传输码率来确定。每个子时域资源上传输的传输块大小等于第一时域资源上传输的传输块大小,但各子时域资源的长度要小于第一时域资源长度。因此,各子时域资源的传输码率会高于第一时域资源的 传输码率。当传输块大小和各子时域资源确定后,第一通信设备就可以计算确定出各子时域资源上的传输码率。
具体实现中,第一通信设备可判断子时域资源j1是否为第一子时域资源。例如,若第一通信设备确定子时域资源j1的长度等于或者大于第一长度阈值,则可确定子时域资源j1为第一子时域资源。又例如,若第一通信设备确定子时域资源j1的传输码率小于预设传输码率,则可确定时域资源j1为第一子时域资源。当第一通信设备确定子时域资源j1为第一子时域资源后,确定在子时域资源j1上配置有解调参考信号DMRS。然后,第一通信设备
可获取子时域资源j1的长度以及上述第一时域资源对应第一个数。这里,该第一个数就是第一时域资源上能够配置的附加DMRS的最大个数,其通常由第一时域资源对应的位置参数DMRS-additionalPosition来指示。例如,当第一时域资源对应的位置参数DMRS-additionalPosition取值为Pos0时,上述第一个数即取值为0。当第一时域资源对应的位置参数DMRS-additionalPosition取值为Pos1时,上述第一个数即取值为1。然后,第一通信设备即可根据上述子时域资源j1的长度、第一时域资源对应的第一个数以及预设的或者配置的DMRS资源映射集合确定出资时域资源j1中的DMRS的时域资源。这里需要说明的是,该DMRS资源映射集合中可包括一个或者多个不同取值的长度,一个或者多个不同位置参数DMRS-additionalPosition的取值,以及任一取值下的长度和任一取值下的位置参数DMRS-additionalPosition所对应的DMRS资源指示信息。假设上述一个或者多个不同取值的长度中包括长度L1,上述一个或者多个不同取值的位置参数DMRS-additionalPosition中包括某个位置参数DMRS-additionalPosition的取值为Pos1(即上述第一个数的取值为1),则长度L1和取值为Pos1的位置参数DMRS-additionalPosition所对应的DMRS资源指示信息就用于指示长度L1的时域资源中,前置DMRS和附加DMRS所占用的时域资源的位置。例如,请下面请参见表格1-4,表1-4是本申请实施例提供的一种DMRS资源映射集合。如表1-1所示,该DMRS资源映射集合中包括由1,2,…,11,12,13以及14这14种长度,Po0,Pos1,Pos2,Po3这4种位置参数DMRS-additionalPosition的取值,以及不同的长度取值和不同位置参数DMRS-additionalPosition取值对应的DMRS资源指示信息。其中,l 0为前置DMRS所占用的时域符号与某一长度的时域资源的首个时域符号之间的相对位置。以PUSCH传输为例,当PUSCH的映射类型为类型A(TypeA)时,要求单次传输的时域资源数目不小于4个时域符号,此时l0取值为2或3(具体可由第一通信设备自身决定,或者由第二通信设备为第一通信设备配置得到)。当PUSCH的映射类型为类型B(TypeB)时,则可以进行任意符号长度的传输(即配置的时域资源的长度ld可小于4),此时l0的取值为0,也就说前置DMRS占用的时域符号就是该待配置的时域资源中的首个时域符号。
表1-4一种DMRS资源映射集合
Figure PCTCN2020121701-appb-000005
Figure PCTCN2020121701-appb-000006
例如,结合图3所示的第一时域资源的结构,第一通信设备可确定上述子时域资源j1的长度为3。若第一通信设备确定第一时域资源对应的位置参数DMRS-additionalPosition取值为Pos3(即上述第一个数取值为3),则可从表1-4中查找到子时域资源j1对应的DMRS资源指示信息为l 0。这里假设第一通信设备确定l 0取值为2,则第一通信设备可确定上述子时域资源j1中的第2个时域符号即为子时域资源j1对应的DMRS的时域资源。
可选的,若第一通信设备确定子时域资源j1的长度小于第一长度阈值,或者确定子时域资源j1的传输码率等于或者大于预设传输码率,则可确定子时域资源j1为第二子时域资源,则确定在子时域资源j1上不配置DMRS。同理,第一通信设备也可采用相同的过程确定在子时域资源j2是否配置有DMRS,由于此过程与第一通信设备确定子时域资源j1是否配置有DMRS的过程相同,此处便不再详细描述。
这里需要补充说明的是,上述第一长度阈值可以是预设的一个固定值,也可以由第一时域资源的长度来确定。例如,第一通信设备可将一个预设系数与第一时域资源的长度的乘积作为上述第一长度阈值。其中,第一时域资源的长度不同时,所对应的第一阈值不同。又例如,满足第一长度范围的第一时域资源对应一个第一阈值,满足第二长度范围的第一时域资源对应另一个第一阈值。同样的,预设传输码率可以是一个预设的固定数值,也可以与第一时域资源的长度相关。例如,预设传输码率由第一时域资源的长度确定,第一时域资源的长度不同时,所对应的第一阈值不同。又例如,满足第一长度范围的第一时域资源对应一个预设传输码率,满足第二长度范围的第一时域资源对应另一个预设传输码率。
进一步的,参见图6,图6是本申请实施例提供的一种通信方法又一流程示意图。由图6可知,上述步骤S40可由如下步骤代替:
S40’,第一通信设备确定第一时域资源的长度和第一个数。
具体实现中,第一通信设备可根据第一时域资源中包括的时域符号的个数确定第一时域资源的长度。第一通信设备还可获取到所述第一时域资源对应的第一个数。这里,针对第一个数描述可参见前文步骤S40中的描述,此处不再赘述。
S41’,第一通信设备根据第一时域资源的长度和第一个数在第一时域资源上进行解调参考信号DMRS的时域资源的确定。
在一些可行的实现方式中,第一通信设备在确定第一时域资源的长度和第一个数后,可以直接根据第一时域资源的长度和第一个数在所述第一时域资源上进行DMRS的时域资源的确定。换一句话说,就是第一通信设备会将上述第一时域资源作为一个整体来进行DMRS的时域资源的确定,而不是分别单独对每个子时域资源进行DMRS的时域资源的确定。
