WO2017148429A1 - 传输数据的方法和装置 - Google Patents

传输数据的方法和装置 Download PDF

Info

Publication number
WO2017148429A1
WO2017148429A1 PCT/CN2017/075523 CN2017075523W WO2017148429A1 WO 2017148429 A1 WO2017148429 A1 WO 2017148429A1 CN 2017075523 W CN2017075523 W CN 2017075523W WO 2017148429 A1 WO2017148429 A1 WO 2017148429A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
modulation symbol
network device
antenna port
terminal device
Prior art date
Application number
PCT/CN2017/075523
Other languages
English (en)
French (fr)
Inventor
邓娜
任海豹
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17759280.5A priority Critical patent/EP3416445B1/en
Publication of WO2017148429A1 publication Critical patent/WO2017148429A1/zh
Priority to US16/119,264 priority patent/US11296839B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method and apparatus for transmitting data.
  • CoMP Coordinated Multipoint Transmission
  • Multiple neighboring cells in CoMP technology can jointly process or coordinate edge users to avoid interference and improve edge user throughput.
  • Downlink CoMP technologies mainly include Joint Transmission (JT), Coordinated Scheduling (CS), Coordinated Beamforming (CB), and Dynamic Point Selection/Dynamic Point Blanking (DPS/DPB).
  • JT Joint Transmission
  • CS Coordinated Scheduling
  • CB Coordinated Beamforming
  • DPS/DPB Dynamic Point Selection/Dynamic Point Blanking
  • JT Joint Transmission
  • CS Coordinated Scheduling
  • CB Coordinated Beamforming
  • DPS/DPB Dynamic Point Selection/Dynamic Point Blanking
  • multiple coordinated transmission points transmit the same data to the terminal device.
  • the coordinated cell performs processing of a Physical Downlink Shared Channel (PDSCH) in exactly the same manner as the serving cell, obtains the same modulation symbol, and transmits the modulation symbol on the same resource unit.
  • PDSCH Physical Downlink Shared Channel
  • From the perspective of the terminal device it can be considered that the received data is from the serving cell, but the strength of the useful signal is increased, so that the received signal quality of the edge user can be significantly improved, and the edge user throughput is improved.
  • the solution can only significantly improve the user experience of the edge users, and the user experience of the non-edge users is not greatly improved.
  • Embodiments of the present invention provide a method and apparatus for transmitting data, which can improve data transmission efficiency or data transmission reliability.
  • the first aspect provides a method for transmitting data, including: processing, by a network device to which the first cell belongs, the first data, to obtain at least one first modulation symbol on the first antenna port set, the first antenna port set At least one first antenna port is included; the network device to which the first cell belongs sends the first modulation symbol of the first cell to the terminal device in the first subframe by using the first carrier, where the network device to which the second cell belongs Transmitting, by the first carrier, at least one second modulation symbol on the second antenna port set obtained by processing the second data to the terminal device in the first subframe, where the second antenna port set includes the second cell At least one second antenna port, the at least one first modulation symbol is different from the at least one second modulation symbol, and the at least one first antenna port is different from the at least one second antenna port.
  • the network device to which the first cell belongs by processing the first data, obtains at least one first modulation symbol on the at least one first antenna port of the first cell, where the second cell belongs Obtaining, by the network device, the at least one second modulation symbol on the at least one second antenna port of the second cell, where the at least one first modulation symbol is different from the at least one second modulation symbol, And the at least one first antenna port is different from the at least one second antenna port, and the network device to which the first cell belongs and the network device to which the second cell belongs are respectively sent to the terminal device in the same frequency band and in the same subframe.
  • a first modulation symbol and the at least one second modulation symbol can improve data transmission efficiency or data transmission reliability of the system.
  • the first cell and the second cell are the same cell, and at least one first of the first cell
  • the antenna port belongs to the first transmission point of the first cell
  • the at least one second antenna port of the second cell belongs to the second transmission point of the first cell, where the first transmission point is different from the second transmission point.
  • the network device sends at least one first modulation symbol and different to the terminal device through the at least one first antenna port of the first transmission point and the at least one second antenna port of the second transmission point in the same frequency band and the same subframe respectively. At least one second modulation symbol of the at least one first modulation symbol.
  • the first cell is different from the second cell, and the network device to which the first cell belongs is the same as the network device to which the second cell belongs.
  • the network device sends at least one first modulation symbol to the terminal device through the at least one first antenna port of the first cell and the at least one second antenna port of the second cell in the same frequency band and the same subframe, respectively. At least one second modulation symbol of the at least one first modulation symbol.
  • the first cell is different from the second cell
  • the network device to which the first cell belongs is different from the network device to which the second cell belongs.
  • the network device to which the first cell belongs processes the first data to obtain at least one first modulation symbol on the first antenna port set, including: the first cell
  • the associated network device performs a scrambling process on the first coded bit corresponding to the first data to obtain a first scrambled bit.
  • the network device to which the first cell belongs performs the first initial modulation symbol corresponding to the first scrambled bit.
  • Performing a layer mapping process to obtain a first initial modulation symbol mapped to the at least one transport layer; the network device to which the first cell belongs performs precoding processing on the first initial modulation symbol mapped to the at least one transport layer, to obtain the first antenna At least one first modulation symbol on the set of ports.
  • the method further includes: the network device performing scrambling processing on the second coded bit corresponding to the second data, to obtain the first a second scrambling bit; the network device performs layer mapping processing on the second initial modulation symbol corresponding to the second scrambled bit to obtain a second initial modulation symbol mapped to the at least one transport layer; the network device to which the first cell belongs The second initial modulation symbol mapped to the at least one transport layer is precoded to obtain at least one second modulation symbol on the second set of antenna ports.
  • the network device to which the first cell belongs performs scrambling processing on the first coded bit corresponding to the first data, to obtain the first scrambling a bit, including: if the first cell is a coordinated cell of the terminal device, the network device to which the first cell belongs determines an initial value of the scrambling code according to the cell identifier of the first cell; and the network device to which the first cell belongs The initial value of the scrambling code is subjected to scrambling processing on the first coded bit corresponding to the first data to obtain the first scrambled bit.
  • the method includes: the network device to which the first cell belongs sends the first indication information to the terminal device, where the first indication information is used to indicate a port number of the at least one first antenna port and/or the at least one The port number of the two antenna ports.
  • the method further includes: if the first cell is a serving cell of the terminal device, the network device to which the first cell belongs to the terminal The device sends the second indication information, where the second indication information is used to indicate the cell identifier of the second cell, so that the terminal device demodulates the received at least one second modulation symbol according to the cell identifier of the second cell. deal with.
  • the network device to which the first cell belongs performs layer mapping processing on the first initial modulation symbol corresponding to the first scrambling bit, and obtains a mapping.
  • the first initial modulation symbol to the at least one transport layer includes: if the first cell is a coordinated cell of the terminal device, the network device to which the first cell belongs determines the number of the at least one transport layer, wherein the at least one Transport layer The number is determined according to a channel state of a transport channel between the first cell and the terminal device; the network device to which the first cell belongs corresponds to the first corresponding to the first scrambled bit according to the number of the at least one transport layer
  • the initial modulation symbols are subjected to layer mapping processing to obtain the first initial modulation symbols mapped to at least one of the transport layers.
  • the at least one second antenna port belongs to a second transmission point of the cell
  • the network device to which the cell belongs determines the number of at least one first transport layer, wherein the number of the at least one first transport layer is determined according to a channel state of a transport channel between the first transmission point and the terminal device;
  • the network device performs layer mapping processing on the first initial modulation symbol corresponding to the first scrambling bit according to the number of the at least one first transmission layer, to obtain the first initial modulation symbol mapped to the at least one first transmission layer; Determining, by the network device, the number of the at least one second transport layer, wherein the number of the at least one second transport layer is determined according to a channel state of a transport channel between the second transmission point and the terminal device; the network device is configured according to Performing layer mapping processing on the second initial modulation symbol corresponding to the second scrambling bit by the number of the at least one
  • the network device to which the first cell belongs determines the number of the at least one transport layer, including: the network device to which the first cell belongs Determining, by a channel state of a transmission channel between the first cell and the terminal device, a value of a first transmission rank of the first cell; and a value of the first transmission rank and a value of a second transmission rank of the second cell And determining, by the network device to which the first cell belongs, an adjusted value of the first transmission rank, where the value of the second transmission rank is based on the second cell and the terminal device The adjusted value of the first transmission rank is equal or unequal to the value of the first transmission rank, and the adjusted value of the second transmission rank and the second transmission rank are determined by the channel state of the intermediate transmission channel.
  • the values are equal or unequal, and the sum of the adjusted value of the first transmission rank and the adjusted value of the second transmission rank is less than or equal to the number of receiving antennas of the terminal device; the network to which the first cell belongs.
  • the apparatus of at least a number of transmission layers is determined that the adjusted value of the first transmission rank.
  • the at least one second antenna port belongs to a second transmission point of the cell Determining, by the network device to which the cell belongs, a value of a first transmission rank of the first transmission point according to a channel state of a transmission channel between the first transmission point and the terminal device, and according to the second transmission point and the terminal Determining, by the channel state of the transmission channel between the devices, a value of the second transmission rank of the second transmission point; if the sum of the value of the first transmission rank and the value of the second transmission rank is greater than the number of receiving antennas of the terminal device And determining, by the network device, the adjusted value of the first transmission rank and the adjusted value of the second transmission rank, where the adjusted value of the first transmission rank is equal or unequal to the value of the first transmission rank The adjusted value of the second transmission rank is equal or unequal to the value of the second transmission rank, and the sum of the adjusted value of the
  • the network device to which the first cell belongs performs precoding processing on the first initial modulation symbol mapped to the at least one transport layer, to obtain the At least one first modulation symbol on the first antenna port set, including: if the first cell is a coordinated cell of the terminal device, the network device to which the first cell belongs is based on the transmission between the terminal device and the first cell a channel state of the channel, determining a precoding matrix corresponding to the first cell; the network device to which the first cell belongs is based on the first small The precoding matrix corresponding to the region performs precoding processing on the first initial modulation symbol mapped to the at least one transport layer to obtain at least one first modulation symbol on the first antenna port set.
  • the network device to which the first cell belongs sends the at least one first modulation symbol to the terminal device in the first subframe, including: The network device to which the second cell belongs sends the at least one second modulation symbol to the terminal device by using the second resource block on the first carrier, where the network device to which the first cell belongs uses the second resource block or the first carrier The first resource block different from the second resource block transmits the at least one first modulation symbol to the terminal device.
  • an eighth possible implementation manner of the first aspect if the network device to which the first cell belongs uses the second resource block to send the at least one first modulation symbol to the terminal device,
  • the port number of any of the first antenna port sets is different from the port number of any of the second antenna port sets.
  • the network device to which the first cell belongs sends the at least one first modulation symbol to the terminal device in the first subframe by using the first carrier
  • the method further includes: if the first cell is the serving cell of the terminal device, the network device to which the first cell belongs sends the third indication information to the terminal device, where the third indication information is used to indicate the first cell
  • the third indication information is used to indicate the first cell
  • the first data is different from the second data.
  • the network device to which the first cell belongs by processing the first data, obtains at least one first modulation symbol on the at least one first antenna port of the first cell, and the network device to which the second cell belongs is different from the first Processing the second data of the data to obtain at least one second modulation symbol on the at least one second antenna port of the second cell, wherein the at least one first modulation symbol is different from the at least one second modulation symbol, and The at least one first antenna port is different from the at least one second antenna port, and the network device to which the first cell belongs and the network device to which the second cell belongs send the at least one to the terminal device in the same frequency band and the same subframe respectively.
  • a modulation symbol and the at least one second modulation symbol can improve data transmission efficiency and system throughput.
  • the network device to which the first cell belongs may perform precoding processing on the first initial modulation symbol by using a first precoding matrix to obtain a first intermediate modulation symbol
  • the network device to which the second cell belongs adopts a second pre
  • the coding matrix performs pre-coding processing on the second initial modulation symbol to obtain a second intermediate modulation symbol
  • the first pre-coding matrix is determined according to a channel state between the first cell and the terminal device
  • the second The precoding matrix is determined according to a channel state between the second cell and the terminal device
  • the network device to which the second cell belongs performs precoding processing on the first intermediate modulation symbol by using a first SFBC matrix, to obtain at least two First modulation symbol
  • the network device to which the second cell belongs is pre-coded by using the second SFBC matrix to obtain at least two second modulation symbols, where the at least two first modulation symbols include x1 and x2.
  • the first initial modulation symbol may be the same as the second initial modulation symbol.
  • the network device to which the first cell belongs and the network device to which the second cell belongs may use the same number of transmission layers, for example, 1 or 2, and the network device to which the first cell belongs and the network device to which the second cell belongs.
  • the same scrambling code initial value can be used, for example, both generated by the cell identity of the serving cell, and so on.
  • the network device to which the first cell belongs and the network device to which the second cell belongs transmit data to the terminal device by using a transmit diversity (specifically, SFBC) manner, thereby improving coding gain and data transmission reliability.
  • a transmit diversity specifically, SFBC
  • the method further includes: if the first cell is a serving cell of the terminal device, the first The network device to which the cell belongs sends fourth indication information to the network device to which the second cell belongs, where the fourth indication information is used to indicate at least one of the following: the number of the transport layer and at least two to be transmitted by the first cell.
  • the network device to which the first cell belongs receives the fourth indication information sent by the network device to which the serving cell belongs, and the fourth indication information is used to indicate At least one of the following: a number of transmission layers and at least two second modulation symbols to be transmitted by the serving cell, and determining the at least two first modulation symbols according to the fourth indication information.
  • a second aspect provides a method for transmitting data, including: receiving, by a terminal device, at least one first modulation on a first antenna port set sent by a first carrier on a first subframe by a network device to which the first cell belongs a symbol, the at least one first modulation symbol is obtained by processing, by the network device to which the first cell belongs, the first data port, where the first antenna port set includes at least one first antenna port of the first cell;
  • the network device to which the second cell belongs is configured to use at least one second modulation symbol on the second antenna port set that is sent by the first carrier on the first subframe, where the at least one second modulation symbol belongs to the second cell
  • the terminal device is at least one first System and the at least one second symbol modulation
  • the first cell and the second cell are the same cell, and at least one first antenna port of the first cell belongs to a first transmission point of the first cell, and at least one second of the second cell The antenna port belongs to a second transmission point of the first cell, where the first transmission point is different from the second transmission point.
  • the network device sends at least one first modulation symbol and different to the terminal device through the at least one first antenna port of the first transmission point and the at least one second antenna port of the second transmission point in the same frequency band and the same subframe respectively. At least one second modulation symbol of the at least one first modulation symbol.
  • the first cell is different from the second cell, and the network device to which the first cell belongs is the same as the network device to which the second cell belongs.
  • the network device sends at least one first modulation symbol to the terminal device through the at least one first antenna port of the first cell and the at least one second antenna port of the second cell in the same frequency band and the same subframe, respectively. At least one second modulation symbol of the at least one first modulation symbol.
  • the first cell is different from the second cell
  • the network device to which the first cell belongs is different from the network device to which the second cell belongs.
  • the at least one first modulation symbol is the first cell
  • the network device of the genus is obtained by performing the scrambling process, the layer mapping process, and the pre-coding process on the first coded bit corresponding to the first data
  • the at least one second modulation symbol is that the network device to which the second cell belongs
  • the second coded bits corresponding to the second data are sequentially subjected to scrambling processing, layer mapping processing, and precoding processing.
  • the at least one first modulation symbol is that the network device that the first cell belongs to the first device by using the cell identifier according to the first cell
  • the first coded bit corresponding to the data is scrambled
  • the at least one second modulation symbol is a second coded bit corresponding to the second data by the network device to which the first cell belongs according to the cell identifier of the second cell. Obtained by scrambling.
  • the method includes: receiving, by the terminal device, first indication information that is sent by the network device to which the first cell belongs, where the first indication information is used to indicate a port number of the at least one first antenna port and/or the at least one The port number of the two antenna ports.
  • the method further includes: receiving, by the terminal device, second indication information that is sent by the network device to which the serving cell belongs, where the second indication information is used to indicate a cell identifier of the coordinated cell.
  • the terminal device performs demodulation processing on the at least one first modulation symbol and the at least one second modulation symbol, including: the terminal device, according to the cell identifier of the coordinated cell, the received Performing demodulation processing on the at least one first modulation symbol or the at least one second modulation symbol, where the serving cell is the first cell or the second cell, where the coordinated cell is in the first cell and the second cell A cell outside the serving cell.
  • the at least one first modulation symbol is that the network device to which the first cell belongs is configured according to the quantity of the at least one first transmission layer a first initial modulation symbol corresponding to a scrambling bit is subjected to a layer mapping process, where the number of the at least one first transmission layer is determined according to a channel state of a transmission channel between the first cell and the terminal device;
  • the at least one second modulation symbol is obtained by performing layer mapping processing on the second initial modulation symbol corresponding to the second scrambling bit according to the number of the at least one second transmission layer, where the network device to which the second cell belongs is obtained.
  • the number of at least one second transport layer is determined according to a channel state of a transport channel between the second cell and the terminal device.
  • the at least one first antenna port belongs to a first transmission point of the cell
  • the at least one second antenna port belongs to a second transmission point of the cell
  • the number of the at least one first transport layer is determined according to a channel state of a transport channel between the first transmission point and the terminal device; the number of the at least one second transport layer is based on the second transmission point
  • the channel state of the transport channel between the terminal devices is determined.
  • the number of the first transmission layer is that the network device to which the first cell belongs is between the first cell and the terminal device
  • the value of the first transmission rank determined by the channel state of the transmission channel is adjusted
  • the number of the second transmission layer is that the network device to which the second cell belongs is transmitted according to the second cell and the terminal device
  • the value of the second transmission rank determined by the channel state of the channel is adjusted, wherein the sum of the value of the first transmission rank and the value of the second transmission rank is greater than the number of receiving antennas of the terminal device, the first transmission rank
  • the adjusted value is equal or unequal to the value of the first transmission rank
  • the adjusted value of the second transmission rank is equal or unequal to the value of the second transmission rank
  • the first transmission rank is adjusted
  • the sum of the value and the adjusted value of the second transmission rank is less than or equal to the number of receiving antennas of the terminal device.
  • the at least one first antenna end belongs to a first transmission point of the cell
  • the at least one second antenna port belongs to a second transmission point of the cell
  • the value of the first transmission rank is a channel according to a transmission channel between the first transmission point and the terminal device.
  • the state determines that the value of the second transmission rank is determined according to a channel state of a transmission channel between the second transmission point and the terminal device.
  • the at least one first modulation symbol is that the network device to which the first cell belongs is mapped to the at least one by using the first precoding matrix.
  • the at least one first antenna port belongs to a first transmission point of the cell
  • the at least one second antenna port belongs to a second transmission point of the cell Determining, according to a channel state of a transmission channel between the first transmission point and the terminal device, the second precoding matrix is based on transmission between the second transmission point and the terminal device The channel state of the channel is determined.
  • the at least one second modulation symbol is that the network device to which the second cell belongs is sent by using the second resource block on the first carrier And the at least one first modulation symbol is sent by the network device to which the first cell belongs by using the second resource block or a first resource block different from the second resource block on the first carrier.
  • a seventh possible implementation manner of the second aspect if the at least one first modulation symbol is that the network device to which the first cell belongs is sent by using the second resource block, the first The port number of any of the first antenna ports in the set of antenna ports is different from the port number of any of the second antenna ports in the second set of antenna ports.
  • the method further includes: receiving, by the terminal device, third indication information that is sent by the network device to which the serving cell belongs, where the third indication information is used by Indicates the number of transport layers used by the network device to which the first cell belongs to transmit the at least one first modulation symbol and/or the transport layer used by the network device to which the second cell belongs to transmit the at least one second modulation symbol quantity.
  • the first data is different from the second data.
  • the first data and the second data are the same downlink data;
  • the at least one first modulation symbol is that the first cell belongs to
  • the network device pre-codes the first initial modulation symbol by using a first SFBC matrix, where the at least two first modulation symbols include x1 and x2;
  • the network device to which the first cell belongs sends the first indication information to the terminal device, where the first indication information is used to indicate the port number of the at least one first antenna port of the first cell and/or Or the port number of at least one second antenna port of the second cell.
  • the network device to which the first cell belongs sends the second indication information to the terminal device, where the second indication information is used to indicate the cell identifier of the second cell; Transmitting, by the first carrier, the first subframe, at least one first tone on the first antenna port set of the first cell to the terminal device And the at least one first modulation symbol is different from the at least one of the second antenna port set of the second cell that is sent by the network device to which the second cell belongs to the terminal device to the terminal device on the first carrier and the first subframe. A second modulation symbol.
  • the network device to which the first cell belongs sends the third indication information to the terminal device, where the third indication information is used to indicate that the network device to which the first cell belongs is in the first carrier, the first sub- The number of transmission layers used when transmitting at least one first modulation symbol on the first antenna port set of the first cell, and is used to indicate that the network device to which the second cell belongs is in the first carrier, the first sub The number of transmission layers employed when transmitting at least one second modulation symbol on the second antenna port set of the second cell to the terminal device.
  • the first network device to which the first cell belongs sends fourth indication information to the second network device to which the second cell belongs, where the fourth indication information is used to indicate at least one of the following: The number of transport layers and at least two first modulation symbols to be transmitted by the first cell.
  • the first network device to which the first cell belongs sends the fifth indication information to the second network device to which the second cell belongs, where the fifth indication information is used to indicate the network device to which the second cell belongs.
  • the SFBC matrix used in processing the second data used to indicate the network device to which the second cell belongs.
  • the interaction of the indication information may be combined with the foregoing method for transmitting data, or may be independent; the indication information may be independent or combined.
  • an apparatus for transmitting data for performing the method of any of the possible implementations of the first aspect or the first aspect.
  • the apparatus comprises functional modules for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the apparatus may include: a storage unit for storing instructions for executing instructions stored in the memory, and a processor, and when the processor executes the instructions stored by the memory, The execution causes the processor to perform the method of the first aspect or any possible implementation of the first aspect.
