WO2019090787A1 - 一种用于无线通信的方法、装置 - Google Patents

一种用于无线通信的方法、装置 Download PDF

Info

Publication number
WO2019090787A1
WO2019090787A1 PCT/CN2017/110736 CN2017110736W WO2019090787A1 WO 2019090787 A1 WO2019090787 A1 WO 2019090787A1 CN 2017110736 W CN2017110736 W CN 2017110736W WO 2019090787 A1 WO2019090787 A1 WO 2019090787A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
bits
state information
channel state
channel
Prior art date
Application number
PCT/CN2017/110736
Other languages
English (en)
French (fr)
Inventor
张瑞齐
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17931265.7A priority Critical patent/EP3697136B1/en
Priority to CN201780096612.7A priority patent/CN111316707B/zh
Priority to PCT/CN2017/110736 priority patent/WO2019090787A1/zh
Publication of WO2019090787A1 publication Critical patent/WO2019090787A1/zh
Priority to US16/867,819 priority patent/US11201655B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method and apparatus for wireless communication.
  • the LTE (Long Term Evolution) system widely uses MIMO (Multiple Input and Multiple Output) technology.
  • MIMO Multiple Input and Multiple Output
  • a precoding technique can be used to improve the signal transmission quality or rate.
  • TDD Time Division Duplexing
  • the uplink and downlink of the radio channel are mutually different, and the downlink precoding weight vector can be estimated according to the uplink channel.
  • FDD Frequency Division Duplexing
  • the uplink and downlink carrier frequencies are different, the uplink channel cannot be used to obtain the downlink weight vector.
  • a pre-coding weighting matrix is generally obtained by using a manner in which a terminal user feeds back a precoding indication.
  • the LTE standard supports Aperiodic Channel State Information (A-CSI). That is, the base station device sends an indication to the terminal device through the downlink control channel, and instructs the terminal device to feed back A-CSI at an uplink time point specified by the protocol or set by the base station. If the A-CSI of the terminal device and its uplink data are transmitted in the same subframe, the A-CSI and the uplink data share the time-frequency resources allocated by the base station device for the terminal device.
  • A-CSI Aperiodic Channel State Information
  • the number of bits of the A-CSI varies with the rank indicator (RI) determined by the terminal device measurement.
  • the change in the number of bits of the A-CSI causes a change in the number of resources used to carry the A-CSI, thereby further causing a change in the number of resources used to transmit data. Since the number of bits of the A-CSI does not vary greatly with RI, the adjustment of the transmit power of the data channel in LTE is not affected.
  • the MIMO system is also applied to New Radio (NR). Moreover, in the MIMO of NR, a high-precision codebook structure is defined. It is highly probable in the LTE system to introduce a high-precision codebook defined in the NR. However, for a high-precision codebook, the number of bits of a precoding matrix indicator (PMI) that the terminal device needs to feed back is large. For example, when the system bandwidth includes 10 subbands, the high-precision codebook needs to feed back the PMI for each sub-band. When the RANK is 2, the PMI feedback needs about 540 bits, and when the RANK is 1, the PMI feedback needs 270. Bit. When the terminal device transmits A-CSI and data on an uplink data channel, the abrupt bit change of the A-CSI causes the number of resources actually used to carry the data to change drastically. Therefore, the error probability of the data channel is large.
  • PMI precoding matrix indicator
  • Embodiments of the present invention provide a method and apparatus for wireless communication.
  • a method of wireless communication is provided.
  • channel state information and data are generated.
  • the channel state information and the data are transmitted over a data channel on a same time unit, the transmit power of the data channel being associated with the number of bits of the data and the number of bits of the channel state information.
  • the transmit power of the data channel changes according to the data carried by the data channel and the number of bits of the CSI. It ensures that the error probability of the data channel can meet the system requirements.
  • a wireless communication device in a second aspect, includes a processor and a transceiver.
  • the processor is configured to generate channel state information and data.
  • the transceiver is configured to send the channel state information CSI and the data over a data channel on a same time unit, the transmit power of the data channel being associated with the number of bits of the data and the number of bits of the CSI.
  • the transmit power is associated with the number of bits of the data and the number of bits of the channel state information, including:
  • the transmit power is proportional to a bit number BPRE of each resource unit, and the BPRE is a ratio of a first bit number to an N RE , wherein the first bit number is a bit number of the data and a first equivalent channel
  • N RE is the number of resource elements carrying the channel state information and the data
  • O CSI is the number of bits of the channel state information
  • is a multiplication factor.
  • the product of the number of CSI information bits and the product factor can be equivalent to the number of additional data channel bits, thereby obtaining the total number of equivalent bits carried by the PUSCH channel.
  • the terminal device may determine the number of bits of the CSI according to the measured CSI, thereby further determining the equivalent total number of bits. In this way, the transmission power of the data channel can be correlated with the equivalent total number of bits, thereby ensuring that the error probability of the data channel satisfies the system requirements.
  • the transmit power is associated with the number of bits of the data and the number of bits of the channel state information, including:
  • the transmit power is proportional to a bit number BPRE of each resource unit, and the BPRE is a ratio of a second bit number to an N RE , wherein the second bit number is a bit number of the data and a second equivalent channel
  • N RE is the number of resource elements carrying the channel state information and the data
  • O CSI is the number of bits of the channel state information
  • is a multiplication factor
  • O ref is the number of reference bits of channel state information.
  • O ref is the number of channel state information bits assumed when the access network device allocates resources to the terminal device.
  • the terminal device can reduce the transmission power of the data channel to achieve power saving purposes; if the terminal device measures the bits of the CSI The number of bits of the CSI assumed by the access network device is larger, and the UE can increase the transmission power, thereby ensuring that the error probability of the data channel satisfies the requirement. Therefore, this method can obtain a good compromise between the error probability of the data channel and the transmission power.
  • the transmit power is associated with the number of bits of the data and the number of bits of the channel state information, including:
  • the transmission power is proportional to the number of bits BPRE of each resource unit, and the BPRE is a ratio of the number of bits of the data to the number of equivalent resource units of the bearer data, where the number of equivalent resource units of the bearer data is N RE -Q', N RE is the channel state information and the number of resource elements occupied by the data, and Q' is a positive integer.
  • the transmission power of the data channel can be correlated with the resources actually occupied by the data, thereby ensuring that the error probability of the data channel satisfies the system requirements.
  • Q' is the number of resource elements occupied by the channel state information.
  • Q' is satisfied .
  • O CSI is the number of bits of the channel state information
  • O ref is the number of reference bits of the channel state information
  • is a multiplication factor.
  • O ref is the number of channel state information bits assumed when the access network device allocates resources to the terminal device.
  • the terminal device can reduce the transmission power of the data channel to achieve power saving purposes; if the terminal device measures the bits of the CSI The number of bits of the CSI assumed by the access network device is larger, and the UE can increase the transmission power, thereby ensuring that the error probability of the data channel satisfies the requirement. Therefore, this method can obtain a good compromise between the error probability of the data channel and the transmission power.
  • the indication information is received from the access network device prior to transmitting the channel state information and the data, the indication information indicating O ref .
  • the indication information includes a rank indication. Based on the rank indication information, O ref is determined.
  • the transceiver is further configured to receive indication information from the access network device before transmitting the channel state information and the data, the indication information indicating O ref . ,
  • the processor is further configured to determine O ref according to the rank indication information.
  • a communication device for performing the above method. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a computing storage medium containing instructions is provided that, when run on a computer, cause the computer to perform the above method.
  • a computer program product comprising instructions for causing a computer to perform the method of the above aspects when executed on a computer is provided.
  • the present application provides a chip system including a processor for supporting the above-described communication device to implement the functions involved in the above aspects, such as, for example, generating or processing data involved in the above method and/or Or channel status information.
  • the chip system may further comprise a memory for storing program instructions and data necessary for the data transmitting device.
  • the chip system can be composed of a chip, and can also include a chip and other separate devices.
  • the terminal device transmits both data and CSI on one data channel.
  • the transmit power of the data channel is related to both the number of bits of the data and the number of bits of the channel state information. In this way, the error probability of the data channel can be guaranteed to meet the system requirements.
  • FIG. 1 is a schematic diagram of a wireless communication system provided by the present application.
  • FIG. 2 is a schematic diagram of a possible structure of an access network device in the above wireless communication system.
  • FIG. 3 is a schematic diagram of a possible structure of a terminal device in the above wireless communication system.
  • FIG. 4 is a schematic diagram of a method for transmitting wireless communication data provided by the present application.
  • FIG. 5 is a schematic diagram of processing data and channel state information of a terminal device according to the present application.
  • FIG. 6 is a schematic diagram of sending data provided by the present application.
  • FIG. 1 is a schematic diagram of a possible network architecture of the present application.
  • At least one terminal device 10 is included, which communicates with the access network device 20 via a wireless interface.
  • the channel through which the access network device transmits data to the terminal device is a downlink channel.
  • the channel through which the terminal device transmits data to the access network device is an uplink channel.
  • the terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or on-board; it can also be deployed on the water surface (such as a ship, etc.); it can also be deployed in the air (for example, an aircraft, Balloons and satellites, etc.).
  • the terminal may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, industrial control (industrial control) Wireless terminal, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety, A wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • An access network device is a device that connects a terminal device to a wireless network, including but not limited to: a gNB in 5G, an evolved node B (eNB), and a radio network controller (radio network controller, RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved node B, or home node B, HNB) Baseband unit (BBU), base station (g nodeB, gNB), transmission and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • HNB home base station
  • BBU Baseband unit
  • base station g nodeB, gNB
  • TRP transmission and receiving point
  • TP transmitting point
  • TP mobile switching center
  • Wifi connection can also be included.
  • AP Access point
  • the access network device 20 may include a controller or a processor 201 (hereinafter, the processor 201 is taken as an example) and a transceiver 202. Controller/processor 201 is sometimes also referred to as a modem processor. Modem processor 201 can include a baseband processor (BBP) (not shown) that processes the digitized received signal to extract information or data bits conveyed in the signal. As such, the BBP is typically implemented in one or more digital signal processors (DSPs) within the modem processor 201 or as separate integrated circuits (ICs) as needed or desired.
