WO2022206283A1 - 一种通信方法和设备 - Google Patents

一种通信方法和设备 Download PDF

Info

Publication number
WO2022206283A1
WO2022206283A1 PCT/CN2022/079300 CN2022079300W WO2022206283A1 WO 2022206283 A1 WO2022206283 A1 WO 2022206283A1 CN 2022079300 W CN2022079300 W CN 2022079300W WO 2022206283 A1 WO2022206283 A1 WO 2022206283A1
Authority
WO
WIPO (PCT)
Prior art keywords
uci
bits
code rate
physical uplink
uplink channel
Prior art date
Application number
PCT/CN2022/079300
Other languages
English (en)
French (fr)
Inventor
李军
焦淑蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206283A1 publication Critical patent/WO2022206283A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and device.
  • uplink control information corresponding to different services needs to be multiplexed onto the same resource for transmission.
  • the main scenarios in the fifth generation mobile communication system (5th generation) include enhanced mobile broadband (eMBB), low-latency, high-reliability communication (URLLC), massive machine-type communication ( These scenarios of massive machine type communication, mMTC) put forward high reliability, low latency, large bandwidth, wide coverage and other requirements for the system.
  • eMBB enhanced mobile broadband
  • URLLC high-reliability communication
  • mMTC massive machine-type communication
  • PUCCH physical uplink control channel
  • the present application provides a communication method and device, which can ensure the transmission of as many UCIs as possible when multiple independently coded UCIs are multiplexed into the same physical uplink channel.
  • the present application provides a communication method, including: receiving indication information, where the indication information is used to indicate a first code rate and a second code rate; determining the first uplink control information UCI to be carried by the physical uplink channel and the first Two UCIs, the first UCI and the second UCI are independently encoded, the first code rate corresponds to the first UCI, and the second code rate corresponds to the second UCI; according to the resources of the physical uplink channel, the The first UCI and the second UCI determine a third code rate; when the third code rate is greater than the first threshold, send all bits of the first UCI and bits of the second UCI through the physical uplink channel.
  • the transmission mode of the second UCI is determined, that is, all bits or part of the bits of the second UCI or the second UCI after processing is transmitted, In this way, more bits of the second UCI can be transmitted as much as possible, so as to avoid the performance degradation of the scene corresponding to the second UCI caused by the current terminal device just blindly discarding or binding some bits of the second UCI. .
  • the code rate for enabling the transmission of the second UCI will not be increased indefinitely, and it will not cause the network device to be unable to decode the second UCI because the code rate is too high. Ensure the performance of physical uplink channel transmission as much as possible.
  • the first threshold is greater than or equal to the second code rate.
  • the fact that the first threshold is greater than or equal to the second code rate means that when the third code rate is greater than the second code rate and less than the first threshold, the second code rate may be increased to transmit the second code rate. All bits of the UCI ensure the transmission accuracy of the second UCI.
  • the first threshold is predefined or indicated by a network device.
  • the number of bits of the second UCI the number of bits of the cyclic redundancy check of the second UCI, the number of bits of the first UCI, the number of bits of the first UCI
  • the number of bits of the CRC and the resources of the physical uplink channel determine the third code rate.
  • the third code rate satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • E tot is the length of the total rate matching output sequence
  • E UCI-L is the length of the rate matching output sequence corresponding to the second UCI
  • O 2 is the number of bits of the second UCI
  • O CRC2 is the length of the second UCI
  • the code rate of the second UCI is the third code rate
  • the third code rate can be smaller than the first threshold at this time, then all the bits of the second UCI can be transmitted, compared to the current transmission that can only transmit a part of the bits of the second UCI or bind a part of the bits of the second UCI.
  • the embodiment of the present application can ensure the accuracy of the transmission of the second UCI as much as possible.
  • the priority of the first UCI is higher than the priority of the second UCI.
  • the present application provides a communication method, including: sending indication information, where the indication information is used to indicate a first code rate and a second code rate; determining the first uplink control information UCI to be carried by the physical uplink channel and the first Two UCIs, the first UCI and the second UCI are independently encoded, the first code rate corresponds to the first UCI, and the second code rate corresponds to the second UCI; according to the resources of the physical uplink channel, the The first UCI and the second UCI determine a third code rate; when the third code rate is greater than a first threshold, receive all bits of the first UCI and bits of the second UCI through the physical uplink channel Part of the bits, or receive all the bits of the first UCI and the second UCI that has undergone bit AND processing; or, when the third code rate is less than or equal to the first threshold, receive the second UCI through the physical uplink channel All bits of the UCI and all bits of the first UCI.
  • the transmission mode of the second UCI is determined, that is, all bits or part of the bits of the second UCI or the second UCI after processing is transmitted, In this way, more bits of the second UCI can be transmitted as much as possible, so as to avoid the performance degradation of the scene corresponding to the second UCI caused by the current terminal device just blindly discarding or binding some bits of the second UCI. .
  • the code rate for enabling the transmission of the second UCI will not be increased indefinitely, and it will not cause the network device to be unable to decode the second UCI because the code rate is too high. Ensure the performance of physical uplink channel transmission as much as possible.
  • the first threshold is greater than or equal to the second code rate.
  • the fact that the first threshold is greater than or equal to the second code rate means that when the third code rate is greater than the second code rate and less than the first threshold, the second code rate may be increased to transmit the second code rate. All bits of the UCI ensure the transmission accuracy of the second UCI.
  • the first threshold is predefined.
  • the number of bits of the second UCI the number of bits of the cyclic redundancy check of the second UCI, the number of bits of the first UCI, the number of bits of the first UCI
  • the number of bits of the CRC and the resources of the physical uplink channel determine the third code rate.
  • the third code rate satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • E tot is the length of the total rate matching output sequence
  • E UCI-L is the length of the rate matching output sequence corresponding to the second UCI
  • O 2 is the number of bits of the second UCI
  • O CRC2 is the length of the second UCI
  • the code rate of the second UCI is the third code rate
  • the third code rate can be smaller than the first threshold at this time, then all the bits of the second UCI can be transmitted, compared to the current transmission that can only transmit a part of the bits of the second UCI or bind a part of the bits of the second UCI.
  • the embodiment of the present application can ensure the accuracy of the transmission of the second UCI as much as possible.
  • the priority of the first UCI is higher than the priority of the second UCI.
  • a terminal device comprising: a receiving unit, where the receiving unit is configured to receive indication information, where the indication information is used to indicate a first code rate and a second code rate; a processing unit, the The processing unit is used to determine the first uplink control information UCI and the second UCI to be carried by the physical uplink channel, the first UCI and the second UCI are independently encoded, the first code rate corresponds to the first UCI, the The second code rate corresponds to the second UCI; the processing unit is further configured to determine a third code rate according to the resources of the physical uplink channel, the first UCI and the second UCI; the sending unit, when the first UCI If the code rate is greater than the first threshold, the sending unit is configured to send all the bits of the first UCI and some bits of the second UCI, or send all the bits and the first UCI through the physical uplink channel.
  • the second UCI that has undergone bit AND processing; or, when the third code rate is less than or equal to the first threshold, the sending unit is
  • the transmission mode of the second UCI is determined, that is, all bits or part of the bits of the second UCI or the second UCI after processing is transmitted, In this way, more bits of the second UCI can be transmitted as much as possible, so as to avoid the performance degradation of the scene corresponding to the second UCI caused by the current terminal device just blindly discarding or binding some bits of the second UCI. .
  • the code rate for enabling the transmission of the second UCI will not be increased indefinitely, and it will not cause the network device to be unable to decode the second UCI because the code rate is too high. Ensure the performance of physical uplink channel transmission as much as possible.
  • the first threshold is greater than or equal to the second code rate.
  • the fact that the first threshold is greater than or equal to the second code rate means that when the third code rate is greater than the second code rate and less than the first threshold, the second code rate may be increased to transmit the second code rate. All bits of the UCI ensure the transmission accuracy of the second UCI.
  • the first threshold is predefined or indicated by a network device.
  • the processing unit is further configured to, according to the number of bits of the second UCI, the number of bits of the cyclic redundancy check of the second UCI, and the number of bits of the first UCI .
  • the number of bits of the cyclic redundancy code check of the first UCI and the resources of the physical uplink channel determine the third code rate.
  • the third code rate satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • E tot is the length of the total rate matching output sequence
  • E UCI-L is the length of the rate matching output sequence corresponding to the second UCI
  • O 2 is the number of bits of the second UCI
  • O CRC2 is the length of the second UCI
  • the code rate of the second UCI is the third code rate
  • the third code rate can be smaller than the first threshold at this time, then all the bits of the second UCI can be transmitted, compared to the current transmission that can only transmit a part of the bits of the second UCI or bind a part of the bits of the second UCI.
  • the embodiment of the present application can ensure the accuracy of the transmission of the second UCI as much as possible.
  • the priority of the first UCI is higher than the priority of the second UCI.
  • the present application provides a network device, comprising: a sending unit, where the sending unit is configured to send indication information, where the indication information is used to indicate a first code rate and a second code rate; a processing unit, the processing unit The unit is used to determine the first uplink control information UCI and the second UCI to be carried by the physical uplink channel, the first UCI and the second UCI are independently encoded, the first code rate corresponds to the first UCI, the second The code rate corresponds to the second UCI; the processing unit is further configured to determine a third code rate according to the resources of the physical uplink channel, the first UCI and the second UCI; the receiving unit, when the third code If the rate is greater than the first threshold, the receiving unit is configured to receive all the bits of the first UCI and some bits of the second UCI through the physical uplink channel, or receive all the bits of the first UCI and the passed bits and the processed second UCI; or, when the third code rate is less than or equal to the first threshold, the receiving unit is configured
  • the transmission mode of the second UCI is determined, that is, all or part of the bits of the second UCI or the second UCI after processing is transmitted, In this way, more bits of the second UCI can be transmitted as much as possible, so as to avoid the performance degradation of the scene corresponding to the second UCI caused by the current terminal device just blindly discarding or binding some bits of the second UCI. .
  • the code rate for enabling the transmission of the second UCI will not be increased indefinitely, and it will not cause the network device to be unable to decode the second UCI because the code rate is too high. Ensure the performance of physical uplink channel transmission as much as possible.
  • the first threshold is greater than or equal to the second code rate.
  • the fact that the first threshold is greater than or equal to the second code rate means that when the third code rate is greater than the second code rate and less than the first threshold, the second code rate may be increased to transmit the second code rate. All bits of the UCI ensure the transmission accuracy of the second UCI.
  • the first threshold is predefined.
  • the processing unit is further configured to, according to the number of bits of the second UCI, the number of bits of the cyclic redundancy check of the second UCI, and the number of bits of the first UCI .
  • the number of bits of the cyclic redundancy code check of the first UCI and the resources of the physical uplink channel determine the third code rate.
  • the third code rate satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • E tot is the length of the total rate matching output sequence
  • E UCI-L is the length of the rate matching output sequence corresponding to the second UCI
  • O 2 is the number of bits of the second UCI
  • O CRC2 is the length of the second UCI
  • the code rate of the second UCI is the third code rate
  • the third code rate can be smaller than the first threshold at this time, then all the bits of the second UCI can be transmitted, compared to the current transmission that can only transmit a part of the bits of the second UCI or bind a part of the bits of the second UCI.
  • the embodiment of the present application can ensure the accuracy of the transmission of the second UCI as much as possible.
  • the priority of the first UCI is higher than the priority of the second UCI.
  • the present application provides a communication method, including: receiving indication information, where the indication information is used to indicate a first code rate and a second code rate; determining the first uplink control information UCI to be carried by the physical uplink channel and The second UCI, the first UCI and the second UCI are independently encoded, the first code rate corresponds to the first UCI, and the second code rate corresponds to the second UCI; A code rate, the second UCI, and the second code rate determine a second resource; the number of RBs in the resource block of the second resource is less than or equal to the number of RBs in the physical uplink channel, and in the second resource transmit all bits of the first UCI and all bits of the second UCI; or, the number of resource block RBs of the second resource is greater than the number of RBs in the physical uplink channel, and on the physical uplink channel All bits of the first UCI are transmitted, and all or part of the bits of the second UCI are transmitted on the physical uplink channel, or the second UCI that has
  • the second resource can be determined based on the comparison between the number of RBs in the resource block of the second resource and the number of RBs in the physical uplink channel, and on the basis of ensuring that all bits of the first UCI are transmitted.
  • the transmission mode of UCI that is, transmitting all bits or part of the bits of the second UCI or transmitting the second UCI that has undergone bit sum processing, compared to currently only blindly transmitting part of the bits or the bits of the second UCI
  • With the processed second UCI in this way, more bits of the second UCI can be transmitted as much as possible, so that the transmission performance of the physical uplink channel can be guaranteed as much as possible.
  • the number of bits of the first UCI the number of bits of the cyclic redundancy check of the first UCI, the first code rate, and the number of bits of the second UCI , the number of bits of the cyclic redundancy code check of the second UCI, and the second code rate to determine the second resource.
  • the number of resource blocks RBs of the second resource satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • O 2 is the number of bits of the second UCI
  • 0 CRC2 is the number of bits of the cyclic redundancy check of the second UCI
  • r 2 is the second code rate
  • the minimum number of RBs required to transmit the first UCI is the minimum number of RBs required to transmit the second UCI
  • the minimum number of RBs required to transmit the second UCI is the number of symbols that can be used to carry UCI
  • is the number of resource element REs that can be used to carry UCI in one RB is the number of resource blocks RB of the second resource.