  • the apparatus comprises functional modules for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the apparatus may include: a storage unit for storing instructions for executing instructions stored in the memory, and a processor, and when the processor executes the instructions stored by the memory, The execution causes the processor to perform the method of the second aspect or any possible implementation of the second aspect.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a sixth aspect there is provided another computer readable medium for storing a computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a seventh aspect a system for transmitting data, comprising the apparatus of any of the above-mentioned third or third possible implementations; and any one of the foregoing fourth or fourth aspects The device in the implementation.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for transmitting data according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of data processing in a method for transmitting data according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of another method for transmitting data according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an apparatus for transmitting data according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of another apparatus for transmitting data according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of another apparatus for transmitting data according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of another apparatus for transmitting data according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the technical solution of the embodiment of the present invention can be applied to communication between a network device and a terminal device, and can also be applied to communication between the terminal device and the terminal device, such as a device to device (D2D), a machine.
  • the transmitting end and the receiving end in a scenario such as a machine to machine (M2M) may also be applied to communication between a network device and a network device, such as a transmitting end and a receiving end in a communication scenario between a base station and a base station, Macro base stations and micro base stations in a scene such as macro-micro cooperation.
  • the wireless communication system 100 can include at least one network device 110.
  • Network device 110 may be a device that communicates with a terminal device.
  • Each network device 110 can provide communication coverage for a particular geographic area 115 and can be associated with a terminal device located within the coverage area 115.
  • the entire coverage area 115 of the network device 110 can be divided into a plurality of smaller areas (ie, multiple cells), for example, FIG. 1 exemplarily shows that the coverage area 115 includes three cells 115a, 115b, and 115c.
  • the network device in the embodiment of the present invention may also support one or other number of multiple cells, which is not limited in this embodiment of the present invention.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an LTE.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • the network device may be a relay station, an access point, or a vehicle A device, a wearable device, a network side device in a future 5G network, or a network device in a publicly available Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes a plurality of terminal devices 120 located within the coverage of the network device 110.
  • the terminal device 120 can be mobile or fixed.
  • the terminal device 120 can refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user.
  • Agent or user device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless communication device.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a letter-enabled handheld device a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a terminal device in a future evolved PLMN.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The embodiment of the invention does not limit this.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like, and the embodiment of the present invention is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like, and the embodiment of the present invention is not limited thereto.
  • the wireless communication system 100 can support CoMP, ie multiple cells or multiple transmission points can cooperate to transmit data to the same terminal device on the same time-frequency resource.
  • the multiple cells may belong to the same network device or different network devices, and may be selected according to channel gain or path loss, received signal strength, received signal quality, and the like.
  • the antenna port set of any two of the multiple transmission points may not have the same large-scale characteristic (ie, not co-located), and may belong to the same cell or belong to different cells, which is used by the embodiment of the present invention. Not limited. Among them, the same large-scale characteristics can refer to the definition in the 3GPP standard, or can be set according to actual system requirements.
  • the large-scale characteristic of the current 3GPP standard defined as the channel through which a symbol is transmitted from one antenna port can be inferred by the large-scale characteristics of the channel through which one symbol is transmitted from another antenna port.
  • Large-scale features can also be referenced to the definition of the 3GPP standard, or can be set according to actual system requirements.
  • large scale features may include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay.
  • multiple cells may cooperate to be at the same time -
  • the same data is sent to the terminal device on the frequency resource to implement signal enhancement and interference reduction at the terminal device.
  • multiple cells or multiple transmission points may cooperate to perform multi-beam transmit diversity or multi-stream space division multiplexing transmission, that is, multiple cells or multiple transmissions.
  • the point may send different modulation symbols to the terminal device on the same time-frequency resource to improve data transmission reliability or data transmission efficiency, but the embodiment of the present invention is not limited thereto.
  • FIG. 2 is a schematic flowchart of a method 200 for transmitting data according to an embodiment of the present invention.
  • the first network device processes the first data to obtain at least one first modulation symbol on the first antenna port set, and the second network device processes the second data to obtain at least one of the second antenna port set. And a second modulation symbol, wherein the at least one second modulation symbol is different from the at least one first modulation symbol.
  • the first set of antenna ports may include at least one first antenna port of a first cell of the first network device, and the second set of antenna ports may include at least one second antenna port of a second cell of the second network device
  • the at least one first antenna port is different from the at least one second antenna port; or the first antenna port set may include at least one first antenna port of the first transmission point of the first network device, and the second The set of antenna ports may include at least one second antenna port of the second transmission point of the second network device, the at least one first antenna port being different from the at least one second antenna port.
  • the first modulation symbol and the second modulation symbol may be specifically Orthogonal Frequency Division Multiplexing (OFDM) symbols, and may be other types of modulation symbols, which are not limited in this embodiment of the present invention.
  • OFDM Orthogonal Frequency Division Multiplexing
  • any first modulation symbol of the at least one first modulation symbol may be different from any second modulation symbol of the at least one second modulation symbol, that is, the at least one first modulation symbol and the at least one second modulation There is no intersection between the symbols; or a portion of the first modulation symbols in the at least one first modulation symbol and a portion of the second modulation symbols in the at least one second modulation symbol may be the same, and another portion of the first modulation symbol and another portion
  • the second modulation symbol is different, which is not limited by the embodiment of the present invention.
  • the first network device and the second network device may respectively transmit at least one first modulation symbol and different from the at least one through at least one first antenna port and at least one second antenna port different from the at least one first antenna port At least one second modulation symbol of the first modulation symbol.
  • the first network device refers to the network device to which the first cell or the first transmission point belongs
  • the second network device refers to the network device to which the second cell or the second transmission point belongs.
  • the first network device and the second network device may be the same network device, or may be different network devices, which is not limited by the embodiment of the present invention.
  • any of the at least one first antenna port may be different from any of the at least one second antenna port.
  • the at least one first antenna port and the at least one second antenna port may belong to the first cell and the second cell, respectively, where the first cell belongs to the first network device, and the second cell belongs to the first Two network devices.
  • the first cell may be different from the second cell, for example, the first cell and the second cell may have different physical cell identifiers.
  • the first cell and the second cell may be the same cell, and the at least one first antenna port may specifically belong to a first transmission point of the cell, and the at least one second antenna port may belong to the cell different from the first cell.
  • the second transmission point of a transmission point may be different from the first cell.
  • the first cell may be a current serving cell of the terminal device, and the second cell may be the coordinated cell; or the first cell may be a coordinated cell of the terminal device, and the second cell may be Is the serving cell of the terminal device.
  • the number of the coordinated cells that participate in the coordinated data transmission may be one or more, which is not limited by the embodiment of the present invention.
  • the at least one first antenna port may belong to a first transmission point, and the at least one second antenna port may belong to a second transmission point different from the first transmission point.
  • the first transmission point belongs to the first network device, and the second transmission point belongs to the second network device.
  • the first transmission point and the second transmission point may belong to the same cell or different cells, which is not limited in this embodiment of the present invention.
  • the first transmission point and the second transmission point may both belong to a serving cell of the terminal device; or, one of the first transmission point and the second transmission point may belong to a service of the terminal device.
  • the cell and the other transmission point belong to the coordinated cell of the terminal device, and the embodiment of the present invention is not limited thereto.
  • the at least one first modulation symbol different from the at least one second modulation symbol may specifically correspond to different situations.
  • the first data is different from the second data, that is, the first network device and the second network device respectively send different downlink data to the terminal device.
  • the first cell and the second cell may cooperate to perform multi-stream transmission, or the first transmission point and the second transmission point perform cooperative multi-stream transmission.
  • the first data and the second data may be the same downlink data, because the first network device and the second network device respectively perform different processing on the downlink data, so that the at least one first modulation symbol is different.
  • the first network device and the second network device respectively perform precoding processing on the downlink data by using a Spatial Frequency Block Code (SFBC) technology.
  • SFBC Spatial Frequency Block Code
  • the first cell and the second cell may cooperate to perform transmit diversity transmission, or the first transmission point and the second transmission point may cooperate to perform transmit diversity transmission, but the embodiment of the present invention is not limited thereto.
  • the first network device sends, by using the first carrier, the at least one first modulation symbol on the first antenna port set to the terminal device in the first subframe, where the second network device uses the first carrier in the first subframe.
  • the terminal device transmits at least one second modulation symbol on the second antenna port set.
  • the first carrier may be a system carrier, corresponding to a specific frequency band, for example, a frequency band of 800M in the center frequency band or a frequency band of 900M in the center frequency point.
  • the first network device and the second network device may cooperate to send the at least one first modulation symbol and the at least one second modulation symbol to the terminal device on the same time resource by using the same frequency band.
  • the first network device obtains at least one first modulation symbol on the first cell or the at least one first antenna port of the first transmission point by processing the first data according to the method for transmitting data according to an embodiment of the present invention.
  • the second network device obtains at least one second modulation symbol on the at least one second antenna port of the second cell or the second transmission point by processing the second data, where the at least one first modulation symbol is different from the at least one A second modulation symbol, and the at least one first antenna port is different from the at least one second antenna port, which can improve data transmission efficiency or data transmission reliability of the system.
  • the terminal device when the CoMP jointly transmits the same data stream, the terminal device can only perform single-time reception.
  • the signal time difference between the two cells and the terminal device side is required to be within a certain range (for the LTE system, The time difference is within the Cyclic Prefix (CP), and the timing of signal arrival is high. Therefore, the distance between multiple cells and terminal equipment that need to participate in cooperative transmission cannot be too different, thereby limiting participation.
  • the terminal device since each cell or each transmission point participating in the cooperation transmits different data streams to the terminal device, the terminal device may use single timing reception, or may use multiple timing reception, for different cells or transmission points. The requirement for signal timing arrival is low, so that the number of cells or transmission points of the cooperative set can be expanded, and the data transmission efficiency and system throughput are further improved.
  • the timing receiving refers to that the terminal device acquires information such as a sampling clock, a start symbol position, or a starting subframe number by receiving timing synchronization information on the network side, and receives the data.
  • Single-time reception means that the terminal device receives data only according to a set of the above information.
  • Multi-timing reception means that the terminal device acquires multiple sets of the above information corresponding to different cells, and uses corresponding timing information to receive data sent by the corresponding cell.
  • the first network device and the second network device may respectively send at least one first modulation symbol and at least one second modulation symbol to the terminal device by using the same time-frequency resource, where the time-frequency Resources may correspond to the same frequency band and the same time period, and may include multiple resource units.
  • the first network device and the second network device may send the at least one first modulation symbol and the at least one second modulation symbol to the terminal device by using the same resource unit in the time-frequency resource, or may use The different resource units in the time-frequency resource send the at least one first modulation symbol and the at least one second modulation symbol to the terminal device, for example, the first network device and the second network device may occupy the first subframe.
  • the at least one first modulation symbol and the at least one second modulation symbol are sent by the incomplete symbol, or the first network device and the second network device occupy different frequency resources of the same symbol to send the at least one first
  • the modulation symbol and the at least one second modulation symbol are not limited in this embodiment of the present invention.
  • the first network device sends the at least one first modulation symbol to the terminal device in the first subframe by using the first carrier, including:
  • the first network device sends the at least one second modulation symbol to the terminal device by using the second resource block on the first carrier
  • the first network device adopts the second resource block or is different from the first carrier
  • the first resource block of the second resource block sends the at least one first modulation symbol to the terminal device.
  • the at least one first antenna port is different from the at least one second antenna port, wherein a port number of the at least one first antenna port may be the same as or different from a port number of the at least one second antenna port.
  • a port number of the at least one first antenna port may be the same as or different from a port number of the at least one second antenna port.
  • the at least one first antenna port and the at least one second The port number of the antenna port may be different (for example, the first network device and the second network device use different Demodulation Reference Signal (DMRS) antenna ports) and corresponding pilots communicate with the terminal device, the different The antenna ports can correspond to different port numbers.
  • DMRS Demodulation Reference Signal
  • the first network device may use the first cell or the ports 7 and 8 of the first transmission point to send two layers of data to the terminal device, and the second network device may use the second cell or the second transmission point to divide the port 7 And other ports than 8 to transfer data.
  • the first network device and the second network device transmit the at least one first modulation symbol and the at least one second modulation symbol to the terminal device on different physical resource blocks in the same time-frequency resource, Limiting the selection of the antenna port number, each cell may independently select an antenna port to transmit data according to the respective conditions, that is, the port number of the at least one first antenna port may be the same as or different from the port number of the at least one second antenna port, but The embodiment of the invention is not limited thereto.
  • the first network device uses the second resource block on the first carrier to send the at least one first modulation symbol to the terminal device, and the second network device uses the first carrier
  • the first resource block different from the second resource block sends the at least one second modulation symbol
  • the port number of the at least one first antenna port may be different from the port number of the at least one second antenna port.
  • the method 200 further includes:
  • the first network device sends first indication information to the terminal device, where the first indication information is used to indicate the a port number of the at least one first antenna port and/or a port number of the at least one second antenna port.
  • the terminal device can receive the at least one first modulation symbol and the at least one second modulation symbol on the corresponding antenna port according to the first indication information.
  • the first network device processes the first data to obtain at least one first modulation symbol on the first antenna port set, including:
  • the first network device performs scrambling processing on the first coded bit corresponding to the first data to obtain a first scrambled bit
  • the first network device performs layer mapping processing on the first initial modulation symbol corresponding to the first scrambling bit to obtain the first initial modulation symbol mapped to the at least one transport layer;
  • the first network device performs precoding processing on the first initial modulation symbol mapped to the at least one transport layer to obtain at least one first modulation symbol on the first antenna port set.
  • the second network device may perform similar processing on the second data. Specifically, the second network device may perform scrambling processing on the second coded bit corresponding to the second data to obtain a second scrambled bit, and perform layer mapping processing on the second initial modulation symbol corresponding to the second scrambled bit. Obtaining the second initial modulation symbol mapped to the at least one transport layer, and precoding the second initial modulation symbol mapped to the at least one transport layer to obtain at least one second on the second antenna port set Modulation symbol.
  • the first network device may perform encoding processing on the first data to obtain a first coded bit corresponding to the first data, where the first network device may separately use the first data.
  • Each of the at least one codeword is encoded, and each codeword may include at least one coded bit; the first network device may perform scrambling on the first coded bit to obtain a first scrambled bit; The first scrambling bit performs modulation mapping processing to obtain a plurality of first initial modulation symbols; performing layer mapping processing on the first initial modulation symbols to map the first initial modulation symbols to one or more transmission layers; For the initial modulation symbol on each transport layer Line precoding processing to map initial modulation symbols on the transport layer to one or more antenna ports; performing resource mapping processing on initial modulation symbols of each antenna port to map modulation symbols of the antenna port to one or Multiple resource units, and then generate modulation symbols corresponding to the antenna port.
  • the first network device performs a scrambling process on the first coded bit corresponding to the first data to obtain a first scrambled bit, including:
  • the first network device uses the initial value of the scrambling code to perform scrambling processing on the first coded bit corresponding to the first data to obtain the first scrambled bit.
  • the second network device may determine an initial value of the second scrambling code according to the cell identifier of the second cell or the cell identifier of the cell to which the second transmission point belongs, and adopt the second scrambling code initial value, The second coded bit corresponding to the second data is subjected to scrambling processing to obtain the second scrambled bit.
  • each cell or transmission point participating in the coordinated transmission may independently perform scrambling processing on the data to be transmitted.
  • each cell or transmission point may perform scrambling processing according to its own information, for example, each The cell may perform scrambling processing by using its own cell identifier, or each transmission point may perform scrambling processing by using the cell identifier of the cell to which it belongs.
  • the initial value of the scrambling code c init corresponding to each cell may be as shown in the formula (1):
  • n RNTI corresponds to an identifier of the terminal device.
  • n s is the slot number, It is the physical cell identifier (PCI) of the cell.
  • the first network device may further send second indication information to the terminal device, where the The second indication information is used to indicate a cell identifier of the coordinated cell to which the second cell or the second transmission point belongs.
  • the terminal device may receive the second indication information sent by the first network device, determine, according to the second indication information, a cell identifier of the at least one coordinated cell that participates in the coordinated transmission, and receive the cell identifier according to the cell identifier of each cell.
  • the resulting modulation symbol is descrambled.
  • the serving cell may include cell identification information of each coordinated cell in the quasi-co-location (QCL) pilot information that is sent to the terminal device, but the embodiment of the present invention is not limited thereto.
  • QCL quasi-co-location
  • the first network device performs layer mapping processing on the first initial modulation symbol corresponding to the first scrambling bit to obtain the first initial modulation symbol mapped to the at least one transport layer, including:
  • the first network device Determining, by the first network device, the number of the at least one transport layer, wherein the number of the at least one transport layer is determined according to a channel state between the terminal device and the first cell or the first transmission point;
  • the first network device according to the number of the at least one transport layer, the first initial corresponding to the first scrambled bit
  • the modulation symbols are subjected to layer mapping processing to obtain the first initial modulation symbols mapped to at least one of the transport layers.
  • the second network device may determine the number of the at least one second transport layer, wherein the number of the at least one second transport layer is based on a channel state between the terminal device and the second cell or the second transmission point. Determining; and performing layer mapping processing on the second initial modulation symbol corresponding to the second scrambling bit according to the number of the at least one second transmission layer, to obtain the second initial modulation symbol mapped to the at least one transmission layer.
  • each cell or transmission point participating in the coordinated transmission may perform layer mapping processing independently, for example, participation.
  • Each cell or transmission point that is cooperatively transmitted may perform layer mapping processing using different number of transmission layers.
  • a certain cell or transmission point participating in the coordinated transmission may obtain channel state information of a transmission channel between itself and the terminal device, and determine, according to the channel state information, the number of transmission layers used by itself, for example, the channel state.
  • the information may include a Rank Indicator (RI), and the number of transmission layers employed by a certain cell may be determined as the value of the RI corresponding to the cell.
  • RI Rank Indicator
  • the channel state information may be obtained by measuring, by the terminal, uplink information (for example, an uplink pilot signal) sent by the terminal device, or may be downlink information (such as a downlink pilot signal or downlink) that is sent by the terminal device to the cell. Data) obtained by measurement.
  • the coordinated cell sends a non-zero power CSI-RS to the terminal device on the time-frequency resource used by the serving cell to transmit the zero-power CSI-RS, so that the terminal device can obtain the transmission channel between the coordinated cell and the terminal device by measurement.
  • Channel state information but embodiments of the present invention are not limited thereto.
  • the channel state information between the first cell or the first transmission point and the terminal device may be obtained by the terminal device, and the first network device may acquire the terminal in multiple manners. Channel status information fed back by the device.
  • the first network device may receive channel state information sent by the terminal device; or if the cell to which the first cell or the first transmission point belongs is a coordinated cell and the first network device is different from the second network And the first network device may receive the indication information sent by the second network device, where the indication information is used to indicate channel state information corresponding to the first cell, and at this time, the terminal device may send multiple cells to the serving cell.
  • Channel state information corresponding to each cell where the plurality of cells may include at least one coordinated cell participating in the coordinated transmission, and the serving cell may send to each of the at least one coordinated cell to indicate the each
  • the indication information of the channel state information corresponding to the coordinated cells but the embodiment of the present invention is not limited thereto.
  • the number of transmission layers corresponding to a certain cell participating in the coordinated transmission may not be equal to the value of the RI corresponding to the cell, but may be obtained by adjusting the value of the RI corresponding to the cell. For example, when the sum of the values of the RIs of all the cells participating in the coordinated transmission is greater than the number of the receiving antennas of the terminal device, the value of the RI corresponding to the one or more cells may be adjusted to obtain the corresponding one or more cells.
  • the number of the transport layer is not limited in this embodiment of the present invention.
  • the first network device determines the number of the at least one transport layer, including:
  • the first network device determines an adjusted value of the first transmission rank, where the second transmission rank The value is determined according to a channel state between the second cell and the terminal device, where the adjusted value of the first transmission rank is the same as or different from the value of the first transmission rank, and the second transmission rank is adjusted.
  • the value of the second transmission rank is the same as or different from the value of the second transmission rank, and the sum of the adjusted value of the first transmission rank and the modulated value of the second transmission rank is less than or equal to the number of receiving antennas of the terminal device;
  • the first network device determines the number of the at least one transport layer as the adjusted value of the first transmission rank.
  • the foregoing transmission rank may be specifically an RI.
  • the adjusted value of the first transmission rank may be the same as or different from the value of the first transmission rank, and the adjusted value of the second transmission rank may be the same as or different from the value of the second transmission rank, but the adjustment of the first transmission rank
  • the sum of the latter value and the adjusted value of the second transmission rank should be less than or equal to the number of receiving antennas of the terminal device. That is, at least one of the value of the first transmission rank and the value of the second transmission rank may be adjusted to obtain an adjusted value of the first transmission rank and an adjusted second transmission rank. value.
  • the value of the RI corresponding to the serving cell may be kept unchanged, and the value of the RI corresponding to the one or more coordinated cells may be adjusted.
  • the first cell is a serving cell
  • the adjusted value of the first RI is equal to the value of the first RI
  • the first network device may adjust the value of the second RI to enable the adjustment.
  • the sum of the value of the second RI and the value of the first RI is less than or equal to the number of receiving antennas of the terminal device; optionally, the first network device may further send indication information to the second network device, where The indication information is used to indicate the value of the adjusted second RI.
  • the adjusted value of the second RI is equal to the value of the second RI, and the adjusted value of the first RI is smaller than the value of the first RI.
  • the first network device may receive the indication information that is sent by the second network device to indicate the adjusted value of the first RI, and determine the value of the adjusted first RI according to the indication information, or The value of the first RI may be adjusted by the first network device, which is not limited by the embodiment of the present invention.