  • DSP digital signal processors
  • the transceiver 202 can be used to support the transmission and reception of information between the access network device 20 and the terminal device, and to support radio communication with the terminal device.
  • the uplink signal from the terminal device is received via the antenna, coordinated by the transceiver 202, and further processed by the processor 201 to recover the traffic data and/or signaling information transmitted by the terminal device.
  • traffic data and/or signaling messages are processed by the terminal device and modulated by the transceiver 202 to generate downlink signals for transmission to the terminal device via the antenna.
  • the access network device 20 may further include a memory 203, which may be used to store the program code of the access network device 20. And / or data.
  • the transceiver 202 can include separate receiver and transmitter circuits, or the same circuit can implement transceiving functions.
  • the access network device 102 can also include a communication unit 204 for supporting the access network device 20 to communicate with other network entities. For example, it is used to support the access network device 102 to communicate with a network device or the like of the core network.
  • the access network device may further include a bus.
  • the transceiver 202, the memory 203, and the communication unit 204 can be connected to the processor 201 through a bus.
  • the bus can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus may include an address bus, a data bus, a control bus, and the like.
  • FIG. 3 is a schematic diagram of a possible structure of a terminal device in the above wireless communication system.
  • the terminal device is capable of performing the method provided by the embodiment of the present invention.
  • the terminal device may be the terminal device 10 in FIG.
  • the terminal device includes a transceiver 301, a processor 300, and a memory 303.
  • Processor 300 can include an application processor 302 and a modem processor 304.
  • Transceiver 301 can condition (e.g., analog convert, filter, amplify, upconvert, etc.) output samples and generate an uplink signal.
  • the uplink signal is transmitted to the access network device via the antenna.
  • the antenna receives the downlink signal transmitted by the access network device.
  • Transceiver 301 can condition (eg, filter, amplify, downconvert, digitize, etc.) the signals received from the antenna and provide input samples.
  • Modem processor 304 also sometimes referred to as a controller or processor, may include a baseband processor (BBP) (not shown) that processes the digitized received signal to extract information conveyed in the signal Or data bits.
  • BBP baseband processor
  • a modem processor 304 may include an encoder 3041, a modulator 3042, a decoder 3043, and a demodulator 3044.
  • the encoder 3041 is for encoding the signal to be transmitted.
  • encoder 3041 can be used to receive traffic data and/or signaling messages to be transmitted on the uplink and to process (eg, format, encode, or interleave, etc.) the traffic data and signaling messages.
  • Modulator 3042 is used to modulate the output signal of encoder 3041.
  • the modulator can perform symbol mapping and/or modulation processing on the encoder's output signals (data and/or signaling) and provide output samples.
  • a demodulator 3044 is used to demodulate the input signal.
  • demodulator 3044 processes the input samples and provides symbol estimates.
  • the decoder 3043 is configured to decode the demodulated input signal.
  • the decoder 3043 deinterleaves, and/or decodes the demodulated input signal and outputs the decoded signal (data and/or signaling).
  • Encoder 3041, modulator 3042, demodulator 3044, and decoder 3043 may be implemented by a composite modem processor 304. These units are processed according to the radio access technology employed by the radio access network.
  • Modem processor 304 receives digitized data representative of voice, data or control information from application processor 302 and processes the digitized data for transmission.
  • the associated modem processor can support one or more of a variety of wireless communication protocols of various communication systems, such as LTE, New Radio (NR), Universal Mobile Telecommunications System (UMTS), high speed. High Speed Packet Access (HSPA) and so on.
  • LTE Long Term Evolution
  • NR New Radio
  • UMTS Universal Mobile Telecommunications System
  • HSPA High Speed Packet Access
  • one or more memories may also be included in the modem processor 304.
  • modem processor 304 and the application processor 302 may be integrated in one processor chip.
  • the memory 303 is used to store program code (sometimes referred to as programs, instructions, software, etc.) and/or data for supporting communication of the terminal device.
  • program code sometimes referred to as programs, instructions, software, etc.
  • the memory 203 or the memory 303 may include one or more storage units, for example, may be a processor 201 for storing program code or a storage unit inside the modem processor 304 or the application processor 302, or may Is an external storage unit separate from the processor 201 or the modem processor 304 or the application processor 302, or may also be a storage unit including the processor 201 or the modem processor 304 or the application processor 302 and with the processor 201 or modem
  • the processor 304 or the application processor 302 is a separate component of an external storage unit.
  • the processor 201 and the modem processor 301 may be the same type of processor or different types of processors. For example, it can be implemented in a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and a field programmable gate array ( Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, other integrated circuit, or any combination thereof.
  • the processor 201 and the modem processor 301 can implement or perform various exemplary logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing function devices, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, or a system-on-a-chip (SOC) or the like.
  • a time unit may be a subframe, or a time slot, and may also be a system frame.
  • the implementation method is similar to that in a subframe.
  • the application does not limit the unit of the time unit.
  • the rank represents the number of one precoding matrix column.
  • A is proportional to B means that as the value of B increases, A also increases.
  • a high precision codebook structure is defined as follows.
  • the precoding matrix W is represented by the formula (1)
  • W 1 is a block diagonal matrix and each block matrix Containing one orthogonal two-dimensional discrete Fourier transform (DFT) vector, and
  • c r,l,i represents phase information.
  • the range of c r,l,i can be The range of c r,l,i can also be Wherein r denotes the direction of polarization of the antenna dimension index, l represents the number of data layers, i denotes the number 1 W beam vectors.
  • the rank and PMI are sent together with the data on the uplink data channel to the access network device.
  • CSI Channel State Information
  • the resource of the uplink data channel carrying the rank and the PMI is allocated by the access network device to the terminal device. Therefore, when the access network device allocates the resource, it does not know the rank that the terminal device will send, so the access network device
  • the number of bits of one CSI can be estimated by referring to the previous CSI report result, and resources are allocated to the terminal device according to the estimated number of bits of the CSI and the number of data bits that the UE needs to transmit. This will have access
  • the number of bits of the CSI estimated by the network does not match the bit of the CSI that the terminal device actually needs to report. This mismatch is more serious in high-precision codebook feedback.
  • the rank obtained by the actual measurement of the terminal device is 2, so that the resource for transmitting CSI becomes U1+Q, and the resource for transmitting data becomes U2-Q.
  • the change of these resources leads to an increase in the actual coding rate of the data transmission. If the transmission power of the data is not adjusted accordingly, the error probability of the data increases.
  • the data transmission method in the wireless communication aims to solve the above technical problem.
  • FIG. 4 is a schematic diagram of a method of wireless communication provided by the present application.
  • a wireless communication method provided by the application is described by taking a transmitting device as a terminal device and a receiving device as an access network device as an example.
  • Step 401 The terminal device generates channel state information and data.
  • the terminal device In step 401, the terminal device generates channel state information and data.
  • This data can be business data.
  • the data is sent to the access network device through the uplink data channel.
  • the channel state information may include information such as a rank indicator (RI), a channel quality indicator (CQI), a PMI, and the like.
  • the channel state information includes a PMI of a high precision codebook.
  • the channel state information may also include an RI.
  • Figure 5 shows a possible way for the terminal device to process the data and channel state information before transmitting the data and the CSI after the terminal device generates data and channel state information.
  • the data bits before encoding in steps 501a, 501b in FIG. 5 are bits of data generated by the terminal device, and the CSI bits before encoding are bits of channel state information generated by the terminal device.
  • step 502a, 502b the terminal device performs channel coding on the data bits before encoding to obtain encoded data bits.
  • the terminal device performs channel coding on the CSI bits before encoding to obtain the encoded CSI bits.
  • Step 503 The terminal device modulates the encoded data bits and CSI bits to obtain a modulation symbol.
  • step 401 and the steps in FIG. 5 can be implemented by the processor 300 of the terminal device.
  • the application processor 302 in the processor 300 can implement steps 501a, 501b.
  • the modem processor 304 implements 502a, 502b, 503 in FIG.
  • Step 402 Send the channel state information and the data through a data channel on a same time unit, where the transmission power of the data channel is associated with the number of bits of the data and the number of bits of the CSI. Since the transmission power of the data channel is related to both the number of bits of the data and the number of bits of the channel state information. In this way, the error probability of the data channel can be guaranteed to meet the system requirements.
  • a time unit can be one subframe, one time slot, and the like.
  • One time unit is one subframe in LTE as an example.
  • An LTE normal subframe contains two slots.
  • OFDM symbols For the downlink channel, there are 7 orthogonal frequency division multiplexing OFDM symbols per slot.
  • each slot For the uplink channel, each slot has 7 discrete Fourier transform spread Orthogonal Frequency Division Multiplexing (DFT-spread-OFDM, DFT-s-OFDM) (Discrete Fourier Transform, Discrete Fourier Transform, DFT) )symbol.
  • DFT-spread-OFDM DFT-s-OFDM
  • DFT-s-OFDM discrete Fourier transform spread Orthogonal Frequency Division Multiplexing
  • a normal subframe contains a total of 14 or 12 OFDM/DFT-s-OFDM symbols.
  • the size of an RB (resource block) is defined.
  • One RB includes 12 subcarriers in the frequency domain and half of the subframe duration (one time slot) in the time domain, that is, 7 or 6 OFDM/DFT-s-OFDM symbol, wherein a normal Cyclic Prefix (CP) length symbol is 7 OFDM/DFT-s-OFDM symbols, and an extended cyclic prefix length symbol is 6 OFDM/DFT-s- OFDM symbol).
  • CP Cyclic Prefix
  • a subcarrier within a certain OFDM/DFT-s-OFDM symbol A wave is called a resource element (RE), so an RB contains 84 or 72 REs.
  • a pair of RBs of two slots is called a resource block pair, that is, an RB pair.
  • the RB pair used by the physical resource is also called a PRB pair (physical resource block pair).
  • the data channel may be a physical uplink shared channel (PUSCH) in LTE.
  • PUSCH physical uplink shared channel
  • the terminal device transmits channel state information and data through the PUSCH in one subframe.
  • the transmit power is associated with the number of bits of the data and the number of bits of the channel state information, including:
  • the transmit power is proportional to a bit number BPRE of each resource unit, and the BPRE is a ratio of a first bit number to an N RE , the first bit number being a bit number of the data and a first equivalent channel state information bit
  • the number of bits of the data may be the number of bits encoded in FIG. N RE is the number of resource units carrying the channel state information and the data, and the number of the first equivalent channel state information bits is O CSI is the number of bits of the channel state information, and ⁇ is a multiplication factor.