  • the number of resource blocks RBs of the second resource can be accurately calculated, and on the basis of the above effects, it is beneficial to more accurately determine the number of resource blocks RBs of the second resource and the number of RBs in the physical uplink channel size relationship.
  • the number of resource blocks RBs of the second resource satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • O 2 is the number of bits of the second UCI
  • 0 CRC2 is the number of bits of the cyclic redundancy check of the second UCI
  • r 2 is the second code rate
  • is the number of resource blocks RBs of the second resource is the number of symbols that can be used to carry UCI in one RB
  • the number of resource blocks RBs of the second resource can be accurately calculated, and on the basis of the above effects, it is beneficial to more accurately determine the number of resource blocks RBs of the second resource and the number of RBs in the physical uplink channel size relationship.
  • the priority of the first UCI is higher than the priority of the second UCI.
  • the present application provides a communication method, including: sending indication information, where the indication information is used to indicate a first code rate and a second code rate; determining the first uplink control information UCI and The second UCI, the first UCI and the second UCI are independently encoded, the first code rate corresponds to the first UCI, and the second code rate corresponds to the second UCI; according to the first UCI, the second UCI A code rate, the second UCI, and the second code rate determine a second resource; the number of RBs in the resource block of the second resource is less than or equal to the number of RBs in the physical uplink channel, and in the second resource transmit all bits of the first UCI and all bits of the second UCI; or, the number of resource block RBs of the second resource is greater than the number of RBs in the physical uplink channel, and on the physical uplink channel All bits of the first UCI are transmitted, and all or part of the bits of the second UCI are transmitted on the physical uplink channel, or the second UCI
  • the second resource can be determined based on the comparison between the number of RBs in the resource block of the second resource and the number of RBs in the physical uplink channel, and on the basis of ensuring that all bits of the first UCI are transmitted.
  • the transmission mode of UCI that is, to transmit all or some of the bits of the second UCI, or to transmit the second UCI that has undergone bit-sum processing, is compared to only blindly transmitting part of the bits or the bits of the second UCI at present. With the processed second UCI, in this way, more bits of the second UCI can be transmitted as much as possible, so that the transmission performance of the physical uplink channel can be guaranteed as much as possible.
  • the number of bits of the first UCI the number of bits of the cyclic redundancy check of the first UCI, the first code rate, and the number of bits of the second UCI , the number of bits of the cyclic redundancy code check of the second UCI, and the second code rate to determine the second resource.
  • the number of resource blocks RBs of the second resource satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • O 2 is the number of bits of the second UCI
  • 0 CRC2 is the number of bits of the cyclic redundancy check of the second UCI
  • r 2 is the second code rate
  • the minimum number of RBs required to transmit the first UCI is the minimum number of RBs required to transmit the second UCI
  • the minimum number of RBs required to transmit the second UCI is the number of symbols that can be used to carry UCI
  • is the number of resource element REs that can be used to carry UCI in one RB is the number of resource blocks RB of the second resource.
  • the number of resource blocks RBs of the second resource can be accurately calculated, and on the basis of the above effects, it is beneficial to more accurately determine the number of resource blocks RBs of the second resource and the number of RBs in the physical uplink channel size relationship.
  • the number of resource blocks RBs of the second resource satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • O 2 is the number of bits of the second UCI
  • 0 CRC2 is the number of bits of the cyclic redundancy check of the second UCI
  • r 2 is the second code rate
  • is the number of resource blocks RBs of the second resource is the number of symbols that can be used to carry UCI in one RB
  • the number of resource blocks RBs of the second resource can be accurately calculated, and on the basis of the above effects, it is beneficial to more accurately determine the number of resource blocks RBs of the second resource and the number of RBs in the physical uplink channel size relationship.
  • the priority of the first UCI is higher than the priority of the second UCI.
  • the present application provides a terminal device, comprising: a receiving unit, the receiving unit is configured to receive indication information, the indication information is used to indicate a first code rate and a second code rate; a processing unit, the The processing unit is configured to determine the first uplink control information UCI and the second UCI to be carried by the physical uplink channel, the first UCI and the second UCI are independently encoded, the first code rate corresponds to the first UCI, and the first UCI and the second UCI are independently encoded.
  • the second code rate corresponds to the second UCI; the processing unit is further configured to determine the second resource according to the first UCI, the first code rate, the second UCI, and the second code rate; the sending unit, the The number of RBs in the resource block of the second resource is less than or equal to the number of RBs in the physical uplink channel, and the sending unit is configured to transmit all bits of the first UCI and the second UCI on the second resource or, the number of RBs in the resource block of the second resource is greater than the number of RBs in the physical uplink channel, and the sending unit is configured to transmit all the bits of the first UCI on the physical uplink channel, All bits or part of the bits of the second UCI or the second UCI subjected to bit AND processing is transmitted on the physical uplink channel.
  • the second resource can be determined based on the comparison between the number of RBs in the resource block of the second resource and the number of RBs in the physical uplink channel, and on the basis of ensuring that all bits of the first UCI are transmitted.
  • the transmission mode of UCI that is, to transmit all or some of the bits of the second UCI, or to transmit the second UCI that has undergone bit-sum processing, is compared to only blindly transmitting part of the bits or the bits of the second UCI at present. With the processed second UCI, in this way, more bits of the second UCI can be transmitted as much as possible, so that the transmission performance of the physical uplink channel can be guaranteed as much as possible.
  • the processing unit is further configured to, according to the number of bits of the first UCI, the number of bits of the cyclic redundancy check of the first UCI, the first code rate,
  • the second resource is determined by the number of bits of the second UCI, the number of bits of the cyclic redundancy check of the second UCI, and the second code rate.
  • the number of resource blocks RBs of the second resource satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • O 2 is the number of bits of the second UCI
  • 0 CRC2 is the number of bits of the cyclic redundancy check of the second UCI
  • r 2 is the second code rate
  • the minimum number of RBs required to transmit the first UCI is the minimum number of RBs required to transmit the second UCI
  • the minimum number of RBs required to transmit the second UCI is the number of symbols that can be used to carry UCI
  • is the number of resource element REs that can be used to carry UCI in one RB is the number of resource blocks RB of the second resource.
  • the number of resource blocks RBs of the second resource can be accurately calculated, and on the basis of the above effects, it is beneficial to more accurately determine the number of resource blocks RBs of the second resource and the number of RBs in the physical uplink channel size relationship.
  • the number of resource blocks RBs of the second resource satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • O 2 is the number of bits of the second UCI
  • 0 CRC2 is the number of bits of the cyclic redundancy check of the second UCI
  • r 2 is the second code rate
  • is the number of resource blocks RBs of the second resource is the number of symbols that can be used to carry UCI in one RB
  • the number of resource blocks RBs of the second resource can be accurately calculated, and on the basis of the above effects, it is beneficial to more accurately determine the number of resource blocks RBs of the second resource and the number of RBs in the physical uplink channel size relationship.
  • the priority of the first UCI is higher than the priority of the second UCI.
  • the present application provides a network device, comprising: a sending unit, where the sending unit is configured to send indication information, where the indication information is used to indicate a first code rate and a second code rate; Bearing the first uplink control information UCI and the second UCI, the first UCI and the second UCI are independently encoded, the first code rate corresponds to the first UCI, and the second code rate corresponds to the second UCI; processing a unit, the processing unit is configured to determine a second resource according to the first UCI, the first code rate, the second UCI, and the second code rate; a receiving unit, a resource block of the second resource The number of RBs is less than or equal to the number of RBs in the physical uplink channel, and the receiving unit is configured to transmit all bits of the first UCI and all bits of the second UCI on the second resource; or, the The number of RBs in the resource block of the second resource is greater than the number of RBs in the physical uplink channel, and the receiving unit is configured to transmit all bits
  • the second resource can be determined based on the comparison between the number of RBs in the resource block of the second resource and the number of RBs in the physical uplink channel, and on the basis of ensuring that all bits of the first UCI are transmitted.
  • the transmission mode of UCI that is, to transmit all or some of the bits of the second UCI, or to transmit the second UCI that has undergone bit-sum processing, is compared to only blindly transmitting part of the bits or the bits of the second UCI at present. With the processed second UCI, in this way, more bits of the second UCI can be transmitted as much as possible, so that the transmission performance of the physical uplink channel can be guaranteed as much as possible.
  • the processing unit is configured to, according to the number of bits of the first UCI, the number of bits of the cyclic redundancy check of the first UCI, the first code rate, the The number of bits of the second UCI, the number of bits of the cyclic redundancy check of the second UCI, and the second code rate determine the second resource.
  • the number of resource blocks RBs of the second resource satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • O 2 is the number of bits of the second UCI
  • 0 CRC2 is the number of bits of the cyclic redundancy check of the second UCI
  • r 2 is the second code rate
  • the minimum number of RBs required to transmit the first UCI is the minimum number of RBs required to transmit the second UCI
  • the minimum number of RBs required to transmit the second UCI is the number of symbols that can be used to carry UCI
  • is the number of resource element REs that can be used to carry UCI in one RB is the number of resource blocks RB of the second resource.
  • the number of resource blocks RBs of the second resource can be accurately calculated, and on the basis of the above effects, it is beneficial to more accurately determine the number of resource blocks RBs of the second resource and the number of RBs in the physical uplink channel size relationship.
  • the number of resource blocks RBs of the second resource satisfies the following conditions:
  • O 1 is the number of bits of the first UCI
  • O CRC1 is the number of bits of the cyclic redundancy check of the first UCI
  • Q m is the modulation mode
  • r 1 is the first code rate
  • O 2 is the number of bits of the second UCI
  • 0 CRC2 is the number of bits of the cyclic redundancy check of the second UCI
  • r 2 is the second code rate
  • is the number of resource blocks RBs of the second resource is the number of symbols that can be used to carry UCI in one RB
  • the number of resource blocks RBs of the second resource can be accurately calculated, and on the basis of the above effects, it is beneficial to more accurately determine the number of resource blocks RBs of the second resource and the number of RBs in the physical uplink channel size relationship.
  • the priority of the first UCI is higher than the priority of the second UCI.
  • a ninth aspect provides a communication device, including a transceiver component and a processor, so that the communication device executes the first aspect or the method in any possible implementation manner of the first aspect, or executes the fifth aspect or any of the fifth aspect.
  • the communication device may be a terminal device or a baseband chip. If the communication device is a terminal device, the transceiver component may be a transceiver, and if the communication device is a baseband chip, the transceiver component may be an input/output circuit of the baseband chip.
  • a communication device including a transceiver component and a processor.
  • the communication device is caused to perform the method in the second aspect or any possible implementation manner of the second aspect, or perform the method in the sixth aspect or any possible implementation manner of the sixth aspect.
  • the communication device may be a network device or a baseband chip. If the communication device is a network device, the transceiver component may be a transceiver, and if the communication device is a baseband chip, the transceiver component may be an input/output circuit of the baseband chip.
  • a computer program product includes: computer program code, when the computer program code is executed by a terminal device, the terminal device device is made to execute the first aspect or the first The method in any possible implementation manner of the aspect, or the above fifth aspect or the method in any possible implementation manner of the fifth aspect is performed.
  • a twelfth aspect provides a computer program product, the computer program product comprising: computer program code, when the computer program code is run by a network device, the network device is made to perform the second aspect or the second aspect
  • the method in any possible implementation manner, or the sixth aspect or the method in any possible implementation manner of the sixth aspect is performed.
  • a thirteenth aspect provides a computer-readable medium, where the computer-readable medium stores program code, the program code comprising a method for executing the method in the first aspect or any possible implementation manner of the first aspect instructions, or instructions for executing the method in the fifth aspect or any of the possible implementation manners of the fifth aspect.
  • a fourteenth aspect provides a computer-readable medium, where the computer-readable medium stores program code, the program code comprising a method for executing the method in the second aspect or any possible implementation manner of the second aspect An instruction, or an instruction for executing the method in the sixth aspect or any of the possible implementation manners of the sixth aspect.
  • a fifteenth aspect provides a communication system, characterized in that the communication system includes the terminal device described in the third aspect or any possible implementation manner of the third aspect and the fourth aspect or any one of the fourth aspect A network device as described in a possible implementation.
  • a sixteenth aspect provides a communication system, characterized in that the communication system includes the terminal device described in the seventh aspect or any possible implementation manner of the seventh aspect, and the eighth aspect or any one of the eighth aspect A network device as described in a possible implementation.
  • a communication apparatus is provided, and the communication apparatus may be the terminal device in the above method embodiments, or a chip provided in the terminal device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface, and when the processor executes the computer program or instructions, the communication apparatus executes the method executed by the terminal device in the above method embodiments.
  • a communication apparatus is provided, and the communication apparatus may be the network device in the above method embodiment, or a chip provided in the network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface, and when the processor executes the computer program or instructions, the communication apparatus executes the method performed by the network device in the above method embodiments.
  • the present application provides a chip system, where the chip system includes a processor for implementing the functions of the terminal device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, where the chip system includes a processor for implementing the functions of the network device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the transmission mode of the second UCI is determined, that is, all bits or part of the bits of the second UCI or the second UCI after processing is transmitted, which can improve the transmission efficiency of the second UCI. Accuracy, to avoid the performance degradation of the scene corresponding to the second UCI caused by the current terminal device just blindly discarding or binding some bits of the second UCI.
