WO2021027898A1 - 信息确定方法和装置 - Google Patents

信息确定方法和装置 Download PDF

Info

Publication number
WO2021027898A1
WO2021027898A1 PCT/CN2020/109009 CN2020109009W WO2021027898A1 WO 2021027898 A1 WO2021027898 A1 WO 2021027898A1 CN 2020109009 W CN2020109009 W CN 2020109009W WO 2021027898 A1 WO2021027898 A1 WO 2021027898A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
frequency domain
domain resource
indication information
tci
Prior art date
Application number
PCT/CN2020/109009
Other languages
English (en)
French (fr)
Inventor
樊波
张希
纪刘榴
管鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20852662.4A priority Critical patent/EP3840507A4/en
Priority to BR112022002554A priority patent/BR112022002554A2/pt
Publication of WO2021027898A1 publication Critical patent/WO2021027898A1/zh
Priority to US17/217,859 priority patent/US20210219302A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communications, and in particular to a method and device for determining information.
  • the fifth generation (5G) mobile communication system can support three types of services: enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (uRLLC) and large-scale Internet of Things (massive machine type communications, mMTC).
  • eMBB enhanced mobile broadband
  • uRLLC ultra-reliable and low latency communications
  • mMTC massive machine type communications
  • uRLLC requires ultra-high transmission reliability and ultra-low transmission delay.
  • TRP transmission and reception points
  • RV redundancy versions
  • the frequency domain resources, RV, and modulation and coding scheme (modulation and coding scheme, MCS) used may all be different.
  • the network device sends parameters such as frequency domain resources, RV, and MCS used by two TRPs to the terminal device through two messages. On the one hand, it will increase the overhead of time-frequency resources, on the other hand, it will increase the computational complexity and energy consumption of the terminal device.
  • the embodiments of the present application provide a method and device for determining information, which are used for when a network device indicates parameters such as frequency domain resources, RV, and MCS used by two TRPs, without increasing the overhead of time-frequency resources.
  • a method for determining information including: receiving first indication information, second indication information, and downlink control information DCI from a network device, where the first indication information is used to indicate the maximum number of codewords that can be scheduled by a single DCI ,
  • the second indication information is used to indicate the data transmission mode; if the first condition is determined to be satisfied according to the first indication information, and the second condition is satisfied according to the second indication information, the first group corresponding to the first data is determined from the DCI
  • the transmission parameter field and the second group of transmission parameter fields corresponding to the second data where the first group of transmission parameter fields include the modulation and coding scheme MCS field of the first data, the new data indication NDI field and the redundancy version RV field, the second group
  • the transmission parameter field includes the MCS field, the NDI field, and the RV field of the second data; among them, the MCS field of the second data or the MCS field and the NDI field of the second data are used to indicate one or a combination of the following information :
  • the first group of transmission parameter fields of the DCI still indicate the MCS field and NDI of the first data.
  • Multiplexing the MCS field and NDI field of the second parameter in the second group of transmission parameter fields of DCI is used to indicate one or a combination of the following information: the modulation order or code rate used by the second data One, the frequency resource information of the second data.
  • the transmission parameters that are not indicated in the second group of transmission parameter fields of the DCI, such as the modulation order, code rate, and NDI used by the second data use the same transmission parameters as the first data. It is not necessary not to extend the number of DCIs or the DCI field, so that when the network device indicates the parameters of the frequency domain resources, RV, and MCS adopted by the two TRPs, the overhead of time-frequency resources is not increased.
  • the first condition includes: the maximum number of codewords that can be scheduled by a single DCI is 2.
  • the second condition includes: the network device separately sends two codewords corresponding to the same data on different frequency domain resources.
  • the method further includes: if it is determined according to the first indication information that the first condition is satisfied, and according to the second indication information, it is determined that the second condition is not satisfied, determining that the first group of transmission parameter fields and The second group of transmission parameter fields respectively correspond to two different transmission blocks.
  • the frequency resource information includes one or a combination of the following: frequency domain resource offset, granularity of frequency domain resource offset, difference in the number of frequency domain resources, and difference in the number of frequency domain resources. Granularity, frequency domain resource allocation type.
  • the NDI field of the second data is used to indicate at least one of the granularity of the frequency domain resource offset, the granularity of the frequency domain resource quantity difference, and the frequency domain resource allocation type.
  • the frequency domain resource offset is: the offset between the start position of the frequency domain resource of the second data and the end position of the frequency domain resource of the first data; or, the frequency domain of the second data The offset between the start position of the resource and the start position of the frequency domain resource of the first data; or, the offset between the cutoff position of the frequency domain resource of the second data and the cutoff position of the frequency domain resource of the first data; or, The offset between the end position of the frequency domain resource of the second data and the start position of the frequency domain resource of the first data; or, the start position of the frequency domain resource of the first data and the end position of the frequency domain resource of the second data Or, the offset between the start position of the frequency domain resource of the first data and the start position of the frequency domain resource of the second data; or, the cutoff position of the frequency domain resource of the first data and the second data The offset of the cut-off position of the frequency domain resource; or, the offset of the cut-off position of the frequency domain resource of the first data and the start position of the frequency domain resource of the first
  • the granularity of the frequency domain resource offset or the granularity of the frequency domain resource quantity difference is resource element RE, resource block RB, resource block group RBG, precoding resource block group PRG, or subband. This application does not limit the granularity of frequency domain resource offset or the granularity of frequency domain resource quantity difference.
  • the difference in the number of frequency domain resources is the difference between the number of frequency domain resources of the second data and the number of frequency domain resources of the first data, or the number of frequency domain resources of the first data and the second The difference in the number of frequency domain resources of the data.
  • the frequency domain resource offset or the frequency domain resource quantity difference is indicated by radio resource control RRC signaling, medium access control control cell MAC-CE signaling or DCI signaling, or The default value, or the value reported by the terminal device.
  • the code rate of the second data is the same as that of the first data
  • the modulation order of the second data is indicated by the MCS field in the second group of transmission parameter fields, or the MCS field and the NDI field. That is to say, for the MCS field, or the MCS field and the NDI field in the second group of transmission parameter fields, a part of the bits are multiplexed for the modulation order used to transmit the second data and the frequency resource information of the second data, by default
  • the code rate of the second data is the same as the first data.
  • the modulation order of the second data is the same as the first data, and the code rate of the second data is indicated by the MCS field in the second group of transmission parameter fields, or the MCS field and the NDI field. That is to say, for the MCS field, or the MCS field and the NDI field in the second group of transmission parameter fields, some bits are multiplexed for the bit rate used for transmitting the second data and the frequency resource information of the second data.
  • the modulation order of the second data is the same as the first data.
  • the second data adopts the new data indication information indicated by the NDI field of the first group of transmission parameter fields. That is, when the NDI field in the second group of transmission parameter fields is multiplexed, the new data indication information of the second data is the same as the new data indication information of the first data.
  • the first data and the second data may be any of the following: two codewords, two RVs, two TCI-state corresponding data, two demodulation reference signal DMRS ports, or The data corresponding to the port group, the data corresponding to the CDM group of two DMRS ports, and the data transmitted by the two TRPs.
  • the frequency domain resource of the first data and the frequency domain resource of the second data are respectively a segment of continuous frequency domain resources, and the two continuous segments of frequency domain resources are not overlapped; or, the first data and the second data 2.
  • the number of frequency domain resources used in the data is the same or different; or, two frequency domain resources are connected or separated by a certain number of frequency domain resources.
  • a method for determining information including: determining first indication information, second indication information, and downlink control information DCI, where the first indication information is used to indicate the maximum number of codewords that can be scheduled by a single DCI, and the second The indication information is used to indicate the data transmission mode; where, if the first indication information indicates that the first condition is satisfied, and the second indication information indicates that the second condition is satisfied, the DCI includes the first set of transmission parameter fields and the first group of transmission parameter fields corresponding to the first data.
  • the second group of transmission parameter fields corresponding to the second data where the first group of transmission parameter fields includes the modulation and coding scheme MCS field of the first data, the new data indication NDI field and the redundancy version RV field, and the second group of transmission parameter fields includes the first data
  • the MCS field, NDI field, and RV field of the second data are used to indicate one or a combination of the following information: the modulation used by the second data One of the order or the code rate, the frequency resource information of the second data; sending the first indication information, the second indication information and the DCI to the terminal device.
  • the first group of transmission parameter fields of the DCI still indicate the MCS field and NDI of the first data.
  • Multiplexing the MCS field and NDI field of the second parameter in the second group of transmission parameter fields of DCI is used to indicate one or a combination of the following information: the modulation order or code rate used by the second data One, the frequency resource information of the second data.
  • the transmission parameters that are not indicated in the second group of transmission parameter fields of the DCI, such as the modulation order, code rate, and NDI used by the second data use the same transmission parameters as the first data. It is not necessary not to extend the number of DCIs or the DCI field, so that when the network device indicates the parameters of the frequency domain resources, RV, and MCS adopted by the two TRPs, the overhead of time-frequency resources is not increased.
  • the first condition includes: the maximum number of codewords that can be scheduled by a single DCI is 2.
  • the second condition includes: the second indication information instructs the network device to send two codewords corresponding to the same data on different frequency domain resources.
  • the method further includes: if it is determined according to the first indication information that the first condition is satisfied, and according to the second indication information, it is determined that the second condition is not satisfied, determining that the first group of transmission parameter fields and The second group of transmission parameter fields respectively correspond to two different transmission blocks.
  • the frequency resource information includes one or a combination of the following: frequency domain resource offset, granularity of frequency domain resource offset, difference in the number of frequency domain resources, and difference in the number of frequency domain resources. Granularity, frequency domain resource allocation type.
  • the NDI field of the second data is used to indicate at least one of the granularity of the frequency domain resource offset, the granularity of the frequency domain resource quantity difference, and the frequency domain resource allocation type.
  • the frequency domain resource offset is: the offset between the start position of the frequency domain resource of the second data and the end position of the frequency domain resource of the first data; or, the frequency domain of the second data The offset between the start position of the resource and the start position of the frequency domain resource of the first data; or, the offset between the cutoff position of the frequency domain resource of the second data and the cutoff position of the frequency domain resource of the first data; or, The offset between the end position of the frequency domain resource of the second data and the start position of the frequency domain resource of the first data; or, the start position of the frequency domain resource of the first data and the end position of the frequency domain resource of the second data Or, the offset between the start position of the frequency domain resource of the first data and the start position of the frequency domain resource of the second data; or, the cutoff position of the frequency domain resource of the first data and the second data The offset of the cut-off position of the frequency domain resource; or, the offset of the cut-off position of the frequency domain resource of the first data and the start position of the frequency domain resource of the first
  • the granularity of the frequency domain resource offset or the granularity of the frequency domain resource quantity difference is resource element RE, resource block RB, resource block group RBG, precoding resource block group PRG, or subband. This application does not limit the granularity of frequency domain resource offset or the granularity of frequency domain resource quantity difference.
  • the difference in the number of frequency domain resources is the difference between the number of frequency domain resources of the second data and the number of frequency domain resources of the first data, or the number of frequency domain resources of the first data and the second The difference in the number of frequency domain resources of the data.
  • the frequency domain resource offset or the frequency domain resource quantity difference is indicated by radio resource control RRC signaling, medium access control control cell MAC-CE signaling or DCI signaling, or The default value, or the value reported by the terminal device.
  • the code rate of the second data is the same as that of the first data, and the modulation order is indicated by the MCS field or the MCS field and the NDI field in the second group of transmission parameter fields. That is to say, for the MCS field, or the MCS field and the NDI field in the second group of transmission parameter fields, a part of the bits are multiplexed for the modulation order used to transmit the second data and the frequency resource information of the second data, by default
  • the code rate of the second data is the same as the first data.
  • the modulation order of the second data is the same as that of the first data, and the code rate is indicated by the MCS field or the MCS field and the NDI field in the second group of transmission parameter fields. That is to say, for the MCS field, or the MCS field and the NDI field in the second group of transmission parameter fields, some bits are multiplexed for the bit rate used for transmitting the second data and the frequency resource information of the second data.
  • the modulation order of the second data is the same as the first data.
  • the second data adopts the new data indication information indicated by the NDI field of the first group of transmission parameter fields. That is, when the NDI field in the second group of transmission parameter fields is multiplexed, the new data indication information of the second data is the same as the new data indication information of the first data.
  • the first data and the second data may be any of the following: two codewords, two RVs, two TCI-state corresponding data, two demodulation reference signal DMRS ports, or The data corresponding to the port group, the data corresponding to the CDM group of two DMRS ports, and the data transmitted by the two TRPs.
  • the frequency domain resource of the first data and the frequency domain resource of the second data are respectively a segment of continuous frequency domain resources, and the two continuous segments of frequency domain resources are not overlapped; or, the first data and the second data 2.
  • the number of frequency domain resources used in the data is the same or different; or, two frequency domain resources are connected or separated by a certain number of frequency domain resources.
  • a terminal device including: a processing module and a transceiving module; the processing module and the transceiving module are used to execute the method according to the first aspect or any one of the methods, or to execute the second aspect and the Any one of the methods.
  • a network device including: a processing module and a transceiving module; the processing module and the transceiving module are used to execute the method according to the first aspect or any one of the methods, or perform the method as described in the second aspect and Any one of the methods.
  • a communication device in a fifth aspect, includes a processor, a memory, and a transceiver.
  • the processor is coupled to the memory.
  • the processor executes a computer program or instruction in the memory, such as the first The method according to the aspect and any one thereof, or the method according to the second aspect and any one thereof is executed.
  • a chip including: a processor and an interface, used to call and run a computer program stored in the memory from a memory, and execute the method according to the first aspect or any one of them, or , Execute the method as described in the second aspect and any one of them.
  • a computer-readable storage medium stores instructions.
  • the instructions run on a computer or a processor, the computer or the processor executes the first aspect or any of the instructions.
  • the information determination method in a possible implementation manner, or the information determination method in the second aspect or any one of its possible implementation manners.
  • a computer program product containing instructions.
  • the instructions run on a computer or a processor
  • the computer or the processor executes the determination of information as in the first aspect or any of its possible implementations.
  • a communication system including the terminal device described in the third aspect and the network device described in the fourth aspect.
  • the technical effects of the third aspect to the ninth aspect may refer to the content of the various possible implementation manners of the first aspect to the second aspect.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a terminal device and a network device provided by an embodiment of this application;
  • FIG. 3 is a schematic flowchart of an information determination method provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a DCI format provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a frequency domain resource offset provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • Fig. 7 is a schematic structural diagram of a network device provided by an embodiment of the application.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • the embodiments of this application rely on the 5G network scenario in the wireless communication network. It should be noted that the solutions in the embodiments of this application can also be applied to other wireless communication networks, and the corresponding names can also be used in other wireless communication networks. Replace the name of the corresponding function.
  • the communication system applied in this application is shown in FIG. 1 and includes a single or multiple terminal devices 10 and a single or multiple network devices 20.
  • a single network device 20 can transmit data or control signaling to a single or multiple terminal devices 10.
  • multiple network devices 20 can also transmit data or control signaling for a single terminal device 10 at the same time.
  • a network device (including TRP) is a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • Network equipment may include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, and so on.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a base station device in a future 5G network or a network device in a future evolved public land mobile network (PLMN) network.
  • PLMN public land mobile network
  • the network device can also be a wearable device or a vehicle-mounted device.
  • each TRP uses a transmission configuration index-state (TCI-state) for transmission. It can be considered that a TCI-state corresponds to a TRP. Therefore, in this application, TCI-state and TRP can be mutually Replacement.
  • TCI-state transmission configuration index-state
  • the terminal devices involved may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • the terminal can be a mobile station (MS), subscriber unit (subscriber unit), cellular phone (cellular phone), smart phone (smart phone), wireless data card, personal digital assistant (PDA) computer, tablet Type computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, etc.
  • each network device and each terminal device in the communication system shown in FIG. 1 can also be expressed in another form.
  • the terminal device 10 includes a processor 101, a memory 102, and a transceiver 103.
  • the processor 101, the transceiver 103, and the memory 102 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 102 is used to store computer programs, and the processor 101 is used to call and run the computer from the memory 102.
  • the transceiver 103 includes a transmitter 1031, a receiver 1032, and an antenna 1033.
  • the receiver 1032 may be used to receive transmission control information through the antenna 1033
  • the transmitter 1031 may be used to send information to the network device 20 through the antenna 1033.
  • the network device 20 may include one or more radio frequency units, such as a remote radio unit (RRU) 201 and one or more baseband units (BBU) (also called digital Unit, digital unit, DU) 202.
  • the RRU 201 may be referred to as a transceiver unit, alternatively, it may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 2011 and a radio frequency unit 2012.
  • the transceiving unit may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the RRU 201 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the BBU 202 part is mainly used for baseband processing, control of network equipment, and so on.
  • the RRU 201 and the BBU 202 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 202 is the control center of the network device, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU may be used to control the network device to execute the operation process of the network device in the method embodiment of the present application.
  • the BBU 202 may be composed of one or more single boards, and multiple single boards may jointly support a single access standard radio access network (such as an LTE network), or can support different access standards. Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 202 further includes a memory 2021 and a processor 2022.
  • the memory 2021 is used to store necessary instructions and data.
  • the processor 2022 is used to control the network device to perform necessary actions, for example, to control the network device to execute the operation flow of the network device in the method embodiment of the present application.
  • the memory 2021 and the processor 2022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the network equipment is not limited to the above forms, and may also be in other forms: for example: including BBU and adaptive radio unit (ARU), or BBU and active antenna unit (AAU); or Customer premises equipment (CPE) may also be in other forms, which is not limited by this application.
  • ARU adaptive radio unit
  • AAU BBU and active antenna unit
  • CPE Customer premises equipment
  • the embodiment of the present application provides an information determination method that uses existing fields in the DCI to indicate parameters such as frequency domain resources, RV, and MCS used by the network device to transmit data through two TRPs, without increasing the overhead of time-frequency resources. Or in other words, using the existing fields in the DCI to indicate parameters such as frequency domain resources, RV, and MCS used by the network device to transmit data through two TCI-states, without increasing the overhead of time-frequency resources.
  • the information determining method includes steps S301-S304:
  • the network device determines the first indication information, the second indication information, and the downlink control information DCI.
  • This step can also be executed by a chip or a chip system in the network device. It should be noted that this step is not necessarily performed explicitly.
  • first indication information and the second indication information are described:
  • the first indication information is used to indicate the maximum number of codewords that can be scheduled by a single DCI, and the first indication information may be represented by the parameter maxNrofCodeWordsScheduledByDCI, but this application does not limit the naming manner of the parameter.
  • the maximum number of codewords that can be scheduled for a single DCI can be 1 or 2.
  • the second indication information is used to indicate a data transmission mode (for example, a repetition pattern). Ways of data transmission can include:
  • demodulation reference signal demodulation reference signal, DMRS
  • Manner 2 In the same time unit, the network device uses different TCI-states to send one RV on different frequency domain resources. These RVs can be the same RV generated based on the same data, or different RVs generated based on the same data. These RVs can all correspond to the same codeword, or they can respectively correspond to different codewords. According to whether these RVs correspond to the same codeword or different codewords, mode 2 can be further divided into the following two modes (mode 2-1 and mode 2-2).
  • Manner 2-1 In the same time unit, the network device uses different TCI-states to send an RV on different frequency domain resources. These RVs are the same RV generated by the same data, and all RVs correspond to one codeword.
  • Manner 2-2 In the same time unit, the network device adopts different TCI-states and sends an RV on different time-frequency resources. These RVs are the same RV or different RVs generated by the same data, and each RV corresponds to a codeword.
  • Method 3 In multiple consecutive time units, the network device uses multiple TCI-states to send one RV respectively. These RVs are the same RV or different RVs generated by the same data.
  • the foregoing time unit may be a symbol, a time slot, a subframe, a frame, or other granular time units.
  • the terminal equipment can report whether it supports any of the above-mentioned data transmission modes through capability report signaling.
  • the second indication information may indicate the above-mentioned data transmission mode in the following ways:
  • the second indication information may include a parameter for indicating one of the foregoing manners.
  • the second indication information includes a field, and four different values of the field correspond to the above four modes, namely mode 1, mode 2-1, mode 2-2, and mode 3.
  • the second indication information includes a field, and three different values of the field correspond to mode 1, mode 2, and mode 3 respectively.
  • the second indication information indicates mode 2
  • the total number of RVs corresponding to each TCI-state is further used to determine whether it is mode 2-1 or mode 2-2. For example, if the total number of RVs corresponding to each TCI-state is 1, it can be determined that the data transmission mode is mode 2-1; and the total number of RVs corresponding to each TCI-state is 2, it can be determined that the data transmission mode is mode 2-2.
  • the second indication information may also include multiple parameters, and the multiple parameters are used to indicate a specific one of the foregoing data transmission modes.
  • the second indication information includes the number of consecutive transmissions of the same data (for example, the pdsch-AggregationFactor parameter), and the number of TCI-states or the index of the TCI-state used for transmission. For example, when the second indication information indicates that the number of consecutive transmissions of the same data is greater than 1 and the number of TCI-states used in the transmission is greater than 1, it may be determined that the data transmission mode is mode 3.
  • the terminal device determines Each TCI-state is used for time division transmission, that is, one of the above-mentioned multiple TCI-states is used for transmission in different time units in sequence.
  • the terminal device determines Each TCI-state is used for simultaneous transmission, that is, the above multiple TCI-states are used for simultaneous transmission in the same transmission.
  • the TCI-states used for each transmission can be determined. For example, if the second indication information indicates that the number of consecutive transmissions of the same data is k and the transmission uses k TCI-states, it can be determined that the TCI-states used for the k transmissions are one of the indicated k TCI-states.
  • the TCI-state corresponding to each transmission can be determined according to the order of increasing or decreasing the index of the k TCI-states. For example, the index of the TCI-state corresponding to each transmission increases or decreases sequentially.
  • the TCI-state corresponding to each transmission may also be determined according to the order in which the k TCI-states indicated by the second indication information are indicated. For example, if the second indication information indicates two TCI-states ⁇ TCI#2, TCI#1 ⁇ , it can be determined that the TCI-state corresponding to TCI#2 is used for the first transmission, and the TCI corresponding to TCI#1 is used for the second transmission. -state.
  • the TCI used for each transmission can also be determined in the order of increasing or decreasing index of the DMRS port index, DMRS port group index or DMRS port code division multiplexing (CDM) group index associated with k TCI-states -state.
  • CDM DMRS port code division multiplexing
  • the second indication information indicates two TCI-states ⁇ TCI#2, TCI#1 ⁇ , where the TCI-state corresponding to TCI#2 is associated with a smaller DMRS port, DMRS port group, or DMRS port CDM group, and TCI
  • the TCI-state corresponding to #1 is associated with a larger DMRS port, DMRS port group or DMRS port CDM group, then the TCI-state corresponding to TCI#2 is used for the first transmission, and the TCI corresponding to TCI#1 is used for the second transmission -state.
  • the indexes of the DMRS port, DMRS port group, or DMRS port CDM group used in each transmission increase sequentially.
  • the indexes of the DMRS port, DMRS port group, or DMRS port CDM group used in each transmission may also be sequentially reduced.
  • the TCI-state corresponding to TCI#1 is used for the first transmission
  • the TCI-state corresponding to TCI#2 is used for the second transmission.
  • each TCI-state may be used in turn in the above order for each transmission. For example, if the second indication information indicates two TCI-states ⁇ TCI#2, TCI#1 ⁇ , and the second indication information indicates that the number of consecutive transmissions of the same data is 4, then the TCI-states used for the four transmissions are respectively ⁇ TCI#2, TCI#1, TCI#2, TCI#1 ⁇ .
  • the terminal device determines that the network device will use The foregoing multiple TCI-states perform data transmission at the same time. At this time, the terminal device needs to receive data according to the foregoing TCI-state.
  • the terminal device may determine that the network device uses the method 2-2 for transmission.
  • the k TCI-states may be indicated by the TCI field in the DCI.
  • each value of the TCI field may correspond to multiple TCI-states.
  • the number of consecutive transmissions of the same data can be indicated by a radio resource control (Radio Resource Control, RRC) parameter (for example, pdsch-AggregationFactor).
  • RRC Radio Resource Control
  • the second indication information indicates that the mode of data transmission is mode 3, it may also indicate one or more of the following information: the number of consecutive transmissions of the same data, the length of time used for each transmission (for example, orthogonal frequency division multiplexing ( orthogonal frequency division multiplexing, number of OFDM symbols), the granularity of time domain resources used in each transmission (such as symbol level, mini-slot level or slot level), number of transmitted RVs, number of transmissions
  • the mapping rule with RV which RV is used for each transmission
  • the mapping rule between TCI-state and RV which RV each TCI-state corresponds to
  • the number of TCI-states or TCI-states used for each transmission the number of consecutive transmissions of the same data.
  • the length of time used for each transmission for example, orthogonal frequency division multiplexing ( orthogonal frequency division multiplexing, number of OFDM symbols), the granularity of time domain resources used in each transmission (such as symbol level, mini-slot level or slot level)
  • number of transmitted RVs such as symbol level
  • the DCI is described below:
  • R15's DCI format 1-1 defines two sets of transmission parameter fields (the first set of transmission parameter fields and the second set of transmission parameter fields), and each set of transmission parameter fields includes MCS Fields, new data indicator (NDI) fields, and RV fields.
  • Each group of transmission parameter fields corresponds to a transport block (TB).
  • the network device needs to determine how many sets of transmission parameter fields should be included in the DCI sent by it. There are two situations: when only one TB is scheduled, only the first group of transmission parameter fields are included in the corresponding DCI, which are used to indicate the transmission parameters such as MCS, NDI, and RV of the TB. When two TBs are scheduled, the corresponding DCI includes the above two sets of transmission parameter fields, which are respectively used to indicate the transmission parameters of each TB. From the terminal device side, after receiving a DCI, the terminal device needs to determine how many sets of transmission parameter fields are included in the DCI.
  • the DCI Parameter field There are also two cases: if the first indication information indicates that the maximum number of codewords that can be scheduled for a single DCI is 2, it is determined that the DCI includes the above two sets of transmission parameter fields; otherwise, it is determined that only the first group of transmissions are included in the DCI Parameter field.
  • a group of transmission parameter fields refers to a group of fields divided based on codewords or TB, and each group of transmission parameter fields corresponds to one codeword or corresponds to one TB.
  • a group of transmission parameter fields includes the MCS field, the NDI field and the RV field, but this application does not limit the number of fields included in a group of transmission parameter fields.
  • each group of transmission parameter fields may also include other fields other than the MCS field, the NDI field, and the RV field.
  • the DCI may include a first group of transmission parameter fields and a second group of transmission parameter fields.
  • the first group of transmission parameter fields correspond to the first data
  • the second group of transmission parameter fields correspond to the second data.
  • the first data and the second data can be any of the following: two codewords, two RVs, data corresponding to two TCI-states, data corresponding to two DMRS ports or port groups, two DMRS ports corresponding to CDM groups Data, data transmitted by two TRPs.
  • the first condition may include that the maximum number of codewords that can be scheduled by a single DCI is 2.
  • the first indication information includes the parameter maxNrofCodeWordsScheduledByDCI. When the value of this parameter is 1, it is determined that the first condition is not satisfied.
  • Manner 2 If the first indication information indicates that the first condition is satisfied, and the second indication information indicates that the second condition is not satisfied, then two sets of transmission parameter fields (the first set of transmission parameter fields and the second set of transmission parameter fields) are determined from the DCI ), the first group of transmission parameter fields and the second group of transmission parameter fields respectively correspond to two different TBs.
  • the first indication information indicates that the first condition is satisfied, and the second indication information indicates that the second condition is satisfied, it is determined that the DCI includes two sets of transmission parameter fields (the first set of transmission parameter fields and the second set of transmission parameter fields) ,
  • the first group of transmission parameter fields corresponds to the first data
  • the second group of transmission parameter fields corresponds to the second data.
  • the first data and the second data may be two code words corresponding to the same TB.
  • the same TB is encoded to generate four RVs, two different RVs are selected from the four RVs as two codewords for transmission, or one RV is selected from the four RVs, and the RV is repeated as two codewords transmission.
  • the first data and the second data may be a code word respectively determined by two identical TBs.
  • two TBs with the same content are separately encoded to generate four RVs respectively, and one RV is selected from the four RVs corresponding to each TB to be transmitted as two codewords.
  • the second condition may mean that the network device sends two codewords corresponding to the same data on different frequency domain resources. Or, the network device simultaneously uses multiple TCI-states to transmit multiple codewords or multiple RVs corresponding to the same data to the terminal device. Or, the second condition may mean that the network device simultaneously uses different frequency domain resources to transmit multiple codewords or multiple RVs corresponding to the same data to the terminal device. Or, the second condition may mean that the network device simultaneously uses multiple TCI-states to respectively transmit multiple codewords or multiple RVs corresponding to the same data to the terminal device in different frequency domain resources.
  • This application does not limit the description of the second condition, as long as the transmission effect corresponding to the second condition listed above can be achieved, it can be considered that the second condition is satisfied. For example, when the second indication information indicates that the mode of data transmission is mode 2-2, it can also be considered that the second condition is satisfied.
  • the specific meanings of the MCS field, NDI field and RV field of the first group of transmission parameter fields including the first data are the same as those in the prior art, and will not be repeated here.
  • the following focuses on the detailed description of the second group of transmission parameter fields.
  • the second group of transmission parameter fields includes the MCS field, NDI field, and RV field of the second data.
  • the second data uses the new data indication information indicated by the NDI field of the first group of transmission parameter fields, that is, the RV information of the second data is the same as the RV information of the first data.
  • the RV field of the second group of transmission parameter fields is still used to indicate the RV information of the second data.
  • the MCS field of the second data or the MCS field and the NDI field of the second data are used to indicate one or a combination of the following information: the modulation order used by the second data, the code rate used by the second data, and the 2. Frequency resource information of the data.
  • the frequency resource information includes one or a combination of the following: frequency domain resource offset, frequency domain resource offset granularity, frequency domain resource quantity difference, frequency domain resource quantity difference granularity, frequency domain resource allocation type .
  • the frequency domain resources of the first data and the frequency domain resources of the second data are respectively a segment of continuous frequency domain resources, and the two continuous segments of frequency domain resources are not repeated.
  • Two continuous frequency domain resources can be connected.
  • the last frequency domain resource of the first data is adjacent to the first frequency domain resource of the second data.
  • the first frequency domain resource of the first data and the last frequency domain resource of the second data are adjacent.
  • Two consecutive segments of frequency domain resources may also have a certain frequency domain resource offset.
  • the frequency domain resource offset is: the offset of the start position of the frequency domain resource of the second data of A and the end position of the frequency domain resource of the first data; or, the frequency domain resource of the second data of B The offset of the start position of the frequency domain resource of the first data from the start position of the frequency domain resource of the first data; or, the offset of the cutoff position of the frequency domain resource of the second data and the cutoff position of the frequency domain resource of the first data; or, D The offset between the cut-off position of the frequency domain resource of the second data and the start position of the frequency domain resource of the first data; or, the start position of the frequency domain resource of the first data and the frequency domain resource of the second data The offset of the cut-off position; or, the offset of the start position of the frequency domain resource of the first data of F and the start position of the frequency domain resource of the second data; or, the cut-off position of the frequency domain resource of the first data of G The offset of the cut-off position of the frequency domain resource of the second data; or, the
  • the frequency domain resource of the second data may be determined in a manner of increasing the frequency domain resource index. For example, the index of the last resource of the frequency domain resource of the first data is added with the frequency domain resource offset to obtain the index of the first resource of the frequency domain resource of the second data.
  • the frequency domain resource of the second data may be determined in a manner of decreasing the frequency domain resource index. For example, the index of the first resource of the frequency domain resource of the first data is subtracted from the frequency domain resource offset to obtain the index of the last resource of the frequency domain resource of the second data.
  • the frequency domain resource offset needs to meet certain constraints.
  • the frequency domain resource of the second data calculated according to the frequency domain resource offset cannot exceed the frequency domain resource range of the currently used carrier (carrier) or bandwidth part (BWP).
  • the index of the last RB or RBG of the second data cannot be greater than the index of the largest RBG of the current carrier or BWP, or the index of the first RB or RBG of the second data cannot be less than the index of the smallest RBG of the current carrier or BWP.
  • frequency domain resource allocation needs to meet the above-mentioned constraints. Specifically, during frequency domain resource allocation, the starting RB or RBG of the first data, the RB or RBG of the second data, the number of RBs or RBGs allocated by the first data, the number of RBs or RBGs allocated by the second data , And determining the value of the frequency domain resource offset of the first data and the second data, it is necessary to ensure that the above constraint conditions are met.
  • Another method can be used to avoid the allocated frequency domain resources from exceeding the BWP range.
  • the frequency domain resource of the second data is determined in a manner of increasing the frequency domain resource index, and when the frequency domain resource index of the second data exceeds the maximum frequency domain resource index of the BWP, fallback to The minimum frequency domain resource index starts again.
  • a BWP includes 20 RBs (RB#0 to RB#19), and the frequency domain resources of the first data are RB ⁇ #10, #11, #12, #13, #14, #15 ⁇ , frequency domain resources The offset is 3, so the frequency domain resources of the second data obtained by calculation are RB ⁇ #18, #19, #20, #21, #22, #23 ⁇ .
  • RB ⁇ #20, #21, #22, #23 ⁇ exceeds the maximum RB (#19) of BWP, it rolls back to the minimum RB (#0), namely RB ⁇ #20, #21, #22, #23 ⁇ Is converted to RB ⁇ #0, #1, #2, #3 ⁇ , so the frequency domain resources of the second data are RB ⁇ #18, #19, #0, #1, #2, #3 ⁇ .
  • the frequency domain resource of the second data is determined in a manner of decreasing frequency domain resource index, and when the frequency domain resource index of the second data is less than the minimum frequency domain resource index of the BWP, rollback The maximum frequency domain resource index starts again.
  • a BWP includes 20 RBs (RB#0 to RB#19), and the frequency domain resources of the first data are RB ⁇ #5, #6, #7, #8, #9, #10 ⁇ , frequency domain resources The offset is 3, so the frequency domain resources of the second data obtained by calculation are RB ⁇ #-3, #-2, #-1, #0, #1, #2 ⁇ .
  • RB ⁇ #-3,#-2,#-1 ⁇ is less than the minimum RB (#0) of BWP, it rolls back to the maximum RB (#19), namely RB ⁇ #-3,#-2,#-1 ⁇ Is converted to RB ⁇ #17, #18, #19 ⁇ , so the frequency domain resources of the second data are RB ⁇ #17, #18, #19, #0, #1, #2 ⁇ .
  • the granularity of frequency domain resource offset or the granularity of frequency domain resource quantity difference is resource element (RE), resource block (resource block, RB), resource block group (resource block group, RBG), precoding resource block Group (precoding resource block groups, PRG) or subband (subband).
  • RE resource element
  • resource block resource block
  • RBG resource block group
  • precoding resource block Group precoding resource block groups, PRG
  • subband subband
  • the frequency domain resource offset may refer to the offset between two REs, RBs, RBGs, PRGs or subbands.
  • the offset may be the difference between the numbers of two REs, RBs, RBGs, PRGs or subbands.
  • the offset can also be the number of resources spaced between two REs, RBs, RBGs, PRGs or subbands. For example, there are 3 RBs between RB#10 and RB#6, then the offset is 3 RBs.
  • Frequency domain resources may refer to RE, RB, RBG, PRG, or subband.
  • the network device When the first data and the second data use the same number of frequency domain resources, the network device only needs to indicate the frequency domain resource offset, and the frequency domain resource of the first data and the above frequency domain resource offset can be used to determine the frequency of the second data.
  • Domain resources Exemplarily, as shown in FIG. 5, the first data and the second data use the same number of frequency domain resources. Taking the frequency resource as an RB as an example, the frequency domain resources of the first data correspond to RB#2 ⁇ #6, and the second data The offset between the first RB of the data (the smallest numbered RB) and the last RB of the first data (the largest numbered RB) is 8, then it can be determined that the frequency domain resource of the second data corresponds to RB#10-14 .
  • the difference in the number of frequency domain resources is the difference between the number of frequency domain resources of the second data and the number of frequency domain resources of the first data, or the first data The difference between the number of frequency domain resources and the number of frequency domain resources of the second data.
  • the frequency domain resource quantity difference is 4, which means that the difference is 4 RBs.
  • the frequency domain resource offset or the frequency domain resource quantity difference can be indicated through radio resource control RRC signaling, media access control control cell MAC-CE signaling or DCI signaling, or use the default value, or use terminal equipment The value reported.
  • the code rate of the second data is the same as that of the first data, and the modulation order of the second data is indicated by the MCS field in the second group of transmission parameter fields, or the MCS field and the NDI field.
  • the modulation order of the second data is the same as the first data, and the code rate of the second data is indicated by the MCS field in the second group of transmission parameter fields, or the MCS field and the NDI field.
  • the MCS field of the second data may be used to indicate the modulation order of the second data and the frequency domain resource offset of the second data. As shown in Table 1, each MCS field value corresponds to a modulation order value and a frequency domain resource offset value.
  • MCS field Modulation order Frequency domain resource offset 00000 2 0 00001 4 0 00010 6 0 00011 8 0 00100 2 1
  • the NDI field of the second data is used to indicate at least one of the granularity of the frequency domain resource offset, the granularity of the frequency domain resource quantity difference, and the frequency domain resource allocation type.
  • the MCS field and the NDI field of the second data may be combined into a 6-bit field to indicate.
  • the MCS field and the NDI field of the second data are used to indicate one or a combination of the following information: modulation order adopted by the second data, frequency domain resource offset, granularity of frequency domain resource offset, frequency domain resource The quantity difference, the granularity of the frequency domain resource quantity difference, and the frequency domain resource allocation type.
  • the network device sends the first indication information, the second indication information, and the DCI to the terminal device.
  • This step can also be executed by a chip or a chip system in the network device.
  • the foregoing first indication information and second indication information may be sent through a single signaling, or may be sent through multiple signaling.
  • it can be carried in RRC signaling, media access control control element (medium access control-control element, MAC-CE) signaling, or DCI.
  • the content included in the second indication information may be carried in one signaling or different signaling.
  • the network device can also use multiple DCIs to schedule the data transmitted by each TRP respectively.
  • each TRP transmits a DCI to the terminal device, and the DCI sent by each TRP is used to indicate the relevant parameters of the data sent by the TRP.