  • the value of the corresponding maximum RI of all cells participating in the coordinated transmission may be kept unchanged, and the value of the RI corresponding to the other one or more cells may be adjusted, so that the adjusted The sum of the values of the RIs is less than or equal to the number of receiving antennas of the terminal device.
  • the value of the RI of each cell may be uniformly adjusted by a certain cell, for example, by the serving cell or the cell with the largest value of the corresponding RI.
  • the value of the RI corresponding to itself may be adjusted by each cell.
  • the first network device may determine a target cell that has the largest value of the corresponding RI of the multiple cells that participate in the coordinated transmission, and if the target cell is the first cell, that is, the first network device determines that the multiple The value of the adjusted first RI is equal to the value of the first RI, and the value of the second RI may be adjusted by the first network device, so that the value of the second RI may be adjusted.
  • the adjusted value of the second RI and the value of the first RI is less than or equal to the number of receiving antennas of the terminal device; if the target cell is the second cell, the adjusted value of the second RI is equal to The value of the second RI, the first network device may adjust the value of the first RI, or may receive indication information that is sent by the second network device to indicate the adjusted value of the first RI, and The value of the adjusted first RI is determined according to the indication information, which is not limited by the embodiment of the present invention.
  • the target combination may be determined from a possible combination of values of RIs corresponding to respective cells (or respective coordinated cells) participating in the coordinated transmission according to a certain criterion, and the target combination is The value of the RI corresponding to each cell is determined as the value of the adjusted RI corresponding to each cell.
  • the criterion may be that the total throughput is the largest or the total received signal-to-noise ratio is the largest, and the like, which is not limited in this embodiment of the present invention.
  • the serving cell may indicate the number of transport layers employed by the respective cells in which the terminal device participates in cooperative transmission.
  • the method 200 further includes:
  • the first network device sends third indication information to the terminal device, where the third indication information is used to indicate the The number of transmission layers used by the first network device to transmit the at least one first modulation symbol and/or the number of transmission layers used by the second network device to transmit the at least one second modulation symbol.
  • the number of receiving antennas of the terminal device limits each cell participating in cooperative transmission or The sum of the number of transport layers used by the transmission point. For example, two cells cooperatively transmit, and the terminal device has eight receiving antennas, and can receive up to eight layers of data.
  • the number of transport layers L1 of the serving cell and the number of transport layers L2 of the coordinated cell need to satisfy the following conditions: L1+L2 ⁇ 8.
  • the layer mapping relationship can be as shown in Table 1:
  • is the total number of layers, The number of initial modulation symbols on each layer.
  • the serving cell and the coordinated cell may respectively adopt one codeword of the two codewords, and the code used by the serving cell and the coordinated cell Words can be different.
  • the first network device may perform precoding processing on the first initial modulation symbol mapped to the at least one transport layer to obtain at least one first modulation symbol, where the pre-
  • the encoding process can be performed in a basic codebook or in a non-codebook manner.
  • the first data and the second data may be independently pre-coded, that is, the first data and the second data are pre-processed according to the precoding matrix corresponding to the first cell and the second cell respectively. Encoding processing, or performing precoding processing on the first data and the second data according to a precoding matrix corresponding to the first transmission point and the second transmission point respectively.
  • the precoding matrix corresponding to each cell or transmission point may be obtained by the terminal device by measuring a reference signal sent by the serving cell.
  • configuring different CSI-RS resources by the serving cell and cooperating with the coordinated cell so that the terminal device can separately measure channels of the multiple cells reaching the terminal device, and send the channel to each of the multiple cells.
  • Channel state information (CSI) corresponding to the cell the CSI may include a Precoding Matrix Index (PMI) or include PMI and RI or further including other information, which is not limited by the embodiment of the present invention. .
  • PMI Precoding Matrix Index
  • the first network device performs precoding processing on the first modulation symbol that is mapped to the at least one transport layer to obtain the at least one first modulation symbol, including:
  • the first network device performs precoding processing on the first initial modulation symbol mapped to the at least one transport layer according to the first precoding matrix to obtain the at least one first modulation symbol, where the first precoding matrix It is determined according to a channel state between the terminal device and the first cell or the first transmission point.
  • the second network device may perform precoding processing on the second initial modulation symbol mapped to the at least one transport layer according to the second precoding matrix to obtain the at least one second modulation symbol, where the The second precoding matrix is determined according to a channel state between the terminal device and the second cell or the second transmission point.
  • the first network device and the second network device may divide the precoding process into two parts: firstly, according to each The pre-coding matrix of the channel state determined by the channel state between the cell or the transmission point and the terminal device is pre-coded, and then the result of the pre-coding process is further processed by using the SFBC matrix to obtain different modulation symbols.
  • the SFBC processing process of the first network device and the second network device may be as in Equation (2) and ( 3) indicates:
  • the first SFBC matrix and the second SFBC matrix may be respectively with
  • the y (0) (2i) - y (1) (2i + 1) *
  • y (0) (2i + 1) y (1) (2i) *, for example, the serving cell sends x 1 , x 2
  • the cooperating cell sends -x 2 *, x 1 *.
  • the SFBC processing process of the first network device and the second network device may be as in Equation (4) and ( 5) indicates:
  • the first SFBC matrix and the second SFBC matrix may be respectively with And the modulation symbols generated by the first network device and the second network device also satisfy a similar relationship.
  • the serving cell sends x 1 , x 2 , 0, 0 and 0, 0, x 3 , x 4
  • the cooperating cell transmits -x 2 *, x 1 *, 0, 0 and 0, 0, -x 4 *, x 3 *.
  • the SFBC matrix used by each cell may be determined by the serving cell, and the fifth indication information indicating the SFBC matrix used by the coordinated cell is sent to the coordinated cell, but the embodiment of the present invention is not limited thereto.
  • the first network device performs precoding processing on the first initial modulation symbol by using a first precoding matrix to obtain a first intermediate modulation symbol.
  • the second network device performs a precoding process on the second initial modulation symbol by using a second precoding matrix to obtain a second intermediate modulation symbol, where the first precoding matrix is based on the first cell or the first transmission point. Determined by the channel state between the terminal device, the second precoding matrix is based on the second cell or the second transmission point and the terminal device Determined between the channel states;
  • the first network device performs precoding processing on the first intermediate modulation symbol by using a first SFBC matrix to obtain at least two first modulation symbols
  • the second network device uses the second SFBC matrix to pre-process the second intermediate modulation symbol.
  • the terminal device may no longer use the cell level reference signal (for example, CRS).
  • CRS Cell level reference signal
  • the received data is demodulated, and data demodulation is performed according to a DeModulation Reference Signal (DMRS) in the downlink data, but the embodiment of the present invention is not limited thereto.
  • DMRS DeModulation Reference Signal
  • the first network device and the second network device may adopt a single codeword and adopt the same codeword.
  • the number of the transport layers used by the first network device and the second network device to transmit the downlink data may be 1 or 2, respectively corresponding to the case of the two antenna ports and the four antenna ports.
  • the first network device and the second network device may process the downlink data by using the same initial value of the scrambling code.
  • the first network device and the second network device may use the same resource block and The antenna port having different port numbers transmits the at least one first modulation symbol and the at least one second modulation symbol, but the embodiment of the present invention is not limited thereto.
  • the serving cell of the terminal device may further send indication information to the coordinated cell, where the indication information is used to indicate the current transmission.
  • the indication information is used to indicate the current transmission.
  • the network side device (also referred to as a network device, for example, a serving cell of the terminal device) may determine a transmission mode used by the coordinated transmission, where the transmission mode may be the multi-stream transmission or the transmission diversity transmission, and may pass The high layer signaling notifies the terminal device of the transmission mode used for the coordinated transmission.
  • the multi-point coordinated multi-stream transmission and the multi-point coordinated transmission diversity transmission may be configured in two different transmission modes.
  • the network side device may carry the transmission mode of the multi-point coordinated transmission in the high layer signaling.
  • the transmission mode correspondingly, the network side device may first carry the sequence number information corresponding to the multipoint coordinated transmission mode in the high layer signaling, and then use the physical layer signaling (for example, Downlink Control Information (DCI) indication to adopt the
  • DCI Downlink Control Information
  • FIG. 4 shows another method 300 for transmitting data according to an embodiment of the present invention.
  • the method can be performed by a terminal device.
  • the method 300 includes:
  • the terminal device receives, by the first network device, at least one first modulation symbol on the first antenna port set that is sent by the first carrier on the first subframe, where the at least one first modulation symbol is a network to which the first cell belongs.
  • the device is obtained by processing the first data;
  • the terminal device receives, by the second network device, at least one second modulation symbol on the second antenna port set that is sent by the first carrier on the first subframe, where the at least one second modulation symbol is the first
  • the second network device is obtained by processing the second data, and the at least one second modulation symbol is different from the at least one First modulation symbol;
  • the terminal device performs demodulation processing on the at least one first modulation symbol and the at least one second modulation symbol.
  • the first antenna port set includes at least one first antenna port of the first cell, and the second antenna port set includes at least one second antenna port of the second cell; or the first antenna port set includes the first transmission At least one first antenna port of the point, the second antenna port set comprising at least one second antenna port of the second transmission point;
  • the at least one first antenna port is different from the at least one second antenna port.
  • the at least one first modulation symbol is obtained by the first network device sequentially performing scrambling processing, layer mapping processing, and pre-coding processing on the first coding bit corresponding to the first data;
  • the at least one second The modulation symbol is obtained by the second network device sequentially performing scrambling processing, layer mapping processing, and precoding processing on the second encoding bit corresponding to the second data.
  • the at least one first modulation symbol is that the first network device scrambles the first coded bit corresponding to the first data according to the cell identifier of the cell to which the first cell or the first transmission point belongs.
  • the at least one second modulation symbol is obtained by the first network device scrambling the second coded bit corresponding to the second data according to the cell identifier of the cell to which the second cell or the second transmission point belongs .
  • the method 300 further includes:
  • the terminal device receives the second indication information that is sent by the network device to which the serving cell belongs, where the second indication information is used to indicate the cell identifier of the coordinated cell, where the serving cell is the first cell or the second cell, and the coordinated cell is the a cell other than the serving cell in the first cell and the second cell;
  • the terminal device performs demodulation processing on the at least one first modulation symbol and the at least one second modulation symbol, including:
  • the terminal device performs demodulation processing on the received at least one first modulation symbol or the at least one second modulation symbol according to the cell identifier of the coordinated cell.
  • the terminal device may perform demodulation processing on the modulation symbols corresponding to the respective cells according to the cell identifier of each cell, or may perform demodulation processing on the modulation symbols corresponding to the respective transmission points according to the cell identifier of the cell to which each transmission point belongs. .
  • the at least one first modulation symbol is obtained by layer mapping processing, by the first network device, the first initial modulation symbol corresponding to the first scrambling bit according to the quantity of the at least one first transmission layer.
  • the number of the at least one first transport layer is determined according to a channel state of a transport channel between the first cell or the first transmission point and the terminal device; the at least one second modulation symbol is the second network Obtaining, by the layer mapping process, the second initial modulation symbol corresponding to the second scrambling bit according to the quantity of the at least one second transmission layer, wherein the quantity of the at least one second transmission layer is according to the second cell or The channel state of the transmission channel between the second transmission point and the terminal device is determined.
  • the number of the first transmission layer is a first transmission rank determined by the first network device by using a channel state according to a transmission channel between the first cell or the first transmission point and the terminal device.
  • the value of the second transmission layer is adjusted by the second network device by using a second transmission rank determined by a channel state of a transmission channel between the second cell or the second transmission point and the terminal device.
  • the value is adjusted, wherein the sum of the value of the first transmission rank and the value of the second transmission rank is greater than the number of receiving antennas of the terminal device, and the adjusted value of the first transmission rank and the first transmission
  • the values of the ranks are equal or unequal
  • the adjusted values of the second transmission rank are The values of the second transmission rank are equal or unequal, and the sum of the adjusted value of the first transmission rank and the adjusted value of the second transmission rank is less than or equal to the number of receiving antennas of the terminal device.
  • the at least one first modulation symbol is obtained by the first network device precoding the first initial modulation symbol mapped to the at least one transport layer according to the first precoding matrix, where Determining, by the first precoding matrix, a channel state of a transmission channel between the terminal device and the first cell or the first transmission point; the at least one second modulation symbol is a second network device Obtaining, by the second precoding matrix, the second initial modulation symbol mapped to the at least one transport layer, where the second precoding matrix is based on the terminal device and the first cell or the second transmission point The channel state between the transmission channels is determined.
  • the at least one second modulation symbol is sent by the second network device by using a second resource block on the first carrier, where the at least one first modulation symbol is that the first network device adopts the first The second resource block or the first resource block on the first carrier that is different from the first resource block sent by the second resource block.
  • a port number of any one of the first antenna port sets is different from the The port number of any of the second antenna ports in the second set of antenna ports.
  • the method 300 further includes:
  • the terminal device receives the third indication information that is sent by the first network device and/or the second network device, where the third indication information is used to indicate the transmission used by the first network device to send the at least one first modulation symbol.
  • the number of layers and the number of transport layers employed by the second network device to transmit the at least one second modulation symbol are used to indicate the transmission used by the first network device to send the at least one first modulation symbol.
  • the first data is different from the second data.
  • the embodiment of the present invention further provides another method for transmitting data, where the method includes: the first network device sends first indication information to the terminal device, where the first indication information is used to indicate at least one first antenna port of the first cell. Port number and/or port number of at least one second antenna port of the second cell, wherein at least one first modulation symbol on the at least one first antenna port and at least one on the at least one second antenna port
  • the two modulation symbols are transmitted to the terminal device on the same carrier and in the same subframe, and the at least one first antenna port is different from the at least one second antenna port, and the at least one first modulation symbol is different from the at least one second modulation symbol.
  • the embodiment of the present invention further provides another method for transmitting data, where the method includes: the first network device sends first indication information to the terminal device, where the first indication information is used to indicate at least one first antenna of the first transmission point. a port number of the port and/or a port number of the at least one second antenna port of the second transmission point different from the first transmission point, wherein the at least one first modulation symbol on the at least one first antenna port and the at least At least one second modulation symbol on a second antenna port is transmitted to the terminal device on the same carrier and the same subframe, and the at least one first modulation symbol is different from the at least one second modulation symbol.
  • the embodiment of the invention further provides another method for transmitting data, the method comprising: the first network device to the terminal The device sends a second indication information, where the second indication information is used to indicate a cell identifier of the coordinated cell, at least one first modulation symbol on the at least one first antenna port of the serving cell, and at least one second antenna port of the coordinated cell
  • the at least one second modulation symbol is transmitted to the terminal device on the same carrier and the same subframe, and the at least one first modulation symbol is different from the at least one second modulation symbol.
  • the embodiment of the present invention further provides another method for transmitting data, where the method includes: the first network device sends third indication information to the terminal device, where the third indication information is used to indicate that the first carrier and the first subframe are And the number of transmission layers used when transmitting the at least one first modulation symbol on the first antenna port set of the first cell, and/or for indicating that the terminal device is sent to the terminal device on the first carrier and the first subframe
  • the embodiment of the present invention further provides another method for transmitting data, where the method includes: the first network device sends fourth indication information to the second network device, where the fourth indication information is used to indicate at least one of: transmitting The number of layers and at least two first modulation symbols on the at least one first antenna port to be transmitted by the first network device, wherein the at least two first modulation symbols are different from the at least one to be transmitted by the second network device At least two second modulation symbols on the second antenna port.
  • the embodiment of the present invention further provides another method for transmitting data, where the method includes: the first network device sends a fifth indication information to the second network device, where the fifth indication information is used to indicate that the second network device is in the a first SFBC matrix used for processing the downlink data transmitted to the terminal device in the first subframe, where the first carrier and the first subframe are also used by the first network device for transmission according to the second
  • the SFBC matrix processes the downlink data to obtain at least one second modulation symbol.
  • the interaction of the indication information may be combined with the foregoing method for transmitting data, or may be independent; the indication information may be independent or combined.
  • FIG. 5 shows an apparatus 400 for transmitting data according to an embodiment of the present invention.
  • the device 400 includes:
  • the processing unit 410 is configured to process the first data to obtain at least one first modulation symbol on the first antenna port set, where the first antenna port set includes at least one first antenna port of the first cell;
  • the sending unit 420 is configured to send, by using the first carrier, the at least one first modulation symbol obtained by the processing unit 410 to the terminal device in the first subframe, where the at least one first modulation symbol is different from the network to which the second cell belongs
  • the device uses at least one second modulation symbol on the second antenna port set that is sent by the first carrier to the terminal device in the first subframe, where the at least one second modulation symbol is that the network device to which the second cell belongs
  • the second antenna port set includes at least one second antenna port of the second cell, and the at least one second antenna port is different from the at least one first antenna port.
  • the apparatus 400 for transmitting data according to an embodiment of the present invention may correspond to the first network device in the method of transmitting data according to an embodiment of the present invention, and the above-described and other operations and/or functions of respective modules in the apparatus 400 for transmitting data In order to implement the corresponding processes of the respective methods in FIG. 2 to FIG. 3, for brevity, details are not described herein again.
  • FIG. 6 shows another apparatus 500 for transmitting data according to an embodiment of the present invention.
  • the device 500 includes:
  • the receiving unit 510 is configured to receive, by the first network device, at least one first modulation symbol on the first antenna port set that is sent by the first carrier on the first subframe, and receive, by the second network device, the first carrier.
  • First subframe At least one second modulation symbol on the second antenna port set that is sent, where the at least one first modulation symbol is obtained by processing, by the network device to which the first cell belongs, the at least one second The modulation symbol is obtained by the second network device processing the second data, and the at least one second modulation symbol is different from the at least one first modulation symbol, where the first antenna port set includes at least one of the first cell An antenna port, the second antenna port set includes at least one second antenna port of the second cell; or the first antenna port set includes at least one first antenna port of the first transmission point, the second antenna port set includes At least one second antenna port of the second transmission point, the at least one first antenna port being different from the at least one second antenna port;
  • the processing unit 520 is configured to perform demodulation processing on the at least one first modulation symbol and the at least one second modulation symbol received by the receiving unit 510.
  • the apparatus 500 for transmitting data according to an embodiment of the present invention may correspond to a terminal device in a method of transmitting data according to an embodiment of the present invention, and the above-described and other operations and/or functions of respective modules in the apparatus 500 for transmitting data are respectively
  • the corresponding processes of the various methods in FIG. 4 are implemented, and are not described herein for brevity.
  • FIG. 7 shows another apparatus 600 for transmitting data according to an embodiment of the present invention.
  • the device 600 includes:
  • the processor 610 is configured to process the first data to obtain at least one first modulation symbol on the first antenna port set, where the first antenna port set includes at least one first antenna port of the first cell;
  • the transceiver 620 is configured to send, by using the first carrier, the at least one first modulation symbol obtained by the processor 610 to the terminal device in the first subframe, where the at least one first modulation symbol is different from the network to which the second cell belongs
  • the device uses at least one second modulation symbol on the second antenna port set that is sent by the first carrier to the terminal device in the first subframe, where the at least one second modulation symbol is that the network device to which the second cell belongs
  • the second antenna port set includes at least one second antenna port of the second cell, and the at least one second antenna port is different from the at least one first antenna port.
  • the apparatus 600 for transmitting data according to an embodiment of the present invention may correspond to the first network device in the method of transmitting data according to an embodiment of the present invention, and the above-described and other operations and/or functions of the respective modules in the apparatus 600 for transmitting data In order to implement the corresponding processes of the respective methods in FIG. 2 to FIG. 3, for brevity, details are not described herein again.
  • FIG. 8 shows another apparatus 700 for transmitting data according to an embodiment of the present invention.
  • the device 700 includes:
  • the transceiver 710 is configured to receive, by the first network device, at least one first modulation symbol on the first antenna port set that is sent by the first carrier on the first subframe, and receive, by the second network device, the first carrier. At least one second modulation symbol on the second antenna port set sent in the first subframe, where the at least one first modulation symbol is obtained by processing the first data by the network device to which the first cell belongs, The at least one second modulation symbol is obtained by the second network device processing the second data, and the at least one second modulation symbol is different from the at least one first modulation symbol, where the first antenna port set includes the first cell At least one first antenna port, the second antenna port set includes at least one second antenna port of the second cell; or the first antenna port set includes at least one first antenna port of the first transmission point, the second The set of antenna ports includes at least one second antenna port of the second transmission point, the at least one first antenna port being different from the at least one A second antenna port;
  • the processor 720 is configured to perform demodulation processing on the at least one first modulation symbol and the at least one second modulation symbol received by the transceiver 710.
  • the apparatus 700 for transmitting data according to an embodiment of the present invention may correspond to a terminal device in a method of transmitting data according to an embodiment of the present invention, and the above-described and other operations and/or functions of respective modules in the apparatus 700 for transmitting data are respectively
  • the corresponding processes of the various methods in FIG. 4 are implemented, and are not described herein for brevity.
  • the processor may be a central processing unit (CPU), and the processor may also be other general purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). , off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the above apparatus may further include a memory, which may include a read only memory and a random access memory, and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the embodiment of the present invention further provides a communication system, including the network device to which the first cell belongs and the network device to which the second cell belongs, or the first transmission point and the second in the foregoing embodiment. Transfer point.
  • first and second are merely for convenience of description and understanding, and should not be construed as limiting the embodiments of the present invention.
  • first X and second X may correspond to the same or different X.
  • the first network device and the second network device may refer to the same or different network devices, where the first cell and the second cell may refer to the same or different cells, and the first data and the second data may refer to the same or different data. .
  • the network device in the embodiment of the present invention may be referred to as a network side device, and may also be referred to as a terminal device in a D2D communication or an M2M communication.
  • the embodiment of the invention is not limited thereto.
  • association relationship describing the associated object indicates that there may be three relationships.
  • a and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone.
  • the character / in this paper generally indicates that the contextual object is an OR relationship.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative, for example, the single The division of elements is only a logical function division. In actual implementation, there may be another division manner. For example, multiple units or components may be combined or integrated into another system, or some features may be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present application may be in essence or part of the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种传输数据的方法和装置,能够提高数据传输效率或数据传输可靠性。该方法包括:第一小区所属的网络设备对第一数据进行处理,得到第一天线端口集合上的至少一个第一调制符号,所述第一天线端口集合包括第一小区的至少一个第一天线端口;所述第一小区所属的网络设备采用第一载波在第一子帧向终端设备发送所述至少一个第一调制符号,其中,所述至少一个第一调制符号不同于第二小区所属的网络设备采用所述第一载波在所述第一子帧向所述终端设备发送的第二天线端口集合上的至少一个第二调制符号,所述至少一个第二调制符号是通过对第二数据进行处理得到的,所述第二天线端口集合包括第二小区的至少一个第二天线端口。