  • the number of bits of the channel state information may be the number of bits of CSI before encoding in FIG.
  • CRC Cyclic Redundancy Check
  • BPRE includes a ratio of the number of first bits to the ratio of N RE , which can be expressed as
  • O data is the number of bits of the data. Is the total number of bits transmitted on the data channel.
  • the BPRE includes not only the ratio of the first ratio number to the N RE but also the ratio of the number of HARQ-ACK bits to the ratio of N RE , which can be expressed as
  • O ack represents the number of HARQ-ACK information bits
  • ⁇ ack is a product factor associated with the number of HARQ-ACK information bits.
  • the terminal device Since the product of the number of CSI information bits and the product factor can be equivalent to the number of additional data channel bits, the terminal device obtains the total number of equivalent bits carried by the PUSCH channel.
  • the terminal device may determine the number of bits of the CSI according to the measured CSI, thereby further determining the equivalent total number of bits. In this way, the transmission power of the data channel can be correlated with the equivalent total number of bits, thereby ensuring that the error probability of the data channel satisfies the system requirements.
  • the channel state information includes the first type channel state information and the second type channel state information, where the first type channel state information and the second type channel state information are configured with different product factors, and the first type channel state information is assumed.
  • the number of bits before encoding is O CSI, 1 , and the corresponding multiplicative factor is ⁇ 1 .
  • the number of bits before encoding the second type channel state information is O CSI, 2 , and the corresponding multiplicative factor is ⁇ 2 , then the first The ratio of the number of bits to the ratio of N RE can be expressed as
  • BPRE (O data +
  • the channel state information generally includes a rank indicator (RI) and a precoding matrix indication. (precoding matrix indicator) and channel quality indicator, wherein the channel state information can often be divided into two parts.
  • the RI is the first type of channel state information
  • the PMI and the CQI are the second type of channel state information.
  • the product factor associated with the first type and the first type of CSI is different. Therefore, in this example, by correlating the BPRE with the two-part CSI and the corresponding multiplication factor, a more accurate determination of the transmission power can be obtained.
  • the first type CSI includes a RI and a CQI of a first codeword
  • the second type CSI includes a PMI and a remaining CQI.
  • the transmit power is associated with the number of bits of the data and the number of bits of the channel state information, including:
  • the transmit power is proportional to a bit number BPRE of each resource unit, and the BPRE is a ratio of a second bit number to an N RE , wherein the second bit number is a bit number of the data and a second equivalent channel
  • N RE is the number of resource elements carrying the channel state information and the data
  • O CSI is the number of bits of the channel state information
  • is a multiplication factor
  • O ref is the number of reference bits of channel state information.
  • O ref is the number of channel state information bits assumed when the access network device allocates resources to the terminal device.
  • the terminal device can reduce the transmission power of the data channel to achieve power saving purposes; if the terminal device measures the bits of the CSI The number of bits of the CSI assumed by the access network device is larger, and the UE can increase the transmission power, thereby ensuring that the error probability of the data channel satisfies the requirement. Therefore, this method can obtain a good compromise between the error probability of the data channel and the transmission power.
  • BPRE is the ratio of the number of second bits to the ratio of N RE , which can be expressed as
  • the channel state information may be divided into a first type channel state information and a second type channel state information, where the first type channel state information and the second type channel state information are configured with different product factors, assuming the first type channel
  • the number of bits before the state information is encoded is O CSI,1 , and the corresponding multiplicative factor is ⁇ 1
  • the number of bits before encoding the second type channel state information is O CSI, 2
  • the corresponding multiplicative factor is ⁇ 2 .
  • the ratio of the number of second equivalent channel state information bits to the ratio of N RE may be expressed as
  • BPRE (O data +
  • BPRE (O data +
  • the transmit power is associated with the number of bits of the data and the number of bits of the channel state information, including:
  • the transmission power is proportional to the number of bits BPRE of each resource unit, and the BPRE includes a ratio of the number of bits of the data to the number of equivalent resource units of the bearer data, where the number of equivalent resource units of the bearer data is N RE -Q', N RE is the channel state information and the number of resource elements occupied by the data, and Q' is a positive integer.
  • the BPRE is a ratio of the number of bits of the data to the number of equivalent resource units of the bearer data, which may be expressed as
  • the transmission power of the data channel can be correlated with the resources actually occupied by the data, thereby ensuring that the error probability of the data channel satisfies the system requirements.
  • Q' is the number of resource elements occupied by the channel state information. among them Indicates the number of bits of data, K r represents the number of bits of the coded block r, C represents the number of coded blocks of data carried on the data channel, and N max represents the maximum number of resources used to carry CSI.
  • the O CSI indicates the number of bits before the channel state information is encoded. If the coding mode corresponding to the CSI requires a CRC, the O CSI is the sum of the number of channel state information bits and the number of CRC bits. N RE -Q' is equivalent to the number of resource elements occupied by data bits.
  • the channel state information includes the first type channel state information and the second type channel state information, where the number of bits before encoding of the first type channel state information is O CSI, 1 , and the product factor is ⁇ 1 , the first type channel
  • N max,1 and N max,2 are the maximum number of resources for carrying the first type channel state information and the second type channel state information, respectively.
  • Q' 1 and Q' 2 are as described above, and Q' 3 is used to represent the number of equivalent resources corresponding to Hybrid Automatic Repeat Request Acknowledgement (HARQ-ACK).
  • O ack represents the number of bits of HARQ-ACK.
  • ⁇ 3 represents the product factor associated with the HARQ-ACK, and N max, 3 represents the maximum number of resources used to carry the HARQ-ACK.
  • the channel state information includes a first type of channel state information and a second type of channel state information, where the number of bits before encoding of the first type channel state information is O CSI, 1 , and the product factor is ⁇ 1 , and the channel information of the first type is occupied.
  • the number of resource units is The number of bits before coding of the second type channel state information is O CSI, 2 , and the product factor is ⁇ 2 , and the number of resource units occupied by the channel information of the first type is
  • the same parameters have the same physical meaning.
  • the parameters O data , O CSI , O CSI have the same physical meaning in the above formula.
  • C is the number of channel coded codewords.
  • K r is the number of bits after channel coding of the rth codeword.
  • the terminal device prior to transmitting the channel state information and the data, receives indication information from the access network device, the indication information indicating O ref .
  • the indication information includes a rank indication.
  • the terminal device determines O ref according to the rank indication information.
  • the transmit power of the data channel is P PUSCH, and c (i) satisfies:
  • P CMAX,c represents the maximum transmit power of the terminal device in cell c.
  • M PUSCH,c (i) indicates the number of PRB pairs occupied by the terminal device to transmit the PUSCH
  • P O_PUSCH,c (j) are values determined by the parameters of the high layer configuration.
  • ⁇ TF is a real number.
  • Figure 6 shows a schematic diagram of the terminal device transmitting control information and data.
  • Step 402 can be implemented by the transceiver 301 of the terminal device.
  • step 601 the modulation symbol is subjected to DFT to obtain a symbol after DFT.
  • a symbol after DFT For example, there are N modulation symbols, and D symbols after N points obtain N symbols after DFT.
  • step 602 the symbols after the DFT are mapped to the frequency domain subcarriers to obtain the mapped symbols.
  • the mapped symbols are IFFT and a cyclic prefix is added to form a time domain signal.
  • step 604 the time domain signal is transmitted over the radio frequency.
  • the modulation symbol in Fig. 6 is the modulation symbol generated in Fig. 5.
  • Steps 601, 602, 603 can be implemented by processor 300, and step 604 can be implemented by transceiver 301.
  • the access network device receives the data and the CSI sent by the terminal device.
  • the transceiver of the access network device can receive the data and the CSI.
  • the controller/processor 201 of the access network device processes the received signal to obtain the pre-encoding data bits and the pre-encoding CSI bits.
  • the terminal device transmits both data and CSI on one data channel.
  • the transmit power of the data channel is related to both the number of bits of the data and the number of bits of the channel state information. In this way, the error probability of the data channel can be guaranteed to meet the system requirements.
  • the present invention also provides an apparatus (e.g., an integrated circuit, a wireless device, a circuit module, etc.) for implementing the above method.
  • an apparatus e.g., an integrated circuit, a wireless device, a circuit module, etc.
  • the means for implementing the power tracker and/or power generator described herein may be a stand-alone device or may be part of a larger device.
  • the device may be (i) a self-supporting IC; (ii) having one or more 1C A collection, which may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter/receiver; (iv) an ASIC, such as a mobile station modem; (v) may be embedded in Modules in other devices; (vi) receivers, cellular phones, wireless devices, handsets, or mobile units; (vii) others.
  • a self-supporting IC may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter/receiver; (iv) an ASIC, such as a mobile station modem; (v) may be embedded in Modules in other devices; (vi) receivers, cellular phones, wireless devices, handsets, or mobile units; (vii) others.
  • the method and apparatus provided by the embodiments of the present invention may be applied to a terminal device or an access network device (which may be collectively referred to as a wireless device).
  • the terminal device or access network device or wireless device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the embodiment of the present invention does not limit the specific structure of the execution body of the method, as long as the transmission signal according to the embodiment of the present invention can be executed by running a program recording the code of the method of the embodiment of the present invention.
  • the method can be communicated.
  • the execution body of the method for wireless communication in the embodiment of the present invention may be a terminal device or an access network device, or a function capable of calling a program and executing a program in the terminal device or the access network device. Module.
  • the present application also provides a computer storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the method performed by the terminal device in the above method embodiments.
  • Embodiments of the present application also provide a computer program product comprising instructions that, when executed by a computer, cause the computer to perform the functions performed by the terminal device in the above method.
  • a computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (DVD). Etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • CD compact disc
  • DVD digital versatile disc
  • Etc. smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computing Machine, special purpose computer, computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and the present invention should not be The implementation of the embodiments constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or an access network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种发送数据方案。终端设备生成信道状态信息和数据。所述终端设备生成信道状态信息和数据。且所述数据信道的发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目。通过本申请的方案,提高了数据的解码正确率。

