WO2019191970A1 - 通信方法、通信装置和系统 - Google Patents

通信方法、通信装置和系统 Download PDF

Info

Publication number
WO2019191970A1
WO2019191970A1 PCT/CN2018/082008 CN2018082008W WO2019191970A1 WO 2019191970 A1 WO2019191970 A1 WO 2019191970A1 CN 2018082008 W CN2018082008 W CN 2018082008W WO 2019191970 A1 WO2019191970 A1 WO 2019191970A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna port
precoding matrix
antenna ports
antenna
equal
Prior art date
Application number
PCT/CN2018/082008
Other languages
English (en)
French (fr)
Inventor
张瑞齐
高翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18913801.9A priority Critical patent/EP3764562A4/en
Priority to CN201880091575.5A priority patent/CN111937319B/zh
Priority to PCT/CN2018/082008 priority patent/WO2019191970A1/zh
Publication of WO2019191970A1 publication Critical patent/WO2019191970A1/zh
Priority to US17/039,475 priority patent/US11277176B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals

Definitions

  • the present application relates to the field of wireless communications and, more particularly, to a communication method, communication apparatus and system.
  • LTE Long Term Evolution
  • MIMO Multiple Input and Multiple Output
  • a network device may have 32 transmit antenna ports, and a terminal device may have 4 receive antenna ports.
  • PA power amplifier
  • the terminal device needs to link a power amplifier (PA) to the corresponding antenna port.
  • PA power amplifier
  • a terminal device needs to support parallel data transmission of X transmit antenna ports, and usually requires X power amplifiers, that is, each power antenna port is matched with a power amplifier. Terminals with 4 transmit antenna port capabilities are not very common due to the high cost of power amplifiers.
  • one or two PAs are configured for the terminal device.
  • the link between the PA and the antenna port of the terminal device can be dynamically changed, and the terminal device has the capability to dynamically adjust the antenna port for transmitting the uplink signal. Therefore, how to dynamically select an antenna port for uplink signal transmission from multiple antenna ports of a terminal device becomes a technical problem to be solved.
  • the present application provides a communication method, a communication device, and a system, which are capable of dynamically selecting an antenna port for uplink signal transmission from a plurality of antenna ports of a terminal device.
  • a communication method is provided, which is implemented in a communication system including a network device and a terminal device, the terminal device being configured with N antenna ports, N being an integer greater than or equal to 2, the N antenna ports Corresponding to the combination of T antenna ports, each of the antenna port combinations corresponds to M antenna ports of the N antenna ports, and at least one of the M antenna ports corresponding to any two antenna port combinations.
  • each antenna port combination manner includes at least one of the antenna port combinations, where T is an integer greater than or equal to 1;
  • the communication method includes: the network device receives the first from the terminal device An indication information, the first indication information is used to indicate a first antenna port combination mode set, and the network device determines, according to the first antenna port combination manner, K antenna ports from the N antenna ports, K is an integer greater than or equal to 1 and less than or equal to the M; the network device sends second indication information to the terminal device, the second It shows information indicating the K antenna ports.
  • K antenna ports are determined from the N antenna ports configured by the terminal device by receiving the first indication information from the terminal device. And sending the second indication information to the terminal device to indicate the K antenna ports.
  • the network device determines the K antenna ports from the N antenna ports according to the first antenna port combination manner, because the first antenna port combination mode set has been indicated according to the first indication information.
  • the communication method of the embodiment of the present invention can dynamically select an antenna port from multiple antenna ports of the terminal device for uplink signal transmission, so that the uplink signal can be transmitted on the optimal K antennas, thereby improving uplink performance.
  • the first antenna port combination set includes S antenna port combinations, where S is an integer greater than or equal to 1 and less than or equal to the T Determining, by the network device, the K antenna ports from the N antenna ports according to the first antenna port combination manner: the network device determines the first antenna port from the S antenna port combination manners In combination, the K antenna ports in the first antenna port combination manner are determined as the K antenna ports.
  • the first antenna port combination mode may be any one of S antenna port combination modes.
  • the terminal device when the N antenna ports of the terminal device are combined with the T antenna ports, and the information of the combination of the at least two antenna port combinations is optionally stored in the network device, the terminal device sends the information.
  • the network device can determine, according to the first antenna port combination mode, the antenna port corresponding to the antenna port combination mode included in the first antenna port combination mode set.
  • the communication method of the embodiment of the present application can determine the S antenna port combination manners from the N antenna ports based on the antenna port combination manner of the antenna ports in the terminal device, and further determine K antenna ports from the S antenna combination manners, and The terminal device knows the combination of S antenna ports of the antenna port, which is convenient for determining the K antenna ports.
  • the T antenna combination manner corresponds to a preset precoding matrix set, where the precoding matrix set includes Q precoding matrices.
  • the first antenna port combination mode set corresponds to a precoding matrix subset, the precoding matrix subset includes P precoding matrices, and each of the P precoding matrices belongs to the Q precoding a matrix, the P and Q are positive integers, and P is less than or equal to Q, and the network device determines K antenna ports from the N antenna ports according to the first antenna port combination manner: the network device Determining, by the precoding matrix subset, a first precoding matrix, and determining K antenna ports corresponding to the first precoding matrix as the K antenna ports.
  • the first precoding matrix may be any precoding matrix in the precoding matrix subset.
  • a preset precoding matrix set is known in the network device, and each precoding matrix in the precoding matrix set corresponds to one antenna port combination mode, and the first indication information indicates the first
  • the corresponding antenna port combination method can be determined based on the first antenna port combination method set, and the precoding matrix corresponding to the antenna port combination method can be determined.
  • the network device indicates the precoding matrix by using the second indication information, where the indicated precoding matrix belongs to the precoding matrix subset determined by the first antenna port combination mode set, and the terminal device can determine the antenna according to the indicated precoding matrix.
  • the K antenna ports are determined, and the indication of the precoding matrix and the indication of the K antenna ports are combined by the indication manner, which has the advantage of indicating flexibility, and the precoding matrix indication and the K antennas Compared with the method indicated by the port, the port has the effect of saving bits, thereby saving signaling overhead.
  • the second indication information is specifically used to indicate an index of the first precoding matrix in the precoding matrix subset.
  • the network device may send the second indication information to indicate the K antenna ports, because the terminal device knows the S antenna ports. And combining, in the combination, the precoding matrix subset corresponding to the S antenna port combination manner, the second indication information sent by the network device only needs to indicate that the K antenna ports correspond to the first precoding matrix in the precoding
  • the index in the matrix subset can reduce the information consumption of the second indication information.
  • the precoding matrix is that the number of rows corresponds to the N antenna ports, and the number of columns and the layer for transmitting data The number corresponds, and the number of non-zero elements in each column element is a matrix of X, where X is an integer greater than or equal to 1 and less than or equal to the M.
  • the number of rows of the precoding matrix is determined based on the total number of antenna ports configured by the terminal device, and the number of columns of the precoding matrix is determined according to the number of layers of the uplink data pre-transmitted, wherein each column element is non- The number of zero elements is related to the combination of the location and the antenna port supported by the terminal device.
  • the precoding matrix set includes all or part of precoding in the following table.
  • the codebook index TPMI is used to indicate different precoding matrices in the precoding matrix set, and the number of layers of the transmitted data is equal to 1.
  • the terminal device when the terminal device is configured with four antenna ports, and supports up to two antenna ports for simultaneous uplink transmission, the terminal device stores the precoding matrix set including all or part of the above table.
  • the matrix the number of rows of the matrix is 4 corresponding to the total number of antenna ports, and the number of columns is 1 corresponding to the number of layers of the transmitted data, and the elements of each column in the matrix include 1 or 2 non-zero elements.
  • the precoding matrix set includes all or part of precoding in the following table.
  • the precoding matrix index TPMI is used to indicate different precoding matrices in the precoding matrix set, and the number of layers of the transmitted data is equal to 2.
  • the terminal device when the terminal device is configured with four antenna ports and supports two antenna ports for simultaneous uplink transmission, the terminal device stores the precoding matrix set including all or part of the matrix in the above table.
  • the number of matrix rows is 4 corresponding to the total number of antenna ports, and the number of columns is 2 corresponding to the number of layers of transmitted data, and the elements of each column in the matrix include 1 non-zero element.
  • the method further includes: receiving, by the network device, a listening reference signal that is sent by the terminal device from the N antenna ports SRS; the network device determines the K antenna ports from the N antenna ports according to the SRS.
  • the network device determines, according to the first indication information, the K antenna ports from the N antenna ports, which may be based on the listening reference signal SRS sent by the terminal device at each antenna port, and can select a better quality.
  • the antenna port acts as an antenna port for uplink transmission.
  • a communication method is provided, which is implemented in a communication system including a network device and a terminal device, the terminal device being configured with N antenna ports, N being an integer greater than or equal to 2, and the N antenna ports Corresponding to the combination of T antenna ports, each of the antenna port combinations corresponds to M antenna ports of the N antenna ports, and at least one of the M antenna ports corresponding to any two antenna port combinations.
  • the antenna port is different, and each antenna port combination mode includes at least one of the antenna port combination modes, where T is an integer greater than or equal to 1;
  • the communication method includes: the terminal device sends a message to the network device An indication information, the first indication information is used to indicate a first antenna port combination mode set, and the first antenna port combination mode set is used to determine K antenna ports from the N antenna ports, where K is greater than Or an integer equal to 1 and less than or equal to the M; the terminal device receives second indication information from the network device, where the second indication information is used It shows the K antenna ports.
  • the terminal device sends the first indication information, where the first indication information is used to determine K antenna ports from the N antenna ports configured by the terminal device. And receiving, by the network device, the second indication information indicating the K antenna ports.
  • the network device determines the K antenna ports from the N antenna ports according to the first antenna port combination manner, because the first antenna port combination mode set has been indicated according to the first indication information.
  • the communication method of the embodiment of the present invention can dynamically select an antenna port from multiple antenna ports of the terminal device for uplink signal transmission, so that the uplink signal can be transmitted on the optimal K antennas, thereby improving uplink performance.
  • the first antenna port combination set includes S antenna port combinations, where S is an integer greater than or equal to 1 and less than or equal to the T
  • the first antenna port combination mode set is used to determine K antenna ports from the N antenna ports, including: K antennas in any one of the S antenna port combination modes
  • the port is determined to be the K antenna ports.
  • the terminal device when the N antenna ports of the terminal device are combined with the T antenna ports, and the information of the combination of the at least two antenna port combinations is optionally stored in the network device, the terminal device sends the information.
  • the network device can determine, according to the first antenna port combination mode, the antenna port corresponding to the antenna port combination mode included in the first antenna port combination mode set.
  • the communication method of the embodiment of the present application can determine the S antenna port combination manners from the N antenna ports based on the antenna port combination manner of the antenna ports in the terminal device, and further determine K antenna ports from the S antenna combination manners, and The terminal device knows the combination of S antenna ports of the antenna port, which is convenient for determining the K antenna ports.
  • the T antenna combination manner corresponds to a preset precoding matrix set, where the precoding matrix set includes Q precoding matrices.
  • the first antenna port combination mode set corresponds to a precoding matrix subset, the precoding matrix subset includes P precoding matrices, and each of the P precoding matrices belongs to the Q precoding a matrix, the P and Q are positive integers, and P is less than or equal to Q, and the first antenna port combination mode set is used to determine K antenna ports from the N antenna ports, including: from the precoding matrix
  • the subset determines a first precoding matrix, and determines K antenna ports corresponding to the first precoding matrix as the K antenna ports.
  • a preset precoding matrix set is known in the network device, and each precoding matrix in the precoding matrix set corresponds to one antenna port combination mode, and the first indication information indicates the first
  • the corresponding antenna port combination method can be determined based on the first antenna port combination method set, and the precoding matrix corresponding to the antenna port combination method can be determined.
  • the network device indicates the precoding matrix by using the second indication information, where the indicated precoding matrix belongs to the precoding matrix subset determined by the first antenna port combination mode set, and the terminal device can determine the antenna according to the indicated precoding matrix.
  • the K antenna ports are determined, and the indication of the precoding matrix and the indication of the K antenna ports are combined by the indication manner, which has the advantage of indicating flexibility, and the precoding matrix indication and the K antennas Compared with the method indicated by the port, the port has the effect of saving bits, thereby saving signaling overhead.
  • the second indication information is specifically used to indicate an index of the first precoding matrix in the precoding matrix subset.
  • the network device may send the second indication information to indicate the K antenna ports, because the terminal device knows the S antenna ports. And combining, in the combination, the precoding matrix subset corresponding to the S antenna port combination manner, the second indication information sent by the network device only needs to indicate that the K antenna ports correspond to the first precoding matrix in the precoding
  • the index in the matrix subset can reduce the information consumption of the second indication information.
  • the precoding matrix is that the number of rows corresponds to the N antenna ports, and the number of columns and the layer for transmitting data The number corresponds, and the number of non-zero elements in each column element is a matrix of X, where X is an integer greater than or equal to 1 and less than or equal to the M.
  • the number of rows of the precoding matrix is determined based on the total number of antenna ports configured by the terminal device, and the number of columns of the precoding matrix is determined according to the number of layers of the transmitted uplink data, where non-zero in each column element
  • the number of elements is related to the combination of the location and the antenna port supported by the terminal device. It can be ensured that the precoding matrix can indicate the corresponding antenna port.
  • the precoding matrix set includes all or part of the precoding in the following table.
  • the codebook index TPMI is used to indicate different precoding matrices in the precoding matrix set, and the number of layers of the transmitted data is equal to 1.
  • the terminal device when the terminal device is configured with four antenna ports, and supports up to two antenna ports for simultaneous uplink transmission, the terminal device stores the precoding matrix set including all or part of the above table.
  • the matrix the number of rows of the matrix is 4 corresponding to the total number of antenna ports, and the number of columns is 1 corresponding to the number of layers of the transmitted data, and the elements of each column in the matrix include 1 or 2 non-zero elements.
  • the precoding matrix set includes all or part of precoding in the following table.
  • the precoding matrix index TPMI is used to indicate different precoding matrices in the precoding matrix set, and the number of layers of the transmitted data is equal to 2.
  • the terminal device when the terminal device is configured with four antenna ports and supports two antenna ports for simultaneous uplink transmission, the terminal device stores the precoding matrix set including all or part of the matrix in the above table.
  • the number of matrix rows is 4 corresponding to the total number of antenna ports, and the number of columns is 2 corresponding to the number of layers of transmitted data, and the elements of each column in the matrix include 1 non-zero element.
  • the method further includes: the terminal device sends a snoop reference signal SRS from the N antenna ports to the network device.
  • the SRS is configured to determine the K antenna ports from the N antenna ports.
  • the network device determines, according to the first indication information, the K antenna ports from the N antenna ports, which may be based on the listening reference signal SRS sent by the terminal device at each antenna port, and can select a better quality.
  • the antenna port acts as an antenna port for uplink transmission.
  • a communication device that can be used to perform the operations of the first communication device of the first aspect and any of the possible implementations of the first aspect.
  • the communication device comprises a first communication device for performing the steps or functions described in the first aspect above, which may be the first aspect.
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • a communication device that can be used to perform the operations of the second communication device of any of the second aspect and the second aspect.
  • the apparatus may comprise means for performing the steps or functions described in the second aspect above.
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • a communication system comprising: a processor, a memory for storing a computer program, the processor for calling and running the computer program from a memory, such that the communication device performs the first or second A communication method in any of the possible implementations.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor or the memory may be separate from the processor.
  • the communication system further includes a transmitter (transmitter) and a receiver (receiver).
  • a communication system in one possible design, includes a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the communication system performs the first aspect or any of the possible implementations of the first aspect The method in .
  • a communication system in another possible design, includes a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the communication system performs any of the second aspect or the second aspect The method in .
  • a system comprising the communication device described above.
  • a computer program product comprising: a computer program (which may also be referred to as a code, or an instruction) that, when executed, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
  • a computer program (which may also be referred to as a code, or an instruction) that, when executed, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
  • a computer readable medium storing a computer program (which may also be referred to as code, or instructions), when executed on a computer, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
  • a ninth aspect provides a chip system including a memory and a processor for storing a computer program for calling and running the computer program from the memory, such that the communication device mounted with the chip system performs the above The method of any of the possible implementations of the first aspect or the second aspect.
  • the communication method, the communication device, and the communication system of the embodiment of the present invention determine the K antenna ports from the N antenna ports configured by the terminal device by using the first antenna port combination manner indicated by the first indication information sent by the terminal device, and can The antenna port is dynamically selected from a plurality of antenna ports of the terminal device for uplink signal transmission.
  • FIG. 1 is a schematic diagram of a communication system suitable for the communication method of the embodiment of the present application.
  • FIG. 2 is a schematic diagram of a downlink physical channel processing procedure used in an existing LTE system
  • FIG. 3 is a schematic diagram of an antenna port combination manner
  • FIG. 4 is a schematic diagram of another antenna port combination manner
  • FIG. 5 is a schematic diagram of another antenna port combination manner
  • FIG. 6 is a schematic diagram of another antenna port combination manner
  • FIG. 7 is a schematic diagram of another antenna port combination manner
  • FIG. 8 is a schematic flowchart of a communication method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 5G fifth-generation
  • converged systems for multiple access systems or evolved systems.
  • the 5G system can also be called a new generation wireless access technology (NR) system.
  • NR wireless access technology
  • FIG. 1 shows a schematic diagram of a communication system suitable for a method and apparatus for data transmission in accordance with an embodiment of the present application.
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • the network device may be any device having a wireless transceiving function or a chip that can be disposed on the device, including but not limited to: a base station (eg, a base station NodeB, an evolved base station eNodeB, a fifth generation (the fifth) Generation, 5G) Network equipment in the communication system (such as transmission point (TP), transmission reception point (TRP), base station, small base station equipment, etc.), network equipment in the future communication system, WiFi system An access node, a wireless relay node, a wireless backhaul node, and the like.
  • a base station eg, a base station NodeB, an evolved base station eNodeB, a fifth generation (the fifth) Generation, 5G)
  • Network equipment in the communication system such as transmission point (TP), transmission reception point (TRP), base station, small base station equipment, etc.
  • TP transmission point
  • TRP transmission reception point
  • base station small base station equipment, etc.
  • WiFi system An access node
  • a wireless relay node
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122.
  • Network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • the terminal device may also be referred to as a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • Device user agent, or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