具体实现中,和步骤S40中描述的第一通信设备根据子时域资源j1的长度和第一个数 确定子时域资源j1的时域资源的过程类似,在本步骤中,第一通信设备具体也可根据第一时域资源的长度、第一个数以及相应的DMRS资源映射集合确定第一时域资源中的DMRS的时域资源。需要说明的是,由于第一时域资源的长度要大于14,所述在本步骤中,第一通信设备所使用的DMRS资源映射集合中应包括至少一个取值大于14的长度,并且位置参数DMRS-additionalPosition的取值也不限于Pos0,Pos1,Pos2,Pos3。比如位置参数DMRS-additionalPosition的取值还可包括Pos4、Pos5等(即上述第一个数的取值可大于3)。例如,请参见表1-5,表1-5是本申请实施例提供的又一种DMRS资源映射集合。在该DMRS资源映射集合中,不仅包括多个取值小于14的长度,还包括多个取值大于14的长度。位置参数DMRS-additionalPosition的取值也不仅限于原有的Pos0、Pos1、Pos2、Pos3,还包括Pos4和Pos5。当然,可以理解到的是,表1-5仅是本步骤中涉及的DMRS资源映射集合某一示例,在实际应用中,时域资源的长度的取值可以多于或者少于表1-5所示,位置参数DMRS-additionalPosition的取值也可多于或者少于表1-5所示,本申请对此不作具体限制。在第一通信设备获取到上述DMRS资源映射集合后,其可通过第一时域资源的长度和第一个数所对应的位置参数DMRS-additionalPosition的取值从该DMRS资源映射集合中确定出第一时域资源对应的DMRS资源指示信息。然后,这里,第一通信设备根据该DMRS资源指示信息确定第一时域资源上的DMRS的时域资源。具体过程可参见前文描述的第一通信设备根据子时域资源j1的长度和第一个数确定子时域资源j1的时域资源的过程,此处便不再赘述。这里可以理解到的是,由于第一时域资源是由至少两个连续的子时域资源构成,因此,第一时域资源上的DMRS的时域资源的确定即可等价于各子时域资源上的DMRS的时域资源也被确定。
表1-5又一种DMRS资源映射集合
Figure PCTCN2020121701-appb-000007
Figure PCTCN2020121701-appb-000008
接下来,参见图7,图7是本申请实施例提供的一种通信方法又一流程示意图。由图7可知,在第一通信设备为发送方(即第二通信设备为接收)的情况下,在第一通信设备通过上述步骤S40确定各子时域资源是否配置有DMRS,或者通过上述步骤S40和S41’在第一时域资源上进行DMRS的时域资源的确定后,还可执行步骤:
S50,第一通信设备通过至少两个子时域资源中的第二子时域资源进行信号传输。
这里,在上述至少两个子时域资源中同时包括一个第一子时域资源和一个第二子时域资源的情况下,所述第一通信设备通过所述第二子时域资源进行的信号传输以及通过所述第一子时域资源进行的信号传输应该满足以下中的至少一项:发射功率相同、预编码相同、发射端口相同。
具体实现中,假设上述子时域资源j2为第一子时域资源,上述子时域资源j1为第二子时域资源,则第一通信设备在通过子时域资源j1进行的信号传输应保证与通过子时域资源j1进行的信号传输所采用的发射功率、预编码或者发射端口中至少有一项是相同的。换言之,就是在第一通信设备通过上述至少两个子时域资源向第二通信设备进行至少两次信号传输时,若第一通信设备确定这至少两个子时域资源中任一子时域资源上没有配置DMRS,则第一通信设备通过该任一子时域资源进行的信号传输与通过配置有DMRS的子时域资源进行的信号传输应满足以下中的至少一个:发射功率相同、预编码相同、发射端口相同。这里需要说明的是,一个子时域资源仅用于一次信号传输。
这里需要说明的是,当第二通信设备为接收方时,第二通信设备也可采用与上述第一通信同样的方法来第一时域资源中的各子时域资源上是否配置有DMRS,进而完成对第一通信设备的信号接收。这里,第二通信设备确定第一时域资源上的DMRS的时域资源的过程和第一通信设备确定第一时域资源上的DMRS的时域资源的过程相同,此处便不再赘述。
又或者,请一并参见图8,图8是本申请实施例提供的一种通信方法又一流程示意图,如图8所示,在第一通信设备为接收方的情况下,第一通信设备在通过上述步骤S40或者步骤S40和S41’确定得到的DMRS的时域资源对各子时域资源进行DMRS配置后,也可执行步骤:
S50’,第一通信设备将第一子时域资源对应的信道估计结果确定为通过第二子时域资源进行信号接收时的信道估计结果。
具体实现中,假设上述子时域资源j1为第一子时域资源,上述子时域资源j2为第二子时域资源,则第一通信设备在通过子时域资源j2进行的信号接收时,可复用其通过子时域资源j1进行信号接收时所得到的信道估计结果。换一句话说,就是在第一通信设备通过上述至少两个子时域资源向第二通信设备进行至少两次信号接收时,若第一通信设备确定这至少两个子时域资源中任一子时域资源上没有配置DMRS,则第一通信设备可将配置有 DMRS的子时域资源对应的信道估计结果确定为通过所述任一子时域资源进行信号接收时的信道估计结果,继而完成在该任一子时域资源上的信号接收。
这里需要说明的是,当第一通信设备为接收方时,第二通信设备为发送方,此时第二通信设备也可采用与上述第一通信同样的方法来确定第一时域资源上的DMRS的时域资源,进而完成对第一通信设备的信号发送。这里,第二通信设备确定第一时域资源上的DMRS的时域资源的过程和第一通信设备确定第一时域资源上的DMRS的时域资源的过程相同,此处便不再赘述。
还需要补充说明的是,前文是以第一通信设备与第二通信设备之间的某一次数据传输为例对本申请提供的通信方法进行描述的。在实际应用中,这一次数据传输可以是第一通信设备和第二通信设备之间进行某一次上行或者下行重复传输。或者,这一次数据传输也可以是第一通信设备和第二通信设备之间进行的除重复传输以外的其他的上行或者下行的数据传输过程,本申请不作具体限制。另外,本申请提供通信方法所适用的数据传输场景中,被传输的对象可以是PUSCH、物理上行控制信道(physical uplink control channel,PUCCH)、物理下行共享信道(physical dowmlink shared channel,PDSCH)或者物理下行控制信道(physical dowmlink control channel,PDCCH)等信道中的任意一个信道,本申请不作具体限制。请参见图9,图9是本申请实施例提供的一种装置一结构示意图。该装置可用于执行上述实施例一中第一通信设备的功能。该装置可以就是第一通信设备本身,也可以是第一通信设备内部的元件或者模块。为了便于说明,图9中仅示出了该装置的主要部件。由图9可知,该装置包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对装置进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收使用该装置的用户输入的数据以及对该用户输出数据。需要说明的是,在某些场景下,该通信设备可以不包括输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器。在实际的装置产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个装置进行控制,执行软件程序,处理软件程序的数据。图9中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,装置可以包括多个基带处理器以适应不同的网络制式,装置可以包括多个中央处理器以增强其处理能力,装置的各个部件可以通 过各种总线连接。上述基带处理器也可以表述为基带处理电路或者基带处理芯片。上述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为装置的收发单元,将具有处理功能的处理器视为装置的处理单元。如图9所示,该装置包括收发单元910和处理单元920。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。这里,接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