Description

一种用于无线通信的方法、装置 技术领域
本申请涉及无线通信技术领域,特别涉及无线通信的方法和装置。
背景技术
LTE(Long Term Evolution)系统广泛采用了MIMO(Multiple Input and Multiple Output)技术。当基站可以获得全部或者部分下行信道状态信息的时候,可以采用预编码(Precoding)技术来提高信号传输质量或者速率。对于TDD(Time Division Duplexing)系统,无线信道的上下行具有互异性,可以根据上行信道来估计出下行的预编码加权矢量。但是对于FDD(Frequency Division Duplexing)系统,由于上行和下行的载波频率不同,因此不能利用上行信道来获得下行的加权矢量。在LTE FDD系统中,一般采用终端用户反馈预编码指示的方式来获得预编码加权矩阵。
LTE标准支持非周期信道状态信息反馈(Aperiodic Channel State Information,简称A-CSI)。即基站设备通过下行控制信道向终端设备发送指示,指示终端设备在协议规定的或者基站设置的上行时间点反馈A-CSI。如果该终端设备的A-CSI和其上行数据在同一个子帧发送,那么A-CSI和上行数据会共享基站设备为终端设备分配的时频资源。
在LTE中,A-CSI的比特个数会随着终端设备测量确定的秩指示(rank indicator,RI)而变化。而A-CSI的比特个数的变化会导致用于承载A-CSI的资源个数变化,从而进一步引起用于传输数据的资源个数的变化。由于A-CSI的比特个数随着RI变化不是很大,因此LTE中数据信道的发射功率的调整不受影响。
MIMO系统同样同样应用于新空口(New Radio,NR)中。而且在NR的MIMO中,定义了高精度的码本(codebook)结构。LTE系统中很有可能引入NR中定义的高精度码本。但是对于高精度码本,终端设备需要反馈的预编码矩阵指示(precoding matrix indicator,PMI)的比特数很多。比如在系统带宽包括10个子带,高精度码本需要在为每个子带反馈PMI的时候,RANK为2的时候PMI的反馈需要540个比特左右,而RANK为1的时候PMI的反馈需要270个比特。终端设备在一个上行数据信道发送A-CSI和数据的时候,A-CSI剧烈的比特变化会导致实际用于承载数据的资源个数剧烈变化。因此会导致数据信道的误码概率较大的起伏。
发明内容
本发明实施例提供一种用于无线通信的方法和装置。
第一方面,提供了一种无线通信的方法。该方法中,生成信道状态信息和数据。在同一个时间单元上通过数据信道发送所述信道状态信息和所述数据,所述数据信道的发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目。
通过上述方法,数据信道的发射功率会随着其承载的数据和CSI的比特个数而改变, 保证了数据信道的误码概率能够满足系统需求。
第二方面,提供了一种无线通信装置,该装置包括处理器和收发器。该处理器,用于生成信道状态信息和数据。该收发器,用于在同一个时间单元上通过数据信道发送所述信道状态信息CSI和所述数据,所述数据信道的发送功率关联于所述数据的比特数目和所述CSI的比特数目。
在一个例子中,所述发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目,包括:
所述发送功率正比于每个资源单元的比特数目BPRE,所述BPRE为第一比特数目和NRE的比值,其中,所述第一比特数目为所述数据的比特数目与第一等效信道状态信息比特数目之和,NRE为承载所述信道状态信息和所述数据的资源单元的数目,所述第一等效信道状态信息比特数目为
Figure PCTCN2017110736-appb-000001
OCSI为所述信道状态信息的比特数目,β为乘积因子。CSI信息比特个数与乘积因子的乘积可以等效为额外的数据信道比特个数,从而获得该PUSCH信道承载的总等效比特个数。终端设备可以根据所测量获得的CSI确定CSI的比特个数,从而进一步确定等效的总比特个数。这样做,可以使数据信道的传输功率和等效总比特个数相关,从而保证了数据信道的误码概率满足系统需求。
在一个例子中,所述发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目,包括:
所述发送功率正比于每个资源单元的比特数目BPRE,所述BPRE为第二比特数目和NRE的比值,其中,所述第二比特数目为所述数据的比特数目与第二等效信道状态信息比特数目之和,NRE为承载所述信道状态信息和所述数据的资源单元的数目,所述第二等效信道状态信息比特数目为
Figure PCTCN2017110736-appb-000002
OCSI为所述信道状态信息的比特数目,β为乘积因子,Oref为信道状态信息的参考比特数目。且Oref为接入网设备给终端设备分配资源时假设的信道状态信息比特个数。如果终端设备实际测的CSI比特个数比接入网设备假设的CSI的比特个数少,终端设备可以减少数据信道的发射功率,达到省电的目的;如果终端设备测量得到的CSI的比特个数比接入网设备假设的CSI的比特个数多,那么UE可以增加发射功率,从而保证了数据信道的误码概率满足需求。所以该方式可以在数据信道的误码概率和发送功率之间获得很好的折中。
在一个例子中,所述发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目,包括:
所述发送功率正比于每个资源单元的比特数目BPRE,所述BPRE为所述数据的比特数目和承载数据的等效资源单元数目的比值,其中,承载数据的等效资源单元数目为NRE-Q′,NRE为所述信道状态信息和所述数据占用的资源单元的数目,Q′为正整数。这样做,可以使数据信道的传输功率和数据实际占的资源相关,从而保证了数据信道的误码概率满足系统需求。
在一个例子中,Q′为所述信道状态信息占用的资源单元的数目。可选的,Q′满足
Figure PCTCN2017110736-appb-000003
。其中,OCSI为所述信道状态信息的比特数目,Oref为信道状态信息的参考比特数目,β为乘积因子。Oref为接入网设备给终端设备分配资源时假设的信道状态信息比特个数。如果终端设备实际测的CSI比特个数比接入网设备假设的CSI的比特个数少,终端设备可以减少数据信道的发射功率,达到省电的目的;如果终端设备测量得到的CSI的比特个数比接入网设备假设的CSI的比特个数据多,那么UE可以增加发射功率,从而保证了数据信道的误码概率满足需求。所以该方式可以在数据信道的误码概率和发送功率之间获得很好的折中。
在一个例子中,在发送所述信道状态信息和所述数据之前,从接入网设备接收指示信息,所述指示信息指示Oref
在一个例子中,所述指示信息包括秩指示。根据所述秩指示信息,确定Oref
在一个例子中,所述收发器,还用于在发送所述信道状态信息和所述数据之前,从接入网设备接收指示信息,所述指示信息指示Oref。、
在一个例子中,所述处理器,还用于根据所述秩指示信息,确定Oref
第三方面,提供了一种通信装置,所述通信装置用于执行上述方法。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,提供了一种包含指令的计算存储介质,当其在计算机上运行时,使得计算机执行上述方法。
第五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第六方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持上述通信装置实现上述方面中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信道状态信息。在一种可能的设计中,所述芯片系统还可以包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分离器件。
本申请提供的无线通信的方法和装置,终端设备在一个数据信道上既发送数据又发送CSI。且该数据信道的发送功率既关联于所述数据的比特数目,又关联于所述信道状态信息的比特数目。这样,可以保证数据信道的误码概率能够满足系统需求。
附图说明
图1为本申请提供的无线通信系统示意图;。
图2为上述无线通信系统中,接入网设备的一种可能的结构示意图。
图3为上述无线通信系统中,终端设备的一种可能的结构示意图。
图4为本申请提供的无线通信数据发送方法的示意图。
图5为本申请提供的一种终端设备处理数据和信道状态信息的示意图。
图6为本申请提供的一种发送数据的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。需要说明的是,在不冲突的情况下,本发明各个实施例中的技术方案或特征可以相互组合。
如图1所示,为本申请的一种可能的网络架构示意图。包括至少一个终端设备10,通过无线接口与接入网设备20通信,为清楚起见,图中只示出一个接入网设备和一个终端设备。接入网设备向终端设备发送数据的信道是下行信道。终端设备向接入网设备发送数据的信道是上行信道。
其中,终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
接入网设备,是一种将终端设备接入到无线网络的设备,包括但不限于:5G中的gNB、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(BaseBand Unit,BBU)、基站(g nodeB,gNB)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,此外,还可以包括Wifi接入点(access point,AP)等。
进一步地,上述接入网设备20的一种可能的结构示意图可以如图2所示。其中,该接入网设备20可以包括:控制器或处理器201(下文以处理器201为例进行说明)以及收发器202。控制器/处理器201有时也称为调制解调器处理器(modem processor)。调制解调器处理器201可包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。如此,BBP通常按需或按期望实现在调制解调器处理器201内的一个或多个数字信号处理器(digital signal processor,DSP)中或实现为分开的集成电路(integrated circuit,IC)。