  • VR virtual reality
  • AR augmented reality
  • the embodiment of the present application does not limit the application scenario.
  • the foregoing terminal device and a chip that can be disposed in the foregoing terminal device are collectively referred to as a terminal device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the embodiments of the present application can be applied to downlink data transmission, and can also be applied to uplink data transmission, and can also be applied to device to device (D2D) data transmission.
  • D2D device to device
  • the device at the transmitting end is a base station, and the device at the corresponding receiving end is a UE;
  • the device at the transmitting end is a UE, and the device at the corresponding receiving end is a base station;
  • the transmitting device is a UE.
  • the corresponding receiving device is also a UE.
  • the embodiment of the present application does not limit this.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD frequency division duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • Network device 102, terminal device 116 or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device can acquire (e.g., generate, receive from other communication devices, or save in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 may be a public land mobile network (PLMN) network or a device to device (D2D) network or a machine to machine (M2M) network or other network, and FIG. 1 is only for easy understanding.
  • PLMN public land mobile network
  • D2D device to device
  • M2M machine to machine
  • FIG. 1 is only for easy understanding.
  • other network devices may also be included in the network, which are not shown in FIG.
  • FIG. 2 is a schematic diagram of a downlink physical channel processing procedure used in an existing LTE system.
  • the physical channel may process codewords from higher layers, which may be bitstreams that are encoded (eg, including channel coding).
  • the codeword is scrambling to generate a scrambled bit stream.
  • the scrambled bit stream is subjected to modulation mapping to obtain a stream of modulation symbols.
  • the modulation symbol stream is mapped to multiple layers through layer mapping.
  • the symbol after layer mapping may be referred to as a layer mapping signal stream (or symbol stream, spatial stream).
  • the layer mapping signal stream is precoded to obtain a plurality of precoded signal streams (or precoded symbol streams).
  • the precoded signal stream is mapped to a plurality of REs after being mapped by a resource element (RE). These REs are then subjected to orthogonal frequency division multiplexing (OFDM) modulation to generate an OFDM symbol stream.
  • OFDM orthogonal frequency division multiplexing
  • the network device 102 may send downlink signals to multiple terminal devices through multiple antennas, and the terminal device may use multiple antennas to the same network device (such as the network device 102 shown in the figure) or different network devices ( For example, network device 102 and network device 104 shown in the figure transmit uplink signals.
  • the same network device such as the network device 102 shown in the figure
  • different network devices For example, network device 102 and network device 104 shown in the figure transmit uplink signals.
  • MIMO technology interference between multiple users and interference between multiple signal streams of the same user can be reduced by precoding.
  • the precoding may be performed by pre-processing the signal to be transmitted at the transmitting end in the case of a known channel state, that is, processing the signal to be transmitted by means of a precoding matrix matched with the channel resource, so that the precoding is performed.
  • the signal to be transmitted is adapted to the channel, so that the complexity of eliminating the influence between channels at the receiving end is reduced. Therefore, the received signal quality (for example, signal to interference plus noise ratio (SINR)) is improved by precoding processing of the transmitted signal. Therefore, the pre-coding can realize that the transmitting end device and the plurality of receiving end devices transmit on the same time-frequency resource, that is, multi-user multiple input multiple output (MU-MIMO) is implemented.
  • SINR signal to interference plus noise ratio
  • precoding is only used as an example, and is not intended to limit the scope of protection of the embodiments of the present application.
  • precoding may also be performed by other means (for example, if the channel matrix cannot be known)
  • the precoding is performed by using a pre-set precoding matrix or a weighting processing method, and the details are not described herein.
  • the transmitting end device may perform channel measurement by sending a reference signal to determine a relatively accurate precoding matrix to be sent.
  • the signal is precoded.
  • the source device may be a network device
  • the receiver device may be a terminal device
  • the reference signal may be a reference signal used for downlink channel measurement, for example, a channel state information reference signal (CSI).
  • CSI channel state information reference signal
  • the terminal device may perform CSI measurement according to the received CSI-RS, and feed back the CSI of the downlink channel to the network device; or the transmitting device may be the terminal device, and the receiving device may be the network device,
  • the reference signal may be a reference signal for uplink channel measurement, such as a sounding reference signal (SRS).
  • the network device may perform CSI measurement according to the received SRS, and indicate the CSI of the uplink channel to the terminal device.
  • the CSI may include, for example, a precoding matrix indicator (PMI), a layer number indication of the transmitted data, and is also referred to as a rank indication (RI) and a channel quality indicator (CQI).
  • PMI precoding matrix indicator
  • RI rank indication
  • CQI channel quality indicator
  • the reference signals for downlink channel measurement and the reference signals for uplink channel measurement listed above are merely illustrative and should not be construed as limiting the application.
  • the reference signal used for downlink channel measurement may also be a downlink demodulation reference signal (DMRS), a tracking reference signal (TRS), a phase tracking reference signal (PTRS), or the like;
  • the reference signal used for uplink channel measurement may also be an uplink DMRS or the like.
  • the present application does not exclude the possibility of defining other reference signals having the same or similar functions in future protocols, and the present application does not exclude the definition of other existing reference signals as reference for channel measurement in future protocols. The possibility of the signal.
  • the manner in which the transmitting end device determines the precoding matrix is not limited to the foregoing manner of performing channel measurement according to the reference signal, and the transmitting end device may also estimate the channel by using the reciprocity of the uplink and downlink channels, for example, according to the channel state of the uplink channel.
  • the channel state information (CSI) estimates the CSI of the downlink channel.
  • the CSI of the uplink channel can be determined according to a reference signal (for example, SRS) sent by the terminal device.
  • the network device When the network device has multiple transmit antenna ports and the terminal device has multiple receive antenna ports, the network device can simultaneously send multiple parallel data streams to the terminal device.
  • the terminal device When the terminal device has multiple transmit antenna ports and the network device has multiple receive antenna ports, the terminal device may send multiple parallel data streams to the network device through a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • a network device may have 32 transmit antenna ports, and a terminal device may have 4 receive antenna ports.
  • the terminal device needs to link a power amplifier (PA) on the corresponding antenna port.
  • PA power amplifier
  • the terminal wants to support parallel data transmission of X transmit antenna ports, it usually needs X power amplifiers (PAs), that is, each of the X antenna ports is matched with a power amplifier.
  • PAs power amplifiers
  • Terminal devices with 4 transmit antenna port capabilities are not very common due to the high cost of power amplifiers.
  • the terminal device only needs to be equipped with one or two PAs, wherein the link between the PA and the antenna can be dynamically changed, that is, the terminal device can have the ability to dynamically adjust the antenna port for uplink signal transmission. In this manner, the terminal can transmit the uplink PUSCH by using the antenna with the best channel quality, thereby obtaining the antenna selection gain.
  • the uplink supports dynamic linking of one PA between two antenna ports.
  • the network device may indicate, by using control signaling of a Physical Downlink Control Channel (PDCCH), the antenna port used by the PUSCH channel to be transmitted to the terminal device.
  • PDCCH Physical Downlink Control Channel
  • DCI format DCI format 0 of the PDCCH Downlink Control Information
  • the information bits of the PDCCH are scrambled by a sequence of Cyclic Redundancy Check (CRC) sequences using two sequences.
  • CRC Cyclic Redundancy Check
  • the network device expects the user to use the antenna port i to transmit, its CRC check bit uses the mask x AS,0 ,x AS,1 ,...,x AS,15 corresponding to the antenna port i and the wireless network of the terminal device.
  • the embodiment of the present application provides a communication method, which is applicable to the scenario 1T4R or 2T4R to determine an antenna port. It should be understood that the communication method provided by the embodiment of the present application is also used for other scenarios in which an uplink transmission antenna port is selected from multiple antenna ports.
  • the above scenario 1T4R or 2T4R is just an example form.
  • the antenna port combination mode of selecting one or two antenna ports of the four antenna ports in the embodiment of the present application, and the antenna port combination mode combination of each antenna port combination mode are described in detail below with reference to FIG.
  • FIG. 3 is a schematic diagram of an antenna port combination manner.
  • the schematic includes an antenna port 310.
  • the antenna port combination shown in Figure 3 will be described in detail below.
  • Antenna port 310 (including antenna port 0 - antenna port 3 as shown in Figure 3).
  • the antenna port combination mode of the terminal device antenna port includes:
  • the antenna port combination mode 1 select antenna port 0 as an antenna port supporting the uplink transmission signal, such antenna port combination mode 1 belongs to the antenna port combination mode set 1;
  • Antenna port combination mode 2 Select antenna port 1 as the antenna port supporting the uplink transmission signal, this antenna port combination mode 2 belongs to the antenna port combination mode set 2;
  • Antenna port combination mode 3 Select antenna port 2 as an antenna port supporting the uplink transmission signal, this antenna port combination mode 3 belongs to the antenna port combination mode set 3;
  • Antenna port combination mode 4 Antenna port 3 is selected as an antenna port supporting an uplink transmission signal. This antenna port combination mode 4 belongs to the antenna port combination mode set 4.
  • FIG. 4 is a schematic diagram of another antenna port combination.
  • the schematic includes an antenna port 310.
  • the antenna port combination shown in FIG. 4 will be described in detail below.
  • Antenna port 310 (including antenna port 0 - antenna port 3 as shown in Figure 4).
  • the antenna port combination mode of the terminal device antenna port includes the antenna port combination mode shown in FIG. 4: the antenna port (0, 2) can simultaneously transmit signals; the antenna port combination mode 2: the antenna port (1,3) can send signals at the same time.
  • the antenna port combination mode 1 and the antenna port combination mode 2 belong to the antenna port combination mode set 1 .
  • FIG. 5 is a schematic diagram of another antenna port combination.
  • the schematic includes an antenna port 310.
  • the antenna port combination shown in FIG. 5 will be described in detail below.
  • Antenna port 310 (including antenna port 0 - antenna port 3 as shown in Figure 5).
  • the antenna port combination mode of the terminal device antenna port includes the antenna port combination mode set as shown in FIG. 5: the first PA is always connected to the antenna port 0, and the other PA can be at the antenna (1, 2, 3) switching, therefore, the antenna port combination method that can simultaneously transmit signals includes:
  • Antenna port combination mode 3 The antenna port (0, 1) can transmit signals at the same time;
  • Antenna port combination mode 1 The antenna port (0, 2) can transmit signals at the same time;
  • Antenna port combination mode 4 The antenna port (0, 3) can transmit signals at the same time.
  • FIG. 6 is a schematic diagram of another antenna port combination.
  • the schematic includes an antenna port 310.
  • the antenna port combination shown in FIG. 6 will be described in detail below.
  • Antenna port 310 (including antenna port 0 - antenna port 3 as shown in Figure 6).
  • the antenna port combination mode of the terminal device antenna port includes the antenna port combination mode set 3 as shown in FIG. 5: the first PA can be freely linked with the antenna 0, 1, and the second PA can be connected to the antenna. 2,3 free links, so antenna port combinations that can simultaneously send signals include:
  • Antenna port combination mode 1 The antenna port (0, 2) can transmit signals at the same time;
  • Antenna port combination mode 2 The antenna port (1, 3) can transmit signals at the same time;
  • Antenna port combination mode 4 The antenna port (0, 3) can transmit signals at the same time;
  • Antenna port combination mode 5 The antenna port (1, 2) can transmit signals at the same time.
  • FIG. 7 is a schematic diagram of another antenna port combination.
  • the schematic includes an antenna port 310.
  • the antenna port combination shown in Fig. 7 will be described in detail below.
  • Antenna port 310 (including antenna port 0 - antenna port 3 as shown in Figure 7).
  • the antenna port combination mode of the terminal device antenna port includes the antenna port combination mode set 4 as shown in FIG. 7: two PAs can be connected to any antenna, so the antenna port combination mode capable of simultaneously transmitting signals can be simultaneously performed.
  • Antenna port combination mode 1 The antenna port (0, 2) can transmit signals at the same time;
  • Antenna port combination mode 2 The antenna port (1, 3) can transmit signals at the same time;
  • Antenna port combination mode 3 The antenna port (0, 1) can transmit signals at the same time;
  • Antenna port combination mode 4 The antenna port (0, 3) can transmit signals at the same time;
  • Antenna port combination mode 5 The antenna port (1, 2) can transmit signals at the same time;
  • Antenna port combination mode 6 The antenna port (2, 3) can transmit signals at the same time.
  • the antenna port combination mode is common. kind, you can also combine this according to different antenna port combination methods.
  • the antenna port combination method is divided into four antenna port combination method sets (antenna port combination mode set 1 to antenna port combination mode set 4).
  • antenna port grouping mode set is only an example, and may be any grouping mode group. And different numbers can be configured for different grouping mode sets to distinguish.
  • the number of antenna port grouping patterns shown in FIG. 3 is from 0 to 4, and the number of antenna port grouping patterns in FIGS. 4 to 7 is from 5 to 8.
  • the following describes the communication method of the embodiment of the present application by using 1T4R and 2T4R as an example to describe how the network device indicates the transmit antenna of the terminal device PUSCH through the downlink control information.
  • the technical solution of the present application can be applied to a wireless communication system, for example, the communication system 100 shown in FIG. 1, the communication system may include at least one network device and at least one terminal device, and the network device and the terminal device may pass Wireless air interface communication.
  • the network device in the communication system may correspond to the network device 102 or the network device 104 shown in FIG. 1
  • the terminal device may correspond to the terminal device 106 shown in FIG.
  • first, second, third, fourth, fifth, sixth, seventh, etc. are merely for facilitating the differentiation of different objects, and should not be construed as limiting the application. For example, distinguish different indication information, different indication fields, and the like.
  • the terminal device may be any terminal device that has a wireless connection relationship with the network device in the wireless communication system. It can be understood that the network device can communicate with the plurality of terminal devices having a wireless connection relationship in the wireless communication system based on the same technical solution. This application does not limit this.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of the present application, which is shown from the perspective of device interaction. As shown in FIG. 8, the method includes steps S810 to S830. The three steps are described in detail below.
  • the communication method provided by the embodiment of the present application is implemented in a communication system including a network device and a terminal device, where the terminal device is configured with N antenna ports, and N is an integer greater than or equal to 2.
  • the terminal device sends the first indication information to the network device.
  • the terminal device sends the first indication information to the network device, where the first indication information is used to indicate the first antenna port combination mode set,
  • the terminal device is configured with N antenna ports, N is an integer greater than or equal to 2, and the N antenna ports correspond to T antenna port combinations, and each of the antenna port combinations corresponds to the N antenna ports. At least one of the M antenna ports corresponding to any two of the antenna port combinations is different, and each antenna port combination mode includes at least one of the antenna port combinations, wherein T is an integer greater than or equal to 1.
  • each antenna port combination manner corresponds to one of the four antenna ports, and the antenna ports in each antenna port combination manner are different.
  • One of the antenna port combinations is included in each antenna port combination set shown in FIG.
  • Each antenna port combination manner corresponds to two of the four antenna ports, and at least one of the antenna port combinations is different.
  • Each of the antenna port combination modes shown in FIG. 4 includes two of the antenna port combinations.
  • Each of the antenna port combination modes shown in FIG. 5 includes three of the antenna port combinations.
  • Each of the antenna port combination modes shown in FIG. 6 includes four of the antenna port combinations.
  • Each of the antenna port combination modes shown in FIG. 7 includes six of the antenna port combinations.
  • the first indication information is used to indicate that the first antenna port combination mode set includes:
  • the first indication information is used to indicate that the first antenna port combination mode set is the antenna port combination mode set 1 shown in FIG.
  • the first indication information is used to indicate that the first antenna port combination mode is set to the antenna port combination mode set 2 shown in FIG. 5.
  • the first indication information is used to indicate that the first antenna port combination mode set is the antenna port combination mode set 3 shown in FIG. 6.
  • the first indication information is used to indicate that the first antenna port combination mode set is the antenna port combination mode set 4 shown in FIG. 7.
  • the first indication information is used to indicate that the first antenna port combination mode set further includes:
  • the first indication information is used to indicate that the two antenna port grouping manners are included, and the first indication information indicates that the first antenna port combination mode set is the antenna port combination mode set 1 shown in FIG. .
  • the first indication information is used to indicate that the three antenna port grouping manners are included, and the first indication information indicates that the first antenna port combination mode set is the antenna port combination mode set shown in FIG. 2.
  • the first indication information is used to indicate that the four antenna port grouping manners are included, and the first indication information indicates that the first antenna port combination mode set is the antenna port combination mode set shown in FIG. 3.
  • the first indication information is used to indicate that the six antenna port grouping manners are included, and the first indication information indicates that the first antenna port combination mode set is the antenna port combination mode set shown in FIG. 4.
  • the first indication information includes the number of antenna port combinations in the antenna port combination mode set
  • the base station indicates the number of antenna port combination modes in the antenna port combination mode set.
  • the device can determine the set of antenna port combinations that the terminal device can support.
  • the network device determines K antenna ports.
  • the network device determines K antenna ports from the N antenna ports according to the first antenna port combination manner, where K is an integer greater than or equal to 1 and less than or equal to the M, including the following:
  • the first antenna port combination mode set includes S antenna port combination modes, where S is an integer greater than or equal to 1 and less than or equal to the T; the network device is combined from the S antenna ports.
  • the first antenna port combination mode is determined, and the K antenna ports in the first antenna port combination mode are determined as the K antenna ports.
  • the following takes the 1T4R and 2T4R scenarios as an example:
  • the configuration of the N antenna ports includes four forms of the antenna port combination mode set 1 to the antenna port combination mode set 4 as shown in FIG. 3 .
  • the first indication information may indicate that one of the four antenna ports is simultaneously transmitted, and the first antenna port combination mode to which the one antenna port belongs is the antenna port combination mode set 1. Then, the network device can determine the antenna port 0 according to the first indication information.
  • the antenna port scenario supported by the terminal device the 2T4R antenna port combination mode set 1 as described above.
  • the configuration of the N antenna ports includes antenna antenna combination mode 1 (antenna port 0, 2) and antenna port combination mode 2 (antenna port 1, 3) in the antenna port combination mode set 1 shown in FIG. Port combination method.
  • the first antenna port combination manner may be any one of the above two antenna port combinations.
  • the first indication information may indicate that two antenna ports of the four antenna ports are simultaneously transmitted, and the first antenna port combination manner of the two antenna ports belongs to the antenna port combination mode set 1. Then, the network device can determine the antenna port (antenna port 0, 2 or 1, 3) according to the first indication information. The network device then determines the better quality K antenna ports from antenna ports 0, 2 or 1, 3 .
  • the antenna port scenario supported by the terminal device the antenna port combination mode 2 of the 2T4R as described above.
  • the configuration of the N antenna ports includes three antenna port combinations in the antenna port combination mode set 2 shown in FIG. 5.
  • the first antenna port combination manner may be any one of the above three antenna port combinations.
  • the first indication information may indicate that two antenna ports of the four antenna ports are simultaneously transmitted, and the first antenna port combination manner of the two antenna ports belongs to the antenna port combination mode set 2. Then, the network device can determine the antenna port (antenna port 0, 2 or 0, 1 or 0, 3) according to the first indication information. The network device then determines the better quality K antenna ports from antenna ports 0, 2 or 0, 1 or 0, 3.
  • the antenna port supported by the terminal device the antenna port combination mode 3 of the 2T4R as described above.
  • the configuration of the N antenna ports includes four antenna port combinations in the antenna port combination mode set 3 shown in FIG. 6.
  • the first antenna port combination manner may be any one of the above four antenna port combinations.
  • the first indication information may indicate that two antenna ports of the four antenna ports are simultaneously transmitted, and the first antenna port combination manner of the two antenna ports belongs to the antenna port combination mode set 3. Then, the network device can determine the antenna port (antenna port 0, 2 or 1, 3 or 0, 3 or 1, 2) according to the first indication information. The network device then determines the better quality K antenna ports from antenna port 0, 2 or 1, 3 or 0, 3 or 1, 2.