Description

传输数据的方法和装置 技术领域
本发明涉及通信领域,并且更具体地,涉及传输数据的方法和装置。
背景技术
协作多点传输(Coordinated Multipoint Transmission,CoMP)被认为是一种解决小区间干扰问题并提升边缘用户吞吐量的有效方法。CoMP技术中多个相邻小区可以联合处理或协调边缘用户来避免干扰,并且提升边缘用户吞吐量。下行CoMP技术主要包括联合传输(Joint Transmission,JT)、协同调度(Coordinated Scheduling,CS)、协同波束成型(Coordinated Beamforming,CB)以及动态点选择/关闭(Dynamic Point Selection/Dynamic Point Blanking,DPS/DPB)。除了JT,在其余下行CoMP方案中,同一时刻只会有一个传输点向终端设备传输数据。
在现有的JT技术中,多个协作传输点向终端设备传输相同的数据。协作小区会按照与服务小区完全相同的方式进行物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的处理,得到相同的调制符号,并且在相同的资源单元上发送该调制符号。在终端设备的角度,可以认为接收到的数据均来自于服务小区,但是有用信号的强度增加,从而可以明显改善边缘用户的接收信号质量,提高边缘用户吞吐量。然而,该方案只能明显提升边缘用户的用户体验,对非边缘用户的用户体验提升效果不大。
发明内容
本发明实施例提供了一种传输数据的方法和装置,能够提高数据传输效率或数据传输可靠性。
第一方面,提供了一种传输数据的方法,包括:第一小区所属的网络设备对第一数据进行处理,得到第一天线端口集合上的至少一个第一调制符号,该第一天线端口集合包括至少一个第一天线端口;该第一小区所属的网络设备采用第一载波在第一子帧向终端设备发送该第一小区的至少一个第一调制符号,其中,第二小区所属的网络设备采用该第一载波在该第一子帧向该终端设备发送通过对第二数据进行处理得到的第二天线端口集合上的至少一个第二调制符号,该第二天线端口集合包括该第二小区的至少一个第二天线端口,该至少一个第一调制符号不同于该至少一个第二调制符号,并且该至少一个第一天线端口不同于该至少一个第二天线端口。
本发明实施例提供的传输数据的方法,第一小区所属的网络设备通过对第一数据进行处理,得到第一小区的至少一个第一天线端口上的至少一个第一调制符号,第二小区所属的网络设备通过对第二数据进行处理,得到第二小区的至少一个第二天线端口上的至少一个第二调制符号,其中,该至少一个第一调制符号不同于该至少一个第二调制符号,并且该至少一个第一天线端口不同于该至少一个第二天线端口,该第一小区所属的网络设备和该第二小区所属的网络设备在同一频段、同一子帧上分别向终端设备发送该至少一个第一调制符号和该至少一个第二调制符号,能够提高系统的数据传输效率或数据传输可靠性。
可选地,该第一小区与该第二小区为相同的小区,并且该第一小区的至少一个第一 天线端口属于该第一小区的第一传输点,该第二小区的至少一个第二天线端口属于该第一小区的第二传输点,其中,该第一传输点不同于该第二传输点。此时,网络设备在同一频段、同一子帧上分别通过第一传输点的至少一个第一天线端口和第二传输点的至少一个第二天线端口向终端设备发送至少一个第一调制符号和不同于该至少一个第一调制符号的至少一个第二调制符号。
可选地,该第一小区不同于该第二小区,并且该第一小区所属的网络设备与该第二小区所属的网络设备相同。此时,网络设备在同一频段、同一子帧上分别通过第一小区的至少一个第一天线端口和第二小区的至少一个第二天线端口向终端设备发送至少一个第一调制符号和不同于该至少一个第一调制符号的至少一个第二调制符号。
可选地,该第一小区不同于该第二小区,并且该第一小区所属的网络设备不同于该第二小区所属的网络设备。
在第一方面的第一种可能的实现方式中,该第一小区所属的网络设备对第一数据进行处理,得到第一天线端口集合上的至少一个第一调制符号,包括:该第一小区所属的网络设备对该第一数据对应的第一编码比特进行加扰处理,得到第一加扰比特;该第一小区所属的网络设备对该第一加扰比特对应的第一初始调制符号进行层映射处理,得到映射到至少一个传输层的第一初始调制符号;该第一小区所属的网络设备将该映射到至少一个传输层的第一初始调制符号进行预编码处理,得到该第一天线端口集合上的至少一个第一调制符号。
可选地,如果该第一小区所属的网络设备与该第二小区所属的网络设备相同,该方法还包括:该网络设备对该第二数据对应的第二编码比特进行加扰处理,得到第二加扰比特;该网络设备对该第二加扰比特对应的第二初始调制符号进行层映射处理,得到映射到至少一个传输层的第二初始调制符号;该第一小区所属的网络设备将该映射到至少一个传输层的第二初始调制符号进行预编码处理,得到该第二天线端口集合上的至少一个第二调制符号。
结合上述可能的实现方式,在第一方面的第二种可能的实现方式中,该第一小区所属的网络设备对该第一数据对应的第一编码比特进行加扰处理,得到第一加扰比特,包括:若该第一小区为该终端设备的协作小区,该第一小区所属的网络设备根据该第一小区的小区标识,确定扰码初始值;该第一小区所属的网络设备采用该扰码初始值,对该第一数据对应的第一编码比特进行加扰处理,得到该第一加扰比特。
可选地,该方法包括:第一小区所属的网络设备向该终端设备发送第一指示信息,该第一指示信息用于指示该至少一个第一天线端口的端口号和/或该至少一个第二天线端口的端口号。
结合上述可能的实现方式,在第一方面的第三种可能的实现方式中,该方法还包括:若该第一小区为该终端设备的服务小区,该第一小区所属的网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示该第二小区的小区标识,以便于该终端设备根据该第二小区的小区标识对接收到的该至少一个第二调制符号进行解调处理。
结合上述可能的实现方式,在第一方面的第四种可能的实现方式中,该第一小区所属的网络设备对该第一加扰比特对应的第一初始调制符号进行层映射处理,得到映射到至少一个传输层的该第一初始调制符号,包括:若该第一小区为该终端设备的协作小区,该第一小区所属的网络设备确定该至少一个传输层的数量,其中,该至少一个传输层的 数量是根据该第一小区与该终端设备之间的传输信道的信道状态确定的;该第一小区所属的网络设备根据该至少一个传输层的数量,对该第一加扰比特对应的第一初始调制符号进行层映射处理,得到映射到至少一个传输层的该第一初始调制符号。
可选地,如果该第一小区和该第二小区为相同的小区,并且该至少一个第一天线端口属于小区的第一传输点,该至少一个第二天线端口属于该小区的第二传输点,该小区所属的网络设备确定至少一个第一传输层的数量,其中,该至少一个第一传输层的数量是根据该第一传输点与该终端设备之间的传输信道的信道状态确定的;该网络设备根据该至少一个第一传输层的数量,对该第一加扰比特对应的第一初始调制符号进行层映射处理,得到映射到至少一个第一传输层的该第一初始调制符号;该网络设备确定至少一个第二传输层的数量,其中,该至少一个第二传输层的数量是根据该第二传输点与该终端设备之间的传输信道的信道状态确定的;该网络设备根据该至少一个第二传输层的数量,对第二加扰比特对应的第二初始调制符号进行层映射处理,得到映射到至少一个第二传输层的该第二初始调制符号,其中,该第二加扰比特是该网络设备通过对该第二数据对应的第二编码比特进行加扰处理得到的。
结合上述可能的实现方式,在第一方面的第五种可能的实现方式中,该第一小区所属的网络设备确定该至少一个传输层的数量,包括:该第一小区所属的网络设备根据该第一小区与该终端设备之间的传输信道的信道状态,确定该第一小区的第一传输秩的值;若该第一传输秩的值与该第二小区的第二传输秩的值之和大于该终端设备的接收天线数量,该第一小区所属的网络设备确定该第一传输秩的调整后的值,其中,该第二传输秩的值是根据该第二小区与该终端设备之间的传输信道的信道状态确定的,该第一传输秩的调整后的值与该第一传输秩的值相等或不相等,该第二传输秩的调整后的值与该第二传输秩的值相等或不相等,并且该第一传输秩的调整后的值与该第二传输秩的调整后的值之和小于或等于该终端设备的接收天线数量;该第一小区所属的网络设备将该至少一个传输层的数量确定为该第一传输秩的调整后的值。
可选地,如果该第一小区和该第二小区为相同的小区,并且该至少一个第一天线端口属于小区的第一传输点,该至少一个第二天线端口属于该小区的第二传输点,该小区所属的网络设备根据该第一传输点与该终端设备之间的传输信道的信道状态,确定该第一传输点的第一传输秩的值,并且根据该第二传输点与该终端设备之间的传输信道的信道状态,确定该第二传输点的第二传输秩的值;若该第一传输秩的值与该第二传输秩的值之和大于该终端设备的接收天线数量,该网络设备确定该第一传输秩的调整后的值以及第二传输秩的调整后的值,其中,该第一传输秩的调整后的值与该第一传输秩的值相等或不相等,该第二传输秩的调整后的值与该第二传输秩的值相等或不相等,并且该第一传输秩的调整后的值与该第二传输秩的调整后的值之和小于或等于该终端设备的接收天线数量;该网络设备将该至少一个第一传输层的数量确定为该第一传输秩的调整后的值,并且将该至少一个第二传输层的数量确定为该第二传输秩的调整后的值。
结合上述可能的实现方式,在第一方面的第六种可能的实现方式中,该第一小区所属的网络设备将映射到至少一个传输层的该第一初始调制符号进行预编码处理,得到该第一天线端口集合上的至少一个第一调制符号,包括:若该第一小区为该终端设备的协作小区,该第一小区所属的网络设备根据该终端设备与该第一小区之间的传输信道的信道状态,确定该第一小区对应的预编码矩阵;该第一小区所属的网络设备根据该第一小 区对应的预编码矩阵,对该映射到至少一个传输层的该第一初始调制符号进行预编码处理,以得到该第一天线端口集合上的至少一个第一调制符号。
结合上述可能的实现方式,在第一方面的第七种可能的实现方式中,该第一小区所属的网络设备在第一子帧向终端设备发送该至少一个第一调制符号,包括:若该第二小区所属的网络设备采用该第一载波上的第二资源块向该终端设备发送该至少一个第二调制符号,该第一小区所属的网络设备采用该第二资源块或该第一载波上的不同于该第二资源块的第一资源块向该终端设备发送该至少一个第一调制符号。
结合上述可能的实现方式,在第一方面的第八种可能的实现方式中,若该第一小区所属的网络设备采用该第二资源块向该终端设备发送该至少一个第一调制符号,该第一天线端口集合中的任一第一天线端口的端口号不同于该第二天线端口集合中的任一第二天线端口的端口号。
结合上述可能的实现方式,在第一方面的第九种可能的实现方式中,在该第一小区所属的网络设备采用第一载波在第一子帧向终端设备发送该至少一个第一调制符号之前,该方法还包括:若该第一小区为该终端设备的服务小区,该第一小区所属的网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示该第一小区所属的网络设备发送该至少一个第一调制符号时所采用的传输层的数量和/或该第二小区所属的网络设备发送该至少一个第二调制符号时所采用的传输层的数量。
结合上述可能的实现方式,在第一方面的第十种可能的实现方式中,该第一数据不同于该第二数据。
此时,第一小区所属的网络设备通过对第一数据进行处理,得到第一小区的至少一个第一天线端口上的至少一个第一调制符号,第二小区所属的网络设备通过对不同于第一数据的第二数据进行处理,得到第二小区的至少一个第二天线端口上的至少一个第二调制符号,其中,该至少一个第一调制符号不同于该至少一个第二调制符号,并且该至少一个第一天线端口不同于该至少一个第二天线端口,该第一小区所属的网络设备和该第二小区所属的网络设备在同一频段、同一子帧上分别向终端设备发送该至少一个第一调制符号和该至少一个第二调制符号,能够提高数据传输效率和系统吞吐量。
结合上述可能的实现方式,在第一方面的第十一种可能的实现方式中,该第一数据与该第二数据为相同的下行数据;该第一小区所属的网络设备将该映射到至少一个传输层的该第一初始调制符号进行预编码处理,得到该第一天线端口集合上的至少一个第一调制符号,包括:该第一小区所属的网络设备采用第一SFBC矩阵对该第一初始调制符号进行预编码处理,得到该第一天线端口集合上的至少两个第一调制符号,该至少两个第一调制符号包括x1和x2,其中,该第二小区所属的网络设备采用第二SFBC矩阵对该下行数据对应的第二初始调制符号进行预编码处理,得到该第二天线端口集合上的至少两个第二调制符号,该至少两个第二调制符号包括x3和x4,并且x1=x4*,x2=-x3*。
可选地,该第一小区所属的网络设备可以采用第一预编码矩阵对该第一初始调制符号进行预编码处理,得到第一中间调制符号,该第二小区所属的网络设备采用第二预编码矩阵对该第二初始调制符号进行预编码处理,得到第二中间调制符号,其中,该第一预编码矩阵是根据该第一小区与该终端设备之间的信道状态确定的,该第二预编码矩阵是根据该第二小区与该终端设备之间的信道状态确定的;该第二小区所属的网络设备采用第一SFBC矩阵对该第一中间调制符号进行预编码处理,得到至少两个第一调制符号, 该第二小区所属的网络设备采用第二SFBC矩阵对该第二中间调制符号进行预编码处理,得到至少两个第二调制符号,其中,该至少两个第一调制符号包括x1和x2,该至少两个第二调制符号包括x3和x4,并且x1=x4*,x2=-x3*。
此时,可选地,该第一初始调制符号可以与该第二初始调制符号相同。该第一小区所属的网络设备和该第二小区所属的网络设备可以采用相同的传输层数量,例如均为1或2,该第一小区所属的网络设备和该第二小区所属的网络设备也可以采用相同的扰码初始值,例如,均由服务小区的小区标识生成,等等。
此时,通过该第一小区所属的网络设备和该第二小区所属的网络设备采用发射分集(具体为SFBC)方式向该终端设备发送数据,能够提高编码增益和数据传输可靠性。
结合第一方面的第十一种可能的实现方式,在第一方面的第十二种可能的实现方式中,该方法还包括:若该第一小区为该终端设备的服务小区,该第一小区所属的网络设备向该第二小区所属的网络设备发送第四指示信息,该第四指示信息用于指示下列中的至少一种:传输层的数量和该第一小区待传输的至少两个第一调制符号;或者,若该第一小区为该终端设备的协作小区,该第一小区所属的网络设备接收服务小区所属的网络设备发送的第四指示信息,该第四指示信息用于指示下列中的至少一种:传输层的数量和所述服务小区待传输的至少两个第二调制符号,根据该第四指示信息,确定该至少两个第一调制符号。
第二方面,提供了另一种传输数据的方法,包括:终端设备接收第一小区所属的网络设备采用第一载波在第一子帧上发送的第一天线端口集合上的至少一个第一调制符号,该至少一个第一调制符号是该第一小区所属的网络设备通过对第一数据进行处理得到的,该第一天线端口集合包括第一小区的至少一个第一天线端口;该终端设备接收第二小区所属的网络设备采用该第一载波在该第一子帧上发送的第二天线端口集合上的至少一个第二调制符号,其中,该至少一个第二调制符号是该第二小区所属的网络设备通过对第二数据进行处理得到的,该至少一个第二调制符号不同于该至少一个第一调制符号,该第二天线端口集合包括第二小区的至少一个第二天线端口,并且该至少一个第一天线端口不同于该至少一个第二天线端口;该终端设备对该至少一个第一调制符号和该至少一个第二调制符号进行解调处理。
可选地,该第一小区与该第二小区为相同的小区,并且该第一小区的至少一个第一天线端口属于该第一小区的第一传输点,该第二小区的至少一个第二天线端口属于该第一小区的第二传输点,其中,该第一传输点不同于该第二传输点。此时,网络设备在同一频段、同一子帧上分别通过第一传输点的至少一个第一天线端口和第二传输点的至少一个第二天线端口向终端设备发送至少一个第一调制符号和不同于该至少一个第一调制符号的至少一个第二调制符号。
可选地,该第一小区不同于该第二小区,并且该第一小区所属的网络设备与该第二小区所属的网络设备相同。此时,网络设备在同一频段、同一子帧上分别通过第一小区的至少一个第一天线端口和第二小区的至少一个第二天线端口向终端设备发送至少一个第一调制符号和不同于该至少一个第一调制符号的至少一个第二调制符号。
可选地,该第一小区不同于该第二小区,并且该第一小区所属的网络设备不同于该第二小区所属的网络设备。
在第二方面的第一种可能的实现方式中,该至少一个第一调制符号是该第一小区所 属的网络设备通过对该第一数据对应的第一编码比特依次进行加扰处理、层映射处理和预编码处理得到的;该至少一个第二调制符号是该第二小区所属的网络设备通过对该第二数据对应的第二编码比特依次进行加扰处理、层映射处理和预编码处理得到的。
结合上述可能的实现方式,在第二方面的第二种可能的实现方式中,该至少一个第一调制符号是该第一小区所属的网络设备通过根据该第一小区的小区标识对该第一数据对应的第一编码比特进行加扰处理得到的,该至少一个第二调制符号是该第一小区所属的网络设备通过根据该第二小区的小区标识对该第二数据对应的第二编码比特进行加扰处理得到的。
可选地,该方法包括:终端设备接收第一小区所属的网络设备发送的第一指示信息,该第一指示信息用于指示该至少一个第一天线端口的端口号和/或该至少一个第二天线端口的端口号。
可选地,该方法还包括:该终端设备接收服务小区所属的网络设备发送的第二指示信息,该第二指示信息用于指示协作小区的小区标识。
这种情况下,可选地,该终端设备对至少一个第一调制符号和该至少一个第二调制符号进行解调处理,包括:该终端设备根据该协作小区的小区标识,对接收到的该至少一个第一调制符号或该至少一个第二调制符号进行解调处理,其中,该服务小区为该第一小区或该第二小区,该协作小区为该第一小区和该第二小区中除该服务小区之外的小区。
结合上述可能的实现方式,在第二方面的第三种可能的实现方式中,该至少一个第一调制符号是该第一小区所属的网络设备通过根据至少一个第一传输层的数量对该第一加扰比特对应的第一初始调制符号进行层映射处理得到的,其中,该至少一个第一传输层的数量是根据该第一小区与该终端设备之间的传输信道的信道状态确定的;该至少一个第二调制符号是该第二小区所属的网络设备通过根据至少一个第二传输层的数量对该第二加扰比特对应的第二初始调制符号进行层映射处理得到的,其中,该至少一个第二传输层的数量是根据该第二小区与该终端设备之间的传输信道的信道状态确定的。
可选地,如果该第一小区和该第二小区为相同的小区,并且该至少一个第一天线端口属于小区的第一传输点,该至少一个第二天线端口属于该小区的第二传输点,该至少一个第一传输层的数量是根据该第一传输点与该终端设备之间的传输信道的信道状态确定的;该至少一个第二传输层的数量是根据该第二传输点与该终端设备之间的传输信道的信道状态确定的。
结合上述可能的实现方式,在第二方面的第四种可能的实现方式中,该第一传输层的数量是该第一小区所属的网络设备通过对根据该第一小区与该终端设备之间的传输信道的信道状态确定的第一传输秩的值进行调整得到的,该第二传输层的数量是该第二小区所属的网络设备通过对根据该第二小区与该终端设备之间的传输信道的信道状态确定的第二传输秩的值进行调整得到的,其中,该第一传输秩的值与该第二传输秩的值之和大于该终端设备的接收天线数量,该第一传输秩的调整后的值与该第一传输秩的值相等或不相等,该第二传输秩的调整后的值与该第二传输秩的值相等或不相等,并且该第一传输秩的调整后的值与该第二传输秩的调整后的值之和小于或等于该终端设备的接收天线数量。
可选地,如果该第一小区和该第二小区为相同的小区,并且该至少一个第一天线端 口属于小区的第一传输点,该至少一个第二天线端口属于该小区的第二传输点,该第一传输秩的值是根据该第一传输点与该终端设备之间的传输信道的信道状态确定的,该第二传输秩的值是根据该第二传输点与该终端设备之间的传输信道的信道状态确定的。
结合上述可能的实现方式,在第二方面的第五种可能的实现方式中,该至少一个第一调制符号是该第一小区所属的网络设备通过根据第一预编码矩阵对该映射到至少一个传输层的该第一初始调制符号进行预编码处理得到的,其中,该第一预编码矩阵是根据该终端设备与该第一小区之间的传输信道的信道状态确定的;该至少一个第二调制符号是该第二小区所属的网络设备通过根据第二预编码矩阵对该映射到至少一个传输层的该第二初始调制符号进行预编码处理得到的,其中,该第二预编码矩阵是根据该终端设备与该第一小区之间的传输信道的信道状态确定的。
可选地,如果该第一小区和该第二小区为相同的小区,并且该至少一个第一天线端口属于小区的第一传输点,该至少一个第二天线端口属于该小区的第二传输点,该第一预编码矩阵是根据该第一传输点与该终端设备之间的传输信道的信道状态确定的,该第二预编码矩阵是根据该第二传输点与该终端设备之间的传输信道的信道状态确定的。
结合上述可能的实现方式,在第二方面的第六种可能的实现方式中,该至少一个第二调制符号是该第二小区所属的网络设备采用该第一载波上的第二资源块发送的,该至少一个第一调制符号是该第一小区所属的网络设备采用该第二资源块或该第一载波上的不同于该第二资源块的第一资源块发送的。
结合上述可能的实现方式,在第二方面的第七种可能的实现方式中,若该至少一个第一调制符号是该第一小区所属的网络设备采用该第二资源块发送的,该第一天线端口集合中的任一第一天线端口的端口号不同于该第二天线端口集合中的任一第二天线端口的端口号。
结合上述可能的实现方式,在第二方面的第八种可能的实现方式中,该方法还包括:该终端设备接收服务小区所属的网络设备发送的第三指示信息,该第三指示信息用于指示该第一小区所属的网络设备发送该至少一个第一调制符号时所采用的传输层的数量和/或该第二小区所属的网络设备发送该至少一个第二调制符号时所采用的传输层的数量。
结合上述可能的实现方式,在第二方面的第九种可能的实现方式中,该第一数据不同于该第二数据。