  • the network device needs to indicate to the terminal device that it has sent multiple DCIs. Specifically, the following methods can be used to indicate:
  • the network device sends third indication information to the terminal device, and the third indication information is used to indicate the number of DCIs that the terminal device needs to receive.
  • a field may be used in the DCI to indicate the number of DCIs transmitted this time, or indicate whether there are other DCIs to be received.
  • control resource set control resource set, CORESET
  • the configured number of CORESET is greater than a specific threshold, it indicates that the terminal device needs to receive multiple DCIs; otherwise, it indicates that the terminal device only needs to receive a single DCI.
  • searchSpace searchSpace
  • searchSpace searchSpace
  • the number of searchSpaces of the ue-specific type in the searchSpace associated with each CORESET configured is greater than 1, it indicates that the terminal device needs to receive multiple DCIs.
  • the type of the associated searchSpace is ue-Specific and the number of CORESET is greater than 1, it indicates that the terminal device needs to receive multiple DCIs.
  • the terminal device needs to receive multiple DCIs, in one reception, the terminal device needs to receive two DCIs to stop receiving.
  • the terminal device receives the first indication information, the second indication information, and the DCI from the network device.
  • This step can also be executed by the chip or chip system in the terminal device.
  • the terminal device determines from the DCI a first group of transmission parameter fields corresponding to the first data and a second group of transmission parameter fields corresponding to the second data.
  • This step can also be executed by the chip or chip system in the terminal device.
  • the terminal device determines from the DCI the first group of transmission parameter fields corresponding to the first data and the second group of transmission parameters corresponding to the second data Field.
  • the terminal device determines the first group of transmissions corresponding to the first data from the DCI The parameter field and the second group of transmission parameter fields corresponding to the second data.
  • the terminal device determines that the first group of transmission parameter fields and the second group of transmission parameter fields in the DCI are not satisfied.
  • the group transmission parameter field corresponds to two different transmission blocks respectively.
  • the first group of transmission parameter fields of the DCI still indicate the MCS field and NDI of the first data.
  • Multiplexing the MCS field and NDI field of the second parameter in the second group of transmission parameter fields of DCI is used to indicate one or a combination of the following information: the modulation order or code rate used by the second data One, the frequency resource information of the second data.
  • the transmission parameters that are not indicated in the second group of transmission parameter fields of the DCI, such as the modulation order, code rate, and NDI used by the second data use the same transmission parameters as the first data. It is not necessary not to extend the number of DCIs or the DCI field, so that when the network device indicates the parameters of the frequency domain resources, RV, and MCS adopted by the two TRPs, the overhead of time-frequency resources is not increased.
  • the methods and/or steps implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices, and the methods and/or steps implemented by network devices can also It can also be implemented by components that can be used in network devices.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device containing the foregoing terminal device, or a chip or functional module in the terminal device; or, the communication device may be the network device in the foregoing method embodiment, or A device containing the aforementioned network equipment, or a chip or functional module in the network equipment.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 6 shows a schematic structural diagram of a communication device 60.
  • the communication device 60 includes a processing module 601 and a transceiver module 602.
  • the transceiver module 602 which may also be referred to as a transceiver unit, includes a transmitting unit and/or a receiving unit, for example, a transceiver circuit, transceiver, transceiver, or communication interface, used to implement the transmission and/or transmission of the terminal device in the foregoing method embodiment Receiving function.
  • step S303 in FIG. 3 is executed.
  • the processing module 601 is used to perform data processing to implement the processing function of the terminal device in the foregoing method embodiment, for example, to perform step S304 in FIG. 3.
  • the transceiver module 602 is configured to receive first indication information, second indication information, and downlink control information DCI from a network device, where the first indication information is used to indicate the maximum number of codewords that can be scheduled by a single DCI, and the second indication information Used to indicate the method of data transmission.
  • the processing module 601 is configured to, if the first condition is determined to be satisfied according to the first indication information, and the second condition is satisfied according to the second indication information, determine from the DCI that the first group of transmission parameter fields corresponding to the first data corresponds to the second data
  • the second group of transmission parameter fields includes the modulation and coding scheme MCS field of the first data, the new data indication NDI field, and the redundancy version RV field, and the second group of transmission parameter fields includes the second data
  • the MCS field, the NDI field, and the RV field; among them, the MCS field of the second data or the MCS field and the NDI field of the second data are used to indicate one or a combination of the following information: the modulation order adopted by the second data Number, the code rate used by the second data, and the frequency resource information of the second data.
  • the first condition includes: the maximum number of codewords that can be scheduled by a single DCI is 2.
  • the second condition includes: the network device separately sends two codewords corresponding to the same data on different frequency domain resources.
  • the processing module 601 is further configured to: if the first condition is determined to be satisfied according to the first indication information, and the second condition is not satisfied according to the second indication information, determine the first group of transmission parameter fields and the second group of transmission parameter fields in the DCI
  • the transmission parameter fields correspond to two different transmission blocks respectively. Among them, all relevant content of each step involved in the above method embodiment can be cited in the function description of the corresponding functional module or the method side description, which will not be repeated here.
  • the frequency resource information includes one or a combination of the following: frequency domain resource offset, frequency domain resource offset granularity, frequency domain resource quantity difference, frequency domain resource quantity difference granularity, frequency domain resource Assignment type.
  • the NDI field of the second data is used to indicate at least one of the granularity of the frequency domain resource offset, the granularity of the frequency domain resource quantity difference, and the frequency domain resource allocation type.
  • the frequency domain resource offset is: the offset between the start position of the frequency domain resource of the second data and the end position of the frequency domain resource of the first data; or the start position of the frequency domain resource of the second data The offset from the start position of the frequency domain resource of the first data; or, the offset of the cutoff position of the frequency domain resource of the second data from the cutoff position of the frequency domain resource of the first data; or, the frequency of the second data The offset between the cut-off position of the frequency domain resource of the first data and the start position of the frequency domain resource of the first data; or the offset of the start position of the frequency domain resource of the first data and the cut-off position of the frequency domain resource of the second data; or , The offset between the start position of the frequency domain resource of the first data and the start position of the frequency domain resource of the second data; or the cutoff position of the frequency domain resource of the first data and the cutoff position of the frequency domain resource of the second data Position offset; or, the offset between the cut-off position of the frequency domain resource of the first data and
  • the granularity of the frequency domain resource offset or the granularity of the frequency domain resource quantity difference is resource element RE, resource block RB, resource block group RBG, precoding resource block group PRG, or subband.
  • the difference in the number of frequency domain resources is the difference between the number of frequency domain resources of the second data and the number of frequency domain resources of the first data, or the number of frequency domain resources of the first data and the frequency domain resources of the second data The difference in quantity.
  • the frequency domain resource offset or the frequency domain resource quantity difference is indicated by radio resource control RRC signaling, media access control control cell MAC-CE signaling or DCI signaling, or the default value is used, or, Use the value reported by the terminal device.
  • the code rate of the second data is the same as that of the first data, and the modulation order is indicated by the MCS field or the MCS field and the NDI field in the second group of transmission parameter fields.
  • the modulation order of the second data is the same as the first data, and the code rate is indicated by the MCS field or the MCS field and the NDI field in the second group of transmission parameter fields.
  • the second data adopts the new data indication information indicated by the NDI field of the first group of transmission parameter fields.
  • the first data and the second data can be any of the following: two codewords, two RVs, two TCI-state corresponding data, two demodulation reference signal DMRS ports or port group corresponding data , Two DMRS ports code division multiplex the data corresponding to the CDM group and the data transmitted by the two TRPs.
  • the frequency domain resource of the first data and the frequency domain resource of the second data are respectively a segment of continuous frequency domain resources, and the two continuous segments of frequency domain resources do not overlap; or, the frequency domain resources used by the first data and the second data
  • the number of domain resources is the same or different; or, two frequency domain resources are connected or separated by a certain number of frequency domain resources.
  • the communication device 60 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 60 may take the form of the terminal device 10 shown in FIG. 2.
  • the processor 101 in the terminal device 10 shown in FIG. 2 may invoke the computer execution instructions stored in the memory 102 to make the terminal device 10 execute the information determination method in the foregoing method embodiment.
  • the function/implementation process of the processing module 601 and the transceiver module 602 in FIG. 6 may be implemented by the processor 101 in the terminal device 10 shown in FIG. 2 calling a computer execution instruction stored in the memory 102.
  • the function/implementation process of the processing module 601 in FIG. 6 can be implemented by the processor 101 in the terminal device 10 shown in FIG. 2 calling a computer execution instruction stored in the memory 102, and the function of the transceiver module 602 in FIG. 6
  • the implementation process can be implemented by the transceiver 103 in the terminal device 10 shown in FIG. 2.
  • the communication device 60 provided in this embodiment can perform the above-mentioned information determination method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 7 shows a schematic structural diagram of a communication device 70.
  • the communication device 70 includes a processing module 701 and a transceiver module 702.
  • the transceiver module 702 which may also be referred to as a transceiver unit, includes a transmitting unit and/or a receiving unit, for example, a transceiver circuit, transceiver, transceiver, or communication interface, used to implement the transmission and/or transmission of the network device in the foregoing method embodiment
  • the receiving function for example, executes step S302 in FIG. 3.
  • the processing module 701 is used to perform data processing to implement the processing function of the network device in the foregoing method embodiment, for example, to perform step S302 in FIG. 3.
  • the processing module 701 is configured to determine first indication information, second indication information, and downlink control information DCI, where the first indication information is used to indicate the maximum number of codewords that can be scheduled by a single DCI, and the second indication information is used to Indicate the method of data transmission; wherein, if the first indication information indicates that the first condition is satisfied, and the second indication information indicates that the second condition is satisfied, the DCI includes the first set of transmission parameter fields corresponding to the first data and the corresponding The second group of transmission parameter fields, where the first group of transmission parameter fields includes the modulation and coding scheme MCS field of the first data, the new data indication NDI field, and the redundancy version RV field, and the second group of transmission parameter fields includes the MCS of the second data Field, NDI field, and RV field; the MCS field of the second data or the MCS field and NDI field of the second data are used to indicate one or a combination of the following information: the modulation order or code used by the second data One of the rates, the frequency resource information
  • the transceiver module 702 is configured to send first indication information, second indication information, and DCI to the terminal device.
  • the first condition includes: the maximum number of codewords that can be scheduled by a single DCI is 2.
  • the second condition includes: the network device separately sends two codewords corresponding to the same data on different frequency domain resources.
  • the processing module 701 is further configured to: if the first indication information indicates that the first condition is satisfied, and the second indication information indicates that the second condition is not satisfied, determine the first group of transmission parameter fields and the second group of transmission parameters in the DCI The fields correspond to two different transmission blocks.
  • the frequency resource information includes one or a combination of the following: frequency domain resource offset, frequency domain resource offset granularity, frequency domain resource quantity difference, frequency domain resource quantity difference granularity, frequency domain resource Assignment type.
  • the NDI field of the second data is used to indicate at least one of the granularity of the frequency domain resource offset, the granularity of the frequency domain resource quantity difference, and the frequency domain resource allocation type.
  • the frequency domain resource offset is: the offset between the start position of the frequency domain resource of the second data and the end position of the frequency domain resource of the first data; or the start position of the frequency domain resource of the second data The offset from the start position of the frequency domain resource of the first data; or, the offset of the cutoff position of the frequency domain resource of the second data from the cutoff position of the frequency domain resource of the first data; or, the frequency of the second data The offset between the cut-off position of the frequency domain resource of the first data and the start position of the frequency domain resource of the first data; or the offset of the start position of the frequency domain resource of the first data and the cut-off position of the frequency domain resource of the second data; or , The offset between the start position of the frequency domain resource of the first data and the start position of the frequency domain resource of the second data; or the cutoff position of the frequency domain resource of the first data and the cutoff position of the frequency domain resource of the second data Position offset; or, the offset between the cut-off position of the frequency domain resource of the first data and
  • the granularity of the frequency domain resource offset or the granularity of the frequency domain resource quantity difference is resource element RE, resource block RB, resource block group RBG, precoding resource block group PRG, or subband.
  • the difference in the number of frequency domain resources is the difference between the number of frequency domain resources of the second data and the number of frequency domain resources of the first data, or the number of frequency domain resources of the first data and the frequency domain resources of the second data The difference in quantity.
  • the frequency domain resource offset or the frequency domain resource quantity difference is indicated by radio resource control RRC signaling, media access control control cell MAC-CE signaling or DCI signaling, or the default value is used, or, Use the value reported by the terminal device.
  • the code rate of the second data is the same as that of the first data, and the modulation order is indicated by the MCS field or the MCS field and the NDI field in the second group of transmission parameter fields.
  • the modulation order of the second data is the same as the first data, and the code rate is indicated by the MCS field or the MCS field and the NDI field in the second group of transmission parameter fields.
  • the second data adopts the new data indication information indicated by the NDI field of the first group of transmission parameter fields.
  • the first data and the second data can be any of the following: two codewords, two RVs, two TCI-state corresponding data, two demodulation reference signal DMRS ports or port group corresponding data , Two DMRS ports code division multiplex the data corresponding to the CDM group and the data transmitted by the two TRPs.
  • the frequency domain resource of the first data and the frequency domain resource of the second data are respectively a segment of continuous frequency domain resources, and the two continuous segments of frequency domain resources do not overlap; or, the frequency domain resources used by the first data and the second data
  • the number of domain resources is the same or different; or, two frequency domain resources are connected or separated by a certain number of frequency domain resources.
  • the communication device 70 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 70 may take the form of the network device 20 shown in FIG. 2.
  • the processor 2022 in the network device 20 shown in FIG. 2 may invoke the computer execution instructions stored in the memory 2021 to make the network device 20 execute the information determination method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 701 and the transceiver module 702 in FIG. 7 may be implemented by the processor 2022 in the network device 20 shown in FIG. 2 calling the computer execution instructions stored in the memory 2021.
  • the function/implementation process of the processing module 701 in FIG. 7 can be implemented by the processor 2022 in the network device 20 shown in FIG. 2 calling the computer execution instructions stored in the memory 2021, and the function of the transceiver module 702 in FIG. 7 /The implementation process can be implemented through the RRU 201 in the network device 20 shown in FIG. 2.
  • the communication device 70 provided in this embodiment can perform the above-mentioned information determination method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • the embodiment of the present application also provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the processor is coupled with the memory.
  • the processor executes a computer program or instruction in the memory, the information shown in FIG. The method is executed.
  • An embodiment of the present application also provides a communication device.
  • the communication device includes a processor, and the processor is coupled with a memory.
  • the processor executes a computer program or instruction in the memory, the information determining method shown in FIG. 3 is executed.
  • the embodiment of the present application also provides a chip, including: a processor and an interface, configured to call and run a computer program stored in the memory from the memory, and execute the information determination method shown in FIG. 3.
  • the embodiment of the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the instructions run on a computer or a processor
  • the computer or the processor executes the terminal device or The method of determining the information of the network device.
  • the embodiment of the present application also provides a computer program product containing instructions.
  • the instructions run on a computer or a processor, the computer or the processor executes the method for determining information of a terminal device or a network device in FIG. 3.
  • the embodiment of the present application provides a chip system including a processor, which is used by a communication device to execute the method for determining information of the terminal device in FIG. 3. For example, receiving first indication information, second indication information, and downlink control information DCI from a network device, where the first indication information is used to indicate the maximum number of codewords that can be scheduled by a single DCI, and the second indication information is used to indicate the data transmission mode ; If the first condition is determined to be satisfied according to the first indication information, and the second condition is satisfied according to the second indication information, the first group of transmission parameter fields corresponding to the first data and the second group corresponding to the second data are determined from the DCI Transmission parameter fields, where the first group of transmission parameter fields includes the modulation and coding scheme MCS field of the first data, the new data indication NDI field, and the redundancy version RV field, and the second group of transmission parameter fields includes the MCS field and NDI of the second data.
  • the first indication information is used to indicate the maximum number of codewords that can be scheduled
  • the MCS field of the second data or the MCS field and the NDI field of the second data are used to indicate one or a combination of the following information: the modulation order used by the second data, the second The code rate used by the data, and the frequency resource information of the second data.
  • the chip system further includes a memory for storing necessary program instructions and data for the terminal device.
  • the chip system may include a chip, an integrated circuit, or a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the embodiment of the present application provides a chip system including a processor, which is used by a communication device to execute the method for determining information of a network device in FIG. 3. For example, determining the first indication information, the second indication information, and the downlink control information DCI, where the first indication information is used to indicate the maximum number of codewords that can be scheduled by a single DCI, and the second indication information is used to indicate the data transmission mode; where, If the first indication information indicates that the first condition is satisfied, and the second indication information indicates that the second condition is satisfied, the DCI includes a first group of transmission parameter fields corresponding to the first data and a second group of transmission parameter fields corresponding to the second data, where , The first group of transmission parameter fields includes the modulation and coding scheme MCS field of the first data, the new data indication NDI field and the redundancy version RV field, and the second group of transmission parameter fields includes the MCS field, the NDI field and the RV field of the second data; The MCS field of the second data or the MCS field and the
  • the chip system further includes a memory for storing necessary program instructions and data for the network device.
  • the chip system may include a chip, an integrated circuit, or a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the communication device, chip, computer storage medium, computer program product, or chip system provided in this application are all used to execute the information determination method described above. Therefore, the beneficial effects that can be achieved can refer to the above provided The beneficial effects in the implementation are not repeated here.
  • the processor involved in the embodiment of the present application may be a chip.
  • it can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a central processing unit.
  • the central processor unit (CPU) can also be a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller unit, MCU) , It can also be a programmable logic device (PLD) or other integrated chips.
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller unit
  • PLD programmable logic device
  • the memory involved in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种信息确定方法和装置,涉及通信领域,用于网络设备指示两个TRP采用的频域资源、RV和MCS等参数时,不增加时频资源的开销。信息确定方法包括:从网络设备接收第一指示信息、第二指示信息和下行控制信息DCI,第一指示信息用于指示单个DCI可调度的最大码字数,第二指示信息用于指示数据传输的方式;如果根据第一指示信息确定第一条件满足,并且根据第二指示信息确定第二条件满足,则从DCI中确定第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段,第二数据的MCS字段或者,第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数,第二数据采用的码率,第二数据的频率资源信息。