  • the antenna port supported by the terminal device the antenna port combination mode 4 of the 2T4R as described above.
  • the configuration of the N antenna ports includes six antenna port combinations in the antenna port combination mode set 4 as shown in FIG. 7.
  • the first antenna port combination manner may be any one of the above six antenna port combinations.
  • the first indication information may indicate that two antenna ports of the four antenna ports are simultaneously transmitted, and the first antenna port combination manner of the two antenna ports belongs to the antenna port combination mode set 4. Then, the network device can determine the antenna port according to the first indication information (antenna port 0, 2 or 1, 3 or 0, 3 or 1, 2 or 2, 3 or 0, 1). The network device then determines the better quality K antenna ports from antenna port 0, 2 or 1, 3 or 0, 3 or 1, 2 or 2, 3 or 0, 1.
  • the first antenna port combination manner indicates K antenna ports of the N antenna ports, and the network device may directly directly according to the first antenna port combination manner. Determine K antenna ports.
  • the T antenna combination manner corresponds to a preset precoding matrix set
  • the precoding matrix set includes Q precoding matrices
  • the first antenna port combination manner The set corresponds to a subset of precoding matrices
  • the precoding matrix subset includes P precoding matrices, each of the P precoding matrices belongs to the Q precoding matrices, and the P and Q are positive An integer, and P is less than or equal to Q
  • the network device determines a first precoding matrix from the precoding matrix subset, and determines K antenna ports corresponding to the first precoding matrix as the K antenna ports . That is, the network device determines the first precoding matrix from the set of precoding matrices according to the first antenna port combination manner, and further determines the K antenna ports.
  • the first indication information is used to indicate that the terminal device supports one of the four antenna ports for uplink transmission, and that the terminal device supports transmission of two of the four antenna ports for uplink transmission.
  • the network device determines the first precoding matrix subset corresponding to the K antenna ports is described in detail.
  • the terminal device sends the first indication information to indicate that the terminal device supports one of the four antenna ports for uplink transmission, and the antenna port combination manner of the one antenna port belongs to Figure 1 shows an antenna port combination set of 1.
  • the preset mapping relationship between the first indication information and the index of the precoding matrix set is that the index of the precoding matrix set subset corresponding to the one antenna port is ⁇ 8 ⁇ .
  • the network device is a precoding matrix set whose index of the precoding matrix set subset selected by the terminal device in the foregoing Table 2 is ⁇ 8 ⁇ as a precoding matrix subset of the precoding matrix corresponding to the antenna port.
  • the terminal device sends the first indication information to indicate that the terminal device supports one of the four antenna ports for uplink transmission, and the antenna port combination manner of the one antenna port belongs to The antenna port combination mode set 2 shown in FIG.
  • the preset mapping relationship between the first indication information and the index of the precoding matrix set is that the index of the precoding matrix subset corresponding to the one antenna port is ⁇ 9 ⁇ .
  • the network device is a precoding matrix set whose index of the precoding matrix subset selected by the terminal device in the foregoing Table 2 is ⁇ 9 ⁇ as a precoding matrix subset of the precoding matrix corresponding to the antenna port.
  • the antenna port combination mode to which the one antenna port belongs may not be indicated.
  • the preset mapping relationship between the first indication information and the index of the precoding matrix set is that the index of the precoding matrix subset corresponding to the one antenna port is ⁇ 8, 9, 10, 11 ⁇ .
  • the network device is a precoding matrix set whose index of the precoding matrix subset selected by the terminal device in the foregoing Table 2 is ⁇ 8, 9, 10, 11 ⁇ as precoding of the precoding matrix corresponding to the antenna port.
  • Matrix subset The network device selects a first precoding matrix corresponding to one antenna port with better channel quality according to channel quality from the precoding matrix subset.
  • the terminal device sends the first indication information to indicate that the terminal device supports two antenna port transmissions of the four antenna ports when uplink transmission is performed, and corresponds to the antenna port combination mode set 1 shown in FIG. In either of the two antenna port combinations.
  • the preset mapping relationship between the first indication information and the index of the precoding matrix set is that the index of the precoding matrix subset corresponding to the two antenna ports is ⁇ 0 ⁇ 11 ⁇ .
  • the network device is a precoding matrix set whose index of the precoding matrix subset selected by the terminal device in the above Table 2 is ⁇ 0 to 11 ⁇ as a precoding matrix subset of the precoding matrix corresponding to the two antenna ports.
  • the network device selects a first precoding matrix corresponding to one or two antenna ports with better channel quality according to channel quality from the precoding matrix subset.
  • the terminal device sends the first indication information to indicate that the terminal device supports two antenna port transmissions of the four antenna ports when uplink transmission is performed, and corresponds to the antenna port combination mode set 2 shown in FIG. Any of the three antenna port combinations.
  • the preset mapping relationship between the first indication information and the index of the precoding matrix set is that the indexes of the precoding matrix subset corresponding to the two antenna ports are ⁇ 0 to 3 and 8 to 19 ⁇ .
  • the network device is a precoding matrix set whose index of the precoding matrix subset selected by the terminal device in the foregoing Table 2 is ⁇ 0 to 3 and 8 to 19 ⁇ as a precoding matrix of the precoding matrix corresponding to the antenna port. set.
  • the network device selects a first precoding matrix corresponding to one or two antenna ports with better channel quality according to channel quality from the precoding matrix subset.
  • the terminal device sends the first indication information to indicate that the terminal device supports two antenna port transmissions of the four antenna ports when uplink transmission is performed, and corresponds to the antenna port combination mode set 3 shown in FIG. Any of the four antenna port combinations.
  • the preset mapping relationship between the first indication information and the index of the precoding matrix set is that the indexes of the precoding matrix subsets corresponding to the two antenna ports are ⁇ 0-15 and 16-23 ⁇ .
  • the network device is a precoding matrix set whose index of the precoding matrix subset selected by the terminal device in the foregoing Table 2 is ⁇ 0 to 15 and 16 to 23 ⁇ as a precoding matrix of the precoding matrix corresponding to the antenna port. set.
  • the network device selects a first precoding matrix corresponding to one or two antenna ports with better channel quality according to channel quality from the precoding matrix subset.
  • the terminal device sends the first indication information to indicate that the terminal device supports two antenna port transmissions of the four antenna ports when uplink transmission is performed, and corresponds to the antenna port combination mode set 4 shown in FIG. Any of the six antenna port combinations.
  • the preset mapping relationship between the first indication information and the index of the precoding matrix set is that the index of the precoding matrix subset corresponding to the two antenna ports is ⁇ 0-27 ⁇ .
  • the network device is a precoding matrix set whose index of the precoding matrix subset selected by the terminal device in the above Table 2 is ⁇ 0 to 27 ⁇ as a precoding matrix subset of the precoding matrix corresponding to the antenna port.
  • the network device selects a first precoding matrix corresponding to one or two antenna ports with better channel quality according to channel quality from the precoding matrix subset.
  • the foregoing precoding matrix set shown in Table 2 is only used as a precoding matrix set pre-stored by the terminal device and the network device, and the precoding matrix subset is determined according to the first indication information.
  • Others, for example, the indexes in Table 2 above indicate different matrices, and the precoding matrix sets are different, or the precoding matrix subsets obtained by different first indication information may be different. This application is not limited in this regard.
  • the network device may determine, according to the first indication information reported by the terminal device, a precoding matrix subset in the precoding matrix set for the subsequent network device to select the first precoding matrix corresponding to the antenna port. Convenience.
  • the index of the determined precoding matrix subset includes the index ⁇ 8. ⁇ 11 ⁇ , mainly to support the transmission of two antenna ports of the four antenna ports when the terminal device uplinks, but the network device determines according to the subsequent channel quality reference signal that only one antenna port works normally (for example, An antenna port is occluded.
  • the network device determines a precoding matrix corresponding to uplink transmission of only one antenna port from the precoding matrix subset.
  • Table 3 is a set of precoding matrix corresponding to the dual-stream PUSCH transmission, that is, when the number of layers of the transmitted data is 2, in the embodiment of the present application.
  • the terminal device sends the first indication information to indicate that the terminal device supports two antenna port transmissions of the four antenna ports when uplink transmission is performed, and corresponds to the antenna port combination mode set 1 shown in FIG. Any of the two antenna port combinations.
  • the preset mapping relationship between the first indication information and the index of the precoding matrix set is that the index of the precoding matrix subset corresponding to the two antenna ports is ⁇ 0 ⁇ 1 ⁇ .
  • the network device is a precoding matrix set whose index of the precoding matrix subset selected by the terminal device in the above table 3 is ⁇ 0 to 1 ⁇ as a precoding matrix subset of the precoding matrix corresponding to the antenna port.
  • the network device selects the first precoding matrix corresponding to the two antenna ports with better channel quality according to the channel quality from the precoding matrix subset.
  • the terminal device sends the first indication information to indicate that the terminal device supports two antenna port transmissions of the four antenna ports when uplink transmission is performed, and corresponds to the antenna port combination mode set 2 shown in FIG. Any of the three antenna port combinations.
  • the preset mapping relationship between the first indication information and the index of the precoding matrix set is that the index of the precoding matrix subset corresponding to the two antenna ports is ⁇ 2 ⁇ 4 ⁇ .
  • the network device is a precoding matrix set whose index of the precoding matrix subset selected by the terminal device in the above Table 3 is ⁇ 2 to 4 ⁇ as a precoding matrix subset of the precoding matrix corresponding to the antenna port.
  • the network device selects the first precoding matrix corresponding to the two antenna ports with better channel quality according to the channel quality from the precoding matrix subset.
  • the terminal device sends the first indication information to indicate that the terminal device supports two antenna port transmissions of the four antenna ports when uplink transmission is performed, and corresponds to the antenna port combination mode set 3 shown in FIG. Any of the four antenna port combinations.
  • the preset mapping relationship between the first indication information and the index of the precoding matrix set is that the indexes of the precoding matrix subsets corresponding to the two antenna ports are ⁇ 0 to 1 and 3 to 4 ⁇ .
  • the network device is a precoding matrix set whose index of the precoding matrix subset selected by the terminal device in the foregoing Table 3 is ⁇ 0 to 1 and 3 to 4 ⁇ as a precoding matrix of the precoding matrix corresponding to the antenna port. set.
  • the network device selects the first precoding matrix corresponding to the two antenna ports with better channel quality according to the channel quality from the precoding matrix subset.
  • the terminal device sends the first indication information to indicate that the terminal device supports two antenna port transmissions of the four antenna ports when uplink transmission is performed, and corresponds to the antenna port combination mode set 4 shown in FIG. Any of the six antenna port combinations.
  • the preset mapping relationship between the first indication information and the index of the precoding matrix set is that the index of the precoding matrix subset corresponding to the two antenna ports is ⁇ 0-5 ⁇ .
  • the network device is a precoding matrix set whose index of the precoding matrix subset selected by the terminal device in the above Table 3 is ⁇ 0 to 5 ⁇ as a precoding matrix subset of the precoding matrix corresponding to the antenna port.
  • the network device selects the first precoding matrix corresponding to the two antenna ports with better channel quality according to the channel quality from the precoding matrix subset.
  • the method includes: Step S811, a listening reference signal SRS sent by the terminal device to the network device at each antenna port; and the network device, according to the SRS, from the N antenna ports, The K antenna ports are determined.
  • the precoding matrix set shown in Table 2 and Table 3 above may be a precoding matrix set saved by both the terminal device and the network device, or may be calculated according to a formula.
  • the terminal device may only save the subset of precoding matrices described above or calculate the subset of precoding matrices described above according to a formula.
  • the network device sends the second indication information to the terminal device.
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate the K antenna ports.
  • the second indication information includes PDCCH Downlink Control Information (DCI).
  • DCI PDCCH Downlink Control Information
  • the second indication information is used to indicate the foregoing first precoding matrix.
  • the second indication information is specifically used to indicate an index of the first precoding matrix in the precoding matrix subset.
  • the first indication information sent by the terminal device indicates that the first antenna port combination mode is set to the antenna port combination mode shown in FIG. 5, and the specific information of the second indication information sent by the network device to the terminal device is described.
  • the content may include: according to the foregoing Table 2 and Table 3, when the first antenna port combination mode is set to the antenna port combination mode shown in FIG. 5, the precoding matrix subset corresponding to the first antenna port combination mode set is as shown in Table 4 The form shown.
  • the second indication information may directly indicate an index of the first precoding matrix in the precoding matrix subset.
  • the network device determines, according to the first indication information, the antenna port combination mode 1 in the antenna port combination mode set shown in FIG. 5 as the antenna port for uplink transmission of the terminal device, and determines the phase difference between the antenna ports, from the precoding matrix.
  • the subset determines the first precoding matrix as Then, the second indication information may indicate an index 0000 of the first precoding matrix in the precoding matrix subset, and the terminal device may determine, according to the index information, a phase difference between the antenna port of the uplink transmission and the antenna port.
  • the precoding matrix set involved in the embodiment of the present application may be saved by the terminal device and the network device at the same time, or may be calculated according to a certain formula. This application is not limited in this regard.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the above method embodiment.
  • FIG. 9 shows only the main components of the terminal device.
  • the terminal device 40 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, for supporting the terminal device to perform the actions described in the foregoing method embodiments, such as And determining a precoding matrix based on receiving the second indication information, and then precoding the signal and transmitting the precoded signal.
  • the memory is mainly used for storing software programs and data, for example, storing the correspondence between the indication information and the combination information described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver unit, and are mainly used for transmitting and receiving radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 9 shows only one memory and one processor for ease of illustration. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 9 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having the transceiving function can be regarded as the transceiving unit 401 of the terminal device 40, for example, for supporting the terminal device to perform the receiving function and the transmitting function as described in part in FIG.
  • the processor having the processing function is regarded as the processing unit 402 of the terminal device 40.
  • the terminal device 40 includes a transceiver unit 401 and a processing unit 402.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 401 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 401 is regarded as a sending unit, that is, the transceiver unit 401 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, an input port, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the processor 402 can be configured to execute instructions stored in the memory to control the transceiver unit 401 to receive signals and/or transmit signals to perform the functions of the terminal device in the foregoing method embodiment.
  • the function of the transceiver unit 401 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present disclosure, which may be a schematic structural diagram of a base station.
  • the base station 50 can include one or more radio frequency units, such as a remote radio unit (RRU) 501 and one or more baseband units (BBUs) (also referred to as digital units, DUs).
  • RRU 501 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 5011 and a radio frequency unit 5012.
  • the RRU 501 portion is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal device.
  • the BBU 502 part is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 501 and the BBU 502 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 502 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU (processing unit) 502 can be used to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the BBU 502 may be configured by one or more boards, and multiple boards may jointly support a single access indication radio access network (such as an LTE network), or may support different access systems respectively. Radio access network (such as LTE network, 5G network or other network).
  • the BBU 502 also includes a memory 5021 and a processor 5022 for storing the necessary instructions and data.
  • the memory 5021 stores the correspondence relationship between the precoding matrix set index and the precoding matrix in the above embodiment.
  • the processor 5022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure of the network device in the foregoing method embodiment.
  • the memory 5021 and the processor 5022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • FIG. 11 shows a schematic structural diagram of a communication device 600.
  • the device 600 can be used to implement the method described in the foregoing method embodiments, and can be referred to the description in the foregoing method embodiments.
  • the communication device 600 can be a chip, a network device (such as a base station), a terminal device or other network device, and the like.
  • the communication device 600 includes one or more processors 601.
  • the processor 601 can be a general purpose processor or a dedicated processor or the like.
  • it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of the software programs.
  • the communication device may include a transceiver unit for implementing input (reception) and output (transmission) of signals.
  • the communication device can be a chip, and the transceiver unit can be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used for a terminal or base station or other network device.
  • the communication device may be a terminal or a base station or other network device
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication device 600 includes one or more of the processors 601, and the one or more processors 601 can implement the method of the network device or the terminal device in the embodiment shown in FIG.
  • the communication device 600 includes means for generating a set of precoding matrices, and means for transmitting a first precoding matrix.
  • the functions of generating the sets of precoding matrix sets and the means of transmitting precoding matrix sets may be implemented by one or more processors.
  • the set of precoding matrices may be generated, for example, by one or more processors, and the set of precoding matrices may be transmitted through a transceiver, or an input/output circuit, or an interface of a chip.
  • the set of precoding matrices refer to the related description in the foregoing method embodiments.
  • the communication device 600 includes means for receiving a first precoding matrix, and means for determining a precoding matrix and precoding the signal.
  • the first precoding matrix and how to determine the precoding matrix can be referred to the related description in the foregoing method embodiments.
  • the first precoding matrix may be received by a transceiver, or an input/output circuit, or an interface of a chip, and the precoded signal may be sent, and the uplink transmission is determined by the one or more processors based on the second indication information.
  • the antenna port and precode the signal may be received by a transceiver, or an input/output circuit, or an interface of a chip.
  • processor 601 can implement other functions in addition to the method of the embodiment shown in FIG. 8.
  • the processor 601 may also include instructions 603 that may be executed on the processor such that the communication device 600 performs the methods described in the above method embodiments.
  • the communication device 600 can also include circuitry that can implement the functionality of the network device or terminal device in the foregoing method embodiments.
  • the communication device 600 can include one or more memories 602 having instructions 604 stored thereon that can be executed on the processor such that the communication device 600 executes The method described in the above method embodiments.
  • data may also be stored in the memory.
  • Instructions and/or data can also be stored in the optional processor.
  • the one or more memories 602 may store the correspondence between the indication information described in the above embodiments and the category of the precoding matrix, or the related parameters or tables and the like involved in the above embodiments.
  • the processor and the memory may be provided separately or integrated.
  • the communication device 600 may further include a transceiver unit 605 and an antenna 606.
  • the processor 601 may be referred to as a processing unit that controls a communication device (terminal or base station).
  • the transceiver unit 605 can be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiving function of the communication device through the antenna 606.
  • the application also provides a communication system comprising one or more of the aforementioned network devices, and one or more terminal devices.
  • processors in the embodiment of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • Yet another aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the network device in the method as described above in FIG. The various steps of execution.
  • a still further aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to execute the terminal device in the method illustrated in FIG. 8 The various steps of execution.
  • Yet another aspect of the present application provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the various steps performed by the network device in the method illustrated in FIG.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when executed on a computer, cause the computer to perform the various steps performed by the terminal device in the method illustrated in FIG.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard disk.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供了一种通信方法,在包括网络设备和终端设备的通信系统中执行,终端设备配置有N个天线端口,N为大于或等于2的整数,N个天线端口对应T个天线端口组合方式,每一个天线端口组合方式对应于N个天线端口中的M个天线端口,每个天线端口组合方式集合包括至少一个天线端口组合方式;网络设备从终端设备接收第一指示信息,第一指示信息用于指示第一天线端口组合方式集合,网络设备根据第一天线端口组合方式集合从N个天线端口中,确定K个天线端口;网络设备向终端设备发送第二指示信息,第二指示信息用于指示K个天线端口。本申请实施例的通信方法能够从终端设备的多个天线端口动态选择天线端口进行上行信号传输。的多个天线端口动态选择天线端口进行上行信号传输。本实施例提供的方法可以应用于通信系统,例如V2X、LTE-V、V2V、车联网、MTC、IoT、LTE-M,Μ2Μ,物联网等。