在第一种具体实现中,处理单元920用于确定第一时域资源。其中,所述第一时域资源包括连续的至少两个子时域资源,所述至少两个子时域资源为至少两个相邻第一时间单元中的时域资源,且所述至少两个子时域资源与所述至少两个相邻第一时间单元一一对应,所述至少两个子时域资源的长度之和等于所述第一时域资源的长度,时域资源的长度为时域资源中包括的第二时间单元的个数。所述处理单元920还用于若确定所述至少两个子时域资源中的第一子时域资源的长度等于或者大于第一长度阈值,或者,确定所述至少两个子时域资源中第一子时域资源对应的传输码率小于预设传输码率,则确定在第一子时域资源上配置有解调参考信号DMRS。
结合第一种具体的实现,上述处理单元920和收发单元910还可执行如下示例中的方法。
在一种可示例中,所述处理单元920还用于若确定所述至少两个子时域资源中的第二子时域资源的长度小于所述第一长度阈值,或者,确定所述至少两个子时域资源中的第二子时域资源对应的传输码率等于或者高于所述预设传输码率,则所确定所述第二子时域资源不配置DMRS。
在又一种示例中,收发单元910用于通过所述第二子时域资源进行信号传输。其中,所述收发单元910通过所述第二子时域资源进行的信号传输以及通过所述第一子时域资源进行的信号传输满足以下中的至少一项:发射功率相同、预编码相同、发射端口相同。
在又一种示例中,所述处理单元920还用于将所述第一子时域资源对应的信道估计结果确定为通过所述第二子时域资源进行信号接收时的信道估计结果。
在又一种示例中,所述第一长度阈值由所述第一时域资源的长度确定。
在又一种示例中,所述处理单元920还用于获取所述第一时域资源对应的起始和持续长度指示参量和目标长度上限。其中,所述目标长度上限为所述第一时域资源包含的第二时间单元的最大允许个数,所述目标长度上限大于14。根据所述目标长度上限和所述起始和持续长度指示参量确定所述第一时域资源的长度和起始位置。
在又一种示例中,所述收发单元910可用于接收来自于第二通信设备的第一长度上限指示参量。所述处理单元920用于根据所述第一长度上限指示参量确定目标上限调整系数。所述处理单元920还用于根据所述目标上限调整系数和所述第一时域资源对应的第一时间单元的基本个数上限确定出所述目标长度上限。其中,所述基本个数上限为14。
在又一种示例中,所述处理单元920还用于根据所述第一长度上限指示参量从预设的上限调整系数集合中确定出所述第一长度上限指示参量对应的目标上限调整系数。其中,所述上限调整系数集合中包括一个或者多个不同的长度上限指示参量对应的上限调整系数。
在又一种示例中,所述处理单元920还用于将第一长度上限指示参量的取值确定为目标上限调整系数。
在又一种示例中,所述收发单元910用于接收来自于第二通信设备的第二长度上限指示参量。所述处理单元920用于根据所述第二长度上限指示参量从预设或者配置的长度上限集合中确定出所述第二长度上限指示参量对应目标长度上限。
在又一种示例中,所述收发单元910用于接收来自于第二通信设备的第二长度上限指示参量。所述处理单元920用于将第二长度指示参量的取值确定为目标长度上限。
在又一种示例中,所述处理单元920还用于获取目标索引值。再根据所述目标索引值从预设的时域资源指示集合中确定出所述目标索引值对应的目标长度和目标起始位置。其中,所述时域资源指示集合中包括一个或者多个不同的索引值以及各索引值对应的长度和起始位置,所述一个或者多个索引值中至少包括一个对应的长度大于14的索引值。将所述目标索引值对应的目标长度和目标起始位置信息确定为所述第一时域资源的长度和起始位置。
在第二种具体实现中,处理单元920用于确定第一时域资源的长度和第一个数。其中,所述第一时域资源包括连续的至少两个子时域资源,所述至少两个子时域资源为至少两个相邻第一时间单元中的时域资源,且所述至少两个子时域资源与上述至少两个相邻第一时间单元一一对应,所述至少两个子时域资源的长度之和等于所述第一时域资源的长度,时域资源的长度为时域资源中包括的第二时间单元的个数。所述第一个数为所述第一时域资源上配置的第一DMRS的最大允许个数。所述处理单元920还用于根据第一时域资源的长度和所述第一个数对在所述第一时域资源上进行解调参考信号DMRS的时域资源的确定。
结合第二种具体的实现,上述处理单元920和收发单元910还可执行如下示例中的方法。
在一种可示例中,所述第一个数大于3。
在又一种示例中,收发单元920用于在所述处理单元确定所述至少两个子时域资源中任一子时域资源上没有配置DMRS时,通过所述任一子时域资源进行的信号传输与通过配置有DMRS的子时域资源进行的信号传输满足以下中的至少一个:发射功率相同、预编码相同、发射端口相同。
在又一种示例中,所述处理单元920还用于若确定所述至少两个子时域资源中任一子时域资源上没有配置DMRS,则将配置有DMRS的子时域资源对应的信道估计结果用于解调在所述任一子时域资源接收的信号。
在又一种示例中,所述处理单元920还用于获取所述第一时域资源对应的起始和持续长度指示参量和目标长度上限。其中,所述目标长度上限为所述第一时域资源包含的第二时间单元的最大允许个数,所述目标长度上限大于14。根据所述目标长度上限和所述起始和持续长度指示参量确定所述第一时域资源的长度和起始位置。
在又一种示例中,所述收发单元910可用于接收来自于第二通信设备的第一长度上限 指示参量。所述处理单元920用于根据所述第一长度上限指示参量确定目标上限调整系数。所述处理单元920还用于根据所述目标上限调整系数和所述第一时域资源对应的第一时间单元的基本个数上限确定出所述目标长度上限。其中,所述基本个数上限为14。
在又一种示例中,所述处理单元920还用于根据所述第一长度上限指示参量从预设的上限调整系数集合中确定出所述第一长度上限指示参量对应的目标上限调整系数。其中,所述上限调整系数集合中包括一个或者多个不同的长度上限指示参量对应的上限调整系数。
在又一种示例中,所述处理单元920还用于将第一长度上限指示参量的取值确定为目标上限调整系数。
在又一种示例中,所述收发单元910用于接收来自于第二通信设备的第二长度上限指示参量。所述处理单元920用于根据所述第二长度上限指示参量从预设或者配置的长度上限集合中确定出所述第二长度上限指示参量对应目标长度上限。
在又一种示例中,所述收发单元910用于接收来自于第二通信设备的第二长度上限指示参量。所述处理单元920用于将第二长度指示参量的取值确定为目标长度上限。