收发器202可以用于支持接入网设备20与终端设备之间收发信息,以及支持与终端设备之间进行无线电通信。在上行链路,来自终端设备的上行链路信号经由天线接收,由收发器202进行调解,并进一步处理器201进行处理来恢复终端设备所发送的业务数据和/或信令信息。在下行链路上,业务数据和/或信令消息由终端设备进行处理,并由收发器202进行调制来产生下行链路信号,并经由天线发射给终端设备。所述接入网设备20还可以包括存储器203,可以用于存储该接入网设备20的程序代码 和/或数据。收发器202可以包括独立的接收器和发送器电路,也可以是同一个电路实现收发功能。所述接入网设备102还可以包括通信单元204,用于支持所述接入网设备20与其他网络实体进行通信。例如,用于支持所述接入网设备102与核心网的网络设备等进行通信。
可选的,接入网设备还可以包括总线。其中,收发器202、存储器203以及通信单元204可以通过总线与处理器201连接。例如,总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以包括地址总线、数据总线、以及控制总线等。
图3为上述无线通信系统中,终端设备的一种可能的结构示意图。该终端设备能够执行本发明实施例提供的方法。该终端设备可以是图1中的终端设备10。所述终端设备包括收发器301,处理器300,存储器303。处理器300可以包括应用处理器(application processor)302和调制解调器处理器(modem processor)304。
收发器301可以调节(例如,模拟转换、滤波、放大和上变频等)输出采样并生成上行链路信号。上行链路信号经由天线发射给接入网设备。在下行链路上,天线接收接入网设备发射的下行链路信号。收发器301可以调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。
调制解调器处理器304有时也称为控制器或处理器,可包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。
在一个设计中,调制解调器处理器(modem processor)304可包括编码器3041,调制器3042,解码器3043,解调器3044。编码器3041用于对待发送信号进行编码。例如,编码器3041可用于接收要在上行链路上发送的业务数据和/或信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码、或交织等)。调制器3042用于对编码器3041的输出信号进行调制。例如,调制器可对编码器的输出信号(数据和/或信令)进行符号映射和/或调制等处理,并提供输出采样。解调器3044用于对输入信号进行解调处理。例如,解调器3044处理输入采样并提供符号估计。解码器3043用于对解调后的输入信号进行解码。例如,解码器3043对解调后的输入信号解交织、和/或解码等处理,并输出解码后的信号(数据和/或信令)。编码器3041、调制器3042、解调器3044和解码器3043可以由合成的调制解调处理器304来实现。这些单元根据无线接入网采用的无线接入技术来进行处理。
调制解调器处理器304从应用处理器302接收可表示语音、数据或控制信息的数字化数据,并对这些数字化数据处理后以供传输。所属调制解调器处理器可以支持多种通信系统的多种无线通信协议中的一种或多种,例如LTE,新空口(New Radio,NR),通用移动通信系统(Universal Mobile Telecommunications System,UMTS),高速分组接入(High Speed Packet Access,HSPA)等等。可选的,调制解调器处理器304中也可以包括一个或多个存储器。
可选的,该调制解调器处理器304和应用处理器302可以是集成在一个处理器芯片中。
存储器303用于存储用于支持所述终端设备通信的程序代码(有时也称为程序,指令,软件等)和/或数据。
需要说明的是,该存储器203或存储器303可以包括一个或多个存储单元,例如,可以是用于存储程序代码的处理器201或调制解调器处理器304或应用处理器302内部的存储单元,或者可以是与处理器201或调制解调器处理器304或应用处理器302独立的外部存储单元,或者还可以是包括处理器201或调制解调器处理器304或应用处理器302内部的存储单元以及与处理器201或调制解调器处理器304或应用处理器302独立的外部存储单元的部件。
处理器201和调制解调器处理器301可以是相同类型的处理器,也可以是不同类型的处理器。例如可以实现在中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、其他集成电路、或者其任意组合。处理器201和调制解调器处理器301可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能器件的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合或者片上系统(system-on-a-chip,SOC)等等。
本领域技术人员能够理解,结合本申请所公开的诸方面描述的各种解说性逻辑块、模块、电路和算法可被实现为电子硬件、存储在存储器中或另一计算机可读介质中并由处理器或其它处理设备执行的指令、或这两者的组合。作为示例,本文中描述的设备可用在任何电路、硬件组件、IC、或IC芯片中。本申请所公开的存储器可以是任何类型和大小的存储器,且可被配置成存储所需的任何类型的信息。为清楚地解说这种可互换性,以上已经以其功能性的形式一般地描述了各种解说性组件、框、模块、电路和步骤。此类功能性如何被实现取决于具体应用、设计选择和/或加诸于整体系统上的设计约束。本领域技术人员可针对每种特定应用以不同方式来实现所描述的功能性,但此类实现决策不应被解读为致使脱离本发明的范围。
本申请中,一个时间单元可以是一个子帧,或者是一个时隙,还可以是一个系统帧,其实现方法与以一个子帧为单位类似,本申请对时间单元的单位没有限定。
本申请中,秩表示的一个预编码矩阵列的数目。例如,预编码矩阵W为8行2列的矩阵,则秩=2。
本申请中,A正比于B指的是随着B的值增加,A也增加。
本申请中,对A的上取整
Figure PCTCN2017110736-appb-000004
都可以由下取整
Figure PCTCN2017110736-appb-000005
来替换。
在MIMO系统中,一种高精度的码本结构定义如下。
预编码矩阵W由公式(1)表示
W=W1×W2             (1)
其中,W1为块对角矩阵,且每个块矩阵
Figure PCTCN2017110736-appb-000006
中包含I个正交的二维离散傅里叶变换(Discrete Fourier Transform,DFT)向量,且
Figure PCTCN2017110736-appb-000007
其中,波束向量
Figure PCTCN2017110736-appb-000008
i=0,…I-1,相互正交。
当秩=1时,W2满足公式(3)
Figure PCTCN2017110736-appb-000009
当秩=1时,W2满足公式
Figure PCTCN2017110736-appb-000010
在公式(3)、(4)中,
Figure PCTCN2017110736-appb-000011
表示宽带和子带的幅度信息,
Figure PCTCN2017110736-appb-000012
Figure PCTCN2017110736-appb-000013
cr,l,i表示相位信息。例如,cr,l,i的取值范围可以为
Figure PCTCN2017110736-appb-000014
cr,l,i的取值范围还可以为
Figure PCTCN2017110736-appb-000015
其中r表示天线的极化方向维度的索引,l表示数据的层的序号,i表示W1中波束向量的序号。
对于高精度码本,随着秩的改变,终端设备反馈的PMI的比特数变化很大。当终端设备按照秩=1反馈PMI,在公式(2)中的参数I为4,且反馈10个子带的PMI的条件下,需要反馈的PMI大约需要270个比特。当终端设备按照秩=2反馈PMI,在相同条件下需要反馈的PMI大约需要540个比特。当终端设备按照非周期信道状态信息(Channel State Information,CSI)反馈模式反馈秩和PMI时,秩和PMI在上行数据信道上一起和数据被发送给接入网设备。而承载秩和PMI的上行数据信道的资源是接入网设备分配给终端设备的,所以接入网设备分配该资源的时候并不知道终端设备将发送过来的秩是多少,因此接入网设备只能参考以往的CSI上报结果预估一个CSI的比特个数,并按照预估的CSI的比特个数以及UE需要发送的数据比特个数为终端设备分配资源。这样就会存在接入 网预估的CSI的比特个数和终端设备实际需要上报的CSI的比特不匹配的情况。这种不匹配在高精度码本反馈的时候更加严重。比如接入网设备预估终端设备测量的秩为1,然后为终端设备分配U个资源单元,其中U1个资源单元用于传输CSI,U2个资源单元用于传输数据,其中U1+U2=U。但是终端设备实际测量获得的秩为2,从而导致用于传输CSI的资源变为U1+Q,而用于传输数据的资源变为U2-Q。这些资源的变化导致数据传输的实际编码速率变大,如果数据的发送功率不做相应调整,就会导致数据的误码概率上升。
基于上述图1所示的通信系统,本申请提供的无线通信中的数据发送方法,旨在解决如上的技术问题。
图4为本申请提供的无线通信方法的示意图。在图4中,以发送设备为终端设备,接收设备为接入网设备为例对申请提供的无线通信方法进行说明。
步骤401:终端设备生成信道状态信息和数据。
在步骤401中,终端设备生成信道状态信息和数据。该数据可以业务数据。该数据通过上行数据信道发送到接入网设备。该信道状态信息可以包括秩指示(rank indicator,RI)、信道质量指示(channel quality indicator,CQI)、PMI等信息。
在一个示例中,该信道状态信息包括高精度的码本的PMI。该信道状态信息还可以包括RI。
图5给出了终端设备生成数据和信道状态信息之后,发送该数据和该CSI之前,终端设备对该数据和信道状态信息处理的一种可能方式
在图5中的步骤501a,501b中的编码前的数据比特就是终端设备生成的数据的比特,编码前的CSI比特就是终端设备生成的信道状态信息的比特。
在步骤502a,502b:终端设备对编码前的数据比特进行信道编码,得到编码后的数据比特。终端设备对编码前的CSI比特进行信道编码,得到编码后的CSI比特。
步骤503:终端设备对编码后的数据比特和CSI比特进行调制,得到调制符号。
步骤401和图5中的步骤都可以由终端设备的处理器300实现。处理器300中的应用处理器302可以实现步骤步骤501a,501b。调制解调处理器304实现图5中的502a,502b,503。