Description

通信方法、通信装置和系统 技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种通信方法、通信装置和系统。
背景技术
长期演进(Long Term Evolution,LTE)系统广泛采用了多输入多输出(Multiple Input and Multiple Output,MIMO)技术。在已有的LTE协议中,网络设备可以有32个发射天线端口,而终端设备可以有4个接收天线端口。而终端设备要支持上行数据的发送,需要在相应的天线端口上链接功率放大器(Power Amplifier,PA)。比如终端设备要支持X个发射天线端口的并行数据传输,通常需要X个功率放大器,即每个发送天线端口上都匹配有一个功率放大器。由于功率放大器的造价较高,因此具有4发射天线端口能力的终端并不是非常普遍。
现有中,为终端设备配置一个或者两个PA。其中PA和终端设备的天线端口之间的链接可以动态的改变,终端设备有能力动态调整上行信号发送的天线端口。因此,如何从终端设备的多个天线端口动态选择天线端口进行上行信号传输成为亟待解决的技术问题。
发明内容
本申请提供一种通信方法、通信装置和系统,能够从终端设备的多个天线端口动态选择天线端口进行上行信号传输。
第一方面,提供了一种通信方法,在包括网络设备和终端设备的通信系统中执行,所述终端设备配置有N个天线端口,N为大于或等于2的整数,所述N个天线端口对应T个天线端口组合方式,每一个所述天线端口组合方式对应于所述N个天线端口中的M个天线端口,任意两个所述天线端口组合方式所对应的M个天线端口中至少一个天线端口相异,每个天线端口组合方式集合包括至少一个所述天线端口组合方式,其中,T为大于或等于1的整数;所述通信方法包括:所述网络设备从所述终端设备接收第一指示信息,所述第一指示信息用于指示第一天线端口组合方式集合,所述网络设备根据所述第一天线端口组合方式集合从所述N个天线端口中,确定K个天线端口,K为大于或等于1且小于或等于所述M的整数;所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述K个天线端口。
根据本申请实施例的通信方法,通过从终端设备接收第一指示信息,从终端设备配置的N个天线端口确定K个天线端口。并向终端设备发送第二指示信息指示该K个天线端口。由于根据第一指示信息已经指示第一天线端口组合方式集合,网络设备根据所述第一天线端口组合方式集合从所述N个天线端口中,确定K个天线端口。本申请实施例的通信方法能够从终端设备的多个天线端口动态选择天线端口进行上行信号传输,使得上行信号可以在最优的K个天线上发送,提高上行的性能。
结合第一方面,在第一方面的某些实现方式中,所述第一天线端口组合方式集合包括S个天线端口组合方式,其中,S为大于或等于1且小于或等于所述T的整数;所述网络设备根据所述第一天线端口组合方式集合从所述N个天线端口中确定K个天线端口包括:所述网络设备从所述S个天线端口组合方式中,确定第一天线端口组合方式,将所述第一天线端口组合方式中的K个天线端口,确定为所述K个天线端口。其中,第一天线端口组合方式可以是S个天线端口组合方式中的任意一个。
根据本申请实施例的通信方法,通过将终端设备的N个天线端口对应T个天线端口组合方式,并可选地在网络设备中存储至少两个天线端口组合方式集合的信息,当终端设备发送的第一指示信息具体用于指示第一天线端口组合方式集合时,网络设备能够根据该第一天线端口组合方式集合确定第一天线端口组合方式集合包括的天线端口组合方式对应的天线端口。本申请实施例的通信方法能够基于终端设备中天线端口的天线端口组合方式集合从N个天线端口确定出S个天线端口组合方式,并进一步从S个天线组合方式中确定K个天线端口,并且终端设备已知天线端口的S个天线端口组合方式,为确定该K个天线端口提供了便利。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述T个天线组合方式对应预设的预编码矩阵集合,所述预编码矩阵集合包括Q个预编码矩阵,所述第一天线端口组合方式集合对应预编码矩阵子集,所述预编码矩阵子集包括P个预编码矩阵,所述P个预编码矩阵中的每一个矩阵属于所述Q个预编码矩阵,所述P、Q为正整数,且P小于等于Q,所述网络设备根据所述第一天线端口组合方式集合从所述N个天线端口中确定K个天线端口包括:所述网络设备从所述预编码矩阵子集中确定第一预编码矩阵,将所述第一预编码矩阵对应的K个天线端口,确定为所述K个天线端口。其中,第一预编码矩阵可以是预编码矩阵子集中的任意一个预编码矩阵。
根据本申请实施例的通信方法,网络设备中已知预设的预编码矩阵集合,且预编码矩阵集合中每个预编码矩阵对应一个所述天线端口组合方式,则第一指示信息指示第一天线端口组合方式集合的情况下,根据该第一天线端口组合方式集合能够确定对应的天线端口组合方式,进而能够确定天线端口组合方式对应的预编码矩阵。则,网络设备通过第二指示信息指示预编码矩阵,所述指示的预编码矩阵属于第一天线端口组合方式集合所确定的预编码矩阵子集,终端设备根据指示的预编码矩阵就可以确定天线端口组合方式,确定上述K个天线端口,通过这种指示方式,使得预编码矩阵的指示和K个天线端口的指示结合在一起,具有指示灵活的优点,且与预编码矩阵指示和K个天线端口指示分别指示的方法相比,具有节省比特的效果,进而节省信令开销。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第二指示信息具体用于指示所述第一预编码矩阵在所述预编码矩阵子集中的索引。
根据本申请实施例的通信方法,通过根据终端设备发送的第一指示信息确定K个天线端口之后,网络设备可以发送第二指示信息指示该K个天线端口,由于终端设备已知S个天线端口组合方式,以及所述S个天线端口组合方式对应的预编码矩阵子集,则网络设备发送的第二指示信息具体只需要指示所述K个天线端口对应第一预编码矩阵在所述预编码矩阵子集中的索引,能够减少第二指示信息的信息消耗。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述预编码矩阵 为所述行数与所述N个天线端口相对应,以及列数与发射数据的层数相对应,且每一列元素中非零元素的个数为X的矩阵,其中,X为大于等于1且小于等于所述M的整数。
根据本申请实施例的通信方法,基于终端设备配置的天线端口总数确定预编码矩阵的行数,并根据预发送的上行数据的层数确定预编码矩阵的列数,其中每一列元素中的非零元素的个数与位置与终端设备支持的天线端口的组合方式有关。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,当N=4,且M=2的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
Figure PCTCN2018082008-appb-000001
其中,所述码本索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射的数据的层数等于1。
根据本申请实施例的通信方法,具体地终端设备配置有4个天线端口,并且支持最多2个天线端口同时上行传输时,所述终端设备中保存有预编码矩阵集合包括上述表格中全部或者部分矩阵,矩阵行数为4对应天线端口总数,列数为1对应发射数据的层数,所述矩阵中每一列的元素包括1或2个非零元素。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,当N=4,且M=2的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
Figure PCTCN2018082008-appb-000002
其中,所述预编码矩阵索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射数据的层数等于2。
根据本申请实施例的通信方法,具体地终端设备配置有4个天线端口,并且支持2个天线端口同时上行传输时,所述终端设备中保存有预编码矩阵集合包括上述表格中全部或者部分矩阵,矩阵行数为4对应天线端口总数,列数为2对应发射数据的层数,所述矩阵中每一列的元素包括1个非零元素。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述方法还包括:所述网络设备接收所述终端设备从所述N个天线端口发送的侦听参考信号SRS;所述网络设备根据所述SRS,从所述N个天线端口中,确定所述K个天线端口。
根据本申请实施例的通信方法,网络设备根据第一指示信息从N个天线端口中确定K个天线端口可以是基于终端设备在每个天线端口发送的侦听参考信号SRS,能够选择质量较好的天线端口作为上行传输的天线端口。
第二方面,提供了一种通信方法,在包括网络设备和终端设备的通信系统中执行,所述终端设备配置有N个天线端口,N为大于或等于2的整数,所述N个天线端口对应T个天线端口组合方式,每一个所述天线端口组合方式对应于所述N个天线端口中的M个天线端口,任意两个所述天线端口组合方式所对应的M个天线端口中至少一个天线端口相异,每个天线端口组合方式集合包括至少一个所述天线端口组合方式,其中,T为大于或等于1的整数;所述通信方法包括:所述终端设备向所述网络设备发送第一指示信息,所述第一指示信息用于指示第一天线端口组合方式集合,所述第一天线端口组合方式集合用于从所述N个天线端口中,确定K个天线端口,K为大于或等于1且小于或等于所述M的整数;所述终端设备从所述网络设备接收第二指示信息,所述第二指示信息用于指示所述K个天线端口。
根据本申请实施例的通信方法,终端设备发送第一指示信息,第一指示信息用于从终端设备配置的N个天线端口确定K个天线端口。并从网络设备接收第二指示信息指示该K个天线端口。由于根据第一指示信息已经指示第一天线端口组合方式集合,网络设备根据所述第一天线端口组合方式集合从所述N个天线端口中,确定K个天线端口。本申请实施例的通信方法能够从终端设备的多个天线端口动态选择天线端口进行上行信号传输,使得上行信号可以在最优的K个天线上发送,提高上行的性能。
结合第二方面,在第二方面的某些实现方式中,所述第一天线端口组合方式集合包括S个天线端口组合方式,其中,S为大于或等于1且小于或等于所述T的整数,所述第一天线端口组合方式集合用于从所述N个天线端口中,确定K个天线端口包括:将所述S个天线端口组合方式中,任意一个天线端口组合方式中的K个天线端口,确定为所述K个天线端口。
根据本申请实施例的通信方法,通过将终端设备的N个天线端口对应T个天线端口组合方式,并可选地在网络设备中存储至少两个天线端口组合方式集合的信息,当终端设备发送的第一指示信息具体用于指示第一天线端口组合方式集合时,网络设备能够根据该第一天线端口组合方式集合确定第一天线端口组合方式集合包括的天线端口组合方式对应的天线端口。本申请实施例的通信方法能够基于终端设备中天线端口的天线端口组合方式集合从N个天线端口确定出S个天线端口组合方式,并进一步从S个天线组合方式中确定K个天线端口,并且终端设备已知天线端口的S个天线端口组合方式,为确定该K个天线端口提供了便利。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述T个天线组合方式对应预设的预编码矩阵集合,所述预编码矩阵集合包括Q个预编码矩阵,所述第一天线端口组合方式集合对应预编码矩阵子集,所述预编码矩阵子集包括P个预编码矩阵,所述P个预编码矩阵中的每一个矩阵属于所述Q个预编码矩阵,所述P、Q为正整数,且P小于等于Q,所述第一天线端口组合方式集合用于从所述N个天线端口中,确定K个天线端口包括:从所述预编码矩阵子集中确定第一预编码矩阵,将所述第一预编码矩阵对应的K个天线端口,确定为所述K个天线端口。根据本申请实施例的通信方法,网络设备中已知预设的预编码矩阵集合,且预编码矩阵集合中每个预编码矩阵对应一个所述天线端口组合方式,则第一指示信息指示第一天线端口组合方式集合的情况下,根据该第一天线端口组合方式集合能够确定对应的天线端口组合方式,进而能够确定天线端口组合方式对应的预编码矩阵。则,网络设备通过第二指示信息指示预编码矩阵,所述指示的预编码矩阵属于第一天线端口组合方式集合所确定的预编码矩阵子集,终端设备根据指示的预编码矩阵就可以确定天线端口组合方式,确定上述K个天线端口,通过这种指示方式,使得预编码矩阵的指示和K个天线端口的指示结合在一起,具有指示灵活的优点,且与预编码矩阵指示和K个天线端口指示分别指示的方法相比,具有节省比特的效果,进而节省信令开销。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述第二指示信息具体用于指示所述第一预编码矩阵在所述预编码矩阵子集中的索引。
根据本申请实施例的通信方法,通过根据终端设备发送的第一指示信息确定K个天线端口之后,网络设备可以发送第二指示信息指示该K个天线端口,由于终端设备已知S个天线端口组合方式,以及所述S个天线端口组合方式对应的预编码矩阵子集,则网络设备发送的第二指示信息具体只需要指示所述K个天线端口对应第一预编码矩阵在所述预编码矩阵子集中的索引,能够减少第二指示信息的信息消耗。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述预编码矩阵为所述行数与所述N个天线端口相对应,以及列数与发射数据的层数相对应,且每一列元素中非零元素的个数为X的矩阵,其中,X为大于等于1且小于等于所述M的整数。
根据本申请实施例的通信方法,基于终端设备配置的天线端口总数确定预编码矩阵的行数,并根据发射的上行数据的层数确定预编码矩阵的列数,其中每一列元素中的非零元素的个数与位置与终端设备支持的天线端口的组合方式有关。能够保证预编码矩阵可以指示对应的天线端口。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,当N=4,且M=2 的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
Figure PCTCN2018082008-appb-000003
其中,所述码本索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射的数据的层数等于1。
根据本申请实施例的通信方法,具体地终端设备配置有4个天线端口,并且支持最多2个天线端口同时上行传输时,所述终端设备中保存有预编码矩阵集合包括上述表格中全部或者部分矩阵,矩阵行数为4对应天线端口总数,列数为1对应发射数据的层数,所述矩阵中每一列的元素包括1或2个非零元素。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,当N=4,且M=2的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
Figure PCTCN2018082008-appb-000004
其中,所述预编码矩阵索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射数据的层数等于2。
根据本申请实施例的通信方法,具体地终端设备配置有4个天线端口,并且支持2个天线端口同时上行传输时,所述终端设备中保存有预编码矩阵集合包括上述表格中全部或者部分矩阵,矩阵行数为4对应天线端口总数,列数为2对应发射数据的层数,所述矩阵中每一列的元素包括1个非零元素。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述方法还包括:所述终端设备从所述N个天线端口向所述网络设备发送侦听参考信号SRS;所述SRS用于从所述N个天线端口中,确定所述K个天线端口。
根据本申请实施例的通信方法,网络设备根据第一指示信息从N个天线端口中确定K个天线端口可以是基于终端设备在每个天线端口发送的侦听参考信号SRS,能够选择质量较好的天线端口作为上行传输的天线端口。
第三方面,提供了一种通信装置,该装置可以用来执行第一方面及第一方面的任意可能的实现方式中的第一通信装置的操作。具体地,通信装置包括用于执行上述第一方面所描述的步骤或功能相对应的部件(means)可以是第一方面的第一通信装置。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第四方面,提供了一种通信装置,该装置可以用来用于执行第二方面及第二方面的任意可能的实现方式中的第二通信装置的操作。具体地,该装置可以包括用于执行上述第二方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第五方面,提供了一种通信系统,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行第一或第二方面中任一种可能实现方式中的通信方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该通信系统还包括,发射机(发射器)和接收机(接收器)。
一个可能的设计中,提供了一种通信系统,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信系统执行第一方面或第一方面任一种可能实现方式中的方法。
另一个可能的设计中,提供了一种通信系统,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信系统执行第二方面或第二方面任一种可能实现方式中的方法。
第六方面,提供了一种系统,所述系统包括上述通信装置。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方 面中任一种可能实现方式中的方法。
