WO2022178747A1 - Communicating data using reconfigurable intelligent surface - Google Patents

Communicating data using reconfigurable intelligent surface Download PDF

Info

Publication number
WO2022178747A1
WO2022178747A1 PCT/CN2021/077827 CN2021077827W WO2022178747A1 WO 2022178747 A1 WO2022178747 A1 WO 2022178747A1 CN 2021077827 W CN2021077827 W CN 2021077827W WO 2022178747 A1 WO2022178747 A1 WO 2022178747A1
Authority
WO
WIPO (PCT)
Prior art keywords
ris
antenna elements
base station
data
transmit
Prior art date
Application number
PCT/CN2021/077827
Other languages
French (fr)
Inventor
Saeid SAHRAEI
Yu Zhang
Hung Dinh LY
Krishna Kiran Mukkavilli
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/077827 priority Critical patent/WO2022178747A1/en
Publication of WO2022178747A1 publication Critical patent/WO2022178747A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for communicating data using a reconfigurable intelligent surface.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a UE may communicate with a BS via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, or the like.
  • NR which may also be referred to as 5G
  • 5G is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a user equipment (UE) for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to receive, from a base station, reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmit or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • RIS reconfigurable intelligent surface
  • a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to transmit, to a UE, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmit or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • a method of wireless communication performed by a UE includes receiving, from a base station, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmitting or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • a method of wireless communication performed by a base station includes transmitting, to a UE, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmitting or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to receive, from a base station, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmit or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to transmit, to a UE, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmit or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • an apparatus for wireless communication includes means for receiving, from a base station, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and means for transmitting or means for receiving at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • an apparatus for wireless communication includes means for transmitting, to a UE, reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and means for transmitting or means for receiving at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • RIS reconfigurable intelligent surface
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with the present disclosure.
  • Fig. 3 is a diagram illustrating an example of using beams for communications between a base station and a UE, in accordance with the present disclosure.
  • Fig. 4 is a diagram illustrating an example of index modulation, in accordance with the present disclosure.
  • Fig. 5 is a diagram illustrating an example of a reconfigurable intelligent surface (RIS) , in accordance with the present disclosure.
  • RIS reconfigurable intelligent surface
  • Figs. 6A, 6B, and 7 are diagrams illustrating examples associated with communicating data using RISs, in accordance with the present disclosure.
  • Figs. 8 and 9 are diagrams illustrating example processes associated with communicating data using RISs, in accordance with the present disclosure.
  • Figs. 10 and 11 are block diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network and/or an LTE network, among other examples.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, such as macro BSs, pico BSs, femto BSs, relay BSs, or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts)
  • pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, and/or location tags, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol or a vehicle-to-infrastructure (V2I) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • CQIs channel quality indicators
  • Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • a respective output symbol stream e.g., for OFDM
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a channel quality indicator (CQI) parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • Antennas may include, or may be included within, one or more antenna panels, antenna groups, sets of antenna elements, and/or antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include a set of coplanar antenna elements and/or a set of non-coplanar antenna elements.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include antenna elements within a single housing and/or antenna elements within multiple housings.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to base station 110.
  • control information e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI
  • Transmit processor 264 may also generate reference symbols for one or more reference signals.
  • the symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-O
  • a modulator and a demodulator (e.g., MOD/DEMOD 254) of the UE 120 may be included in a modem of the UE 120.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 6A-7.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • a modulator and a demodulator (e.g., MOD/DEMOD 232) of the base station 110 may be included in a modem of the base station 110.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 6A-7.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with communicating data using RISs, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • a UE may include means for receiving, from a base station (e.g., the base station 110 and/or apparatus 1100 of Fig. 11) , RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and means for transmitting or means for receiving at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • a base station e.g., the base station 110 and/or apparatus 1100 of Fig. 11
  • RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS
  • means for transmitting or means for receiving at least one bit of data using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • the means for the UE to perform operations described herein may include, for example, one or more of antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, or memory 282.
  • the UE may include means for measuring a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
  • the UE may further include means for transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, a suggested quantity for segmenting the plurality of antenna elements; and/or means for receiving, from the base station, a quantity for segmenting the plurality of antenna elements.
  • the UE may include means for transmitting a first suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold; and means for transmitting a second suggested quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first suggested quantity being greater than the second suggested quantity.
  • the UE may include means for receiving, from the base station, an activation of a plurality of transmission configuration indicator (TCI) states, the one or more antenna elements being associated with one of the plurality of TCI states; and/or means for transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, an indication of one or more suggested TCI states for activation, wherein the one or more suggested TCI states are associated with the at least one RIS.
  • TCI transmission configuration indicator
  • a base station (e.g., the base station 110 and/or apparatus 1100 of Fig. 11) means for transmitting, to a UE (e.g., the UE 120 and/or apparatus 1000 of Fig. 10) , RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and means for transmitting or means for receiving at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • the means for the base station to perform operations described herein may include, for example, one or more of transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • the base station may include means for measuring a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
  • the base station may further include means for receiving, from the UE, a suggested quantity for segmenting the plurality of antenna elements; and/or means for transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, a quantity for segmenting the plurality of antenna elements.
  • the base station may include means for transmitting a first quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold; and means for transmitting a second quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first quantity being greater than the second quantity.
  • the base station may include means for transmitting, to the UE, an activation of a plurality of TCI states, the one or more antenna elements being associated with one of the plurality of TCI states; and/or means for receiving, from the UE, an indication of one or more suggested TCI states for activation, wherein the one or more suggested TCI states are associated with the at least one RIS.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of using beams for communications between a base station and a UE, in accordance with the present disclosure. As shown in Fig. 3, a base station 110 and a UE 120 may communicate with one another.
  • the base station 110 may transmit to UEs 120 located within a coverage area of the base station 110.
  • the base station 110 and the UE 120 may be configured for beamformed communications, where the base station 110 may transmit in the direction of the UE 120 using a directional BS transmit beam, and the UE 120 may receive the transmission using a directional UE receive beam.
  • Each BS transmit beam may have an associated beam ID, beam direction, or beam symbols, among other examples.
  • the base station 110 may transmit downlink communications via one or more BS transmit beams 305.
  • the UE 120 may attempt to receive downlink transmissions via one or more UE receive beams 310, which may be configured using different beamforming parameters at receive circuitry of the UE 120.
  • the UE 120 may identify a particular BS transmit beam 305, shown as BS transmit beam 305-A, and a particular UE receive beam 310, shown as UE receive beam 310-A, that provide relatively favorable performance (for example, that have a best channel quality of the different measured combinations of BS transmit beams 305 and UE receive beams 310) .
  • the UE 120 may transmit an indication of which BS transmit beam 305 is identified by the UE 120 as a preferred BS transmit beam, which the base station 110 may select for transmissions to the UE 120.
  • the UE 120 may thus attain and maintain a beam pair link (BPL) with the base station 110 for downlink communications (for example, a combination of the BS transmit beam 305-A and the UE receive beam 310-A) , which may be further refined and maintained in accordance with one or more established beam refinement procedures.
  • BPL beam pair link
  • a downlink beam such as a BS transmit beam 305 or a UE receive beam 310, may be associated with a transmission configuration indication (TCI) state.
  • TCI state may indicate a directionality or a characteristic of the downlink beam, such as one or more quasi-co-location (QCL) properties of the downlink beam.
  • QCL property may include, for example, a Doppler shift, a Doppler spread, an average delay, a delay spread, or spatial receive parameters, among other examples.
  • each BS transmit beam 305 may be associated with a synchronization signal block (SSB) , and the UE 120 may indicate a preferred BS transmit beam 305 by transmitting uplink transmissions in resources of the SSB that are associated with the preferred BS transmit beam 305.
  • a particular SSB may have an associated TCI state (for example, for an antenna port or for beamforming) .
  • the base station 110 may, in some examples, indicate a downlink BS transmit beam 305 based at least in part on antenna port QCL properties that may be indicated by the TCI state.
  • a TCI state may be associated with one downlink reference signal set (for example, an SSB and an aperiodic, periodic, or semi-persistent channel state information reference signal (CSI-RS) ) for different QCL types (for example, QCL types for different combinations of Doppler shift, Doppler spread, average delay, delay spread, or spatial receive parameters, among other examples) .
  • the QCL type may correspond to analog receive beamforming parameters of a UE receive beam 310 at the UE 120.
  • the UE 120 may select a corresponding UE receive beam 310 from a set of BPLs based at least in part on the base station 110 indicating a BS transmit beam 305 via a TCI indication.
  • the base station 110 may maintain a set of activated TCI states for downlink shared channel transmissions and a set of activated TCI states for downlink control channel transmissions.
  • the set of activated TCI states for downlink shared channel transmissions may correspond to beams that the base station 110 uses for downlink transmission on a physical downlink shared channel (PDSCH) .
  • the set of activated TCI states for downlink control channel communications may correspond to beams that the base station 110 may use for downlink transmission on a physical downlink control channel (PDCCH) or in a control resource set (CORESET) .
  • the UE 120 may also maintain a set of activated TCI states for receiving the downlink shared channel transmissions and the CORESET transmissions.
  • the UE 120 may have one or more antenna configurations based at least in part on the TCI state, and the UE 120 may not need to reconfigure antennas or antenna weighting configurations.
  • the set of activated TCI states for example, activated PDSCH TCI states and activated CORESET TCI states
  • RRC radio resource control
  • the UE 120 may transmit in the direction of the base station 110 using a directional UE transmit beam, and the base station 110 may receive the transmission using a directional BS receive beam.
  • Each UE transmit beam may have an associated beam ID, beam direction, or beam symbols, among other examples.
  • the UE 120 may transmit uplink communications via one or more UE transmit beams 315.
  • the base station 110 may receive uplink transmissions via one or more BS receive beams 320.
  • the base station 110 may identify a particular UE transmit beam 315, shown as UE transmit beam 315-A, and a particular BS receive beam 320, shown as BS receive beam 320-A, that provide relatively favorable performance (for example, that have a best channel quality of the different measured combinations of UE transmit beams 315 and BS receive beams 320) .
  • the base station 110 may transmit an indication of which UE transmit beam 315 is identified by the base station 110 as a preferred UE transmit beam, which the base station 110 may select for transmissions from the UE 120.
  • the UE 120 and the base station 110 may thus attain and maintain a BPL for uplink communications (for example, a combination of the UE transmit beam 315-A and the BS receive beam 320-A) , which may be further refined and maintained in accordance with one or more established beam refinement procedures.
  • An uplink beam such as a UE transmit beam 315 or a BS receive beam 320, may be associated with a spatial relation.
  • a spatial relation may indicate a directionality or a characteristic of the uplink beam, similar to one or more QCL properties, as described above.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of index modulation, in accordance with the present disclosure.
  • example 400 includes communication between a base station 110 and a UE 120.
  • the UE 120 may include multiple antennas (e.g., antennas 405a, 405b, 405c, and 405d) .
  • antennas 405a, 405b, 405c, and 405d e.g., antennas 405a, 405b, 405c, and 405d.
  • additional antennas e.g., five antennas, six antennas, and so on.
  • the base station 110 may transmit at least one bit of information on a downlink to the UE 120. Accordingly, the base station 110 may use a wireless signal to transmit the information. As further shown in Fig. 4, the base station 110 may concentrate power of the wireless signal on one or more of the antennas of the UE 120.
  • the UE 120 may have previously indicated to the base station 110 (e.g., using a UECapabilityInformation as defined in 3GPP specifications and/or another standard) that the UE 120 has four antennas, and the UE 120 may have previously transmitted to the base station (e.g., using a channel state information (CSI) report as defined in 3GPP specifications and/or another standard) one or more measurements (e.g., RSRPs, RSRQs, and/or other L1 measurements) and/or one or more derived measurements (e.g., CQIs, precoding matrix indicators (PMIs) , rank indicators (RIs) , and/or other measurements derived from L1 measurements) associated with a plurality of beams and the antennas of the UE 120.
  • CSI channel state information
  • the base station 110 may apply spatial modulation (e.g., by selecting a beam or a combination of beams, for example, by selecting a TCI state corresponding to the beam (s) , as described above in connection with Fig. 3) to concentrate the power on the one or more antennas.
  • spatial modulation e.g., by selecting a beam or a combination of beams, for example, by selecting a TCI state corresponding to the beam (s) , as described above in connection with Fig. 3
  • the base station 110 may communicate additional bits of information to the UE 120.
  • the base station 110 may communicate two additional bits of information by selecting one of four antennas, associated with the UE 120, on which to concentrate the power.
  • the base station 110 may have previously indicated to the UE 120 a mapping (e.g., via an RRC message, downlink control information (DCI) , and/or another message) between antenna selection and one or more additional bits.
  • a mapping e.g., via an RRC message, downlink control information (DCI) , and/or another message
  • selection of beam 410a which targets first antenna 405a, may be associated with 00
  • selection of beam 410b which targets second antenna 405b, may be associated with 01
  • selection of beam 410c which targets third antenna 405c, may be associated with 10
  • selection of beam 410d which targets fourth antenna 405d, may be associated with 11.
  • the additional bits may encode a portion of control information that is transmitted to the selected antenna (e.g., a portion of one or more fields of DCI) or may encode control information that is associated with data transmitted to the selected antenna (e.g., one or more fields of DCI) .
  • the additional bits may encode a portion of data that is transmitted to the selected antenna (e.g., one or more initial bits, one or more final bits, or another portion of the data) .
  • the UE 120 may determine on which antenna the base station 110 concentrated the power (e.g., by comparing RSRPs and/or another measurements associated with signal power across the antennas) and thus determine the two additional bits of information. More generally, a quantity of antennas associated with the UE 120 may be represented by N r such that the base station 110 may communicate an additional bits by concentrating power at one of the antennas. As an alternative, the bases station 110 may concentrate power at a subgroup of the antennas. Accordingly, a quantity of antennas in each subgroup may be represented by n such that the base station 110 may communicate an additional bits by concentrating power at one of the subgroups.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 of a reconfigurable intelligent surface (RIS) , in accordance with the present disclosure.
  • RIS 505 which may also be referred to as an intelligent reflecting surface (IRS) or a large intelligent surface (LIS) , includes configurable electromagnetic materials to reflect and/or refract electromagnetic signals.
  • RIS 505 may be passive (e.g., including stationary mirrors) or near-passive (e.g., include micro-electro-mechanical systems (MEMS) mirrors and/or other configurable components to reflect and/or refract signals) .
  • MEMS micro-electro-mechanical systems
  • RIS 505 may be a waveguide-fed metasurface, a refracting and reflecting metasurface, a digital coding reflective metasurface, and/or another metasurface that reflects and/or refracts signals. Accordingly, as shown in Fig. 5, the RIS 505 may propagate a signal from a base station 110 to a UE 120. Additionally, or alternatively, the RIS 505 may propagate a signal from the UE 120 to the base station 110. For example, the RIS 505 may propagated the signal around a barrier 510, such as a building or other man-made structure, a forest or other natural entity, a crowd or other carbon-based blockage, and/or another object that disrupts propagation of the signal.
  • a barrier 510 such as a building or other man-made structure, a forest or other natural entity, a crowd or other carbon-based blockage, and/or another object that disrupts propagation of the signal.
  • Some RISs may include a plurality of antenna elements (e.g., different mirrors or other reflective elements or different beamforming reflecting components) .
  • an “antenna element” may refer to a single reflective and/or refractive component in combination with associated electronics for that element or may refer to a physical, virtual, and/or logical grouping of a plurality of reflective and/or refractive components in combination with associated electronics. Accordingly, one of the base station 110 or the UE 120 may concentrate power of a signal, intended for the other of the base station 110 or the UE 120, toward one or more antenna elements of an RIS.
  • the base station 110 may have previously determined a quantity of antenna elements that the RIS has (e.g., the RIS may be connected to the base station 110 through a wired and/or wireless backhaul) , and the base station 110 may have previously determined (e.g., using one or more measurements, such as RSRPs RSRQs, and/or other L1 measurements, and/or one or more derived measurements, such as CQIs, PMIs, RIs, and/or other measurements derived from L1 measurements) TCI states (and thus one or more corresponding beams, as described above in connection with Fig. 3) that concentrate power of a signal from the base station 110 toward corresponding antenna elements of the RIS.
  • one or more measurements such as RSRPs RSRQs, and/or other L1 measurements
  • derived measurements such as CQIs, PMIs, RIs, and/or other measurements derived from L1 measurements
  • the base station 110 may select a TCI state to target one or more corresponding antenna elements.
  • the base station 110 may have previously indicated to the UE 120 a quantity of antenna elements that the RIS has (e.g., via an RRC message, DCI, and/or another message) , and the base station 110 may have indicated to the UE 120 (e.g., via an RRC message, DCI, and/or another message) TCI states (and thus one or more corresponding beams, as described above in connection with Fig. 3) that concentrate power of a signal from the UE 120 toward corresponding antenna elements of the RIS. Accordingly, the UE 120 may select a TCI state to target one or more corresponding antenna elements.