  • FIG. 1 is an example application scenario diagram applicable to the embodiment of the present application
  • FIG. 2 is a schematic flowchart of an example of a communication method according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another example of a communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of still another example of a communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an example of resource allocation according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an example of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another example of a communication device provided by an embodiment of the present application.
  • the methods of the embodiments of the present application may be applied to a long term evolution (long term evolution, LTE) system, a long term evolution advanced (long term evolution-advanced, LTE-A) system, an enhanced long term evolution (enhanced long term evolution-advanced) system , eLTE), the fifth generation (the 5th Generation, 5G) mobile communication system new radio (new radio, NR) system, can also be extended to similar wireless communication systems, such as wireless fidelity (wireless-fidelity, WiFi), Worldwide interoperability for microwave access (WIMAX), future 6th generation (6G) systems, and 3rd generation partnership project (3gpp) related cellular systems.
  • a network device is a device deployed in a wireless access network to provide a wireless communication function for a terminal device.
  • the network equipment may include various forms of base stations, macro base stations, micro base stations (also called small cells), relay stations, access points, etc., or various network element equipment in a core network (core network, CN).
  • core network core network
  • CN core network
  • the names of devices with base station functions may vary.
  • a network device may be an access point (AP) in a wireless local area network (WLAN), or a global system for mobile communication (GSM) or code division multiple access (CDMA). code division multiple access, CDMA) in the base station (base transceiver station, BTS).
  • AP access point
  • WLAN wireless local area network
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • BTS base transceiver station
  • the network device may also be a node B (5G nodeB, gNB) in a 5G system or an evolved node B (evolved nodeB, eNB or eNodeB) in an LTE system.
  • the network device may also be a Node B (Node B) of the third generation (3rd generation, 3G) system, and in addition, the network device may also be a relay station or an access point, or a vehicle-mounted device, a wearable device, and a fifth-generation A (radio access network, (R)AN) network device in a communication (fifth-generation, 5G) network or a network device in a future evolved public land mobile network (PLMN) network Wait.
  • R radio access network
  • PLMN public land mobile network
  • the terminal equipment in the embodiments of the present application may also be referred to as user equipment (user equipment, UE), access terminal, terminal equipment unit (subscriber unit), terminal equipment station, mobile station, mobile station (mobile station, MS), A remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, terminal device proxy or terminal device device.
  • Terminal devices may include various wireless communication capable handheld devices, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem. May also include subscriber units, cellular phones, smart phones, wireless data cards, personal digital assistant (PDA) computers, tablet computers, wireless modems, handheld devices ), laptop computer (laptop computer), machine type communication (MTC) terminal, station (station, ST) in wireless local area networks (WLAN).
  • PDA personal digital assistant
  • MTC machine type communication
  • station station, ST
  • WLAN wireless local area networks
  • Acknowledgment (acknowledgment, ACK): Its role is as a response to confirm the correct receipt of data.
  • Negative acknowledgment (negative-acknowledgment, NACK): its role is as a confirmation that the data has not been received correctly.
  • Hybrid automatic repeat request acknowledgment Its function is to respond to whether the data is received correctly after receiving the data, which may include ACK or NACK.
  • Uplink control information includes one or more of the following: scheduling request (scheduling request, SR), HARQ-ACK, channel state information (channel state information, CSI).
  • the CSI may specifically include one or more of the following: precoding matrix indication (PMI), rank indicator (RI), layer indicator (LI), channel quality information (channel quality information) indicator, CQI), channel state information reference signal (reference signal, RS) resource indicator (CSI-RS resource indicator, CRI), reference signal received power (reference signal received power, RSRP), signal to interference plus noise ratio (signal to interference plus noise ratio, SINR).
  • PMI precoding matrix indication
  • RI rank indicator
  • LI layer indicator
  • CQI channel quality information indicator
  • CQI channel state information reference signal
  • RS channel state information reference signal
  • CSI-RS resource indicator CRI
  • reference signal received power reference signal received power
  • SINR signal to interference plus noise ratio
  • SINR signal to interference plus noise ratio
  • CSI part 1 may include CRI, RI, broadband CSI of the first transport block (first transport block), subband differential CQI of the first transport block (transport block, TB), and the like.
  • the second part of CSI (CSI part 2) may include wideband CQI, LI, etc. of the second transport block (transport block, TB).
  • the CSI specifically included in CSI part 1 and CSI part 2 is not limited in the present invention.
  • the priority of the UCI may be related to the information contained in the UCI, the physical uplink channel carrying the UCI, the cell, the periodicity and other factors.
  • the CSI is taken as an example for description.
  • aperiodic (aperiodic) CSI reporting is carried on the PUSCH
  • y 0.
  • y 2.
  • y 3.
  • c is the serving cell index
  • N cells is the number of cells
  • s is the index of the reporting configuration
  • M s is the maximum number of CSI reporting configurations.
  • the priority of the UCI may also be configured by high-level signaling, or indicated by downlink control information (downlink control information, DCI). For example, when the DCI schedules the HARQ-ACK, the priority of the HARQ-ACK may be indicated. If there are only two priorities, it indicates whether the HARQ-ACK is a high priority or a low priority.
  • DCI downlink control information
  • the priority of the UCI may also be related to the service, for example, the UCI of mMTC has a lower priority than the UCI of eMBB.
  • UCIs between different PUCCH groups may also define priorities, for example, UCIs in PUCCH group (group) 0 have a higher priority than UCIs in PUCCH group (group) 1 .
  • UCI between different base stations, or UCI between different UEs, or UCI between different transmission reception points (transmission reception points, TRP), and the priority between them can also be defined.
  • Resource block A resource of 12 consecutive subcarriers in the frequency and a slot in the time domain (one slot has 14 symbols), which is called an RB. Alternatively, 12 consecutive subcarriers in frequency are called one RB.
  • Resource element a subcarrier in frequency and a symbol (symbol) in the time domain, which is called an RE.
  • Coding including source coding and/or channel coding, its function is to match the information to be transmitted with the transmission channel as much as possible, and to provide some protection for the information to prevent the information from being interfered, improve the effectiveness of information transmission, Accuracy and reliability.
  • the code rate is the ratio of the number of information bits before encoding (or the number of cyclic redundancy checks (CRC)) to the number of information bits after encoding (or the number of CRCs). Alternatively, it may be the ratio of the number of information bits before encoding (or the number of CRCs) to the number of bits of the rate matching output bit sequence.
  • CRC cyclic redundancy checks
  • Rate matching Different processing is performed according to the length of different code streams after channel encoding, so that the length of the code stream matches the actual transmission capacity. Rate matching is strongly related to the encoding method.
  • PRBs physical resource blocks
  • FIG. 1 is a diagram of an example application scenario applicable to the embodiment of the present application.
  • the application scenario includes network devices, and the application scenario also includes multiple terminal devices located within the coverage of the network device, such as terminal device #1 and terminal device #2.
  • the network device can communicate with the multiple terminals. devices to communicate. It should be understood that in FIG. 1 only two terminal devices within the coverage of the network device are used as an example. Obviously, there can also be more terminal devices within the coverage area of the network device.
  • FIG. 2 is a schematic flowchart of an example of a communication method 100 according to an embodiment of the present application.
  • S110 Receive first indication information, where the first indication information is used to indicate the first code rate and the second code rate.
  • the first indication information may be downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the terminal device receives the first DCI, where the first DCI indicates the first code rate and the second code rate.
  • the set A corresponds to the first UCI, that is, the PUCCH in the set A can be used to carry high-priority UCI.
  • Set B corresponds to the second UCI, that is, the PUCCH in set B may be used to carry low-priority UCI.
  • the first DCI indicates a first PUCCH, the first PUCCH belongs to the set A, and the first PUCCH corresponds to a code rate, then the code rate is the first code rate.
  • the code rate corresponding to the second PUCCH of the same format (format) is determined in another PUCCH set (ie, set B), that is, the second code rate.
  • the second code rate is the code rate of the PUCCH format 2 in set B.
  • the first DCI may also be a DCI for activating semi-persistent scheduling (SPS) or a DCI for scheduling downlink data.
  • SPS semi-persistent scheduling
  • the terminal device receives the first DCI, the first DCI indicates a first PUCCH, the first PUCCH belongs to the set A, but the first PUCCH corresponds to two code rates, one code rate is the first code rate, and the other code rate is the second bit rate.
  • the terminal device receives the first DCI and the second DCI, the first DCI indicates the first code rate, and the second DCI indicates the second code rate.
  • the first DCI indicates the first PUCCH, the first PUCCH belongs to the set A, and the code rate corresponding to the first PUCCH is the first code rate.
  • the second DCI indicates the second PUCCH, the second PUCCH belongs to the set B, and the code rate corresponding to the second PUCCH is the second code rate.
  • the order of receiving the first DCI and the second DCI is not limited in the present invention, and the second DCI may be received first, and the first DCI may be received later, or the reverse may be possible.
  • the first indication information is high-layer configuration information, such as the first PUCCH configured by the SPS, and the code rate corresponding to the first PUCCH is the first code rate.
  • the code rate corresponding to the second PUCCH of the same format is determined in another PUCCH set, that is, the second code rate.
  • the terminal device receives the first higher layer configuration information and the second higher layer configuration information, the first higher layer configuration information indicates the first code rate, and the second higher layer configuration information indicates the second code rate.
  • the second indication information is used to indicate the first resource.
  • the first resource is a PUCCH resource
  • a PUCCH resource subset needs to be determined according to the UCI payload size, and then the second indication information indicates the resources in the PUCCH resource subset used for transmitting the first UCI and the second UCI
  • the content of the second indication information may be included in the above-mentioned first indication information.
  • the second indication information indicates a scale factor, which indicates the proportion of the total resources available for carrying the first UCI and the second UCI in the PUSCH to the PUSCH resource.
  • the first resource may be a PUCCH resource or a PUSCH resource, which is not limited in this application.
  • the first resource being a PUCCH resource
  • the first UCI and the second UCI are UCIs to be carried by a physical uplink control channel (physical uplink control channel, PUCCH).
  • PUCCH physical uplink control channel
  • bit sequence and the number of bits of the first UCI and the second UCI are determined.
  • the bit sequence of HARQ-ACK is O HARQ-ACK is the number of bits of HARQ-ACK
  • the bit sequence of SR can be expressed as O SR is the number of bits of SR.
  • the second UCI may be another HARQ-ACK bit sequence
  • the second UCI may further include another SR sequence
  • the first code rate corresponds to the first UCI
  • the second code rate corresponds to the second UCI.
  • the first code rate corresponding to the first UCI refers to the code rate of the PUCCH or the code rate of the multiplexed PUCCH when the first UCI is sent by a single PUCCH before the first UCI and the second UCI are multiplexed.
  • the second code rate corresponding to the second UCI refers to the code rate of the PUCCH if one PUCCH is used to send the second UCI alone before the first UCI and the second UCI are multiplexed.
  • the first UCI is carried by PUCCH#1
  • the second UCI is carried by PUCCH#2
  • PUCCH#1 and PUCCH#2 overlap in the time domain
  • the first UCI and the second UCI are multiplexed
  • the second UCI is carried by PUCCH#3.
  • PUCCH#3 may be the same as or different from PUCCH#1.
  • the code rate of PUCCH #1 is the first code rate
  • the code rate of PUCCH #3 is the first code rate
  • the code rate of PUCCH #2 is the second code rate. It should be understood that the above code rate of the PUCCH refers to the code rate of the PUCCH format (format).
  • PUCCH#2 and PUCCH#3 are different formats (format)
  • the PUCCH set where PUCCH#2 is located can also be compared with PUCCH#2. #3
  • the code rate in the same format is used as the second code rate.
  • the first code rate is the maximum code rate corresponding to the first UCI indicated by the network device
  • the second code rate is the maximum code rate corresponding to the second UCI indicated by the network device.
  • the first UCI and the second UCI are two independently encoded UCIs, and the first UCI and the second UCI may use the same encoding method or different encoding methods, which are not limited in this application, and the encoding methods may be polar codes (polar codes). coding) or channel coding of small block lengths.
  • the first UCI is a high-priority UCI
  • the second UCI is a low-priority UCI
  • the high-priority UCI may correspond to low-latency, high-reliability communication ( Ultra reliable&low latency communication, URLLC) scenarios
  • low-priority UCIs can correspond to enhanced mobile broadband (enhance mobile broadband, eMBB) scenarios, and their configurations are configured separately; or
  • the first UCI and the second UCI are two An independently encoded UCI with no priority.
  • the independent encoding is to encode the bit sequence of the first UCI and encode the bit sequence of the second UCI.
  • the types of the first UCI and the second UCI may be one or more of the following types: scheduling request (SR), HARQ-ACK, and channel state information (CSI). This application does not limit the types of UCI#1 and UCI#2.
  • first UCI and the second UCI may be the same or different.
  • the third code rate is determined according to the resources of the physical uplink channel, the first UCI and the second UCI.
  • the third code rate is determined according to one or more of the following parameters: the number of bits of the second UCI, the number of bits of the cyclic redundancy check of the second UCI, the number of bits of the first UCI The number of bits of the first UCI, the number of bits of the cyclic redundancy code check of the first UCI, the first code rate, the first modulation mode, and the first total rate matching the output sequence length.