第九方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信装置执行上述第一方面或第二方面中任一种可能实现方式中的方法。
本发明实施例的通信方法、通信装置和通信系统,通过终端设备发送的第一指示信息指示的第一天线端口组合方式集合从终端设备配置的N个天线端口中,确定K个天线端口,能够从终端设备的多个天线端口动态选择天线端口进行上行信号传输。
附图说明
图1是适用于本申请实施例的通信方法的通信系统的示意图;
图2是现有LTE系统中所采用的下行物理信道处理过程的示意图;
图3是一种天线端口组合方式的示意图;
图4是另一种天线端口组合方式的示意图;
图5是另一种天线端口组合方式的示意图;
图6是另一种天线端口组合方式的示意图;
图7是另一种天线端口组合方式的示意图;
图8是本申请实施例提供的一种通信方法的示意性流程图;
图9是本申请实施例提供的终端设备的示意图;
图10是本申请实施例提供的网络设备的结构示意图;
图11是本申请实施例提供的通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请的技术方案可以应用于各种通信系统,例如:全球移动通信(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(LTE)系统、先进的长期演进(LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、下一代通信系统(例如,第五代通信(fifth-generation,5G)系统)、多种接入系统的融合系统,或演进系统等。其中,5G系统也可以称为新一代无线接入技术(NR)系统。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的用于数据传输的方法和装置的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
应理解,网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、第五代(the  fifth generation,5G)通信系统中的网络设备(如传输点(transmission point,TP)、发送接收点(transmission reception point,TRP)、基站、小基站设备等)、未来通信系统中的网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点等。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。
应理解,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
本申请的实施例可以适用于下行数据传输,也可以适用于上行数据传输,还可以适用于设备到设备(device to device,D2D)的数据传输。例如,对于下行数据传输,发送端的设备是基站,对应的接收端的设备是UE;对于上行数据传输,发送端的设备是UE,对应的接收端的设备是基站;对于D2D的数据传输,发送设备是UE,对应的接收设备也是UE。本申请的实施例对此不做限定。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无 线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络(PLMN)网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
为便于理解本申请实施例,以下结合图2简单说明LTE系统中下行物理信道的处理过程。图2是现有LTE系统中所采用的下行物理信道处理过程的示意图。物理信道可对来自高层的码字(code word)进行处理,码字可以为经过编码(例如包括信道编码)的比特流。码字经过加扰(scrambling),生成加扰比特流。加扰比特流经过调制映射(modulation mapping),得到调制符号流。调制符号流经过层映射(layer mapping),被映射到多个层(layer)。为便于区分和说明,在本申请实施例中,可以将经过层映射之后的符号称为层映射信号流(或者称,符号流,空间流)。层映射信号流经过预编码(precoding),得到多个预编码信号流(或者称,预编码符号流)。预编码信号流经过资源元素(resource element,RE)映射后,被映射到多个RE上。这些RE随后经过正交复用(orthogonal frequency division multiplexing,OFDM)调制,生成OFDM符号流。OFDM符号流随后通过天线端口(antenna port)发射出去。
然而,本领域的技术人员应当明白,本申请中提到的各种信号流都属于调制符号流。还应理解,层映射信号流、预编码信号流等均为便于区分而定义的称呼,不应对本申请构成任何限定,本申请并不排除在现有或未来的协议中使用其他的名称来替代上述各个名称的可能。下文中多处中出现的信号流虽未作出详细说明,但本领域的技术人员可根据上述过程的执行先后顺序理解各处的信号流所指代的具体含义。
基于上述处理过程,网络设备102可通过多个天线向多个终端设备发送下行信号,终端设备可通过多个天线向同一网络设备(例如图中所示的网络设备102)或者不同的网络设备(例如图中所示的网络设备102和网络设备104)发送上行信号。在MIMO技术中,可通过预编码减小多用户之间的干扰以及同一用户的多个信号流之间的干扰。
其中,预编码可以是在已知信道状态的情况下,通过在发送端对待发射信号做预先的处理,即,借助与信道资源相匹配的预编码矩阵来对待发射信号进行处理,使得经过预编码的待发射信号与信道相适配,使得接收端消除信道间影响的复杂度降低。因此,通过对发射信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR))得以提升。因此,通过预编码可以实现发送端设备与多个接收端设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。
应注意,有关预编码的相关描述仅用于举例,并非用于限制本申请实施例的保护范围,在具体实现过程中,还可以通过其他方式进行预编码(例如在无法获知信道矩阵的情况下采用预先设置的预编码矩阵或者加权处理方式进行预编码),具体内容本文不再赘述。
在一种可能的实现方式中,发送端设备为了获得能够和信道相适配的预编码矩阵,可以通过发送参考信号的方式先进行信道测量,从而确定出较为准确地预编码矩阵来对待发 送的信号进行预编码处理。具体地,该发送端设备可以为网络设备,则接收端设备可以为终端设备,该参考信号可以为用于下行信道测量的参考信号,例如,信道状态信息参考信号(channel state information reference signal,CSI-RS),终端设备可以根据接收到的CSI-RS,进行CSI测量,并向网络设备反馈下行信道的CSI;或者,该发送端设备可以为终端设备,则接收端设备可以为网络设备,该参考信号可以为用于上行信道测量的参考信号,例如,探测参考信号(sounding reference signal,SRS)。网络设备可以根据接收到的SRS,进行CSI测量,向终端设备指示上行信道的CSI。其中,该CSI可以包括例如预编码矩阵指示(precoding matrix indicator,PMI)、发射数据的层数指示,也称为秩指示(rank indication,RI)和信道质量指示(channel quality indicator,CQI)等。
应理解,上述列举的用于下行信道测量的参考信号和用于上行信道测量的参考信号仅为示例性说明,而不应对本申请构成任何限定。例如,用于下行信道测量的参考信号还可以为下行解调参考信号(Demodulation reference signal,DMRS),跟踪信号(Tracking reference signal,TRS),相位跟踪参考信号(phase tracking reference signal,PTRS)等;用于上行信道测量的参考信号还可以为上行DMRS等。同时,本申请并不排除在未来的协议中定义其他具有相同或相似功能的参考信号的可能,本申请也不排除在未来的协议中将现有的其他参考信号定义为用于信道测量的参考信号的可能。
还应理解,发送端设备确定预编码矩阵的方式并不仅限于上述根据参考信号进行信道测量的方式,发送端设备还可以利用上下行信道的互易性估计信道,例如,根据上行信道的信道状态信息(channel state information,CSI)估计下行信道的CSI,此情况下,该上行信道的CSI可根据终端设备发送的参考信号(例如SRS)来确定。
LTE系统广泛采用了MIMO技术。当网络设备有多个发射天线端口、终端设备有多个接收天线端口的时候,网络设备可以同时向终端设备发送多个并行的数据流。当终端设备有多个发射天线端口,网络设备有多个接收天线端口的时候,终端设备可以通过物理上行共享信道(Physical Uplink Share Channel,PUSCH)向网络设备发送多个并行的数据流。
在已有的LTE协议中,网络设备可以有32个发射天线端口,而终端设备可以有4个接收天线端口。
终端设备要支持上行数据的发送,需要在相应的天线端口上链接功率放大器(Power Amplifier,PA)。比如终端如果要支持X个发射天线端口的并行数据传输,通常需要X个功率放大器(Power Amplifier,PA),即该X个天线端口中的每个天线端口上都匹配有一个功率放大器。由于功率放大器的造价较高,因此具有4发射天线端口能力的终端设备并不是非常普遍。而另外一种替代方案是终端设备只需要配有一个或者两个PA,其中PA和天线之间的链接可以动态的改变,即终端设备可以有能力动态的调整上行信号发送的天线端口。在这种方式下,终端可以采用信道质量最好的天线发送上行PUSCH,从而获得天线选择增益。
在已有的LTE协议中,上行支持1个PA在2个天线端口之间的动态链接,我们称这种场景为1T2R。网络设备可以通过物理下行控制信道(Physical Downlink Control Channel PDCCH)的控制信令,向终端设备指示PUSCH信道发送所采用的天线端口。
例如,在PDCCH下行控制信息(Downlink Control Information,DCI)的DCI格式(DCI  format)0中,PDCCH的信息比特采用两种序列对循环冗余校验(Cyclic Redundancy Check,CRC)序列进行加扰。表1为终端设备传输天线选择掩码。
表1终端设备传输天线掩码
Figure PCTCN2018082008-appb-000005
假设PDCCH的信息比特经过添加CRC校验后为b 0,b 1,b 2,b 3,...,b B-1,其中B=A+L,其中L=16,A为信息比特加扰前的比特位数,即b B-16,…,b B-1为CRC校验比特。当网络设备期望用户采用天线端口i发送的时候,其CRC校验比特采用天线端口i对应的掩码x AS,0,x AS,1,...,x AS,15和终端设备的无线网络临时标识(Radio Network Tempory Identity,RNTI)所对应的序列x rnti,0,x rnti,1,...,x rnti,15做加扰,最终得到序列c 0,c 1,c 2,c 3,...,c B-1,即
c k=b k                           k=0,1,2,…,B-1
c k=(b k+x rnti,k-A+x AS,k-A)mod2     k=A,A+1,A+2,...,A+15。
在在LTE第十五版本中,已经确定要支持1个PA在4个天线端口之间的动态链接,我们称这种场景为1T4R,以及要支持2个PA在4个天线端口之间的动态链接,我们称这种场景为2T4R。那么与之对应,PUSCH传输的天线端口需要从4个天线端口中选择一个或者两个天线端口。
本申请实施例提出一种通信方法,适用于场景1T4R或2T4R确定天线端口。应理解本申请实施例提供的通信方法还是用于其他的从多个天线端口中选择上行传输天线端口的场景。上述场景1T4R或2T4R只是一种举例的形式。
下面结合图3-图7详细介绍本申请实施例4个天线端口中选择一个或者两个天线端口的天线端口组合方式,以及各个天线端口组合方式所属的天线端口组合方式集合。
图3是一种天线端口组合方式的示意图。该示意图包括天线端口310。下面详细介绍图3所示的天线端口组合方式。
天线端口310(包括如图3所示的天线端口0-天线端口3)。当终端设备支持天线端口切换场景为1T4R时,终端设备天线端口的天线端口组合方式包括:
如图3所示的天线端口组合方式1:选择天线端口0作为支持上行传输信号的天线端口,这种天线端口组合方式1所属天线端口组合方式集合1;
天线端口组合方式2:选择天线端口1作为支持上行传输信号的天线端口,这种天线端口组合方式2所属天线端口组合方式集合2;
天线端口组合方式3:选择天线端口2作为支持上行传输信号的天线端口,这种天线端口组合方式3所属天线端口组合方式集合3;
天线端口组合方式4:选择天线端口3作为支持上行传输信号的天线端口,这种天线端口组合方式4所属天线端口组合方式集合4。
图4是另一种天线端口组合方式的示意图。该示意图包括天线端口310。下面详细介绍图4所示的天线端口组合方式。
天线端口310(包括如图4所示的天线端口0-天线端口3)。当终端设备支持场景2T4R时,终端设备天线端口的天线端口组合方式包括如图4所示的天线端口组合方式1:天线端口(0,2)可以同时发送信号;天线端口组合方式2:天线端口(1,3)可以同时发送信号。
其中,天线端口组合方式1和天线端口组合方式2所属天线端口组合方式集合1。
图5是另一种天线端口组合方式的示意图。该示意图包括天线端口310。下面详细介绍图5所示的天线端口组合方式。
天线端口310(包括如图5所示的天线端口0-天线端口3)。当支持场景2T4R时,终端设备天线端口的天线端口组合方式包括如图5所示的天线端口组合方式集合2:第一个PA始终和天线端口0相连,而另外一个PA可以在天线(1,2,3)上切换,因此,可以同时发送信号的天线端口组合方式包括:
天线端口组合方式3:天线端口(0,1)可以同时发送信号;
天线端口组合方式1:天线端口(0,2)可以同时发送信号;
天线端口组合方式4:天线端口(0,3)可以同时发送信号。
图6是另一种天线端口组合方式的示意图。该示意图包括天线端口310。下面详细介绍图6所示的天线端口组合方式。
天线端口310(包括如图6所示的天线端口0-天线端口3)。当支持场景2T4R时,终端设备天线端口的天线端口组合方式包括如图5所示的天线端口组合方式集合3:第一个PA可以和天线0,1自由的链接,第二个PA可以和天线2,3自由的链接,因此可以同时发送信号的天线端口组合方式包括:
天线端口组合方式1:天线端口(0,2)可以同时发送信号;
天线端口组合方式2:天线端口(1,3)可以同时发送信号;
天线端口组合方式4:天线端口(0,3)可以同时发送信号;
天线端口组合方式5:天线端口(1,2)可以同时发送信号。
图7是另一种天线端口组合方式的示意图。该示意图包括天线端口310。下面详细介绍图7所示的天线端口组合方式。
天线端口310(包括如图7所示的天线端口0-天线端口3)。当支持场景2T4R时,终端设备天线端口的天线端口组合方式包括如图7所示的天线端口组合方式集合4:两个PA可以和任何的天线相连接,因此可以同时发送信号的天线端口组合方式包括:
天线端口组合方式1:天线端口(0,2)可以同时发送信号;
天线端口组合方式2:天线端口(1,3)可以同时发送信号;
天线端口组合方式3:天线端口(0,1)可以同时发送信号;
天线端口组合方式4:天线端口(0,3)可以同时发送信号;
天线端口组合方式5:天线端口(1,2)可以同时发送信号;
天线端口组合方式6:天线端口(2,3)可以同时发送信号。
应理解,上述以1T4R和2T4R场景为例介绍天线端口组合方式以及天线端口组合方式集合的不同。其他场景下,本申请实施例的通信方法也同样适用,因此上述的天线端口组合方式不能限制本申请的保护范围。
例如,2T8R场景下,天线端口组合方式一共有
Figure PCTCN2018082008-appb-000006
种,同样可以按照不同天线端口组 合方式集合方式将这
Figure PCTCN2018082008-appb-000007
种天线端口组合方式分为4个天线端口组合方式集合(天线端口组合方式集合1~天线端口组合方式集合4)。
应理解,上述天线端口分组方式集合的编号仅仅是一种举例,可以是任意的分组方式集合。并且可以为不同的分组方式集合配置不同的编号加以区分。
例如,图3所示的天线端口分组方式集合的编号从0~4,图4~图7天线端口分组方式集合的编号从5~8。
下面本申请实施例的通信方法以1T4R和2T4R为例,介绍网络设备如何通过下行控制信息指示终端设备PUSCH的发射天线。
下面结合附图详细说明本申请实施例的通信方法。
应理解,本申请的技术方案可以应用于无线通信系统中,例如,图1中所示的通信系统100,该通信系统可以包括至少一个网络设备和至少一个终端设备,网络设备和终端设备可以通过无线空口通信。例如,该通信系统中的网络设备可以对应于图1中所示的网络设备102或网络设备104,终端设备可以对应于图1中所示的终端设备106。
还应理解,在下文示出的实施例中,第一、第二、第三、第四、第五、第六、第七等仅为便于区分不同对象,而不应对本申请构成任何限定。例如,区分不同的指示信息、不同的指示字段等。
以下,不失一般性,以一个终端设备与网络设备之间的交互过程为例详细说明本申请实施例,该终端设备可以为处于无线通信系统中与网络设备具有无线连接关系的任意终端设备。可以理解的是,网络设备可以与处于该无线通信系统中的具有无线连接关系的多个终端设备基于相同的技术方案通信。本申请对此并不做限定。