在又一种示例中,所述处理单元920还用于获取目标索引值。再根据所述目标索引值从预设的时域资源指示集合中确定出所述目标索引值对应的目标长度和目标起始位置。其中,所述时域资源指示集合中包括一个或者多个不同的索引值以及各索引值对应的长度和起始位置,所述一个或者多个索引值中至少包括一个对应的长度大于14的索引值。将所述目标索引值对应的目标长度和目标起始位置信息确定为所述第一时域资源的长度和起始位置。
在又一种示例中,所述第一时间单元为时隙,所述第二时间单元为时域符号。
请参见图10,图10是本申请实施例提供的一种装置又一结构示意图。该通信装置可应用于如图1所示的通信系统中,执行上述实施例一中第二通信设备的功能。该装置可以就是第二通信设备本身,也可以是第二通信设备内部的元件或者模块。该装置可包括一个或多个收发单元1010和一个或多个处理单元1020。上述收发单元1010可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线和射频单元。上述收发单元1010部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中的指示信息。上述处理单元1020部分主要用于进行基带处理,对装置进行控制等。上述收发单元1010与处理单元1020可以是物理上设置在一起,也可以物理上分离设置的,即分布式装置。例如上述处理单元1020可以用于控制装置执行上述实施例一中关于指示信息的确定过程。在具体实现中,上述处理单元1020可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如NR网),也可以分别支持不同接入制式的无线接入网。上述处理单元1020还包括存储器和处理器,上述存储器用于存储必要的指令和数据。上述处理器用于控制装置进行必要的动作,例如用于控制装置执行上述方法实施例中关于装置的操作流程。上述存储器和处理器可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个装置进行控制, 执行软件程序,处理软件程序的数据。图10中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,装置可以包括多个基带处理器以适应不同的网络制式,装置可以包括多个中央处理器以增强其处理能力,装置的各个部件可以通过各种总线连接。上述基带处理器也可以表述为基带处理电路或者基带处理芯片。上述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在第一种具体实现中,处理单元1020用于确定第一时域资源对应的起始和持续长度指示参量和目标长度上限,其中,所述起始和持续长度指示参量和目标长度上限用于指示所述第一时域资源的长度和目标起始符号参量,时域资源的资源长度为所述时域资源包括的第二时间单元的个数,所述第一时域资源的长度大于14。收发单元1010用于向第一通信设备发送所述起始和持续长度指示参量和目标长度上限。
结合上述第一种可能的具体实现和第二种可能的具体实现,上述处理单元1020和收发单元1010还可用于执行如下示例中的方法。
在一种示例中,所述处理单元1020从预设的上限调整系数集合中确定出所述目标上限调整系数对应的第一长度上限指示参量。其中,所述上限调整系数集合中包括一个或者多个不同的上限调整系数对应的长度上限指示参量。
在又一种示例中,所述处理单元1020将目标上限调整系数的取值确定为第一长度上限指示参量。
在又一种示例中,所述处理单元1020从预设的长度上限集合中确定出所述目标长度上限对应的第二长度上限指示参量。其中,所述长度上限集合中包括一个或者多个不同的长度上限对应的长度上限指示参量。所述收发单元1010向所述第一通信设备发送所述第二长度上限指示参量。
在又一种示例中,所述处理单元1020对所述目标长度上限的取值确定为第二长度上限指示参量。所述收发单元1010向所述第一通信设备发送所述第二长度上限指示参量。
在第二种具体实现中,处理单元1020根据第一时域资源的长度和起始位置从预设的时域资源指示集合中确定出所述第一时域资源的长度和起始位置对应的目标索引值。其中,所述时域资源指示集合中包括一个或者多个索引值以及各索引值对应的长度和起始位置,时域资源的长度为时域资源中包括的第二时间单元的个数,所述第一时域资源的长度大于14。收发单元1010向所述第一通信设备发送所述目标索引值,所述目标索引值用于所述第一通信设备确定所述第一时域资源的长度和起始位置。
请参见图11,图11是本申请实施例提供的一种装置又一结构示意图。该装置可以是实施例一中的第一通信设备,可用于实现上述实施例一中描述的通信方法。该装置包括:处理器111、存储器112、收发器113。
存储器111包括但不限于是RAM、ROM、EPROM或CD-ROM,该存储器111用于存储相关指令及数据。存储器111存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
图11中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。
收发器113可以是通信模块、收发电路。应用在本申请实施例中,收发器113用于执行实施例一中第一通信设备所执行的数据或者信号的收发过程。
处理器111可以是控制器,CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器111也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
具体的应用中,装置的各个组件相互耦合在一起。
应注意,实际应用中,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal Processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本申请实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述实施例一中第一通信设备执行的方法或者步骤。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述实施例一中第一通信设备执行的方法或者步骤。
本申请实施例还提供了一种装置,该装置可以是实施例一中的第一通信设备。该装置包括处理器和接口。该处理器用于执行上述实施例一中第一通信设备执行的方法或者步骤。应理解,上述装置可以是一个芯片,上述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可 以集成在处理器中,可以位于上述处理器之外,独立存在。
请参见图12,图12是本申请实施例提供的一种装置又一结构示意图。该装置可以是实施例一中的第二通信设备,可用于实现上述实施例一中第二通信设备所执行的通信方法的步骤。该装置包括:处理器121、存储器122、收发器123。