  • Some techniques and apparatuses described herein enable the base station 110 to transmit additional bits of information to the UE 120 by selecting antenna elements of one or more RISs to use when transmitting a signal encoding one or more bits. Similarly, some techniques and apparatuses described herein enable the UE 120 to transmit additional bits of information to the base station 110 by selecting antenna elements of the one or more RISs to use when transmitting a signal encoding one or more bits. As a result, the UE 120 and the base station 110 may improve throughput and reduce latency. Using spatial modulation with one or more RISs may increase efficiency more than index modulation because the one or more RISs may include more subgroups of antenna elements than a quantity of antenna panels included in the UE 120.
  • spatial modulation with the one or more RISs may require fewer processing resources for the UE 120 to detect as compared with index modulation. As a result, the UE 120 and the base station 110 may conserve transmit power and network overhead. In some aspects, spatial modulation with one or more RISs may be combined with index modulation in order to transmit even more data and thus further increase network efficiency. As a result, the UE 120 and the base station 110 may further conserve transmit power and network overhead.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Figs. 6A and 6B are diagrams illustrating examples 600 and 650, respectively, associated with communicating data using RISs, in accordance with the present disclosure.
  • example 600 includes communication between a base station 110 and a UE 120.
  • the base station 110 and the UE 120 may be included in a wireless network, such as wireless network 100.
  • the base station 110 and the UE 120 may communicate via a wireless access link, which may include an uplink and a downlink.
  • example 600 includes an RIS 605 with a plurality of antenna elements (e.g., antenna elements 610a, 610b 610c, 610d, 610e, 610f, 610g, 610h) .
  • antenna elements 610a, 610b 610c, 610d, 610e, 610f, 610g, 610h e.g., antenna elements 610a, 610b 610c, 610d, 610e, 610f, 610g, 610h.
  • additional antenna elements e.g., nine antenna elements, ten antenna elements, and so on
  • the base station 110 may transmit, and the UE 120 may receive, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with the RIS 605.
  • the base station 110 may transmit an RRC message, DCI, and/or another message to the UE 120 including the RIS configuration information.
  • the base station 110 may determine the quantity using a backhaul connection with the RIS 605.
  • the base station 110 may transmit reference signals (e.g., CSI-RSs and/or other reference signals) to the RIS 605 and estimate the quantity based at least in part on measurements of reflections of those reference signals from the RIS 605.
  • reference signals e.g., CSI-RSs and/or other reference signals
  • the quantity may indicate a number of subgroups of the plurality of antenna elements (e.g., as described below in connection with Fig. 6B) .
  • the base station 110 may indicate that the RIS 605 has four antenna element subgroups, where each subgroup includes one or more antenna elements.
  • the RIS configuration information may indicate a respective reflection direction associated with each of the plurality of antenna elements.
  • the base station 110 may indicate a reflection direction associated with antenna element 610d as different from a reflection direction associated with antenna element 610c.
  • the UE 120 may estimate which antenna element (or subgroup of antenna elements) toward which the base station 110 directed a signal based at least in part on a relative strength of that signal at one or more antennas of the UE 120. For example, one reflection direction (e.g., associated with antenna element 610c) may be associated with greater signal strength at an antenna of the UE 120 while another reflection direction (e.g., associated with antenna element 610d) may be associated with lesser signal strength at that antenna of the UE 120.
  • the RIS configuration information may include partition information associated with a layout of the plurality of antenna elements on the RIS 605 and/or position information associated with the RIS 605.
  • the RIS configuration information may indicate how the RIS 605 is partitioned (e.g., into a quantity of horizontal or vertical stripes represented by m, into a grid with rectangular subgroups represented by m, and/or another layout) .
  • the RIS configuration information may indicate a location for the RIS 605 such that the UE 120 may estimate respective reflection directions associated with the plurality of antenna elements (e.g., as described above) .
  • the UE 120 may transmit, and the base station 110 may receive a suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality associated with the RIS 605.
  • a “suggested quantity” refers to a value or other parameter, generated by the UE 120, that is a proposal for the base station 110 and/or the UE 120 to use.
  • the suggested quantity may indicate a number of subgroups into which the RIS 605 should be logically divided.
  • the UE 120 may suggest that each antenna element of RIS 605 be used separately by transmitting a suggested quantity of 8.
  • the UE 120 may suggest using at least four antenna elements of the RIS 605 by transmitting a suggested quantity of 2 (e.g., two subgroups including four antenna elements each) .
  • the UE 120 may transmit a CSI report and/or another message to the base station 110 including the suggested quantity.
  • the at least one measurement of quality associated with the RIS 605 may include L1 measurements, PMIs, RIs, and/or other measurements associated with different antenna elements of the plurality of antenna elements.
  • the UE 120 may transmit reference signals (e.g., sounding reference signals (SRSs) and/or other reference signals) to the RIS 605 and determine the at least one measurement of quality based at least in part on measurements of reflections of those reference signals from the RIS 605.
  • reference signals e.g., sounding reference signals (SRSs) and/or other reference signals
  • the UE 120 may transmit a first suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the RIS 605, satisfying a quality level threshold but may transmit a second suggested quantity (e.g., a smaller quantity) for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the RIS 605, not satisfying the quality level threshold.
  • a larger suggested quantity may provide for greater throughput with the base station 110 but may reduce the quality and/or reliability with the base station 110 by using narrower beams in order to target smaller subgroups of antennas elements on the RIS 605.
  • a smaller suggested quantity may provide for smaller throughput with the base station 110 but may improve the quality and/or reliability with the base station 110 by using wider beams in order to target larger subgroups of antennas elements on the RIS 605.
  • the UE 120 may transmit, and the base station 110 may receive, based at least in part on at least one measure of quality associated with the at least one RIS, an indication of one or more suggested TCI states for activation.
  • the one or more suggested TCI states may be associated with the RIS 605.
  • the UE 120 may identify which TCI states were configured by the base station 110 (e.g., via an RRC message, such as a PDSCH-Config message as defined in 3GPP specifications and/or another standard) and thus determine one or more of the configured TCI states to suggest.
  • the UE 120 may determine suggested TCI states such that each suggested TCI state corresponds to a subgroup of antenna elements on the RIS 605.
  • the at least one measurement of quality associated with the RIS 605 may include L1 measurements, PMIs, RIs, and/or other measurements associated with different antenna elements of the plurality of antenna elements.
  • the base station 110 may transmit, and the UE 120 may receive, a quantity for segmenting the plurality of antenna elements.
  • the base station 110 may transmit an RRC message, DCI, and/or another message to the UE 120 including the quantity.
  • the quantity may indicate a number of subgroups into which the RIS 605 will be logically divided.
  • the base station 110 may indicate that each antenna element of RIS 605 will be used separately by transmitting a quantity of 8.
  • the base station 110 may indicate that at least four antenna elements of the RIS 605 will be used by transmitting a quantity of 2 (e.g., two subgroups including four antenna elements each) .
  • the base station 110 may determine the quantity based at least in part on at least one measurement of quality associated with the RIS 605, which may include L1 measurements, PMIs, RIs, and/or other measurements associated with different antenna elements of the plurality of antenna elements. For example, the UE 120 may transmit a CSI report to the base station 110 including the at least one measurement of quality. Additionally, or alternatively, the base station 110 may transmit reference signals (e.g., CSI-RSs and/or other reference signals) to the RIS 605 and determine the at least one measurement of quality based at least in part on detecting reflections of those reference signals from the RIS 605.
  • reference signals e.g., CSI-RSs and/or other reference signals
  • the base station 110 may transmit a first quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the RIS 605, satisfying a quality level threshold or may transmit a second quantity (e.g., a smaller quantity) for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the RIS 605, not satisfying the quality level threshold.
  • a larger quantity may provide for greater throughput with the UE 120 but may reduce the quality and/or reliability with the UE 120 by using narrower beams in order to target smaller subgroups of antennas elements on the RIS 605.
  • a smaller quantity may provide for smaller throughput with the UE 120 but may improve the quality and/or reliability with the UE 120 by using wider beams in order to target larger subgroups of antennas elements on the RIS 605.
  • the base station 110 may transmit, and the UE 120 may receive, an activation of a plurality of TCI states.
  • the base station 110 may transmit a medium access control (MAC) layer control element (MAC-CE) , DCI, and/or another message activating the plurality of TCI states.
  • the plurality of TCI states may be associated with the RIS 605.
  • the base station 110 may identify which TCI states were configured (e.g., in a PDSCH-Config message, as defined in 3GPP specifications and/or another standard, that the base station 110 transmitted to the UE 120) and thus determine a plurality of the configured TCI states to activate.
  • the base station 110 may activate TCI states such that each suggested TCI state corresponds to a subgroup of antenna elements on the RIS 605.
  • the base station 110 may activate the TCI states based at least in part on at least one measurement of quality associated with the RIS 605, which may include L1 measurements, PMIs, RIs, and/or other measurements associated with different antenna elements of the plurality of antenna elements.
  • the UE 120 may transmit a CSI report to the base station 110 including the at least one measurement of quality.
  • the base station 110 may transmit reference signals (e.g., CSI-RSs and/or other reference signals) to the RIS 605 and determine the at least one measurement of quality based at least in part on detecting reflections of those reference signals from the RIS 605.
  • reference signals e.g., CSI-RSs and/or other reference signals
  • the base station 110 may transmit, and the UE 120 may receive, a mapping (e.g., via an RRC message, DCI, and/or another message) between selection of a subgroup of antenna elements of the RIS 605 and one or more additional bits.
  • a mapping e.g., via an RRC message, DCI, and/or another message
  • selection of antenna element 610a may be associated with 000
  • selection of antenna element 610b may be associated with 001
  • selection of antenna element 610c may be associated with 010
  • selection of antenna element 610d may be associated with 011
  • selection of antenna element 610e may be associated with 100
  • selection of antenna element 610f may be associated with 101
  • selection of antenna element 610g may be associated with 110
  • selection of antenna element 610h may be associated with 111.
  • the base station 110 may transmit, and the UE 120 may receive, at least one bit of data using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information.
  • the base station 110 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna elements.
  • the base station 110 may use spatial modulation in order to indicate at least one additional bit of information associated with the data.
  • the base station 110 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards a selected subgroup of antenna elements on the RIS 605.
  • the UE 120 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For example, as described above, the UE 120 may determine that different spatial modulations (which target different subgroups of antenna elements of the RIS 605) result in different signal strengths at one or more antennas of the UE 120 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength. In example 600, the UE 120 may decode 011 based at least in part on a determination that the base station 110 selected beam 615a to target antenna element 610d or may decode 010 based at least in part on a determination that the base station 110 selected beam 615b to target antenna element 610c.
  • the UE 120 may transmit, and the base station 110 may receive, at least one bit of data using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. For example, the UE 120 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna elements. The UE 120 may use spatial modulation in order to indicate at least one additional bit of information associated with the data. For example, the UE 120 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards a selected subgroup of antenna elements on the RIS 605.
  • the base station 110 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For example, as described above, the base station 110 may determine that different spatial modulations (which target different subgroups of antenna elements of the RIS 605) result in different signal strengths at one or more antennas of the base station 110 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength.
  • the one or more antenna elements that are targeted may be included in a single subgroup (e.g., as described below in connection with example 650) .
  • the base station 110 and/or the UE 120 may select the one or more antenna elements from a plurality of RISs (e.g., as described below in connection with Fig. 7) .
  • Example 650 similarly includes communication between the base station 110 and the UE 120.
  • example 600 includes an RIS 655 with a plurality of subgroups (e.g., subgroups 660a, 660b, 660c, 660d) , where each subgroup includes six antenna elements.
  • subgroups e.g., subgroups 660a, 660b, 660c, 660d
  • each subgroup includes six antenna elements.
  • the description similarly applies to RISs with fewer subgroups (e.g., three subgroups, two subgroups) or additional subgroups (e.g., five subgroups, six subgroups, and so on) .
  • each subgroup similarly applies to subgroups with fewer antenna elements (e.g., five antenna elements, four antenna elements, and so on) or additional antenna elements (e.g., seven antenna elements, eight antenna elements, and so on, and/or to subgroups with different quantities of antenna elements rather than the same quantity.
  • fewer antenna elements e.g., five antenna elements, four antenna elements, and so on
  • additional antenna elements e.g., seven antenna elements, eight antenna elements, and so on, and/or to subgroups with different quantities of antenna elements rather than the same quantity.
  • the base station 110 may transmit, and the UE 120 may receive, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with the RIS 655. In some aspects, and as described above in connection with Fig. 6A, the base station 110 may transmit, and the UE 120 may receive, a quantity for segmenting the plurality of antenna elements. Additionally, the base station 110 may transmit, and the UE 120 may receive, a mapping (e.g., via an RRC message, DCI, and/or another message) between selection of a subgroup of antenna elements of the RIS 655 and one or more additional bits. In example 600, selection of subgroup 660a may be associated with 00, selection of subgroup 660b may be associated with 01, selection of subgroup 660c may be associated with 10, and selection of subgroup 660d may be associated with 11.
  • a mapping e.g., via an RRC message, DCI, and/or another message
  • the base station 110 may transmit, and the UE 120 may receive, at least one bit of data using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information.
  • the base station 110 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna elements.
  • the base station 110 may use spatial modulation in order to indicate at least one additional bit of information associated with the data.
  • the base station 110 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards a selected subgroup of antenna elements on the RIS 655.
  • the UE 120 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For example, as described above, the UE 120 may determine that different spatial modulations (which target different subgroups of antenna elements of the RIS 655) result in different signal strengths at one or more antennas of the UE 120 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength.
  • the UE 120 may transmit, and the base station 110 may receive, at least one bit of data using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. For example, the UE 120 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna elements. The UE 120 may use spatial modulation in order to indicate at least one additional bit of information associated with the data. For example, the UE 120 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards a selected subgroup of antenna elements on the RIS 655.
  • the base station 110 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For example, as described above, the base station 110 may determine that different spatial modulations (which target different subgroups of antenna elements of the RIS 655) result in different signal strengths at one or more antennas of the base station 110 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength.
  • the base station 110 may decode 00 based at least in part on a determination that the UE 120 selected beam 665a to target subgroup 660a, may decode 01 based at least in part on a determination that the UE 120 selected beam 665b to target subgroup 660b, may decode 10 based at least in part on a determination that the UE 120 selected beam 665c to target subgroup 660c, or may decode 11 based at least in part on a determination that the UE 120 selected beam 665d to target subgroup 660d.
  • the base station 110 and/or the UE 120 may select the one or more antenna elements from a plurality of RISs (e.g., as described below in connection with Fig. 7) .
  • Example 400 may be combined with example 600 and/or example 650.
  • the base station 110 may apply spatial modulation, for transmitting a signal encoding the data, in order to target a subgroup of antenna elements on the RIS 605 or the RIS 655 (which communicates at least one additional bit of information associated with the data) as well as in order to target one or more antennas of the UE 120 (which communicates one or more additional bits of information associated with the data) .
  • the base station 110 may further increase throughput to the UE 120 and reduce latency.
  • the UE 120 may apply spatial modulation, for transmitting a signal encoding the data, in order to target a subgroup of antenna elements on the RIS 605 or the RIS 655 (which communicates at least one additional bit of information associated with the data) as well as in order to target one or more antennas of the base station 110 (which communicates one or more additional bits of information associated with the data) . Accordingly, the UE 120 may further increase throughput to the base station 110 and reduce latency.
  • the base station 110 may transmit additional bits of information to the UE 120 by selecting antenna elements of RIS 605 or RIS 655 to use when transmitting a signal encoding one or more bits.
  • the UE 120 may transmit additional bits of information to the base station 110 by selecting antenna elements of the RIS 605 or the RIS 655 to use when transmitting a signal encoding one or more bits.
  • the UE 120 and the base station 110 may improve throughput and reduce latency.
  • Figs. 6A and 6B are provided as examples. Other examples may differ from what is described with respect to Figs. 6A and 6B.
  • Fig. 7 is a diagram illustrating example 700 associated with communicating data using RISs, in accordance with the present disclosure.
  • example 700 includes communication between a base station 110 and a UE 120.
  • the base station 110 and the UE 120 may be included in a wireless network, such as wireless network 100.
  • the base station 110 and the UE 120 may communicate via a wireless access link, which may include an uplink and a downlink.
  • example 700 includes RISs 705, 710, 715, and 720, where each RIS includes six antenna elements.
  • each RIS includes six antenna elements.
  • the description similarly applies to fewer RISs (e.g., three RISs, two RISs) or additional RISs (e.g., five RISs, six RISs, and so on) .
  • additional RISs e.g., five RISs, six RISs, and so on
  • the description similarly applies to RISs with fewer antenna elements (e.g., five antenna elements, four antenna elements, and so on) or additional antenna elements (e.g., seven antenna elements, eight antenna elements, and so on, and/or to RISs with different quantities of antenna elements rather than the same quantity.
  • the base station 110 may transmit, and the UE 120 may receive, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with the RISs 705, 710, 715, and 720.
  • the base station 110 may transmit, and the UE 120 may receive, a mapping (e.g., via an RRC message, DCI, and/or another message) between selection of a one or more of the RISs 705, 710, 715, and 720 and one or more additional bits.
  • selection of RIS 705 may be associated with 00
  • selection of RIS 710 may be associated with 01
  • selection of RIS 715 may be associated with 10
  • selection of RIS 720 may be associated with 11.
  • the base station 110 may transmit, and the UE 120 may receive, at least one bit of data using spatial modulation associated with one or more antenna elements, based at least in part on the RIS configuration information.
  • the base station 110 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna elements.
  • the base station 110 may use spatial modulation in order to indicate at least one additional bit of information associated with the data.
  • the base station 110 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards the one or more antenna elements on a selected RIS.
  • the UE 120 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For example, as described above, the UE 120 may determine that different spatial modulations (which target different RISs and thus different subgroups of antenna elements) result in different signal strengths at one or more antennas of the UE 120 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength.
  • different spatial modulations which target different RISs and thus different subgroups of antenna elements
  • the UE 120 may transmit, and the base station 110 may receive, at least one bit of data using spatial modulation associated with one or more antenna elements, based at least in part on the RIS configuration information. For example, the UE 120 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna elements. The UE 120 may use spatial modulation in order to indicate at least one additional bit of information associated with the data. For example, the UE 120 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards the one or more antenna elements on a selected RIS.