图8是从设备交互的角度示出的本申请实施例提供的一种通信方法的示意性流程图。如图8所示,该方法包括步骤S810至步骤S830。下面详细介绍这三个步骤。
本申请实施例提供的通信方法在包括网络设备和终端设备的通信系统中执行,所述终端设备配置有N个天线端口,N为大于或等于2的整数。
S810,终端设备向网络设备发送第一指示信息。
终端设备向网络设备发送第一指示信息,所述第一指示信息用于指示第一天线端口组合方式集合,
所述终端设备配置有N个天线端口,N为大于或等于2的整数,所述N个天线端口对应T个天线端口组合方式,每一个所述天线端口组合方式对应于所述N个天线端口中的M个天线端口,任意两个所述天线端口组合方式所对应的M个天线端口中至少一个天线端口相异,每个天线端口组合方式集合包括至少一个所述天线端口组合方式,其中,T为大于或等于1的整数。
例如,在上述1T4R场景中,包括如图3所示的4个天线端口组合方式。每一个天线端口组合方式对应于所述4个天线端口中的1个天线端口,且每个天线端口组合方式中的天线端口不一样。图3中所示的每个天线端口组合方式集合中包括一个所述天线端口组合方式。
例如,在上述2T4R场景中,包括如图4-图7所示的6个天线端口组合方式。每一个天线端口组合方式对应于所述4个天线端口中的2个天线端口,且每个天线端口组合方式中的至少一个天线端口不一样。
图4中所示的每个天线端口组合方式集合中包括两个所述天线端口组合方式。
图5中所示的每个天线端口组合方式集合中包括三个所述天线端口组合方式。
图6中所示的每个天线端口组合方式集合中包括四个所述天线端口组合方式。
图7中所示的每个天线端口组合方式集合中包括六个所述天线端口组合方式。
以2T4R场景为例,所述第一指示信息用于指示第一天线端口组合方式集合包括:
可选地,在一些实施例中,第一指示信息用于指示第一天线端口组合方式集合为图4所示的天线端口组合方式集合1。
可选地,在另一些实施例中,第一指示信息用于指示第一天线端口组合方式集合为图5所示的天线端口组合方式集合2。
可选地,在另一些实施例中,第一指示信息用于指示第一天线端口组合方式集合为图6所示的天线端口组合方式集合3。
可选地,在另一些实施例中,第一指示信息用于指示第一天线端口组合方式集合为图7所示的天线端口组合方式集合4。
以2T4R场景为例,所述第一指示信息用于指示第一天线端口组合方式集合还包括:
可选地,在一些实施例中,第一指示信息用于指示包括两个天线端口分组方式,则第一指示信息指示第一天线端口组合方式集合为图4所示的天线端口组合方式集合1。
可选地,在另一些实施例中,第一指示信息用于指示包括三个天线端口分组方式,则第一指示信息指示第一天线端口组合方式集合为图5所示的天线端口组合方式集合2。
可选地,在另一些实施例中,第一指示信息用于指示包括四个天线端口分组方式,则第一指示信息指示第一天线端口组合方式集合为图6所示的天线端口组合方式集合3。
可选地,在另一些实施例中,第一指示信息用于指示包括六个天线端口分组方式,则第一指示信息指示第一天线端口组合方式集合为图7所示的天线端口组合方式集合4。
可选的,在另一些实施例中,第一指示信息包含天线端口组合方式集合中天线端口组合方式的个数,通过所述天线端口组合方式集合中天线端口组合方式的个数的指示,基站设备可以确定终端设备所能支持的天线端口组合方式集合。
S820,网络设备确定K个天线端口。
所述网络设备根据所述第一天线端口组合方式集合从所述N个天线端口中,确定K个天线端口,K为大于或等于1且小于或等于所述M的整数包括以下情况:
情况一:所述第一天线端口组合方式集合包括S个天线端口组合方式,其中,S为大于或等于1且小于或等于所述T的整数;所述网络设备从所述S个天线端口组合方式中,确定第一天线端口组合方式,将所述第一天线端口组合方式中的K个天线端口,确定为所述K个天线端口。以下以1T4R和2T4R场景为例进行说明:
可选地,在一些实施例中,终端设备支持的天线端口场景,如上所述的1T4R。此时,N个天线端口的配置包括如图3所示的天线端口组合方式集合1至天线端口组合方式集合4四种形式。
例如,第一指示信息可以指示4个天线端口中的1个天线端口同时传输,该1个天线端口所属的第一天线端口组合方式集合为天线端口组合方式集合1。则,网络设备可以根据第一指示信息确定天线端口0。
可选地,在另一些实施例中,终端设备支持的天线端口场景,如上所述的2T4R的天 线端口组合方式集合1。此时,N个天线端口的配置包括如图4所示天线端口组合方式集合1中天线端口组合方式1(天线端口0,2)和天线端口组合方式2(天线端口1,3)两种天线端口组合方式。第一天线端口组合方式可以是上述两个天线端口组合方式中的任意一个。
例如,第一指示信息可以指示4个天线端口中的2个天线端口同时传输,该2个天线端口所属的第一天线端口组合方式集合为天线端口组合方式集合1。则,网络设备可以根据第一指示信息确定天线端口(天线端口0,2或1,3)。网络设备再从天线端口0,2或1,3中确定质量较好的K个天线端口。
可选地,在另一些实施例中,终端设备支持的天线端口场景,如上所述的2T4R的天线端口组合方式2。此时,N个天线端口的配置包括如图5所示天线端口组合方式集合2中三种天线端口组合方式。第一天线端口组合方式可以是上述三个天线端口组合方式中的任意一个。
例如,第一指示信息可以指示4个天线端口中的2个天线端口同时传输,该2个天线端口所属的第一天线端口组合方式集合为天线端口组合方式集合2。则,网络设备可以根据第一指示信息确定天线端口(天线端口0,2或0,1或0,3)。网络设备再从天线端口0,2或0,1或0,3中确定质量较好的K个天线端口。
可选地,在另一些实施例中,终端设备支持的天线端口场景,如上所述的2T4R的天线端口组合方式3。此时,N个天线端口的配置包括如图6所示天线端口组合方式集合3中四种天线端口组合方式。第一天线端口组合方式可以是上述四个天线端口组合方式中的任意一个。
例如,第一指示信息可以指示4个天线端口中的2个天线端口同时传输,该2个天线端口所属的第一天线端口组合方式集合为天线端口组合方式集合3。则,网络设备可以根据第一指示信息确定天线端口(天线端口0,2或1,3或0,3或1,2)。网络设备再从天线端口0,2或1,3或0,3或1,2中确定质量较好的K个天线端口。
可选地,在另一些实施例中,终端设备支持的天线端口场景,如上所述的2T4R的天线端口组合方式4。此时,N个天线端口的配置包括如图7所示天线端口组合方式集合4中六种天线端口组合方式。第一天线端口组合方式可以是上述六个天线端口组合方式中的任意一个。
例如,第一指示信息可以指示4个天线端口中的2个天线端口同时传输,该2个天线端口所属的第一天线端口组合方式集合为天线端口组合方式集合4。则,网络设备可以根据第一指示信息确定天线端口(天线端口0,2或1,3或0,3或1,2或2,3或0,1)。网络设备再从天线端口0,2或1,3或0,3或1,2或2,3或0,1中确定质量较好的K个天线端口。
情况二:可选地,在另一些实施例中,所述第一天线端口组合方式集合指示了N个天线端口中的K个天线端口,网络设备根据所述第一天线端口组合方式集合可以直接确定K个天线端口。
情况三:可选地,在一些实施例中,所述T个天线组合方式对应预设的预编码矩阵集合,所述预编码矩阵集合包括Q个预编码矩阵,所述第一天线端口组合方式集合对应预编码矩阵子集,所述预编码矩阵子集包括P个预编码矩阵,所述P个预编码矩阵中的每一个 矩阵属于所述Q个预编码矩阵,所述P、Q为正整数,且P小于等于Q;所述网络设备从所述预编码矩阵子集中确定第一预编码矩阵,将所述第一预编码矩阵对应的K个天线端口,确定为所述K个天线端口。即网络设备根据所述第一天线端口组合方式集合从所述预编码矩阵集合,确定第一预编码矩阵进而可以确定上述K个天线端口。
首先,下面以第一指示信息分别指示终端设备上行传输时支持4个天线端口中的1个天线端口传输,和终端设备上行传输时支持4个天线端口中的2个天线端口传输。对应上述图3-图7所示的几种天线端口组合方式集合情况,详细介绍网络设备如何确定K个天线端口对应的第一预编码矩阵子集。
表2为本申请实施例中,对应单流的PUSCH传输,即数据的传输层数=1时,对应的预编码矩阵集合。
表2预编码矩阵集合(数据层数=1)
Figure PCTCN2018082008-appb-000008
可选地,在一些实施例中,终端设备发送第一指示信息指示终端设备上行传输时支持4个天线端口中的1个天线端口传输,该1个天线端口所属的天线端口组合方式集合为如图4所示天线端口组合方式集合1。第一指示信息与预编码矩阵集合的索引的预设映射关系为该1个天线端口对应的预编码矩阵集合子集的索引为{8}。则,网络设备为终端设备在上述表2中选择的预编码矩阵集合子集的索引为{8}的预编码矩阵集合作为与所述天线端口对应的预编码矩阵的预编码矩阵子集。
可选地,在一些实施例中,终端设备发送第一指示信息指示终端设备上行传输时支持4个天线端口中的1个天线端口传输,该1个天线端口所属的天线端口组合方式集合为如图4所示天线端口组合方式集合2。第一指示信息与预编码矩阵集合的索引的预设映射关系为该1个天线端口对应的预编码矩阵子集的索引为{9}。则,网络设备为终端设备在上述表2中选择的预编码矩阵子集的索引为{9}的预编码矩阵集合作为与所述天线端口对应的预编码矩阵的预编码矩阵子集。
应理解,当上述终端设备上行传输时支持4个天线端口中的1个天线端口传输时,可以不指示该1个天线端口所属的天线端口组合方式集合。第一指示信息与预编码矩阵集合的索引的预设映射关系为该1个天线端口对应的预编码矩阵子集的索引为{8,9,10,11}。则,网络设备为终端设备在上述表2中选择的预编码矩阵子集的索引为{8,9,10,11}的预编码矩阵集合作为与所述天线端口对应的预编码矩阵的预编码矩阵子集。网络设备再从预编码矩阵子集中根据信道质量,选择信道质量较好的1个天线端口对应的第一预编码矩阵。
可选地,在另一些实施例中,终端设备发送第一指示信息指示终端设备上行传输时支持4个天线端口中的2个天线端口传输,且对应于图4所示天线端口组合方式集合1中两种天线端口组合方式中的任意一种时候。第一指示信息与预编码矩阵集合的索引的预设映射关系为该2个天线端口对应的预编码矩阵子集的索引为{0~11}。网络设备为终端设备在上述表2中选择的预编码矩阵子集的索引为{0~11}的预编码矩阵集合作为与所述2个天线端口对应的预编码矩阵的预编码矩阵子集。网络设备再从预编码矩阵子集中根据信道质量,选择信道质量较好的1个或2个天线端口对应的第一预编码矩阵。
可选地,在另一些实施例中,终端设备发送第一指示信息指示终端设备上行传输时支持4个天线端口中的2个天线端口传输,且对应于图5所示天线端口组合方式集合2中三种天线端口组合方式中的任意一种时候。第一指示信息与预编码矩阵集合的索引的预设映射关系为该2个天线端口对应的预编码矩阵子集的索引为{0~3以及8~19}。网络设备为终端设备在上述表2中选择的预编码矩阵子集的索引为{0~3以及8~19}的预编码矩阵集合作为与所述天线端口对应的预编码矩阵的预编码矩阵子集。网络设备再从预编码矩阵子集中根据信道质量,选择信道质量较好的1个或2个天线端口对应的第一预编码矩阵。
可选地,在另一些实施例中,终端设备发送第一指示信息指示终端设备上行传输时支持4个天线端口中的2个天线端口传输,且对应于图6所示天线端口组合方式集合3中四种天线端口组合方式中的任意一种时候。第一指示信息与预编码矩阵集合的索引的预设映射关系为该2个天线端口对应的预编码矩阵子集的索引为{0~15以及16~23}。网络设备为终端设备在上述表2中选择的预编码矩阵子集的索引为{0~15以及16~23}的预编码矩阵集合作为与所述天线端口对应的预编码矩阵的预编码矩阵子集。网络设备再从预编码矩阵子集中根据信道质量,选择信道质量较好的1个或2个天线端口对应的第一预编码矩阵。
可选地,在另一些实施例中,终端设备发送第一指示信息指示终端设备上行传输时支持4个天线端口中的2个天线端口传输,且对应于图7所示天线端口组合方式集合4中六种天线端口组合方式中的任意一种时候。第一指示信息与预编码矩阵集合的索引的预设映射关系为该2个天线端口对应的预编码矩阵子集的索引为{0~27}。网络设备为终端设备在上述表2中选择的预编码矩阵子集的索引为{0~27}的预编码矩阵集合作为与所述天线端 口对应的预编码矩阵的预编码矩阵子集。网络设备再从预编码矩阵子集中根据信道质量,选择信道质量较好的1个或2个天线端口对应的第一预编码矩阵。
应理解,上述仅仅以表2所示的预编码矩阵集合作为终端设备和网络设备预存的预编码矩阵集合,根据第一指示信息确定预编码矩阵子集。其他,例如,上述表2中的索引指示不同的矩阵,以及预编码矩阵集合不同,或者第一指示信息不同得到的预编码矩阵子集会不相同。本申请对此并不限制。
应理解,本申请实施例中,网络设备基于终端设备上报的第一指示信息,可以在预编码矩阵集合中确定一个预编码矩阵子集供后续网络设备选择天线端口对应的第一预编码矩阵提供了便利。
应理解,上述终端设备上行传输时支持4个天线端口中的2个天线端口传输时,对应的任意一种天线端口组合方式集合时,确定的预编码矩阵子集的索引中均包括索引{8~11},主要是为了即使终端设备上行传输时支持4个天线端口中的2个天线端口传输,但是网络设备根据后续的信道质量参考信号确定,只有1个天线端口正常工作的话(例如,其中一个天线端口被遮挡)网络设备会从上述预编码矩阵子集中确定只有1个天线端口上行传输对应的预编码矩阵。
表3为本申请实施例中,对应双流的PUSCH传输,即发射数据的层数=2时,对应的预编码矩阵集合。
表3预编码矩阵集合(发射数据的层数=2)
Figure PCTCN2018082008-appb-000009
可选地,在一些实施例中,终端设备发送第一指示信息指示终端设备上行传输时支持4个天线端口中的2个天线端口传输,且对应于图4所示天线端口组合方式集合1中两种天线端口组合方式中的任意一种时候。第一指示信息与预编码矩阵集合的索引的预设映射关系为该2个天线端口对应的预编码矩阵子集的索引为{0~1}。网络设备为终端设备在上述表3中选择的预编码矩阵子集的索引为{0~1}的预编码矩阵集合作为与所述天线端口对应的预编码矩阵的预编码矩阵子集。网络设备再从预编码矩阵子集中根据信道质量,选择信道质量较好的2个天线端口对应的第一预编码矩阵。
可选地,在另一些实施例中,终端设备发送第一指示信息指示终端设备上行传输时支持4个天线端口中的2个天线端口传输,且对应于图5所示天线端口组合方式集合2中三种天线端口组合方式中的任意一种时候。第一指示信息与预编码矩阵集合的索引的预设映射关系为该2个天线端口对应的预编码矩阵子集的索引为{2~4}。网络设备为终端设备在上述表3中选择的预编码矩阵子集的索引为{2~4}的预编码矩阵集合作为与所述天线端口对应的预编码矩阵的预编码矩阵子集。网络设备再从预编码矩阵子集中根据信道质量,选择信道质量较好的2个天线端口对应的第一预编码矩阵。
可选地,在另一些实施例中,终端设备发送第一指示信息指示终端设备上行传输时支持4个天线端口中的2个天线端口传输,且对应于图6所示天线端口组合方式集合3中四 种天线端口组合方式中的任意一种时候。第一指示信息与预编码矩阵集合的索引的预设映射关系为该2个天线端口对应的预编码矩阵子集的索引为{0~1以及3~4}。网络设备为终端设备在上述表3中选择的预编码矩阵子集的索引为{0~1以及3~4}的预编码矩阵集合作为与所述天线端口对应的预编码矩阵的预编码矩阵子集。网络设备再从预编码矩阵子集中根据信道质量,选择信道质量较好的2个天线端口对应的第一预编码矩阵。
可选地,在另一些实施例中,终端设备发送第一指示信息指示终端设备上行传输时支持4个天线端口中的2个天线端口传输,且对应于图7所示天线端口组合方式集合4中六种天线端口组合方式中的任意一种时候。第一指示信息与预编码矩阵集合的索引的预设映射关系为该2个天线端口对应的预编码矩阵子集的索引为{0~5}。网络设备为终端设备在上述表3中选择的预编码矩阵子集的索引为{0~5}的预编码矩阵集合作为与所述天线端口对应的预编码矩阵的预编码矩阵子集。网络设备再从预编码矩阵子集中根据信道质量,选择信道质量较好的2个天线端口对应的第一预编码矩阵。
可选地,在一些实施例中,包括步骤S811,终端设备在每个天线端口向网络设备发送的侦听参考信号SRS;所述网络设备根据所述SRS,从所述N个天线端口中,确定所述K个天线端口。
应理解,上述表2和表3所示的预编码矩阵集合可以是终端设备和网络设备均保存的预编码矩阵集合,也可以是按照公式计算得到的。终端设备可以仅仅保存上述预编码矩阵子集或者按照公式计算得到上述预编码矩阵子集。
S830,网络设备向终端设备发送第二指示信息。
所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述K个天线端口。
可选地,在一些实施例中,所述第二指示信息包括PDCCH下行控制信息(Downlink Control Information,DCI)。
可选地,在另一些实施例中,所述第二指示信息用于指示上述第一预编码矩阵。
可选地,在另一些实施例中,所述第二指示信息具体用于指示所述第一预编码矩阵在所述预编码矩阵子集中的索引。
下面,以2T4R场景中,终端设备发送的第一指示信息指示第一天线端口组合方式集合为图5所示的天线端口组合方式为例,说明网络设备向终端设备发送的第二指示信息的具体内容可以包括:由上述表2和表3可知,第一天线端口组合方式集合为图5所示的天线端口组合方式时,第一天线端口组合方式集合对应的预编码矩阵子集包括如表4所示的形式。
表4预编码矩阵子集
索引 信息 索引 信息
0 RI=1,TPMI=0 0 RI=2,TPMI=1
1 RI=1,TPMI=1 1 RI=2,TPMI=2
……   2 RI=2,TPMI=3
3 RI=1,TPMI=3    
4 RI=1,TPMI=8    
   