存储器121包括但不限于是RAM、ROM、EPROM或CD-ROM,该存储器121用于存储相关指令及数据。存储器121存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
图12中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。
收发器123可以是通信模块、收发电路。应用在本申请实施例中,收发器123用于执行实施例一中第二通信设备所执行的信号或者数据的收发过程。
处理器121可以是控制器,CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器121也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
具体的应用中,装置的各个组件耦合在一起。
应注意,实际应用中,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal Processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述实施例一中第二通信设备执行的方法或者步骤。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现 上述实施例一中第二通信设备执行的方法或者步骤。
本申请实施例还提供了一种装置,该装置可以是实施例一中的第二通信设备。该装置包括处理器和接口。该处理器用于执行上述实施例一中第二通信设备执行的方法或者步骤。应理解,上述装置可以是一个芯片,上述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于上述处理器之外,独立存在。
在上述方法实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。上述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行上述计算机指令时,全部或部分地产生按照本申请实施例上述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。上述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,上述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber Line,DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。上述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。上述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD)等。
应理解,本申请实施例中的术语“系统”和“网络”常可被互换使用。本实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
另外,在本申请实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可 以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
总之,以上上述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (38)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一通信设备确定第一时域资源,其中,所述第一时域资源包括连续的至少两个子时域资源,所述至少两个子时域资源为至少两个相邻第一时间单元中的时域资源,且所述至少两个子时域资源与所述至少两个相邻第一时间单元一一对应,所述至少两个子时域资源的长度之和等于所述第一时域资源的长度,时域资源的长度为时域资源中包括的第二时间单元的个数;
    若所述第一通信设备确定所述至少两个子时域资源中的第一子时域资源的长度等于或者大于第一长度阈值,或者,确定所述至少两个子时域资源中第一子时域资源对应的传输码率小于预设传输码率,则所述第一通信设备确定在所述第一子时域资源上配置有解调参考信号DMRS。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述第一通信设备确定所述至少两个子时域资源中的第二子时域资源的长度小于所述第一长度阈值,或者,确定所述至少两个子时域资源中的第二子时域资源对应的传输码率等于或者高于所述预设传输码率,则所述第一通信设备确定所述第二子时域资源不配置DMRS。
  3. 根据权利要求2所述的方法,其特征在于,在所述第一通信设备确定所述第二子时域资源不配置DMRS之后,所述方法还包括:
    所述第一通信设备通过所述第二子时域资源进行信号传输;
    其中,所述第一通信设备通过所述第二子时域资源进行的信号传输以及通过所述第一子时域资源进行的信号传输满足以下中的至少一项:发射功率相同、预编码相同、发射端口相同。
  4. 根据权利要求2所述的方法,其特征在于,在所述第一通信设备确定所述第二子时域资源不配置DMRS之后,所述方法还包括:
    所述第一通信设备将所述第一子时域资源对应的信道估计结果确定为所述第一通信设备通过所述第二子时域资源进行信号接收时的信道估计结果。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一长度阈值由所述第一时域资源的长度确定。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备获取所述第一时域资源对应的起始和持续长度指示参量和目标长度上限,其中,所述目标长度上限为所述第一时域资源包含的第二时间单元的最大允许个数,所述目标长度上限大于14;
    所述第一通信设备根据所述目标长度上限和所述起始和持续长度指示参量确定所述第 一时域资源的长度和起始位置。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备获取目标索引值;
    所述第一通信设备根据所述目标索引值从预设的时域资源指示集合中确定出所述目标索引值对应的目标长度和目标起始位置,其中,所述时域资源指示集合中包括一个或者多个不同的索引值以及各索引值对应的长度和起始位置,所述一个或者多个索引值中至少包括一个对应的长度大于14的索引值;
    所述第一通信设备将所述目标索引值对应的目标长度和目标起始位置信息确定为所述第一时域资源的长度和起始位置。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一时间单元为时隙,所述第二时间单元为时域符号。