  • the base station 110 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For example, as described above, the base station 110 may determine that different spatial modulations (which target different RISs and thus different subgroups of antenna elements) result in different signal strengths at one or more antennas of the base station 110 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength.
  • different spatial modulations which target different RISs and thus different subgroups of antenna elements
  • the base station 110 may decode 00 based at least in part on a determination that the UE 120 selected beam 715a to target antenna elements on RIS 705, may decode 01 based at least in part on a determination that the UE 120 selected beam 715b to target antenna elements on RIS 710, may decode 10 based at least in part on a determination that the UE 120 selected beam 715c to target antenna elements on RIS 715, or may decode 11 based at least in part on a determination that the UE 120 selected beam 715d to target antenna elements on RIS 720.
  • Example 600 and/or example 650 may be combined with example 700.
  • one of more of the RISs 705, 710, 715, and 720 may include a plurality of subgroups of antenna elements.
  • the base station 110 may apply spatial modulation, for transmitting a signal encoding the data, in order to target a subgroup of antennas on one or more of the RISs 705, 710, 715, and 720.
  • the UE 120 may apply spatial modulation, for transmitting a signal encoding the data, in order to target a subgroup of antennas on one or more of the RISs 705, 710, 715, and 720.
  • example 400 may be combined with example 700.
  • the base station 110 may apply spatial modulation, for transmitting a signal encoding the data, in order to target one or more of the RISs 705, 710, 715, and 720 (which communicates at least one additional bit of information associated with the data) as well as in order to target one or more antennas of the UE 120 (which communicates one or more additional bits of information associated with the data) .
  • the base station 110 may further increase throughput to the UE 120 and reduce latency.
  • the UE 120 may apply spatial modulation, for transmitting a signal encoding the data, in order to target one or more of the RISs 705, 710, 715, and 720 (which communicates at least one additional bit of information associated with the data) as well as in order to target one or more antennas of the base station 110 (which communicates one or more additional bits of information associated with the data) . Accordingly, the UE 120 may further increase throughput to the base station 110 and reduce latency.
  • the base station 110 may transmit additional bits of information to the UE 120 by selecting one or more of RISs 705, 710, 715, and 720 to use when transmitting a signal encoding one or more bits.
  • the UE 120 may transmit additional bits of information to the base station 110 by selecting one or more of RISs 705, 710, 715, and 720 to use when transmitting a signal encoding one or more bits.
  • the UE 120 and the base station 110 may improve throughput and reduce latency.
  • Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 800 is an example where the UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) performs operations associated with communicating data using an RIS.
  • the UE e.g., UE 120 and/or apparatus 1000 of Fig. 10.
  • process 800 may include receiving, from a base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) , RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS (block 810) .
  • a base station e.g., base station 110 and/or apparatus 1100 of Fig. 11
  • RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS
  • the UE e.g., using reception component 1002, depicted in Fig. 10
  • process 800 may include transmitting or receiving at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information (block 820) .
  • the UE e.g., using transmission component 1004, depicted in Fig. 10, and/or reception component 1002
  • the spatial modulation indicates at least one additional bit of information associated with the data.
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the RIS configuration information further includes one or more of partitioning information associated with a layout of the plurality of antenna elements on the at least one RIS or positioning information associated with the at least one RIS.
  • process 800 further includes transmitting (e.g., using transmission component 1004) , based at least in part on at least one measure of quality associated with the at least one RIS, a suggested quantity for segmenting the plurality of antenna elements.
  • process 800 further includes receiving (e.g., using reception component 1002) , from the base station, a quantity for segmenting the plurality of antenna elements.
  • process 800 further includes transmitting (e.g., using transmission component 1004) a first suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold, or transmitting (e.g., using transmission component 1004) a second suggested quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first suggested quantity being greater than the second suggested quantity.
  • the one or more antenna elements are included in a single subgroup.
  • the RIS configuration information indicates a respective reflection direction associated with each of the plurality of antenna elements.
  • the at least one additional bit of information includes control information associated with the data.
  • the at least one additional bit of information includes a portion of a payload associated with the data.
  • process 800 further includes measuring (e.g., using measurement component 1008, depicted in Fig. 10) a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
  • process 800 further includes receiving (e.g., using reception component 1002) , from the base station, an activation of a plurality of TCI states, the one or more antenna elements being associated with one of the plurality of TCI states.
  • process 800 further includes transmitting (e.g., using transmission component 1004) , based at least in part on at least one measure of quality associated with the at least one RIS, an indication of one or more suggested TCI states for activation, the one or more suggested TCI states being associated with the at least one RIS.
  • the one or more antenna elements are included in a plurality of RISs.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with the present disclosure.
  • Example process 900 is an example where the base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) performs operations associated with communicating data using an RIS.
  • the base station e.g., base station 110 and/or apparatus 1100 of Fig. 11
  • process 900 may include transmitting, to a UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) , RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS (block 910) .
  • the base station e.g., using transmission component 1104, depicted in Fig. 11
  • process 900 may include transmitting or receiving at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information (block 920) .
  • the base station e.g., using reception component 1102, depicted in Fig. 11, and/or transmission component 1104
  • the spatial modulation indicates at least one additional bit of information associated with the data.
  • Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the RIS configuration information further includes one or more of partitioning information associated with a layout of the plurality of antenna elements on the at least one RIS or positioning information associated with the at least one RIS.
  • process 900 further includes receiving (e.g., using reception component 1102) , from the UE, a suggested quantity for segmenting the plurality of antenna elements.
  • process 900 further includes transmitting (e.g., using transmission component 1104) , based at least in part on at least one measure of quality associated with the at least one RIS, a quantity for segmenting the plurality of antenna elements.
  • process 900 further includes transmitting (e.g., using transmission component 1104) a first quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold, or transmitting (e.g., using transmission component 1104) a second quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first quantity being greater than the second quantity.
  • the one or more antenna elements are included in a single group.
  • the RIS configuration information indicates respective reflection directions associated with each of the plurality of antenna elements.
  • the at least one additional bit of information includes control information associated with the data.
  • the at least one additional bit of information includes a portion of a payload associated with the data.
  • process 900 further includes measuring (e.g., using measurement component 1108, depicted in Fig. 11) a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
  • process 900 further includes transmitting (e.g., using transmission component 1104) , to the UE, an activation of a plurality of TCI) states, the one or more antenna elements being associated with one of the plurality of TCI states.
  • process 900 further includes receiving (e.g., using reception component 1102) , from the UE, an indication of one or more suggested TCI states for activation, the one or more suggested TCI states being associated with the at least one RIS.
  • the one or more antenna elements are included in a plurality of RISs.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a block diagram of an example apparatus 1000 for wireless communication.
  • the apparatus 1000 may be a UE, or a UE may include the apparatus 1000.
  • the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004.
  • the apparatus 1000 may include a measurement component 1008, among other examples.
  • the apparatus 1000 may be configured to perform one or more operations described herein in connection with Figs. 6A-7. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8, or a combination thereof.
  • the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006.
  • the reception component 1002 may provide received communications to one or more other components of the apparatus 1000.
  • the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1006.
  • the reception component 1002 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • the transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006.
  • one or more other components of the apparatus 1006 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006.
  • the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006.
  • the transmission component 1004 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
  • the reception component 1002 may receive, from the apparatus 1006, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS. Accordingly, the transmission component 1004 may transmit at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. The spatial modulation may indicate at least one additional bit of information associated with the data. As an alternative, the reception component 1002 may receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. The spatial modulation may indicate at least one additional bit of information associated with the data.
  • the measurement component 1008 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
  • the measurement component 1008 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • the transmission component 1004 may transmit, based at least in part on at least one measure of quality associated with the at least one RIS, a suggested quantity for segmenting the plurality of antenna elements. In some aspects, the transmission component 1004 may transmit a first suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold but may transmit a second, smaller suggested quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold. Additionally, or alternatively, the reception component 1002 may receive, from the apparatus 1006, a quantity for segmenting the plurality of antenna elements.
  • the transmission component 1004 may transmit, based at least in part on at least one measure of quality associated with the at least one RIS, an indication of one or more suggested TCI states for activation, the one or more suggested TCI states being associated with the at least one RIS. Additionally, or alternatively, the reception component 1002 may receive, from the apparatus 1006, an activation of a plurality of TCI states, the one or more antenna elements being associated with one of the plurality of TCI states.
  • Fig. 10 The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
  • Fig. 11 is a block diagram of an example apparatus 1100 for wireless communication.
  • the apparatus 1100 may be a base station, or a base station may include the apparatus 1100.
  • the apparatus 1100 includes a reception component 1102 and a transmission component 1104, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1100 may communicate with another apparatus 1106 (such as a UE, a base station, or another wireless communication device) using the reception component 1102 and the transmission component 1104.
  • the apparatus 1100 may include a measurement component 1108, among other examples.
  • the apparatus 1100 may be configured to perform one or more operations described herein in connection with Figs. 6A-7. Additionally, or alternatively, the apparatus 1100 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9, or a combination thereof.
  • the apparatus 1100 and/or one or more components shown in Fig. 11 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 11 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1102 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1106.
  • the reception component 1102 may provide received communications to one or more other components of the apparatus 1100.
  • the reception component 1102 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1106.
  • the reception component 1102 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
  • the transmission component 1104 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1106.
  • one or more other components of the apparatus 1106 may generate communications and may provide the generated communications to the transmission component 1104 for transmission to the apparatus 1106.
  • the transmission component 1104 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1106.
  • the transmission component 1104 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 1104 may be co-located with the reception component 1102 in a transceiver.
  • the transmission component 1104 may transmit, to the apparatus 1106, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS. Accordingly, the transmission component 1104 may transmit at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. The spatial modulation may indicate at least one additional bit of information associated with the data. As an alternative, the reception component 1102 may receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. The spatial modulation may indicate at least one additional bit of information associated with the data.
  • the measurement component 1108 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
  • the measurement component 1108 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
  • the reception component 1102 may receive, from the apparatus 1106, a suggested quantity for segmenting the plurality of antenna elements. Additionally, or alternatively, the transmission component 1104 may transmit, based at least in part on at least one measure of quality associated with the at least one RIS, a quantity for segmenting the plurality of antenna elements. In some aspects, the transmission component 1104 may transmit a first quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold but may transmit a second, smaller quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold.
  • the reception component 1102 may receive, from the apparatus 1106, an indication of one or more suggested TCI states for activation, the one or more suggested TCI states being associated with the at least one RIS. Additionally, or alternatively, the transmission component 1104 may transmit, to the apparatus 1106, an activation of a plurality of TCI states, the one or more antenna elements being associated with one of the plurality of TCI states.
  • Fig. 11 The number and arrangement of components shown in Fig. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 11. Furthermore, two or more components shown in Fig. 11 may be implemented within a single component, or a single component shown in Fig. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 11 may perform one or more functions described as being performed by another set of components shown in Fig. 11.
  • a method of wireless communication performed by a user equipment (UE) comprising: receiving, from a base station, reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmitting or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • RIS reconfigurable intelligent surface
  • Aspect 2 The method of Aspect 1, wherein the RIS configuration information further includes one or more of: partition information associated with a layout of the plurality of antenna elements on the at least one RIS, or position information associated with the at least one RIS.
  • Aspect 3 The method of any of Aspects 1 through 2, further comprising: transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, a suggested quantity for segmenting the plurality of antenna elements.
  • Aspect 4 The method of any of Aspects 1 through 3, further comprising: receiving, from the base station, a quantity for segmenting the plurality of antenna elements.
  • Aspect 5 The method of any of Aspects 1 through 3, further comprising: transmitting a first suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold, or transmitting a second suggested quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first suggested quantity being greater than the second suggested quantity.
  • Aspect 6 The method of any of Aspects 1 through 5, wherein the one or more antenna elements are included in a single subgroup.
  • Aspect 7 The method of any of Aspects 1 through 6, wherein the RIS configuration information indicates a respective reflection direction associated with each of the plurality of antenna elements.
  • Aspect 8 The method of any of Aspects 1 through 7, wherein the at least one additional bit of information includes control information associated with the data.
  • Aspect 9 The method of any of Aspects 1 through 7, wherein the at least one additional bit of information includes a portion of a payload associated with the data.
  • Aspect 10 The method of any of Aspects 1 through 9, further comprising: measuring a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
  • Aspect 11 The method of any of Aspects 1 through 10, further comprising: receiving, from the base station, an activation of a plurality of transmission configuration indicator (TCI) states, the one or more antenna elements being associated with one of the plurality of TCI states.
  • TCI transmission configuration indicator
  • Aspect 12 The method of any of Aspects 1 through 11, further comprising: transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, an indication of one or more suggested transmission configuration indicator (TCI) states for activation, wherein the one or more suggested TCI states are associated with the at least one RIS.
  • TCI transmission configuration indicator
  • Aspect 13 The method of any of Aspects 1 through 12, wherein the one or more antenna elements are included in a plurality of RISs.
  • a method of wireless communication performed by a base station comprising: transmitting, to a user equipment (UE) , reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmitting or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  • UE user equipment
  • RIS reconfigurable intelligent surface
  • Aspect 15 The method of Aspect 15, wherein the RIS configuration information further includes one or more of: partition information associated with a layout of the plurality of antenna elements on the at least one RIS, or position information associated with the at least one RIS.
  • Aspect 16 The method of any of Aspects 14 through 15, further comprising: receiving, from the UE, a suggested quantity for segmenting the plurality of antenna elements.
  • Aspect 17 The method of any of Aspects 14 through 16, further comprising: transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, a quantity for segmenting the plurality of antenna elements.
  • Aspect 18 The method of any of Aspects 14 through 16, further comprising: transmitting a first quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold, or transmitting a second quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first quantity being greater than the second quantity.
  • Aspect 19 The method of any of Aspects 14 through 18, wherein the one or more antenna elements are included in a single group.
  • Aspect 20 The method of any of Aspects 14 through 19, wherein the RIS configuration information indicates respective reflection directions associated with each of the plurality of antenna elements.
  • Aspect 21 The method of any of Aspects 14 through 20, wherein the at least one additional bit of information includes control information associated with the data.
  • Aspect 22 The method of any of Aspects 14 through 20, wherein the at least one additional bit of information includes a portion of a payload associated with the data.
  • Aspect 23 The method of any of Aspects 14 through 22, further comprising: measuring a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
  • Aspect 24 The method of any of Aspects 14 through 23, further comprising: transmitting, to the UE, an activation of a plurality of transmission configuration indicator (TCI) states, the one or more antenna elements being associated with one of the plurality of TCI states.
  • TCI transmission configuration indicator
  • Aspect 25 The method of any of Aspects 14 through 24, further comprising: receiving, from the UE, an indication of one or more suggested transmission configuration indicator (TCI) states for activation, wherein the one or more suggested TCI states are associated with the at least one RIS.
  • TCI transmission configuration indicator
  • Aspect 26 The method of any of Aspects 14 through 25, wherein the one or more antenna elements are included in a plurality of RISs.
  • Aspect 27 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-13.
  • Aspect 28 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more of Aspects 1-13.
  • Aspect 29 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-13.
  • Aspect 30 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-13.
  • Aspect 31 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-13.
  • Aspect 32 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 14-26.
  • Aspect 33 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more of Aspects 14-26.
  • Aspect 34 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 14-26.
  • Aspect 35 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 14-26.
  • Aspect 36 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 14-26.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a processor is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS. The UE may transmit or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. The spatial modulation indicates at least one additional bit of information associated with the data. Numerous other aspects are described.