Description

信息确定方法和装置
本申请要求于2019年8月14日提交国家知识产权局、申请号为201910748550.4、申请名称为“信息确定方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种信息确定方法和装置。
背景技术
第五代(5th generation,5G)移动通信系统可以支持三种业务类型:增强移动带宽(enhanced mobile broadband,eMBB)、高可靠低时延传输(ultra-reliable and low latency communications,uRLLC)和大规模物联网(massive machine type communications,mMTC)。其中,uRLLC要求超高的传输可靠性和超低的传输时延。为了达到uRLLC的可靠性要求,网络设备可以采用多个传输接收节点(transmission and reception point,TRP)同时向终端设备传输相同数据的不同冗余版本(redundancy version,RV),可以大大提高数据传输的可靠性。
当网络设备通过采用两个TRP传输同一数据给终端设备时,采用的频域资源、RV和调制编码方案(modulation and coding scheme,MCS)都可能不同。现有技术中,网络设备通过两个消息分别将两个TRP采用的频域资源、RV和MCS等参数发送给终端设备。一方面,会增加时频资源的开销,另一方面,会增加终端设备的计算复杂度和能耗。
发明内容
本申请实施例提供一种信息确定方法和装置,用于网络设备指示两个TRP采用的频域资源、RV和MCS等参数时,不增加时频资源的开销。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种信息确定方法,包括:从网络设备接收第一指示信息、第二指示信息和下行控制信息DCI,其中,第一指示信息用于指示单个DCI可调度的最大码字数,第二指示信息用于指示数据传输的方式;如果根据第一指示信息确定第一条件满足,并且根据第二指示信息确定第二条件满足,则从DCI中确定第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段,其中,第一组传输参数字段包括第一数据的调制编码方案MCS字段、新数据指示NDI字段和冗余版本RV字段,第二组传输参数字段包括第二数据的MCS字段、NDI字段和RV字段;其中,第二数据的MCS字段或者,第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数,第二数据采用的码率,第二数据的频率资源信息。
本申请实施例提供的信息确定方法,在网络设备指示两个TRP采用的频域资源、RV和MCS等参数时,在DCI的第一组传输参数字段中依旧指示第一数据的MCS字段、NDI字段和RV字段。在DCI的第二组传输参数字段中复用第二参数的MCS字 段、NDI字段,用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数或码率中的一个,第二数据的频率资源信息。DCI的第二组传输参数字段中未指示的例如第二数据采用的调制阶数、码率、NDI等传输参数采用第一数据相同的传输参数。不必不扩展DCI数量或DCI字段,实现了在网络设备指示两个TRP采用的频域资源、RV和MCS等参数时,没有增加时频资源的开销。
在一种可能的实施方式中,该第一条件,包括:单个DCI可调度的最大码字数为2。
在一种可能的实施方式中,该第二条件,包括:网络设备在不同的频域资源上分别发送同一数据对应的两个码字。
在一种可能的实施方式中,该方法还包括:如果根据第一指示信息确定第一条件满足,并且根据第二指示信息确定第二条件不满足,则确定DCI中第一组传输参数字段和第二组传输参数字段分别对应两个不同的传输块。
在一种可能的实施方式中,频率资源信息包括以下一种或多种的组合:频域资源偏移、频域资源偏移的粒度、频域资源数量差值、频域资源数量差值的粒度、频域资源分配类型。
在一种可能的实施方式中,第二数据的NDI字段用于指示频域资源偏移的粒度、频域资源数量差值的粒度、频域资源分配类型中的至少一项。
在一种可能的实施方式中,频域资源偏移为:第二数据的频域资源的起始位置与第一数据的频域资源的截止位置的偏移;或者,第二数据的频域资源的起始位置与第一数据的频域资源的起始位置的偏移;或者,第二数据的频域资源的截止位置与第一数据的频域资源的截止位置的偏移;或者,第二数据的频域资源的截止位置与第一数据的频域资源的起始位置的偏移;或者,第一数据的频域资源的起始位置与第二数据的频域资源的截止位置的偏移;或者,第一数据的频域资源的起始位置与第二数据的频域资源的起始位置的偏移;或者,第一数据的频域资源的截止位置与第二数据的频域资源的截止位置的偏移;或者,第一数据的频域资源的截止位置与第二数据的频域资源的起始位置的偏移。本申请不限定频域资源偏移的具体含义。
在一种可能的实施方式中,频域资源偏移的粒度或频域资源数量差值的粒度为资源元素RE、资源块RB、资源块组RBG、预编码资源块组PRG或子带。本申请不限定频域资源偏移的粒度或频域资源数量差值的粒度。
在一种可能的实施方式中,频域资源数量差值为第二数据的频域资源数量与第一数据的频域资源数量的差值,或者,第一数据的频域资源数量与第二数据的频域资源数量的差值。
在一种可能的实施方式中,频域资源偏移或频域资源数量差值通过无线资源控制RRC信令、媒体访问控制控制信元MAC-CE信令或DCI信令进行指示,或者,采用默认值,或者,采用终端设备上报的值。
在一种可能的实施方式中,第二数据的码率与第一数据相同,第二数据的调制阶数通过第二组传输参数字段中的MCS字段,或者,MCS字段和NDI字段来指示。也就是说,对于第二组传输参数字段中的MCS字段,或者,MCS字段和NDI字段,复用一部分比特位用于传输第二数据采用的调制阶数以及第二数据的频率资源信息,默 认第二数据的码率与第一数据相同。
在一种可能的实施方式中,第二数据的调制阶数与第一数据相同,第二数据的码率通过第二组传输参数字段中的MCS字段,或者,MCS字段和NDI字段来指示。也就是说,对于第二组传输参数字段中的MCS字段,或者,MCS字段和NDI字段,复用一部分比特位用于传输第二数据采用的码率以及第二数据的频率资源信息,默认第二数据的调制阶数与第一数据相同。
在一种可能的实施方式中,第二数据采用第一组传输参数字段的NDI字段指示的新数据指示信息。也就是说,在第二组传输参数字段中NDI字段被复用时,第二数据的新数据指示信息与第一数据的新数据指示信息相同。
在一种可能的实施方式中,第一数据和第二数据可以是以下任意一种:两个码字、两个RV、两个TCI-state对应的数据、两个解调参考信号DMRS端口或端口组对应的数据、两个DMRS端口码分复用CDM组对应的数据、两个TRP传输的数据。
在一种可能的实施方式中,第一数据的频域资源和第二数据的频域资源分别为一段连续的频域资源,两段连续的频域资源不重复;或者,第一数据和第二数据采用的频域资源数相同的或不同;或者,两段频域资源相连或间隔一定数量的频域资源。
第二方面,提供了一种信息确定方法,包括:确定第一指示信息、第二指示信息和下行控制信息DCI,其中,第一指示信息用于指示单个DCI可调度的最大码字数,第二指示信息用于指示数据传输的方式;其中,如果第一指示信息指示第一条件满足,并且第二指示信息指示第二条件满足,则DCI包括第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段,其中,第一组传输参数字段包括第一数据的调制编码方案MCS字段、新数据指示NDI字段和冗余版本RV字段,第二组传输参数字段包括第二数据的MCS字段、NDI字段和RV字段;第二数据的MCS字段或者,第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数或码率中的一个,第二数据的频率资源信息;向终端设备发送第一指示信息、第二指示信息和DCI。
本申请实施例提供的信息确定方法,在网络设备指示两个TRP采用的频域资源、RV和MCS等参数时,在DCI的第一组传输参数字段中依旧指示第一数据的MCS字段、NDI字段和RV字段。在DCI的第二组传输参数字段中复用第二参数的MCS字段、NDI字段,用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数或码率中的一个,第二数据的频率资源信息。DCI的第二组传输参数字段中未指示的例如第二数据采用的调制阶数、码率、NDI等传输参数采用第一数据相同的传输参数。不必不扩展DCI数量或DCI字段,实现了在网络设备指示两个TRP采用的频域资源、RV和MCS等参数时,没有增加时频资源的开销。
在一种可能的实施方式中,第一条件,包括:单个DCI可调度的最大码字数为2。
在一种可能的实施方式中,第二条件,包括:第二指示信息指示网络设备在不同的频域资源上分别发送同一数据对应的两个码字。
在一种可能的实施方式中,该方法还包括:如果根据第一指示信息确定第一条件满足,并且根据第二指示信息确定第二条件不满足,则确定DCI中第一组传输参数字段和第二组传输参数字段分别对应两个不同的传输块。
在一种可能的实施方式中,频率资源信息包括以下一种或多种的组合:频域资源偏移、频域资源偏移的粒度、频域资源数量差值、频域资源数量差值的粒度、频域资源分配类型。
在一种可能的实施方式中,第二数据的NDI字段用于指示频域资源偏移的粒度、频域资源数量差值的粒度、频域资源分配类型中的至少一项。
在一种可能的实施方式中,频域资源偏移为:第二数据的频域资源的起始位置与第一数据的频域资源的截止位置的偏移;或者,第二数据的频域资源的起始位置与第一数据的频域资源的起始位置的偏移;或者,第二数据的频域资源的截止位置与第一数据的频域资源的截止位置的偏移;或者,第二数据的频域资源的截止位置与第一数据的频域资源的起始位置的偏移;或者,第一数据的频域资源的起始位置与第二数据的频域资源的截止位置的偏移;或者,第一数据的频域资源的起始位置与第二数据的频域资源的起始位置的偏移;或者,第一数据的频域资源的截止位置与第二数据的频域资源的截止位置的偏移;或者,第一数据的频域资源的截止位置与第二数据的频域资源的起始位置的偏移。本申请不限定频域资源偏移的具体含义。
在一种可能的实施方式中,频域资源偏移的粒度或频域资源数量差值的粒度为资源元素RE、资源块RB、资源块组RBG、预编码资源块组PRG或子带。本申请不限定频域资源偏移的粒度或频域资源数量差值的粒度。
在一种可能的实施方式中,频域资源数量差值为第二数据的频域资源数量与第一数据的频域资源数量的差值,或者,第一数据的频域资源数量与第二数据的频域资源数量的差值。
在一种可能的实施方式中,频域资源偏移或频域资源数量差值通过无线资源控制RRC信令、媒体访问控制控制信元MAC-CE信令或DCI信令进行指示,或者,采用默认值,或者,采用终端设备上报的值。
在一种可能的实施方式中,第二数据的码率与第一数据相同,调制阶数通过第二组传输参数字段中的MCS字段或者,MCS字段和NDI字段来指示。也就是说,对于第二组传输参数字段中的MCS字段,或者,MCS字段和NDI字段,复用一部分比特位用于传输第二数据采用的调制阶数以及第二数据的频率资源信息,默认第二数据的码率与第一数据相同。
在一种可能的实施方式中,第二数据的调制阶数与第一数据相同,码率通过第二组传输参数字段中的MCS字段或者,MCS字段和NDI字段来指示。也就是说,对于第二组传输参数字段中的MCS字段,或者,MCS字段和NDI字段,复用一部分比特位用于传输第二数据采用的码率以及第二数据的频率资源信息,默认第二数据的调制阶数与第一数据相同。
在一种可能的实施方式中,第二数据采用第一组传输参数字段的NDI字段指示的新数据指示信息。也就是说,在第二组传输参数字段中NDI字段被复用时,第二数据的新数据指示信息与第一数据的新数据指示信息相同。
在一种可能的实施方式中,第一数据和第二数据可以是以下任意一种:两个码字、两个RV、两个TCI-state对应的数据、两个解调参考信号DMRS端口或端口组对应的数据、两个DMRS端口码分复用CDM组对应的数据、两个TRP传输的数据。
在一种可能的实施方式中,第一数据的频域资源和第二数据的频域资源分别为一段连续的频域资源,两段连续的频域资源不重复;或者,第一数据和第二数据采用的频域资源数相同的或不同;或者,两段频域资源相连或间隔一定数量的频域资源。
第三方面,提供了一种终端设备,包括:处理模块和收发模块;处理模块和收发模块用于执行如第一方面及其任一项所述的方法,或者,执行如第二方面及其任一项所述的方法。
第四方面,提供了一种网络设备,包括:处理模块和收发模块;处理模块和收发模块用于执行如第一方面及其任一项所述的方法,或者,执行如第二方面及其任一项所述的方法。
第五方面,提供了一种通信装置,所述通信装置包括处理器、存储器和收发器,所述处理器与存储器耦合,当所述处理器执行存储器中的计算机程序或指令时,如第一方面及其任一项所述的方法,或者,如第二方面及其任一项所述的方法被执行。
第六方面,提供了一种芯片,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行如第一方面及其任一项所述的方法,或者,执行如第二方面及其任一项所述的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机或处理器上运行时,使得计算机或处理器执行如第一方面或者其任一种可能的实施方式中的信息确定方法,或者执行如第二方面或者其任一种可能的实施方式中的信息确定方法。
第八方面,提供了一种包含指令的计算机程序产品,当该指令在计算机或处理器上运行时,使得计算机或处理器执行如第一方面或者其任一种可能的实施方式中的信息确定方法,或者执行如第二方面或者其任一种可能的实施方式中的信息确定方法。
第九方面,提供了一种通信系统,包括如第三方面所述的终端设备和如第四方面所述的网络设备。
第三方面至第九方面的技术效果可以参照第一方面至第二方面的各种可能实施方式所述内容。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种终端设备和网络设备的结构示意图;
图3为本申请实施例提供的一种信息确定方法的流程示意图;
图4为本申请实施例提供的一种DCI格式的示意图;
图5为本申请实施例提供的一种频域资源偏移的示意图;
图6为本申请实施例提供的一种终端设备的结构示意图;
图7为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例既可以应用于时分双工(time division duplexing,TDD)的场景,也可以适用于频分双工(frequency division duplexing,FDD)的场景。
本申请实施例依托无线通信网络中5G网络的场景进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请应用的通信系统如图1所示,包括单个或多个终端设备10,以及,单个或多个网络设备20。如图1中A所示,单个网络设备20可以向单个或多个终端设备10传输数据或控制信令。如图1中B所示,多个网络设备20也可以同时为单个终端设备10传输数据或控制信令。
本申请实施例中,网络设备(包括TRP)是一种部署在无线接入网中为终端设备提供无线通信功能的装置。网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,网络设备的名称可能会有所不同,例如全球移动通信系统(global system for mobile communication,GSM)或码分多址CDMA(code division multiple access,)网络中的基站收发信台(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备还可以是未来5G网络中的基站设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备。网络设备还可以是可穿戴设备或车载设备。
本申请实施例采用多个TRP向终端设备传输数据,因此网络设备可以指这些TRP,也可以是指这些TRP以及其他网络端的设备组成的一个整体。一般的,每个TRP采用一个传输配置编号状态(transmission configuration index-state,TCI-state)来进行传输,可以认为一个TCI-state就对应一个TRP,因此本申请中TCI-state和TRP是可以互相替换的。
本申请实施例中,所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动站(mobile station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。
图1所示的通信系统中每个网络设备和每个终端设备之间的通信还可以用另一种形式来表示。
如图2所示,终端设备10包括处理器101、存储器102和收发器103。处理器101、 收发器103和存储器102之间可以通过内部连接通路互相通信,传递控制和/或数据信号,存储器102用于存储计算机程序,处理器101用于从存储器102中调用并运行该计算机程序,以控制收发器103收发信号。收发器103包括发射机1031、接收机1032和天线1033。接收机1032可以用于通过天线1033接收传输控制信息,发射机1031可以用于通过天线1033向网络设备20发送信息。
如图2所示,网络设备20可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)202。所述RRU 201可以称为收发单元,可选地,还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线2011和射频单元2012。可选地,收发单元可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 201部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 202部分主要用于进行基带处理,对网络设备进行控制等。所述RRU 201与BBU 202可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 202为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU可以用于控制网络设备执行本申请方法实施例中关于网络设备的操作流程等。
在一个示例中,所述BBU 202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网、5G网或其他网)。所述BBU 202还包括存储器2021和处理器2022。所述存储器2021用以存储必要的指令和数据。所述处理器2022用于控制网络设备进行必要的动作,例如用于控制网络设备执行本申请方法实施例中关于网络设备的操作流程。所述存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
另外,网络设备不限于上述形态,也可以是其它形态:例如:包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU和有源天线单元(active antenna unit,AAU);也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