步骤402:在同一个时间单元上通过数据信道发送所述信道状态信息和所述数据,所述数据信道的发送功率关联于所述数据的比特数目和CSI的比特数目。由于该数据信道的发送功率既关联于所述数据的比特数目,又关联于所述信道状态信息的比特数目。这样,可以保证数据信道的误码概率能够满足系统需求。
一个时间单元可以一个子帧,一个时隙等等。一个时间单元是LTE中一个子帧为例。一个LTE正常(normal)子帧,包含有两个时隙(slot)。对于下行信道,每个时隙有7个正交频分复用(orthogonal frequency divi sion multiplexing)OFDM符号。对于上行信道,每个时隙有7个离散傅里叶变换扩频的正交频分复用(DFT-spread-OFDM,DFT-s-OFDM)(离散傅里叶变换,Discrete Fourier Transform,DFT)符号。
一个正常子帧共含有14个或12个OFDM/DFT-s-OFDM符号。在LTE中,定义了RB(resource block,资源块)的大小,一个RB在频域上包含12个子载波,在时域上为半个子帧时长(一个时隙),即包含7个或6个OFDM/DFT-s-OFDM符号,其中,正常的循环前缀(Cyclic Prefix,CP)长度符号为7个OFDM/DFT-s-OFDM符号,扩展的循环前缀长度符号为6个OFDM/DFT-s-OFDM符号)。在某个OFDM/DFT-s-OFDM符号内的某个子载 波称为资源单元(resource element,RE),因此一个RB包含84个或72个RE。在一个子帧上,两个时隙的一对RB称之为资源块对,即RB对(RB pair)。在实际发送中,在物理上的资源使用的RB pair又叫PRB pair(物理资源块对)。
数据信道可以是LTE中物理上行共享信道(physical uplink shared channel,PUSCH)。以LTE系统为例,终端设备在一个子帧上通过PUSCH发送信道状态信息和数据。
在一个示例中,所述发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目,包括:
所述发送功率正比于每个资源单元的比特数目BPRE,所述BPRE为第一比特数目和NRE的比值,该第一比特数目为所述数据的比特数目与第一等效信道状态信息比特数目之和。所述数据的比特数目可以是图5中编码后的数目的比特数目。NRE为承载所述信道状态信息和所述数据的资源单元的数目,所述第一等效信道状态信息比特数目为
Figure PCTCN2017110736-appb-000016
OCSI为所述信道状态信息的比特数目,β为乘积因子。该信道状态信息的比特数目可以是图5中编码前的CSI的比特数目,或者OCSI也可以是编码前的CSI的比特个数和循环冗余校验(Cyclic Redundancy Check,简称CRC)比特个数之和。如果信道状态信息采用Reed-Muller编码,那么没有CRC,即CRC的比特个数为0,如果采用卷积码、turbo编码或者Polar编码,那么需要CRC。
Figure PCTCN2017110736-appb-000017
表示为将CSI的比特个数转化为等效的数据比特个数。例如,OCSI=100,β=1.5,则
Figure PCTCN2017110736-appb-000018
编码后的CSI的100个比特通过重复的方式成150个比特,然后这150个比特在数据信道上发送。
例如,BPRE包括第一比特数目和NRE的比值,可以表示为
Figure PCTCN2017110736-appb-000019
其中,Odata为该数据的比特数目。
Figure PCTCN2017110736-appb-000020
是在数据信道上发送的总的比特数目。
在另外一种示例中,BPRE不但包括第一比个数目和NRE的比值,而且包括HARQ-ACK比特数目和NRE的比值,可以表示为
Figure PCTCN2017110736-appb-000021
其中Oack表示HARQ-ACK信息比特个数,βack为与HARQ-ACK信息比特个数相关联的乘积因子。
由于CSI信息比特个数与乘积因子的乘积可以等效为额外的数据信道比特个数,从而终端设备获得该PUSCH信道承载的总等效比特个数。终端设备可以根据所测量获得的CSI确定CSI的比特个数,从而进一步确定等效的总比特个数。这样做,可以使数据信道的传输功率和等效总比特个数相关,从而保证了数据信道的误码概率满足系统需求。
可选的,信道状态信息包括第一类型信道状态信息和第二类型信道状态信息,其中第一类型信道状态信息和第二类型信道状态信息配置有不同的乘积因子,假设第一类型信道状态信息编码前的比特个数为OCSI,1,其对应的乘积因子为β1,第二类型信道状态信息编码前的比特个数为OCSI,2,其对应的乘积因子为β2,那么第一比特数目和NRE的比值,可以表示为
BPRE=(Odata+|OCSI,1×β1|+|OCSI,2×β2|)/NRE
信道状态信息中一般包括秩指示(rank indicator,简称RI)、预编码矩阵指示 (precoding matrix indicator)和信道质量指示(channel quality indicator),其中所述信道状态信息往往可以分成两部分。例如如,RI为第一类型信道状态信息,PMI和CQI为第二类型信道状态信息。第一类型和第一类型的CSI相关联的乘积因子不同。因此在本示例中将BPRE和两部分CSI以及相应的乘积因子相关联,可以获得更加精确的确定发射功率。可选的,第一类型CSI包括RI和第一个码字的CQI,而第二类型CSI包括PMI和剩余的CQI。
在一个示例中,所述发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目,包括:
所述发送功率正比于每个资源单元的比特数目BPRE,所述BPRE为第二比特数目和NRE的比值,其中,所述第二比特数目为所述数据的比特数目与第二等效信道状态信息比特数目之和,NRE为承载所述信道状态信息和所述数据的资源单元的数目,所述第二等效信道状态信息比特数目为
Figure PCTCN2017110736-appb-000022
OCSI为所述信道状态信息的比特数目,β为乘积因子,Oref为信道状态信息的参考比特数目。且Oref为接入网设备给终端设备分配资源时假设的信道状态信息比特个数。如果终端设备实际测的CSI比特个数比接入网设备假设的CSI的比特个数少,终端设备可以减少数据信道的发射功率,达到省电的目的;如果终端设备测量得到的CSI的比特个数比接入网设备假设的CSI的比特个数据多,那么UE可以增加发射功率,从而保证了数据信道的误码概率满足需求。所以该方式可以在数据信道的误码概率和发送功率之间获得很好的折中。
例如,BPRE为第二比特数目和NRE的比值,可以表示为
BPRE=(Odata+|(OCSI-Oref)×β1|)/NRE
可选的,信道状态信息可以分为第一类型信道状态信息和第二类型信道状态信息,其中第一类型信道状态信息和第二类型信道状态信息配置有不同的乘积因子,假设第一类型信道状态信息编码前的比特个数为OCSI,1,其对应的乘积因子为β1,第二类型信道状态信息编码前的比特个数为OCSI,2,其对应的乘积因子为β2,所述第二等效信道状态信息比特数目和NRE的比值,可以表示为
BPRE=(Odata+|(OCSI,1-Oref)×β1|+|(OCSI,2)×β2|)/NRE或者,
BPRE=(Odata+|(OCSI,1)×β1|+|(OCSI,2-Oref)×β2|)/NRE
在一个示例中,所述发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目,包括:
所述发送功率正比于每个资源单元的比特数目BPRE,所述BPRE包括所述数据的比特数目和承载数据的等效资源单元数目的比值,其中,承载数据的等效资源单元数目为NRE-Q′,NRE为所述信道状态信息和所述数据占用的资源单元的数目,Q′为正整数。例如,所述BPRE为所述数据的比特数目和承载数据的等效资源单元数目的比值,可以表示为
BPRE=(Odata)/(NRE-Q')
这样做,可以使数据信道的传输功率和数据实际占的资源相关,从而保证了数据信道的误码概率满足系统需求。
在一个示例中,Q′为所述信道状态信息占用的资源单元的数目。
Figure PCTCN2017110736-appb-000023
其中
Figure PCTCN2017110736-appb-000024
表示数据的比特个数,Kr表示编码块r的比特个数,C表示数据信道上承载的数据的编码块的个数,Nmax表示用于承载CSI的最大资源个数。OCSI表示信道状态信息编码前比特个数,其中如果CSI所对应编码方式需要CRC,那么OCSI为信道状态信息比特个数和CRC比特个数的和。NRE-Q'相当于数据比特占用的资源单元的数目。
可选的,信道状态信息包括第一类型信道状态信息和第二类型信道状态信息,第一类型信道状态信息编码前比特个数为OCSI,1,其乘积因子为β1,第一类型信道状态信息所占的资源单元的数目为
Figure PCTCN2017110736-appb-000025
第二类型信道状态信息编码前比特个数为OCSI,2,其乘积因子为β2,第二类型信道状态信息所占的资源单元的数目为
Figure PCTCN2017110736-appb-000026
且Q'=(Q′1+Q′2)。Nmax,1和Nmax,2分别为用于承载第一类型信道状态信息和第二类型信道状态信息的最大资源个数。
可选的,Q'还可以表示为Q'=Q′1+Q′2+Q′3。Q′1和Q′2的定义如上所述,Q′3用于表示承载混合自动重传请求确认(Hybrid Automatic Repeat Request Acknowledgement,简称HARQ-ACK)所对应的等效资源个数,
Figure PCTCN2017110736-appb-000027
其中Oack表示HARQ-ACK的比特个数。β3表示与HARQ-ACK相关联的乘积因子,Nmax,3表示用于承载HARQ-ACK的最大资源个数。
在一个示例中,Q′满足
Figure PCTCN2017110736-appb-000028
可选的,Q'=(Q′1+Q′2)。信道状态信息包括第一类型信道状态信息和第二类型信道状态信息,第一类型信道状态信息编码前比特个数为OCSI,1,其乘积因子为β1,第一类型信道状态信息所占的资源单元的数目为
Figure PCTCN2017110736-appb-000029
第二类型信道状态信息编码前比特个数为OCSI,2,其乘积因子为β2,第一类型信道状态信息所占的资源单元的数目为
Figure PCTCN2017110736-appb-000030