  • S140 transmit the first UCI and the second UCI.
  • all bits of the first UCI and some bits of the second UCI are sent through the physical uplink channel, that is, part of the information bits of the second UCI can be discarded, or all the bits of the first UCI can be sent Bits and bit-AND processed second UCI, that is, the second UCI can be transmitted after bit-AND processing is performed on some bits of the second UCI;
  • the third code rate when the third code rate is greater than the first threshold, transmitting part of the bits of the second UCI or discarding part of the information bits of the second UCI is, according to the bit sequence of the second UCI from back to front
  • the sequences are discarded one by one until the third code rate is less than or equal to the first threshold, which means that the code rate of the PUCCH used for transmitting the second UCI will not exceed the first threshold.
  • the entire bit sequence of the second UCI is Since the third code rate is greater than the first threshold, it can be discarded in sequence Until the third code rate calculated according to the second UCI after discarding some bits is less than or equal to the first threshold. In this way, more bit sequences of the second UCI can be transmitted as much as possible, and at the same time, since the code rate will not exceed the first threshold, the performance of PUCCH transmission can be guaranteed as much as possible.
  • the bit sequence of the second UCI is Wherein O CSIpart2 is the number of bits whose type is the second part of CSI in the bit sequence of the second UCI.
  • the bits of the second part of CSI type and the bits of SR type can be discarded in turn ... until the third code rate is less than or equal to the first threshold. In this way, more bit sequences of the second UCI can be transmitted as much as possible, and at the same time, the performance of PUCCH transmission can be guaranteed as much as possible.
  • bit sequence types of the second UCI may also be discarded from back to front, and the method is similar to the above-mentioned discarding one by one in the order of the bit sequences of the second UCI from back to front, which will not be repeated here.
  • bit AND processing is a binary bit AND operation.
  • the two bits are b0 and b1, and the bits are ANDed to obtain the bit b2.
  • b2 is 1 only if both b0 and b1 are 1, otherwise, b2 is 0.
  • Bit AND processing is performed on some bits of the second UCI, and the bits can be AND processed according to the bit sequence of the second UCI from the back to the front, or the bits can be AND processed according to the type of the bits of the second UCI, The method is similar to the above-mentioned discarding part of the information bits of the second UCI, and details are not repeated here.
  • the first threshold is greater than or equal to the second code rate.
  • the second UCI When the second UCI is transmitted by increasing the code rate, a higher signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) is required.
  • SINR signal to interference plus noise ratio
  • the second UCI cannot be transmitted blindly by increasing the code rate, that is, the third code rate and the first threshold must be used.
  • the size relationship is used to determine how to transmit the second UCI. It should be understood that since the magnitude relationship between the third code rate and the first threshold needs to be determined, the first threshold can also be understood as a code rate or a maximum code rate.
  • the first threshold is predefined or indicated by the network device.
  • the first threshold is a fixed value, such as 1 or 0.8.
  • the value of the first threshold is the minimum value among the second threshold and the first value, wherein the value of the second threshold is 1 or 0.8, and the first value is the second code rate and the The product of the first coefficients.
  • the first coefficient is predefined or indicated by the network device.
  • the value of the first threshold is a code rate obtained by increasing the index by N on the basis of the second code rate (each index corresponds to a code rate), where N is a positive integer, and N is greater than or equal to 1.
  • N is predefined or indicated by the network device.
  • the second resource may also be determined, and when the number of RBs in the resource block of the second resource is less than or equal to the number of RBs in the physical uplink channel, the first UCI and the second UCI are transmitted on the second resource, That is, if the minimum number of RBs required to transmit all the bits of the first UCI and the second UCI is less than or equal to the number of RBs of the resources allocated by the network device to the terminal device, then the first UCI and the first UCI and the first UCI can be transmitted on the resources of the minimum number of RBs. 2 all bits of UCI; or,
  • the first UCI is transmitted on the physical uplink channel, and all or part of the bits of the second UCI are transmitted on the physical uplink channel, or the bit-and-processed UCI is transmitted on the physical uplink channel.
  • the second UCI that is, if the minimum number of RBs required to transmit all bits of the first UCI and the second UCI is greater than the number of RBs allocated by the network device to the resources of the terminal device, the second UCI can be transmitted by increasing the code rate of the second UCI All bits of the second UCI may also be discarded, or the bits of the second UCI may be bit AND processed to transmit the second UCI.
  • the above-mentioned manner of transmitting the first UCI and the second UCI according to the relationship between the third code rate and the first threshold may also be combined, which will not be repeated here.
  • the second resource is determined according to a second parameter, and the second parameter includes one or more of the following: the number of bits of the first UCI, the number of bits of the cyclic redundancy check of the first UCI, the first code rate, The number of bits of the second UCI, the number of bits of the cyclic redundancy code check of the second UCI, the second code rate, the first modulation method, the number of symbols that can be used to carry UCI, and within a resource block (RB) The number of REs that can be used to carry UCI.
  • RB resource block
  • the method 100 is described above by taking the terminal device as the main body, but when the network device is used as the main body, the above methods S120-S140 are also applicable, and the first indication information in S110 may be determined by the network device. It is not repeated here.
  • a certain code rate can be increased to continue to send the low-priority UCI. Because if the high-priority PUCCH is used to send, the transmission power may become larger. Therefore, if conditions permit, a certain bit rate can be increased to send low-priority UCI, which can avoid just blindly throwing it away Low-priority UCI, or performing bit AND processing on low-priority UCI, resulting in reduced performance of the scenario corresponding to low-priority UCI.
  • FIG. 3 is a schematic flowchart of another example of the communication method 200 according to the embodiment of the present application.
  • RAN#1 determines and sends indication information #1, where indication information #1 is used to indicate code rate #1(r 1 ) corresponding to UCI #1 and code rate #2(r 2 ) corresponding to UCI #2.
  • RAN#1 can be understood as a radio access network device or a base station.
  • RAN#1 may also send indication information #2, where indication information #2 is used to indicate resource #1 configured for UE#1.
  • the indication information #2 is used to indicate resource #1.
  • resource #1 is a PUCCH resource
  • a PUCCH resource subset needs to be determined according to the UCI payload size
  • the second indication information indicates the resource# in the PUCCH resource subset used for transmitting the first UCI and the second UCI. 1.
  • the indication information #2 may be included in the above indication information #1.
  • the indication information #2 indicates a scale factor, which indicates the proportion of the total resources available for carrying UCI#1 and UCI#2 in the PUSCH to the PUSCH resource. In this application, the following method is described by taking the resource #1 as a PUCCH resource as an example.
  • UE#1 determines code rate #3 (r 3 ).
  • the code rate #3 determined by UE#1 satisfies the following conditions:
  • O 1 is the number of bits of UCI #1
  • O CRC1 is the number of bits of the cyclic redundancy check of UCI #1
  • Q m is the modulation mode
  • r 1 is the code rate #1
  • E tot is the total rate matching Output sequence length
  • E UCI-L is the length of the rate matching output sequence corresponding to UCI #2
  • O 2 is the number of bits of UCI #2
  • O CRC2 is the number of bits of the cyclic redundancy check of UCI #2.
  • UE#1 determines resource #2 for transmitting UCI#1 and UCI#2.
  • the PUCCH resource #2 is part or all of the PUCCH resource #1.
  • UCI#1 as a high-priority UCI
  • UCI#2 as a low-priority UCI as an example to describe the following communication method.
  • UE# 1 can send all the information bits of UCI#1 on PUCCH resource #1 with code rate r1, and can send all information bits of UCI# 2 on PUCCH resource #1 with code rate r2 bits
  • UE#1 will use the smallest PUCCH resource that can transmit all the information bits of UCI#1 and UCI#2 as PUCCH resource #2.
  • UE# 1 transmits all information bits of UCI#1 at code rate r1 and transmits all information bits of UCI# 2 at code rate r2 on PUCCH resource #2.
  • UE#1 uses all resources of PUCCH resource #1 as PUCCH resource #2.
  • UE# 1 transmits all information bits of UCI#1 at code rate r1 on PUCCH resource #2, and when code rate # 3 (r3) is greater than the first threshold, UE#1 transmits part of UCI#2 Information bits or send UCI#2 after bit sum processing (called transmission mode b), when the code rate #3 is less than or equal to the first threshold, UE#1 sends all the information bits of UCI#2 (called transmission mode a) ).
  • UE#1 If UE#1 cannot transmit all the information bits of UCI#1 at code rate r1 on PUCCH resource # 1 and cannot transmit all information bits of UCI# 2 at code rate r2 on PUCCH resource #1, then UE#1 uses all resources of PUCCH resource #1 as PUCCH resource #2. UE#1 sends all the information bits of UCI#1 on PUCCH resource #2, and at this time, the code rate of UCI#1 is greater than the code rate r 1 .
  • the transmission modes a and b are as follows (it can be understood in conjunction with FIG. 5 , which is a schematic diagram of an example of resource allocation according to an embodiment of the present application, which is used to illustrate the PUCCH resource allocation of UCI#1 and UCI#2):
  • All information bits of UCI#2 are transmitted, that is, the number of bits is O 2 , and then O 2 information bits of UCI# 2 are encoded. At this time, the code rate # 3r 3 of UCI # 2 is greater than r 2 configured by RAN# 1 .
  • Determining the transmission mode can be divided into the following situations:
  • r max is 1 or 0.8, and may also be other values, which are not limited in this application.
  • the first threshold is r max .
  • may be predefined, or may be indicated by RAN#1 to UE#1.
  • the first threshold value is min(r max , r 2 ⁇ ) or min(r max , r 2 / ⁇ ).
  • O 2 ′ is calculated in any of the following ways: in, Indicates rounded down.
  • the resources occupied by UCI#1 and those occupied by UCI#2 are separated in the frequency domain. In practice, they may also be separated in the time domain, as long as the resources occupied by UCI#1 and those occupied by UCI#2 are separated It is sufficient that the resources do not overlap.
  • FIG. 5 is just an example, and there may be other mapping methods, which are not limited in the present invention.
  • sequence between S230 and S220 is not limited.
  • S240 Send UCI on PUCCH resource #2.
  • UCI#1 and UCI#2 are sent on PUCCH resource #2.
  • RAN#1 determines the code rate #3 according to a method similar to that in S220 and S230, and receives the UCI.
  • RAN#1 can also determine information such as code rate #3, transmission modes of UCI#1 and UCI#2, PUCCH resource #2 and the number of transmitted information bits according to methods similar to those in S220 and S230, and then use these The information is indicated to UE#1. For details, refer to S210 and S220, which will not be repeated in this application. Alternatively, the base station directly indicates whether the transmission mode is a or b through signaling.
  • UE#1 can also judge whether PUCCH resource #1 can send all the information bits of UCI#1 and UCI#2 according to the number of RBs.
  • the specific method is as follows, which can be understood with reference to FIG. 4 , which is another example of communication in this embodiment of the present application. Schematic flow chart of the method.
  • RAN#1 determines and sends indication information #2, where indication information #2 is used to indicate resource #1.
  • UE #1 determines resource #2 according to UCI #1, UCI #2, and PUCCH resource #1, and the following description takes resource #2 as PUCCH resource #2 as an example for description.
  • the code rate corresponding to UCI#1 is r 1
  • the code rate corresponding to UCI#2 is r 2 .
  • code rate r 1 and code rate r 2 refer to the description of method 200, and details are not repeated here.
  • the code rate corresponding to UCI#1 may also be r 1
  • the code rate corresponding to UCI#2 may be the first threshold.
  • code rate r1 and the first threshold refer to the description of method 200, and details are not repeated here. The following communication method is described by taking the code rate r 1 corresponding to UCI#1 and the code rate r 2 corresponding to UCI#2 as an example.
  • the number of information bits of UCI#1 is O 1
  • the number of cyclic redundancy check bits of UCI#1 is O CRC1
  • the determined minimum number of RBs for transmitting UCI#1 The following conditions:
  • the number of information bits of UCI#2 is O 2
  • the number of cyclic redundancy check bits of UCI#2 is O CRC2
  • the determined minimum number of RBs to transmit UCI#2 The following conditions:
  • ⁇ 2 , ⁇ 3 , and ⁇ 5 are integers greater than or equal to 0.
  • PUCCH resource #1 if in, The number of RBs in PUCCH resource #1 configured for RAN#1, then it is judged that PUCCH resource #1 can send all the information bits of UCI#1 and UCI#2. At this time, PUCCH resource #2 is in PUCCH resource #1 The resources of the RBs, starting from the start RB of PUCCH resource #1, occupy all symbols of PUCCH #1 in the time domain.
  • PUCCH resource #2 may refer to the description in method 200, which will not be repeated here.
  • the minimum total number of RBs required to transmit all the information bits of UCI#1 and UCI#2 is directly obtained, and then according to the difference between the total number of RBs and the number of RBs of resource #1 The size relationship determines resource #2. It can be understood that this method is to directly calculate the required minimum total number of RBs with RE granularity.