15 RI=1,TPMI=19    
从表4中可以看出,第二指示信息可以直接指示第一预编码矩阵在所述预编码矩阵子集中的索引。例如,网络设备根据第一指示信息确定图5所示的天线端口组合方式集合中的天线端口组合方式1作为终端设备上行传输的天线端口,且天线端口之间的相位差确定,从预编码矩阵子集确定第一预编码矩阵为
Figure PCTCN2018082008-appb-000010
则,第二指示信息可以指示该第一预编码矩阵在预编码矩阵子集中的索引0000,终端设备根据该索引信息可以确定上行传输的天线端口以及天线端口之间的相位差。
应理解,本申请实施例中所涉及的预编码矩阵集合,可以是终端设备和网络设备同时保存的,也可以是根据一定的公式计算得到的。本申请对此并不限制。
以上结合图8详细说明了本申请实施例的通信方法。以下结合图9至图11详细说明本申请实施例的通信装置。
图9是本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图9仅示出了终端设备的主要部件。如图9所示,终端设备40包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作,如,基于接收第二指示信息确定预编码矩阵进而对信号进行预编码并发送预编码后的信号等。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述指示信息与组合信息的对应关系等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发单元,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图9中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设 备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备40的收发单元401,例如,用于支持终端设备执行如图8部分所述的接收功能和发送功能。将具有处理功能的处理器视为终端设备40的处理单元402。如图9所示,终端设备40包括收发单元401和处理单元402。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元401中用于实现接收功能的器件视为接收单元,将收发单元401中用于实现发送功能的器件视为发送单元,即收发单元401包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器402可用于执行该存储器存储的指令,以控制收发单元401接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元401的功能可以考虑通过收发电路或者收发的专用芯片实现。
图10是本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图10所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。基站50可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)501和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)502。所述RRU 501可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线5011和射频单元5012。所述RRU 501部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 502部分主要用于进行基带处理,对基站进行控制等。所述RRU 501与BBU 502可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 502为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)502可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实例中,所述BBU 502可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 502还包括存储器5021和处理器5022,所述存储器5021用于存储必要的指令和数据。例如存储器5021存储上述实施例中的预编码矩阵集合索引与预编码矩阵的对应关系。所述处理器5022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器5021和处理器5022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路
图11给出了一种通信装置600的结构示意图。装置600可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置600可以是芯片,网络设备(如基站),终端设备或者其他网络设备等。
所述通信装置600包括一个或多个处理器601。所述处理器601可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,通信装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端或基站或其他网络设备。又如,通信装置可以为终端或基站或其他网络设备,所述收发单元可以为收发器,射频芯片等。
所述通信装置600包括一个或多个所述处理器601,所述一个或多个处理器601可实现图8所示的实施例中网络设备或者终端设备的方法。
在一种可能的设计中,所述通信装置600包括用于生成预编码矩阵集合的部件(means),以及用于发送第一预编码矩阵的部件(means)。可以通过一个或多个处理器来实现所述生成预编码矩阵集合的means以及发送预编码矩阵集合的means的功能。例如可以通过一个或多个处理器生成所述预编码矩阵集合,通过收发器、或输入/输出电路、或芯片的接口发送所述预编码矩阵集合。所述预编码矩阵集合可以参见上述方法实施例中的相关描述。
在一种可能的设计中,所述通信装置600包括用于接收第一预编码矩阵的部件(means),以及用于确定预编码矩阵并对信号进行预编码的部件(means)。所述第一预编码矩阵以及如何确定预编码矩阵可以参见上述方法实施例中的相关描述。例如可以通过收发器、或输入/输出电路、或芯片的接口接收所述第一预编码矩阵,并发送预编码后的信号,通过一个或多个处理器基于所述第二指示信息确定上行传输的天线端口,并对信号进行预编码。
可选的,处理器601除了实现图8所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器601也可以包括指令603,所述指令可以在所述处理器上被运行,使得所述通信装置600执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置600也可以包括电路,所述电路可以实现前述方法实施例中网络设备或终端设备的功能。
在又一种可能的设计中所述通信装置600中可以包括一个或多个存储器602,其上存有指令604,所述指令可在所述处理器上被运行,使得所述通信装置600执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器602可以存储上述实施例中所描述的指示信息与预编码矩阵的类别的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述通信装置600还可以包括收发单元605以及天线606。所述处理器601可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发单元605可以称为收发机、收发电路、或者收发器等,用于通过天线606实现通信装置的收发功能。
本申请还提供一种通信系统,其包括前述的一个或多个网络设备,和,一个或多个终端设备。
应理解,在本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请的又一方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图8所示的方法中网络设备执行的各个步骤。
本申请的又一方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图8所示的方法中终端设备执行的各个步骤。
本申请的又一方面提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图8所示的方法中网络设备执行的各个步骤。
本申请的又一方面提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图8所示的方法中终端设备执行的各个步骤。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质 可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,通常为“和/或”的简略形式。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种通信方法,其特征在于,在包括网络设备和终端设备的通信系统中执行,所述终端设备配置有N个天线端口,N为大于或等于2的整数,所述N个天线端口对应T个天线端口组合方式,每一个所述天线端口组合方式对应于所述N个天线端口中的M个天线端口,任意两个所述天线端口组合方式所对应的M个天线端口中至少一个天线端口相异,每个天线端口组合方式集合包括至少一个所述天线端口组合方式,其中,T为大于或等于1的整数,所述通信方法包括:
    所述网络设备从所述终端设备接收第一指示信息,所述第一指示信息用于指示第一天线端口组合方式集合,
    所述网络设备根据所述第一天线端口组合方式集合从所述N个天线端口中,确定K个天线端口,K为大于或等于1且小于或等于所述M的整数;
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述K个天线端口。
  2. 根据权利要求1所述的通信方法,其特征在于,所述第一天线端口组合方式集合包括S个天线端口组合方式,其中,S为大于或等于1且小于或等于所述T的整数,
    所述网络设备根据所述第一天线端口组合方式集合从所述N个天线端口中确定K个天线端口包括:
    所述网络设备从所述S个天线端口组合方式中确定第一天线端口组合方式,将所述第一天线端口组合方式中的K个天线端口,确定为所述K个天线端口。
  3. 根据权利要求1所述的通信方法,其特征在于,所述T个天线组合方式对应预设的预编码矩阵集合,所述预编码矩阵集合包括Q个预编码矩阵,所述第一天线端口组合方式集合对应预编码矩阵子集,所述预编码矩阵子集包括P个预编码矩阵,所述P个预编矩阵中的每个预编码矩阵属于所述Q个预编码矩阵,所述P、Q为正整数,且P小于等于Q,
    所述网络设备根据所述第一天线端口组合方式集合从所述N个天线端口中确定K个天线端口包括:
    所述网络设备从所述预编码矩阵子集中确定第一预编码矩阵,将所述第一预编码矩阵对应的K个天线端口,确定为所述K个天线端口。
  4. 根据权利要求3所述的通信方法,其特征在于,所述第二指示信息具体用于指示所述第一预编码矩阵在所述预编码矩阵子集中的索引。
  5. 根据权利要求3或4所述的通信方法,其特征在于,所述预编码矩阵为所述行数与所述N个天线端口相对应,以及列数与发射数据的层数相对应,且每一列元素中非零元素的个数为X的矩阵,其中,X为大于等于1且小于等于所述M的整数。
  6. 根据权利要求3至5中任一项所述的通信方法,其特征在于,当N=4,且M=2的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
    Figure PCTCN2018082008-appb-100001
    Figure PCTCN2018082008-appb-100002
    其中,所述预编码矩阵索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射数据的层数等于1。
  7. 根据权利要求3至5中任一项所述的通信方法,其特征在于,当N=4,且M=2的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
    Figure PCTCN2018082008-appb-100003
    其中,所述预编码矩阵索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射数据的层数等于2。
  8. 根据权利要求1至7中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备从所述N个天线端口发送的侦听参考信号SRS;
    所述网络设备根据所述SRS,从所述N个天线端口中,确定所述K个天线端口。
  9. 一种通信方法,其特征在于,在包括网络设备和终端设备的通信系统中执行,所述终端设备配置有N个天线端口,N为大于或等于2的整数,所述N个天线端口对应T个天线端口组合方式,每一个所述天线端口组合方式对应于所述N个天线端口中的M个 天线端口,任意两个所述天线端口组合方式所对应的M个天线端口中至少一个天线端口相异,每个天线端口组合方式集合包括至少一个所述天线端口组合方式,其中,T为大于或等于1的整数,所述通信方法包括:
    所述终端设备向所述网络设备发送第一指示信息,所述第一指示信息用于指示第一天线端口组合方式集合,所述第一天线端口组合方式集合用于从所述N个天线端口中,确定K个天线端口,K为大于或等于1且小于或等于所述M的整数;
    所述终端设备从所述网络设备接收第二指示信息,所述第二指示信息用于指示所述K个天线端口。
  10. 根据权利要求9所述的通信方法,其特征在于,所述第一天线端口组合方式集合包括S个天线端口组合方式,其中,S为大于或等于1且小于或等于所述T的整数,
    所述第一天线端口组合方式集合用于从所述N个天线端口中,确定K个天线端口包括:
    从所述S个天线端口组合方式中,确定第一天线端口组合方式,将所述第一天线端口组合方式中的K个天线端口,确定为所述K个天线端口。
  11. 根据权利要求9所述的通信方法,其特征在于,所述T个天线组合方式对应预设的预编码矩阵集合,所述预编码矩阵集合包括Q个预编码矩阵,所述第一天线端口组合方式集合对应预编码矩阵子集,所述预编码矩阵子集包括P个预编码矩阵,所述P个预编矩阵中的每个预编码矩阵属于所述Q个预编码矩阵,所述P、Q为正整数,且P小于等于Q,
    所述第一天线端口组合方式集合用于从所述N个天线端口中,确定K个天线端口包括:
    从所述预编码矩阵子集中确定第一预编码矩阵,将所述第一预编码矩阵对应的K个天线端口,确定为所述K个天线端口。
  12. 根据权利要求11所述的通信方法,其特征在于,所述第二指示信息具体用于指示所述第一预编码矩阵在所述预编码矩阵子集中的索引。
  13. 根据权利要求11或12所述的通信方法,其特征在于,所述预编码矩阵为所述行数与所述N个天线端口相对应,以及列数与发射数据的层数相对应,且每一列元素中非零元素的个数为X的矩阵,其中,X为大于等于1且小于等于所述M的整数。
  14. 根据权利要求11至13中任一项所述的通信方法,其特征在于,当N=4,且M=2的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
    Figure PCTCN2018082008-appb-100004
    Figure PCTCN2018082008-appb-100005
    其中,所述预编码矩阵索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射数据的层数等于1。
  15. 根据权利要求11至13中任一项所述的通信方法,其特征在于,当N=4,且M=2的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
    Figure PCTCN2018082008-appb-100006
    其中,所述预编码矩阵索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射数据的层数等于2。
  16. 根据权利要求9至15中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述终端设备从所述N个天线端口向所述网络设备发送侦听参考信号SRS,其中,所述SRS用于从所述N个天线端口中,确定所述K个天线端口。
  17. 一种通信装置,其特征在于,包括:
    收发单元从终端设备接收第一指示信息,所述第一指示信息用于指示第一天线端口组合方式集合,所述终端设备配置有N个天线端口,N为大于或等于2的整数,所述N个天线端口对应T个天线端口组合方式,每一个所述天线端口组合方式对应于所述N个天线端口中的M个天线端口,任意两个所述天线端口组合方式所对应的M个天线端口中至少一个天线端口相异,每个天线端口组合方式集合包括至少一个所述天线端口组合方式,其中,T为大于或等于1的整数;
    处理单元根据所述第一天线端口组合方式集合从所述N个天线端口中,确定K个天线端口,K为大于或等于1且小于或等于所述M的整数;
    所述收发单元向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述K个天线端口。
  18. 根据权利要求17所述的通信装置,其特征在于,所述第一天线端口组合方式集合包括S个天线端口组合方式,其中,S为大于或等于1且小于或等于所述T的整数,所述处理单元根据所述第一天线端口组合方式集合从所述N个天线端口中,确定K个天线端口具体包括:
    所述处理单元从所述S个天线端口组合方式中,确定第一天线端口组合方式,将所述第一天线端口组合方式中的K个天线端口,确定为所述K个天线端口。
  19. 根据权利要求17所述的通信装置,其特征在于,所述T个天线组合方式对应预设的预编码矩阵集合,所述预编码矩阵集合包括Q个预编码矩阵,所述第一天线端口组合方式集合对应预编码矩阵子集,所述预编码矩阵子集包括P个预编码矩阵,所述P个预编矩阵中的每个预编码矩阵属于所述Q个预编码矩阵,所述P、Q为正整数,且P小于等于Q,
    所述处理单元根据所述第一天线端口组合方式集合从所述N个天线端口中,确定K个天线端口具体包括:
    所述处理单元从所述预编码矩阵子集中确定第一预编码矩阵,将所述第一预编码矩阵对应的K个天线端口,确定为所述K个天线端口。
  20. 根据权利要求19所述的通信装置,其特征在于,所述第二指示信息具体用于指示所述第一预编码矩阵在所述预编码矩阵子集中的索引。
  21. 根据权利要求18或19所述的通信装置,其特征在于,所述预编码矩阵为所述行数与所述N个天线端口相对应,以及列数与发射数据的层数相对应,且每一列元素中非零元素的个数为X的矩阵,其中,X为大于等于1且小于等于所述M的整数。
  22. 根据权利要求17至21中任一项所述的通信装置,其特征在于,当N=4,且M2=的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
    Figure PCTCN2018082008-appb-100007
    Figure PCTCN2018082008-appb-100008
    其中,所述预编码矩阵索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射数据的层数等于1。
  23. 根据权利要求17至21中任一项所述的通信装置,其特征在于,当N=4,且M=2的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
    Figure PCTCN2018082008-appb-100009
    其中,所述预编码矩阵索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射数据的层数等于2。
  24. 根据权利要求17至23中任一项所述的通信装置,其特征在于,所述处理单元根据所述第一天线端口组合方式集合从所述N个天线端口中,确定K个天线端口具体包括:
    所述收发单元接收所述终端设备从所述N个天线端口发送的侦听参考信号SRS;
    所述网络设备根据所述SRS,从所述N个天线端口中,确定所述K个天线端口。
  25. 一种通信装置,其特征在于,包括:
    所述收发单元向所述网络设备发送第一指示信息,所述第一指示信息用于指示第一天线端口组合方式集合,终端设备配置有N个天线端口,N为大于或等于2的整数,所述N个天线端口对应T个天线端口组合方式,每一个所述天线端口组合方式对应于所述N个天线端口中的M个天线端口,任意两个所述天线端口组合方式所对应的M个天线端口中至少一个天线端口相异,每个天线端口组合方式集合包括至少一个所述天线端口组合方式,其中,T为大于或等于1的整数;
    所述第一天线端口组合方式集合用于从所述N个天线端口中,确定K个天线端口,K为大于或等于1且小于或等于所述M的整数;
    所述收发单元从所述网络设备接收第二指示信息,所述第二指示信息用于指示K个天线端口,其中,所述K个天线端口为从所述N个天线端口中确定的K个天线端口,K为大于或等于1且小于或等于所述M的整数。
  26. 根据权利要求25所述的通信装置,其特征在于,所述第一天线端口组合方式集合包括S个天线端口组合方式,其中,S为大于或等于1且小于或等于所述T的整数,
    所述第一天线端口组合方式集合用于从所述N个天线端口中,确定K个天线端口包括:
    从所述S个天线端口组合方式中,确定第一天线端口组合方式,将所述第一天线端口组合方式中的K个天线端口,确定为所述K个天线端口。
  27. 根据权利要求25所述的通信装置,其特征在于,所述T个天线组合方式对应预设的预编码矩阵集合,所述预编码矩阵集合包括Q个预编码矩阵,所述第一天线端口组合方式集合对应预编码矩阵子集,所述预编码矩阵子集包括P个预编码矩阵,所述P个预编矩阵中的每个预编码矩阵属于所述Q个预编码矩阵,所述P、Q为正整数,且P小于等于Q,
    所述第一天线端口组合方式集合用于从所述N个天线端口中,确定K个天线端口包括:
    从所述预编码矩阵子集中确定第一预编码矩阵,将所述第一预编码矩阵对应的K个天线端口,确定为所述K个天线端口。
  28. 根据权利要求27所述的通信装置,其特征在于,所述第二指示信息具体用于指示所述第一预编码矩阵在所述预编码矩阵子集中的索引。
  29. 根据权利要求27或28所述的通信装置,其特征在于,所述预编码矩阵为所述行数与所述N个天线端口相对应,以及列数与发射数据的层数相对应,且每一列元素中非零元素的个数为X的矩阵,其中,X为大于等于1且小于等于所述M的整数。
  30. 根据权利要求25至29中任一项所述的通信装置,其特征在于,当N=4,且M=2的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
    Figure PCTCN2018082008-appb-100010
    Figure PCTCN2018082008-appb-100011
    其中,所述预编码矩阵索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射数据的层数等于1。
  31. 根据权利要求25至28中任一项所述的通信装置,其特征在于,当N=4,且M=2的时候,所述预编码矩阵集合包括下表中的全部或者部分预编码矩阵:
    Figure PCTCN2018082008-appb-100012
    其中,所述预编码矩阵索引TPMI用于指示所述预编码矩阵集合中不同的预编码矩阵,所述发射数据的层数等于2。
  32. 根据权利要求25至31中任一项所述的通信装置,其特征在于,所述收发单元具体还用于从所述N个天线端口向所述网络设备发送侦听参考信号SRS;
    所述SRS用于从所述N个天线端口中,确定所述K个天线端口。
  33. 一种通信系统,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至16中任一项所述的方法。
  34. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至16中任意一项所述的方法。
PCT/CN2018/082008 2018-04-04 2018-04-04 通信方法、通信装置和系统 WO2019191970A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18913801.9A EP3764562A4 (en) 2018-04-04 2018-04-04 COMMUNICATION METHOD, COMMUNICATION DEVICE AND SYSTEM
CN201880091575.5A CN111937319B (zh) 2018-04-04 2018-04-04 通信方法、通信装置和系统
PCT/CN2018/082008 WO2019191970A1 (zh) 2018-04-04 2018-04-04 通信方法、通信装置和系统
US17/039,475 US11277176B2 (en) 2018-04-04 2020-09-30 Communication method, communications apparatus, and communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082008 WO2019191970A1 (zh) 2018-04-04 2018-04-04 通信方法、通信装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/039,475 Continuation US11277176B2 (en) 2018-04-04 2020-09-30 Communication method, communications apparatus, and communications system