本申请实施例提供了一种信息确定方法,利用DCI中已有字段来指示网络设备通过两个TRP传输数据所采用的频域资源、RV和MCS等参数,不会增加时频资源的开销。或者换句话说,利用DCI中已有字段来指示网络设备通过两个TCI-state传输数据所采用的频域资源、RV和MCS等参数,不会增加时频资源的开销。
如图3所示,该信息确定方法包括步骤S301-S304:
S301、网络设备确定第一指示信息、第二指示信息和下行控制信息DCI。
本步骤也可以由网络设备中的芯片或芯片系统执行。需要说明的是,本步骤并不一定会显式地执行。
首先对第一指示信息和第二指示信息进行描述:
其中,第一指示信息用于指示单个DCI可调度的最大码字数,第一指示信息可以以参数maxNrofCodeWordsScheduledByDCI来表示,但本申请并不限定该参数的命名方式。单个DCI可调度的最大码字数可以为1或2。
第二指示信息用于指示数据传输的方式(例如,重复方式(repetition pattern))。数据传输的方式可以包括:
方式1、在同一时间单元,网络设备采用不同的TCI-state,在相同的频域资源上分别发送一个RV。这些RV是根据同一数据生成的同一RV,对应同一个码字。每个TCI-state对应k(k>=1)个解调参考信号(demodulation reference signal,DMRS)端口。
方式2、在同一时间单元,网络设备采用不同的TCI-state,在不同的频域资源上分别发送一个RV。这些RV可以是根据同一数据生成的同一RV,也可以是根据同一数据生成的不同RV。这些RV可以全部对应同一码字,也可以分别对应不同码字。根据这些RV对应的是同一码字还是不同码字,方式2还可以进一步分为以下两种方式(方式2-1以及方式2-2)。
方式2-1:在同一时间单元,网络设备采用不同的TCI-state,在不同的频域资源上分别发送一个RV。这些RV是同一数据生成的同一RV,所有RV对应一个码字。
方式2-2:在同一时间单元,网络设备采用不同的TCI-state,在不同的时频资源上分别发送一个RV。这些RV是同一数据生成的同一RV或不同RV,每个RV对应一个码字。
方式3:在连续多个时间单元,网络设备采用多个TCI-state分别发送一个RV。这些RV是同一数据生成的同一RV或不同RV。
上述时间单元可以是符号、时隙、子帧、帧或其他粒度的时间单元。终端设备可以通过能力上报信令上报是否支持上述数据传输的方式中的任意一种。
第二指示信息可以通过以下方式来指示上述数据传输的方式:
在一种可能的实施方式中,第二指示信息可以包括一个参数,用于指示上述方式中的一种。
示例性的,第二指示信息包括一个字段,该字段的四个不同的值分别对应上述四种方式,即方式1、方式2-1、方式2-2、方式3。
示例性的,第二指示信息包括一个字段,该字段的三个不同的值分别对应方式1、方式2、方式3。
当第二指示信息指示方式2时,进一步根据第一指示信息指示的单个DCI可调度的最大码字数来确定具体是方式2-1还是方式2-2。例如,第二指示信息指示方式2,第一指示信息指示单个DCI可调度的最大码字数为1,则可以确定数据传输的方式为方式2-1;或者,第二指示信息指示方式2,第一指示信息指示单个DCI可调度的最大码字数为2,则可以确定数据传输的方式为方式2-2。
或者,当第二指示信息指示方式2时,进一步通过各个TCI-state对应的RV的总数来确定具体是方式2-1还是方式2-2。例如,各TCI-state对应的RV总数为1,则可以确定数据传输的方式为方式2-1;各TCI-state对应的RV总数为2,则可以确定数据传输的方式为方式2-2。
在另一种可能的实施方式中,第二指示信息也可以包括多个参数,通过多个参数来指示上述数据传输的方式中的具体一种。
示例性的,第二指示信息包括同一数据连续传输的次数(例如pdsch-AggregationFactor参数),以及,传输采用的TCI-state数或TCI-state的索引。例如,当第二指示信息指示同一数据连续传输的次数大于1并且传输采用的TCI-state数大于1时,可以确定数据传输的方式为方式3。也就是说,当第二指示信息指示同一数据连续传输的次数大于1并且传输采用的TCI-state数大于1时(例如pdsch-AggregationFactor参数的值配置成大于1的值),终端设备确定上述多个TCI-state是用于时分传输的,即在不同的时间单元依次采用上述多个TCI-state中的一个进行传输。当第二指示信息指示同一数据连续传输的次数等于1或者未指示同一数据连续传输的次数(例如未配置pdsch-AggregationFactor参数),并且传输采用的TCI-state数大于1时,终端设备确定上述多个TCI-state是用于同时传输的,即在同一次传输中采用上述多个TCI-state同时进行传输。
进一步地,根据同一数据连续传输的次数以及传输采用的TCI-state数还可以确定各次传输采用的TCI-state。例如,第二指示信息指示了同一数据连续传输的次数为k并且传输采用k个TCI-state,则可以确定k次传输采用的TCI-state分别为指示的k个TCI-state中的一个。
具体的,可以根据k个TCI-state的索引递增或递减的顺序确定各次传输对应的TCI-state。例如,各次传输对应的TCI-state的索引依次递增或依次递减。
或者,也可以根据第二指示信息指示的k个TCI-state被指示的顺序确定各次传输对应的TCI-state。例如,第二指示信息指示两个TCI-state{TCI#2,TCI#1},则可以确定第一次传输采用TCI#2对应的TCI-state,第二次传输采用TCI#1对应的TCI-state。
或者,也可以根据k个TCI-state关联的DMRS端口索引、DMRS端口组的索引或DMRS端口码分复用(code division multiplexing,CDM)组的索引递增或递减的顺序确定各次传输采用的TCI-state。例如,第二指示信息指示两个TCI-state{TCI#2,TCI#1},其中,TCI#2对应的TCI-state与较小的DMRS端口、DMRS端口组或DMRS端口CDM组关联,TCI#1对应的TCI-state与较大的DMRS端口、DMRS端口组或DMRS端口CDM组关联,则第一次传输采用TCI#2对应的TCI-state,第二次传输采用TCI#1对应的TCI-state。在上述例子中,各次传输采用的DMRS端口、DMRS端口组或DMRS端口CDM组的索引依次增大。可选的,各次传输采用的DMRS端口、DMRS端口组或DMRS端口CDM组的索引也可以依次减小。此时第一次传输采用TCI#1对应的TCI-state,第二次传输采用TCI#2对应的TCI-state。
上述方案中,当第二指示信息的TCI-state个数小于同一数据连续传输的次数时,可以按照上述顺序依次循环采用各个TCI-state来进行各次传输。例如,第二指示信息指示了两个TCI-state{TCI#2,TCI#1},并且第二指示信息指示了同一数据连续传输的次数为4,那么四次传输采用的TCI-state分别为{TCI#2,TCI#1,TCI#2,TCI#1}。
另外,第二指示信息指示的TCI-state数大于1并且同一数据连续传输的次数等于1时,第二指示信息指示的多个TCI-state用于同一次传输,即终端设备确定网络设备会采用上述多个TCI-state同时进行数据传输,这时终端设备需要根据上述TCI-state 进行数据的接收。具体的,当第一指示信息指示的单个DCI可调度的最大码字数大于1,第二指示信息指示的TCI-state数大于1时,终端设备可以确定网络设备是采用方式2-2进行传输。
上述方案中,k个TCI-state可以通过DCI中的TCI字段来指示,例如,TCI字段的每个值可以对应多个TCI-state。同一数据连续传输的次数可以通过一个无线资源控制(radio resource control,RRC)参数(例如pdsch-AggregationFactor)来进行指示。
第二指示信息指示数据传输的方式为方式3时,还可以指示以下信息中的一种或多种:同一数据连续传输的次数、各次传输采用的时间长度(例如正交频分复用(orthogonal frequency division multiplexing,OFDM)符号数)、各次传输采用的时域资源粒度(例如符号级、迷你时隙(mini-slot)级或时隙(slot)级)、传输的RV数、传输次数与RV的映射规则(各次传输分别采用哪个RV)、TCI-state与RV的映射规则(各个TCI-state分别对应哪个RV)、各次传输采用的TCI-state或TCI-state数。
下面对DCI进行描述:
如图4所示,R15的DCI格式1-1(DCI format 1-1)定义了两组传输参数字段(第一组传输参数字段和第二组传输参数字段),每组传输参数字段包括MCS字段、新数据指示(new data indicator,NDI)字段和RV字段。每组传输参数字段对应一个传输块(transport block,TB)。
从网络设备侧来看,网络设备需要确定其发送的DCI中应该包括几组传输参数字段。分为两种情况:当只调度了一个TB时,对应的DCI中只包括第一组传输参数字段,用于指示该TB的MCS、NDI和RV等传输参数。当调度了两个TB时,对应的DCI中包括上述两组传输参数字段,分别用于指示各TB的传输参数。从终端设备侧来看,终端设备收到一个DCI后,需要确定该DCI中包括了几组传输参数字段。同样分两种情况:如果第一指示信息指示单个DCI可调度的最大码字数为2时,则确定该DCI中包括了上述两组传输参数字段;否则,确定该DCI中只包括第一组传输参数字段。
本申请实施例中,一组传输参数字段是指基于码字或基于TB进行划分的一组字段,每组传输参数字段对应于一个码字或对应一个TB。例如,在R15中一组传输参数字段包括MCS字段、NDI字段和RV字段,而本申请不限定一组传输参数字段中包括的字段数。可选的,每组传输参数字段还可以包括其他除MCS字段、NDI字段和RV字段以外的字段。
本申请实施例中,DCI可以包括第一组传输参数字段和第二组传输参数字段,第一组传输参数字段对应第一数据,第二组传输参数字段对应第二数据。第一数据和第二数据可以是以下任意一种:两个码字、两个RV、两个TCI-state对应的数据、两个DMRS端口或端口组对应的数据、两个DMRS端口CDM组对应的数据、两个TRP传输的数据。
下面对DCI包括第一组传输参数字段和第一组传输参数字段的几种方式进行描述:
方式一、如果第一指示信息指示第一条件不满足,则DCI中只包括第一组传输参数字段。
其中,第一条件可以包括单个DCI可调度的最大码字数为2。例如,第一指示信 息包括参数maxNrofCodeWordsScheduledByDCI,该参数的值为1时,确定第一条件不满足。
方式二、如果第一指示信息指示第一条件满足,并且第二指示信息指示第二条件不满足,则从DCI中确定两组传输参数字段(第一组传输参数字段和第二组传输参数字段),第一组传输参数字段和第二组传输参数字段分别对应两个不同的TB。
方式三、如果第一指示信息指示第一条件满足,并且第二指示信息指示第二条件满足,则确定DCI中包括两组传输参数字段(第一组传输参数字段和第二组传输参数字段),第一组传输参数字段对应第一数据,第二组传输参数字段对应第二数据。第一数据和第二数据可以是同一TB对应的两个码字。例如,同一TB进行编码生成四个RV,从四个RV中选择两个不同的RV作为两个码字进行传输,或者从四个RV中选择一个RV,将该RV作为两个码字进行重复传输。第一数据和第二数据可以是两个相同的TB各自确定的一个码字。例如,将两个内容相同的TB分别进行编码,分别生成四个RV,从每个TB对应的四个RV中各选择1个RV,来作为两个码字进行传输。
其中,第二条件可以是指网络设备在不同的频域资源上分别发送同一数据对应的两个码字。或者,网络设备同时采用多个TCI-state传输同一数据对应的多个码字或多个RV给终端设备。或者,第二条件可以是指网络设备同时采用不同的频域资源传输同一数据对应的多个码字或多个RV给终端设备。或者,第二条件可以是指网络设备同时采用多个TCI-state分别在不同的频域资源传输同一数据对应的多个码字或多个RV给终端设备。本申请并不限定第二条件的描述方式,只要能达到上述列举的第二条件对应的传输效果,即可认为是满足第二条件。例如,第二指示信息指示数据传输的方式为方式2-2时,也可以认为第二条件满足。
本申请实施例中,第一组传输参数字段包括第一数据的MCS字段、NDI字段和RV字段的具体含义与现有技术相同,此处不再赘述。下面着重对第二组传输参数字段进行详细说明。
第二组传输参数字段包括第二数据的MCS字段、NDI字段和RV字段。其中,第二数据采用第一组传输参数字段的NDI字段指示的新数据指示信息,即第二数据的RV信息与第一数据的RV信息相同。第二组传输参数字段的RV字段仍用于指示第二数据的RV信息。
第二数据的MCS字段或者,第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数,第二数据采用的码率,第二数据的频率资源信息。
其中,频率资源信息包括以下一种或多种的组合:频域资源偏移、频域资源偏移的粒度、频域资源数量差值、频域资源数量差值的粒度、频域资源分配类型。
第一数据的频域资源和第二数据的频域资源分别为一段连续的频域资源,两段连续的频域资源不重复。两段连续的频域资源可以是相连的。例如,第一数据的最后一个频域资源与第二数据的第一个频域资源是相邻的。或者第一数据的第一个频域资源与第二数据的最后一个频域资源是相邻的。两段连续的频域资源也可以有一定的频域资源偏移。
如图5所示,频域资源偏移为:A第二数据的频域资源的起始位置与第一数据的 频域资源的截止位置的偏移;或者,B第二数据的频域资源的起始位置与第一数据的频域资源的起始位置的偏移;或者,C第二数据的频域资源的截止位置与第一数据的频域资源的截止位置的偏移;或者,D第二数据的频域资源的截止位置与第一数据的频域资源的起始位置的偏移;或者,E第一数据的频域资源的起始位置与第二数据的频域资源的截止位置的偏移;或者,F第一数据的频域资源的起始位置与第二数据的频域资源的起始位置的偏移;或者,G第一数据的频域资源的截止位置与第二数据的频域资源的截止位置的偏移;或者,H第一数据的频域资源的截止位置与第二数据的频域资源的起始位置的偏移。
可以按照频域资源索引递增的方式来确定第二数据的频域资源。例如,第一数据的频域资源的最后一个资源的索引加上频域资源偏移,得到第二数据的频域资源的第一个资源的索引。可以按照频域资源索引递减的方式来确定第二数据的频域资源。例如,第一数据的频域资源的第一个资源的索引减去频域资源偏移,得到第二数据的频域资源的最后一个资源的索引。
频域资源偏移需要满足一定约束条件。例如,根据频域资源偏移计算得到的第二数据的频域资源不能超出当前采用的载波(carrier)或带宽部分(bandwidth part,BWP)的频域资源范围。例如第二数据的最后一个RB或RBG的索引不能大于当前载波或BWP的最大RBG的索引,或者,第二数据的第一个RB或RBG的索引不能小于当前载波或BWP的最小RBG的索引。
相应地,频域资源分配需要满足上述约束条件。具体的,在进行频域资源分配时,第一数据的起始RB或RBG,第二数据的RB或RBG,第一数据分配的RB数或RBG数,第二数据分配的RB数或RBG数,以及第一数据和第二数据的频域资源偏移的值的确定,需要确保满足上述约束条件。
除了满足上述约束条件外,还可以采用另一种方法来避免分配的频域资源超出BWP的范围。
在一种可能的实施方式中,按照频域资源索引递增的方式来确定第二数据的频域资源,第二数据的频域资源的索引超过该BWP的最大频域资源索引时,回退到最小频域资源索引重新开始算起。例如,一个BWP包括20个RB(RB#0至RB#19),第一数据的频域资源为RB{#10,#11,#12,#13,#14,#15},频域资源偏移为3,因此计算得到第二数据的频域资源为RB{#18,#19,#20,#21,#22,#23}。由于RB{#20,#21,#22,#23}超过BWP的最大RB(#19),因此回退到最小RB(#0),即RB{#20,#21,#22,#23}换算为RB{#0,#1,#2,#3},因此第二数据的频域资源为RB{#18,#19,#0,#1,#2,#3}。
在另一种可能的实施方式中,按照频域资源索引递减的方式来确定第二数据的频域资源,第二数据的频域资源的索引小于该BWP的最小频域资源索引时,回退到最大频域资源索引重新开始算起。例如,一个BWP包括20个RB(RB#0至RB#19),第一数据的频域资源为RB{#5,#6,#7,#8,#9,#10},频域资源偏移为3,因此计算得到第二数据的频域资源为RB{#-3,#-2,#-1,#0,#1,#2}。由于RB{#-3,#-2,#-1}小于BWP的最小RB(#0),因此回退到最大RB(#19),即RB{#-3,#-2,#-1}换算为RB{#17,#18,#19},因此第二数据的频域资源为RB{#17,#18,#19,#0,#1, #2}。
频域资源偏移的粒度或频域资源数量差值的粒度为资源元素(resource element,RE)、资源块(resource block,RB)、资源块组(resource block group,RBG)、预编码资源块组(precoding resource block groups,PRG)或子带(subband)。
频域资源偏移可以是指两个RE、RB、RBG、PRG或子带(subband)之间的偏移。该偏移可以是两个RE、RB、RBG、PRG或子带的编号的差值,例如RB#10与RB#6之间的偏移为10-6=4个RB。该偏移也可以是两个RE、RB、RBG、PRG或子带之间间隔的资源数。例如RB#10与RB#6之间间隔了3个RB,那么偏移为3个RB。频域资源可以是指RE、RB、RBG、PRG或子带。
当第一数据和第二数据采用的频域资源数相同时,网络设备只要指示频域资源偏移,根据第一数据的频域资源以及上述频域资源偏移即可以确定第二数据的频域资源。示例性的,如图5所示,第一数据和第二数据采用的频域资源数相同,以频率资源为RB为例,第一数据的频域资源对应RB#2~#6,第二数据的第一个RB(编号最小的RB)和第一数据的最后一个RB(编号最大的RB)之间的偏移为8,则可以确定第二数据的频域资源对应RB#10~14。
当第一数据和第二数据采用的频域资源数不同时,频域资源数量差值为第二数据的频域资源数量与第一数据的频域资源数量的差值,或者,第一数据的频域资源数量与第二数据的频域资源数量的差值。例如,当频域资源数量偏移的粒度是RB时,频域资源数量差值为4,表示相差4个RB。
频域资源偏移或频域资源数量差值可以通过无线资源控制RRC信令、媒体访问控制控制信元MAC-CE信令或DCI信令进行指示,或者,采用默认值,或者,采用终端设备上报的值。
下面举例对第二数据的MCS字段和NDI字段的各种可能实施方式进行说明:
在一种可能的实施方式中,第二数据的码率与第一数据相同,第二数据的调制阶数通过第二组传输参数字段中的MCS字段,或者,MCS字段和NDI字段来指示。或者,第二数据的调制阶数与第一数据相同,第二数据的码率通过第二组传输参数字段中的MCS字段,或者,MCS字段和NDI字段来指示。
在另一种可能的实施方式中,第二数据的MCS字段可以用于指示第二数据的调制阶数以及第二数据的频域资源偏移。如表1所示,每个MCS字段取值对应一个调制阶数的值以及一个频域资源偏移的值。
表1
MCS字段 调制阶数 频域资源偏移
00000 2 0
00001 4 0
00010 6 0
00011 8 0
00100 2 1
00101 4 1
00110 6 1
00111 8 1
11111 8 7
在又一种可能的实施方式中,第二数据的NDI字段用于指示频域资源偏移的粒度、频域资源数量差值的粒度、频域资源分配类型中的至少一项。