  • the number of information bits of UCI#1 is O 1
  • the number of cyclic redundancy check bits of UCI#1 is O CRC1
  • the number of information bits of UCI#2 is O 2
  • the number of cyclic redundancy check bits of UCI#2 The number is O CRC2 , the determined minimum number of RBs that can transmit UCI#1 and UCI#2 The following conditions:
  • r 1 is the code rate configured by RAN#1 for UCI#1
  • r 2 is the code rate configured by RAN#1 for UCI#2
  • the number of REs required to transmit UCI#1 the number of REs required to transmit UCI#2
  • the PUCCH format is 3, if not equal to That is, if it is not a multiple of 2, 3, and 5, it increases to a multiple of 2, 3, and 5. For example, if The value of 7 is increased to 8, if The value of 5 does not need to be increased.
  • PUCCH resource #1 if in, The number of RBs in PUCCH resource #1 configured for RAN#1, then it is judged that PUCCH resource #1 can transmit all information bits of UCI#1 and all information bits of UCI#2, at this time PUCCH resource #2 is PUCCH resource #1 middle The resources of the RBs, starting from the start RB of PUCCH resource #1, occupy all symbols of PUCCH #1 in the time domain.
  • PUCCH resource #2 can refer to the description in method 200, which will not be repeated here.
  • FIG. 6 and FIG. 7 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can implement the functions of the terminal equipment or the network equipment in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be the terminal device in the method 100, the network device in the method 100, or a module (eg, a chip) applied to the terminal device or the access network device.
  • the communication device 400 includes a transceiver module 401 and a processing module 402 .
  • the communication apparatus 400 may be used to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 2 above.
  • the transceiver module 401 is used to receive indication information, where the indication information is used to indicate the first code rate and the second code rate; the processing module 402, used to determine the first uplink control information UCI and the second UCI to be carried by the physical uplink channel, the first UCI and the second UCI are independently encoded, the first code rate corresponds to the first UCI, the first UCI The second code rate corresponds to the second UCI; the processing module 402 is further configured to determine a third code rate according to the resources of the physical uplink channel, the first UCI and the second UCI; when the third code rate is greater than the third code rate A threshold, the transceiver module 401 is further configured to send all the bits of the first UCI and some bits of the second UCI through the physical uplink channel, or send all the bits of the first UCI and the bit-AND processed second UCI; or, when the third code rate is less than or equal to the first threshold
  • the transceiver module 401 is used to send indication information, where the indication information is used to indicate the first code rate and the second code rate; the processing module 402, used to determine the first uplink control information UCI and the second UCI to be carried by the physical uplink channel, the first UCI and the second UCI are independently encoded, the first code rate corresponds to the first UCI, the first UCI The second code rate corresponds to the second UCI; the processing module 402 is further configured to determine a third code rate according to the resources of the physical uplink channel, the first UCI and the second UCI; when the third code rate is greater than the third code rate A threshold, the transceiver module 401 is further configured to receive all bits of the first UCI and some bits of the second UCI through the physical uplink channel, or receive all the bits of the first UCI and undergo bit AND processing or, when the third code rate is less than or equal to the first threshold, the transceiver
  • the communication apparatus 500 includes a processor 510 and an interface circuit 520 .
  • the processor 510 and the interface circuit 520 are coupled to each other.
  • the interface circuit 520 can be a transceiver or an input-output interface.
  • the communication apparatus 500 may further include a memory 530 for storing instructions executed by the processor 510 or input data required by the processor 510 to execute the instructions or data generated after the processor 510 executes the instructions.
  • the processor 510 is used to execute the functions of the foregoing processing module 402
  • the interface circuit 520 is used to execute the functions of the foregoing transceiver module 401 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (programmable ROM) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disks, removable hard disks, CD-ROMs or known in the art in any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the access network equipment or in the terminal equipment.
  • the processor and the storage medium may also exist in the access network device or the terminal device as discrete components.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program or instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer-readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server that integrates one or more available media.
  • the usable media may be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as DVDs; and semiconductor media, such as solid state disks (SSD).
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division" Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和设备,使能复用同一物理上行信道传输多个独立编码的UCI时,尽可能传输更多UCI的信息比特,而不是一味地丢弃或者绑定UCI的部分信息比特,从而能够提升UCI传输的准确度。所述方法主要通过第一上行控制信息UCI、第二UCI,所述第一UCI对应的第一码率、所述第二UCI对应的第二码率和待承载所述第一UCI和所述第二UCI物理上行信道的资源确定第三码率,并根据第三码率与第一阈值的关系确定第一UCI和第二UCI的传输方式。

Description

一种通信方法和设备
本申请要求于2021年4月2日提交中国专利局、申请号为202110363765.1、申请名称为“一种通信方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法和设备。
背景技术
不同类型的业务对应不同的需求,目前为了节省资源,需要将不同业务对应的上行控制信息(uplink control information,UCI)复用到同一资源上传输。例如,第五代移动通信系统(5th generation)中的主要场景包括增强型移动带宽(enhance mobile broadband,eMBB),低时延、高可靠通信(ultra reliable&low latency communication,URLLC),海量机器类通信(massive machine type communication,mMTC)这些场景对系统提出了高可靠,低时延,大带宽,广覆盖等要求,在将这些不同场景对应的UCI复用到同一物理上行控制信道(physical uplink control channel,PUCCH),即将独立编码的多个UCI复用到同一PUCCH时,需要考虑一种合适的复用方式,使能尽可能保证更多UCI的传输。
发明内容
本申请提供了一种通信方法和设备,使能将独立编码的多个UCI复用到同一物理上行信道时,尽可能保证更多UCI的传输。
第一方面,本申请提供一种通信方法,包括:接收指示信息,所述指示信息用于指示第一码率和第二码率;确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI与所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率;当所述第三码率大于第一阈值,通过所述物理上行信道发送所述第一UCI的全部比特和所述第二UCI的部分比特,或者发送所述第一UCI的全部比特和经过比特与处理的第二UCI;或者,当所述第三码率小于或等于第一阈值,通过所述物理上行信道发送所述第二UCI的全部比特和所述第一UCI的全部比特。
采用上述方式,在不能够通过复用所述物理上行信道传输所述第一UCI的全部比特和所述第二UCI的全部比特时,通过根据第三码率和第一阈值的大小的比较,在保证所述第一UCI全部比特能够传输的基础上,确定所述第二UCI的传输方式,即传输所述第二UCI的全部比特或者部分比特或者经过与处理后的所述第二UCI,这样可以尽可能传输更多的所述第二UCI的比特,避免目前终端设备只是一味地丢弃或者绑定所述第二UCI的部分比特而造成的所述第二UCI所对应场景的性能的下降。并且,由于第一阈值的设置,使能 传输所述第二UCI的码率不会无限制的提升,也就不会造成网络设备因码率太高而无法解码所述第二UCI,还可以尽可能的保证物理上行信道传输的性能。
在一种可能的实施方式中,所述第一阈值大于或者等于所述第二码率。
上述方式中,所述第一阈值大于或者等于所述第二码率意味着,当第三码率大于第二码率并且小于第一阈值时,可以通过提升码率的方式传输所述第二UCI的全部比特,保证所述第二UCI的传输的准确度。
在一种可能的实施方式中,所述第一阈值为预定义的或者网络设备指示的。
在一种可能的实施方式中,根据所述第二UCI的比特数、所述第二UCI的循环冗余码校验的比特数、所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述物理上行信道的资源确定第三码率。
在一种可能的实施方式中,所述第三码率满足以下条件:
Figure PCTCN2022079300-appb-000001
Figure PCTCN2022079300-appb-000002
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,E tot为总的速率匹配输出序列长度,E UCI-L为所述第二UCI对应的速率匹配输出序列的长度,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,
Figure PCTCN2022079300-appb-000003
表示向上取整。
上述方式中,所述物理上行信道中除去第一UCI所占资源后剩下的资源如果用来传输所述第二UCI的全部比特,那么所述第二UCI的码率为第三码率,如果此时第三码率能够小于第一阈值,那么就可以传输所述第二UCI的全部比特,相比于目前的只能传输部分第二UCI的比特或者绑定部分第二UCI的比特传输,本申请实施例能够尽可能保证所述第二UCI的传输的准确度。
在一种可能的实施方式中,所述第一UCI的优先级高于所述第二UCI的优先级。
