WO2022161036A1 - 天线选择方法、装置、电子设备及可读存储介质 - Google Patents

天线选择方法、装置、电子设备及可读存储介质 Download PDF

Info

Publication number
WO2022161036A1
WO2022161036A1 PCT/CN2021/140163 CN2021140163W WO2022161036A1 WO 2022161036 A1 WO2022161036 A1 WO 2022161036A1 CN 2021140163 W CN2021140163 W CN 2021140163W WO 2022161036 A1 WO2022161036 A1 WO 2022161036A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal quality
electronic device
antennas
signal
Prior art date
Application number
PCT/CN2021/140163
Other languages
English (en)
French (fr)
Inventor
丁仁天
杨非
赵治林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21922626.3A priority Critical patent/EP4270810A1/en
Publication of WO2022161036A1 publication Critical patent/WO2022161036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of terminals, and in particular, to an antenna selection method, apparatus, electronic device, and readable storage medium.
  • An electronic device When electronic devices such as smart phones and tablet computers communicate with base stations through a cellular network, they need to send or receive communication data through antennas in the electronic devices.
  • An electronic device includes multiple antennas.
  • the optimal antenna is determined only by the communication quality of the antenna, the selected optimal antenna may be inaccurate, resulting in poor communication quality.
  • the embodiments of the present application provide an antenna selection method, an apparatus, an electronic device, and a readable storage medium, which can improve the problem of inaccurate selection of an optimal antenna, resulting in poor communication quality.
  • an embodiment of the present application provides an antenna selection method, which is applied to an electronic device.
  • the electronic device includes a plurality of antennas.
  • the method includes: sending an antenna switch (AS) channel to a network device through each antenna. Sounding reference signal (sounding reference signal, SRS).
  • An antenna selection message sent from a network device is received, where the antenna selection message is used to indicate the signal quality gain of the first antenna in the plurality of antennas and each of the remaining antennas relative to the first antenna.
  • Acquire a preset signal quality correction gain of the first antenna When the signal quality gain of each of the remaining antennas is greater than the signal quality correction gain of the first antenna, it is determined to use the first antenna for communication.
  • the electronic device in the first aspect may be a mobile phone, a tablet computer, a customized terminal, or other device that has an antenna and can communicate through the antenna.
  • the embodiment of the present application does not limit the specific type of the electronic device.
  • an AS SRS is sent to a network device, and an antenna selection message is received back from the network device.
  • the signal quality correction gain of the first antenna indicated by the antenna selection message and the signal quality gain of each of the remaining antennas relative to the first antenna are used to determine whether to communicate through the first antenna. Since the first antenna is the optimal antenna measured by the network device, it is determined whether to use the optimal antenna measured by the network device to perform communication according to the signal quality correction gain of the optimal antenna and the relative signal quality gain of each of the remaining antennas. The antenna with the best communication quality can be more accurately selected and used for communication.
  • the second antenna is determined by the downlink signal quality of each antenna. Use the second antenna for communication.
  • the antenna selection message includes one of a radio resource control (radio resource control, RRC) message, a downlink control information (downlink control information, DCI) message, or a physical layer control element (MAC control element, MAC CE) message.
  • RRC radio resource control
  • DCI downlink control information
  • MAC control element MAC CE
  • an antenna selection method is applied to a network device, the method includes: receiving a plurality of ASSRSs from an electronic device. Determine the signal quality gain of the first antenna and each other antenna relative to the first antenna according to the uplink signal quality of multiple ASSRSs, and the first antenna is the antenna indicated by the antenna identifier corresponding to the ASSRS with the best uplink signal quality.
  • An antenna selection message is sent to the electronic device, where the antenna selection message is used to indicate the signal quality gain of the first antenna in the plurality of antennas and the remaining antennas relative to the first antenna.
  • the network device in the second aspect may be a communication base station that can receive ASSRS, such as a 5G base station (gNB) or a 4G base station (eNB).
  • ASSRS such as a 5G base station (gNB) or a 4G base station (eNB).
  • the first antenna is determined according to the uplink signal quality of multiple ASSRSs, including:
  • the antenna corresponding to the AS SRS with the maximum received power of the reference signal is determined as the first antenna.
  • the first antenna is determined according to the uplink signal quality of multiple ASSRSs, including:
  • the antenna corresponding to the ASSRS with the largest signal-to-interference-plus-noise ratio is determined as the first antenna.
  • the antenna selection message includes one of an RRC message, a DCI message, or a MAC CE message.
  • an embodiment of the present application provides an antenna selection device, which is applied to an electronic device.
  • the electronic device includes a plurality of antennas.
  • the device includes: a sending module, configured to send an antenna switching channel detection to a network device through each antenna. reference signal.
  • the receiving module is configured to receive an antenna selection message sent from a network device, where the antenna selection message is used to indicate the signal quality gain of the first antenna in the plurality of antennas and each of the remaining antennas relative to the first antenna.
  • the obtaining module is configured to obtain the preset signal quality correction gain of the first antenna.
  • the determining module is configured to determine to use the first antenna for communication when the signal quality gain of each of the remaining antennas is greater than the signal quality correction gain of the first antenna.
  • the determining module is further configured to determine the second antenna according to the downlink signal quality of each antenna when the signal quality gain of any one of the antennas is smaller than the signal quality correction gain. Use the second antenna for communication.
  • the antenna selection message includes one of an RRC message, a DCI message, or a MAC CE message.
  • an embodiment of the present application provides an antenna selection apparatus, which is applied to a network device, and the apparatus includes:
  • the receiving module is used for receiving multiple antenna switching channel sounding reference signals from the electronic device.
  • the determining module is configured to detect the uplink signal quality of the reference signal according to the multiple antenna switching channels, and determine the signal quality gain of the first antenna and each of the remaining antennas relative to the first antenna, and the first antenna is the antenna switch with the best uplink signal quality The antenna indicated by the antenna identifier corresponding to the channel sounding reference signal.
  • the sending module is used for sending an antenna selection message to the electronic device, where the antenna selection message is used to indicate the signal quality gain of the first antenna in the plurality of antennas and each of the remaining antennas relative to the first antenna.
  • the determining module is specifically configured to measure the received power of the reference signal of each ASSRS, wherein when the received power of the reference signal represents the signal quality of the uplink, the higher the received power of the reference signal, the better the quality of the uplink signal.
  • the antenna corresponding to the AS SRS with the maximum received power of the reference signal is determined as the first antenna.
  • the determination module is specifically used to measure the signal-to-interference-plus-noise ratio of each ASSRS, wherein, when the signal quality of the uplink is represented by the signal-to-interference-plus-noise ratio, the larger the signal-to-interference-plus-noise ratio indicates the uplink. The better the signal quality.
  • the antenna corresponding to the ASSRS with the largest signal-to-interference-plus-noise ratio is determined as the first antenna.
  • the antenna selection message includes one of an RRC message, a DCI message, or a MAC CE message.
  • embodiments of the present application provide an electronic device, including multiple antennas, a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, the The antenna implements the method provided by the first aspect.
  • an embodiment of the present application provides a network device, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, the second methods provided.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method provided in the first aspect is implemented.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method provided in the second aspect is implemented.
  • an embodiment of the present application provides a computer program product, which enables the terminal device to execute the method provided in the first aspect when the computer program product runs on a terminal device.
  • an embodiment of the present application provides a computer program product, which enables the terminal device to execute the method provided in the second aspect when the computer program product runs on a terminal device.
  • an embodiment of the present application provides a chip system, the chip system includes a memory and a processor, and the processor executes a computer program stored in the memory to implement the method provided in the first aspect.
  • an embodiment of the present application provides a chip system, where the chip system includes a memory and a processor, and the processor executes a computer program stored in the memory to implement the method provided in the second aspect.
  • an embodiment of the present application provides a chip system, the chip system includes a processor, the processor is coupled to the computer-readable storage medium provided in the seventh aspect, and the processor executes a computer program stored in the computer-readable storage medium , so as to realize the method provided by the first aspect.
  • an embodiment of the present application provides a chip system, the chip system includes a processor, the processor is coupled to the computer-readable storage medium provided in the eighth aspect, and the processor executes a computer program stored in the computer-readable storage medium , so as to realize the method provided by the second aspect.
  • FIG. 1 shows a schematic diagram of an application scenario of the antenna selection method provided by the present application
  • FIG. 2 shows a schematic diagram of an application scenario of another antenna selection method provided by the present application
  • FIG. 3 shows a schematic structural diagram of an electronic device provided by the present application
  • FIG. 4 shows a schematic diagram of a system architecture of an electronic device provided by the present application
  • FIG. 5 shows a schematic flowchart of an antenna selection method provided by the present application
  • FIG. 6 shows a schematic flowchart of another antenna selection method provided by the present application.
  • FIG. 7 shows a schematic flowchart of another antenna selection method provided by the present application.
  • FIG. 8 shows a schematic structural diagram of an antenna selection device provided by the present application.
  • FIG. 9 shows a schematic structural diagram of another antenna selection apparatus provided by the present application.
  • FIG. 10 shows a schematic structural diagram of an electronic device provided by the present application.
  • FIG. 11 shows a schematic structural diagram of a network device provided by the present application.
  • the term “if” may be contextually interpreted as “when” or “once” or “in response to determining” or “in response to detecting ".
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • FIG. 1 shows a schematic diagram of an application scenario of the antenna selection method provided by the present application.
  • the scenario includes an electronic device 11 , and the electronic device 11 includes multiple antennas.
  • the first antenna 111 and the second antenna 112 may be included.
  • antenna three 113 and antenna four 114 .
  • the scene also includes a network device 12, and the electronic device 11 maintains a connection state with the network device 12 through an antenna.
  • the electronic device 11 is a user equipment (User Equipment, UE), and the network device 12 is a base station, for example, a gNB or an eNB.
  • UE User Equipment
  • the base station calculates and determines the optimal antenna according to the uplink communication quality and downlink communication quality of each antenna, and notifies the UE to switch to the optimal antenna.
  • Non-CB uplink noncoodbook
  • Fig. 2 shows a schematic diagram of another application scenario of the antenna selection method provided by the present application.
  • SRS can be sent to the base station through two antennas at the same time, because the Non-CB SRS resources and AS Each SRS resource only supports sending one SRS at the same time. Therefore, in order to send two SRS at the same time, it is necessary to use the Non-CB SRS resource and the AS SRS resource for sending at the same time.
  • some UEs do not consider the specific absorption rate (SAR) of electromagnetic waves when sending SRS.
  • SAR specific absorption rate
  • PUSCH Physical Uplink Shared Channel
  • the present application provides an antenna selection method applied to an electronic device, the electronic device includes multiple antennas, and the method includes: sequentially passing through each antenna, sending the AS SRS and the antenna to the network device on different time-frequency resources identification information.
  • An antenna selection message sent from a network device is received, where the antenna selection information includes an identification message of the first antenna and a signal quality gain of each of the remaining antennas relative to the first antenna.
  • the identification information the signal quality correction gain of the first antenna is obtained.
  • the signal quality gain of each antenna is greater than the signal quality correction gain, communication is performed through the first antenna.
  • the present application also provides an antenna selection method applied to a network device, the method comprising: receiving multiple ASSRS from an electronic device and identification information of the antenna corresponding to each ASSRS.
  • the first antenna is determined according to the uplink signal quality of multiple ASSRSs, and the uplink signal quality of the ASSRSs corresponding to the first antenna is the best among the received uplink signal qualities of multiple ASSRSs.
  • An antenna selection message is sent to the electronic device, where the antenna selection information includes an identification message of the first antenna and a signal quality gain of each of the remaining antennas relative to the first antenna.
  • the present application by sequentially passing through each antenna, sending AS SRS to the network device on different time-frequency resources, and receiving the identification message of the first antenna returned by the network device and the signals of the other antennas relative to the first antenna quality gain. Finally, it is determined whether to use the first antenna for communication according to the signal quality correction gain of the first antenna and the signal quality gain of each of the remaining antennas relative to the first antenna. Since the first antenna is the optimal antenna measured by the network device, it is determined whether to use the optimal antenna measured by the network device for communication according to the signal quality correction gain of the optimal antenna and the relative signal quality gain of each of the remaining antennas. The antenna with the best communication quality can be more accurately selected and used for communication.
  • the AS SRS is used to measure the uplink signal quality of the antenna, it is not necessary to configure the Non-CB SRS, or only one Non-CB SRS can be configured to measure two antennas at the same time, which effectively reduces the SRS resource occupation of the base station.
  • the problem of insufficient SRS resources of the base station is solved.
  • FIG. 3 shows a schematic structural diagram of an electronic device.
  • the electronic device 200 may include a processor 210, an external memory interface 220, an internal memory 221, a universal serial bus (USB) interface 230, a charge management module 240, a power management module 241, a battery 242, an antenna 1, an antenna 2 , mobile communication module 250, wireless communication module 260, audio module 270, speaker 270A, receiver 270B, microphone 270C, headphone jack 270D, sensor module 280, buttons 290, motor 291, indicator 292, camera 293, display screen 294, and Subscriber identification module (subscriber identification module, SIM) card interface 295 and so on.