在又一种可能的实施方式中,因为MCS字段占用5比特,NDI字段占用1比特,所以可以将第二数据的MCS字段和NDI字段联合为6比特的字段来指示。第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数、频域资源偏移、频域资源偏移的粒度、频域资源数量差值、频域资源数量差值的粒度、频域资源分配类型。
S302、网络设备向终端设备发送第一指示信息、第二指示信息和DCI。
本步骤也可以由网络设备中的芯片或芯片系统执行。
上述第一指示信息、第二指示信息可以通过单个信令进行发送,也可以通过多个信令进行发送。例如,可以携带在RRC信令、媒体访问控制控制信元(medium access control-control element,MAC-CE)信令或DCI中。另外,第二指示信息包括的内容,可以承载在一个信令中,也可以承载在不同的信令中。
需要说明的是,步骤S302所述的几种数据传输的方式都是基于单个DCI进行调度的,即多个TRP传输的数据都是由单个DCI进行调度的。除了上述几种数据传输的方式外,网络设备还可以采用多个DCI来分别调度各个TRP传输的数据。例如,在一次传输中,每个TRP分别传输一个DCI给终端设备,各TRP发送的DCI分别用于指示该TRP发送的数据的相关参数。在这种情况下,为了使得终端设备能收到多个DCI,网络设备需要向终端设备指示其发送了多个DCI。具体的,可以采用以下方式来进行指示:
在一种可能的实施方式中,网络设备向终端设备发送第三指示信息,第三指示信息用于指示终端设备需要接收的DCI数。
在另一种可能的实施方式中,可以在DCI中通过一个字段来指示本次传输的DCI数,或指示是否还有其他DCI要接收。
在又一种可能的实施方式中,通过网络设备配置的控制资源集(control resource set,CORESET)数来指示。例如,当配置的CORESET数的大于特定门限值时,则指示终端设备需要接收多个DCI,否则指示终端设备只需要接收单个DCI。
在又一种可能的实施方式中,通过网络设备配置的CORESET关联的搜索空间(searchSpace)的类型来指示。例如,如果配置的各个CORESET关联的searchSpace中,类型为特定用户设备(ue-Specific)的searchSpace数大于1,则指示终端设备需要接收多个DCI。或者,如果关联的searchSpace的类型为ue-Specific的CORESET数大于1,则指示终端设备需要接收多个DCI。当终端设备需要接收多个DCI时,在一 次接收中,终端设备需要接收到两个DCI才会停止接收。
S303、终端设备从网络设备接收第一指示信息、第二指示信息和DCI。
本步骤也可以由终端设备中的芯片或芯片系统执行。
S304、终端设备从DCI中确定第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段。
本步骤也可以由终端设备中的芯片或芯片系统执行。
在一种可能的实施方式中,如果根据第一指示信息确定第一条件满足,则终端设备从DCI中确定第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段。
在另一种可能的实施方式中,如果根据第一指示信息确定第一条件满足,并且根据第二指示信息确定第二条件满足,则终端设备从DCI中确定第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段。
在又一种可能的实施方式中,如果根据第一指示信息确定第一条件满足,并且根据第二指示信息确定第二条件不满足,则终端设备确定DCI中第一组传输参数字段和第二组传输参数字段分别对应两个不同的传输块。
关于第一条件、第二条件的描述见前文,在此不再重复。
本申请实施例提供的信息确定方法,在网络设备指示两个TRP采用的频域资源、RV和MCS等参数时,在DCI的第一组传输参数字段中依旧指示第一数据的MCS字段、NDI字段和RV字段。在DCI的第二组传输参数字段中复用第二参数的MCS字段、NDI字段,用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数或码率中的一个,第二数据的频率资源信息。DCI的第二组传输参数字段中未指示的例如第二数据采用的调制阶数、码率、NDI等传输参数采用第一数据相同的传输参数。不必不扩展DCI数量或DCI字段,实现了在网络设备指示两个TRP采用的频域资源、RV和MCS等参数时,没有增加时频资源的开销。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为终端设备内的芯片或功能模块;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为网络设备内的芯片或功能模块。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如, 可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的终端设备为例。图6示出了一种通信装置60的结构示意图。该通信装置60包括处理模块601和收发模块602。收发模块602,也可以称为收发单元,包括发送单元和/或接收单元,例如可以是收发电路、收发机、收发器或者通信接口,用以实现上述方法实施例中终端设备的发送和/或接收功能。例如执行图3中的步骤S303。处理模块601用于进行数据处理,用以实现上述方法实施例中终端设备进行处理的功能,例如执行步骤图3中的步骤S304。
示例性的,收发模块602用于从网络设备接收第一指示信息、第二指示信息和下行控制信息DCI,其中,第一指示信息用于指示单个DCI可调度的最大码字数,第二指示信息用于指示数据传输的方式。
处理模块601用于如果根据第一指示信息确定第一条件满足,并且根据第二指示信息确定第二条件满足,则从DCI中确定第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段,其中,第一组传输参数字段包括第一数据的调制编码方案MCS字段、新数据指示NDI字段和冗余版本RV字段,第二组传输参数字段包括第二数据的MCS字段、NDI字段和RV字段;其中,第二数据的MCS字段或者,第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数,第二数据采用的码率,第二数据的频率资源信息。
可选的,第一条件,包括:单个DCI可调度的最大码字数为2。
可选的,第二条件,包括:网络设备在不同的频域资源上分别发送同一数据对应的两个码字。
可选的,处理模块601还用于:如果根据第一指示信息确定第一条件满足,并且根据第二指示信息确定第二条件不满足,则确定DCI中第一组传输参数字段和第二组传输参数字段分别对应两个不同的传输块。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述或前述方法侧描述,在此不再赘述。
可选的,频率资源信息包括以下一种或多种的组合:频域资源偏移、频域资源偏移的粒度、频域资源数量差值、频域资源数量差值的粒度、频域资源分配类型。
可选的,第二数据的NDI字段用于指示频域资源偏移的粒度、频域资源数量差值的粒度、频域资源分配类型中的至少一项。
可选的,频域资源偏移为:第二数据的频域资源的起始位置与第一数据的频域资源的截止位置的偏移;或者,第二数据的频域资源的起始位置与第一数据的频域资源的起始位置的偏移;或者,第二数据的频域资源的截止位置与第一数据的频域资源的截止位置的偏移;或者,第二数据的频域资源的截止位置与第一数据的频域资源的起始位置的偏移;或者,第一数据的频域资源的起始位置与第二数据的频域资源的截止位置的偏移;或者,第一数据的频域资源的起始位置与第二数据的频域资源的起始位置的偏移;或者,第一数据的频域资源的截止位置与第二数据的频域资源的截止位置的偏移;或者,第一数据的频域资源的截止位置与第二数据的频域资源的起始位置的 偏移。
可选的,频域资源偏移的粒度或频域资源数量差值的粒度为资源元素RE、资源块RB、资源块组RBG、预编码资源块组PRG或子带。
可选的,频域资源数量差值为第二数据的频域资源数量与第一数据的频域资源数量的差值,或者,第一数据的频域资源数量与第二数据的频域资源数量的差值。
可选的,频域资源偏移或频域资源数量差值通过无线资源控制RRC信令、媒体访问控制控制信元MAC-CE信令或DCI信令进行指示,或者,采用默认值,或者,采用终端设备上报的值。
可选的,第二数据的码率与第一数据相同,调制阶数通过第二组传输参数字段中的MCS字段或者,MCS字段和NDI字段来指示。
可选的,第二数据的调制阶数与第一数据相同,码率通过第二组传输参数字段中的MCS字段或者,MCS字段和NDI字段来指示。
可选的,第二数据采用第一组传输参数字段的NDI字段指示的新数据指示信息。
可选的,第一数据和第二数据可以是以下任意一种:两个码字、两个RV、两个TCI-state对应的数据、两个解调参考信号DMRS端口或端口组对应的数据、两个DMRS端口码分复用CDM组对应的数据、两个TRP传输的数据。
可选的,第一数据的频域资源和第二数据的频域资源分别为一段连续的频域资源,两段连续的频域资源不重复;或者,第一数据和第二数据采用的频域资源数相同的或不同;或者,两段频域资源相连或间隔一定数量的频域资源。
在本实施例中,该通信装置60以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置60可以采用图2所示的终端设备10的形式。
比如,图2所示的终端设备10中的处理器101可以通过调用存储器102中存储的计算机执行指令,使得终端设备10执行上述方法实施例中的信息确定方法。
具体的,图6中的处理模块601和收发模块602的功能/实现过程可以通过图2所示的终端设备10中的处理器101调用存储器102中存储的计算机执行指令来实现。或者,图6中的处理模块601的功能/实现过程可以通过图2所示的终端设备10中的处理器101调用存储器102中存储的计算机执行指令来实现,图6中的收发模块602的功能/实现过程可以通过图2中所示的终端设备10中的收发器103来实现。
由于本实施例提供的通信装置60可执行上述信息确定方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的网络设备为例。图7示出了一种通信装置70的结构示意图。该通信装置70包括处理模块701和收发模块702。收发模块702,也可以称为收发单元,包括发送单元和/或接收单元,例如可以是收发电路、收发机、收发器或者通信接口,用以实现上述方法实施例中网络设备的发送和/或接收功能,例如执行图3中的步骤S302。处理模块701用于进行数据处理,用以实现上述方法实施例中网络设备进行处理的功能,例如执行步骤图3中的步骤S302。
示例性的,处理模块701用于:确定第一指示信息、第二指示信息和下行控制信 息DCI,其中,第一指示信息用于指示单个DCI可调度的最大码字数,第二指示信息用于指示数据传输的方式;其中,如果第一指示信息指示第一条件满足,并且第二指示信息指示第二条件满足,则DCI包括第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段,其中,第一组传输参数字段包括第一数据的调制编码方案MCS字段、新数据指示NDI字段和冗余版本RV字段,第二组传输参数字段包括第二数据的MCS字段、NDI字段和RV字段;第二数据的MCS字段或者,第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数或码率中的一个,第二数据的频率资源信息。
收发模块702用于:向终端设备发送第一指示信息、第二指示信息和DCI。
可选的,第一条件,包括:单个DCI可调度的最大码字数为2。
可选的,第二条件,包括:网络设备在不同的频域资源上分别发送同一数据对应的两个码字。
可选的,处理模块701还用于:如果第一指示信息指示第一条件满足,并且第二指示信息指示第二条件不满足,则确定DCI中第一组传输参数字段和第二组传输参数字段分别对应两个不同的传输块。
可选的,频率资源信息包括以下一种或多种的组合:频域资源偏移、频域资源偏移的粒度、频域资源数量差值、频域资源数量差值的粒度、频域资源分配类型。
可选的,第二数据的NDI字段用于指示频域资源偏移的粒度、频域资源数量差值的粒度、频域资源分配类型中的至少一项。
可选的,频域资源偏移为:第二数据的频域资源的起始位置与第一数据的频域资源的截止位置的偏移;或者,第二数据的频域资源的起始位置与第一数据的频域资源的起始位置的偏移;或者,第二数据的频域资源的截止位置与第一数据的频域资源的截止位置的偏移;或者,第二数据的频域资源的截止位置与第一数据的频域资源的起始位置的偏移;或者,第一数据的频域资源的起始位置与第二数据的频域资源的截止位置的偏移;或者,第一数据的频域资源的起始位置与第二数据的频域资源的起始位置的偏移;或者,第一数据的频域资源的截止位置与第二数据的频域资源的截止位置的偏移;或者,第一数据的频域资源的截止位置与第二数据的频域资源的起始位置的偏移。
可选的,频域资源偏移的粒度或频域资源数量差值的粒度为资源元素RE、资源块RB、资源块组RBG、预编码资源块组PRG或子带。
可选的,频域资源数量差值为第二数据的频域资源数量与第一数据的频域资源数量的差值,或者,第一数据的频域资源数量与第二数据的频域资源数量的差值。
可选的,频域资源偏移或频域资源数量差值通过无线资源控制RRC信令、媒体访问控制控制信元MAC-CE信令或DCI信令进行指示,或者,采用默认值,或者,采用终端设备上报的值。
可选的,第二数据的码率与第一数据相同,调制阶数通过第二组传输参数字段中的MCS字段或者,MCS字段和NDI字段来指示。
可选的,第二数据的调制阶数与第一数据相同,码率通过第二组传输参数字段中的MCS字段或者,MCS字段和NDI字段来指示。
可选的,第二数据采用第一组传输参数字段的NDI字段指示的新数据指示信息。
可选的,第一数据和第二数据可以是以下任意一种:两个码字、两个RV、两个TCI-state对应的数据、两个解调参考信号DMRS端口或端口组对应的数据、两个DMRS端口码分复用CDM组对应的数据、两个TRP传输的数据。
可选的,第一数据的频域资源和第二数据的频域资源分别为一段连续的频域资源,两段连续的频域资源不重复;或者,第一数据和第二数据采用的频域资源数相同的或不同;或者,两段频域资源相连或间隔一定数量的频域资源。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述或前述方法侧描述,在此不再赘述。
在本实施例中,该通信装置70以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置70可以采用图2所示的网络设备20的形式。
比如,图2所示的网络设备20中的处理器2022可以通过调用存储器2021中存储的计算机执行指令,使得网络设备20执行上述方法实施例中的信息确定方法。
具体的,图7中的处理模块701和收发模块702的功能/实现过程可以通过图2所示的网络设备20中的处理器2022调用存储器2021中存储的计算机执行指令来实现。或者,图7中的处理模块701的功能/实现过程可以通过图2所示的网络设备20中的处理器2022调用存储器2021中存储的计算机执行指令来实现,图7中的收发模块702的功能/实现过程可以通过图2中所示的网络设备20中的RRU 201来实现。
由于本实施例提供的通信装置70可执行上述信息确定方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例还提供了一种通信装置,该通信装置包括处理器、存储器和收发器,处理器与存储器耦合,当处理器执行存储器中的计算机程序或指令时,图3所示的信息确定方法被执行。
本申请实施例还提供了一种通信装置,该通信装置包括处理器,处理器与存储器耦合,当处理器执行存储器中的计算机程序或指令时,图3所示的信息确定方法被执行。
本申请实施例还提供了一种芯片,包括:处理器和接口,用于从存储器中调用并运行存储器中存储的计算机程序,执行如图3所示的信息确定方法。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机或处理器上运行时,使得计算机或处理器执行图3中终端设备或网络设备的信息确定方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当指令在计算机或处理器上运行时,使得计算机或处理器执行图3中的终端设备或网络设备的信息确定方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于通信装置执行图3中的终端设备的信息确定方法。例如,从网络设备接收第一指示信息、第二指示信息和下行控制信息DCI,其中,第一指示信息用于指示单个DCI可调度的最大码字数,第二指示信息用于指示数据传输的方式;如果根据第一指示信息确定第一条件满 足,并且根据第二指示信息确定第二条件满足,则从DCI中确定第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段,其中,第一组传输参数字段包括第一数据的调制编码方案MCS字段、新数据指示NDI字段和冗余版本RV字段,第二组传输参数字段包括第二数据的MCS字段、NDI字段和RV字段;其中,第二数据的MCS字段或者,第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数,第二数据采用的码率,第二数据的频率资源信息。
在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于通信装置执行图3中的网络设备的信息确定方法。例如,确定第一指示信息、第二指示信息和下行控制信息DCI,其中,第一指示信息用于指示单个DCI可调度的最大码字数,第二指示信息用于指示数据传输的方式;其中,如果第一指示信息指示第一条件满足,并且第二指示信息指示第二条件满足,则DCI包括第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段,其中,第一组传输参数字段包括第一数据的调制编码方案MCS字段、新数据指示NDI字段和冗余版本RV字段,第二组传输参数字段包括第二数据的MCS字段、NDI字段和RV字段;第二数据的MCS字段或者,第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:第二数据采用的调制阶数或码率中的一个,第二数据的频率资源信息;向终端设备发送第一指示信息、第二指示信息和DCI。
在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的通信装置、芯片、计算机存储介质、计算机程序产品或芯片系统均用于执行上文所述的信息确定方法,因此,其所能达到的有益效果可参考上文所提供的实施方式中的有益效果,此处不再赘述。
本申请实施例涉及的处理器可以是一个芯片。例如,可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例涉及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access  memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中 心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (53)