Publications (1)

Publication Number Publication Date
WO2019191970A1 true WO2019191970A1 (zh) 2019-10-10

Family

ID=68100015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082008 WO2019191970A1 (zh) 2018-04-04 2018-04-04 通信方法、通信装置和系统

Country Status (4)

Country Link
US (1) US11277176B2 (zh)
EP (1) EP3764562A4 (zh)
CN (1) CN111937319B (zh)
WO (1) WO2019191970A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933003A (zh) * 2019-11-30 2020-03-27 上海大学 基于fpga的dmrs信号生成方法
CN113498112A (zh) * 2020-03-18 2021-10-12 大唐移动通信设备有限公司 一种数据处理的方法及装置
WO2022161036A1 (zh) * 2021-01-30 2022-08-04 华为技术有限公司 天线选择方法、装置、电子设备及可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117674922A (zh) * 2022-08-30 2024-03-08 华为技术有限公司 通信方法、装置、系统、存储介质及计算机程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645722A (zh) * 2008-08-05 2010-02-10 中兴通讯股份有限公司 一种天线端口配置信息的检测系统及方法
WO2014161145A1 (en) * 2013-04-02 2014-10-09 Panasonic Intellectual Property Corporation Of America Method of mapping csi-rs ports to antenna units, base station and user equipment
WO2017124967A1 (zh) * 2016-01-21 2017-07-27 株式会社Ntt都科摩 多天线传输方法、基站和用户终端
CN107733498A (zh) * 2016-08-11 2018-02-23 上海诺基亚贝尔股份有限公司 用于基于DMRS的TxD传输的端口映射的方法和网络设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255705B (zh) * 2011-07-08 2013-09-04 电信科学技术研究院 一种上行预编码信息指示方法及装置
EP2732560B1 (en) * 2011-07-13 2016-02-10 Huawei Technologies Co., Ltd. Method for transmission in a wireless communication system
US10536199B2 (en) * 2015-04-10 2020-01-14 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
US10848223B2 (en) * 2015-09-01 2020-11-24 Lg Electronics Inc. Method for reporting channel state and apparatus therefor
CN107302796B (zh) * 2016-03-31 2023-04-18 华为技术有限公司 一种数据传输方法、网络侧设备及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645722A (zh) * 2008-08-05 2010-02-10 中兴通讯股份有限公司 一种天线端口配置信息的检测系统及方法
WO2014161145A1 (en) * 2013-04-02 2014-10-09 Panasonic Intellectual Property Corporation Of America Method of mapping csi-rs ports to antenna units, base station and user equipment
WO2017124967A1 (zh) * 2016-01-21 2017-07-27 株式会社Ntt都科摩 多天线传输方法、基站和用户终端
CN107733498A (zh) * 2016-08-11 2018-02-23 上海诺基亚贝尔股份有限公司 用于基于DMRS的TxD传输的端口映射的方法和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3764562A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933003A (zh) * 2019-11-30 2020-03-27 上海大学 基于fpga的dmrs信号生成方法
CN110933003B (zh) * 2019-11-30 2021-09-14 上海大学 基于fpga的dmrs信号生成方法
CN113498112A (zh) * 2020-03-18 2021-10-12 大唐移动通信设备有限公司 一种数据处理的方法及装置
CN113498112B (zh) * 2020-03-18 2023-12-01 大唐移动通信设备有限公司 一种数据处理的方法及装置
WO2022161036A1 (zh) * 2021-01-30 2022-08-04 华为技术有限公司 天线选择方法、装置、电子设备及可读存储介质

Also Published As

Publication number Publication date
EP3764562A4 (en) 2021-05-19
CN111937319A (zh) 2020-11-13
US20210021309A1 (en) 2021-01-21
US11277176B2 (en) 2022-03-15
CN111937319B (zh) 2022-04-26
EP3764562A1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
US11683076B2 (en) Data transmission method and apparatus, and system
KR102342173B1 (ko) 가변 코히어런스 적응성 안테나 어레이
CN111435875B (zh) 发送和接收指示的方法和装置
WO2019192530A1 (zh) 数据传输方法、终端设备和网络设备
EP3595225B1 (en) Reference signal sending method and network device
CN112039643A (zh) 传输反馈信息的方法和装置
US11218999B2 (en) Method and apparatus for sending uplink control channel
US11419120B2 (en) Information transmission method and communications device
WO2019196801A1 (zh) 数据传输的方法、通信装置及系统
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
WO2019191970A1 (zh) 通信方法、通信装置和系统
EP3406033B1 (en) Method and apparatus for channel state information (csi) reporting
CN111817798B (zh) 一种信道测量方法和通信装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
WO2017148429A1 (zh) 传输数据的方法和装置
CN110557348B (zh) 用于解调数据的方法和通信装置
CN112399402A (zh) 一种通信方法、装置及设备
US11101855B2 (en) Data sending method, data receiving method, network device, and terminal device
US20230261835A1 (en) Wireless communication method and device
WO2022188253A1 (zh) 无线通信的方法、终端设备和网络设备
WO2018171622A1 (zh) 数据发送方法和装置以及数据接收方法和装置
CN115913450A (zh) 一种获取信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018913801

Country of ref document: EP

Effective date: 20201007