Description

[Title established by the ISA under Rule 37.2] COMMUNICATING DATA USING RECONFIGURABLE INTELLIGENT SURFACE
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for communicating data using a reconfigurable intelligent surface.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A UE may communicate with a BS via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. NR, which may also be referred to as 5G, is a set of enhancements to the LTE mobile  standard promulgated by the 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a user equipment (UE) for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to receive, from a base station, reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmit or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
In some aspects, a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to transmit, to a UE, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmit or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
In some aspects, a method of wireless communication performed by a UE includes receiving, from a base station, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmitting or receive at least one bit of data, using spatial modulation associated with  one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
In some aspects, a method of wireless communication performed by a base station includes transmitting, to a UE, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmitting or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to receive, from a base station, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmit or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to transmit, to a UE, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmit or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
In some aspects, an apparatus for wireless communication includes means for receiving, from a base station, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and means for transmitting or means for receiving at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part  on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
In some aspects, an apparatus for wireless communication includes means for transmitting, to a UE, reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and means for transmitting or means for receiving at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with the present disclosure.
Fig. 3 is a diagram illustrating an example of using beams for communications between a base station and a UE, in accordance with the present disclosure.
Fig. 4 is a diagram illustrating an example of index modulation, in accordance with the present disclosure.
Fig. 5 is a diagram illustrating an example of a reconfigurable intelligent surface (RIS) , in accordance with the present disclosure.
Figs. 6A, 6B, and 7 are diagrams illustrating examples associated with communicating data using RISs, in accordance with the present disclosure.
Figs. 8 and 9 are diagrams illustrating example processes associated with communicating data using RISs, in accordance with the present disclosure.
Figs. 10 and 11 are block diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Wireless Communications
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network and/or an LTE network, among other examples. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a  macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, such as macro BSs, pico BSs, femto BSs, relay BSs, or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or  equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, and/or location tags, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components and/or memory components. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, or the like. A frequency may also be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol or a vehicle-to-infrastructure (V2I)  protocol) , and/or a mesh network. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in  part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a channel quality indicator (CQI) parameter, among other examples. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
Antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, antenna groups, sets of antenna elements, and/or antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include a set of coplanar antenna elements and/or a set of non-coplanar antenna elements. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include antenna elements within a single housing and/or antenna elements within multiple housings. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to base station 110. In some aspects, a modulator and a demodulator (e.g., MOD/DEMOD 254) of the UE 120 may be included in a modem of the UE 120. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 6A-7.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may  provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, a modulator and a demodulator (e.g., MOD/DEMOD 232) of the base station 110 may be included in a modem of the base station 110. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 6A-7.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with communicating data using RISs, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, a UE (e.g., the UE 120 and/or apparatus 1000 of Fig. 10) may include means for receiving, from a base station (e.g., the base station 110 and/or apparatus 1100 of Fig. 11) , RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and means for transmitting or means for receiving at least one bit of data, using spatial modulation  associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data. The means for the UE to perform operations described herein may include, for example, one or more of antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, or memory 282.
In some aspects, the UE may include means for measuring a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
In some aspects, the UE may further include means for transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, a suggested quantity for segmenting the plurality of antenna elements; and/or means for receiving, from the base station, a quantity for segmenting the plurality of antenna elements. In some aspects, the UE may include means for transmitting a first suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold; and means for transmitting a second suggested quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first suggested quantity being greater than the second suggested quantity.
In some aspects, the UE may include means for receiving, from the base station, an activation of a plurality of transmission configuration indicator (TCI) states, the one or more antenna elements being associated with one of the plurality of TCI states; and/or means for transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, an indication of one or more suggested TCI states for activation, wherein the one or more suggested TCI states are associated with the at least one RIS.
In some aspects, a base station (e.g., the base station 110 and/or apparatus 1100 of Fig. 11) means for transmitting, to a UE (e.g., the UE 120 and/or apparatus 1000 of Fig. 10) , RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and means for transmitting or means for receiving at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part  on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data. The means for the base station to perform operations described herein may include, for example, one or more of transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
In some aspects, the base station may include means for measuring a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
In some aspects, the base station may further include means for receiving, from the UE, a suggested quantity for segmenting the plurality of antenna elements; and/or means for transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, a quantity for segmenting the plurality of antenna elements. In some aspects, the base station may include means for transmitting a first quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold; and means for transmitting a second quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first quantity being greater than the second quantity.
In some aspects, the base station may include means for transmitting, to the UE, an activation of a plurality of TCI states, the one or more antenna elements being associated with one of the plurality of TCI states; and/or means for receiving, from the UE, an indication of one or more suggested TCI states for activation, wherein the one or more suggested TCI states are associated with the at least one RIS.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Beams and Transmission Configuration Indication States
Fig. 3 is a diagram illustrating an example 300 of using beams for communications between a base station and a UE, in accordance with the present disclosure. As shown in Fig. 3, a base station 110 and a UE 120 may communicate with one another.
The base station 110 may transmit to UEs 120 located within a coverage area of the base station 110. The base station 110 and the UE 120 may be configured for beamformed communications, where the base station 110 may transmit in the direction of the UE 120 using a directional BS transmit beam, and the UE 120 may receive the transmission using a directional UE receive beam. Each BS transmit beam may have an associated beam ID, beam direction, or beam symbols, among other examples. The base station 110 may transmit downlink communications via one or more BS transmit beams 305.
The UE 120 may attempt to receive downlink transmissions via one or more UE receive beams 310, which may be configured using different beamforming parameters at receive circuitry of the UE 120. The UE 120 may identify a particular BS transmit beam 305, shown as BS transmit beam 305-A, and a particular UE receive beam 310, shown as UE receive beam 310-A, that provide relatively favorable performance (for example, that have a best channel quality of the different measured combinations of BS transmit beams 305 and UE receive beams 310) . In some examples, the UE 120 may transmit an indication of which BS transmit beam 305 is identified by the UE 120 as a preferred BS transmit beam, which the base station 110 may select for transmissions to the UE 120. The UE 120 may thus attain and maintain a beam pair link (BPL) with the base station 110 for downlink communications (for example, a combination of the BS transmit beam 305-A and the UE receive beam 310-A) , which may be further refined and maintained in accordance with one or more established beam refinement procedures.
A downlink beam, such as a BS transmit beam 305 or a UE receive beam 310, may be associated with a transmission configuration indication (TCI) state. A TCI state may indicate a directionality or a characteristic of the downlink beam, such as one or more quasi-co-location (QCL) properties of the downlink beam. A QCL property may include, for example, a Doppler shift, a Doppler spread, an average delay, a delay spread, or spatial receive parameters, among other examples. In some examples, each BS transmit beam 305 may be associated with a synchronization signal block (SSB) , and the UE 120 may indicate a preferred BS transmit beam 305 by transmitting uplink  transmissions in resources of the SSB that are associated with the preferred BS transmit beam 305. A particular SSB may have an associated TCI state (for example, for an antenna port or for beamforming) . The base station 110 may, in some examples, indicate a downlink BS transmit beam 305 based at least in part on antenna port QCL properties that may be indicated by the TCI state. A TCI state may be associated with one downlink reference signal set (for example, an SSB and an aperiodic, periodic, or semi-persistent channel state information reference signal (CSI-RS) ) for different QCL types (for example, QCL types for different combinations of Doppler shift, Doppler spread, average delay, delay spread, or spatial receive parameters, among other examples) . In cases where the QCL type indicates spatial receive parameters, the QCL type may correspond to analog receive beamforming parameters of a UE receive beam 310 at the UE 120. Thus, the UE 120 may select a corresponding UE receive beam 310 from a set of BPLs based at least in part on the base station 110 indicating a BS transmit beam 305 via a TCI indication.
The base station 110 may maintain a set of activated TCI states for downlink shared channel transmissions and a set of activated TCI states for downlink control channel transmissions. The set of activated TCI states for downlink shared channel transmissions may correspond to beams that the base station 110 uses for downlink transmission on a physical downlink shared channel (PDSCH) . The set of activated TCI states for downlink control channel communications may correspond to beams that the base station 110 may use for downlink transmission on a physical downlink control channel (PDCCH) or in a control resource set (CORESET) . The UE 120 may also maintain a set of activated TCI states for receiving the downlink shared channel transmissions and the CORESET transmissions. If a TCI state is activated for the UE 120, then the UE 120 may have one or more antenna configurations based at least in part on the TCI state, and the UE 120 may not need to reconfigure antennas or antenna weighting configurations. In some examples, the set of activated TCI states (for example, activated PDSCH TCI states and activated CORESET TCI states) for the UE 120 may be configured by a configuration message, such as a radio resource control (RRC) message.
Similarly, for uplink communications, the UE 120 may transmit in the direction of the base station 110 using a directional UE transmit beam, and the base station 110 may receive the transmission using a directional BS receive beam. Each UE transmit beam may have an associated beam ID, beam direction, or beam symbols,  among other examples. The UE 120 may transmit uplink communications via one or more UE transmit beams 315.
The base station 110 may receive uplink transmissions via one or more BS receive beams 320. The base station 110 may identify a particular UE transmit beam 315, shown as UE transmit beam 315-A, and a particular BS receive beam 320, shown as BS receive beam 320-A, that provide relatively favorable performance (for example, that have a best channel quality of the different measured combinations of UE transmit beams 315 and BS receive beams 320) . In some examples, the base station 110 may transmit an indication of which UE transmit beam 315 is identified by the base station 110 as a preferred UE transmit beam, which the base station 110 may select for transmissions from the UE 120. The UE 120 and the base station 110 may thus attain and maintain a BPL for uplink communications (for example, a combination of the UE transmit beam 315-A and the BS receive beam 320-A) , which may be further refined and maintained in accordance with one or more established beam refinement procedures. An uplink beam, such as a UE transmit beam 315 or a BS receive beam 320, may be associated with a spatial relation. A spatial relation may indicate a directionality or a characteristic of the uplink beam, similar to one or more QCL properties, as described above.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Index Modulation
Fig. 4 is a diagram illustrating an example 400 of index modulation, in accordance with the present disclosure. As shown in Fig. 4, example 400 includes communication between a base station 110 and a UE 120. The UE 120 may include multiple antennas (e.g.,  antennas  405a, 405b, 405c, and 405d) . Although described below using four antennas, the description similarly applies to UEs with fewer antennas (e.g., three antennas or two antennas) or additional antennas (e.g., five antennas, six antennas, and so on) .
As shown in Fig. 4, the base station 110 may transmit at least one bit of information on a downlink to the UE 120. Accordingly, the base station 110 may use a wireless signal to transmit the information. As further shown in Fig. 4, the base station 110 may concentrate power of the wireless signal on one or more of the antennas of the UE 120. For example, the UE 120 may have previously indicated to the base station 110 (e.g., using a UECapabilityInformation as defined in 3GPP specifications and/or  another standard) that the UE 120 has four antennas, and the UE 120 may have previously transmitted to the base station (e.g., using a channel state information (CSI) report as defined in 3GPP specifications and/or another standard) one or more measurements (e.g., RSRPs, RSRQs, and/or other L1 measurements) and/or one or more derived measurements (e.g., CQIs, precoding matrix indicators (PMIs) , rank indicators (RIs) , and/or other measurements derived from L1 measurements) associated with a plurality of beams and the antennas of the UE 120. Accordingly, the base station 110 may apply spatial modulation (e.g., by selecting a beam or a combination of beams, for example, by selecting a TCI state corresponding to the beam (s) , as described above in connection with Fig. 3) to concentrate the power on the one or more antennas.
By concentrating the power, the base station 110 may communicate additional bits of information to the UE 120. In example 400, the base station 110 may communicate two additional bits of information by selecting one of four antennas, associated with the UE 120, on which to concentrate the power. For example, the base station 110 may have previously indicated to the UE 120 a mapping (e.g., via an RRC message, downlink control information (DCI) , and/or another message) between antenna selection and one or more additional bits. In example 400, selection of beam 410a, which targets first antenna 405a, may be associated with 00, selection of beam 410b, which targets second antenna 405b, may be associated with 01, selection of beam 410c, which targets third antenna 405c, may be associated with 10, and selection of beam 410d, which targets fourth antenna 405d, may be associated with 11. The additional bits may encode a portion of control information that is transmitted to the selected antenna (e.g., a portion of one or more fields of DCI) or may encode control information that is associated with data transmitted to the selected antenna (e.g., one or more fields of DCI) . As an alternative, the additional bits may encode a portion of data that is transmitted to the selected antenna (e.g., one or more initial bits, one or more final bits, or another portion of the data) .
Accordingly, the UE 120 may determine on which antenna the base station 110 concentrated the power (e.g., by comparing RSRPs and/or another measurements associated with signal power across the antennas) and thus determine the two additional bits of information. More generally, a quantity of antennas associated with the UE 120 may be represented by N r such that the base station 110 may communicate an additional 
Figure PCTCN2021077827-appb-000001
bits by concentrating power at one of the antennas. As an alternative, the bases station 110 may concentrate power at a subgroup of the antennas. Accordingly, a  quantity of antennas in each subgroup may be represented by n such that the base station 110 may communicate an additional
Figure PCTCN2021077827-appb-000002
bits by concentrating power at one of the subgroups.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
Reconfigurable Intelligent Surfaces
Fig. 5 is a diagram illustrating an example 500 of a reconfigurable intelligent surface (RIS) , in accordance with the present disclosure. RIS 505, which may also be referred to as an intelligent reflecting surface (IRS) or a large intelligent surface (LIS) , includes configurable electromagnetic materials to reflect and/or refract electromagnetic signals. RIS 505 may be passive (e.g., including stationary mirrors) or near-passive (e.g., include micro-electro-mechanical systems (MEMS) mirrors and/or other configurable components to reflect and/or refract signals) . For example, RIS 505 may be a waveguide-fed metasurface, a refracting and reflecting metasurface, a digital coding reflective metasurface, and/or another metasurface that reflects and/or refracts signals. Accordingly, as shown in Fig. 5, the RIS 505 may propagate a signal from a base station 110 to a UE 120. Additionally, or alternatively, the RIS 505 may propagate a signal from the UE 120 to the base station 110. For example, the RIS 505 may propagated the signal around a barrier 510, such as a building or other man-made structure, a forest or other natural entity, a crowd or other carbon-based blockage, and/or another object that disrupts propagation of the signal.
Some RISs may include a plurality of antenna elements (e.g., different mirrors or other reflective elements or different beamforming reflecting components) . As used herein, an “antenna element” may refer to a single reflective and/or refractive component in combination with associated electronics for that element or may refer to a physical, virtual, and/or logical grouping of a plurality of reflective and/or refractive components in combination with associated electronics. Accordingly, one of the base station 110 or the UE 120 may concentrate power of a signal, intended for the other of the base station 110 or the UE 120, toward one or more antenna elements of an RIS. For example, the base station 110 may have previously determined a quantity of antenna elements that the RIS has (e.g., the RIS may be connected to the base station 110 through a wired and/or wireless backhaul) , and the base station 110 may have previously determined (e.g., using one or more measurements, such as RSRPs RSRQs,  and/or other L1 measurements, and/or one or more derived measurements, such as CQIs, PMIs, RIs, and/or other measurements derived from L1 measurements) TCI states (and thus one or more corresponding beams, as described above in connection with Fig. 3) that concentrate power of a signal from the base station 110 toward corresponding antenna elements of the RIS. Accordingly, the base station 110 may select a TCI state to target one or more corresponding antenna elements. Similarly, the base station 110 may have previously indicated to the UE 120 a quantity of antenna elements that the RIS has (e.g., via an RRC message, DCI, and/or another message) , and the base station 110 may have indicated to the UE 120 (e.g., via an RRC message, DCI, and/or another message) TCI states (and thus one or more corresponding beams, as described above in connection with Fig. 3) that concentrate power of a signal from the UE 120 toward corresponding antenna elements of the RIS. Accordingly, the UE 120 may select a TCI state to target one or more corresponding antenna elements.
Spatial Modulation with Reconfigurable Intelligent Surfaces
Some techniques and apparatuses described herein enable the base station 110 to transmit additional bits of information to the UE 120 by selecting antenna elements of one or more RISs to use when transmitting a signal encoding one or more bits. Similarly, some techniques and apparatuses described herein enable the UE 120 to transmit additional bits of information to the base station 110 by selecting antenna elements of the one or more RISs to use when transmitting a signal encoding one or more bits. As a result, the UE 120 and the base station 110 may improve throughput and reduce latency. Using spatial modulation with one or more RISs may increase efficiency more than index modulation because the one or more RISs may include more subgroups of antenna elements than a quantity of antenna panels included in the UE 120. Additionally, using spatial modulation with the one or more RISs may require fewer processing resources for the UE 120 to detect as compared with index modulation. As a result, the UE 120 and the base station 110 may conserve transmit power and network overhead. In some aspects, spatial modulation with one or more RISs may be combined with index modulation in order to transmit even more data and thus further increase network efficiency. As a result, the UE 120 and the base station 110 may further conserve transmit power and network overhead.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