第二方面,本申请提供一种通信方法,包括:发送指示信息,所述指示信息用于指示第一码率和第二码率;确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI与所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率;当所述第三码率大于第一阈值,通过所述物理上行信道接收所述第一UCI的全部比特和所述第二UCI的部分比特,或者接收所述第一UCI的全部比特和经过比特与处理的第二UCI;或者,当所述第三码率小于或等于第一阈值,通过所述物理上行信道接收所述第二UCI的全部比特和所述第一UCI的全部比特。
采用上述方式,在不能够通过复用所述物理上行信道传输所述第一UCI的全部比特和所述第二UCI的全部比特时,通过根据第三码率和第一阈值的大小的比较,在保证所述第一UCI全部比特能够传输的基础上,确定所述第二UCI的传输方式,即传输所述第二UCI的全部比特或者部分比特或者经过与处理后的所述第二UCI,这样可以尽可能传输更多的所述第二UCI的比特,避免目前终端设备只是一味地丢弃或者绑定所述第二UCI的部分比特而造成的所述第二UCI所对应场景的性能的下降。并且,由于第一阈值的设置,使能 传输所述第二UCI的码率不会无限制的提升,也就不会造成网络设备因码率太高而无法解码所述第二UCI,还可以尽可能的保证物理上行信道传输的性能。
在一种可能的实施方式中,所述第一阈值大于或者等于所述第二码率。
上述方式中,所述第一阈值大于或者等于所述第二码率意味着,当第三码率大于第二码率并且小于第一阈值时,可以通过提升码率的方式传输所述第二UCI的全部比特,保证所述第二UCI的传输的准确度。
在一种可能的实施方式中,所述第一阈值为预定义的。
在一种可能的实施方式中,根据所述第二UCI的比特数、所述第二UCI的循环冗余码校验的比特数、所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述物理上行信道的资源确定第三码率。
在一种可能的实施方式中,所述第三码率满足以下条件:
Figure PCTCN2022079300-appb-000004
Figure PCTCN2022079300-appb-000005
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,E tot为总的速率匹配输出序列长度,E UCI-L为所述第二UCI对应的速率匹配输出序列的长度,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,
Figure PCTCN2022079300-appb-000006
表示向上取整。
上述方式中,所述物理上行信道中除去第一UCI所占资源后剩下的资源如果用来传输所述第二UCI的全部比特,那么所述第二UCI的码率为第三码率,如果此时第三码率能够小于第一阈值,那么就可以传输所述第二UCI的全部比特,相比于目前的只能传输部分第二UCI的比特或者绑定部分第二UCI的比特传输,本申请实施例能够尽可能保证所述第二UCI的传输的准确度。
在一种可能的实施方式中,所述第一UCI的优先级高于所述第二UCI的优先级。
第三方面,提供一种终端设备,其特征在于,包括:接收单元,所述接收单元用于接收指示信息,所述指示信息用于指示第一码率和第二码率;处理单元,所述处理单元用于确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI与所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;所述处理单元还用于根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率;发送单元,当所述第三码率大于第一阈值,所述发送单元用于通过所述物理上行信道发送所述第一UCI的全部比特和所述第二UCI的部分比特,或者发送所述第一UCI的全部比特和经过比特与处理的第二UCI;或者,当所述第三码率小于或等于第一阈值,所述发送单元用于通过所述物理上行信道发送所述第二UCI的全部比特和所述第一UCI的全部比特。
采用上述方式,在不能够通过复用所述物理上行信道传输所述第一UCI的全部比特和所述第二UCI的全部比特时,通过根据第三码率和第一阈值的大小的比较,在保证所述第一UCI全部比特能够传输的基础上,确定所述第二UCI的传输方式,即传输所述第二UCI的全部比特或者部分比特或者经过与处理后的所述第二UCI,这样可以尽可能传输更多的 所述第二UCI的比特,避免目前终端设备只是一味地丢弃或者绑定所述第二UCI的部分比特而造成的所述第二UCI所对应场景的性能的下降。并且,由于第一阈值的设置,使能传输所述第二UCI的码率不会无限制的提升,也就不会造成网络设备因码率太高而无法解码所述第二UCI,还可以尽可能的保证物理上行信道传输的性能。
在一种可能的实施方式中,所述第一阈值大于或者等于所述第二码率。
上述方式中,所述第一阈值大于或者等于所述第二码率意味着,当第三码率大于第二码率并且小于第一阈值时,可以通过提升码率的方式传输所述第二UCI的全部比特,保证所述第二UCI的传输的准确度。
在一种可能的实施方式中,所述第一阈值为预定义的或者网络设备指示的。
在一种可能的实施方式中,所述处理单元还用于根据所述第二UCI的比特数、所述第二UCI的循环冗余码校验的比特数、所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述物理上行信道的资源确定第三码率。
在一种可能的实施方式中,所述第三码率满足以下条件:
Figure PCTCN2022079300-appb-000007
Figure PCTCN2022079300-appb-000008
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,E tot为总的速率匹配输出序列长度,E UCI-L为所述第二UCI对应的速率匹配输出序列的长度,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,
Figure PCTCN2022079300-appb-000009
表示向上取整。
上述方式中,所述物理上行信道中除去第一UCI所占资源后剩下的资源如果用来传输所述第二UCI的全部比特,那么所述第二UCI的码率为第三码率,如果此时第三码率能够小于第一阈值,那么就可以传输所述第二UCI的全部比特,相比于目前的只能传输部分第二UCI的比特或者绑定部分第二UCI的比特传输,本申请实施例能够尽可能保证所述第二UCI的传输的准确度。
在一种可能的实施方式中,所述第一UCI的优先级高于所述第二UCI的优先级。
第四方面,本申请提供一种网络设备,包括:发送单元,所述发送单元用于发送指示信息,所述指示信息用于指示第一码率和第二码率;处理单元,所述处理单元用于确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI与所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;所述处理单元还用于根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率;接收单元,当所述第三码率大于第一阈值,所述接收单元用于通过所述物理上行信道接收所述第一UCI的全部比特和所述第二UCI的部分比特,或者接收所述第一UCI的全部比特和经过比特与处理的第二UCI;或者,当所述第三码率小于或等于第一阈值,所述接收单元用于通过所述物理上行信道接收所述第二UCI的全部比特和所述第一UCI的全部比特。
采用上述方式,在不能够通过复用所述物理上行信道传输所述第一UCI的全部比特和所述第二UCI的全部比特时,通过根据第三码率和第一阈值的大小的比较,在保证所述第一UCI全部比特能够传输的基础上,确定所述第二UCI的传输方式,即传输所述第二UCI 的全部比特或者部分比特或者经过与处理后的所述第二UCI,这样可以尽可能传输更多的所述第二UCI的比特,避免目前终端设备只是一味地丢弃或者绑定所述第二UCI的部分比特而造成的所述第二UCI所对应场景的性能的下降。并且,由于第一阈值的设置,使能传输所述第二UCI的码率不会无限制的提升,也就不会造成网络设备因码率太高而无法解码所述第二UCI,还可以尽可能的保证物理上行信道传输的性能。
在一种可能的实施方式中,所述第一阈值大于或者等于所述第二码率。
上述方式中,所述第一阈值大于或者等于所述第二码率意味着,当第三码率大于第二码率并且小于第一阈值时,可以通过提升码率的方式传输所述第二UCI的全部比特,保证所述第二UCI的传输的准确度。
在一种可能的实施方式中,所述第一阈值为预定义的。
在一种可能的实施方式中,所述处理单元还用于根据所述第二UCI的比特数、所述第二UCI的循环冗余码校验的比特数、所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述物理上行信道的资源确定第三码率。
在一种可能的实施方式中,所述第三码率满足以下条件:
Figure PCTCN2022079300-appb-000010
Figure PCTCN2022079300-appb-000011
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,E tot为总的速率匹配输出序列长度,E UCI-L为所述第二UCI对应的速率匹配输出序列的长度,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,
Figure PCTCN2022079300-appb-000012
表示向上取整。
上述方式中,所述物理上行信道中除去第一UCI所占资源后剩下的资源如果用来传输所述第二UCI的全部比特,那么所述第二UCI的码率为第三码率,如果此时第三码率能够小于第一阈值,那么就可以传输所述第二UCI的全部比特,相比于目前的只能传输部分第二UCI的比特或者绑定部分第二UCI的比特传输,本申请实施例能够尽可能保证所述第二UCI的传输的准确度。
在一种可能的实施方式中,所述第一UCI的优先级高于所述第二UCI的优先级。
第五方面,本申请提供了一种通信方法,包括:接收指示信息,所述指示信息用于指示第一码率和第二码率;确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI和所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;根据所述第一UCI、所述第一码率、所述第二UCI、所述第二码率确定第二资源;所述第二资源的资源块RB数量小于或等于所述物理上行信道中的RB数量,在所述第二资源上传输所述第一UCI的全部比特和所述第二UCI的全部比特;或者,所述第二资源的资源块RB数量大于所述物理上行信道中的RB数量,在所述物理上行信道上传输所述第一UCI的全部比特,在所述物理上行信道上传输所述第二UCI的全部比特或者部分比特或者传输经过比特与处理的所述第二UCI。
采用上述方式,能够根据所述第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小比较,在保证传输所述第一UCI的全部比特的基础上,确定所述第二UCI 的传输方式,即传输所述第二UCI的全部比特或者部分比特或者传输经过比特与处理的所述第二UCI,相比于目前只是一味地传输所述第二UCI的部分比特或者经过比特与处理的所述第二UCI,这样可以尽可能传输更多的所述第二UCI的比特,从而还可以尽可能的保证物理上行信道传输的性能。
在一种可能的实施方式中,根据所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述第一码率、所述第二UCI的比特数、所述第二UCI的循环冗余码校验的比特数、所述第二码率确定所述第二资源。
在一种可能的实施方式中,所述第二资源的资源块RB数量满足以下条件:
Figure PCTCN2022079300-appb-000013
Figure PCTCN2022079300-appb-000014
Figure PCTCN2022079300-appb-000015
Figure PCTCN2022079300-appb-000016
Figure PCTCN2022079300-appb-000017
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,r 2为所述第二码率,
Figure PCTCN2022079300-appb-000018
为传输所述第一UCI所需的最小RB数量,
Figure PCTCN2022079300-appb-000019
为传输所述第二UCI所需的最小RB数量,
Figure PCTCN2022079300-appb-000020
为可用于承载UCI的符号个数,
Figure PCTCN2022079300-appb-000021
为一个RB内可用于承载UCI的资源元素RE个数,
Figure PCTCN2022079300-appb-000022
为所述第二资源的资源块RB数量。
采用上述方式,能够准确的计算所述第二资源的资源块RB数量,在上述效果的基础上,有利于更加准确的确定第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小关系。
在一种可能的实施方式中,所述第二资源的资源块RB数量满足以下条件:
Figure PCTCN2022079300-appb-000023
Figure PCTCN2022079300-appb-000024
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,r 2为所述第二码率,
Figure PCTCN2022079300-appb-000025
为所述第二资源的资源块RB数量,
Figure PCTCN2022079300-appb-000026
为一个RB内可用于承载UCI的符号个数,
Figure PCTCN2022079300-appb-000027
为一个符号内可用于承载UCI的资源元素RE个数。
采用上述方式,能够准确的计算所述第二资源的资源块RB数量,在上述效果的基础上,有利于更加准确的确定第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小关系。
在一种可能的实施方式中,所述第一UCI的优先级高于所述第二UCI的优先级。
第六方面,本申请提供了一种通信方法,包括:发送指示信息,所述指示信息用于指示第一码率和第二码率;确定物理上行信道待承载的第一上行控制信息UCI和第二UCI, 所述第一UCI和所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;根据所述第一UCI、所述第一码率、所述第二UCI、所述第二码率确定第二资源;所述第二资源的资源块RB数量小于或等于所述物理上行信道中的RB数量,在所述第二资源上传输所述第一UCI的全部比特和所述第二UCI的全部比特;或者,所述第二资源的资源块RB数量大于所述物理上行信道中的RB数量,在所述物理上行信道上传输所述第一UCI的全部比特,在所述物理上行信道上传输第二UCI的全部比特或者部分比特或者传输经过比特与处理的第二UCI。
采用上述方式,能够根据所述第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小比较,在保证传输所述第一UCI的全部比特的基础上,确定所述第二UCI的传输方式,即传输所述第二UCI的全部比特或者部分比特或者传输经过比特与处理的所述第二UCI,相比于目前只是一味地传输所述第二UCI的部分比特或者经过比特与处理的所述第二UCI,这样可以尽可能传输更多的所述第二UCI的比特,从而还可以尽可能的保证物理上行信道传输的性能。
在一种可能的实施方式中,根据所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述第一码率、所述第二UCI的比特数、所述第二UCI的循环冗余码校验的比特数、所述第二码率确定所述第二资源。
在一种可能的实施方式中,所述第二资源的资源块RB数量满足以下条件:
Figure PCTCN2022079300-appb-000028
Figure PCTCN2022079300-appb-000029
Figure PCTCN2022079300-appb-000030
Figure PCTCN2022079300-appb-000031
Figure PCTCN2022079300-appb-000032
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,r 2为所述第二码率,
Figure PCTCN2022079300-appb-000033
为传输所述第一UCI所需的最小RB数量,
Figure PCTCN2022079300-appb-000034
为传输所述第二UCI所需的最小RB数量,
Figure PCTCN2022079300-appb-000035
为可用于承载UCI的符号个数,
Figure PCTCN2022079300-appb-000036
为一个RB内可用于承载UCI的资源元素RE个数,
Figure PCTCN2022079300-appb-000037
为所述第二资源的资源块RB数量。
采用上述方式,能够准确的计算所述第二资源的资源块RB数量,在上述效果的基础上,有利于更加准确的确定第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小关系。
在一种可能的实施方式中,所述第二资源的资源块RB数量满足以下条件:
Figure PCTCN2022079300-appb-000038
Figure PCTCN2022079300-appb-000039
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,O 2为所述第二UCI的比特数,O CRC2为所述第二 UCI的循环冗余码校验的比特数,r 2为所述第二码率,
Figure PCTCN2022079300-appb-000040
为所述第二资源的资源块RB数量,
Figure PCTCN2022079300-appb-000041
为一个RB内可用于承载UCI的符号个数,
Figure PCTCN2022079300-appb-000042
为一个符号内可用于承载UCI的资源元素RE个数。
采用上述方式,能够准确的计算所述第二资源的资源块RB数量,在上述效果的基础上,有利于更加准确的确定第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小关系。