  • SIM Subscriber identification module
  • the sensor module 280 may include a pressure sensor 280A, a gyroscope sensor 280B, an air pressure sensor 280C, a magnetic sensor 280D, an acceleration sensor 280E, a distance sensor 280F, a proximity light sensor 280G, a fingerprint sensor 280H, a temperature sensor 280J, a touch sensor 280K, and ambient light.
  • Sensor 280L Bone Conduction Sensor 280M, etc.
  • the structures illustrated in the embodiments of the present application do not constitute a specific limitation on the electronic device 200 .
  • the electronic device 200 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the electronic device 200 when the electronic device 200 is a mobile phone or a tablet computer, it may include all the components in the figure, or only some components in the figure.
  • the electronic device 200 When the electronic device 200 is a large-screen device, it may include a processor 210, an external memory interface 220, an internal memory 221, a universal serial bus (USB) interface 230, a charging management module 240, and a power management module as shown in the figure.
  • Module 241 wireless communication module 260 , audio module 270 , speaker 270A, receiver 270B, microphone 270C, camera 293 , display screen 294 .
  • the processor 210 may include one or more processing units, for example, the processor 210 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the controller may be the nerve center and command center of the electronic device 200 .
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 210 for storing instructions and data.
  • the memory in processor 210 is cache memory.
  • the memory may hold instructions or data that have just been used or recycled by the processor 210 . If the processor 210 needs to use the instruction or data again, it can be called directly from memory. Repeated accesses are avoided, and the waiting time of the processor 210 is reduced, thereby improving the efficiency of the system.
  • the processor 210 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus that includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 210 may contain multiple sets of I2C buses.
  • the processor 210 can be respectively coupled to the touch sensor 280K, the charger, the flash, the camera 293 and the like through different I2C bus interfaces.
  • the processor 210 can couple the touch sensor 280K through the I2C interface, so that the processor 210 communicates with the touch sensor 280K through the I2C bus interface, so as to realize the touch function of the electronic device 200 .
  • the I2S interface can be used for audio communication.
  • the processor 210 may contain multiple sets of I2S buses.
  • the processor 210 may be coupled with the audio module 270 through an I2S bus to implement communication between the processor 210 and the audio module 270 .
  • the audio module 270 may communicate audio signals to the wireless communication module 260 through the I2S interface.
  • the PCM interface can also be used for audio communications, sampling, quantizing and encoding analog signals.
  • the audio module 270 and the wireless communication module 260 may be coupled through a PCM bus interface.
  • the audio module 270 may also transmit audio signals to the wireless communication module 260 through the PCM interface. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus may be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is typically used to connect the processor 210 with the wireless communication module 260 .
  • the processor 210 communicates with the Bluetooth module in the wireless communication module 260 through the UART interface to implement the Bluetooth function.
  • the audio module 270 can transmit audio signals to the wireless communication module 260 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 210 with peripheral devices such as the display screen 294 and the camera 293 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 210 communicates with the camera 293 through a CSI interface, so as to implement the photographing function of the electronic device 200 .
  • the processor 210 communicates with the display screen 294 through the DSI interface to implement the display function of the electronic device 200 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface may be used to connect the processor 210 with the camera 293, the display screen 294, the wireless communication module 260, the audio module 270, the sensor module 280, and the like.
  • the GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 230 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 230 can be used to connect a charger to charge the electronic device 200, and can also be used to transmit data between the electronic device 200 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiments of the present application is only a schematic illustration, and does not constitute a structural limitation of the electronic device 200 .
  • the electronic device 200 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 240 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 240 may receive charging input from the wired charger through the USB interface 230 .
  • the charging management module 240 may receive wireless charging input through the wireless charging coil of the electronic device 200 . While the charging management module 240 charges the battery 242 , the power management module 241 can also supply power to the electronic device.
  • the power management module 241 is used to connect the battery 242 , the charging management module 240 and the processor 210 .
  • the power management module 241 receives input from the battery 242 and/or the charging management module 240, and supplies power to the processor 210, the internal memory 221, the external memory, the display screen 294, the camera 293, and the wireless communication module 260.
  • the power management module 241 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 241 may also be provided in the processor 210 . In other embodiments, the power management module 241 and the charging management module 240 may also be provided in the same device.
  • the wireless communication function of the electronic device 200 may be implemented by the antenna 1, the antenna 2, the mobile communication module 250, the wireless communication module 260, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 200 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 250 may provide a wireless communication solution including 2G/3G/4G/5G, etc. applied on the electronic device 200 .
  • the mobile communication module 250 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), and the like.
  • the mobile communication module 250 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 250 can also amplify the signal modulated by the modulation and demodulation processor, and then convert it into electromagnetic waves for radiation through the antenna 1 .
  • the antenna 1 may be coupled by multiple antennas.
  • antenna 1 may include antenna one 2501 , antenna two 2502 , antenna three 2503 , and antenna four 2504 .
  • At least part of the functional modules of the mobile communication module 250 may be provided in the processor 210 . In some embodiments, at least part of the functional modules of the mobile communication module 250 may be provided in the same device as at least part of the modules of the processor 210 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to the speaker 270A, the receiver 270B, etc.), or displays images or videos through the display screen 294 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 210, and may be provided in the same device as the mobile communication module 250 or other functional modules.
  • the wireless communication module 260 can provide applications on the electronic device 200 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellites Wireless communication solutions such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), and infrared technology (IR).
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 260 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 260 receives electromagnetic waves via the antenna 2 , modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 210 .
  • the wireless communication module 260 can also receive the signal to be sent from the processor 210 , perform frequency modulation on the signal, amplify the signal, and then convert it into an electromagnetic wave for radiation through the antenna 2 .
  • the wireless communication module 260 is also coupled with a plurality of antennas, so that the electronic device 200 can communicate with the network and other devices through wireless communication technology.
  • Wireless communication technologies may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband code division Multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), new air interface (New Radio, NR), BT, GNSS, WLAN, NFC, FM, and/or IR technologies, etc.
  • GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi-zenith) satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 200 implements a display function through a GPU, a display screen 294, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 294 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 210 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 294 is used to display images, videos, and the like.
  • the display screen 294 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the electronic device 200 may include one or N display screens 294 , where N is a positive integer greater than one.
  • the electronic device 200 can realize the shooting function through the ISP, the camera 293, the video codec, the GPU, the display screen 294 and the application processor.
  • the ISP is used to process the data fed back by the camera 293 .
  • the shutter is opened, the light is transmitted to the camera photosensitive element through the lens, the light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing, converting it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 293 .
  • Camera 293 is used to capture still images or video.
  • the object is projected through the lens to generate an optical image onto the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the electronic device 200 may include 1 or N cameras 293 , where N is a positive integer greater than 1.
  • a digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals. For example, when the electronic device 200 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy, and the like.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 200 may support one or more video codecs.
  • the electronic device 200 can play or record videos in various encoding formats, such as: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the electronic device 200 can be realized through the NPU, for example: image recognition, face recognition, speech recognition, text understanding, etc.
  • the NPU or other processors may be used to perform operations such as analysis and processing on images in the video stored by the electronic device 200 .
  • the external memory interface 220 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 200.
  • the external memory card communicates with the processor 210 through the external memory interface 220 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 221 may be used to store computer executable program code, which includes instructions.
  • the processor 210 executes various functional applications and data processing of the electronic device 200 by executing the instructions stored in the internal memory 221 .
  • the internal memory 221 may include a storage program area and a storage data area.
  • the storage program area can store an operating system and an application program required for at least one function (such as a sound playback function, an image playback function, etc.).
  • the storage data area can store data (such as audio data, phone book, etc.) created during the use of the electronic device 200 .
  • the internal memory 221 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • non-volatile memory such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the electronic device 200 may implement audio functions through an audio module 270, a speaker 270A, a receiver 270B, a microphone 270C, an earphone interface 270D, and an application processor.
  • the audio module 270 is used for converting digital audio signals into analog audio signal outputs, and also for converting analog audio inputs into digital audio signals. Audio module 270 may also be used to encode and decode audio signals. In some embodiments, the audio module 270 may be provided in the processor 210 , or some functional modules of the audio module 270 may be provided in the processor 210 .
  • Speaker 270A also referred to as a "speaker" is used to convert audio electrical signals into sound signals.
  • the electronic device 200 can listen to music through the speaker 270A, or listen to a hands-free call.
  • the speaker can play the comparison analysis result provided by the embodiment of the present application.
  • the receiver 270B also referred to as an "earpiece" is used to convert audio electrical signals into sound signals.
  • the voice can be answered by placing the receiver 270B close to the human ear.
  • the microphone 270C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 270C through the human mouth, and input the sound signal into the microphone 270C.
  • the electronic device 200 may be provided with at least one microphone 270C. In other embodiments, the electronic device 200 may be provided with two microphones 270C, which may implement a noise reduction function in addition to collecting sound signals. In other embodiments, the electronic device 200 may further be provided with three, four or more microphones 270C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
  • the headphone jack 270D is used to connect wired headphones.
  • the earphone interface 270D can be a USB interface 230, or can be a 3.5mm open mobile terminal platform (OMTP) standard interface, a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 280A is used to sense pressure signals, and can convert the pressure signals into electrical signals.
  • the pressure sensor 280A may be provided on the display screen 294 .
  • the capacitive pressure sensor may be comprised of at least two parallel plates of conductive material. When a force is applied to pressure sensor 280A, the capacitance between the electrodes changes.
  • the electronic device 200 determines the intensity of the pressure according to the change in capacitance. When a touch operation acts on the display screen 294, the electronic device 200 detects the intensity of the touch operation according to the pressure sensor 280A.
  • the electronic device 200 may also calculate the touched position according to the detection signal of the pressure sensor 280A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example, when a touch operation whose intensity is less than the first pressure threshold acts on the short message application icon, the instruction for viewing the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, the instruction to create a new short message is executed.
  • the gyro sensor 280B may be used to determine the motion attitude of the electronic device 200 .
  • the angular velocity of electronic device 200 about three axes ie, x, y, and z axes
  • the gyro sensor 280B can be used for image stabilization.
  • the gyro sensor 280B detects the shaking angle of the electronic device 200, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shaking of the electronic device 200 through reverse motion to achieve anti-shake.
  • the gyro sensor 280B can also be used for navigation and somatosensory game scenarios.
  • Air pressure sensor 280C is used to measure air pressure. In some embodiments, the electronic device 200 calculates the altitude through the air pressure value measured by the air pressure sensor 280C to assist in positioning and navigation.
  • Magnetic sensor 280D includes a Hall sensor.
  • the electronic device 200 can detect the opening and closing of the flip holster using the magnetic sensor 280D.
  • the electronic device 200 can detect the opening and closing of the flip according to the magnetic sensor 280D. Further, according to the detected opening and closing state of the leather case or the opening and closing state of the flip cover, characteristics such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 280E can detect the magnitude of the acceleration of the electronic device 200 in various directions (generally three axes).
  • the magnitude and direction of gravity can be detected when the electronic device 200 is stationary. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the electronic device 200 can measure the distance through infrared or laser. In some embodiments, when shooting a scene, the electronic device 200 can use the distance sensor 280F to measure the distance to achieve fast focusing.
  • Proximity light sensor 280G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the electronic device 200 emits infrared light to the outside through the light emitting diode.
  • Electronic device 200 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it may be determined that there is an object near the electronic device 200 . When insufficient reflected light is detected, the electronic device 200 may determine that there is no object near the electronic device 200 .