Figs. 6A and 6B are diagrams illustrating examples 600 and 650, respectively, associated with communicating data using RISs, in accordance with the present disclosure. As shown in Fig. 6A, example 600 includes communication between a base station 110 and a UE 120. In some aspects, the base station 110 and the UE 120 may be included in a wireless network, such as wireless network 100. The base station 110 and the UE 120 may communicate via a wireless access link, which may include an uplink and a downlink.
As further shown in Fig. 6A, example 600 includes an RIS 605 with a plurality of antenna elements (e.g.,  antenna elements  610a, 610b 610c, 610d, 610e, 610f, 610g, 610h) . Although described below using eight antenna elements, the description similarly applies to RISs with fewer antenna elements (e.g., seven antenna elements, six antenna elements, and so on) or additional antenna elements (e.g., nine antenna elements, ten antenna elements, and so on) .
In some aspects, the base station 110 may transmit, and the UE 120 may receive, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with the RIS 605. For example, the base station 110 may transmit an RRC message, DCI, and/or another message to the UE 120 including the RIS configuration information. In some aspects, the base station 110 may determine the quantity using a backhaul connection with the RIS 605. Additionally, or alternatively, the base station 110 may transmit reference signals (e.g., CSI-RSs and/or other reference signals) to the RIS 605 and estimate the quantity based at least in part on measurements of reflections of those reference signals from the RIS 605. In some aspects, the quantity may indicate a number of subgroups of the plurality of antenna elements (e.g., as described below in connection with Fig. 6B) . For example, the base station 110 may indicate that the RIS 605 has four antenna element subgroups, where each subgroup includes one or more antenna elements.
In some aspects, the RIS configuration information may indicate a respective reflection direction associated with each of the plurality of antenna elements. In example 600, the base station 110 may indicate a reflection direction associated with antenna element 610d as different from a reflection direction associated with antenna element 610c. Accordingly, the UE 120 may estimate which antenna element (or subgroup of antenna elements) toward which the base station 110 directed a signal based at least in part on a relative strength of that signal at one or more antennas of the UE 120. For example, one reflection direction (e.g., associated with antenna element  610c) may be associated with greater signal strength at an antenna of the UE 120 while another reflection direction (e.g., associated with antenna element 610d) may be associated with lesser signal strength at that antenna of the UE 120.
Additionally, or alternatively, the RIS configuration information may include partition information associated with a layout of the plurality of antenna elements on the RIS 605 and/or position information associated with the RIS 605. For example, the RIS configuration information may indicate how the RIS 605 is partitioned (e.g., into a quantity of horizontal or vertical stripes represented by m, into a grid with rectangular subgroups represented by m, and/or another layout) . Additionally, or alternatively, the RIS configuration information may indicate a location for the RIS 605 such that the UE 120 may estimate respective reflection directions associated with the plurality of antenna elements (e.g., as described above) .
In some aspects, the UE 120 may transmit, and the base station 110 may receive a suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality associated with the RIS 605. As used herein, a “suggested quantity” refers to a value or other parameter, generated by the UE 120, that is a proposal for the base station 110 and/or the UE 120 to use. The suggested quantity may indicate a number of subgroups into which the RIS 605 should be logically divided. In example 600, the UE 120 may suggest that each antenna element of RIS 605 be used separately by transmitting a suggested quantity of 8. Alternatively, the UE 120 may suggest using at least four antenna elements of the RIS 605 by transmitting a suggested quantity of 2 (e.g., two subgroups including four antenna elements each) . In some aspects, the UE 120 may transmit a CSI report and/or another message to the base station 110 including the suggested quantity. The at least one measurement of quality associated with the RIS 605 may include L1 measurements, PMIs, RIs, and/or other measurements associated with different antenna elements of the plurality of antenna elements. For example, the UE 120 may transmit reference signals (e.g., sounding reference signals (SRSs) and/or other reference signals) to the RIS 605 and determine the at least one measurement of quality based at least in part on measurements of reflections of those reference signals from the RIS 605.
In some aspects, the UE 120 may transmit a first suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the RIS 605, satisfying a quality level threshold but may transmit a second suggested quantity (e.g., a smaller quantity) for segmenting the  plurality of antenna elements based at least in part on the at least one measure of quality, associated with the RIS 605, not satisfying the quality level threshold. For example, a larger suggested quantity may provide for greater throughput with the base station 110 but may reduce the quality and/or reliability with the base station 110 by using narrower beams in order to target smaller subgroups of antennas elements on the RIS 605. On the other hand, a smaller suggested quantity may provide for smaller throughput with the base station 110 but may improve the quality and/or reliability with the base station 110 by using wider beams in order to target larger subgroups of antennas elements on the RIS 605.
Additionally, or alternatively, the UE 120 may transmit, and the base station 110 may receive, based at least in part on at least one measure of quality associated with the at least one RIS, an indication of one or more suggested TCI states for activation. The one or more suggested TCI states may be associated with the RIS 605. In some aspects, the UE 120 may identify which TCI states were configured by the base station 110 (e.g., via an RRC message, such as a PDSCH-Config message as defined in 3GPP specifications and/or another standard) and thus determine one or more of the configured TCI states to suggest. For example, the UE 120 may determine suggested TCI states such that each suggested TCI state corresponds to a subgroup of antenna elements on the RIS 605. As described above, the at least one measurement of quality associated with the RIS 605 may include L1 measurements, PMIs, RIs, and/or other measurements associated with different antenna elements of the plurality of antenna elements.
In some aspects, the base station 110 may transmit, and the UE 120 may receive, a quantity for segmenting the plurality of antenna elements. For example, the base station 110 may transmit an RRC message, DCI, and/or another message to the UE 120 including the quantity. The quantity may indicate a number of subgroups into which the RIS 605 will be logically divided. In example 600, the base station 110 may indicate that each antenna element of RIS 605 will be used separately by transmitting a quantity of 8. Alternatively, the base station 110 may indicate that at least four antenna elements of the RIS 605 will be used by transmitting a quantity of 2 (e.g., two subgroups including four antenna elements each) . In some aspects, the base station 110 may determine the quantity based at least in part on at least one measurement of quality associated with the RIS 605, which may include L1 measurements, PMIs, RIs, and/or other measurements associated with different antenna elements of the plurality of  antenna elements. For example, the UE 120 may transmit a CSI report to the base station 110 including the at least one measurement of quality. Additionally, or alternatively, the base station 110 may transmit reference signals (e.g., CSI-RSs and/or other reference signals) to the RIS 605 and determine the at least one measurement of quality based at least in part on detecting reflections of those reference signals from the RIS 605.
In some aspects, the base station 110 may transmit a first quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the RIS 605, satisfying a quality level threshold or may transmit a second quantity (e.g., a smaller quantity) for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the RIS 605, not satisfying the quality level threshold. For example, a larger quantity may provide for greater throughput with the UE 120 but may reduce the quality and/or reliability with the UE 120 by using narrower beams in order to target smaller subgroups of antennas elements on the RIS 605. On the other hand, a smaller quantity may provide for smaller throughput with the UE 120 but may improve the quality and/or reliability with the UE 120 by using wider beams in order to target larger subgroups of antennas elements on the RIS 605.
Additionally, or alternatively, the base station 110 may transmit, and the UE 120 may receive, an activation of a plurality of TCI states. For example, the base station 110 may transmit a medium access control (MAC) layer control element (MAC-CE) , DCI, and/or another message activating the plurality of TCI states. The plurality of TCI states may be associated with the RIS 605. In some aspects, the base station 110 may identify which TCI states were configured (e.g., in a PDSCH-Config message, as defined in 3GPP specifications and/or another standard, that the base station 110 transmitted to the UE 120) and thus determine a plurality of the configured TCI states to activate. For example, the base station 110 may activate TCI states such that each suggested TCI state corresponds to a subgroup of antenna elements on the RIS 605. In some aspects, the base station 110 may activate the TCI states based at least in part on at least one measurement of quality associated with the RIS 605, which may include L1 measurements, PMIs, RIs, and/or other measurements associated with different antenna elements of the plurality of antenna elements. For example, the UE 120 may transmit a CSI report to the base station 110 including the at least one measurement of quality. Additionally, or alternatively, the base station 110 may  transmit reference signals (e.g., CSI-RSs and/or other reference signals) to the RIS 605 and determine the at least one measurement of quality based at least in part on detecting reflections of those reference signals from the RIS 605.
The base station 110 may transmit, and the UE 120 may receive, a mapping (e.g., via an RRC message, DCI, and/or another message) between selection of a subgroup of antenna elements of the RIS 605 and one or more additional bits. In example 600, selection of antenna element 610a may be associated with 000, selection of antenna element 610b may be associated with 001, selection of antenna element 610c may be associated with 010, selection of antenna element 610d may be associated with 011, selection of antenna element 610e may be associated with 100, selection of antenna element 610f may be associated with 101, selection of antenna element 610g may be associated with 110, and selection of antenna element 610h may be associated with 111.
Accordingly, the base station 110 may transmit, and the UE 120 may receive, at least one bit of data using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. For example, the base station 110 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna elements. The base station 110 may use spatial modulation in order to indicate at least one additional bit of information associated with the data. For example, the base station 110 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards a selected subgroup of antenna elements on the RIS 605. Accordingly, the UE 120 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For example, as described above, the UE 120 may determine that different spatial modulations (which target different subgroups of antenna elements of the RIS 605) result in different signal strengths at one or more antennas of the UE 120 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength. In example 600, the UE 120 may decode 011 based at least in part on a determination that the base station 110 selected beam 615a to target antenna element 610d or may decode 010 based at least in part on a determination that the base station 110 selected beam 615b to target antenna element 610c.
Similarly, the UE 120 may transmit, and the base station 110 may receive, at least one bit of data using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration  information. For example, the UE 120 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna elements. The UE 120 may use spatial modulation in order to indicate at least one additional bit of information associated with the data. For example, the UE 120 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards a selected subgroup of antenna elements on the RIS 605. Accordingly, the base station 110 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For example, as described above, the base station 110 may determine that different spatial modulations (which target different subgroups of antenna elements of the RIS 605) result in different signal strengths at one or more antennas of the base station 110 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength.
The one or more antenna elements that are targeted may be included in a single subgroup (e.g., as described below in connection with example 650) . In some aspects, the base station 110 and/or the UE 120 may select the one or more antenna elements from a plurality of RISs (e.g., as described below in connection with Fig. 7) .
Example 650 similarly includes communication between the base station 110 and the UE 120. As further shown in Fig. 6A, example 600 includes an RIS 655 with a plurality of subgroups (e.g.,  subgroups  660a, 660b, 660c, 660d) , where each subgroup includes six antenna elements. Although described below using four subgroups, the description similarly applies to RISs with fewer subgroups (e.g., three subgroups, two subgroups) or additional subgroups (e.g., five subgroups, six subgroups, and so on) . Additionally, or alternatively, although described below using six antenna elements in each subgroup, the description similarly applies to subgroups with fewer antenna elements (e.g., five antenna elements, four antenna elements, and so on) or additional antenna elements (e.g., seven antenna elements, eight antenna elements, and so on, and/or to subgroups with different quantities of antenna elements rather than the same quantity.
In some aspects, and as described above in connection with Fig. 6A, the base station 110 may transmit, and the UE 120 may receive, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with the RIS 655. In some aspects, and as described above in connection with Fig. 6A, the base station 110 may transmit, and the UE 120 may receive, a quantity for segmenting the  plurality of antenna elements. Additionally, the base station 110 may transmit, and the UE 120 may receive, a mapping (e.g., via an RRC message, DCI, and/or another message) between selection of a subgroup of antenna elements of the RIS 655 and one or more additional bits. In example 600, selection of subgroup 660a may be associated with 00, selection of subgroup 660b may be associated with 01, selection of subgroup 660c may be associated with 10, and selection of subgroup 660d may be associated with 11.
Accordingly, the base station 110 may transmit, and the UE 120 may receive, at least one bit of data using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. For example, the base station 110 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna elements. The base station 110 may use spatial modulation in order to indicate at least one additional bit of information associated with the data. For example, the base station 110 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards a selected subgroup of antenna elements on the RIS 655. Accordingly, the UE 120 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For example, as described above, the UE 120 may determine that different spatial modulations (which target different subgroups of antenna elements of the RIS 655) result in different signal strengths at one or more antennas of the UE 120 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength.
Similarly, the UE 120 may transmit, and the base station 110 may receive, at least one bit of data using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. For example, the UE 120 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna elements. The UE 120 may use spatial modulation in order to indicate at least one additional bit of information associated with the data. For example, the UE 120 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards a selected subgroup of antenna elements on the RIS 655. Accordingly, the base station 110 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For  example, as described above, the base station 110 may determine that different spatial modulations (which target different subgroups of antenna elements of the RIS 655) result in different signal strengths at one or more antennas of the base station 110 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength. In example 650, the base station 110 may decode 00 based at least in part on a determination that the UE 120 selected beam 665a to target subgroup 660a, may decode 01 based at least in part on a determination that the UE 120 selected beam 665b to target subgroup 660b, may decode 10 based at least in part on a determination that the UE 120 selected beam 665c to target subgroup 660c, or may decode 11 based at least in part on a determination that the UE 120 selected beam 665d to target subgroup 660d.
In some aspects, the base station 110 and/or the UE 120 may select the one or more antenna elements from a plurality of RISs (e.g., as described below in connection with Fig. 7) .
Example 400 may be combined with example 600 and/or example 650. For example, the base station 110 may apply spatial modulation, for transmitting a signal encoding the data, in order to target a subgroup of antenna elements on the RIS 605 or the RIS 655 (which communicates at least one additional bit of information associated with the data) as well as in order to target one or more antennas of the UE 120 (which communicates one or more additional bits of information associated with the data) . Accordingly, the base station 110 may further increase throughput to the UE 120 and reduce latency. Similarly, the UE 120 may apply spatial modulation, for transmitting a signal encoding the data, in order to target a subgroup of antenna elements on the RIS 605 or the RIS 655 (which communicates at least one additional bit of information associated with the data) as well as in order to target one or more antennas of the base station 110 (which communicates one or more additional bits of information associated with the data) . Accordingly, the UE 120 may further increase throughput to the base station 110 and reduce latency.
By using techniques as described in connection with Figs. 6A and 6B, the base station 110 may transmit additional bits of information to the UE 120 by selecting antenna elements of RIS 605 or RIS 655 to use when transmitting a signal encoding one or more bits. Similarly, the UE 120 may transmit additional bits of information to the base station 110 by selecting antenna elements of the RIS 605 or the RIS 655 to use  when transmitting a signal encoding one or more bits. As a result, the UE 120 and the base station 110 may improve throughput and reduce latency.
As indicated above, Figs. 6A and 6B are provided as examples. Other examples may differ from what is described with respect to Figs. 6A and 6B.
Fig. 7 is a diagram illustrating example 700 associated with communicating data using RISs, in accordance with the present disclosure. As shown in Fig. 7, example 700 includes communication between a base station 110 and a UE 120. In some aspects, the base station 110 and the UE 120 may be included in a wireless network, such as wireless network 100. The base station 110 and the UE 120 may communicate via a wireless access link, which may include an uplink and a downlink.
As further shown in Fig. 7, example 700 includes  RISs  705, 710, 715, and 720, where each RIS includes six antenna elements. Although described below using four RISs, the description similarly applies to fewer RISs (e.g., three RISs, two RISs) or additional RISs (e.g., five RISs, six RISs, and so on) . Additionally, or alternatively, although described below using six antenna elements on each RIS, the description similarly applies to RISs with fewer antenna elements (e.g., five antenna elements, four antenna elements, and so on) or additional antenna elements (e.g., seven antenna elements, eight antenna elements, and so on, and/or to RISs with different quantities of antenna elements rather than the same quantity.
In some aspects, and as described above in connection with Fig. 6A, the base station 110 may transmit, and the UE 120 may receive, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with the  RISs  705, 710, 715, and 720. In some aspects, and as described above in connection with Fig. 6A, the base station 110 may transmit, and the UE 120 may receive, a mapping (e.g., via an RRC message, DCI, and/or another message) between selection of a one or more of the  RISs  705, 710, 715, and 720 and one or more additional bits. In example 700, selection of RIS 705 may be associated with 00, selection of RIS 710 may be associated with 01, selection of RIS 715 may be associated with 10, and selection of RIS 720 may be associated with 11.
Accordingly, the base station 110 may transmit, and the UE 120 may receive, at least one bit of data using spatial modulation associated with one or more antenna elements, based at least in part on the RIS configuration information. For example, the base station 110 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna  elements. The base station 110 may use spatial modulation in order to indicate at least one additional bit of information associated with the data. For example, the base station 110 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards the one or more antenna elements on a selected RIS. Accordingly, the UE 120 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For example, as described above, the UE 120 may determine that different spatial modulations (which target different RISs and thus different subgroups of antenna elements) result in different signal strengths at one or more antennas of the UE 120 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength.
Similarly, the UE 120 may transmit, and the base station 110 may receive, at least one bit of data using spatial modulation associated with one or more antenna elements, based at least in part on the RIS configuration information. For example, the UE 120 may select a TCI state that corresponds to a beam or a combination of beams in order to target (e.g., concentrate power towards) the one or more antenna elements. The UE 120 may use spatial modulation in order to indicate at least one additional bit of information associated with the data. For example, the UE 120 may use spatial modulation in order to concentrate a signal encoding the at least one bit of data towards the one or more antenna elements on a selected RIS. Accordingly, the base station 110 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. For example, as described above, the base station 110 may determine that different spatial modulations (which target different RISs and thus different subgroups of antenna elements) result in different signal strengths at one or more antennas of the base station 110 and thus may determine the spatial modulation that was applied by measuring relative strength of a received strength. In example 650, the base station 110 may decode 00 based at least in part on a determination that the UE 120 selected beam 715a to target antenna elements on RIS 705, may decode 01 based at least in part on a determination that the UE 120 selected beam 715b to target antenna elements on RIS 710, may decode 10 based at least in part on a determination that the UE 120 selected beam 715c to target antenna elements on RIS 715, or may decode 11 based at least in part on a determination that the UE 120 selected beam 715d to target antenna elements on RIS 720.