在一种可能的实施方式中,所述第一UCI的优先级高于所述第二UCI的优先级。
第七方面,本申请提供了一种终端设备,包括:接收单元,所述接收单元用于接收指示信息,所述指示信息用于指示第一码率和第二码率;处理单元,所述处理单元用于确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI和所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;所述处理单元还用于根据所述第一UCI、所述第一码率、所述第二UCI、所述第二码率确定第二资源;发送单元,所述第二资源的资源块RB数量小于或等于所述物理上行信道中的RB数量,所述发送单元用于在所述第二资源上传输所述第一UCI的全部比特和所述第二UCI的全部比特;或者,所述第二资源的资源块RB数量大于所述物理上行信道中的RB数量,所述发送单元用于在所述物理上行信道上传输所述第一UCI的全部比特,在所述物理上行信道上传输所述第二UCI的全部比特或者部分比特或者传输经过比特与处理的所述第二UCI。
采用上述方式,能够根据所述第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小比较,在保证传输所述第一UCI的全部比特的基础上,确定所述第二UCI的传输方式,即传输所述第二UCI的全部比特或者部分比特或者传输经过比特与处理的所述第二UCI,相比于目前只是一味地传输所述第二UCI的部分比特或者经过比特与处理的所述第二UCI,这样可以尽可能传输更多的所述第二UCI的比特,从而还可以尽可能的保证物理上行信道传输的性能。
在一种可能的实施方式中,所述处理单元还用于根据所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述第一码率、所述第二UCI的比特数、所述第二UCI的循环冗余码校验的比特数、所述第二码率确定所述第二资源。
在一种可能的实施方式中,所述第二资源的资源块RB数量满足以下条件:
Figure PCTCN2022079300-appb-000043
Figure PCTCN2022079300-appb-000044
Figure PCTCN2022079300-appb-000045
Figure PCTCN2022079300-appb-000046
Figure PCTCN2022079300-appb-000047
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,r 2为所述第二码率,
Figure PCTCN2022079300-appb-000048
为传输所述第一UCI所需的最小RB数量,
Figure PCTCN2022079300-appb-000049
为传输所述第二UCI所需的最小RB数量,
Figure PCTCN2022079300-appb-000050
为可用于承载UCI的符号个数,
Figure PCTCN2022079300-appb-000051
为一个RB内可用于承载UCI的资源元素RE个数,
Figure PCTCN2022079300-appb-000052
为所述第二资源的资源块RB数量。
采用上述方式,能够准确的计算所述第二资源的资源块RB数量,在上述效果的基础上,有利于更加准确的确定第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小关系。
在一种可能的实施方式中,所述第二资源的资源块RB数量满足以下条件:
Figure PCTCN2022079300-appb-000053
Figure PCTCN2022079300-appb-000054
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,r 2为所述第二码率,
Figure PCTCN2022079300-appb-000055
为所述第二资源的资源块RB数量,
Figure PCTCN2022079300-appb-000056
为一个RB内可用于承载UCI的符号个数,
Figure PCTCN2022079300-appb-000057
为一个符号内可用于承载UCI的资源元素RE个数。
采用上述方式,能够准确的计算所述第二资源的资源块RB数量,在上述效果的基础上,有利于更加准确的确定第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小关系。
在一种可能的实施方式中,所述第一UCI的优先级高于所述第二UCI的优先级。
第八方面,本申请提供了一种网络设备,包括:发送单元,所述发送单元用于发送指示信息,所述指示信息用于指示第一码率和第二码率;确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI和所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;处理单元,所述处理单元用于根据所述第一UCI、所述第一码率、所述第二UCI、所述第二码率确定第二资源;接收单元,所述第二资源的资源块RB数量小于或等于所述物理上行信道中的RB数量,所述接收单元用于在所述第二资源上传输所述第一UCI的全部比特和所述第二UCI的全部比特;或者,所述第二资源的资源块RB数量大于所述物理上行信道中的RB数量,所述接收单元用于在所述物理上行信道上传输所述第一UCI的全部比特,在所述物理上行信道上传输第二UCI的全部比特或者部分比特或者传输经过比特与处理的第二UCI。
采用上述方式,能够根据所述第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小比较,在保证传输所述第一UCI的全部比特的基础上,确定所述第二UCI的传输方式,即传输所述第二UCI的全部比特或者部分比特或者传输经过比特与处理的所述第二UCI,相比于目前只是一味地传输所述第二UCI的部分比特或者经过比特与处理的所述第二UCI,这样可以尽可能传输更多的所述第二UCI的比特,从而还可以尽可能的保证物理上行信道传输的性能。
在一种可能的实施方式中,所述处理单元用于根据所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述第一码率、所述第二UCI的比特数、所述第二UCI的循环冗余码校验的比特数、所述第二码率确定所述第二资源。
在一种可能的实施方式中,所述第二资源的资源块RB数量满足以下条件:
Figure PCTCN2022079300-appb-000058
Figure PCTCN2022079300-appb-000059
Figure PCTCN2022079300-appb-000060
Figure PCTCN2022079300-appb-000061
Figure PCTCN2022079300-appb-000062
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,r 2为所述第二码率,
Figure PCTCN2022079300-appb-000063
为传输所述第一UCI所需的最小RB数量,
Figure PCTCN2022079300-appb-000064
为传输所述第二UCI所需的最小RB数量,
Figure PCTCN2022079300-appb-000065
为可用于承载UCI的符号个数,
Figure PCTCN2022079300-appb-000066
为一个RB内可用于承载UCI的资源元素RE个数,
Figure PCTCN2022079300-appb-000067
为所述第二资源的资源块RB数量。
采用上述方式,能够准确的计算所述第二资源的资源块RB数量,在上述效果的基础上,有利于更加准确的确定第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小关系。
在一种可能的实施方式中,所述第二资源的资源块RB数量满足以下条件:
Figure PCTCN2022079300-appb-000068
Figure PCTCN2022079300-appb-000069
其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,r 2为所述第二码率,
Figure PCTCN2022079300-appb-000070
为所述第二资源的资源块RB数量,
Figure PCTCN2022079300-appb-000071
为一个RB内可用于承载UCI的符号个数,
Figure PCTCN2022079300-appb-000072
为一个符号内可用于承载UCI的资源元素RE个数。
采用上述方式,能够准确的计算所述第二资源的资源块RB数量,在上述效果的基础上,有利于更加准确的确定第二资源的资源块RB数量和所述物理上行信道中的RB数量的大小关系。
在一种可能的实施方式中,所述第一UCI的优先级高于所述第二UCI的优先级。
第九方面,提供了一种通信设备,包括收发组件和处理器,使得该通信设备执行第一方面或第一方面任一种可能实现方式中的方法,或者执行第五方面或第五方面任一种可能实现方式中的方法。其中,该通信设备可以是终端设备或基带芯片。若该通信设备为终端设备,该收发组件可以为收发机,若该通信设备为基带芯片,该收发组件可以为基带芯片的输入/输出电路。
第十方面,提供了一种通信设备,包括收发组件和处理器。使得该通信设备执行第二方面或第二方面任一种可能实现方式中的方法,或者执行第六方面或第六方面任一种可能实现方式中的方法。其中,该通信设备可以是网络设备或基带芯片。若该通信设备为网络设备,该收发组件可以为收发机,若该通信设备为基带芯片,该收发组件可以为基带芯片的输入/输出电路。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代 码,当所述计算机程序代码被终端设备运行时,使得所述终端设备设备执行上述第一方面或第一方面任一种可能实现方式中的方法,或者执行上述第五方面或第五方面任一种可能实现方式中的方法。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被网络设备运行时,使得所述网络设备执行上述第二方面或第二方面任一种可能实现方式中的方法,或者执行第六方面或第六方面任一种可能实现方式中的方法。
第十三方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,所述程序代码包括用于执行第一方面或第一方面任一种可能实现方式中的方法的指令,或者执行上述第五方面或第五方面任一种可能实现方式中的方法的指令。
第十四方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,所述程序代码包括用于执行第二方面或第二方面任一种可能实现方式中的方法的指令,或者执行上述第六方面或第六方面任一种可能实现方式中的方法的指令。
第十五方面,提供了一种通信系统,其特征在于,所述通信系统包括第三方面或第三方面任一种可能实现方式中所述的终端设备以及第四方面或第四方面任一种可能实现方式中所述的网络设备。
第十六方面,提供了一种通信系统,其特征在于,所述通信系统包括第七方面或第七方面任一种可能实现方式中所述的终端设备以及第八方面或第八方面任一种可能实现方式中所述的网络设备。
第十七方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第十八方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第十九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第二十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在本申请中,当复用同一物理上行信道传输第一UCI和第二UCI时,如果不能够传输第一UCI的全部比特和第二UCI的全部比特,在保证所述第一UCI全部比特能够传输 的基础上,确定所述第二UCI的传输方式,即传输所述第二UCI的全部比特或者部分比特或者经过与处理后的所述第二UCI,这样可以提升所述第二UCI传输的准确度,避免目前终端设备只是一味地丢弃或者绑定所述第二UCI的部分比特而造成的所述第二UCI所对应场景的性能的下降。
附图说明
图1是适用于本申请实施例的一例应用场景图;
图2是本申请实施例的一例通信方法的示意性流程图;
图3是本申请实施例的又一例通信方法示意性流程图;
图4是本申请实施例的再一例通信方法示意性流程图;
图5是本申请实施例的一例资源分配示意图;
图6是本申请的实施例提供的一例通信装置的结构示意图;
图7是本申请的实施例提供的又一例通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本申请实施例中的方式、情况以及类别的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别以及情况中的特征在不矛盾的情况下可以相结合。
还应理解,本申请实施例中的“第一”或“第二”或“第三”仅为了区分,不应对本申请构成任何限定。
本申请实施例的方法可以应用于长期演进技术(long term evolution,LTE)系统,长期演进高级技术(long term evolution-advanced,LTE-A)系统,增强的长期演进技术(enhanced long term evolution-advanced,eLTE),第五代(the 5th Generation,5G)移动通信系统新空口(new radio,NR)系统,也可以扩展到类似的无线通信系统中,如无线保真(wireless-fidelity,WiFi),全球微波互联接入(worldwide interoperability for microwave access,WIMAX),未来的第六代(6th generation,6G)系统,以及第三代合作伙伴计划(3rd generation partnership project,3gpp)相关的蜂窝系统。
本申请实施例中,网络设备是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。网络设备可以包括各种形式的基站、宏基站,微基站(也称为小站),中继站,接入点等,或者核心网(core network,CN)中的各种网元设备。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,网络设备可以是无线局域网(wireless local area networks,WLAN)中的接入点(access point,AP),也可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS)。还可以是5G系统中的节点B(5G nodeB,gNB)或者LTE系统中的演进的节点B(evolved nodeB,eNB或者eNodeB)。或者,网络设备还可以是第三代(3rd generation,3G)系统的节点B(Node B),另外,该网络设备还可以是中继站或接入点,或者车载设备、可穿戴设备以及第五 代通信(fifth-generation,5G)网络中的(无线)接入网络(radio access network,(R)AN)网络设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备等。
本申请实施例中的终端设备,也可以称为用户设备(user equipment,UE)、接入终端、终端设备单元(subscriber unit)、终端设备站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、终端(terminal)、无线通信设备、终端设备代理或终端设备装置。终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。还可以包括用户单元、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)。可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
为了便于理解,以下将对本申请实施例所涉及的基本概念作简单介绍。
肯定应答(acknowledgement,ACK):其作用是作为一种确认数据正确收到后的应答。
否定应答(negative-acknowledgment,NACK):其作用是作为一种确认数据没有正确收到后的应答。
混合自动重传请求确认(hybrid automatic repeat request acknowledgment,HARQ-ACK):其作用是收到数据后,对是否正确接收数据进行应答,具体可以包括ACK或者NACK。
上行控制信息(uplink control information,UCI)包括以下一种或多种:调度请求(scheduling request,SR)、HARQ-ACK、信道状态信息(channel state information,CSI)。其中,CSI具体还可以包括以下一种或多种:预编码矩阵指示(precoding matrix indication,PMI)、秩指示(rank indicator,RI)、层指示(layer indicator,LI)、信道质量信息(channel quality indicator,CQI)、信道状态信息参考信号(reference signal,RS)资源指示(CSI-RS resource indicator,CRI)、参考信号接收功率(reference signal received power,RSRP)、信号干扰噪声比(signal to interference plus noise ratio,SINR)。在这些CSI中,可以将某些CSI级联起来,称为第一部分CSI(CSI part 1)或者第二部分CSI(CSI part 2)。其中,CSI part 1可以包括CRI、RI、第一个传输块(first transport block)的宽带CSI,第一个传输块(transport block,TB)的子带差分CQI等。第二部分CSI(CSI part 2)可以包括第二个传输块(transport block,TB)的宽带CQI,LI等。CSI part 1和CSI part 2具体包括哪些CSI本发明不做限定。