结合上述可能的实现方式,在第二方面的第十种可能的实现方式中,该第一数据与该第二数据为相同的下行数据;该至少一个第一调制符号是该第一小区所属的网络设备通过采用第一SFBC矩阵对该第一初始调制符号进行预编码处理的,该至少两个第一调制符号包括x1和x2;该至少一个第二调制符号是该第二小区所属的网络设备通过采用第二SFBC矩阵对该下行数据对应的第二初始调制符号进行预编码处理得到的,该至少两个第二调制符号包括x3和x4,并且x1=x4*,x2=-x3*。
在本发明实施例的某些方面,第一小区所属的网络设备向终端设备发送第一指示信息,该第一指示信息用于指示该第一小区的至少一个第一天线端口的端口号和/或第二小区的至少一个第二天线端口的端口号。
在本发明实施例的某些方面,第一小区所属的网络设备向终端设备发送第二指示信息,该第二指示信息用于指示第二小区的小区标识;该第一小区所属的网络设备在第一载波、第一子帧上向该终端设备发送第一小区的第一天线端口集合上的至少一个第一调 制符号,该至少一个第一调制符号不同于该第二小区所属的网络设备在该第一载波、第一子帧上向该终端设备发送的该第二小区的第二天线端口集合上的至少一个第二调制符号。
在本发明实施例的某些方面,第一小区所属的网络设备向终端设备发送第三指示信息,该第三指示信息用于指示该第一小区所属的网络设备在第一载波、第一子帧上发送该第一小区的第一天线端口集合上的至少一个第一调制符号时所采用的传输层的数量,并且用于指示第二小区所属的网络设备在该第一载波、第一子帧上向该终端设备发送该第二小区的第二天线端口集合上的至少一个第二调制符号时所采用的传输层的数量。
在本发明实施例的某些方面,第一小区所属的第一网络设备向第二小区所属的第二网络设备发送第四指示信息,该第四指示信息用于指示下列中的至少一种:传输层的数量和该第一小区待传输的至少两个第一调制符号。
在本发明实施例的某些方面,第一小区所属的第一网络设备向第二小区所属的第二网络设备发送第五指示信息,该第五指示信息用于指示第二小区所属的网络设备在对第二数据进行处理时采用的SFBC矩阵。
可以理解的是,这些指示信息的交互既可以与前述的传输数据的方法结合,也可以是独立的;这些指示信息之间既可以是独立的,也可以是结合使用的。
第三方面,提供了一种传输数据的装置,用于执行第一方面或第一方面的任一种可能的实现方式中的方法。相应的,该装置包括用于执行第一方面或第一方面的任一种可能的实现方式中的方法的功能模块。
作为一种可能的实现,该装置可以包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了另一种传输数据的装置,用于执行第二方面或第二方面的任一种可能的实现方式中的方法。相应的,该装置包括用于执行第一方面或第一方面的任一种可能的实现方式中的方法的功能模块。
作为一种可能的实现,该装置可以包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第五方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第六方面,提供了另一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第七方面,提供了一种传输数据的系统,包括上述第三方面或第三方面的任一种可能的实现方式中的装置;和包括上述第四方面或第四方面的任一种可能的实现方式中的装置。
附图说明
图1为本发明实施例应用的通信系统的示意性架构图。
图2为本发明实施例提供的传输数据的方法的示意性流程图。
图3为本发明实施例提供的传输数据的方法中的数据处理流程图。
图4为本发明实施例提供的另一传输数据的方法的示意性流程图。
图5为本发明实施例提供的传输数据的装置的示意性框图。
图6为本发明实施例提供的另一传输数据的装置的示意性框图。
图7为本发明实施例提供的另一传输数据的装置的示意性框图。
图8为本发明实施例提供的另一传输数据的装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或未来的5G系统等。可以理解,本发明实施例的技术方案可以应用于网络设备与终端设备之间的通信,也可以应用于终端设备与终端设备之间的通信,如设备与设备(device to device,D2D),机器与机器(machine to machine,M2M)等场景中的发送端和接收端,也可以应用于网络设备与网络设备之间的通信,如基站与基站之间的通信场景中的发送端和接收端,如宏微协同的场景中的宏基站和微基站。
图1示出了本发明实施例应用的无线通信系统100,该无线通信系统可以为同构网络或异构网络。该无线通信系统100可以包括至少一个网络设备110。网络设备110可以是与终端设备通信的设备。每个网络设备110可以为特定的地理区域115提供通信覆盖,并且可以与位于该覆盖区域115内的终端设备。此外,可以将该网络设备110的整个覆盖区域115划分为多个较小的区域(即多个小区),例如图1示例性地示出了该覆盖区域115包括三个小区115a、115b和115c,但本发明实施例中的网络设备也可以支持一个或其它数量的多个小区,本发明实施例对此不做限定。
应理解,在本发明实施例中,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的多个终端设备120。该终端设备120可以是移动的或固定的。该终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通 信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本发明实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本发明实施例不限于此。
无线通信系统100可以支持CoMP,即多个小区或多个传输点可以协作以在同一时频资源上向同一个终端设备发送数据。其中,该多个小区可以属于相同的网络设备或不同的网络设备,并且可以根据信道增益或路径损耗、接收信号强度、接收信号质量等来选择。该多个传输点中的任意两个传输点的天线端口集合可以不具有相同的大尺度特性(即不准共址),并且可以属于同一个小区或属于不同的小区,本发明实施例对此不做限定。其中,相同的大尺度特性可以参考3GPP标准中的定义,也可以依据实际系统需求进行设定。当前3GPP标准中的定义为一个符号从一个天线端口传输经过的信道的大尺度特性可通过一个符号从另一个天线端口传输所经过的信道的大尺度特性推断。大尺度特性也可以参考3GPP标准的定义,也可以依据实际系统需求进行设定。当前3GPP标准中,大尺度特性可以包括时延扩展、多普勒扩展、多普勒频移、平均增益以及平均时延中的一个或多个。
可选地,如果该终端设备位于小区边缘且用户吞吐量较低(例如低于用户速率累积分布函数(Cumulative Distribution Function,CDF)曲线的5%),则多个小区可以协作以在同一时间-频率资源上分别向该终端设备发送相同的数据,以实现该终端设备处的信号增强和干扰降低。可选地,对于位于小区边缘或位于小区其它区域的终端设备,多个小区或多个传输点可以协作进行多波束发射分集或多流空分复用的传输,即多个小区或多个传输点可以在同一时频资源上向终端设备发送不同的调制符号,以提高数据传输可靠性或数据传输效率,但本发明实施例不限于此。
图2是本发明实施例提供的传输数据的方法200的示意性流程图。
S210,第一网络设备对第一数据进行处理,得到第一天线端口集合上的至少一个第一调制符号,第二网络设备对第二数据进行处理,得到第二天线端口集合上的至少一个第二调制符号,其中,该至少一个第二调制符号不同于该至少一个第一调制符号。
该第一天线端口集合可以包括该第一网络设备的第一小区的至少一个第一天线端口,并且该第二天线端口集合可以包括该第二网络设备的第二小区的至少一个第二天线端口,该至少一个第一天线端口不同于该至少一个第二天线端口;或者,该第一天线端口集合可以包括该第一网络设备的第一传输点的至少一个第一天线端口,并且该第二天线端口集合可以包括该第二网络设备的第二传输点的至少一个第二天线端口,该至少一个第一天线端口不同于该至少一个第二天线端口。
该第一调制符号和该第二调制符号可以具体为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,也可以为其它类型的调制符号,本发明实施例对此不做限定。
具体地,该至少一个第一调制符号中的任意第一调制符号可以不同于该至少一个第二调制符号中的任意第二调制符号,即该至少一个第一调制符号与该至少一个第二调制 符号之间不存在交集;或者该至少一个第一调制符号中的部分第一调制符号与该至少一个第二调制符号中的部分第二调制符号可以相同,而另一部分第一调制符号与另一部分第二调制符号不同,本发明实施例对此不做限定。
该第一网络设备和该第二网络设备可以分别通过至少一个第一天线端口和不同于该至少一个第一天线端口的至少一个第二天线端口发送至少一个第一调制符号和不同于该至少一个第一调制符号的至少一个第二调制符号。其中,该第一网络设备是指该第一小区或第一传输点所属的网络设备,该第二网络设备是指该第二小区或该第二传输点所属的网络设备。该第一网络设备和该第二网络设备可以为相同的网络设备,或可以为不同的网络设备,本发明实施例对此不做限定。
该至少一个第一天线端口中的任意第一天线端口可以不同于该至少一个第二天线端口中的任意第二天线端口。可选地,该至少一个第一天线端口和该至少一个第二天线端口可以分别属于第一小区和第二小区,其中,该第一小区属于该第一网络设备,该第二小区属于该第二网络设备。此时,该第一小区可以不同于该第二小区,例如该第一小区和该第二小区可以具有不同的物理小区标识。或者,该第一小区和该第二小区可以为相同的小区,该至少一个第一天线端口可以具体属于小区的第一传输点,该至少一个第二天线端口可以属于该小区的不同于该第一传输点的第二传输点。
可选地,该第一小区可以为该终端设备当前的服务小区,并且该第二小区可以为该协作小区;或者,该第一小区可以为该终端设备的协作小区,并且该第二小区可以为该终端设备的服务小区。其中,参与一次协作数据传输的协作小区的数量可以为一个或多个,本发明实施例对此不做限定。
作为另一个可选实施例,该至少一个第一天线端口可以属于第一传输点,该至少一个第二天线端口可以属于不同于该第一传输点的第二传输点。其中,该第一传输点属于该第一网络设备,该第二传输点属于该第二网络设备。此时,该第一传输点和该第二传输点可以属于相同的小区或不同的小区,本发明实施例对此不做限定。
可选地,该第一传输点和该第二传输点可以均属于该终端设备的服务小区;或者,该第一传输点和该第二传输点中的一个传输点可以属于该终端设备的服务小区,而另一个传输点属于该终端设备的协作小区,本发明实施例不限于此。
该至少一个第一调制符号不同于该至少一个第二调制符号可以具体对应于不同的情况。可选地,该第一数据不同于该第二数据,即该第一网络设备和该第二网络设备分别向该终端设备发送不同的下行数据。此时,该第一小区和该第二小区可以协作进行多流传输,或者该第一传输点和该第二传输点进行协作多流传输。可选地,该第一数据与该第二数据可以为相同的下行数据,由于该第一网络设备和该第二网络设备分别对下行数据进行不同的处理,使得该至少一个第一调制符号不同于该至少一个第二调制符号,例如,该第一网络设备和第二网络设备采用空频分组编码(Spatial Frequency Block Code,SFBC)技术分别对该下行数据进行预编码处理。此时,该第一小区和该第二小区可以协作进行发射分集传输,或者该第一传输点和该第二传输点可以协作进行发射分集传输,但本发明实施例不限于此。
S220,第一网络设备采用第一载波在第一子帧向终端设备发送该第一天线端口集合上的至少一个第一调制符号,第二网络设备采用该第一载波在该第一子帧向该终端设备发送该第二天线端口集合上的至少一个第二调制符号。
该第一载波可以为系统载波,对应于某一特定频段,例如中心频点为800M频段或中心频点为900M的频段。该第一网络设备和该第二网络设备可以协作采用同一频段在同一时间资源上分别向该终端设备发送该至少一个第一调制符号和该至少一个第二调制符号。
因此,根据本发明实施例的传输数据的方法,第一网络设备通过对第一数据进行处理,得到第一小区或第一传输点的至少一个第一天线端口上的至少一个第一调制符号,第二网络设备通过对第二数据进行处理,得到第二小区或第二传输点的至少一个第二天线端口上的至少一个第二调制符号,其中,该至少一个第一调制符号不同于该至少一个第二调制符号,并且该至少一个第一天线端口不同于该至少一个第二天线端口,能够提高系统的数据传输效率或数据传输可靠性。
此外,现有技术中CoMP联合传输相同数据流的情况下,终端设备只能进行单定时接收,此时要求两个小区到达终端设备侧的信号时间差要在一定范围之内(对于LTE系统,该时间差要在循环前缀(Cyclic Prefix,CP)之内),对信号定时到达的要求较高,因此需要参与协作传输的多个小区与终端设备之间的距离不能相差太大,从而限制了能够参与协作的小区数量。而在本发明实施例中,由于参与协作的各个小区或各个传输点向终端设备传输不同的数据流,该终端设备可以采用单定时接收,也可以采用多定时接收,对不同小区或传输点的信号定时到达的要求较低,从而可以扩大协作集的小区或传输点的数量,进一步提高数据传输效率和系统吞吐量。
其中,定时接收是指终端设备通过接收网络侧的定时同步信息所获取采样时钟、起始符号位置或起始子帧号等信息,对数据进行接收。单定时接收是指终端设备只根据一组上述信息来对数据进行接收。多定时接收指的是终端设备获取分别对应不同的小区的多组上述信息,并且采用对应的定时信息去接收对应小区发送的数据。
在本发明实施例中,该第一网络设备和该第二网络设备可以采用相同的时频资源分别向该终端设备发送至少一个第一调制符号和至少一个第二调制符号,其中,该时频资源可以对应于同一频段和同一时间段,并且可以包括多个资源单元。可选地,该第一网络设备和该第二网络设备可以采用该时频资源中相同的资源单元向该终端设备发送该至少一个第一调制符号和该至少一个第二调制符号,也可以采用该时频资源中不同的资源单元向该终端设备发送该至少一个第一调制符号和该至少一个第二调制符号,例如,该第一网络设备和该第二网络设备可以占用该第一子帧中的不完全相同的符号发送该至少一个第一调制符号和该至少一个第二调制符号,或者,该第一网络设备和该第二网络设备占用同一符号的不同频率资源发送该至少一个第一调制符号和该至少一个第二调制符号,本发明实施例对此不做限定。
作为一个可选实施例,该第一网络设备采用第一载波在第一子帧向终端设备发送该至少一个第一调制符号,包括:
若该第二网络设备采用该第一载波上的第二资源块向该终端设备发送该至少一个第二调制符号,该第一网络设备采用该第二资源块或该第一载波上的不同于该第二资源块的第一资源块向该终端设备发送该至少一个第一调制符号。
该至少一个第一天线端口不同于该至少一个第二天线端口,其中,该至少一个第一天线端口的端口号可以与该至少一个第二天线端口的端口号相同或不同。具体地,若第一网络设备和第二网络设备在该第一载波上的同一物理资源块上分别向该终端设备发送 该至少一个第一调制符号和该至少一个第二调制符号,为了使得终端设备能够区分开不同的数据流,避免导频信号之间的干扰,该至少一个第一天线端口和该至少一个第二天线端口的端口号可以不同(例如该第一网络设备和该第二网络设备采用不同的解调参考信号(Demodulation Reference Signal,DMRS)天线端口)及相应的导频与终端设备通信,该不同的天线端口可以对应不同的端口号。例如,第一网络设备可以采用该第一小区或第一传输点的端口7和8向终端设备发送两层数据,而第二网络设备可以采用该第二小区或第二传输点内除端口7和8以外的其他端口来传输数据。可选地,若第一网络设备和第二网络设备在同一时频资源中的不同的物理资源块上向终端设备传输该至少一个第一调制符号和该至少一个第二调制符号,则可以不限制天线端口号的选取,各小区可以根据各自情况独立地选择天线端口发送数据,即该至少一个第一天线端口的端口号可以与该至少一个第二天线端口的端口号相同或不同,但本发明实施例不限于此。
作为一个可选实施例,若该第一网络设备采用该第一载波上的第二资源块向该终端设备发送该至少一个第一调制符号,而该第二网络设备采用该第一载波上的不同于该第二资源块的第一资源块发送该至少一个第二调制符号,则该至少一个第一天线端口的端口号可以不同于该至少一个第二天线端口的端口号。
作为另一个可选实施例,在S220之前,该方法200还包括:
若该第一小区为该终端设备的服务小区或该第一传输点属于该终端设备的服务小区,该第一网络设备向该终端设备发送第一指示信息,该第一指示信息用于指示该至少一个第一天线端口的端口号和/或该至少一个第二天线端口的端口号。
这样,终端设备可以根据该第一指示信息,在相应的天线端口上接收该至少一个第一调制符号和该至少一个第二调制符号。
作为另一个可选实施例,S210,第一网络设备对第一数据进行处理,得到第一天线端口集合上的至少一个第一调制符号,包括:
该第一网络设备对该第一数据对应的第一编码比特进行加扰处理,得到第一加扰比特;
该第一网络设备对该第一加扰比特对应的第一初始调制符号进行层映射处理,得到映射到至少一个传输层的该第一初始调制符号;
该第一网络设备将该映射到至少一个传输层的该第一初始调制符号进行预编码处理,得到该第一天线端口集合上的至少一个第一调制符号。
可选地,该第二网络设备也可以对该第二数据进行类似的处理。具体地,该第二网络设备可以对该第二数据对应的第二编码比特进行加扰处理,得到第二加扰比特,对该第二加扰比特对应的第二初始调制符号进行层映射处理,得到映射到至少一个传输层的该第二初始调制符号,以及将该映射到至少一个传输层的该第二初始调制符号进行预编码处理,得到该第二天线端口集合上的至少一个第二调制符号。
具体地,如图3所示,该第一网络设备可以对该第一数据进行编码处理,得到该第一数据对应的第一编码比特,其中,该第一网络设备可以分别对该第一数据的至少一个码字中每个码字进行编码处理,每个码字可以包括至少一个编码比特;该第一网络设备可以对该第一编码比特进行加扰处理,得到第一加扰比特;对该第一加扰比特进行调制映射处理,以得到复数的第一初始调制符号;对该第一初始调制符号进行层映射处理,以将该第一初始调制符号映射至一个或多个传输层;对每个传输层上的初始调制符号进 行预编码处理,以将该传输层上的初始调制符号映射至一个或多个天线端口;对每个天线端口的初始调制符号进行资源映射处理,以将该天线端口的调制符号映射至一个或多个资源单元,然后生成该天线端口对应的调制符号。
应理解,图3所示的处理过程示例是为了帮助本领域技术人员更好地理解本发明实施例,而非要限制本发明实施例的范围。本领域技术人员根据所给出的图3的例子,显然可以进行各种等价的修改或变化,例如,图3所示的处理过程中的一个或多个步骤可以不执行,或者上述处理过程中的某几个步骤可以同时执行或者调换顺序执行,等等,这样的修改或变化也落入本发明实施例的范围内。
作为一个可选实施例,该第一网络设备对该第一数据对应的第一编码比特进行加扰处理,得到第一加扰比特,包括:
该第一网络设备根据该第一小区或第一传输点所属小区的小区标识,确定扰码初始值;
该第一网络设备采用该扰码初始值,对该第一数据对应的第一编码比特进行加扰处理,得到该第一加扰比特。
类似地,该第二网络设备可以根据该第二小区的小区标识或者该第二传输点所属的小区的小区标识,确定第二扰码初始值,并且采用该第二扰码初始值,对该第二数据对应的第二编码比特进行加扰处理,得到该第二加扰比特。
在本发明实施例中,参与协作传输的各个小区或传输点可以独立地对待发送的数据进行加扰处理,具体地,各个小区或传输点可以分别根据自身的信息进行加扰处理,例如,各个小区可以分别采用自身的小区标识进行加扰处理,或者各个传输点可以分别采用所属小区的小区标识进行加扰处理。此时,可选地,各个小区对应的扰码初始值cinit可以如式(1)所示:
Figure PCTCN2017075523-appb-000001
其中,nRNTI对应于该终端设备的标识。q为码字标识符,对于一个子帧可至多发送两个码字的情况,q∈{0,1};对于单码字传输的情况,q=0。ns为时隙号,
Figure PCTCN2017075523-appb-000002
为该小区的物理小区标识(Physical Cell Identifier,PCI)。
可选地,若该第一小区为该终端设备的服务小区或该第一传输点属于该终端设备的服务小区,则该第一网络设备还可以向该终端设备发送第二指示信息,该第二指示信息用于指示该第二小区或该第二传输点所属的协作小区的小区标识。这样,终端设备可以接收该第一网络设备发送的该第二指示信息,根据该第二指示信息确定参与本次协作传输的至少一个协作小区的小区标识,并根据各个小区的小区标识,对接收到的调制符号进行解扰处理。
可选地,服务小区可以在向终端设备发送的准共址(Quasi Co-location,QCL)导频信息中包括各个协作小区的小区标识信息,但本发明实施例不限于此。
作为另一个可选实施例,该第一网络设备对该第一加扰比特对应的第一初始调制符号进行层映射处理,得到映射到至少一个传输层的该第一初始调制符号,包括:
该第一网络设备确定该至少一个传输层的数量,其中,该至少一个传输层的数量是根据该终端设备与该第一小区或第一传输点之间的信道状态确定的;
该第一网络设备根据该至少一个传输层的数量,对该第一加扰比特对应的第一初始 调制符号进行层映射处理,得到映射到至少一个传输层的该第一初始调制符号。