  • the electronic device 200 can use the proximity light sensor 280G to detect that the user holds the electronic device 200 close to the ear to talk, so as to automatically turn off the screen to save power.
  • Proximity light sensor 280G can also be used in holster mode, pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 280L is used to sense ambient light brightness.
  • the electronic device 200 can adaptively adjust the brightness of the display screen 294 according to the perceived ambient light brightness.
  • the ambient light sensor 280L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 280L can also cooperate with the proximity light sensor 280G to detect whether the electronic device 200 is in the pocket, so as to prevent accidental touch.
  • the fingerprint sensor 280H is used to collect fingerprints.
  • the electronic device 200 can use the collected fingerprint characteristics to realize fingerprint unlocking, accessing application locks, taking pictures with fingerprints, answering incoming calls with fingerprints, and the like.
  • the temperature sensor 280J is used to detect the temperature.
  • the electronic device 200 utilizes the temperature detected by the temperature sensor 280J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 280J exceeds a threshold value, the electronic device 200 reduces the performance of the processor located near the temperature sensor 280J in order to reduce power consumption and implement thermal protection.
  • the electronic device 200 heats the battery 242 to avoid abnormal shutdown of the electronic device 200 caused by the low temperature.
  • the electronic device 200 boosts the output voltage of the battery 242 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 280K also called “touch panel”.
  • the touch sensor 280K may be disposed on the display screen 294, and the touch sensor 280K and the display screen 294 form a touch screen, also called a "touch screen”.
  • the touch sensor 280K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to touch operations may be provided through display screen 294 .
  • the touch sensor 280K may also be disposed on the surface of the electronic device 200 , which is different from the location where the display screen 294 is located.
  • the bone conduction sensor 280M can acquire vibration signals.
  • the bone conduction sensor 280M can acquire the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 280M can also contact the pulse of the human body and receive the blood pressure beating signal.
  • the bone conduction sensor 280M can also be disposed in the earphone, combined with the bone conduction earphone.
  • the audio module 270 can analyze the voice signal based on the vibration signal of the vocal vibration bone mass obtained by the bone conduction sensor 280M, so as to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beat signal obtained by the bone conduction sensor 280M, and realize the function of heart rate detection.
  • the keys 290 include a power-on key, a volume key, and the like. Keys 290 may be mechanical keys. It can also be a touch key.
  • the electronic device 200 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 200 .
  • Motor 291 can generate vibrating cues.
  • the motor 291 can be used for vibrating alerts for incoming calls, and can also be used for touch vibration feedback.
  • touch operations acting on different applications can correspond to different vibration feedback effects.
  • the motor 291 can also correspond to different vibration feedback effects for touch operations on different areas of the display screen 294 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 292 can be an indicator light, which can be used to indicate the charging status, the change of power, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 295 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the electronic device 200 by inserting into the SIM card interface 295 or pulling out from the SIM card interface 295 .
  • the electronic device 200 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 295 can support Nano SIM card, Micro SIM card, SIM card and so on.
  • the same SIM card interface 295 can insert multiple cards at the same time. Multiple cards can be of the same type or different.
  • the SIM card interface 295 can also be compatible with different types of SIM cards.
  • the SIM card interface 295 is also compatible with external memory cards.
  • the electronic device 200 interacts with the network through the SIM card to realize functions such as call and data communication.
  • the electronic device 200 employs an eSIM, ie: an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 200 and cannot be separated from the electronic device 200 .
  • FIG. 4 is a schematic diagram of a software structure of an electronic device 200 according to an embodiment of the present application.
  • the operating system of the electronic device 200 may be Android (Android), Apple Mobile Operating System (iOS) or HarmonyOS.
  • Android Android
  • iOS Apple Mobile Operating System
  • HarmonyOS HarmonyOS
  • the Hongmeng system can be divided into four layers, including a kernel layer, a system service layer, a framework layer, and an application layer, and the layers communicate with each other through a software interface.
  • the kernel layer includes a kernel abstraction layer (Kernel Abstract Layer, KAL) and a driver subsystem.
  • KAL Kernel Abstract Layer
  • the driver subsystem may include a hardware driver framework (Hardware Driver Foundation, HDF).
  • HDF Hardware Driver Foundation
  • the hardware driver framework can provide unified peripheral access capability and driver development and management framework.
  • the multi-kernel kernel layer can select the corresponding kernel for processing according to the needs of the system.
  • the system service layer is the core capability set of the Hongmeng system, and the system service layer provides services to applications through the framework layer.
  • This layer can include:
  • System Basic Capability Subsystem Set Provides basic capabilities for the operation, scheduling, and migration of distributed applications on multiple devices in the HarmonyOS system. It can include subsystems such as distributed soft bus, distributed data management, distributed task scheduling, Ark multi-language runtime, common base library, multi-mode input, graphics, security, artificial intelligence (AI). Among them, Ark multi-language runtime provides C or C++ or JavaScript (JS) multi-language runtime and basic system class library, and it can also be used for static Java programs using Ark compiler (that is, using Java in the application or framework layer). part of the language development) to provide the runtime.
  • Ark multi-language runtime provides C or C++ or JavaScript (JS) multi-language runtime and basic system class library, and it can also be used for static Java programs using Ark compiler (that is, using Java in the application or framework layer). part of the language development) to provide the runtime.
  • Ark multi-language runtime provides C or C++ or JavaScript (JS) multi-language runtime and basic system class library, and it can also be used for static Java
  • Basic software service subsystem set Provide public and general software services for Hongmeng system. It can include subsystems such as event notification, telephony, multimedia, Design For X (DFX), MSDP&DV, etc.
  • Enhanced software service subsystem set Provide Hongmeng system with differentiated capability-enhanced software services for different devices. It can include smart screen proprietary business, wearable proprietary business, and Internet of Things (Internet of Things, IoT) proprietary business subsystems.
  • IoT Internet of Things
  • Hardware service subsystem set Provide hardware services for Hongmeng system. It can include subsystems such as location services, biometric identification, wear-specific hardware services, and IoT-specific hardware services.
  • the framework layer provides multi-language user program frameworks and ability (Ability) frameworks such as Java, C, C++, JS, etc. for Hongmeng system application development, and two user interface (User Interface, UI) frameworks (including Java UI for Java language).
  • framework, JS UI framework for JS language as well as a variety of software and hardware services open to the outside world, the multi-language framework application programming interface (Application Programming Interface, API).
  • API Application Programming Interface
  • the application layer includes system applications and third-party non-system applications.
  • System applications may include applications that are installed by default on electronic devices such as the desktop, control bar, settings, and phone.
  • Extended applications can be non-essential applications developed and designed by manufacturers of electronic equipment, such as applications such as electronic equipment housekeeper, replacement migration, sticky notes, weather and other applications.
  • third-party non-system applications can be developed by other manufacturers, but can run applications in the Hongmeng system, such as games, navigation, social or shopping applications.
  • the application of Hongmeng system consists of one or more meta-programs (Feature Ability, FA) or meta-services (Particle Ability, PA).
  • FA has a UI interface that provides the ability to interact with users.
  • PA has no UI interface, it provides the ability to run tasks in the background and a unified data access abstraction.
  • PA mainly provides support for FA, such as providing computing power as a background service, or providing data access capabilities as a data warehouse.
  • Applications developed based on FA or PA can implement specific business functions, support cross-device scheduling and distribution, and provide users with a consistent and efficient application experience.
  • Multiple electronic devices running the Hongmeng system can achieve hardware mutual assistance and resource sharing through distributed soft bus, distributed device virtualization, distributed data management and distributed task scheduling.
  • FIG. 5 shows a schematic flowchart of an antenna selection method provided by the present application.
  • the method can be applied to the above electronic equipment and network equipment.
  • L1 is a physical layer (PHY) that can be used to transmit DCI messages.
  • L2 is the data link layer, including Media Access Control (MAC), Radio Link Control (RLC), Packet Data Convergence Protocol (PDCP) and service data adaptation Protocol (Service Data Adaptation Protocol, SDAP), which can be used to transmit MAC CE messages.
  • L3 is the radio resource control layer, which is used to transmit RRC messages.
  • the method includes:
  • the L3 of the electronic device interacts with the L3 of the network device, the network device acquires the antenna selection capability of the electronic device, and the electronic device receives the AS SRS resources configured by the network device.
  • the antenna selection capability includes the number of antennas, identification information of each antenna, and whether closed-loop antenna selection is supported.
  • the number of antennas may be four, and the identification information of the four antennas may be port0, port1, port2, and port3, respectively.
  • the closed-loop antenna selection refers to being able to send a measurement signal for antenna selection, and switch the antenna used for communication according to the received antenna selection message.
  • the antenna selection capability also includes the Transmit Antenna Selection (TAS) technology, which obtains the downlink energy by obtaining the downlink energy of each antenna, and then subtracting the main set energy and the diversity energy in each downlink energy to obtain the downlink energy difference. .
  • TAS Transmit Antenna Selection
  • the downlink energy difference is greater than the preset threshold, it is determined that the currently measured antenna is the optimal antenna. Finally, it is detected whether the antenna currently used for communication is the optimal antenna, and if so, the identification information of the downlink optimal antenna is recorded. If not, the currently measured antenna is used for communication, and then the identification information of the downlink optimal antenna is recorded.
  • the AS SRS resources are SRS resources in the time domain.
  • the SRS may occupy the last symbol of a normal uplink subframe or a special subframe.
  • the SRS can pass one or two single-carrier frequency division multiple access (Single-carrier frequency division multiple access) in the uplink pilot time slot (Uplink Pilot Time Slot, UpPTS), SC-FDMA) symbol transmission.
  • the transmission period (Tsks) of the SRS can be selected from the time set ⁇ 2, 5, 10, 20, 40, 80, 160, 320 ⁇ in units of milliseconds ms.
  • the SRS resource includes a certain SC-FDMA and a certain transmission period.
  • the network device may also configure Non-CB SRS resources or CB SRS resources for the electronic device according to actual requirements.
  • Non-CB SRS resources or CB SRS resources are similar to AS SRS resources, and will not be repeated here.
  • the network device may configure a corresponding number of ASSRS resources according to the number of antennas of the electronic device. For example, if the number of antennas is 4, each antenna may be configured with a corresponding AS SRS resource, that is, 4 sets of AS SRS resources.
  • the L3 of the network device acquires the resources of the AS SRS configured by the electronic device and reports it to the L1 of the network device.
  • L1 of the electronic device transmits ASSRS signals on different time-frequency resources through each antenna in turn.
  • the L1 of the network device measures the uplink signal quality of each AS SRS according to the configured AS SRS resources.
  • L1 of the electronic device includes four antennas, each antenna is configured with a corresponding ASSRS resource, and the four antennas sequentially transmit the ASSRS through the corresponding ASSRS resource.
  • the L1 of the network device receives the AS SRS resources sent by the L3 and configured for the electronic sound, it measures the uplink signal of the AS SRS on each AS SRS resource.
  • the network device can measure the uplink signal quality of the four ASSRSs.
  • Measuring the uplink signal quality of the AS SRS can be expressed by measuring the reference signal received power (Reference Signal Receiving Power, RSRP) or the Signal to Interference plus Noise Ratio (SINR) of the AS SRS.
  • RSRP Reference Signal Receiving Power
  • SINR Signal to Interference plus Noise Ratio
  • RSRP when RSRP is used to indicate uplink signal quality, a larger RSRP indicates better uplink signal quality.
  • the unit of RSRP is dBm.
  • the uplink signal quality of por1 is the best, followed by port3 , then port2, and lastly port4.
  • SINR When the SINR is used to represent the uplink signal quality, the larger the SINR, the better the uplink signal quality.
  • SINR can be calculated based on RSRP, and the calculation of SINR can refer to the following formula:
  • the interference power (I) is the sum of the powers of the neighboring cells received on the resource block (Resource Element, RE) occupied by the ASSRS signal received by the network device
  • the noise power (N) is the noise floor
  • the value of N depends on the specific measurement bandwidth and receiver noise figure.
  • the L1 of the network device sends the measurement result of the uplink signal quality of each AS SRS to the L2 of the network device.
  • the L2 of the network device determines the first antenna and the gains of the remaining antennas relative to the first antenna.
  • the L2 of the network device may determine the antenna with the largest RSRP as the first antenna.
  • the antenna with the largest SINR is determined as the first antenna.
  • the L2 of the network device may calculate the equivalent link loss (PathLoss) according to the RSRP and the AS SRS transmit power of the antenna corresponding to the RSRP, and use the antenna with the lowest equivalent link loss as the first antenna.
  • the equivalent link loss may be the signal power of the reference signal, that is, the difference between the RSRPs of the AS SRSs of the corresponding antenna, where the signal power of the reference signal may be obtained from the system message of the network device.
  • the L2 of the network device reports the identification information of the first antenna and the gains of the remaining antennas relative to the first antenna to the L3 of the network device.
  • the difference between the RSRP of each of the remaining antennas and the RSRP of the first antenna may be used as the gain of the antenna relative to the first antenna.
  • the difference between the SINR of each of the remaining antennas and the SINR of the first antenna may also be used as the gain of the antenna relative to the first antenna.
  • the algorithm of gain is not limited in this application.
  • the L3 of the network device sends the identification information of the first antenna and the gains of the remaining antennas relative to the first antenna to the L3 of the electronic device through an RRC message.
  • L3 of the electronic device acquires the signal quality correction gain of the first antenna according to the identification information.
  • the signal quality correction gain can be a reduced SAR value
  • each antenna corresponds to a preset reduced SAR value
  • the corresponding reduced SAR value of the antenna can be obtained from the attribute information of the antenna according to the identification information of the antenna.