Example 600 and/or example 650 may be combined with example 700. For example, one of more of the  RISs  705, 710, 715, and 720 may include a plurality of subgroups of antenna elements. Accordingly, the base station 110 may apply spatial modulation, for transmitting a signal encoding the data, in order to target a subgroup of antennas on one or more of the  RISs  705, 710, 715, and 720. Similarly, the UE 120 may apply spatial modulation, for transmitting a signal encoding the data, in order to target a subgroup of antennas on one or more of the  RISs  705, 710, 715, and 720.
Additionally, or alternatively, example 400 may be combined with example 700. For example, the base station 110 may apply spatial modulation, for transmitting a signal encoding the data, in order to target one or more of the  RISs  705, 710, 715, and 720 (which communicates at least one additional bit of information associated with the data) as well as in order to target one or more antennas of the UE 120 (which communicates one or more additional bits of information associated with the data) . Accordingly, the base station 110 may further increase throughput to the UE 120 and reduce latency. Similarly, the UE 120 may apply spatial modulation, for transmitting a signal encoding the data, in order to target one or more of the  RISs  705, 710, 715, and 720 (which communicates at least one additional bit of information associated with the data) as well as in order to target one or more antennas of the base station 110 (which communicates one or more additional bits of information associated with the data) . Accordingly, the UE 120 may further increase throughput to the base station 110 and reduce latency.
By using techniques as described in connection with Fig. 7, the base station 110 may transmit additional bits of information to the UE 120 by selecting one or more of  RISs  705, 710, 715, and 720 to use when transmitting a signal encoding one or more bits. Similarly, the UE 120 may transmit additional bits of information to the base station 110 by selecting one or more of  RISs  705, 710, 715, and 720 to use when transmitting a signal encoding one or more bits. As a result, the UE 120 and the base station 110 may improve throughput and reduce latency.
As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with the present disclosure. Example process 800 is an example where the UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) performs operations associated with communicating data using an RIS.
As shown in Fig. 8, in some aspects, process 800 may include receiving, from a base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) , RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS (block 810) . For example, the UE (e.g., using reception component 1002, depicted in Fig. 10) may receive the RIS configuration information indicating at least the quantity of the plurality of antenna elements associated with the at least one RIS, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include transmitting or receiving at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information (block 820) . For example, the UE (e.g., using transmission component 1004, depicted in Fig. 10, and/or reception component 1002) may transmit or receive the at least one bit of data, using the spatial modulation associated with the one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, as described above. In some aspects, the spatial modulation indicates at least one additional bit of information associated with the data.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the RIS configuration information further includes one or more of partitioning information associated with a layout of the plurality of antenna elements on the at least one RIS or positioning information associated with the at least one RIS.
In a second aspect, alone or in combination with the first aspect, process 800 further includes transmitting (e.g., using transmission component 1004) , based at least in part on at least one measure of quality associated with the at least one RIS, a suggested quantity for segmenting the plurality of antenna elements.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 800 further includes receiving (e.g., using reception component 1002) , from the base station, a quantity for segmenting the plurality of antenna elements.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 800 further includes transmitting (e.g., using transmission component 1004) a first suggested quantity for segmenting the plurality of antenna  elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold, or transmitting (e.g., using transmission component 1004) a second suggested quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first suggested quantity being greater than the second suggested quantity.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the one or more antenna elements are included in a single subgroup.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the RIS configuration information indicates a respective reflection direction associated with each of the plurality of antenna elements.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the at least one additional bit of information includes control information associated with the data.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the at least one additional bit of information includes a portion of a payload associated with the data.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 800 further includes measuring (e.g., using measurement component 1008, depicted in Fig. 10) a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 800 further includes receiving (e.g., using reception component 1002) , from the base station, an activation of a plurality of TCI states, the one or more antenna elements being associated with one of the plurality of TCI states.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 800 further includes transmitting (e.g., using transmission component 1004) , based at least in part on at least one measure of quality associated with the at least one RIS, an indication of one or more suggested TCI states for activation, the one or more suggested TCI states being associated with the at least one RIS.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the one or more antenna elements are included in a plurality of RISs.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with the present disclosure. Example process 900 is an example where the base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) performs operations associated with communicating data using an RIS.
As shown in Fig. 9, in some aspects, process 900 may include transmitting, to a UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) , RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS (block 910) . For example, the base station (e.g., using transmission component 1104, depicted in Fig. 11) may transmit the RIS configuration information indicating at least the quantity of the plurality of antenna elements associated with the at least one RIS, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include transmitting or receiving at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information (block 920) . For example, the base station (e.g., using reception component 1102, depicted in Fig. 11, and/or transmission component 1104) may transmit or receive the at least one bit of data, using the spatial modulation associated with the one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, as described above. In some aspects, the spatial modulation indicates at least one additional bit of information associated with the data.
Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the RIS configuration information further includes one or more of partitioning information associated with a layout of the plurality of antenna elements on the at least one RIS or positioning information associated with the at least one RIS.
In a second aspect, alone or in combination with the first aspect, process 900 further includes receiving (e.g., using reception component 1102) , from the UE, a suggested quantity for segmenting the plurality of antenna elements.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 900 further includes transmitting (e.g., using transmission component 1104) , based at least in part on at least one measure of quality associated with the at least one RIS, a quantity for segmenting the plurality of antenna elements.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 900 further includes transmitting (e.g., using transmission component 1104) a first quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold, or transmitting (e.g., using transmission component 1104) a second quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first quantity being greater than the second quantity.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the one or more antenna elements are included in a single group.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the RIS configuration information indicates respective reflection directions associated with each of the plurality of antenna elements.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the at least one additional bit of information includes control information associated with the data.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the at least one additional bit of information includes a portion of a payload associated with the data.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 900 further includes measuring (e.g., using measurement component 1108, depicted in Fig. 11) a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 900 further includes transmitting (e.g., using transmission  component 1104) , to the UE, an activation of a plurality of TCI) states, the one or more antenna elements being associated with one of the plurality of TCI states.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 900 further includes receiving (e.g., using reception component 1102) , from the UE, an indication of one or more suggested TCI states for activation, the one or more suggested TCI states being associated with the at least one RIS.
In at twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the one or more antenna elements are included in a plurality of RISs.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a block diagram of an example apparatus 1000 for wireless communication. The apparatus 1000 may be a UE, or a UE may include the apparatus 1000. In some aspects, the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004. As further shown, the apparatus 1000 may include a measurement component 1008, among other examples.
In some aspects, the apparatus 1000 may be configured to perform one or more operations described herein in connection with Figs. 6A-7. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8, or a combination thereof. In some aspects, the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a  non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006. The reception component 1002 may provide received communications to one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1006. In some aspects, the reception component 1002 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
The transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006. In some aspects, one or more other components of the apparatus 1006 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006. In some aspects, the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006. In some aspects, the transmission component 1004 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
In some aspects, the reception component 1002 may receive, from the apparatus 1006, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS. Accordingly, the transmission component 1004 may transmit at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. The spatial modulation may indicate  at least one additional bit of information associated with the data. As an alternative, the reception component 1002 may receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. The spatial modulation may indicate at least one additional bit of information associated with the data. In some aspects, the measurement component 1008 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. In some aspects, the measurement component 1008 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
In some aspects, the transmission component 1004 may transmit, based at least in part on at least one measure of quality associated with the at least one RIS, a suggested quantity for segmenting the plurality of antenna elements. In some aspects, the transmission component 1004 may transmit a first suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold but may transmit a second, smaller suggested quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold. Additionally, or alternatively, the reception component 1002 may receive, from the apparatus 1006, a quantity for segmenting the plurality of antenna elements.
In some aspects, the transmission component 1004 may transmit, based at least in part on at least one measure of quality associated with the at least one RIS, an indication of one or more suggested TCI states for activation, the one or more suggested TCI states being associated with the at least one RIS. Additionally, or alternatively, the reception component 1002 may receive, from the apparatus 1006, an activation of a plurality of TCI states, the one or more antenna elements being associated with one of the plurality of TCI states.
The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more)  components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
Fig. 11 is a block diagram of an example apparatus 1100 for wireless communication. The apparatus 1100 may be a base station, or a base station may include the apparatus 1100. In some aspects, the apparatus 1100 includes a reception component 1102 and a transmission component 1104, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1100 may communicate with another apparatus 1106 (such as a UE, a base station, or another wireless communication device) using the reception component 1102 and the transmission component 1104. As further shown, the apparatus 1100 may include a measurement component 1108, among other examples.
In some aspects, the apparatus 1100 may be configured to perform one or more operations described herein in connection with Figs. 6A-7. Additionally, or alternatively, the apparatus 1100 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9, or a combination thereof. In some aspects, the apparatus 1100 and/or one or more components shown in Fig. 11 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 11 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1102 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1106. The reception component 1102 may provide received communications to one or more other components of the apparatus 1100. In some aspects, the reception component 1102 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1106. In some aspects, the  reception component 1102 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
The transmission component 1104 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1106. In some aspects, one or more other components of the apparatus 1106 may generate communications and may provide the generated communications to the transmission component 1104 for transmission to the apparatus 1106. In some aspects, the transmission component 1104 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1106. In some aspects, the transmission component 1104 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 1104 may be co-located with the reception component 1102 in a transceiver.
In some aspects, the transmission component 1104 may transmit, to the apparatus 1106, RIS configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS. Accordingly, the transmission component 1104 may transmit at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. The spatial modulation may indicate at least one additional bit of information associated with the data. As an alternative, the reception component 1102 may receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information. The spatial modulation may indicate at least one additional bit of information associated with the data. In some aspects, the measurement component 1108 may measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information. In some aspects, the measurement component 1108 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
In some aspects, the reception component 1102 may receive, from the apparatus 1106, a suggested quantity for segmenting the plurality of antenna elements. Additionally, or alternatively, the transmission component 1104 may transmit, based at least in part on at least one measure of quality associated with the at least one RIS, a quantity for segmenting the plurality of antenna elements. In some aspects, the transmission component 1104 may transmit a first quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold but may transmit a second, smaller quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold.
In some aspects, the reception component 1102 may receive, from the apparatus 1106, an indication of one or more suggested TCI states for activation, the one or more suggested TCI states being associated with the at least one RIS. Additionally, or alternatively, the transmission component 1104 may transmit, to the apparatus 1106, an activation of a plurality of TCI states, the one or more antenna elements being associated with one of the plurality of TCI states.
The number and arrangement of components shown in Fig. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 11. Furthermore, two or more components shown in Fig. 11 may be implemented within a single component, or a single component shown in Fig. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 11 may perform one or more functions described as being performed by another set of components shown in Fig. 11.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a user equipment (UE) , comprising: receiving, from a base station, reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmitting or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
Aspect 2: The method of Aspect 1, wherein the RIS configuration information further includes one or more of: partition information associated with a layout of the plurality of antenna elements on the at least one RIS, or position information associated with the at least one RIS.
Aspect 3: The method of any of Aspects 1 through 2, further comprising: transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, a suggested quantity for segmenting the plurality of antenna elements.
Aspect 4: The method of any of Aspects 1 through 3, further comprising: receiving, from the base station, a quantity for segmenting the plurality of antenna elements.
Aspect 5: The method of any of Aspects 1 through 3, further comprising: transmitting a first suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold, or transmitting a second suggested quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first suggested quantity being greater than the second suggested quantity.
Aspect 6: The method of any of Aspects 1 through 5, wherein the one or more antenna elements are included in a single subgroup.
Aspect 7: The method of any of Aspects 1 through 6, wherein the RIS configuration information indicates a respective reflection direction associated with each of the plurality of antenna elements.
Aspect 8: The method of any of Aspects 1 through 7, wherein the at least one additional bit of information includes control information associated with the data.
Aspect 9: The method of any of Aspects 1 through 7, wherein the at least one additional bit of information includes a portion of a payload associated with the data.
Aspect 10: The method of any of Aspects 1 through 9, further comprising: measuring a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
Aspect 11: The method of any of Aspects 1 through 10, further comprising: receiving, from the base station, an activation of a plurality of transmission configuration indicator (TCI) states, the one or more antenna elements being associated with one of the plurality of TCI states.
Aspect 12: The method of any of Aspects 1 through 11, further comprising: transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, an indication of one or more suggested transmission configuration indicator (TCI) states for activation, wherein the one or more suggested TCI states are associated with the at least one RIS.
Aspect 13: The method of any of Aspects 1 through 12, wherein the one or more antenna elements are included in a plurality of RISs.
Aspect 14: A method of wireless communication performed by a base station, comprising: transmitting, to a user equipment (UE) , reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and transmitting or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
Aspect 15: The method of Aspect 15, wherein the RIS configuration information further includes one or more of: partition information associated with a layout of the plurality of antenna elements on the at least one RIS, or position information associated with the at least one RIS.
Aspect 16: The method of any of Aspects 14 through 15, further comprising: receiving, from the UE, a suggested quantity for segmenting the plurality of antenna elements.
Aspect 17: The method of any of Aspects 14 through 16, further comprising: transmitting, based at least in part on at least one measure of quality associated with the at least one RIS, a quantity for segmenting the plurality of antenna elements.
Aspect 18: The method of any of Aspects 14 through 16, further comprising: transmitting a first quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold, or transmitting a second quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first quantity being greater than the second quantity.
Aspect 19: The method of any of Aspects 14 through 18, wherein the one or more antenna elements are included in a single group.
Aspect 20: The method of any of Aspects 14 through 19, wherein the RIS configuration information indicates respective reflection directions associated with each of the plurality of antenna elements.
Aspect 21: The method of any of Aspects 14 through 20, wherein the at least one additional bit of information includes control information associated with the data.
Aspect 22: The method of any of Aspects 14 through 20, wherein the at least one additional bit of information includes a portion of a payload associated with the data.
Aspect 23: The method of any of Aspects 14 through 22, further comprising: measuring a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
Aspect 24: The method of any of Aspects 14 through 23, further comprising: transmitting, to the UE, an activation of a plurality of transmission configuration indicator (TCI) states, the one or more antenna elements being associated with one of the plurality of TCI states.
Aspect 25: The method of any of Aspects 14 through 24, further comprising: receiving, from the UE, an indication of one or more suggested transmission configuration indicator (TCI) states for activation, wherein the one or more suggested TCI states are associated with the at least one RIS.
Aspect 26: The method of any of Aspects 14 through 25, wherein the one or more antenna elements are included in a plurality of RISs.
Aspect 27: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-13.
Aspect 28: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more of Aspects 1-13.
Aspect 29: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-13.
Aspect 30: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-13.
Aspect 31: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-13.
Aspect 32: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 14-26.
Aspect 33: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more of Aspects 14-26.
Aspect 34: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 14-26.
Aspect 35: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 14-26.
Aspect 36: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 14-26.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a processor is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and  software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, or a combination of related and unrelated items) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and  may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (30)