类似地,该第二网络设备可以确定至少一个第二传输层的数量,其中,该至少一个第二传输层的数量是根据该终端设备与该第二小区或第二传输点之间的信道状态确定的;并且根据该至少一个第二传输层的数量,对该第二加扰比特对应的第二初始调制符号进行层映射处理,得到映射到至少一个传输层的该第二初始调制符号。
具体地,不同于现有技术中协作小区以与服务小区完全相同的方式进行层映射处理,在本发明实施例中,参与协作传输的各个小区或传输点可以独立进行层映射处理,例如,参与协作传输的各个小区或传输点可以分别采用不同的传输层数进行层映射处理。可选地,参与协作传输的某个小区或传输点可以获取自身与该终端设备之间的传输信道的信道状态信息,并根据该信道状态信息确定自身采用的传输层数量,例如,该信道状态信息可以包括秩指示符(Rank Indicator,RI),并且某个小区采用的传输层的数量可以确定为该小区对应的RI的值。该信道状态信息可以是该小区通过对该终端设备发送的上行信息(例如上行导频信号)进行测量获得的,也可以是终端设备通过对该小区发送的下行信息(例如下行导频信号或下行数据)进行测量获得的。例如,协作小区在服务小区用于发送零功率CSI-RS的时频资源上向终端设备发送非零功率CSI-RS,这样终端设备可以通过测量获得该协作小区与终端设备之间的传输信道的信道状态信息,但本发明实施例不限于此。
在本发明实施例中,该第一小区或第一传输点与该终端设备之间的信道状态信息可以是该终端设备通过测量得到的,此时,第一网络设备可以通过多种方式获取终端设备反馈的信道状态信息。可选地,该第一网络设备可以接收该终端设备发送的信道状态信息;或者,如果该第一小区或第一传输点所属的小区为协作小区并且该第一网络设备不同于该第二网络设备,则该第一网络设备可以接收该第二网络设备发送的指示信息,该指示信息用于指示该第一小区对应的信道状态信息,此时,该终端设备可以向服务小区发送多个小区中每个小区对应的信道状态信息,其中该多个小区可以包括参与本次协作传输的至少一个协作小区,并且该服务小区可以向该至少一个协作小区中每个协作小区发送用于指示该每个协作小区对应的信道状态信息的指示信息,但本发明实施例不限于此。
作为另一个可选实施例,参与协作传输的某个小区对应的传输层的数量也可以不等于该小区对应的RI的值,而是通过对该小区对应的RI的值进行调整获得。例如,当参与协作传输的所有小区对应的RI的值之和大于该终端设备的接收天线数量时,可以通过调整一个或多个小区对应的RI的值,以获得该一个或多个小区对应的传输层的数量,本发明实施例对此不作限定。
可选地,该第一网络设备确定该至少一个传输层的数量,包括:
该第一网络设备根据该第一小区与终端设备之间的信道状态,确定第一传输秩的值;
若该第一传输秩的值与第二传输秩的值之和大于该终端设备的接收天线数量,该第一网络设备确定该第一传输秩的调整后的值,其中,该第二传输秩的值是根据该第二小区与该终端设备之间的信道状态确定的,该第一传输秩的调整后的值与该第一传输秩的值相同或不同,该第二传输秩的调整后的值与该第二传输秩的值相同或不同,并且该第一传输秩的调整后的值与该第二传输秩的调制后的值之和小于或等于该终端设备的接收天线数量;
该第一网络设备将该至少一个传输层的数量确定为该第一传输秩的调整后的值。
具体地,上述传输秩可以具体为RI。第一传输秩的调整后的值可以与第一传输秩的值相同或不同,并且第二传输秩的调整后的值可以与第二传输秩的值相同或不同,但第一传输秩的调整后的值与第二传输秩的调整后的值之和应小于或等于该终端设备的接收天线数量。也就是说,可以对该第一传输秩的值和该第二传输秩的值中的至少一项进行调整,以得到该第一传输秩的调整后的值和第二传输秩的调整后的值。
可选地,在本发明实施例中,可以将服务小区对应的RI的值保持不变,并且对一个或多个协作小区对应的RI的值进行调整。此时,如果该第一小区为服务小区,则该调整后的第一RI的值等于该第一RI的值,该第一网络设备可以对该第二RI的值进行调整,以使得该调整后的该第二RI的值与该第一RI的值之和小于或等于该终端设备的接收天线数量;可选地,该第一网络设备还可以向该第二网络设备发送指示信息,该指示信息用于指示该调整后的该第二RI的值。如果该第一小区为协作小区,则该调整后的第二RI的值等于该第二RI的值,并且调整后的第一RI的值小于该第一RI的值,此时,可选地,该第一网络设备可以接收该第二网络设备发送的用于指示调整后的该第一RI的值的指示信息,并根据该指示信息确定该调整后的第一RI的值,或者,也可以由第一网络设备调整该第一RI的值,本发明实施例对此不做限定。
可选地,作为另一实施例,可以将参与本次协作传输的所有小区中对应的最大RI的值保持不变,而调整其它一个或多个小区对应的RI的值,以使得调整后的各个RI的值之和小于或等于该终端设备的接收天线数量,此时,可以由某一个小区统一对各个小区的RI的值进行调整,例如由服务小区或者对应RI的值最大的小区进行调整,或者也可以由各个小区调整自身对应的RI的值。可选地,该第一网络设备可以确定参与协作传输的多个小区中对应的RI的值最大的目标小区,如果该目标小区为该第一小区,即该第一网络设备确定自身为多个小区中对应RI的值最大的小区,则该调整后的第一RI的值等于该第一RI的值,可选地,该第一网络设备可以对该第二RI的值进行调整,以使得该调整后的该第二RI的值与该第一RI的值之和小于或等于该终端设备的接收天线数量;如果该目标小区为第二小区,则该调整后的第二RI的值等于该第二RI的值,该第一网络设备可以对该第一RI的值进行调整,或者可以接收该第二网络设备发送的用于指示调整后的该第一RI的值的指示信息,并根据该指示信息确定该调整后的第一RI的值,本发明实施例对此不做限定。
可选地,作为另一实施例,也可以根据某一准则,从参与协作传输的各个小区(或各个协作小区)对应的RI的值的可能组合中确定目标组合,并将该目标组合中的各个小区对应的RI的值确定为各个小区对应的调整后的RI的值。其中,该准则可以为总吞吐量最大或者总接收信噪比最大,等等,本发明实施例对此不做限定。
作为另一个可选实施例,服务小区可以指示终端设备参与协作传输的各个小区所采用的传输层的数量。相应地,在S220之前,该方法200还包括:
若该第一小区为该终端设备的服务小区或该第一传输点属于该终端设备的服务小区,该第一网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示该第一网络设备发送该至少一个第一调制符号时所采用的传输层的数量和/或该第二网络设备发送该至少一个第二调制符号时所采用的传输层的数量。
在本发明实施例中,该终端设备的接收天线数量限制了参与协作传输的各个小区或 传输点采用的传输层的数量之和。例如,2个小区协作传输,终端设备具有8根接收天线,最多可接收8层数据,则服务小区的传输层数量L1和协作小区的传输层数量L2需要满足以下条件:L1+L2≤8。下面列出了上述场景下几种可能的实现方式:
1、总层数是2层:则服务小区C1与协作小区C2各传输1层,即L1=L2=1。此时,层映射关系可以由表1所示:
表1总层数为2层的层映射示例
Figure PCTCN2017075523-appb-000003
其中,
Figure PCTCN2017075523-appb-000004
为码字q对应的初始调制符号,其中q∈{0,1}。x(0)(i)...x(υ-1)(i),
Figure PCTCN2017075523-appb-000005
为映射到各层上的调制符号,υ为总层数,
Figure PCTCN2017075523-appb-000006
为每层上的初始调制符号数。
2、总层数是3层:则可能有两种情况,第一种情况下服务小区传输2层,协作小区传输1层(L1=2,L2=1),第二种情况下服务小区传输1层,协作小区传输2层(L1=1,L2=2)。此时,对应的层映射关系可以由表2所示。
表2总层数为3层的层映射示例
Figure PCTCN2017075523-appb-000007
3、总层数是4层:则可能有三种情况,第一种情况下L1=3,L2=1;第二种情况下L1=2,L2=2;第三种情况下L1=1,L2=3。此时,层映射关系可以由表3所示。
表3总层数为4层的层映射示例
Figure PCTCN2017075523-appb-000008
4、总层数是5层:则可能有四种情况,第一种情况下L1=4,L2=1;第二种情况下L1=1,L2=4;第三种情况下L1=3,L2=2;第四种情况下L1=2,L2=3。此时,层映射关系可以如表4所示。
表4总层数为5层的层映射示例
Figure PCTCN2017075523-appb-000009
5、总层数是6层:则可能有五种情况,第一种情况下L1=5,L2=1;第二种情况下L1=4,L2=2;第三种情况下L1=3,L2=3;第四种情况下L1=2,L2=4;第五种情况下L1=1,L2=5。此时,层映射关系可以由表5所示。
表5总层数为6层的层映射示例
Figure PCTCN2017075523-appb-000010
6、总层数是7层:则可能有六种情况,第一种情况下L1=6,L2=1;第二种情况下L1=5,L2=2;第三种情况下L1=4,L2=3;第四种情况下L1=3,L2=4;第五种情况下L1=2,L2=5;第六种情况下L1=1,L2=6。此时,层映射关系可以如表6所示。
表6总层数为7层的层映射示例
Figure PCTCN2017075523-appb-000011
Figure PCTCN2017075523-appb-000012
7、总层数是8层:则有7种情况,第一种情况下L1=7,L2=1;第二种情况下L1=6,L2=2;第三种情况下L1=5,L2=3;第四种情况下L1=4,L2=4;第五种情况下L1=3,L2=5;第六种情况下L1=2,L2=6;第七种情况下L1=1,L2=7。此时,层映射关系可以如表7所示。
表7总层数为8层的层映射示例
Figure PCTCN2017075523-appb-000013
Figure PCTCN2017075523-appb-000014
在上述表1至表7中,如果总码字数量为2个,则该服务小区和协作小区可以分别采用该2个码字中的1个码字,并且该服务小区和协作小区采用的码字可以不同。
由上可知,与现有技术中空分复用下只有在重传时才能将单码字映射到多个传输层的情况不同,在本发明实施例中,若每个小区采用一个码字传输,则在初传时就可能会出现单码字映射到多个传输层的情况。
应理解,上述表1至表7仅示出了本发明实施例可能的几种层映射示例,而非要限制本发明实施例的范围。本领域技术人员根据表1至表7的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
作为一个可选实施例,在本发明实施例中,该第一网络设备可以对映射到至少一个传输层的第一初始调制符号进行预编码处理,得到至少一个第一调制符号,其中,该预编码处理可以基本码本或基于非码本方式进行。具体地,可以对该第一数据和该第二数据独立进行预编码处理,即根据该第一小区和该第二小区分别对应的预编码矩阵,对该第一数据和该第二数据进行预编码处理,或者根据该第一传输点和该第二传输点分别对应的预编码矩阵,对该第一数据和该第二数据进行预编码处理。其中,各个小区或传输点对应的预编码矩阵可以是该终端设备通过对服务小区发送的参考信号进行测量获得的。可选地,通过服务小区配置不同的CSI-RS资源并与协作小区协同,使得该终端设备可以分别对多个小区到达终端设备的信道进行测量,并向该多个小区中每个小区发送该小区对应的信道状态信息(Channel State Information,CSI),该CSI可以包括预编码矩阵指示符(Precoding Matrix Index,PMI)或包括PMI和RI或进一步包括其它信息,本发明实施例对此不做限定。
可选地,该第一网络设备将映射到至少一个传输层的该第一调制符号进行预编码处理,得到该至少一个第一调制符号,包括:
该第一网络设备根据第一预编码矩阵,对该映射到至少一个传输层的该第一初始调制符号进行预编码处理,以得到该至少一个第一调制符号,其中,该第一预编码矩阵是根据该终端设备与该第一小区或第一传输点之间的信道状态确定的。
类似地,该第二网络设备可以根据第二预编码矩阵,对该映射到至少一个传输层的该第二初始调制符号进行预编码处理,以得到该至少一个第二调制符号,其中,该第二预编码矩阵是根据该终端设备与该第二小区或第二传输点之间的信道状态确定的。
作为另一个可选实施例,如果该第一数据和该第二数据为相同的下行数据,则该第一网络设备和该第二网络设备可以将预编码过程分为两部分:首先采用根据各个小区或传输点与终端设备之间的信道状态确定的预编码矩阵对待传输的下行数据进行预编码处理,然后采用SFBC矩阵对上述预编码处理的结果进行进一步处理,以得到不同的调制符号。
可选地,如果该第一网络设备和该第二网络设备共采用两个天线端口发送下行数据,则该第一网络设备和该第二网络设备的SFBC处理过程可以如式(2)和(3)表示:
Figure PCTCN2017075523-appb-000015
Figure PCTCN2017075523-appb-000016
此时,第一SFBC矩阵和该第二SFBC矩阵可以分别为
Figure PCTCN2017075523-appb-000017
Figure PCTCN2017075523-appb-000018
这样,该y(0)(2i)=-y(1)(2i+1)*,y(0)(2i+1)=y(1)(2i)*,例如,服务小区发送x1,x2,协作小区发送-x2*,x1*。
可选地,如果该第一网络设备和该第二网络设备共采用四个天线端口发送下行数据,则该第一网络设备和该第二网络设备的SFBC处理过程可以如式(4)和(5)表示:
Figure PCTCN2017075523-appb-000019
Figure PCTCN2017075523-appb-000020
此时,此时,第一SFBC矩阵和该第二SFBC矩阵可以分别为
Figure PCTCN2017075523-appb-000021
Figure PCTCN2017075523-appb-000022
并且该第一网络设备和该第二网络设备生成的调制符号也满足类似的关系。例如,服务小区发送x1,x2,0,0和0,0,x3,x4,协作小区发送-x2*,x1*,0,0和0,0,-x4*,x3*。
可选地,可以由服务小区确定各个小区采用的SFBC矩阵,并向协作小区发送用于指示该协作小区采用的SFBC矩阵的第五指示信息,但本发明实施例不限于此。
可选地,如果该第一数据与该第二数据为相同的下行数据,则该第一网络设备采用第一预编码矩阵对该第一初始调制符号进行预编码处理,得到第一中间调制符号,该第二网络设备采用第二预编码矩阵对该第二初始调制符号进行预编码处理,得到第二中间调制符号,其中,该第一预编码矩阵是根据该第一小区或第一传输点与该终端设备之间的信道状态确定的,该第二预编码矩阵是根据该第二小区或第二传输点与该终端设备之 间的信道状态确定的;
该第一网络设备采用第一SFBC矩阵对该第一中间调制符号进行预编码处理,得到至少两个第一调制符号,该第二网络设备采用第二SFBC矩阵对该第二中间调制符号进行预编码处理,得到至少两个第二调制符号,其中,该至少两个第一调制符号包括x1和x2,该至少两个第二调制符号包括x3和x4,并且x1=x4*,x2=-x3*。
本发明实施例中,由于该第一网络设备和该第二网络设备首先对待传输的下行数据各自独立进行预编码处理然后进行SFBC处理,终端设备可以不再采用小区级的参考信号(例如CRS)对接收到的数据进行解调,而是根据下行数据中的解调参考信号(DeModulation Reference Signal,DMRS)进行数据解调,但本发明实施例不限于此。
此时,第一网络设备和第二网络设备可以采用单码字并且采用同一个码字。可选地,该第一网络设备和该第二网络设备传输该下行数据时采用的传输层的数量可以均为1或2,分别对应于两天线端口和四天线端口的情况。可选地,该第一网络设备和该第二网络设备可以采用相同的扰码初始值对该下行数据进行处理,此外,该第一网络设备和该第二网络设备可以采用相同的资源块以及具有不同端口号的天线端口发送该至少一个第一调制符号和该至少一个第二调制符号,但本发明实施例不限于此。
可选地,作为另一个实施例,如果该第一数据与该第二数据为相同的下行数据,该终端设备的服务小区还可以向协作小区发送指示信息,该指示信息用于指示本次传输的传输层的数量和/或服务小区待发送的调制符号,以使得该协作小区根据传输层的数量和/或调制符号进行层映射处理和预编码处理,但本发明实施例不限于此。
可选地,网络侧设备(也可称为网络设备,例如终端设备的服务小区)可以确定本次协作传输采用的传输方式,该传输方式可以为上述多流传输或发射分集传输,并且可以通过高层信令通知该终端设备本次协作传输采用的传输方式。
可选地,多点协作多流传输和多点协作发射分集传输可以配置为两种不同的传输模式,相应地,网络侧设备可以通过在高层信令中携带本次多点协作传输的传输模式对应的序号信息,以指示本次数据传输的传输方式;或者,多点协作多流传输和多点协作发射分集传输可以配置为同一种传输模式(例如多点协作传输模式)中的两种不同传输方式,相应地,网络侧设备可以首先在高层信令中携带本次多点协作传输模式对应的序号信息,然后通过物理层信令(例如下行控制信息(Downlink Control Information,DCI)指示采用该多点协作传输模式中的哪种传输方式,以使得终端设备接收本次协作传输中传输的下行数据,但本发明实施例不限于此。
上文中结合图1至图3,从网络设备的角度详细描述了根据本发明实施例的传输数据的方法,下面将结合图4,从终端设备的角度描述根据本发明实施例的传输数据的方法。
图4示出了本发明实施例提供的另一传输数据的方法300。该方法可以由终端设备执行。如图4所示,该方法300包括:
S310,终端设备接收第一网络设备采用第一载波在第一子帧上发送的第一天线端口集合上的至少一个第一调制符号,该至少一个第一调制符号是该第一小区所属的网络设备通过对第一数据进行处理得到的;
S320,该终端设备接收第二网络设备采用该第一载波在该第一子帧上发送的第二天线端口集合上的至少一个第二调制符号,其中,该至少一个第二调制符号是该第二网络设备通过对第二数据进行处理得到的,并且该至少一个第二调制符号不同于该至少一个 第一调制符号;
S330,该终端设备对该至少一个第一调制符号和该至少一个第二调制符号进行解调处理;
其中,该第一天线端口集合包括第一小区的至少一个第一天线端口,该第二天线端口集合包括第二小区的至少一个第二天线端口;或者,该第一天线端口集合包括第一传输点的至少一个第一天线端口,该第二天线端口集合包括第二传输点的至少一个第二天线端口;
该至少一个第一天线端口不同于该至少一个第二天线端口。
可选地,该至少一个第一调制符号是该第一网络设备通过对该第一数据对应的第一编码比特依次进行加扰处理、层映射处理和预编码处理得到的;该至少一个第二调制符号是该第二网络设备通过对该第二数据对应的第二编码比特依次进行加扰处理、层映射处理和预编码处理得到的。
作为一个可选实施例,该至少一个第一调制符号是该第一网络设备通过根据该第一小区或第一传输点所属小区的小区标识对该第一数据对应的第一编码比特进行加扰处理得到的,该至少一个第二调制符号是该第一网络设备通过根据该第二小区或第二传输点所属小区的小区标识对该第二数据对应的第二编码比特进行加扰处理得到的。
作为一个可选实施例,该方法300还包括:
该终端设备接收服务小区所属网络设备发送的第二指示信息,该第二指示信息用于指示协作小区的小区标识,其中,该服务小区为该第一小区或第二小区,该协作小区为该第一小区和该第二小区中除服务小区之外的小区;
相应地,S330,该终端设备对至少一个第一调制符号和该至少一个第二调制符号进行解调处理,包括:
该终端设备根据该协作小区的小区标识,对接收到的该至少一个第一调制符号或该至少一个第二调制符号进行解调处理。
此时,该终端设备可以根据各个小区的小区标识,对各个小区对应的调制符号进行解调处理,或者可以根据各个传输点所属小区的小区标识,对各个传输点对应的调制符号进行解调处理。
作为一个可选实施例,该至少一个第一调制符号是该第一网络设备通过根据至少一个第一传输层的数量对该第一加扰比特对应的第一初始调制符号进行层映射处理得到的,其中,该至少一个第一传输层的数量是根据该第一小区或第一传输点与该终端设备之间的传输信道的信道状态确定的;该至少一个第二调制符号是该第二网络设备通过根据至少一个第二传输层的数量对该第二加扰比特对应的第二初始调制符号进行层映射处理得到的,其中,该至少一个第二传输层的数量是根据该第二小区或第二传输点与该终端设备之间的传输信道的信道状态确定的。
作为一个可选实施例,该第一传输层的数量是该第一网络设备通过对根据该第一小区或第一传输点与该终端设备之间的传输信道的信道状态确定的第一传输秩的值进行调整得到的,该第二传输层的数量是该第二网络设备通过对根据该第二小区或第二传输点与该终端设备之间的传输信道的信道状态确定的第二传输秩的值进行调整得到的,其中,该第一传输秩的值与该第二传输秩的值之和大于该终端设备的接收天线数量,该第一传输秩的调整后的值与该第一传输秩的值相等或不相等,该第二传输秩的调整后的值与该 第二传输秩的值相等或不相等,并且该第一传输秩的调整后的值与该第二传输秩的调整后的值之和小于或等于该终端设备的接收天线数量。
作为一个可选实施例,该至少一个第一调制符号是该第一网络设备通过根据第一预编码矩阵对该映射到至少一个传输层的该第一初始调制符号进行预编码处理得到的,其中,该第一预编码矩阵是根据该终端设备与该第一小区或该第一传输点之间的传输信道的信道状态确定的;该至少一个第二调制符号是该第二网络设备通过根据第二预编码矩阵对该映射到至少一个传输层的该第二初始调制符号进行预编码处理得到的,其中,该第二预编码矩阵是根据该终端设备与该第一小区或该第二传输点之间的传输信道的信道状态确定的。