  • the attribute information of the antenna is determined when the electronic device is manufactured.
  • the number of antennas may be four
  • the identification information of the four antennas may be port0, port1, port2, and port3, respectively.
  • the reduced SAR values of port0, port1, port2 and port3 are 2dB, 5dB, 6dB and 7dB, respectively.
  • the L3 of the electronic device determines whether the signal quality gain of each antenna is greater than the signal quality correction gain, and if so, executes S311, and if not, executes S312.
  • the gains of port1, port2, and port3 relative to port0 may be 2dB, 4dB, and 3dB, respectively.
  • the integrated gain of port0, port1, port2 and port3 can be -2dB (0dB-2dB), -3dB (2dB-5dB), -2dB (4dB-6dB) and -4dB (3dB-7dB) respectively ).
  • the integrated gain of port0 is the largest, so S311 is executed.
  • the gains of port1, port2, and port3 relative to port0 may be 2dB, 4dB, and 6dB, respectively.
  • the integrated gain of port0, port1, port2 and port3 can be -2dB (0dB-2dB), -3dB (2dB-5dB), -2dB (4dB-6dB) and -1dB (6dB-7dB) respectively ).
  • the comprehensive gain of port3 is greater than that of port0, so S312 is executed.
  • the L1 of the electronic device switches to the first antenna for communication.
  • the signal quality gain of each antenna is greater than the reduced SAR value, it indicates that the current first antenna still has better communication quality than other antennas after the SAR is reduced. That is, it is determined that the first antenna is the optimal antenna in the current scenario, and communication can be performed through the first antenna.
  • the L3 of the electronic device determines the second antenna through TAS.
  • the L1 of the electronic device switches to the second antenna for communication.
  • the optimal antenna ie, the second antenna
  • the network device notifies the electronic device of the optimal antenna and the selection result of the remaining antennas relative to the optimal antenna through the RRC message.
  • the network device may also send a notification to the electronic device through a DCI message, so as to implement the antenna selection method provided by the present application, and the method includes:
  • the L3 of the electronic device interacts with the L3 of the network device, the network device acquires the antenna selection capability of the electronic device, and the electronic device receives the AS SRS resources configured by the network device.
  • the L3 of the network device acquires the resources of the AS SRS configured by the electronic device and reports it to the L1 of the network device.
  • S403, L1 of the electronic device transmits ASSRS signals on different time-frequency resources through each antenna in turn.
  • the L1 of the network device measures the uplink signal quality of each AS SRS according to the configured AS SRS resources.
  • the L1 of the network device sends the measurement result of the uplink signal quality of each AS SRS to the L2 of the network device.
  • the L2 of the network device determines the first antenna and the gains of the remaining antennas relative to the first antenna.
  • the L2 of the network device reports the identification information of the first antenna and the gains of the remaining antennas relative to the first antenna to the L1 of the network device.
  • the L1 of the network device sends the identification information of the first antenna and the gains of the other antennas relative to the first antenna to the L1 of the electronic device through the DCI message, and the L1 of the electronic device sends the identification information of the first antenna and the other antennas relative to the first antenna.
  • the gain of the antenna is reported to L3 of the electronic device.
  • the DCI message is a message transmitted between the physical layers.
  • the L1 of the network device receives the identification information of the first antenna reported by L2 and the gains of the remaining antennas relative to the first antenna, and sends it to the electronic device through the DCI message. the L1.
  • the L3 of the electronic device acquires the signal quality correction gain of the first antenna according to the identification information.
  • the L3 of the electronic device determines whether the signal quality gain of each antenna is greater than the signal quality correction gain, and if so, execute S411, and if not, execute S412.
  • the L1 of the electronic device switches to the first antenna for communication.
  • the L3 of the electronic device determines the second antenna through TAS.
  • the L1 of the electronic device switches to the second antenna for communication.
  • the network device can also send a notification to the electronic device through a MAC CE message to implement the antenna selection method provided by the present application, and the method includes:
  • the L3 of the electronic device interacts with the L3 of the network device, the network device acquires the antenna selection capability of the electronic device, and the electronic device receives the AS SRS resources configured by the network device.
  • the L3 of the network device acquires the resources of the AS SRS configured by the electronic device and reports it to the L1 of the network device.
  • the L1 of the electronic device transmits ASSRS signals on different time-frequency resources through each antenna in turn.
  • the L1 of the network device measures the uplink signal quality of each AS SRS according to the configured AS SRS resources.
  • the L1 of the network device sends the measurement result of the uplink signal quality of each AS SRS to the L2 of the network device.
  • the L2 of the network device determines the first antenna and the gains of the remaining antennas relative to the first antenna.
  • the L2 of the network device sends the identification information of the first antenna and the gains of the remaining antennas relative to the first antenna to the L2 of the electronic device through the MAC CE message, and the L2 of the electronic device sends the identification information of the first antenna and the remaining antennas relative to the first antenna.
  • the gain of an antenna is reported to L3 of the electronic device.
  • the MAC CE message is a message transmitted between the data link layers. After the identification information of the first antenna and the gains of the remaining antennas relative to the first antenna determined by L2 of the network device, it is sent to the electronic device through the MAC CE message. L2 of the device.
  • L3 of the electronic device acquires the signal quality correction gain of the first antenna according to the identification information.
  • the L3 of the electronic device judges whether the signal quality gain of each antenna is greater than the signal quality correction gain, if so, execute S510 , and if not, execute S511 .
  • the L1 of the electronic device switches to the first antenna for communication.
  • the L3 of the electronic device determines the second antenna through TAS.
  • FIG. 8 shows a structural block diagram of the antenna selection apparatus provided by the embodiment of the present application. For the convenience of description, only the part related to the embodiment of the present application is shown. .
  • the device is applied to electronic equipment, including:
  • the sending module 601 is configured to send an antenna switching channel sounding reference signal to a network device through each antenna.
  • the receiving module 602 is configured to receive an antenna selection message sent from a network device, where the antenna selection message is used to indicate the signal quality gain of the first antenna in the plurality of antennas and each of the remaining antennas relative to the first antenna.
  • the obtaining module 603 is configured to obtain the preset signal quality correction gain of the first antenna.
  • the determining module 604 is configured to determine to use the first antenna for communication when the signal quality gain of each of the remaining antennas is greater than the signal quality correction gain of the first antenna.
  • the determining module 604 is further configured to determine the second antenna according to the downlink signal quality of each antenna when the signal quality gain of any antenna is less than the signal quality correction gain. Use the second antenna for communication.
  • the antenna selection message includes one of an RRC message, a DCI message, or a MAC CE message.
  • FIG. 9 shows a structural block diagram of the antenna selection apparatus provided by the embodiment of the present application. For the convenience of description, only the part related to the embodiment of the present application is shown. .
  • the apparatus is applied to network equipment, including:
  • the receiving module 701 is configured to receive multiple antenna switching channel sounding reference signals from an electronic device.
  • Determining module 702 configured to switch channels according to multiple antennas to detect the uplink signal quality of the reference signal, and determine the signal quality gain of the first antenna and each of the remaining antennas relative to the first antenna, where the first antenna is the antenna with the best uplink signal quality The antenna indicated by the antenna identifier corresponding to the channel sounding reference signal is switched.
  • the sending module 703 is configured to send an antenna selection message to the electronic device, where the antenna selection message is used to indicate the signal quality gain of the first antenna in the plurality of antennas and each of the remaining antennas relative to the first antenna.
  • the determination module 702 is specifically configured to measure the received power of the reference signal of each AS SRS, wherein, when the received power of the reference signal indicates the signal quality of the uplink, the higher the received power of the reference signal, the better the quality of the uplink signal.
  • the antenna corresponding to the AS SRS with the maximum received power of the reference signal is determined as the first antenna.
  • the determining module 702 is specifically configured to measure the signal-to-interference-plus-noise ratio of each ASSRS, wherein, when the signal-to-interference-plus-noise ratio is used to represent the signal quality of the uplink, a larger signal-to-interference plus noise ratio indicates The better the uplink signal quality is.
  • the antenna corresponding to the ASSRS with the largest signal-to-interference-plus-noise ratio is determined as the first antenna.
  • the antenna selection message includes one of an RRC message, a DCI message, or a MAC CE message.
  • FIG. 10 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device 8 of this embodiment includes: at least one processor 801 (only one processor is shown in FIG. 10 ), a memory 802 , and is stored in the memory 802 and can run on the at least one processor 801 computer program 803.
  • the processor 801 executes the computer program 803 to implement the steps in the above method embodiments.
  • the electronic device 8 may be an electronic device such as a mobile phone, a desktop computer, a notebook, a handheld computer, and a cloud server.
  • the electronic device may include, but is not limited to, the processor 801 and the memory 802 .
  • FIG. 10 is only an example of the electronic device 8, and does not constitute a limitation to the electronic device 8. It may include more or less components than the one shown, or combine some components, or different components , for example, may also include input and output devices, network access devices, and the like.
  • the processor 801 can be a central processing unit (Central Processing Unit, CPU), and the processor 801 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 802 may in some embodiments be an internal storage unit of the electronic device 8 , such as a hard disk or memory of the electronic device 8 .
  • the memory 802 may also be an external storage device of the electronic device 8 in other embodiments, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) equipped on the electronic device 8 Card, Flash Card, etc.
  • the memory 802 may also include both an internal storage unit of the electronic device 8 and an external storage device.
  • the memory 802 is used to store an operating system, an application program, a boot loader (Boot Loader), data, and other programs, such as program codes of computer programs, and the like.
  • the memory 802 may also be used to temporarily store data that has been or will be output.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device 9 of this embodiment includes: at least one processor 901 (only one processor is shown in FIG. 11 ), a memory 902 , and is stored in the memory 902 and can run on the at least one processor 901 computer program 903.
  • the processor 901 executes the computer program 903 to implement the steps in the above method embodiments.
  • the network device 9 may be a network device such as an eNB, a gNB, or the like.
  • the network device may include, but is not limited to, the processor 901 and the memory 902 .
  • FIG. 11 is only an example of the network device 9, and does not constitute a limitation on the network device 9. It may include more or less components than the one shown, or combine some components, or different components , for example, may also include input and output devices, network access devices, and the like.
  • the processor 901 can be a central processing unit (Central Processing Unit, CPU), and the processor 901 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 902 may in some embodiments be an internal storage unit of the network device 9 , such as a hard disk or memory of the network device 9 .
  • the memory 902 may also be an external storage device of the network device 9 in other embodiments, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) equipped on the network device 9 card, Flash Card, etc.
  • the memory 902 may also include both an internal storage unit of the network device 9 and an external storage device.
  • the memory 902 is used to store an operating system, an application program, a boot loader (Boot Loader), data, and other programs, such as program codes of computer programs, and the like.
  • the memory 902 may also be used to temporarily store data that has been or will be output.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned method embodiments applied to electronic devices can be implemented. step.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned method embodiments applied to network devices can be implemented. step.
  • the embodiments of the present application provide a computer program product, when the computer program product runs on a mobile terminal, the steps in each of the foregoing method embodiments applied to an electronic device can be implemented when the mobile terminal executes the computer program product.
  • the embodiments of the present application provide a computer program product, when the computer program product runs on a mobile terminal, the steps in each of the foregoing method embodiments applied to a network device can be implemented when the mobile terminal executes the computer program product.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above embodiments, which can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include at least: any entity or device capable of carrying computer program codes to an electronic device, a recording medium, computer memory, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunication signals, and software distribution media.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signals telecommunication signals
  • software distribution media For example, U disk, mobile hard disk, disk or CD, etc.
  • computer readable media may not be electrical carrier signals and telecommunications signals.
  • An embodiment of the present application provides a chip system, the chip system includes a memory and a processor, and the processor executes a computer program stored in the memory, so as to implement the steps in each of the foregoing method embodiments applied to an electronic device.
  • An embodiment of the present application provides a chip system, where the chip system includes a memory and a processor, and the processor executes a computer program stored in the memory to implement the steps in each of the foregoing method embodiments applied to a network device.
  • An embodiment of the present application provides a chip system, the chip system includes a processor, the processor is coupled to a computer-readable storage medium, and the processor executes a computer program stored in the computer-readable storage medium, so as to realize the above-mentioned various applications applied to electronic devices. Steps in Method Examples.
  • An embodiment of the present application provides a chip system, the chip system includes a processor, the processor is coupled to a computer-readable storage medium, and the processor executes a computer program stored in the computer-readable storage medium, so as to realize the above-mentioned various methods applied to network devices. Steps in Method Examples.
  • the disclosed method, apparatus and electronic device may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请适用于终端领域,提供了一种天线选择方法、装置、电子设备及可读存储介质。该方法包括:通过每根天线,向网络设备发送天线切换信道探测参考信号。接收来自网络设备发送的天线选择消息,天线选择消息用于指示多根天线中的第一天线和其余每根天线相对于第一天线的信号质量增益。获取第一天线预设的信号质量修正增益。当其余每根天线的信号质量增益均大于第一天线的信号质量修正增益时,确定使用第一天线进行通信。由于第一天线是网络设备测量得到的最优天线,根据最优天线的信号质量修正增益和其余每根天线相对于最优的信号质量增益确定是否使用网络设备测量得到的最优天线进行通信,可以更准确地选择通信质量好的天线并用于通信。