  1. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive, from a base station, reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and
    transmit or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  2. The UE of claim 1, wherein the RIS configuration information further includes one or more of:
    partition information associated with a layout of the plurality of antenna elements on the at least one RIS, or
    position information associated with the at least one RIS.
  3. The UE of claim 1, wherein the memory and the one or more processors are further configured to:
    transmit, based at least in part on at least one measure of quality associated with the at least one RIS, a suggested quantity for segmenting the plurality of antenna elements.
  4. The UE of claim 1, wherein the memory and the one or more processors are further configured to:
    receive, from the base station, a quantity for segmenting the plurality of antenna elements.
  5. The UE of claim 1, wherein the memory and the one or more processors are further configured to:
    transmit a first suggested quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold, or
    transmit a second suggested quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first suggested quantity being greater than the second suggested quantity.
  6. The UE of claim 1, wherein the one or more antenna elements are included in a single subgroup.
  7. The UE of claim 1, wherein the RIS configuration information indicates a respective reflection direction associated with each of the plurality of antenna elements.
  8. The UE of claim 1, wherein the at least one additional bit of information includes control information associated with the data.
  9. The UE of claim 1, wherein the at least one additional bit of information includes a portion of a payload associated with the data.
  10. The UE of claim 1, wherein the memory and the one or more processors are further configured to:
    measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
  11. The UE of claim 1, wherein the memory and the one or more processors are further configured to:
    receive, from the base station, an activation of a plurality of transmission configuration indicator (TCI) states, the one or more antenna elements being associated with one of the plurality of TCI states.
  12. The UE of claim 1, wherein the memory and the one or more processors are further configured to:
    transmit, based at least in part on at least one measure of quality associated with the at least one RIS, an indication of one or more suggested transmission configuration indicator (TCI) states for activation, wherein the one or more suggested TCI states are associated with the at least one RIS.
  13. The UE of claim 1, wherein the one or more antenna elements are included in a plurality of RISs.
  14. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit, to a user equipment (UE) , reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and
    transmit or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  15. The base station of claim 14, wherein the RIS configuration information further includes one or more of:
    partition information associated with a layout of the plurality of antenna elements on the at least one RIS, or
    position information associated with the at least one RIS.
  16. The base station of claim 14, wherein the memory and the one or more processors are further configured to:
    receive, from the UE, a suggested quantity for segmenting the plurality of antenna elements.
  17. The base station of claim 14, wherein the memory and the one or more processors are further configured to:
    transmit, based at least in part on at least one measure of quality associated with the at least one RIS, a quantity for segmenting the plurality of antenna elements.
  18. The base station of claim 14, wherein the memory and the one or more processors are further configured to:
    transmit a first quantity for segmenting the plurality of antenna elements based at least in part on at least one measure of quality, associated with the at least one RIS, satisfying a quality level threshold, or
    transmit a second quantity for segmenting the plurality of antenna elements based at least in part on the at least one measure of quality, associated with the at least one RIS, not satisfying the quality level threshold, the first quantity being greater than the second quantity.
  19. The base station of claim 14, wherein the one or more antenna elements are included in a single subgroup.
  20. The base station of claim 14, wherein the RIS configuration information indicates respective reflection directions associated with each of the plurality of antenna elements.
  21. The base station of claim 14, wherein the at least one additional bit of information includes control information associated with the data.
  22. The base station of claim 14, wherein the at least one additional bit of information includes a portion of a payload associated with the data.
  23. The base station of claim 14, wherein the memory and the one or more processors are further configured to:
    measure a relative strength of a received signal associated with the data to decode the at least one additional bit of information.
  24. The base station of claim 14, wherein the memory and the one or more processors are further configured to:
    transmit, to the UE, an activation of a plurality of transmission configuration indicator (TCI) states, the one or more antenna elements being associated with one of the plurality of TCI states.
  25. The base station of claim 14, wherein the memory and the one or more processors are further configured to:
    receive, from the UE, an indication of one or more suggested transmission configuration indicator (TCI) states for activation, wherein the one or more suggested TCI states are associated with the at least one RIS.
  26. The base station of claim 14, wherein the one or more antenna elements are included in a plurality of RISs.
  27. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving, from a base station, reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and
    transmitting or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
  28. The method of claim 27, wherein the at least one additional bit of information includes control information associated with the data.
  29. The method of claim 27, wherein the at least one additional bit of information includes a portion of a payload associated with the data.
  30. A method of wireless communication performed by a base station, comprising:
    transmitting, to a user equipment (UE) , reconfigurable intelligent surface (RIS) configuration information indicating at least a quantity of a plurality of antenna elements associated with at least one RIS; and
    transmitting or receive at least one bit of data, using spatial modulation associated with one or more of the plurality of antenna elements, based at least in part on the RIS configuration information, wherein the spatial modulation indicates at least one additional bit of information associated with the data.
PCT/CN2021/077827 2021-02-25 2021-02-25 Communicating data using reconfigurable intelligent surface WO2022178747A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077827 WO2022178747A1 (en) 2021-02-25 2021-02-25 Communicating data using reconfigurable intelligent surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077827 WO2022178747A1 (en) 2021-02-25 2021-02-25 Communicating data using reconfigurable intelligent surface