作为一个可选实施例,该至少一个第二调制符号是该第二网络设备采用该第一载波上的第二资源块发送的,该至少一个第一调制符号是该第一网络设备采用该第二资源块或该第一载波上的不同于该第二资源块的第一资源块发送的。
作为一个可选实施例,若该至少一个第一调制符号是该第一网络设备采用该第二资源块发送的,该第一天线端口集合中的任一第一天线端口的端口号不同于该第二天线端口集合中的任一第二天线端口的端口号。
作为一个可选实施例,该方法300还包括:
该终端设备接收该第一网络设备和/或该第二网络设备发送的第三指示信息,该第三指示信息用于指示该第一网络设备发送该至少一个第一调制符号时所采用的传输层的数量以及该第二网络设备发送该至少一个第二调制符号时所采用的传输层的数量。
作为一个可选实施例,该第一数据不同于该第二数据。
作为一个可选实施例,该第一数据与该第二数据为相同的下行数据;该至少一个第一调制符号是该第一网络设备通过采用第一SFBC矩阵对该第一初始调制符号进行预编码处理的,该至少两个第一调制符号包括x1和x2;该至少一个第二调制符号是该第二网络设备通过采用第二SFBC矩阵对该下行数据对应的第二初始调制符号进行预编码处理得到的,该至少两个第二调制符号包括x3和x4,并且x1=x4*,x2=-x3*。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本发明实施例还提供了另一种传输数据的方法,该方法包括:第一网络设备向终端设备发送第一指示信息,该第一指示信息用于指示第一小区的至少一个第一天线端口的端口号和/或第二小区的至少一个第二天线端口的端口号,其中,该至少一个第一天线端口上的至少一个第一调制符号以及该至少一个第二天线端口上的至少一个第二调制符号在同一载波、同一子帧上向终端设备发送,该至少一个第一天线端口不同于该至少一个第二天线端口,该至少一个第一调制符号不同于该至少一个第二调制符号。
本发明实施例还提供了另一种传输数据的方法,该方法包括:第一网络设备向终端设备发送第一指示信息,该第一指示信息用于指示第一传输点的至少一个第一天线端口的端口号和/或不同于该第一传输点的第二传输点的至少一个第二天线端口的端口号,其中,该至少一个第一天线端口上的至少一个第一调制符号以及该至少一个第二天线端口上的至少一个第二调制符号在同一载波、同一子帧上向终端设备发送,该至少一个第一调制符号不同于该至少一个第二调制符号。
本发明实施例还提供了另一种传输数据的方法,该方法包括:第一网络设备向终端 设备发送第二指示信息,该第二指示信息用于指示协作小区的小区标识,服务小区的至少一个第一天线端口上的至少一个第一调制符号以及该协作小区的至少一个第二天线端口上的至少一个第二调制符号在同一载波、同一子帧上向终端设备发送,该至少一个第一调制符号不同于该至少一个第二调制符号。
本发明实施例还提供了另一种传输数据的方法,该方法包括:第一网络设备向终端设备发送第三指示信息,该第三指示信息用于指示在第一载波、第一子帧上发送第一小区的第一天线端口集合上的至少一个第一调制符号时所采用的传输层的数量,和/或用于指示在该第一载波、第一子帧上向该终端设备发送第二小区的第二天线端口集合上的至少一个第二调制符号时所采用的传输层的数量,该第一天线端口集合中的至少一个第一天线端口不同于该第二天线端口集合中的至少一个第二天线端口,该至少一个第一调制符号不同于该至少一个第二调制符号。
本发明实施例还提供了另一种传输数据的方法,该方法包括:第一网络设备向第二网络设备发送第四指示信息,该第四指示信息用于指示下列中的至少一种:传输层的数量和该第一网络设备待传输的至少一个第一天线端口上的至少两个第一调制符号,其中,该至少两个第一调制符号不同于该第二网络设备待传输的至少一个第二天线端口上的至少两个第二调制符号。
本发明实施例还提供了另一种传输数据的方法,该方法包括:第一网络设备向第二网络设备发送第五指示信息,该第五指示信息用于指示第二网络设备在对在第一载波、第一子帧上向终端设备传输的下行数据进行处理时采用的第一SFBC矩阵,其中,该第一载波、第一子帧还被该第一网络设备用于传输通过根据第二SFBC矩阵对该下行数据进行处理得到的至少一个第二调制符号。
可以理解的是,这些指示信息的交互既可以与前述的传输数据的方法结合,也可以是独立的;这些指示信息之间既可以是独立的,也可以是结合使用的。
上文中结合图1至图4,详细描述了根据本发明实施例的传输数据的方法,下面将结合图5至图8,描述根据本发明实施例的传输数据的装置。
图5示出了本发明实施例提供的传输数据的装置400。该装置400包括:
处理单元410,用于对第一数据进行处理,得到第一天线端口集合上的至少一个第一调制符号,该第一天线端口集合包括第一小区的至少一个第一天线端口;
发送单元420,用于采用第一载波在第一子帧向终端设备发送该处理单元410得到的该至少一个第一调制符号,其中,该至少一个第一调制符号不同于第二小区所属的网络设备采用该第一载波在该第一子帧向该终端设备发送的第二天线端口集合上的至少一个第二调制符号,该至少一个第二调制符号是该第二小区所属的网络设备通过对第二数据进行处理得到的,该第二天线端口集合包括该第二小区的至少一个第二天线端口,并且该至少一个第二天线端口不同于该至少一个第一天线端口。
根据本发明实施例的传输数据的装置400可对应于根据本发明实施例的传输数据的方法中的第一网络设备,并且传输数据的装置400中的各个模块的上述和其它操作和/或功能分别为了实现图2至图3中的各个方法的相应流程,为了简洁,在此不再赘述。
图6示出了本发明实施例提供的另一传输数据的装置500。该装置500包括:
接收单元510,用于接收第一网络设备采用第一载波在第一子帧上发送的第一天线端口集合上的至少一个第一调制符号,并接收第二网络设备采用该第一载波在该第一子帧 上发送的第二天线端口集合上的至少一个第二调制符号,其中,该至少一个第一调制符号是该第一小区所属的网络设备通过对第一数据进行处理得到的,该至少一个第二调制符号是该第二网络设备通过对第二数据进行处理得到的,并且该至少一个第二调制符号不同于该至少一个第一调制符号,该第一天线端口集合包括第一小区的至少一个第一天线端口,该第二天线端口集合包括第二小区的至少一个第二天线端口;或者,该第一天线端口集合包括第一传输点的至少一个第一天线端口,该第二天线端口集合包括第二传输点的至少一个第二天线端口,该至少一个第一天线端口不同于该至少一个第二天线端口;
处理单元520,用于对该接收单元510接收到的该至少一个第一调制符号和该至少一个第二调制符号进行解调处理。
根据本发明实施例的传输数据的装置500可对应于根据本发明实施例的传输数据的方法中的终端设备,并且传输数据的装置500中的各个模块的上述和其它操作和/或功能分别为了实现图4中的各个方法的相应流程,为了简洁,在此不再赘述。
图7示出了本发明实施例提供的另一传输数据的装置600。该装置600包括:
处理器610,用于对第一数据进行处理,得到第一天线端口集合上的至少一个第一调制符号,该第一天线端口集合包括第一小区的至少一个第一天线端口;
收发器620,用于采用第一载波在第一子帧向终端设备发送该处理器610得到的该至少一个第一调制符号,其中,该至少一个第一调制符号不同于第二小区所属的网络设备采用该第一载波在该第一子帧向该终端设备发送的第二天线端口集合上的至少一个第二调制符号,该至少一个第二调制符号是该第二小区所属的网络设备通过对第二数据进行处理得到的,该第二天线端口集合包括该第二小区的至少一个第二天线端口,并且该至少一个第二天线端口不同于该至少一个第一天线端口。
根据本发明实施例的传输数据的装置600可对应于根据本发明实施例的传输数据的方法中的第一网络设备,并且传输数据的装置600中的各个模块的上述和其它操作和/或功能分别为了实现图2至图3中的各个方法的相应流程,为了简洁,在此不再赘述。
图8示出了本发明实施例提供的另一传输数据的装置700。该装置700包括:
收发器710,用于接收第一网络设备采用第一载波在第一子帧上发送的第一天线端口集合上的至少一个第一调制符号,并接收第二网络设备采用该第一载波在该第一子帧上发送的第二天线端口集合上的至少一个第二调制符号,其中,该至少一个第一调制符号是该第一小区所属的网络设备通过对第一数据进行处理得到的,该至少一个第二调制符号是该第二网络设备通过对第二数据进行处理得到的,并且该至少一个第二调制符号不同于该至少一个第一调制符号,该第一天线端口集合包括第一小区的至少一个第一天线端口,该第二天线端口集合包括第二小区的至少一个第二天线端口;或者,该第一天线端口集合包括第一传输点的至少一个第一天线端口,该第二天线端口集合包括第二传输点的至少一个第二天线端口,该至少一个第一天线端口不同于该至少一个第二天线端口;
处理器720,用于对该收发器710接收到的该至少一个第一调制符号和该至少一个第二调制符号进行解调处理。
根据本发明实施例的传输数据的装置700可对应于根据本发明实施例的传输数据的方法中的终端设备,并且传输数据的装置700中的各个模块的上述和其它操作和/或功能分别为了实现图4中的各个方法的相应流程,为了简洁,在此不再赘述。
应理解,在本发明实施例中,处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可选地,上述装置还可以包括存储器,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
此外,本发明实施例还提供了一种通信系统,包括上述实施例中的第一小区所属的网络设备和第二小区所属的网络设备,或包括上述实施例中的第一传输点和第二传输点。
应理解,在本发明实施例中,术语“第一”和“第二”仅仅是为了描述和理解的方便,不应对本发明实施例构成任何限定。除非文中明确指出或者从上下文可以明确看出,“第一X”和“第二X”可以对应于相同或不同的X。例如,第一网络设备和第二网络设备可以指相同或不同的网络设备,第一小区和第二小区可以指相同或不同的小区,第一数据和该第二数据可以指相同或不同的数据。
还应理解,本文对各个实施例的描述侧重于强调各个实施例之间的不同之处,而未提及的相同或相似部分可以相互参考,例如,终端设备侧的方法实施例或各个装置实施例可以参考网络设备侧的方法实施例的描述。
还应理解,在本发明实施例中的网络设备可以指网络侧设备,也可以指D2D通信或M2M通信中的终端设备,上述实施例以网络设备具体指网络侧设备为例进行描述,但本发明实施例不限于此。
应理解,在本发明实施例中,术语和/或仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符/,一般表示前后关联对象是一种或的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单 元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种传输数据的方法,其特征在于,包括:
    第一小区所属的网络设备对第一数据进行处理,得到第一天线端口集合上的至少一个第一调制符号,所述第一天线端口集合包括所述第一小区的至少一个第一天线端口;
    所述第一小区所属的网络设备采用第一载波在第一子帧向终端设备发送所述至少一个第一调制符号,其中,所述至少一个第一调制符号不同于第二小区所属的网络设备采用所述第一载波在所述第一子帧向所述终端设备发送的第二天线端口集合上的至少一个第二调制符号,所述至少一个第二调制符号是所述第二小区所属的网络设备通过对第二数据进行处理得到的,所述第二天线端口集合包括所述第二小区的至少一个第二天线端口,并且所述至少一个第二天线端口不同于所述至少一个第一天线端口。
  2. 根据权利要求1所述的方法,其特征在于,所述第一小区所属的网络设备对第一数据进行处理,得到第一天线端口集合上的至少一个第一调制符号,包括:
    所述第一小区所属的网络设备对所述第一数据对应的第一编码比特进行加扰处理,得到第一加扰比特;
    所述第一小区所属的网络设备对所述第一加扰比特对应的第一初始调制符号进行层映射处理,得到映射到至少一个传输层的第一初始调制符号;
    所述第一小区所属的网络设备将所述映射到至少一个传输层的第一初始调制符号进行预编码处理,得到所述第一天线端口集合上的至少一个第一调制符号。
  3. 根据权利要求2所述的方法,其特征在于,所述第一小区所属的网络设备对所述第一数据对应的第一编码比特进行加扰处理,得到第一加扰比特,包括:
    若所述第一小区为所述终端设备的协作小区,所述第一小区所属的网络设备根据所述第一小区的小区标识,确定扰码初始值;
    所述第一小区所属的网络设备采用所述扰码初始值,对所述第一数据对应的第一编码比特进行加扰处理,得到所述第一加扰比特。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一小区所属的网络设备对所述第一加扰比特对应的第一初始调制符号进行层映射处理,得到映射到至少一个传输层的所述第一初始调制符号,包括:
    若所述第一小区为所述终端设备的协作小区,所述第一小区所属的网络设备确定所述至少一个传输层的数量,其中,所述至少一个传输层的数量是根据所述第一小区与所述终端设备之间的传输信道的信道状态确定的;
    所述第一小区所属的网络设备根据所述至少一个传输层的数量,对所述第一加扰比特对应的第一初始调制符号进行层映射处理,得到映射到至少一个传输层的所述第一初始调制符号。
  5. 根据权利要求4所述的方法,其特征在于,所述第一小区所属的网络设备确定所述至少一个传输层的数量,包括:
    所述第一小区所属的网络设备根据所述第一小区与所述终端设备之间的传输信道的信道状态,确定第一传输秩的值;
    若所述第一传输秩的值与第二传输秩的值之和大于所述终端设备的接收天线数量,所述第一小区所属的网络设备确定所述第一传输秩的调整后的值,其中,所述第二传输秩的值是根据所述第二小区与所述终端设备之间的传输信道的信道状态确定的,所述第 一传输秩的调整后的值与所述第一传输秩的值相等或不相等,所述第二传输秩的调整后的值与所述第二传输秩的值相等或不相等,并且所述第一传输秩的调整后的值与所述第二传输秩的调整后的值之和小于或等于所述终端设备的接收天线数量;
    所述第一小区所属的网络设备将所述至少一个传输层的数量确定为所述第一传输秩的调整后的值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一小区所属的网络设备在第一子帧向终端设备发送所述至少一个第一调制符号,包括:
    若所述第二小区所属的网络设备采用所述第一载波上的第二资源块向所述终端设备发送所述至少一个第二调制符号,所述第一小区所属的网络设备采用所述第二资源块或所述第一载波上的不同于所述第二资源块的第一资源块向所述终端设备发送所述至少一个第一调制符号。
  7. 根据权利要求6所述的方法,其特征在于,若所述第一小区所属的网络设备采用所述第二资源块向所述终端设备发送所述至少一个第一调制符号,所述第一天线端口集合中的任一第一天线端口的端口号不同于所述第二天线端口集合中的任一第二天线端口的端口号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一数据不同于所述第二数据。
  9. 根据权利要求2所述的方法,其特征在于,所述第一数据与所述第二数据为相同的下行数据;
    所述第一小区所属的网络设备将所述映射到至少一个传输层的所述第一初始调制符号进行预编码处理,得到所述第一天线端口集合上的至少一个第一调制符号,包括:
    所述第一小区所属的网络设备采用第一空频分组编码SFBC矩阵对所述第一初始调制符号进行预编码处理,得到所述第一天线端口集合上的至少两个第一调制符号,所述至少两个第一调制符号包括x1和x2,其中,所述第二小区所属的网络设备采用第二SFBC矩阵对所述下行数据对应的第二初始调制符号进行预编码处理,得到所述第二天线端口集合上的至少两个第二调制符号,所述至少两个第二调制符号包括x3和x4,并且x1=x4*,x2=-x3*。
  10. 一种传输数据的装置,其特征在于,包括:
    处理单元,用于对第一数据进行处理,得到第一天线端口集合上的至少一个第一调制符号,所述第一天线端口集合包括第一小区的至少一个第一天线端口;
    发送单元,用于采用第一载波在第一子帧向终端设备发送所述处理单元得到的所述至少一个第一调制符号,其中,所述至少一个第一调制符号不同于第二小区所属的网络设备采用所述第一载波在所述第一子帧向所述终端设备发送的第二天线端口集合上的至少一个第二调制符号,所述至少一个第二调制符号是所述第二小区所属的网络设备通过对第二数据进行处理得到的,所述第二天线端口集合包括所述第二小区的至少一个第二天线端口,并且所述至少一个第二天线端口不同于所述至少一个第一天线端口。
  11. 根据权利要求10所述的装置,其特征在于,所述处理单元具体用于:
    对所述第一数据对应的第一编码比特进行加扰处理,得到第一加扰比特;
    对所述第一加扰比特对应的第一初始调制符号进行层映射处理,得到映射到至少一个传输层的第一初始调制符号;
    将所述映射到至少一个传输层的第一初始调制符号进行预编码处理,得到所述第一天线端口集合上的至少一个第一调制符号。
  12. 根据权利要求11所述的装置,其特征在于,所述处理单元具体用于:
    若所述第一小区为所述终端设备的协作小区,根据所述第一小区的小区标识,确定扰码初始值;
    采用所述扰码初始值,对所述第一数据对应的第一编码比特进行加扰处理,得到所述第一加扰比特。
  13. 根据权利要求11或12所述的装置,其特征在于,所述处理单元具体用于:
    若所述第一小区为所述终端设备的协作小区,确定所述至少一个传输层的数量,其中,所述至少一个传输层的数量是根据所述第一小区与所述终端设备之间的传输信道的信道状态确定的;
    根据所述至少一个传输层的数量,对所述第一加扰比特对应的第一初始调制符号进行层映射处理,得到映射到至少一个传输层的所述第一初始调制符号。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一小区与所述终端设备之间的传输信道的信道状态,确定第一传输秩的值;
    若所述第一传输秩的值与第二传输秩的值之和大于所述终端设备的接收天线数量,确定所述第一传输秩的调整后的值,其中,所述第二传输秩的值是根据所述第二小区与所述终端设备之间的传输信道的信道状态确定的,所述第一传输秩的调整后的值与所述第一传输秩的值相等或不相等,所述第二传输秩的调整后的值与所述第二传输秩的值相等或不相等,并且所述第一传输秩的调整后的值与所述第二传输秩的调整后的值之和小于或等于所述终端设备的接收天线数量;
    将所述至少一个传输层的数量确定为所述第一传输秩的调整后的值。
  15. 根据权利要求10至14中任一项所述的装置,其特征在于,所述发送单元具体用于:
    若所述第二小区所属的网络设备采用所述第一载波上的第二资源块向所述终端设备发送所述至少一个第二调制符号,采用所述第二资源块或所述第一载波上的不同于所述第二资源块的第一资源块向所述终端设备发送所述至少一个第一调制符号。
  16. 根据权利要求15所述的装置,其特征在于,若所述发送单元采用所述第二资源块向所述终端设备发送所述至少一个第一调制符号,所述第一天线端口集合中的任一第一天线端口的端口号不同于所述第二天线端口集合中的任一第二天线端口的端口号。
  17. 根据权利要求10至16中任一项所述的装置,其特征在于,所述第一数据不同于所述第二数据。
  18. 根据权利要求11所述的装置,其特征在于,所述第一数据与所述第二数据为相同的下行数据;
    所述处理单元具体用于:
    采用第一空频分组编码SFBC矩阵对所述第一初始调制符号进行预编码处理,得到所述第一天线端口集合上的至少两个第一调制符号,所述至少两个第一调制符号包括x1和x2,其中,所述第二小区所属的网络设备采用第二SFBC矩阵对所述下行数据对应的第二初始调制符号进行预编码处理,得到所述第二天线端口集合上的至少两个第二调制 符号,所述至少两个第二调制符号包括x3和x4,并且x1=x4*,x2=-x3*。
PCT/CN2017/075523 2016-03-03 2017-03-03 传输数据的方法和装置 WO2017148429A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17759280.5A EP3416445B1 (en) 2016-03-03 2017-03-03 Data transmission method and apparatus
US16/119,264 US11296839B2 (en) 2016-03-03 2018-08-31 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610122422.5A CN107171699A (zh) 2016-03-03 2016-03-03 传输数据的方法和装置
CN201610122422.5 2016-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/119,264 Continuation US11296839B2 (en) 2016-03-03 2018-08-31 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017148429A1 true WO2017148429A1 (zh) 2017-09-08