Description

天线选择方法、装置、电子设备及可读存储介质
本申请要求于2021年01月30日提交国家知识产权局、申请号为202110139652.3、申请名称为“天线选择方法、装置、电子设备及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端领域,尤其涉及一种天线选择方法、装置、电子设备及可读存储介质。
背景技术
智能手机、平板电脑等电子设备在通过蜂窝网络与基站通信时,需要通过电子设备中的天线发送或接收通信数据。一个电子设备中包括多根天线。
在进行通信前,需要测量每个天线的通信质量并确定通信质量最好的天线作为最优天线,然后使用最优天线发送或接收通信数据。
但是,当仅通过天线的通信质量确定最优天线时,选择的最优天线可能不准确,进而导致通信质量不佳。
发明内容
本申请实施例提供了天线选择方法、装置、电子设备及可读存储介质,可以改善选择的最优天线不准确,而导致通信质量不佳的问题。
第一方面,本申请实施例提供了一种天线选择方法,应用于电子设备,电子设备包括多根天线,该方法包括:通过每根天线,向网络设备发送天线切换(antenna switch,AS)信道探测参考信号(sounding reference signal,SRS)。接收来自网络设备发送的天线选择消息,天线选择消息用于指示多根天线中的第一天线和其余每根天线相对于第一天线的信号质量增益。获取第一天线预设的信号质量修正增益。当其余每根天线的信号质量增益均大于第一天线的信号质量修正增益时,确定使用第一天线进行通信。
第一方面中的电子设备可以是手机、平板电脑、定制终端等具有天线、可以通过天线进行通信的设备,本申请实施例对电子设备的具体类型不作任何限制。
在第一方面中,通过每根天线,向网络设备发送AS SRS,并接收网络设备返回天线选择消息。最后天线选择消息指示的第一天线的信号质量修正增益以及其余每根天线相对于第一天线的信号质量增益,确定是否通过第一天线进行通信。由于第一天线是网络设备测量得到的最优天线,根据最优天线的信号质量修正增益和其余每根天线相对于最优的信号质量增益确定是否通过网络设备测量得到的最优天线进行通信,可以更加准确地选择通信质量最好的天线并用于通信。
一些实施方式中,当存在任意一个天线的信号质量增益小于信号质量修正增益时,通过每个天线的下行信号质量,确定第二天线。使用第二天线进行通信。
一些实施方式中,天线选择消息包括无线资源控制(radio resource control,RRC) 消息、下行控制信息(downlink control information,DCI)消息或物理层控制元件(MAC control element,MAC CE)消息中的一种。
第二方面,一种天线选择方法,应用于网络设备,该方法包括:接收来自电子设备的多个AS SRS。根据多个AS SRS的上行信号质量,确定第一天线和其余每根天线相对于第一天线的信号质量增益,第一天线为上行信号质量最好的AS SRS对应的天线标识指示的天线。向电子设备发送天线选择消息,天线选择消息用于指示多根天线中的第一天线和其余每根天线相对于第一天线的信号质量增益。
第二方面中的网络设备可以是5G基站(gNB)或4G基站(eNB)等可以接收AS SRS的通信基站,本申请实施例对网络设备的具体类型不作任何限制。
一些实施方式中,根据多个AS SRS的上行信号质量,确定第一天线,包括:
测量每个AS SRS的参考信号接收功率,其中,通过参考信号接收功率表示上行的信号质量时,参考信号接收功率越大表示上行信号质量越好;
将参考信号接收功率最大的AS SRS对应的天线确定为第一天线。
一些实施方式中,根据多个AS SRS的上行信号质量,确定第一天线,包括:
测量每个AS SRS的信号与干扰加噪声比,其中,通过信号与干扰加噪声比表示上行的信号质量时,信号与干扰加噪声比越大表示上行信号质量越好;
将信号与干扰加噪声比最大的AS SRS对应的天线确定为第一天线。
一些实施方式中,天线选择消息包括RRC消息、DCI消息或MAC CE消息中的一种。
第三方面,本申请实施例提供了一种天线选择装置,应用于电子设备,电子设备包括多根天线,该装置包括:发送模块,用于通过每根天线,向网络设备发送天线切换信道探测参考信号。接收模块,用于接收来自网络设备发送的天线选择消息,天线选择消息用于指示多根天线中的第一天线和其余每根天线相对于第一天线的信号质量增益。获取模块,用于获取第一天线预设的信号质量修正增益。确定模块,用于当其余每根天线的信号质量增益均大于第一天线的信号质量修正增益时,确定使用第一天线进行通信。
一些实施方式中,确定模块,还用于当存在任意一个天线的信号质量增益小于信号质量修正增益时,通过每个天线的下行信号质量,确定第二天线。使用第二天线进行通信。
一些实施方式中,天线选择消息包括RRC消息、DCI消息或MAC CE消息中的一种。
第四方面,本申请实施例提供了一种天线选择装置,应用于网络设备,该装置包括:
接收模块,用于接收来自电子设备的多个天线切换信道探测参考信号。确定模块,用于根据多个天线切换信道探测参考信号的上行信号质量,确定第一天线和其余每根天线相对于第一天线的信号质量增益,第一天线为上行信号质量最好的天线切换信道探测参考信号对应的天线标识指示的天线。发送模块,用于向电子设备发送天线选择消息,天线选择消息天线选择消息用于指示多根天线中的第一天线和其余每根天线相对于第一天线的信号质量增益。
一些实施方式中,确定模块,具体用于测量每个AS SRS的参考信号接收功率,其中,通过参考信号接收功率表示上行的信号质量时,参考信号接收功率越大表示上行信号质量越好。将参考信号接收功率最大的AS SRS对应的天线确定为第一天线。
一些实施方式中,确定模块,具体用于测量每个AS SRS的信号与干扰加噪声比,其中,通过信号与干扰加噪声比表示上行的信号质量时,信号与干扰加噪声比越大表示上行信号质量越好。将信号与干扰加噪声比最大的AS SRS对应的天线确定为第一天线。
一些实施方式中,天线选择消息包括RRC消息、DCI消息或MAC CE消息中的一种。
第五方面,本申请实施例提供了一种电子设备,包括多根天线、存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时,通过多根天线实现第一方面提供的方法。
第六方面,本申请实施例提供了一种网络设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时,通过多根天线实现第二方面提供的方法。
第七方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现第一方面提供的方法。
第八方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现第二方面提供的方法。
第九方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得终端设备执行上述第一方面提供的方法。
第十方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得终端设备执行上述第二方面提供的方法。
第十一方面,本申请实施例提供了一种芯片系统,芯片系统包括存储器和处理器,处理器执行存储器中存储的计算机程序,以实现第一方面提供的方法。
第十二方面,本申请实施例提供了一种芯片系统,芯片系统包括存储器和处理器,处理器执行存储器中存储的计算机程序,以实现第二方面提供的方法。
第十三方面,本申请实施例提供了一种芯片系统,芯片系统包括处理器,处理器与第七方面提供的计算机可读存储介质耦合,处理器执行计算机可读存储介质中存储的计算机程序,以实现第一方面提供的方法。
第十四方面,本申请实施例提供了一种芯片系统,芯片系统包括处理器,处理器与第八方面提供的计算机可读存储介质耦合,处理器执行计算机可读存储介质中存储的计算机程序,以实现第二方面提供的方法。
可以理解的是,上述第二方面至第十四方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
图1示出了一种本申请提供的天线选择方法的应用场景示意图;
图2示出了另一种本申请提供的天线选择方法的应用场景示意图;
图3示出了一种本申请提供的电子设备的结构示意图;
图4示出了一种本申请提供的电子设备的系统构架示意图;
图5示出了一种本申请提供的天线选择方法的流程示意图;
图6示出了另一种本申请提供的天线选择方法的流程示意图;
图7示出了另一种本申请提供的天线选择方法的流程示意图;
图8示出了一种本申请提供的天线选择装置的结构示意图;
图9示出了另一种本申请提供的天线选择装置的结构示意图;
图10示出了一种本申请提供的电子设备的结构示意图;
图11示出了一种本申请提供的网络设备的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1示出了一种本申请提供的天线选择方法的应用场景示意图,参考图1,场景中包括电子设备11、电子设备11上包括多根天线,例如,可以包括天线一111、天线二112、天线三113以及天线四114。场景中还包括网络设备12,电子设备11通过天线与网络设备12保持连接态。即,电子设备11为用户设备(User Equipment,UE),网络设备12则为基站,例如可以是gNB或eNB。
由于UE上存在多根天线,因此需要选择其中最优天线进行通信,最优天线在通信时的通信质量最好。现有技术中,是通过配置与UE天线数量相同的多套上行无码表(noncoodbook,Non-CB)SRS资源,并依次在UE的每根天线上通过对应的Non-CB SRS资源,向基站轮发SRS,基站在接收到SRS后,根据天线对应的Non-CB SRS资源测量该天线的上行通信质量。同时,基站还会配置与UE天线数量相同的多套AS SRS资源,并通过AS SRS资源测量SRS的下行通信质量。最后,基站根据每根天线的上行通信质量、下行通信质量计算确定最优天线,并通知UE切换至最优天线。
或者,参考图2,图2示出了另一种本申请提供的天线选择方法的应用场景示意 图,在图2中,可以同时通过两根天线向基站发送SRS,由于Non-CB SRS资源和AS SRS资源进各自仅支持同时发送一个SRS,因此,为了同时发送两个SRS,则需要同时使用Non-CB SRS资源和AS SRS资源进行发送。
但是,部分UE在发送SRS时,不会考虑电磁波吸收比值(Specific Absorption Rate,SAR)。在确定最优天线后,通过天线发送上行物理共享信道(Physical Uplink Shared Channel,PUSCH)数据时,若天线的SAR大于规定的限值,则会对天线进行降SAR操作,降SAR后的天线通信质量可能并不是最优天线,因此,会导致并未在通信质量最优的天线上进行通信。
为此,本申请提供了一种应用于电子设备的天线选择方法,电子设备包括多根天线,该方法包括:依次通过每个天线,在不同的时频资源上向网络设备发送AS SRS和天线的标识信息。接收来自网络设备发送的天线选择消息,天线选择信息包括第一天线的标识消息以及其余每根天线相对于第一天线的信号质量增益。根据标识信息,获取第一天线的信号质量修正增益。当每个天线的信号质量增益均大于信号质量修正增益时,通过第一天线进行通信。
本申请还提供了一种应用于网络设备的天线选择方法,该方法包括:接收来自电子设备的多根AS SRS和每个AS SRS对应天线的标识信息。根据多个AS SRS的上行信号质量确定第一天线,第一天线对应的AS SRS的上行信号质量为接收到的多个AS SRS的上行信号质量中最好的。获取其余每根天线相对于第一天线的信号质量增益,信号质量增益是通过其余每根天线对应的AS SRS与第一天线的AS SRS计算得到的。向电子设备发送天线选择消息,天线选择信息包括第一天线的标识消息以及其余每根天线相对于第一天线的信号质量增益。
在本申请中,通过依次通过每个天线,在不同的时频资源上向网络设备发送AS SRS,并接收网络设备返回的第一天线的标识消息以及其余每根天线相对于第一天线的信号质量增益。最后根据第一天线的信号质量修正增益以及其余每根天线相对于第一天线的信号质量增益,确定是否使用第一天线进行通信。由于第一天线是网络设备测量得到的最优天线,根据最优天线的信号质量修正增益和其余每根天线相对于最优的信号质量增益确定是否使用网络设备测量得到的最优天线进行通信,可以更加准确地选择通信质量最好的天线并用于通信。
同时,由于使用AS SRS测量天线的上行信号质量,可以无需配置Non-CB SRS,或者只需配置一个Non-CB SRS以用于同时测量两根天线的情况,有效减少了基站的SRS资源占用,解决了基站的SRS资源不足的问题。
图3示出了一种电子设备的结构示意图。电子设备200可以包括处理器210,外部存储器接口220,内部存储器221,通用串行总线(universal serial bus,USB)接口230,充电管理模块240,电源管理模块241,电池242,天线1,天线2,移动通信模块250,无线通信模块260,音频模块270,扬声器270A,受话器270B,麦克风270C,耳机接口270D,传感器模块280,按键290,马达291,指示器292,摄像头293,显示屏294,以及用户标识模块(subscriber identification module,SIM)卡接口295等。其中传感器模块280可以包括压力传感器280A,陀螺仪传感器280B,气压传感器280C,磁传感器280D,加速度传感器280E,距离传感器280F,接近光传感器280G,指纹传 感器280H,温度传感器280J,触摸传感器280K,环境光传感器280L,骨传导传感器280M等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备200的具体限定。在本申请另一些实施例中,电子设备200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
作为举例,当电子设备200为手机或平板电脑时,可以包括图示中的全部部件,也可以仅包括图示中的部分部件。
当电子设备200为大屏设备时,可以包括图示中的处理器210,外部存储器接口220,内部存储器221,通用串行总线(universal serial bus,USB)接口230,充电管理模块240,电源管理模块241,无线通信模块260,音频模块270,扬声器270A,受话器270B,麦克风270C,摄像头293,显示屏294。
处理器210可以包括一个或多个处理单元,例如:处理器210可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备200的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器210中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器210中的存储器为高速缓冲存储器。该存储器可以保存处理器210刚用过或循环使用的指令或数据。如果处理器210需要再次使用该指令或数据,可从存储器中直接调用。避免了重复存取,减少了处理器210的等待时间,因而提高了系统的效率。
在一些实施例中,处理器210可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器210可以包含多组I2C总线。处理器210可以通过不同的I2C总线接口分别耦合触摸传感器280K,充电器,闪光灯,摄像头293等。例如:处理器210可以通过I2C接口耦合触摸传感器280K,使处理器210与触摸传感器280K通过I2C总线接口通信,实现电子设备200的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器210可以包含多组I2S总线。处理器210可以通过I2S总线与音频模块270耦合,实现处理器210与音频模块270 之间的通信。在一些实施例中,音频模块270可以通过I2S接口向无线通信模块260传递音频信号。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块270与无线通信模块260可以通过PCM总线接口耦合。
在一些实施例中,音频模块270也可以通过PCM接口向无线通信模块260传递音频信号。I2S接口和PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。
在一些实施例中,UART接口通常被用于连接处理器210与无线通信模块260。例如:处理器210通过UART接口与无线通信模块260中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块270可以通过UART接口向无线通信模块260传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器210与显示屏294,摄像头293等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器210和摄像头293通过CSI接口通信,实现电子设备200的拍摄功能。处理器210和显示屏294通过DSI接口通信,实现电子设备200的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器210与摄像头293,显示屏294,无线通信模块260,音频模块270,传感器模块280等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口230是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口230可以用于连接充电器为电子设备200充电,也可以用于电子设备200与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备200的结构限定。在本申请另一些实施例中,电子设备200也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块240用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块240可以通过USB接口230接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块240可以通过电子设备200的无线充电线圈接收无线充电输入。充电管理模块240为电池242充电的同时,还可以通过电源管理模块241为电子设备供电。
电源管理模块241用于连接电池242,充电管理模块240与处理器210。电源管理模块241接收电池242和/或充电管理模块240的输入,为处理器210,内部存储器221,外部存储器,显示屏294,摄像头293,和无线通信模块260等供电。电源管理模块241还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。
在其他一些实施例中,电源管理模块241也可以设置于处理器210中。在另一些实施例中,电源管理模块241和充电管理模块240也可以设置于同一个器件中。
电子设备200的无线通信功能可以通过天线1,天线2,移动通信模块250,无线通信模块260,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备200中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块250可以提供应用在电子设备200上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块250可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块250可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块250还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。
在一些实施例中,天线1可以通过多根天线耦合。例如,天线1可以包括天线一2501、天线二2502、天线三2503以及天线四2504。
在一些实施例中,移动通信模块250的至少部分功能模块可以被设置于处理器210中。在一些实施例中,移动通信模块250的至少部分功能模块可以与处理器210的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器270A,受话器270B等)输出声音信号,或通过显示屏294显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器210,与移动通信模块250或其他功能模块设置在同一个器件中。