Publications (1)

Publication Number Publication Date
WO2022178747A1 true WO2022178747A1 (en) 2022-09-01

Family

ID=83048654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077827 WO2022178747A1 (en) 2021-02-25 2021-02-25 Communicating data using reconfigurable intelligent surface

Country Status (1)

Country Link
WO (1) WO2022178747A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115988456A (en) * 2023-03-17 2023-04-18 华东交通大学 High-speed rail intelligent window unit distribution communication method based on position information

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3416445A1 (en) * 2016-03-03 2018-12-19 Huawei Technologies Co., Ltd. Data transmission method and apparatus
CN111010219A (en) * 2019-11-28 2020-04-14 东南大学 Reconfigurable intelligent surface-assisted multi-user MIMO uplink transmission method
CN111294096A (en) * 2020-02-17 2020-06-16 南京信息工程大学 Channel capacity optimization method of intelligent reflector MISO wireless communication system
CN111416646A (en) * 2020-02-17 2020-07-14 北京大学 Propagation environment adjustable control method and device, electronic equipment and computer storage medium
US20210051658A1 (en) * 2019-08-16 2021-02-18 Samsung Electronics Co., Ltd. Method and apparatus for sharing frequency resources between mobile communication providers in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3416445A1 (en) * 2016-03-03 2018-12-19 Huawei Technologies Co., Ltd. Data transmission method and apparatus
US20210051658A1 (en) * 2019-08-16 2021-02-18 Samsung Electronics Co., Ltd. Method and apparatus for sharing frequency resources between mobile communication providers in wireless communication system
CN111010219A (en) * 2019-11-28 2020-04-14 东南大学 Reconfigurable intelligent surface-assisted multi-user MIMO uplink transmission method
CN111294096A (en) * 2020-02-17 2020-06-16 南京信息工程大学 Channel capacity optimization method of intelligent reflector MISO wireless communication system
CN111416646A (en) * 2020-02-17 2020-07-14 北京大学 Propagation environment adjustable control method and device, electronic equipment and computer storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI HISILICON: "DL RS Design for NR Beam Management", 3GPP DRAFT; R1-1611242, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, NV, USA; 20161114 - 20161118, 13 November 2016 (2016-11-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051175223 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115988456A (en) * 2023-03-17 2023-04-18 华东交通大学 High-speed rail intelligent window unit distribution communication method based on position information
CN115988456B (en) * 2023-03-17 2023-06-09 华东交通大学 High-speed railway intelligent car window unit allocation communication method based on position information

Similar Documents

Publication Publication Date Title
WO2022002195A1 (en) Mode determination for orbital angular momentum communication system
WO2023000287A1 (en) Interference mitigation using reconfigurable intelligent surfaces
WO2022000229A1 (en) Sensing interference reports
WO2022178747A1 (en) Communicating data using reconfigurable intelligent surface
CN116918271A (en) Transmitting configuration indicator state set indications
WO2022040654A1 (en) Uplink beam management using mixed downlink and uplink reference signals
EP4183057A1 (en) Uplink composite beam synthesis
WO2023050444A1 (en) Power control configuration
WO2022160225A1 (en) Pathloss reference signal and transmission configuration indicator state activation with secondary cell activation
WO2022217572A1 (en) Passive device reference signals
WO2022226969A1 (en) Beam failure detection evaluation on two transmission configuration indicator states
WO2023077345A1 (en) Power control parameter indication in connection with a transmission configuration indicator state
WO2022056664A1 (en) Determining size for downlink control information
WO2023272682A1 (en) Downlink control information for reconfigurable intelligent surface beam training
WO2022205087A1 (en) Beam switching gap based on user equipment capability
WO2023141850A1 (en) Transmission configuration indicator for downlink control information
US11665683B2 (en) User equipment reporting for full duplex multi-beam selection
WO2023077396A1 (en) Techniques for determining a beam failure detection reference signal set and resetting a beam after a beam failure recovery
WO2022257070A1 (en) Passive device information
WO2023272735A1 (en) Selection of default path loss reference signal or default spatial relation
WO2023147686A1 (en) Physical random access channel configuration in multi-downlink control information-based multi-transmit-receive-point operations
WO2022232972A1 (en) Resetting a beam based at least in part on a subcarrier spacing
WO2023115365A1 (en) Communicating selection of user equipment for user equipment cooperation
WO2022246676A1 (en) Partial sounding for line of sight multiple input multiple output multiplexing
WO2023141849A1 (en) Transmission configuration indicator for downlink control information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927188

Country of ref document: EP

Kind code of ref document: A1