  9. 一种通信方法,其特征在于,所述方法包括:
    第一通信设备确定第一时域资源的长度和第一个数,其中,所述第一时域资源包括连续的至少两个子时域资源,所述至少两个子时域资源为至少两个相邻第一时间单元中的时域资源,且所述至少两个子时域资源与上述至少两个相邻第一时间单元一一对应,所述至少两个子时域资源的长度之和等于所述第一时域资源的长度,所述第一个数为所述第一时域资源上配置的第一DMRS的最大允许个数;
    所述第一通信设备根据第一时域资源的长度和所述第一个数在所述第一时域资源上进行解调参考信号DMRS的时域资源的确定。
  10. 根据权利要求9所述的方法,其特征在于,所述第一个数大于3。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    若所述第一通信设备确定所述至少两个子时域资源中任一子时域资源上没有配置DMRS,则所述第一通信设备通过所述任一子时域资源进行的信号传输与通过配置有DMRS的子时域资源进行的信号传输满足以下中的至少一个:发射功率相同、预编码相同、发射端口相同。
  12. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    若所述第一通信设备确定所述至少两个子时域资源中任一子时域资源上没有配置DMRS,则所述第一通信设备将配置有DMRS的子时域资源对应的信道估计结果确定为通过所述任一子时域资源进行信号接收时的信道估计结果。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备获取所述第一时域资源对应的起始和持续长度指示参量和目标长度 上限,其中,所述目标长度上限为所述第一时域资源包含的第二时间单元的最大允许个数,所述目标长度上限大于14;
    所述第一通信设备根据所述目标长度上限和所述起始和持续长度指示参量确定所述第一时域资源的长度和起始位置。
  14. 根据权利要求9-12任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备获取目标索引值;
    所述第一通信设备根据所述目标索引值从预设的时域资源指示集合中确定出所述目标索引值对应的目标长度和目标起始位置,其中,所述时域资源指示集合中包括一个或者多个不同的索引值以及各索引值对应的长度和起始位置,所述一个或者多个索引值中至少包括一个对应的长度大于14的索引值;
    所述第一通信设备将所述目标索引值对应的目标长度和目标起始位置信息确定为所述第一时域资源的长度和起始位置。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,所述第一时间单元为时隙,所述第二时间单元为时域符号。
  16. 一种通信方法,其特征在于,所述方法包括:
    第二通信设备确定第一时域资源对应的起始和持续长度指示参量和目标长度上限,其中,所述起始和持续长度指示参量和目标长度上限用于指示所述第一时域资源的长度和目标起始符号参量,时域资源的资源长度为所述时域资源包括的第二时间单元的个数,所述第一时域资源的长度大于14;
    第二通信设备向第一通信设备发送所述起始和持续长度指示参量和目标长度上限。
  17. 一种通信方法,其特征在于,所述方法包括:
    第二通信设备根据第一时域资源的长度和起始位置从预设的时域资源指示集合中确定出所述第一时域资源的长度和起始位置对应的目标索引值,其中,所述时域资源指示集合中包括一个或者多个索引值以及各索引值对应的长度和起始位置,时域资源的长度为时域资源中包括的第二时间单元的个数,所述第一时域资源的长度大于14;
    所述第二通信设备向所述第一通信设备发送所述目标索引值,所述目标索引值用于所述第一通信设备确定所述第一时域资源的长度和起始位置。
  18. 一种装置,其特征在于,所述装置为第一通信设备,所述装置包括:
    处理单元,用于确定第一时域资源,其中,所述第一时域资源包括连续的至少两个子时域资源,所述至少两个子时域资源为至少两个相邻第一时间单元中的时域资源,且所述至少两个子时域资源与所述至少两个相邻第一时间单元一一对应,所述至少两个子时域资源的长度之和等于所述第一时域资源的长度,时域资源的长度为时域资源中包括的第二时间单元的个数;
    所述处理单元,还用于若确定所述至少两个子时域资源中的第一子时域资源的长度等于或者大于第一长度阈值,或者,确定所述至少两个子时域资源中第一子时域资源对应的传输码率小于预设传输码率,则确定在所述第一子时域资源上配置有解调参考信号DMRS。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元还用于:
    若确定所述至少两个子时域资源中的第二子时域资源的长度小于所述第一长度阈值,或者,确定所述至少两个子时域资源中的第二子时域资源对应的传输码率等于或者高于所述预设传输码率,则确定所述第二子时域资源不配置DMRS。
  20. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    收发单元,用于通过所述第二子时域资源进行信号传输;
    其中,所述收发单元通过所述第二子时域资源进行的信号传输以及通过所述第一子时域资源进行的信号传输满足以下中的至少一项:发射功率相同、预编码相同、发射端口相同。
  21. 根据权利要求19所述的装置,其特征在于,所述处理单元还用于:
    将所述第一子时域资源对应的信道估计结果确定为通过所述第二子时域资源进行信号接收时的信道估计结果。
  22. 根据权利要求18-21任一项所述的装置,其特征在于,所述第一长度阈值由所述第一时域资源的长度确定。
  23. 根据权利要求18-22任一项所述的装置,其特征在于,所述处理单元还用于:
    获取所述第一时域资源对应的起始和持续长度指示参量和目标长度上限,其中,所述目标长度上限为所述第一时域资源包含的第二时间单元的最大允许个数,所述目标长度上限大于14;
    根据所述目标长度上限和所述起始和持续长度指示参量确定所述第一时域资源的长度和起始位置。
  24. 根据权利要求18-22任一项所述的装置,其特征在于,所述处理单元还用于:
    获取目标索引值;
    根据所述目标索引值从预设的时域资源指示集合中确定出所述目标索引值对应的目标长度和目标起始位置,其中,所述时域资源指示集合中包括一个或者多个不同的索引值以及各索引值对应的长度和起始位置,所述一个或者多个索引值中至少包括一个对应的长度大于14的索引值;
    将所述目标索引值对应的目标长度和目标起始位置信息确定为所述第一时域资源的长度和起始位置。
  25. 根据权利要求18-24任一项所述的装置,其特征在于,所述第一时间单元为时隙,所述第二时间单元为时域符号。
  26. 一种装置,其特征在于,所述装置为第一通信设备,所述装置包括:
    处理单元,用于确定第一时域资源的长度和第一个数,其中,所述第一时域资源包括连续的至少两个子时域资源,所述至少两个子时域资源为至少两个相邻第一时间单元中的时域资源,且所述至少两个子时域资源与上述至少两个相邻第一时间单元一一对应,所述至少两个子时域资源的长度之和等于所述第一时域资源的长度,所述第一个数为所述第一时域资源上配置的第一DMRS的最大允许个数;
    所述处理单元,还用于根据第一时域资源的长度和所述第一个数在所述第一时域资源上进行解调参考信号DMRS的时域资源的确定。
  27. 根据权利要求26所述的装置,其特征在于,所述第一个数大于3。
  28. 根据权利要求26或27所述的装置,其特征在于,所述装置还包括:
    收发单元,用于在所述处理单元确定所述至少两个子时域资源中任一子时域资源上没有配置DMRS时,通过所述任一子时域资源进行的信号传输与通过配置有DMRS的子时域资源进行的信号传输满足以下中的至少一个:发射功率相同、预编码相同、发射端口相同。
  29. 根据权利要求26或27所述的装置,其特征在于,所述处理单元还用于:
    若确定所述至少两个子时域资源中任一子时域资源上没有配置DMRS,则将配置有DMRS的子时域资源对应的信道估计结果确定为通过所述任一子时域资源进行信号接收时的信道估计结果。
  30. 根据权利要求26-29任一项所述的装置,其特征在于,所述处理单元还用于:
    获取所述第一时域资源对应的起始和持续长度指示参量和目标长度上限,其中,所述目标长度上限为所述第一时域资源包含的第二时间单元的最大允许个数,所述目标长度上限大于14;
    根据所述目标长度上限和所述起始和持续长度指示参量确定所述第一时域资源的长度和起始位置。
  31. 根据权利要求26-29任一项所述的装置,其特征在于,所述处理单元还用于:
    获取目标索引值;
    根据所述目标索引值从预设的时域资源指示集合中确定出所述目标索引值对应的目标长度和目标起始位置,其中,所述时域资源指示集合中包括一个或者多个不同的索引值以及各索引值对应的长度和起始位置,所述一个或者多个索引值中至少包括一个对应的长度大于14的索引值;
    将所述目标索引值对应的目标长度和目标起始位置信息确定为所述第一时域资源的长 度和起始位置。
  32. 根据权利要求26-31任一项所述的装置,其特征在于,所述第一时间单元为时隙,所述第二时间单元为时域符号。
  33. 一种装置,其特征在于,所述装置为第二通信设备,所述装置包括:
    处理单元,用于确定第一时域资源对应的起始和持续长度指示参量和目标长度上限,其中,所述起始和持续长度指示参量和目标长度上限用于指示所述第一时域资源的长度和目标起始符号参量,时域资源的资源长度为所述时域资源包括的第二时间单元的个数,所述第一时域资源的长度大于14;
    收发单元,用于向第一通信设备发送所述起始和持续长度指示参量和目标长度上限。
  34. 一种装置,其特征在于,所述装置为第二通信设备,所述装置包括:
    处理单元,用于根据第一时域资源的长度和起始位置从预设的时域资源指示集合中确定出所述第一时域资源的长度和起始位置对应的目标索引值,其中,所述时域资源指示集合中包括一个或者多个索引值以及各索引值对应的长度和起始位置,时域资源的长度为时域资源中包括的第二时间单元的个数,所述第一时域资源的长度大于14;
    收发单元,用于向所述第一通信设备发送所述目标索引值,所述目标索引值用于所述第一通信设备确定所述第一时域资源的长度和起始位置。
  35. 一种可读存储介质,用于存储指令,当所述指令被执行时,使如权利要求1-8或者权利要求9-15中任一项所述的方法被实现。
  36. 一种可读存储介质,用于存储指令,当所述指令被执行时,使如权利要求16或者权利要求17所述的方法被实现。
  37. 一种装置,其特征在于,所述装置为第一通信设备,所述装置包括:处理器,存储器和收发器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1-8或者权利要求9-15中任一项所述的方法。
  38. 一种装置,其特征在于,所述装置为第一通信设备,所述装置包括:处理器,存储器和收发器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求16或者权利要求17所述的方法。
PCT/CN2020/121701 2020-10-16 2020-10-16 一种通信方法和装置 WO2022077517A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/121701 WO2022077517A1 (zh) 2020-10-16 2020-10-16 一种通信方法和装置
CN202180069340.8A CN116349352A (zh) 2020-10-16 2021-01-15 一种通信方法和装置
PCT/CN2021/072220 WO2022077792A1 (zh) 2020-10-16 2021-01-15 一种通信方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121701 WO2022077517A1 (zh) 2020-10-16 2020-10-16 一种通信方法和装置

Publications (1)

Publication Number Publication Date
WO2022077517A1 true WO2022077517A1 (zh) 2022-04-21

Family

ID=81207641

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/121701 WO2022077517A1 (zh) 2020-10-16 2020-10-16 一种通信方法和装置
PCT/CN2021/072220 WO2022077792A1 (zh) 2020-10-16 2021-01-15 一种通信方法和装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072220 WO2022077792A1 (zh) 2020-10-16 2021-01-15 一种通信方法和装置

Country Status (2)

Country Link
CN (1) CN116349352A (zh)
WO (2) WO2022077517A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136079A1 (en) * 2016-02-02 2017-08-10 Intel IP Corporation Low latency in wireless communication system