无线通信模块260可以提供应用在电子设备200上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块260可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块260经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器210。无线通信模块260还可以从处理器210接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
无线通信模块260也耦合有多根天线,使得电子设备200可以通过无线通信技术与网络以及其他设备通信。无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),新空口(New Radio,NR),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。GNSS可以包括全球卫星定位系 统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备200通过GPU,显示屏294,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏294和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器210可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏294用于显示图像,视频等。例如本申请实施例中的教学视频和用户动作画面视频,显示屏294包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备200可以包括1个或N个显示屏294,N为大于1的正整数。
电子设备200可以通过ISP,摄像头293,视频编解码器,GPU,显示屏294以及应用处理器等实现拍摄功能。
ISP用于处理摄像头293反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头293中。
摄像头293用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备200可以包括1个或N个摄像头293,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备200在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备200可以支持一种或多种视频编解码器。这样,电子设备200可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备200的智能认知等应用,例如:图像识别,人脸识别,语 音识别,文本理解等。
在本申请实施例中,NPU或其他处理器可以用于对电子设备200存储的视频中的图像进行分析处理等操作。
外部存储器接口220可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备200的存储能力。外部存储卡通过外部存储器接口220与处理器210通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器221可以用于存储计算机可执行程序代码,可执行程序代码包括指令。处理器210通过运行存储在内部存储器221的指令,从而执行电子设备200的各种功能应用以及数据处理。内部存储器221可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)。存储数据区可存储电子设备200使用过程中所创建的数据(比如音频数据,电话本等)。
此外,内部存储器221可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备200可以通过音频模块270,扬声器270A,受话器270B,麦克风270C,耳机接口270D,以及应用处理器等实现音频功能。
音频模块270用于将数字音频信号转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块270还可以用于对音频信号编码和解码。在一些实施例中,音频模块270可以设置于处理器210中,或将音频模块270的部分功能模块设置于处理器210中。
扬声器270A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备200可以通过扬声器270A收听音乐,或收听免提通话,例如扬声器可以播放本申请实施例提供的比对分析结果。
受话器270B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备200接听电话或语音信息时,可以通过将受话器270B靠近人耳接听语音。
麦克风270C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风270C发声,将声音信号输入到麦克风270C。电子设备200可以设置至少一个麦克风270C。在另一些实施例中,电子设备200可以设置两个麦克风270C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备200还可以设置三个,四个或更多麦克风270C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口270D用于连接有线耳机。耳机接口270D可以是USB接口230,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器280A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器280A可以设置于显示屏294。压力传感器280A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可 以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器280A,电极之间的电容改变。电子设备200根据电容的变化确定压力的强度。当有触摸操作作用于显示屏294,电子设备200根据压力传感器280A检测触摸操作强度。电子设备200也可以根据压力传感器280A的检测信号计算触摸的位置。
在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器280B可以用于确定电子设备200的运动姿态。在一些实施例中,可以通过陀螺仪传感器280B确定电子设备200围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器280B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器280B检测电子设备200抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备200的抖动,实现防抖。陀螺仪传感器280B还可以用于导航,体感游戏场景。
气压传感器280C用于测量气压。在一些实施例中,电子设备200通过气压传感器280C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器280D包括霍尔传感器。电子设备200可以利用磁传感器280D检测翻盖皮套的开合。在一些实施例中,当电子设备200是翻盖机时,电子设备200可以根据磁传感器280D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器280E可检测电子设备200在各个方向上(一般为三轴)加速度的大小。当电子设备200静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器280F,用于测量距离。电子设备200可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备200可以利用距离传感器280F测距以实现快速对焦。
接近光传感器280G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备200通过发光二极管向外发射红外光。电子设备200使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备200附近有物体。当检测到不充分的反射光时,电子设备200可以确定电子设备200附近没有物体。电子设备200可以利用接近光传感器280G检测用户手持电子设备200贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器280G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器280L用于感知环境光亮度。电子设备200可以根据感知的环境光亮度自适应调节显示屏294亮度。环境光传感器280L也可用于拍照时自动调节白平衡。环境光传感器280L还可以与接近光传感器280G配合,检测电子设备200是否在口袋里,以防误触。
指纹传感器280H用于采集指纹。电子设备200可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器280J用于检测温度。在一些实施例中,电子设备200利用温度传感器280J检测的温度,执行温度处理策略。例如,当温度传感器280J上报的温度超过阈值,电子设备200执行降低位于温度传感器280J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备200对电池242加热,以避免低温导致电子设备200异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备200对电池242的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器280K,也称“触控面板”。触摸传感器280K可以设置于显示屏294,由触摸传感器280K与显示屏294组成触摸屏,也称“触控屏”。触摸传感器280K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏294提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器280K也可以设置于电子设备200的表面,与显示屏294所处的位置不同。
骨传导传感器280M可以获取振动信号。在一些实施例中,骨传导传感器280M可以获取人体声部振动骨块的振动信号。骨传导传感器280M也可以接触人体脉搏,接收血压跳动信号。
在一些实施例中,骨传导传感器280M也可以设置于耳机中,结合成骨传导耳机。音频模块270可以基于骨传导传感器280M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于骨传导传感器280M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键290包括开机键,音量键等。按键290可以是机械按键。也可以是触摸式按键。电子设备200可以接收按键输入,产生与电子设备200的用户设置以及功能控制有关的键信号输入。
马达291可以产生振动提示。马达291可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏294不同区域的触摸操作,马达291也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器292可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口295用于连接SIM卡。SIM卡可以通过插入SIM卡接口295,或从SIM卡接口295拔出,实现和电子设备200的接触和分离。电子设备200可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口295可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口295可以同时插入多张卡。多张卡的类型可以相同,也可以不同。SIM卡接口295也可以兼容不同类型的SIM卡。SIM卡接口295也可以兼容外部存储卡。电子设备200通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备200采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备200中,不能和电子设备200分离。
图4是本申请实施例的电子设备200的软件结构示意图。以电子设备200的操作系统可以是安卓(Android)、苹果移动操作系统(iOS)或者鸿蒙系统(HarmonyOS)。 在此,以鸿蒙系统为例进行说明。
在一些实施例中,可将鸿蒙系统分为四层,包括内核层、系统服务层、框架层以及应用层,层与层之间通过软件接口通信。
如图4所示,内核层包括内核抽象层(Kernel Abstract Layer,KAL)和驱动子系统。KAL下包括多个内核,如Linux系统的内核Linux Kernel、轻量级物联网系统内核LiteOS等。驱动子系统则可以包括硬件驱动框架(Hardware Driver Foundation,HDF)。硬件驱动框架能够提供统一外设访问能力和驱动开发、管理框架。多内核的内核层可以根据系统的需求选择相应的内核进行处理。
系统服务层是鸿蒙系统的核心能力集合,系统服务层通过框架层对应用程序提供服务。该层可包括:
系统基本能力子系统集:为分布式应用在鸿蒙系统多设备上的运行、调度、迁移等操作提供了基础能力。可包括分布式软总线、分布式数据管理、分布式任务调度、方舟多语言运行时、公共基础库、多模输入、图形、安全、人工智能(Artificial Intelligence,AI)等子系统。其中,方舟多语言运行时提供了C或C++或JavaScript(JS)多语言运行时和基础的系统类库,也可以为使用方舟编译器静态化的Java程序(即应用程序或框架层中使用Java语言开发的部分)提供运行时。
基础软件服务子系统集:为鸿蒙系统提供公共的、通用的软件服务。可包括事件通知、电话、多媒体、面向X设计(Design For X,DFX)、MSDP&DV等子系统。
增强软件服务子系统集:为鸿蒙系统提供针对不同设备的、差异化的能力增强型软件服务。可包括智慧屏专有业务、穿戴专有业务、物联网(Internet of Things,IoT)专有业务子系统组成。
硬件服务子系统集:为鸿蒙系统提供硬件服务。可包括位置服务、生物特征识别、穿戴专有硬件服务、IoT专有硬件服务等子系统。
框架层为鸿蒙系统应用开发提供了Java、C、C++、JS等多语言的用户程序框架和能力(Ability)框架,两种用户界面(User Interface,UI)框架(包括适用于Java语言的Java UI框架、适用于JS语言的JS UI框架),以及各种软硬件服务对外开放的多语言框架应用程序接口(Application Programming Interface,API)。根据系统的组件化裁剪程度,鸿蒙系统设备支持的API也会有所不同。
应用层包括系统应用和第三方非系统应用。系统应用可包括桌面、控制栏、设置、电话等电子设备默认安装的应用程序。扩展应用可以是由电子设备的制造商开发设计的、非必要的应用,如电子设备管家、换机迁移、便签、天气等应用程序。而第三方非系统应用则可以是由其他厂商开发,但是可以在鸿蒙系统中运行应用程序,如游戏、导航、社交或购物等应用程序。
鸿蒙系统的应用由一个或多个元程序(Feature Ability,FA)或元服务(Particle Ability,PA)组成。其中,FA有UI界面,提供与用户交互的能力。而PA无UI界面,提供后台运行任务的能力以及统一的数据访问抽象。PA主要为FA提供支持,例如作为后台服务提供计算能力,或作为数据仓库提供数据访问能力。基于FA或PA开发的应用,能够实现特定的业务功能,支持跨设备调度与分发,为用户提供一致、高效的应用体验。
多个运行鸿蒙系统的电子设备之间可以通过分布式软总线、分布式设备虚拟化、分布式数据管理和分布式任务调度实现硬件互助和资源共享。
图5示出了一种本申请提供的天线选择方法的示意性流程图,作为示例而非限定,该方法可以应用于上述电子设备和网络设备中。
需要说明的是,图5中的电子设备和网络设备都具有L1、L2和L3三层,其中L1为物理层(PHY)可用于传输DCI消息。L2为数据链路层,包括媒体接入控制(Media Access Control,MAC)、无线链路层控制(Radio Link Control,RLC)、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)和服务数据适配协议(Service Data Adaptation Protocol,SDAP),可用于传输MAC CE消息。L3则为无线资源控制层,用于传输RRC消息。
该方法包括:
S301、电子设备的L3与网络设备的L3进行交互,网络设备获取电子设备的天线选择能力,电子设备接收网络设备配置的AS SRS资源。
一些实施方式中,天线选择能力包括天线数量、每根天线的标识信息以及是否支持闭环天线选择。例如,天线数量可以为4根,4个天线的标识信息可以分别为port0、port1、port2和port3。其中,闭环天线选择指的是能够发送用于天线选择的测量信号,并根据接收到的天线选择消息切换用于通信的天线。天线选择能力还包括发送天线选择(Transmit Antenna Selection,TAS)技术,该技术通过获取每根天线的下行能量,然后将每根下行能量中的主集能量与分集能量相减,得到下行能量差值。当下行能量差值大于预设的门限阈值时,确定当前测量的天线为最优天线。最后,检测当前用于通信的天线是否为最优天线,若是,则记录下行最优天线的标识信息。若不是,则将当前测量的天线用于通信,然后记录下行最优天线的标识信息。
需要说明的是,AS SRS资源为时域上的SRS资源。在时域上,SRS可占用普通上行子帧或特殊子帧的最后一个符号。在时分双工(Time Division Duplexing,TDD)系统中,SRS可以通过上行导频时隙(Uplink Pilot Time Slot,UpPTS)中的一个或两个单载波频分多址(Single-carrierfrequency division multiple access,SC-FDMA)符号传输。另外,SRS的传输周期(Tsks)可以从以单位为毫秒ms的时间集合{2,5,10,20,40,80,160,320}中选择。SRS资源包括一个确定的SC-FDMA和一个确定的传输周期。
一些实施方式中,网络设备还可以根据实际需求,为电子设备配置Non-CB SRS资源或者CB SRS资源。Non-CB SRS资源或者CB SRS资源与AS SRS资源类似,在此不做赘述。
一些实施方式中,网络设备可以根据电子设备天线的数量,配置对应数量的AS SRS资源。例如,若天线数量为4根,则可以为每个天线配置一个对应的AS SRS资源,即4套AS SRS资源。
S302、网络设备的L3获取电子设备配置的AS SRS的资源并上报给网络设备的L1。
S303、电子设备的L1依次通过每个天线,在不同的时频资源上发送AS SRS信号。
S304、网络设备的L1根据配置的AS SRS资源,测量每个AS SRS的上行信号质量。
一些实施方式中,假设电子设备的L1包括四根天线,每根天线配置了对应的AS SRS资源,四根天线依次通过对应的AS SRS资源发送AS SRS。网络设备的L1在接收到L3发送的配置给电子声的AS SRS资源后,在每个AS SRS资源上测量AS SRS的上行信号。当电子设备的四根天线轮发一遍后,网络设备即可测量到4个AS SRS的上行信号质量。
测量AS SRS的上行信号质量可以通过测量AS SRS的参考信号接收功率(Reference Signal Receiving Power,RSRP)或信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)来表示。
作为示例,当通过RSRP表示上行的信号质量时,RSRP越大表示上行信号质量越好。RSRP的单位是dBm。例如,参考S301中天线的示例,若port1的RSRP为-55dBm、port2的RSRP为-90dBm、port3的RSRP为-77dBm、port4的RSRP为-104dBm,则por1的上行信号质量最好,其次为port3,然后是port2,最次的为port4。
当通过SINR表示上行的信号质量时,SINR越大表示上行信号质量越好。SINR可基于RSRP计算获得,计算SINR可参照以下公式:
Figure PCTCN2021140163-appb-000001
其中,干扰功率(I)为网络设备接收到的AS SRS信号所占的资源块(Resource Element,RE)上接收到的邻小区的功率之和,噪声功率(N)为底噪,N的数值与具体测量带宽和接收机噪声系数有关。
S305、网络设备的L1将每个AS SRS的上行信号质量的测量结果发送给网络设备的L2。
S306、网络设备的L2确定第一天线,以及其余天线相对于第一天线的增益。
一些实施方式中,网络设备的L2可以将RSRP最大的天线确定为第一天线。或者,将SINR最大的天线确定为第一天线。
还有一种实施方式中,网络设备的L2可以根据RSRP,以及该RSRP对应天线的AS SRS发射功率,计算等效链路损耗(PathLoss),将等效链路损耗最低的天线作为第一天线。例如,等效链路损耗可以为参考信号的信号功率即对应天线的AS SRS的RSRP之差,其中,参考信号的信号功率可从网络设备的系统消息中获取。
S307、网络设备的L2向网络设备的L3上报第一天线的标识信息,以及其余天线相对于第一天线的增益。
一些实施方式中,可以将其余每根天线的RSRP与第一天线的RSRP之差,作为该天线相对于第一天线的增益。或者,还可以将其余每根天线的SINR与第一天线的SINR之差,作为该天线相对于第一天线的增益。增益的算法在本申请中不做限制。
S308、网络设备的L3通过RRC消息向电子设备的L3发送第一天线的标识信息,以及其余天线相对于第一天线的增益。
S309、电子设备的L3根据标识信息,获取第一天线的信号质量修正增益。
一些实施方式中,信号质量修正增益可以为降SAR值,每根天线对应一个预设 的降SAR值,可根据天线的标识信息,从天线的属性信息中获取该天线对应的降SAR值。其中,天线的属性信息是制造电子设备时确定的。例如,天线数量可以为4根,4个天线的标识信息可以分别为port0、port1、port2和port3。port0、port1、port2和port3的降SAR值分别为2dB、5dB、6dB和7dB。
S310、电子设备的L3判断是否每个天线的信号质量增益均大于信号质量修正增益,若是,则执行S311,若否,则执行S312。
一些实施方式中,参考S309的示例,若port0对应的天线为第一天线,则port1、port2和port3相对于port0的增益可以分别为2dB、4dB和3dB。通过降SAR值修正后,port0、port1、port2和port3的综合增益可分别为-2dB(0dB-2dB)、-3dB(2dB-5dB)、-2dB(4dB-6dB)和-4dB(3dB-7dB)。port0的综合增益最大,因此执行S311。或者,若port0对应的天线为第一天线,则port1、port2和port3相对于port0的增益可以分别为2dB、4dB和6dB。通过降SAR值修正后,port0、port1、port2和port3的综合增益可分别为-2dB(0dB-2dB)、-3dB(2dB-5dB)、-2dB(4dB-6dB)和-1dB(6dB-7dB)。port3的综合增益大于port0,因此执行S312。
S311、电子设备的L1切换至第一天线进行通信。
一些实施方式中,若每个天线的信号质量增益均大于降SAR值,则表明当前的第一天线在降SAR之后,其通信质量依然优于其余天线。即确定第一天线为当前场景下的最优天线,可以通过第一天线进行通信。
S312、电子设备的L3通过TAS确定第二天线。
S313、电子设备的L1切换至第二天线进行通信。
另一些实施方式中,若每个天线的信号质量增益中存在小于降SAR值的,则表明当前的第一天线在降SAR之后,其通信质量并非最优。因此,需要通过TAS的方式重新选择最优天线(即第二天线),然后通过第二天线进行通信。
在上述实施例中,网络设备通过RRC消息向电子设备通知最优天线以及其余天线相对于最优天线的选择结果。
在一些实施方式中,参考图6,网络设备还可以通过DCI消息向电子设备发送通知,以实现本申请提供的天线选择方法,该方法包括:
S401、电子设备的L3与网络设备的L3进行交互,网络设备获取电子设备的天线选择能力,电子设备接收网络设备配置的AS SRS资源。
S402、网络设备的L3获取电子设备配置的AS SRS的资源并上报给网络设备的L1。
S403、电子设备的L1依次通过每个天线,在不同的时频资源上发送AS SRS信号。
S404、网络设备的L1根据配置的AS SRS资源,测量每个AS SRS的上行信号质量。
S405、网络设备的L1将每个AS SRS的上行信号质量的测量结果发送给网络设备的L2。
S406、网络设备的L2确定第一天线,以及其余天线相对于第一天线的增益。
S401至S406的执行方式与S301至S306相同,在此不做赘述。
S407、网络设备的L2向网络设备的L1上报第一天线的标识信息,以及其余天线相对于第一天线的增益。
S408、网络设备的L1通过DCI消息向电子设备的L1发送第一天线的标识信息以及其余天线相对于第一天线的增益,电子设备的L1将第一天线的标识信息以及其余天线相对于第一天线的增益上报给电子设备的L3。
其中,DCI消息是物理层之间传递的消息,在网络设备的L1接收到L2上报的第一天线的标识信息,以及其余天线相对于第一天线的增益,将其通过DCI消息发送给电子设备的L1。
S409、电子设备的L3根据标识信息,获取第一天线的信号质量修正增益。
S410、电子设备的L3判断是否每个天线的信号质量增益均大于信号质量修正增益,若是,则执行S411,若否,则执行S412。
S411、电子设备的L1切换至第一天线进行通信。
S412、电子设备的L3通过TAS确定第二天线。
S413、电子设备的L1切换至第二天线进行通信。
S409至S413的执行方式与S309至S313相同,在此不做赘述。
在一些实施方式中,参考图7,网络设备还可以通过MAC CE消息向电子设备发送通知,以实现本申请提供的天线选择方法,该方法包括:
S501、电子设备的L3与网络设备的L3进行交互,网络设备获取电子设备的天线选择能力,电子设备接收网络设备配置的AS SRS资源。
S502、网络设备的L3获取电子设备配置的AS SRS的资源并上报给网络设备的L1。
S503、电子设备的L1依次通过每个天线,在不同的时频资源上发送AS SRS信号。
S504、网络设备的L1根据配置的AS SRS资源,测量每个AS SRS的上行信号质量。
S505、网络设备的L1将每个AS SRS的上行信号质量的测量结果发送给网络设备的L2。
S506、网络设备的L2确定第一天线,以及其余天线相对于第一天线的增益。
S501至S506的执行方式与S301至S307相同,在此不做赘述。
S507、网络设备的L2通过MAC CE消息向电子设备的L2发送第一天线的标识信息以及其余天线相对于第一天线的增益,电子设备的L2将第一天线的标识信息以及其余天线相对于第一天线的增益上报给电子设备的L3。
其中,MAC CE消息是数据链路层之间传递的消息,在网络设备的L2确定的第一天线的标识信息以及其余天线相对于第一天线的增益后,将其通过MAC CE消息发送给电子设备的L2。
S508、电子设备的L3根据标识信息,获取第一天线的信号质量修正增益。
S509、电子设备的L3判断是否每个天线的信号质量增益均大于信号质量修正增益,若是,则执行S510,若否,则执行S511。
S510、电子设备的L1切换至第一天线进行通信。
S511、电子设备的L3通过TAS确定第二天线。
S512、电子设备的L1切换至第二天线进行通信。
S508至S512的执行方式与S309至S313相同,在此不做赘述。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
对应于上文实施例中应用于电子设备的天线选择方法,图8示出了本申请实施例提供的天线选择装置的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。
参照图8,该装置应用于电子设备,包括:
发送模块601,用于通过每根天线,向网络设备发送天线切换信道探测参考信号。
接收模块602,用于接收来自网络设备发送的天线选择消息,天线选择消息用于指示多根天线中的第一天线和其余每根天线相对于第一天线的信号质量增益。
获取模块603,用于获取第一天线预设的信号质量修正增益。
确定模块604,用于当其余每根天线的信号质量增益均大于第一天线的信号质量修正增益时,确定使用第一天线进行通信。
一些实施方式中,确定模块604,还用于当存在任意一个天线的信号质量增益小于信号质量修正增益时,通过每个天线的下行信号质量,确定第二天线。使用第二天线进行通信。
一些实施方式中,天线选择消息包括RRC消息、DCI消息或MAC CE消息中的一种。
对应于上文实施例中应用于网络设备的天线选择方法,图9示出了本申请实施例提供的天线选择装置的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。
参照图9,该装置应用于网络设备,包括:
接收模块701,用于接收来自电子设备的多个天线切换信道探测参考信号。
确定模块702,用于根据多个天线切换信道探测参考信号的上行信号质量,确定第一天线和其余每根天线相对于第一天线的信号质量增益,第一天线为上行信号质量最好的天线切换信道探测参考信号对应的天线标识指示的天线。
发送模块703,用于向电子设备发送天线选择消息,天线选择消息天线选择消息用于指示多根天线中的第一天线和其余每根天线相对于第一天线的信号质量增益。
一些实施方式中,确定模块702,具体用于测量每个AS SRS的参考信号接收功率,其中,通过参考信号接收功率表示上行的信号质量时,参考信号接收功率越大表示上行信号质量越好。将参考信号接收功率最大的AS SRS对应的天线确定为第一天线。
一些实施方式中,确定模块702,具体用于测量每个AS SRS的信号与干扰加噪声比,其中,通过信号与干扰加噪声比表示上行的信号质量时,信号与干扰加噪声比越大表示上行信号质量越好。将信号与干扰加噪声比最大的AS SRS对应的天线确定为第一天线。
一些实施方式中,天线选择消息包括RRC消息、DCI消息或MAC CE消息中的 一种。
需要说明的是,上述模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图10为本申请一实施例提供的电子设备的结构示意图。如图10所示,该实施例的电子设备8包括:至少一个处理器801(图10中仅示出一个处理器)、存储器802以及存储在存储器802中并可在至少一个处理器801上运行的计算机程序803。处理器801执行计算机程序803实现上述方法实施例中的步骤。
电子设备8可以是手机、桌上型计算机、笔记本、掌上电脑及云端服务器等电子设备。该电子设备可包括,但不仅限于,处理器801、存储器802。本领域技术人员可以理解,图10仅仅是电子设备8的举例,并不构成对电子设备8的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
处理器801可以是中央处理单元(Central Processing Unit,CPU),该处理器801还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器802在一些实施例中可以是电子设备8的内部存储单元,例如电子设备8的硬盘或内存。存储器802在另一些实施例中也可以是电子设备8的外部存储设备,例如电子设备8上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器802还可以既包括电子设备8的内部存储单元也包括外部存储设备。存储器802用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如计算机程序的程序代码等。存储器802还可以用于暂时地存储已经输出或者将要输出的数据。
图11为本申请一实施例提供的网络设备的结构示意图。如图11所示,该实施例的网络设备9包括:至少一个处理器901(图11中仅示出一个处理器)、存储器902以及存储在存储器902中并可在至少一个处理器901上运行的计算机程序903。处理器901执行计算机程序903实现上述方法实施例中的步骤。
网络设备9可以是eNB、gNB等网络设备。该网络设备可包括,但不仅限于,处理器901、存储器902。本领域技术人员可以理解,图11仅仅是网络设备9的举例,并不构成对网络设备9的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
处理器901可以是中央处理单元(Central Processing Unit,CPU),该处理器901还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器902在一些实施例中可以是网络设备9的内部存储单元,例如网络设备9的硬盘或内存。存储器902在另一些实施例中也可以是网络设备9的外部存储设备,例如网络设备9上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器902还可以既包括网络设备9的内部存储单元也包括外部存储设备。存储器902用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如计算机程序的程序代码等。存储器902还可以用于暂时地存储已经输出或者将要输出的数据。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时可实现上述各个应用于电子设备的方法实施例中的步骤。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时可实现上述各个应用于网络设备的方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时可实现上述各个应用于电子设备的方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时可实现上述各个应用于网络设备的方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到电子设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
本申请实施例提供了一种芯片系统,芯片系统包括存储器和处理器,处理器执行 存储器中存储的计算机程序,以实现上述各个应用于电子设备的方法实施例中的步骤。
本申请实施例提供了一种芯片系统,芯片系统包括存储器和处理器,处理器执行存储器中存储的计算机程序,以实现上述各个应用于网络设备的方法实施例中的步骤。
本申请实施例提供了一种芯片系统,芯片系统包括处理器,处理器与计算机可读存储介质耦合,处理器执行计算机可读存储介质中存储的计算机程序,以实现上述各个应用于电子设备的方法实施例中的步骤。
本申请实施例提供了一种芯片系统,芯片系统包括处理器,处理器与计算机可读存储介质耦合,处理器执行计算机可读存储介质中存储的计算机程序,以实现上述各个应用于网络设备的方法实施例中的步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的方法、装置和电子设备,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种天线选择方法,应用于电子设备,其特征在于,所述电子设备包括多根天线,所述方法包括:
    通过每根所述天线,向网络设备发送天线切换信道探测参考信号;
    接收来自所述网络设备发送的天线选择消息,所述天线选择消息用于指示所述多根天线中的第一天线和其余每根天线相对于所述第一天线的信号质量增益;
    获取所述第一天线预设的信号质量修正增益;
    当所述其余每根天线的信号质量增益均大于所述第一天线的所述信号质量修正增益时,确定使用所述第一天线进行通信。
  2. 根据权利要求1所述的方法,其特征在于,当存在任意一个所述天线的信号质量增益小于所述信号质量修正增益时,通过每根所述天线的下行信号质量,确定第二天线;
    使用所述第二天线进行通信。
  3. 根据权利要求1或2所述的方法,其特征在于,所述天线选择消息包括无线资源控制消息、下行控制信息消息或物理层控制元件消息中的一种。
  4. 一种天线选择方法,应用于网络设备,其特征在于,所述方法包括:
    接收来自电子设备的多个天线切换信道探测参考信号;
    根据多个所述天线切换信道探测参考信号的上行信号质量,确定第一天线和其余每根天线相对于所述第一天线的信号质量增益,所述第一天线为上行信号质量最好的天线切换信道探测参考信号对应的天线标识指示的天线;
    向所述电子设备发送天线选择消息,所述天线选择消息用于指示多根天线中的第一天线和所述其余每根天线相对于所述第一天线的信号质量增益。
  5. 根据权利要求4所述的方法,其特征在于,根据多个所述天线切换信道探测参考信号的上行信号质量,确定第一天线,包括:
    测量每个所述天线切换信道探测参考信号的参考信号接收功率,其中,通过所述参考信号接收功率表示所述上行信号的质量时,所述参考信号接收功率越大表示所述上行信号质量越好;
    将所述参考信号接收功率最大的所述天线切换信道探测参考信号对应的天线确定为所述第一天线。
  6. 根据权利要求4所述的方法,其特征在于,根据多个所述天线切换信道探测参考信号的上行信号质量,确定第一天线,包括:
    测量每个所述天线切换信道探测参考信号的信号与干扰加噪声比,其中,通过所述信号与干扰加噪声比表示所述上行的信号质量时,所述信号与干扰加噪声比越大表示所述上行信号质量越好;
    将所述信号与干扰加噪声比最大的所述天线切换信道探测参考信号对应的天线确定为所述第一天线。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,所述天线选择消息包括无线资源控制消息、下行控制信息消息或物理层控制元件消息中的一种。
  8. 一种天线选择装置,应用于电子设备,其特征在于,所述电子设备包括多根天 线,所述装置包括:
    发送模块,用于通过每根所述天线,向网络设备发送天线切换信道探测参考信号;
    接收模块,用于接收来自所述网络设备发送的天线选择消息,所述天线选择消息用于指示所述多根天线中的第一天线和其余每根天线相对于所述第一天线的信号质量增益;
    获取模块,用于获取所述第一天线预设的信号质量修正增益;
    确定模块,用于当其余每根所述天线的信号质量增益均大于所述第一天线的所述信号质量修正增益时,确定使用所述第一天线进行通信。
  9. 一种天线选择装置,应用于网络设备,其特征在于,所述装置包括:
    接收模块,用于接收来自电子设备的多个天线切换信道探测参考信号;
    确定模块,用于根据多个所述天线切换信道探测参考信号的上行信号质量,确定第一天线和其余每根天线相对于所述第一天线的信号质量增益,所述第一天线为上行信号质量最好的天线切换信道探测参考信号对应的天线标识指示的天线;
    发送模块,用于向所述电子设备发送天线选择消息,所述天线选择消息所述天线选择消息用于指示多根天线中的第一天线和所述其余每根天线相对于所述第一天线的信号质量增益。
  10. 一种电子设备,包括多根天线、存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,通过多根天线实现如权利要求1至3任一项所述的方法。
  11. 一种网络设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,通过多根天线实现如权利要求4至7任一项所述的方法。
  12. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至3任一项所述的方法。
  13. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求4至7任一项所述的方法。
PCT/CN2021/140163 2021-01-30 2021-12-21 天线选择方法、装置、电子设备及可读存储介质 WO2022161036A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21922626.3A EP4270810A1 (en) 2021-01-30 2021-12-21 Method and apparatus for selecting antenna, electronic device, and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110139652.3A CN114844542A (zh) 2021-01-30 2021-01-30 天线选择方法、装置、电子设备及可读存储介质
CN202110139652.3 2021-01-30