  1. 一种信息确定方法,其特征在于,包括:
    从网络设备接收第二指示信息;
    根据第二指示信息指示的多个参数确定采用多个传输配置编号状态TCI-state传输同一数据的传输方式;
    所述多个参数至少包括TCI-state的数量,以及同一数据连续传输的次数。
  2. 根据权利要求1所述的方法,其特征在于,所述采用多个TCI-state传输同一数据的传输方式包括:
    采用多个TCI-state在不同时间分别传输同一数据,或者,采用多个TCI-state同时传输同一数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据第二指示信息指示的多个参数确定采用多个传输配置编号状态TCI-state传输同一数据的传输方式,包括:
    如果所述第二指示信息指示TCI-state的数量为2,并且,指示同一数据连续传输的次数大于1,则确定所述传输模式为采用两个TCI-state在不同的时间分别传输同一数据。
  4. 根据权利要求1或2所述的方法,其特征在于,所述根据第二指示信息指示的多个参数确定采用多个传输配置编号状态TCI-state传输同一数据的传输方式,包括:
    如果所述第二指示信息指示TCI-state的数量为2,并且,未指示同一数据连续传输的次数,则确定所述传输模式为采用两个TCI-state同时传输同一数据;
    其中,所述两个TCI-state分别对应一个解调参考信号DMRS端口码分复用CDM组。
  5. 根据权利要求4所述的方法,其特征在于,所述两个TCI-state分别对应一个DMRS CDM组,包括:
    第一个TCI-state对应最小的DMRS端口所在的DMRS CDM组,第二个TCI-state对应另一个DMRS CDM组。
  6. 根据权利要求3所述的方法,其特征在于,在不同的时间传输同一数据的两个TCI-state中,第一个TCI-state用于第一次传输,第二个TCI-state用于第二次传输。
  7. 一种信息确定方法,其特征在于,包括:
    从网络设备接收第一指示信息、第二指示信息和下行控制信息DCI,其中,所述第一指示信息用于指示单个DCI可调度的最大码字数,所述第二指示信息用于指示数据传输的方式;
    如果根据所述第一指示信息确定第一条件满足,并且根据所述第二指示信息确定第二条件满足,则从所述DCI中确定第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段,其中,所述第一组传输参数字段包括所述第一数据的调制编码方案MCS字段、新数据指示NDI字段和冗余版本RV字段,所述第二组传输参数字段包括所述第二数据的MCS字段、NDI字段和RV字段;所述第二数据的MCS字段或者,所述第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:所述第二数据采用的调制阶数,第二数据采用的码率,所述第二数据的频率资源信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一条件,包括:
    单个DCI可调度的最大码字数为2。
  9. 根据权利要求7-8任一项所述的方法,其特征在于,所述第二条件,包括:
    网络设备在不同的频域资源上分别发送同一数据对应的两个码字。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    如果根据所述第一指示信息确定所述第一条件满足,并且根据所述第二指示信息确定所述第二条件不满足,则确定所述DCI中第一组传输参数字段和第二组传输参数字段分别对应两个不同的传输块。
  11. 一种信息确定方法,其特征在于,包括:
    确定第一指示信息、第二指示信息和下行控制信息DCI,其中,所述第一指示信息用于指示单个DCI可调度的最大码字数,所述第二指示信息用于指示数据传输的方式;如果所述第一指示信息指示第一条件满足,并且所述第二指示信息指示第二条件满足,则所述DCI包括第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段,其中,所述第一组传输参数字段包括所述第一数据的调制编码方案MCS字段、新数据指示NDI字段和冗余版本RV字段,所述第二组传输参数字段包括所述第二数据的MCS字段、NDI字段和RV字段;所述第二数据的MCS字段或者,所述第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:所述第二数据采用的调制阶数或码率中的一个,所述第二数据的频率资源信息;
    向终端设备发送所述第一指示信息、第二指示信息和DCI。
  12. 根据权利要求11所述的方法,其特征在于,所述第一条件,包括:
    单个DCI可调度的最大码字数为2。
  13. 根据权利要求11-12任一项所述的方法,其特征在于,所述第二条件,包括:
    网络设备在不同的频域资源上分别发送同一数据对应的两个码字。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    如果所述第一指示信息指示所述第一条件满足,并且所述第二指示信息指示所述第二条件不满足,则确定所述DCI中第一组传输参数字段和第二组传输参数字段分别对应两个不同的传输块。
  15. 根据权利要求7-14任一项所述的方法,其特征在于,所述频率资源信息包括以下一种或多种的组合:频域资源偏移、频域资源偏移的粒度、频域资源数量差值、频域资源数量差值的粒度、频域资源分配类型。
  16. 根据权利要求15所述的方法,其特征在于,所述第二数据的NDI字段用于指示所述频域资源偏移的粒度、所述频域资源数量差值的粒度、所述频域资源分配类型中的至少一项。
  17. 根据权利要求15-16任一项所述的方法,其特征在于,所述频域资源偏移为:所述第二数据的频域资源的起始位置与所述第一数据的频域资源的截止位置的偏移;或者,所述第二数据的频域资源的起始位置与所述第一数据的频域资源的起始位置的偏移;或者,所述第二数据的频域资源的截止位置与所述第一数据的频域资源的截止位置的偏移;或者,所述第二数据的频域资源的截止位置与所述第一数据的频域资源的起始位置的偏移;或者,所述第一数据的频域资源的起始位置与所述第二数据的频 域资源的截止位置的偏移;或者,所述第一数据的频域资源的起始位置与所述第二数据的频域资源的起始位置的偏移;或者,所述第一数据的频域资源的截止位置与所述第二数据的频域资源的截止位置的偏移;或者,所述第一数据的频域资源的截止位置与所述第二数据的频域资源的起始位置的偏移。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,所述频域资源偏移的粒度或所述频域资源数量差值的粒度为资源元素RE、资源块RB、资源块组RBG、预编码资源块组PRG或子带。
  19. 根据权利要求15-18任一项所述的方法,其特征在于,所述频域资源数量差值为所述第二数据的频域资源数量与所述第一数据的频域资源数量的差值,或者,所述第一数据的频域资源数量与所述第二数据的频域资源数量的差值。
  20. 根据权利要求15-19任一项所述的方法,其特征在于,所述频域资源偏移或所述频域资源数量差值通过无线资源控制RRC信令、媒体访问控制控制信元MAC-CE信令或DCI信令进行指示,或者,采用默认值,或者,采用终端设备上报的值。
  21. 根据权利要求7-20任一项所述的方法,其特征在于,所述第二数据的码率与第一数据相同,调制阶数通过第二组传输参数字段中的MCS字段或者,MCS字段和NDI字段来指示。
  22. 根据权利要求7-20任一项所述的方法,其特征在于,所述第二数据的调制阶数与第一数据相同,码率通过第二组传输参数字段中的MCS字段或者,MCS字段和NDI字段来指示。
  23. 根据权利要求7-22任一项所述的方法,其特征在于,所述第二数据采用所述第一组传输参数字段的NDI字段指示的新数据指示信息。
  24. 根据权利要求7-23任一项所述的方法,其特征在于,所述第一数据和所述第二数据可以是以下任意一种:两个码字、两个RV、两个TCI-state对应的数据、两个解调参考信号DMRS端口或端口组对应的数据、两个DMRS端口码分复用CDM组对应的数据、两个TRP传输的数据。
  25. 根据权利要求7-24任一项所述的方法,其特征在于,所述第一数据的频域资源和所述第二数据的频域资源分别为一段连续的频域资源,两段连续的频域资源不重复;或者,所述第一数据和所述第二数据采用的频域资源数相同的或不同;或者,两段频域资源相连或间隔一定数量的频域资源。
  26. 一种通信装置,其特征在于,包括:
    收发模块,用于从网络设备接收第二指示信息;
    处理模块,用于根据第二指示信息指示的多个参数确定采用多个传输配置编号状态TCI-state传输同一数据的传输方式;
    所述多个参数至少包括TCI-state的数量,以及同一数据连续传输的次数。
  27. 根据权利要求26所述的通信装置,其特征在于,所述采用多个TCI-state传输同一数据的传输方式包括:
    采用多个TCI-state在不同时间分别传输同一数据,或者,采用多个TCI-state同时传输同一数据。
  28. 根据权利要求26或27所述的通信装置,其特征在于,所述处理模块,具体 用于:
    如果所述第二指示信息指示TCI-state的数量为2,并且,指示同一数据连续传输的次数大于1,则确定所述传输模式为采用两个TCI-state在不同的时间分别传输同一数据。
  29. 根据权利要求26或27所述的通信装置,其特征在于,所述处理模块,具体用于:
    如果所述第二指示信息指示TCI-state的数量为2,并且,未指示同一数据连续传输的次数,则确定所述传输模式为采用两个TCI-state同时传输同一数据;
    其中,所述两个TCI-state分别对应一个解调参考信号DMRS端口码分复用CDM组。
  30. 根据权利要求29所述的通信装置,其特征在于,所述两个TCI-state分别对应一个DMRS CDM组,包括:
    第一个TCI-state对应最小的DMRS端口所在的DMRS CDM组,第二个TCI-state对应另一个DMRS CDM组。
  31. 根据权利要求28所述的通信装置,其特征在于,在不同的时间传输同一数据的两个TCI-state中,第一个TCI-state用于第一次传输,第二个TCI-state用于第二次传输。
  32. 一种通信装置,其特征在于,包括:
    收发模块,用于从网络设备接收第一指示信息、第二指示信息和下行控制信息DCI,其中,所述第一指示信息用于指示单个DCI可调度的最大码字数,所述第二指示信息用于指示数据传输的方式;
    处理模块,用于如果根据所述第一指示信息确定第一条件满足,并且根据所述第二指示信息确定第二条件满足,则从所述DCI中确定第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段,其中,所述第一组传输参数字段包括所述第一数据的调制编码方案MCS字段、新数据指示NDI字段和冗余版本RV字段,所述第二组传输参数字段包括所述第二数据的MCS字段、NDI字段和RV字段;所述第二数据的MCS字段或者,所述第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:所述第二数据采用的调制阶数,第二数据采用的码率,所述第二数据的频率资源信息。
  33. 根据权利要求32所述的通信装置,其特征在于,所述第一条件,包括:
    单个DCI可调度的最大码字数为2。
  34. 根据权利要求32-33任一项所述的通信装置,其特征在于,所述第二条件,包括:
    网络设备在不同的频域资源上分别发送同一数据对应的两个码字。
  35. 根据权利要求34所述的通信装置,其特征在于,所述处理模块,还用于:
    如果根据所述第一指示信息确定所述第一条件满足,并且根据所述第二指示信息确定所述第二条件不满足,则确定所述DCI中第一组传输参数字段和第二组传输参数字段分别对应两个不同的传输块。
  36. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一指示信息、第二指示信息和下行控制信息DCI,其中,所述第一指示信息用于指示单个DCI可调度的最大码字数,所述第二指示信息用于指示数据传输的方式;如果所述第一指示信息指示第一条件满足,并且所述第二指示信息指示第二条件满足,则所述DCI包括第一数据对应的第一组传输参数字段和第二数据对应的第二组传输参数字段,其中,所述第一组传输参数字段包括所述第一数据的调制编码方案MCS字段、新数据指示NDI字段和冗余版本RV字段,所述第二组传输参数字段包括所述第二数据的MCS字段、NDI字段和RV字段;所述第二数据的MCS字段或者,所述第二数据的MCS字段和NDI字段用于指示以下信息中的一种或多种的组合:所述第二数据采用的调制阶数或码率中的一个,所述第二数据的频率资源信息;
    收发模块,用于向终端设备发送所述第一指示信息、第二指示信息和DCI。
  37. 根据权利要求36所述的通信装置,其特征在于,所述第一条件,包括:
    单个DCI可调度的最大码字数为2。
  38. 根据权利要求36-37任一项所述的通信装置,其特征在于,所述第二条件,包括:
    网络设备在不同的频域资源上分别发送同一数据对应的两个码字。
  39. 根据权利要求38所述的通信装置,其特征在于,所述处理模块,还用于:
    如果所述第一指示信息指示所述第一条件满足,并且所述第二指示信息指示所述第二条件不满足,则确定所述DCI中第一组传输参数字段和第二组传输参数字段分别对应两个不同的传输块。
  40. 根据权利要求32-39任一项所述的通信装置,其特征在于,所述频率资源信息包括以下一种或多种的组合:频域资源偏移、频域资源偏移的粒度、频域资源数量差值、频域资源数量差值的粒度、频域资源分配类型。
  41. 根据权利要求40所述的通信装置,其特征在于,所述第二数据的NDI字段用于指示所述频域资源偏移的粒度、所述频域资源数量差值的粒度、所述频域资源分配类型中的至少一项。
  42. 根据权利要求40-41任一项所述的通信装置,其特征在于,所述频域资源偏移为:所述第二数据的频域资源的起始位置与所述第一数据的频域资源的截止位置的偏移;或者,所述第二数据的频域资源的起始位置与所述第一数据的频域资源的起始位置的偏移;或者,所述第二数据的频域资源的截止位置与所述第一数据的频域资源的截止位置的偏移;或者,所述第二数据的频域资源的截止位置与所述第一数据的频域资源的起始位置的偏移;或者,所述第一数据的频域资源的起始位置与所述第二数据的频域资源的截止位置的偏移;或者,所述第一数据的频域资源的起始位置与所述第二数据的频域资源的起始位置的偏移;或者,所述第一数据的频域资源的截止位置与所述第二数据的频域资源的截止位置的偏移;或者,所述第一数据的频域资源的截止位置与所述第二数据的频域资源的起始位置的偏移。
  43. 根据权利要求40-42任一项所述的通信装置,其特征在于,所述频域资源偏移的粒度或所述频域资源数量差值的粒度为资源元素RE、资源块RB、资源块组RBG、预编码资源块组PRG或子带。
  44. 根据权利要求40-43任一项所述的通信装置,其特征在于,所述频域资源数量差值为所述第二数据的频域资源数量与所述第一数据的频域资源数量的差值,或者,所述第一数据的频域资源数量与所述第二数据的频域资源数量的差值。
  45. 根据权利要求40-44任一项所述的通信装置,其特征在于,所述频域资源偏移或所述频域资源数量差值通过无线资源控制RRC信令、媒体访问控制控制信元MAC-CE信令或DCI信令进行指示,或者,采用默认值,或者,采用终端设备上报的值。
  46. 根据权利要求32-45任一项所述的通信装置,其特征在于,所述第二数据的码率与第一数据相同,调制阶数通过第二组传输参数字段中的MCS字段或者,MCS字段和NDI字段来指示。
  47. 根据权利要求32-45任一项所述的通信装置,其特征在于,所述第二数据的调制阶数与第一数据相同,码率通过第二组传输参数字段中的MCS字段或者,MCS字段和NDI字段来指示。
  48. 根据权利要求32-47任一项所述的通信装置,其特征在于,所述第二数据采用所述第一组传输参数字段的NDI字段指示的新数据指示信息。
  49. 根据权利要求32-48任一项所述的通信装置,其特征在于,所述第一数据和所述第二数据可以是以下任意一种:两个码字、两个RV、两个TCI-state对应的数据、两个解调参考信号DMRS端口或端口组对应的数据、两个DMRS端口码分复用CDM组对应的数据、两个TRP传输的数据。
  50. 根据权利要求32-49任一项所述的通信装置,其特征在于,所述第一数据的频域资源和所述第二数据的频域资源分别为一段连续的频域资源,两段连续的频域资源不重复;或者,所述第一数据和所述第二数据采用的频域资源数相同的或不同;或者,两段频域资源相连或间隔一定数量的频域资源。
  51. 一种通信装置,其特征在于,所述通信装置包括处理器、存储器和收发器,所述处理器与所述存储器耦合,当所述处理器执行存储器中的计算机程序或指令时,权利要求1-10、15-25中任一项所述的方法被执行。
  52. 一种通信装置,其特征在于,所述通信装置包括处理器、存储器和收发器,所述处理器与所述存储器耦合,当所述处理器执行存储器中的计算机程序或指令时,权利要求11-25中任一项所述的方法被执行。
  53. 一种芯片,其特征在于,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行如权利要求1-25中任一项所述的方法。
PCT/CN2020/109009 2019-08-14 2020-08-13 信息确定方法和装置 WO2021027898A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20852662.4A EP3840507A4 (en) 2019-08-14 2020-08-13 Information determination method and apparatus
BR112022002554A BR112022002554A2 (pt) 2019-08-14 2020-08-13 Método de determinação de informações e aparelho
US17/217,859 US20210219302A1 (en) 2019-08-14 2021-03-30 Information Determining Method And Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910748550.4A CN112398604B (zh) 2019-08-14 2019-08-14 信息确定方法和装置
CN201910748550.4 2019-08-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/217,859 Continuation US20210219302A1 (en) 2019-08-14 2021-03-30 Information Determining Method And Apparatus