Family

ID=59743519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075523 WO2017148429A1 (zh) 2016-03-03 2017-03-03 传输数据的方法和装置

Country Status (4)

Country Link
US (1) US11296839B2 (zh)
EP (1) EP3416445B1 (zh)
CN (1) CN107171699A (zh)
WO (1) WO2017148429A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224732A (zh) * 2019-04-19 2019-09-10 维沃移动通信(深圳)有限公司 一种天线切换方法及终端设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018232751A1 (zh) * 2017-06-23 2018-12-27 Oppo广东移动通信有限公司 无线通信方法和设备
CN110061768B (zh) * 2018-01-19 2021-01-29 成都华为技术有限公司 一种波束配置方法和装置
WO2022178747A1 (en) * 2021-02-25 2022-09-01 Qualcomm Incorporated Communicating data using reconfigurable intelligent surface
CN115868937B (zh) * 2023-01-04 2024-05-14 北京百度网讯科技有限公司 睡眠监测方法、装置、设备、系统和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959839A (zh) * 2011-08-12 2014-07-30 黑莓有限公司 在协调多点无线通信系统中的信道状态信息反馈和发送的方法
US20150280871A1 (en) * 2014-03-28 2015-10-01 Qualcomm Incorporated Ultra low latency design for lte
CN105191165A (zh) * 2013-03-07 2015-12-23 美国博通公司 用于控制无线装置的方法、设备以及计算机程序

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100265904A1 (en) * 2009-04-21 2010-10-21 Industrial Technology Research Institute Method, apparatus and computer program product for interference avoidance in uplink coordinated multi-point reception
KR101641388B1 (ko) 2009-08-19 2016-07-21 엘지전자 주식회사 중계국의 참조신호 이용 방법 및 상기 방법을 이용하는 중계국
WO2013017902A1 (en) * 2011-08-01 2013-02-07 Research In Motion Limited Joint transmission using interference alignment
CN103918195A (zh) * 2011-11-07 2014-07-09 摩托罗拉移动有限责任公司 在具有协作多点传输的正交频分复用通信系统中联合处理方案的csi反馈的方法和装置
WO2013087024A1 (zh) * 2011-12-14 2013-06-20 华为技术有限公司 发射信号的方法和基站
US20150023199A1 (en) * 2012-03-16 2015-01-22 Hitachi, Ltd. Wireless communication method and wireless communication system
RU2617833C2 (ru) * 2012-04-19 2017-04-28 Самсунг Электроникс Ко., Лтд. Способ и устройство для идентификации квазисовмещения портов опорного символа для координированных многоточечных систем связи
CN103391624A (zh) * 2012-05-11 2013-11-13 北京三星通信技术研究有限公司 一种处理e-pdcch的方法和设备
US8982693B2 (en) * 2012-05-14 2015-03-17 Google Technology Holdings LLC Radio link monitoring in a wireless communication device
US8923207B2 (en) * 2012-05-17 2014-12-30 Industrial Technology Research Institute Method for initializing sequence of reference signal and base station using the same
US9923684B2 (en) * 2013-01-09 2018-03-20 Samsung Electronics Co., Ltd. Methods to support inter-eNodeB CoMP
WO2017164933A1 (en) * 2016-03-21 2017-09-28 Intel IP Corporation Beam management for dual transmission point hybrid beamforming systems in 5g

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959839A (zh) * 2011-08-12 2014-07-30 黑莓有限公司 在协调多点无线通信系统中的信道状态信息反馈和发送的方法
CN105191165A (zh) * 2013-03-07 2015-12-23 美国博通公司 用于控制无线装置的方法、设备以及计算机程序
US20150280871A1 (en) * 2014-03-28 2015-10-01 Qualcomm Incorporated Ultra low latency design for lte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3416445A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224732A (zh) * 2019-04-19 2019-09-10 维沃移动通信(深圳)有限公司 一种天线切换方法及终端设备
CN110224732B (zh) * 2019-04-19 2022-09-23 维沃移动通信(深圳)有限公司 一种天线切换方法及终端设备

Also Published As

Publication number Publication date
EP3416445A1 (en) 2018-12-19
EP3416445B1 (en) 2024-05-22
US11296839B2 (en) 2022-04-05
CN107171699A (zh) 2017-09-15
US20180367268A1 (en) 2018-12-20
EP3416445A4 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
US11128510B2 (en) Data transmission method, user equipment, and network side device
US20210007089A1 (en) Reception of downlink data for coordinated multi-point transmission in the event of fall-back
EP3678403A1 (en) Communication method and device
TWI583159B (zh) 用於多點協調操作中天線埠準協同定位傳訊的用戶設備及方法
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019137058A1 (zh) 资源指示方法、终端设备和网络设备
WO2017148429A1 (zh) 传输数据的方法和装置
US10826664B2 (en) Reference signal sending method, related device, and communications system
SE1650746A1 (sv) Användarenhet och metod för signalering för kvasi-samlokaliserade antennportar vid CoMP-operationer
US11184090B2 (en) Method and device for determining QCL relationship between antenna ports
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
US20200127721A1 (en) Data transmission method, terminal device, and network device
WO2019029730A1 (zh) 一种pdsch接收信息的指示方法、数据接收方法及装置
US10778287B2 (en) Multipoint data transmission method and apparatus
KR102059983B1 (ko) Pucch를 통한 고도 pmi 보고
WO2019191970A1 (zh) 通信方法、通信装置和系统
CN107302421B (zh) 一种功率配置方法及设备
CN107294574B (zh) 多传输点数据传输的方法及装置
US20200260312A1 (en) Channel measurement method
WO2018028626A1 (zh) 测量的方法和装置
WO2018196589A1 (zh) 数据发送方法、数据接收方法、网络设备和终端设备
WO2023010434A1 (en) Csi report enhancement for high-speed train scenarios
CN115333582B (zh) 预编码信息

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759280

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759280

Country of ref document: EP

Effective date: 20180914

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759280

Country of ref document: EP

Kind code of ref document: A1