Publications (1)

Publication Number Publication Date
WO2022161036A1 true WO2022161036A1 (zh) 2022-08-04

Family

ID=82560888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140163 WO2022161036A1 (zh) 2021-01-30 2021-12-21 天线选择方法、装置、电子设备及可读存储介质

Country Status (3)

Country Link
EP (1) EP4270810A1 (zh)
CN (1) CN114844542A (zh)
WO (1) WO2022161036A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208438B (zh) * 2022-09-05 2023-02-03 荣耀终端有限公司 一种天线控制方法及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150349870A1 (en) * 2014-05-30 2015-12-03 Apple Inc. Dynamic Antenna Switching
CN109067418A (zh) * 2018-09-19 2018-12-21 维沃移动通信有限公司 一种天线控制方法及移动终端
WO2019191970A1 (zh) * 2018-04-04 2019-10-10 华为技术有限公司 通信方法、通信装置和系统
CN112290983A (zh) * 2020-10-30 2021-01-29 深圳移航通信技术有限公司 天线选择方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150349870A1 (en) * 2014-05-30 2015-12-03 Apple Inc. Dynamic Antenna Switching
WO2019191970A1 (zh) * 2018-04-04 2019-10-10 华为技术有限公司 通信方法、通信装置和系统
CN109067418A (zh) * 2018-09-19 2018-12-21 维沃移动通信有限公司 一种天线控制方法及移动终端
CN112290983A (zh) * 2020-10-30 2021-01-29 深圳移航通信技术有限公司 天线选择方法和装置

Also Published As

Publication number Publication date
EP4270810A1 (en) 2023-11-01
CN114844542A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2020168965A1 (zh) 一种具有折叠屏的电子设备的控制方法及电子设备
WO2020244623A1 (zh) 一种空鼠模式实现方法及相关设备
WO2021036776A1 (zh) 一种无线充电方法及电子设备
WO2021043045A1 (zh) 一种网络配置信息的配置方法及设备
WO2021043219A1 (zh) 一种蓝牙回连方法及相关装置
US20220174143A1 (en) Message notification method and electronic device
WO2021023046A1 (zh) 一种电子设备控制方法及一种电子设备
WO2021083128A1 (zh) 一种声音处理方法及其装置
WO2021036898A1 (zh) 折叠屏设备中应用打开方法及相关装置
CN111132234A (zh) 一种数据传输方法及对应的终端
WO2022012444A1 (zh) 多设备协作的方法、电子设备及多设备协作系统
WO2021190314A1 (zh) 触控屏的滑动响应控制方法及装置、电子设备
WO2022227906A1 (zh) 一种确定最小时隙偏移值的方法和装置
WO2022262492A1 (zh) 数据下载方法、装置和终端设备
WO2022257592A1 (zh) 一种开关切换方法及相关装置
CN111757451B (zh) 一种调节蓝牙输出功率的方法和终端设备
WO2022161036A1 (zh) 天线选择方法、装置、电子设备及可读存储介质
CN112099741B (zh) 显示屏位置识别方法、电子设备及计算机可读存储介质
CN115065997B (zh) 小区变更方法及终端设备
CN113467747B (zh) 音量调节方法、电子设备及存储介质
CN113572586B (zh) 一种探测参考信号的发送方法、用户设备以及系统
US20230354202A1 (en) Transmit power control method, terminal, chip system, and system
WO2021052408A1 (zh) 一种电子设备显示方法及电子设备
CN116055988A (zh) 一种双卡通信的方法和终端设备
CN114915359A (zh) 选择信道的方法、装置、电子设备和可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021922626

Country of ref document: EP

Effective date: 20230727

NENP Non-entry into the national phase

Ref country code: DE