在本实施例,相同的参数物理意义相同。例如,参数Odata,OCSI,OCSI在上述公式中物 理意义相同。
在一个示例中,
Figure PCTCN2017110736-appb-000031
其中C是信道编码的码字的数目。Kr是第r个码字的信道编码后的比特数目。
在一个示例中,在发送所述信道状态信息和所述数据之前,终端设备从接入网设备接收指示信息,所述指示信息指示Oref
在一个示例中,所述指示信息包括秩指示。终端设备根据所述秩指示信息,确定Oref。CSI的比特个数主要和RI有关系。如果接入网设备向终端设备通知为其分配PUSCH资源时假设的RI,那么UE就可以估计出接入网设备在资源分配过程中假设的CSI的比特个数。例如在高精度码本反馈的场景下,如果接入网设备向终端设备指示假设的秩=1,那么该终端设备就可以推断出接入网设备假设的CSI的比特个数包括270比特的PMI。
在一个示例中,以数据信道为PUSCH为例,数据信道的发送功率为PPUSCH,c(i)满足:
Figure PCTCN2017110736-appb-000032
其中,PCMAX,c表示终端设备在小区c的最大发射功率。MPUSCH,c(i)表示终端设备发送PUSCH占用的PRB对的个数,PO_PUSCH,c(j)为高层配置的参数所确定的值。αc(j)是高层参数所确定的值,αc(j)≤1,PLc终端设备测量的路径损耗,
Figure PCTCN2017110736-appb-000033
Ks为高层配置参数。例如,Ks=1.25。βTF为实数。
图6给出了终端设备发送控制信息和数据的一个示意图。
步骤402可以由终端设备的收发器301来实现。
在步骤601中,调制符号经过DFT,得到DFT后的符号。例如,有N个调制符号,经过N点的DFT,得到N个DFT后的符号。
在步骤602中,DFT后的符号被映射到频域子载波,得到映射后的符号。
在步骤603中,映射后的符号进行IFFT并添加循环前缀,形成时域信号。
在步骤604中,将该时域信号通过射频发送出去。
在图6中的调制符号是图5中生成的调制符号。步骤601、602、603可以由处理器300实现,步骤604,可以由收发器301实现。
相应的,接入网设备接收该终端设备发送的该数据和该CSI。其中,接入网设备的收发器可以接收该数据和该CSI。接入网设备的控制器/处理器201对接收的信号进行处理,获得编码前的数据比特和编码前的CSI比特。
本申请提供的无线通信的方法,终端设备在一个数据信道上既发送数据又发送CSI。且该数据信道的发送功率既关联于所述数据的比特数目,又关联于所述信道状态信息的比特数目。这样,可以保证数据信道的误码概率能够满足系统需求。
本发明示例还提供一种装置(例如,集成电路、无线设备、电路模块等)用于实现上述方法。实现本文描述的功率跟踪器和/或供电发生器的装置可以是自立设备或者可以是较大设备的一部分。设备可以是(i)自立的IC;(ii)具有一个或多个1C的 集合,其可包括用于存储数据和/或指令的存储器IC;(iii)RFIC,诸如RF接收机或RF发射机/接收机;(iv)ASIC,诸如移动站调制解调器;(v)可嵌入在其他设备内的模块;(vi)接收机、蜂窝电话、无线设备、手持机、或者移动单元;(vii)其他等等。
本发明实施例提供的方法和装置,可以应用于终端设备或接入网设备(可以统称为无线设备)。该终端设备或接入网设备或无线设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本发明实施例中,本发明实施例并不限定方法的执行主体的具体结构,只要能够通过运行记录有本发明实施例的方法的代码的程序,以根据本发明实施例的传输信号的方法进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备或接入网设备,或者,是终端设备或接入网设备中能够调用程序并执行程序的功能模块。
本申请还提供了一种计算机存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述方法实施例中的终端设备所执行的方法。
本申请实施例还提供一种计算机程序产品,其包含指令,当所述计算机程序被计算机所执行时,该指令使得计算机执行上述方法中终端设备所执行的功能。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
此外,本发明实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算 机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本发明实施例的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者接入网设备等)执行本发明实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种用于无线通信的方法,其特征在于,包括:
    生成信道状态信息和数据;
    在同一个时间单元上通过数据信道发送所述信道状态信息和所述数据,所述数据信道的发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目。
  2. 一种无线通信装置,其特征在于,包括:
    处理器,用于生成信道状态信息和数据;
    收发器,用于在同一个时间单元上通过数据信道发送所述信道状态信息和所述数据,所述数据信道的发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目。
  3. 根据权利要求1所述的方法或权利要求2所述的无线装置,其特征在于,所述发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目,包括:
    所述发送功率正比于每个资源单元的比特数目BPRE,所述BPRE包括第一比特数目和NRE的比值,其中,所述第一比特数目为所述数据的比特数目与第一等效信道状态信息比特数目之和,NRE为承载所述信道状态信息和所述数据的资源单元的数目,所述第一等效信道状态信息比特数目为
    Figure PCTCN2017110736-appb-100001
    OCSI为所述信道状态信息的比特数目,β为乘积因子。
  4. 根据权利要求1所述的方法或权利要求2所述的无线装置,所述发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目,包括:
    所述发送功率正比于每个资源单元的比特数目BPRE,所述BPRE包括第二比特数目和NRE的比值,其中,所述第二比特数目为所述数据的比特数目与第二等效信道状态信息比特数目之和,NRE为承载所述信道状态信息和所述数据的资源单元的数目,所述第二等效信道状态信息比特数目为
    Figure PCTCN2017110736-appb-100002
    OCSI为所述信道状态信息的比特数目,β为乘积因子,Oref为信道状态信息的参考比特数目。
  5. 根据权利要求1所述的方法或权利要求2所述的无线装置,其特征在于,所述发送功率关联于所述数据的比特数目和所述信道状态信息的比特数目,包括:
    所述发送功率正比于每个资源单元的比特数目BPRE,所述BPRE包括所述数据的比特数目和承载数据的等效资源单元数目的比值,其中,承载数据的等效资源单元数目为NRE-Q′,NRE为所述信道状态信息和所述数据占用的资源单元的数目,Q′为正整数。
  6. 根据权利要求5所述的方法或无线装置,其特征在于,Q′为所述信道状态信息占用的资源单元的数目;或者,
    Q′满足
    Figure PCTCN2017110736-appb-100003
    其中,OCSI为所述信道状态信息的比特数目,Oref为信道状态信息的参考比特数目,β为乘积因子。
  7. 根据权利要求4或6所述的方法,其特征在于,包括:
    在发送所述信道状态信息和所述数据之前,从接入网设备接收指示信息,所述指示 信息指示Oref
  8. 根据权利要求7所述的方法,其特征在于,包括:
    所述指示信息包括秩指示;
    根据所述秩指示信息,确定Oref
  9. 根据权利要求4或6所述的无线装置,其特征在于,所述收发器,还用于在发送所述信道状态信息和所述数据之前,从接入网设备接收指示信息,所述指示信息指示Oref
  10. 根据权利要求9所述的无线装置,其特征在于,所述指示信息包括秩指示;
    所述处理器,还用于根据所述秩指示信息,确定Oref
  11. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1或3-8至中任一项所述的方法。
  12. 一种包含指令的计算存储介质,当其在计算机上运行时,使得计算机执行所述权利要求1或3至8中任一项所述的方法。
PCT/CN2017/110736 2017-11-13 2017-11-13 一种用于无线通信的方法、装置 WO2019090787A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17931265.7A EP3697136B1 (en) 2017-11-13 2017-11-13 Method and apparatus for use in wireless communication
CN201780096612.7A CN111316707B (zh) 2017-11-13 2017-11-13 一种用于无线通信的方法、装置
PCT/CN2017/110736 WO2019090787A1 (zh) 2017-11-13 2017-11-13 一种用于无线通信的方法、装置
US16/867,819 US11201655B2 (en) 2017-11-13 2020-05-06 Wireless communication method and wireless communications apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110736 WO2019090787A1 (zh) 2017-11-13 2017-11-13 一种用于无线通信的方法、装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/867,819 Continuation US11201655B2 (en) 2017-11-13 2020-05-06 Wireless communication method and wireless communications apparatus