CN109964435A (zh) * 2016-11-18 2019-07-02 Oppo广东移动通信有限公司 传输参考信号的方法和通信设备
CN110945816A (zh) * 2017-03-23 2020-03-31 创新技术实验室株式会社 用于传送和接收解调参考信号的方法和装置
US20200163078A1 (en) * 2017-06-23 2020-05-21 Zte Corporation Configuration resource sending, configuring and receiving methods and apparatuses

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107318086B (zh) * 2016-04-26 2020-03-20 华为技术有限公司 分配时频资源的方法和装置
CN110831178B (zh) * 2018-08-10 2023-06-30 华为技术有限公司 时域资源配置方法
CN111130728B (zh) * 2018-10-31 2023-08-25 维沃移动通信有限公司 一种传输方法、终端及网络侧设备
CN111181707B (zh) * 2018-11-09 2022-11-04 华为技术有限公司 数据传输的方法和通信装置
US11700088B2 (en) * 2019-02-22 2023-07-11 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and apparatus, and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136079A1 (en) * 2016-02-02 2017-08-10 Intel IP Corporation Low latency in wireless communication system
CN109964435A (zh) * 2016-11-18 2019-07-02 Oppo广东移动通信有限公司 传输参考信号的方法和通信设备
CN110945816A (zh) * 2017-03-23 2020-03-31 创新技术实验室株式会社 用于传送和接收解调参考信号的方法和装置
US20200163078A1 (en) * 2017-06-23 2020-05-21 Zte Corporation Configuration resource sending, configuring and receiving methods and apparatuses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "On details of DMRS design for 2-OS DL shorter TTI", 3GPP DRAFT; R1-1704809 ON DETAILS OF DMRS DESIGN FOR 2-OS DL SHORTER TTI, vol. RAN WG1, 24 March 2017 (2017-03-24), Athens, Greece, pages 1 - 8, XP051250565 *

Also Published As

Publication number Publication date
WO2022077792A1 (zh) 2022-04-21
CN116349352A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US20220353124A1 (en) Method for transmitting srs and related products
US10390337B2 (en) Aperiodic channel state information (CSI) reporting for carrier aggregation
JP7430630B2 (ja) 周波数領域リソース割り当て及び受信方法、装置及び通信システム
WO2021027898A1 (zh) 信息确定方法和装置
WO2020221321A1 (zh) 通信方法以及通信装置
WO2019062217A1 (zh) 数据传输方法、终端设备以及网络设备
TWI703887B (zh) 資源分配方法及相關裝置
US20190199469A1 (en) Method for transmitting data, receiving-end device, and transmitting-end device
US20230088374A1 (en) Buffer determining method and apparatus
RU2671954C1 (ru) Способ, оборудование и устройство для определения порядка модуляции и кодирования
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
US20240090006A1 (en) Wireless communication method and network device
WO2021179864A1 (zh) 码本反馈方法、网络设备、终端设备及计算机存储介质
TWI741025B (zh) 信息傳輸方法和裝置
EP3531608A1 (en) Method and device for transmitting reference signal
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
JP6664415B2 (ja) 電力制御方法、端末、および基地局
CN109495968B (zh) 用于进行数据传输的方法和装置
WO2022077517A1 (zh) 一种通信方法和装置
WO2022077510A1 (zh) 一种解调参考信号dmrs的资源确定方法和通信装置
WO2018157403A1 (zh) 资源的分配方法、确定方法和装置
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质
WO2021203378A1 (en) Client device and network access node for management of cch monitoring capabilities
WO2019090787A1 (zh) 一种用于无线通信的方法、装置
WO2018171778A1 (zh) 通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957295

Country of ref document: EP

Kind code of ref document: A1