Publications (1)

Publication Number Publication Date
WO2021027898A1 true WO2021027898A1 (zh) 2021-02-18

Family

ID=74569348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109009 WO2021027898A1 (zh) 2019-08-14 2020-08-13 信息确定方法和装置

Country Status (5)

Country Link
US (1) US20210219302A1 (zh)
EP (1) EP3840507A4 (zh)
CN (2) CN115134058A (zh)
BR (1) BR112022002554A2 (zh)
WO (1) WO2021027898A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213343A1 (en) * 2021-04-09 2022-10-13 Zte Corporation Dynamic resource scheduling in wireless communications

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023281675A1 (zh) * 2021-07-07 2023-01-12
EP4369829A1 (en) * 2021-07-07 2024-05-15 Ntt Docomo, Inc. Terminal, wireless communication method, and base station
CN114466470A (zh) * 2021-12-27 2022-05-10 华为技术有限公司 信号处理设备及数据传输方法
CN117879773A (zh) * 2022-09-30 2024-04-12 大唐移动通信设备有限公司 确定控制信息的方法、终端设备及网络设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587793A (zh) * 2017-09-29 2019-04-05 维沃移动通信有限公司 Tci状态更新方法、基站及终端
US20190149365A1 (en) * 2018-01-12 2019-05-16 Intel Corporation Time domain resource allocation for mobile communication
WO2019143900A1 (en) * 2018-01-19 2019-07-25 Ntt Docomo, Inc. User equipment in wireless communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2760570T3 (es) * 2008-07-22 2020-05-14 Lg Electronics Inc Método para asignar un PHICH y generar una señal de referencia en un sistema que usa MIMO de usuario único basado en múltiples palabras de código en una transmisión de enlace ascendente
JP5108035B2 (ja) * 2010-01-06 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動局装置及び制御情報送信方法
US11317396B2 (en) * 2019-05-14 2022-04-26 Qualcomm Incorporated PDSCH/PUSCH repetition enhancements for URLLC

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587793A (zh) * 2017-09-29 2019-04-05 维沃移动通信有限公司 Tci状态更新方法、基站及终端
US20190149365A1 (en) * 2018-01-12 2019-05-16 Intel Corporation Time domain resource allocation for mobile communication
WO2019143900A1 (en) * 2018-01-19 2019-07-25 Ntt Docomo, Inc. User equipment in wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Reliability/Robustness Enhancement with Multi-TRP/Panel", 3GPP DRAFT; R1-1906039, vol. RAN WG1, 3 May 2019 (2019-05-03), Reno, USA, pages 1 - 10, XP051708081 *
HUAWEI; HISILICON: "Summary of AI: 7.2.8.2 Enhancements on Multi-TRP/Panel Transmission of Offline Discussion", SUMMARY OF AI: 7.2.8.2 ENHANCEMENTS ON MULTI-TRP/PANEL TRANSMISSION OF OFFLINE DISCUSSION,, vol. RAN WG1, 16 May 2019 (2019-05-16), Reno USA, pages 1 - 66, XP051739989 *
See also references of EP3840507A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213343A1 (en) * 2021-04-09 2022-10-13 Zte Corporation Dynamic resource scheduling in wireless communications

Also Published As

Publication number Publication date
CN112398604B (zh) 2022-05-13
CN112398604A (zh) 2021-02-23
CN115134058A (zh) 2022-09-30
EP3840507A4 (en) 2021-12-29
US20210219302A1 (en) 2021-07-15
EP3840507A1 (en) 2021-06-23
BR112022002554A2 (pt) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2021027898A1 (zh) 信息确定方法和装置
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
EP3512282B1 (en) Method for transmitting information, terminal device, and network device
WO2019029473A1 (zh) 传输数据的方法、终端设备和网络设备
CN110431815B (zh) 终端及通信方法
CN109428680B (zh) 发送或接收上行数据的方法和装置
CN108631815B (zh) 数据传输方法、网络设备及终端设备
JP7287494B2 (ja) 信号送受信方法、装置及びシステム
WO2019028771A1 (zh) 传输数据的方法和终端设备
CN113068259B (zh) 无线通信方法和设备
US20220095287A1 (en) Information Sending Method and Apparatus and Information Receiving Method and Apparatus
US20230088374A1 (en) Buffer determining method and apparatus
KR20200050849A (ko) 무선 통신 시스템에서 무선 자원 할당을 위한 방법 및 장치
CN110611938B (zh) 通信方法和装置
WO2020087545A1 (zh) 一种上行控制信息确定方法和通信设备
WO2020164573A1 (zh) 传输方法、接收方法、终端及网络设备
WO2020143743A1 (zh) 接收数据的方法和装置
WO2020155180A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019178736A1 (zh) 控制信息的接收和发送方法、装置及通信系统
CN111436108A (zh) 一种功率控制的方法以及功率控制的装置
WO2022077792A1 (zh) 一种通信方法和装置
WO2023004718A1 (zh) 信息反馈方法、装置、设备及存储介质
WO2023131067A1 (zh) 一种频域资源配置方法及装置、通信设备
US20220272678A1 (en) Sidelink Data Packet Sending and Receiving Method and Communication Apparatus
WO2022206283A1 (zh) 一种通信方法和设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020852662

Country of ref document: EP

Effective date: 20210318

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022002554

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022002554

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220210