Publications (1)

Publication Number Publication Date
WO2019090787A1 true WO2019090787A1 (zh) 2019-05-16

Family

ID=66439079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110736 WO2019090787A1 (zh) 2017-11-13 2017-11-13 一种用于无线通信的方法、装置

Country Status (4)

Country Link
US (1) US11201655B2 (zh)
EP (1) EP3697136B1 (zh)
CN (1) CN111316707B (zh)
WO (1) WO2019090787A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409894A (zh) * 2008-11-16 2009-04-15 中兴通讯股份有限公司 一种上行控制信息的传输方法及传输参数的计算方法
WO2012020990A2 (ko) * 2010-08-10 2012-02-16 엘지전자 주식회사 무선 통신 시스템에서 전송 전력 제어 방법 및 장치
CN106416389A (zh) * 2014-05-08 2017-02-15 夏普株式会社 用于双连接操作的系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678582B1 (ko) * 2010-03-22 2016-12-06 삼성전자주식회사 통신 시스템에서의 적응형 링크 적용 방법 및 장치.
WO2011137408A2 (en) * 2010-04-30 2011-11-03 Interdigital Patent Holdings, Inc. Determination of carriers and multiplexing for uplink control information transmission
CN102263617B (zh) * 2010-05-31 2016-08-03 中兴通讯股份有限公司 上行控制信息在物理上行共享信道上的发送方法及装置
JP6313289B2 (ja) * 2012-05-31 2018-04-18 インターデイジタル パテント ホールディングス インコーポレイテッド デバイス間(d2d)クロスリンク電力制御
WO2016163855A1 (en) * 2015-04-09 2016-10-13 Samsung Electronics Co., Ltd. Method for multiplexing uplink information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409894A (zh) * 2008-11-16 2009-04-15 中兴通讯股份有限公司 一种上行控制信息的传输方法及传输参数的计算方法
WO2012020990A2 (ko) * 2010-08-10 2012-02-16 엘지전자 주식회사 무선 통신 시스템에서 전송 전력 제어 방법 및 장치
CN106416389A (zh) * 2014-05-08 2017-02-15 夏普株式会社 用于双连接操作的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3697136A4 *

Also Published As

Publication number Publication date
CN111316707B (zh) 2021-11-19
EP3697136B1 (en) 2021-09-22
US11201655B2 (en) 2021-12-14
EP3697136A1 (en) 2020-08-19
US20200266869A1 (en) 2020-08-20
EP3697136A4 (en) 2020-10-14
CN111316707A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
US10797831B2 (en) Control information sending method, control information receiving method, user equipment, and network device
US11212054B2 (en) Data transmission method and apparatus
EP3849126B1 (en) Phase tracking reference signal sending method and apparatus
US11038644B2 (en) Data communication method, network device, and terminal device
WO2019062217A1 (zh) 数据传输方法、终端设备以及网络设备
WO2017000291A1 (zh) 传输上行数据的方法和设备
WO2018121460A1 (zh) 非正交传输数据的方法和设备
WO2019170161A1 (zh) 通知信道质量的方法和装置
WO2019191970A1 (zh) 通信方法、通信装置和系统
US20220329303A1 (en) Method and apparatus for configuring csi reporting granularity
US20210044340A1 (en) Method and apparatus for csi parameter configuration in wireless communication systems
US11139917B2 (en) Communication method and apparatus using segmented bit sequences
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
WO2019214427A1 (zh) 通知信道质量的方法和装置
US20180343093A1 (en) Signal transmission method and apparatus
US20230421228A1 (en) Method and apparatus for compression-based csi reporting
US20230328770A1 (en) Trp subset selection and reporting
JP6664415B2 (ja) 電力制御方法、端末、および基地局
WO2019109632A1 (zh) 一种通信方法和装置
US20220271811A1 (en) Method and apparatus for csi reporting
WO2017193932A1 (zh) 通信方法及其网络设备、用户设备
WO2019090787A1 (zh) 一种用于无线通信的方法、装置
CN108322283B (zh) 数据发送技术
WO2024098555A1 (en) Control information transmission techniques
WO2022077517A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017931265

Country of ref document: EP

Effective date: 20200513