UCI的优先级可以和UCI包含的信息、承载UCI的物理上行信道、小区、周期性等因素有关。具体以CSI为例进行说明。每个CSI上报(CSI report)可以定义一个优先级值(priority value),Pri iCSI(y,k,c,s)=2·N cells·M s·y+N cells·M s·k+M s·c+s,该值越小,优先级越高。其中,当PUSCH上承载非周期(aperiodic)CSI上报时,y=0。当PUSCH上承载半静态(semi-persistent)CSI上报时,y=1。当PUCCH上承载半静态(semi-persistent) CSI上报时,y=2。当PUCCH上承载周期(periodic)CSI上报时,y=3。如果CSI包括RSRP或者SINR,则k=0,否则,k=1。c是服务小区索引,N cells是小区个数,s是上报配置的索引,M s是CSI上报配置个数的最大值。
UCI的优先级还可以是高层信令配置的,或者下行控制信息(downlink control information,DCI)指示的。例如,当DCI调度HARQ-ACK时,可以指示HARQ-ACK的优先级。如果只有两个优先级的话,即指示HARQ-ACK是高优先级或者低优先级。
UCI的优先级还可以和业务相关,例如mMTC的UCI相对于eMBB的UCI是低优先级。另外,不同PUCCH组之间的UCI也可以定义优先级,例如,PUCCH组(group)0中的UCI的优先级高于PUCCH组(group)1中的UCI的优先级。或者不同基站之间的UCI,或者不同UE之间的UCI,或者不同传输接收点(transmission reception point,TRP)之间的UCI,也可以定义它们之间的优先级。
资源块(resource block,RB):频率上连续12个子载波及时域上一个时隙(slot)(一个时隙有14个符号)的资源,称为一个RB。或者,频率上连续12个子载波称为一个RB。
资源元素(resource element,RE):频率上一个子载波及时域上一个符号(symbol),称为一个RE。
编码:包括信源编码和/或信道编码,其作用是把要传输的信息尽可能的与传输信道相匹配,并提供对信息的某种保护以防止信息受到干扰,提高信息传输的有效性、准确性和可靠性。
码率:码率为编码前的信息比特数(或者循环冗余码校验(cyclic redundancy check,CRC)个数)与编码后的信息比特数(或者CRC个数)的比值。或者,可以为编码前的信息比特数(或者CRC个数)与速率匹配输出比特序列的比特数的比值。
速率匹配:根据信道编码后的不同码流长度做不同的处理,从而使得码流长度与实际传输能力相匹配,速率匹配是与编码的方式强相关的。在确定PUCCH后,就可以确定总的速率匹配输出序列长度(total rate matching output sequence length)E tot,如表格1所示。其中,
Figure PCTCN2022079300-appb-000073
是PUCCH格式(format)x(x=2或者3或者4)时,可用于承载UCI的符号个数,
Figure PCTCN2022079300-appb-000074
为PUCCH格式x下的扩频因子(spreading factor),
Figure PCTCN2022079300-appb-000075
是PUCCH格式x时承载UCI的物理资源块(physical resource block,PRB)个数,
Figure PCTCN2022079300-appb-000076
可以小于或者等于高层配置的PUCCH的RB个数。
表1
Figure PCTCN2022079300-appb-000077
图1是适用于本申请实施例的一例应用场景图。如图1所示,该应用场景包括网络设备,该应用场景还包括位于网络设备覆盖范围之内的多个终端设备,例如终端设备#1和终端设备#2,网络设备可以与该多个终端设备进行通信。应理解,图1中仅以网络设备覆盖范围内的两个终端设备作为示例。显然,网络设备的覆盖范围内也可以有更多的终端设 备。
在该场景中,当为了高效的利用资源而传输独立编码的多个UCI时,例如多个UCI是不同优先级的UCI,往往采用复用的方式传输多个UCI,但是如果网络设备给终端设备分配的资源不够传输多个UCI时,需要寻求一种合适的复用方式,尽可能保证更多UCI的传输。
下面结合图2-图5详细说明本申请实施例的通信方法。
图2是本申请实施例的一例通信方法100示意性流程图。
S110,接收第一指示信息,该第一指示信息用于指示第一码率和第二码率。
在一种可能的实施方式中,第一指示信息可以是下行控制信息(downlink control information,DCI)。
例如,终端设备接收第一DCI,该第一DCI指示第一码率和第二码率。具体可以为,当有两个PUCCH集合(A和B)时,集合A对应第一UCI,即集合A中的PUCCH可以是用于承载高优先级UCI的。集合B对应第二UCI,即集合B中的PUCCH可以是用于承载低优先级UCI的。第一DCI指示一个第一PUCCH,该第一PUCCH属于集合A,且该第一PUCCH对应一个码率,则该码率为第一码率。根据该第一PUCCH的格式,在另外一个PUCCH集合(即集合B)中确定相同格式(format)的第二PUCCH对应的码率,即为第二码率。例如,该第一PUCCH的格式为格式2,则第二码率为集合B中PUCCH格式2的码率。第一DCI还可以是用于激活半静态(semi-persistent scheduling,SPS)的DCI或者是调度下行数据的DCI。
又例如,终端设备接收第一DCI,第一DCI指示一个第一PUCCH,该第一PUCCH属于集合A,但是第一PUCCH对应两个码率,一个码率为第一码率,另外一个码率为第二码率。
又例如,终端设备接收第一DCI和第二DCI,第一DCI指示第一码率,第二DCI指示第二码率。具体可以为,第一DCI指示第一PUCCH,该第一PUCCH属于集合A,该第一PUCCH对应的码率即为第一码率。第二DCI指示第二PUCCH,该第二PUCCH属于集合B,该第二PUCCH对应的码率即为第二码率。第一DCI和第二DCI的接收顺序本发明不限制,可以是先接收到第二DCI,后接收到第一DCI,也可以是反过来。
在一种可能的实施方式中,第一指示信息是高层配置信息,例如SPS配置的第一PUCCH,该第一PUCCH对应的码率为第一码率。根据该第一PUCCH的格式,在另外一个PUCCH集合中确定相同格式的第二PUCCH对应的码率,即为第二码率。
又例如,终端设备接收第一高层配置信息和第二高层配置信息,第一高层配置信息指示第一码率,第二高层配置信息指示第二码率。
可选地,接收第二指示信息,该第二指示信息用于指示第一资源。当第一资源是PUCCH资源时,此时需要根据UCI负荷(payload)大小确定一个PUCCH资源子集合,然后第二指示信息指示PUCCH资源子集合中用于传输第一UCI和第二UCI的资源,第二指示信息的内容可以包括在上述第一指示信息中。当第一资源是PUSCH资源时,第二指示信息指示的是一个比例因子,表示PUSCH中总的可用于承载第一UCI和第二UCI的资源占该PUSCH资源的比例。
第一资源可以是PUCCH资源或者PUSCH资源,本申请不作限定。
下面以第一资源是PUCCH资源为例进行本申请实施例的说明,即第一UCI和第二UCI为物理上行控制信道(physical uplink control channel,PUCCH)待承载的UCI。
S120,确定第一UCI和第二UCI。
具体地,确定第一UCI和第二UCI的比特序列以及比特数。
例如,HARQ-ACK的比特序列为
Figure PCTCN2022079300-appb-000078
O HARQ-ACK为HARQ-ACK的比特数,SR的比特序列可以表示为
Figure PCTCN2022079300-appb-000079
O SR为SR的比特数。第一UCI为HARQ-ACK,即第一UCI的比特序列为
Figure PCTCN2022079300-appb-000080
此时,第一UCI的比特数O UCI1=O HARQ-ACK。或者,第一UCI包括HARQ-ACK和SR,则第一UCI的比特序列为
Figure PCTCN2022079300-appb-000081
此时O UCI1=O HARQ-ACK+O SR
同理,第二UCI可以是另外一个HARQ-ACK比特序列
Figure PCTCN2022079300-appb-000082
或者,第二UCI还可以包括另外一个SR序列
Figure PCTCN2022079300-appb-000083
此时第二UCI的比特序列为
Figure PCTCN2022079300-appb-000084
第二UCI的比特数为O UCI2=O HARQ-ACK2+O SR2
其中,上述第一码率对应第一UCI,上述第二码率对应第二UCI。第一码率对应第一UCI指的是,在第一UCI和第二UCI复用之前,若用一个PUCCH单独发第一UCI时,该PUCCH的码率,或者复用后的PUCCH的码率。第二码率对应第二UCI指的是,在第一UCI和第二UCI复用之前,若用一个PUCCH单独发第二UCI时,该PUCCH的码率。例如,第一UCI通过PUCCH#1承载,第二UCI通过PUCCH#2承载,PUCCH#1和PUCCH#2在时域上重叠,则将第一UCI和第二UCI复用,通过PUCCH#3来承载。PUCCH#3可以和PUCCH#1相同或者不同。此时,PUCCH#1的码率为第一码率,或者PUCCH#3的码率为第一码率,PUCCH#2的码率为第二码率。应理解,上述PUCCH的码率指的是PUCCH格式(format)的码率。当PUCCH的格式(format)在复用前和复用后不同时,例如,PUCCH#2和PUCCH#3是不同的格式(format),则也可以将PUCCH#2所在的PUCCH集合中,与PUCCH#3相同格式(format)下的码率作为第二码率。
在一种可能的实施方式中,第一码率为网络设备指示的第一UCI所对应的的最大码率,第二码率为网络设备指示的第二UCI所对应的最大码率。
其中,第一UCI和第二UCI是两个独立编码的UCI,第一UCI和第二UCI可以使用相同的编码方式或者不同的编码方式,本申请不作限定,编码方式可以为极化码(polar coding)或者小块长度的信道编码(channel coding of small block lengths)。例如,第一UCI(第二UCI)为高优先级的UCI,第二UCI(第一UCI)为低优先级的UCI,其中,高优先级的UCI可对应于低时延、高可靠通信(ultra reliable&low latency communication,URLLC)场景,低优先级的UCI可对应于增强型移动带宽(enhance mobile broadband,eMBB)场景,它们的配置都是单独配置的;或者,第一UCI和第二UCI是两个独立编码的UCI,没有优先级之分。独立编码是对第一UCI的比特序列进行编码,对第二UCI的比特序列进行编码。
第一UCI和第二UCI的类型可以是以下类型的一种或者多种:调度请求(scheduling request,SR),HARQ-ACK,信道状态信息(channel state information,CSI)。本申请对UCI#1和UCI#2的类型不作限定。
需要说明的是,第一UCI和第二UCI的类型可以相同也可以不同。
S130,确定第三码率。
具体地,根据物理上行信道的资源、第一UCI和第二UCI,确定第三码率。
在一种可能的实施方式中,第三码率是根据以下参数的一种或多种确定的:第二UCI的比特数、第二UCI的循环冗余码校验的比特数、第一UCI的比特数、第一UCI的循环冗余码校验的比特数、第一码率、第一调制方式、第一总的速率匹配输出序列长度。
S140,传输第一UCI和第二UCI。
具体地,当第三码率大于第一阈值,通过物理上行信道发送第一UCI的全部比特和第二UCI的部分比特,即可以丢弃第二UCI的部分信息比特,或者发送第一UCI的全部比特和经过比特与处理的第二UCI,即可以对第二UCI的某些比特进行比特与处理后来传输第二UCI;
或者,
当第三码率小于或等于第一阈值,通过物理上行信道发送第二UCI的全部比特和第一UCI的全部比特。
在一种可能的实施方式中,当第三码率大于第一阈值,传输第二UCI的部分比特或者说丢弃第二UCI的部分信息比特为,按照第二UCI的比特序列从后往前的顺序一个一个丢弃,直到第三码率小于或者等于第一阈值为止,此时则意味着,用于传输第二UCI的PUCCH的码率不会超过第一阈值。例如,第二UCI的全部比特序列为
Figure PCTCN2022079300-appb-000085
由于第三码率大于第一阈值,因此,可依次丢弃
Figure PCTCN2022079300-appb-000086
Figure PCTCN2022079300-appb-000087
直到根据丢弃了一些比特后的第二UCI计算的第三码率小于或者等于第一阈值为止。这样可以尽可能的传输更多的第二UCI的比特序列,同时由于码率不会超过第一阈值,还可以尽可能的保证PUCCH传输的性能。
在一种可能的实施方式中,当第三码率大于第一阈值,传输第二UCI的部分比特或者说丢弃第二UCI的部分信息比特为,按照第二UCI的比特序列的类型丢弃。可选地,按照第二UCI的比特序列类型的优先级来丢弃,例如,第二UCI的比特序列为
Figure PCTCN2022079300-appb-000088
其中O CSIpart2为第二UCI的比特序列中类型为第二部分CSI的比特数。假设第二部分CSI的优先级低于SR,SR的优先级低于HARQ-ACK,那么由于第三码率大于第一阈值,因此,可以依次丢弃第二部分CSI类型的比特、SR类型的比特…,直到第三码率小于或者等于第一阈值为止。这样可以尽可能的传输更多的第二UCI的比特序列,同时尽可能的保证PUCCH传输的性能。可选地,还可以按照第二UCI的比特序列类型的顺序从后往前丢,方法与上述按照第二UCI的比特序列从后往前的顺序一个一个丢弃类似,在此不再赘述。
需要说明的是,比特与处理,是二进制的比特与操作。例如,两个比特为b0和b1,比特与处理后得到比特b2。只有当b0和b1均为1时,b2才为1,否则,b2为0。还可以对3比特进行比特与处理,或者4比特进行比特与处理,此处不再赘述。对第二UCI的某些比特进行比特与处理,可以按照第二UCI的比特序列从后往前的顺序来对比特进行与处理,或者按照第二UCI的比特的类型来对比特进行与处理,方法与上述丢弃第二UCI的部分信息比特类似,在此不再赘述。
在一种可能的实施方式中,第一阈值大于或者等于第二码率。
由于提高码率传输第二UCI时,需要更高的信号干扰噪声比(signal to interference plus noise ratio,SINR)。为了保证一定的SINR,可能需要提高发射功率,但发送功率的提高也有可能造成干扰变大,因此不能一味的使用提高码率的方式传输第二UCI,即需要根据 第三码率和第一阈值的大小关系来判断如何传输第二UCI。应理解,由于需要判断第三码率和第一阈值之间的大小关系,因此,第一阈值也可以理解为是一个码率,或者是一个最大码率。
在一种可能的实施方式中,第一阈值为预定义的或者网络设备指示的。
在一种可能的实施方式中,第一阈值为固定取值,例如1或0.8。
在一种可能的实施方式中,第一阈值的取值为第二阈值和第一数值之中的最小值,其中第二阈值的取值为1或0.8,第一数值为第二码率与第一系数的乘积。
在一种可能的实施方式中,第一系数为预定义的或者网络设备指示的。
在一种可能的实施方式中,第一阈值的取值为在第二码率的基础上,索引增加N得到的码率(每个索引对应一个码率),N为正整数,N大于或等于1。
在一种可能的实施方式中,N为预定义的或者网络设备指示的。
在一种可能的实施方式中,还可以确定第二资源,当第二资源的资源块RB数量小于或等于物理上行信道中的RB数量,在第二资源上传输第一UCI和第二UCI,即如果传输第一UCI和第二UCI的全部比特所需的最小RB数量小于或等于网络设备分配给终端设备的资源的RB数量,那么可以在该最小RB数量的资源上传输第一UCI和第二UCI的全部比特;或者,
当第二资源的资源块RB数量大于物理上行信道中的RB数量,在物理上行信道上传输第一UCI,在物理上行信道上传输第二UCI的全部比特或者部分比特或者传输经过比特与处理的第二UCI,即如果传输第一UCI和第二UCI的全部比特所需的最小RB数量大于网络设备分配终端设备的资源的RB数量,那么可以通过提高第二UCI的码率来传输第二UCI的全部比特,还可以丢弃第二UCI的部分比特或者对第二UCI的比特进行比特与处理来传输第二UCI。可选地,在此情况下,还可以结合上述根据第三码率和第一阈值的关系传输第一UCI和第二UCI的方式,在此不再赘述。
其中,第二资源是根据第二参数确定的,第二参数包括以下一种或多种:第一UCI的比特数、第一UCI的循环冗余码校验的比特数、第一码率、第二UCI的比特数、第二UCI的循环冗余码校验的比特数、第二码率、第一调制方式、可用于承载UCI的符号个数、一个资源块(resource block,RB)内可以用于承载UCI的RE个数。
需要说明的是,上述以终端设备为主体为例进行了方法100的说明,但是以网络设备为主体时,也适用上述方法S120-S140,S110中的第一指示信息由网络设备确定即可,在此不再赘述。
根据以上方法,在原先低优先级UCI的码率的基础上,可以提高一定的码率继续发低优先级UCI。因为如果采用高优先级的PUCCH来发的话,发送功率有可能是变大的,因此,在条件允许的情况下,可以提高一定的码率来发低优先级UCI,可以避免只是一味地扔掉低优先级的UCI,或者对低优先级的UCI进行比特与处理,而造成低优先级的UCI对应场景的性能降低。
下面结合具体实施例详细说明本申请实施例的通信方法,如图3所示,图3是本申请实施例的又一例通信方法200示意性流程图。
S210中,RAN#1确定并发送指示信息#1,该指示信息#1用于指示UCI#1对应的码率#1(r 1)和UCI#2对应的码率#2(r 2)。
需要说明的是,RAN#1可以理解为一个无线接入网设备或者为一个基站。
UCI#1和UCI#2的具体内容参见方法100中的第一UCI和第二UCI的说明,在此不再赘述。
在一种可能的实施方式中,RAN#1还可以发送指示信息#2,该指示信息#2用于指示为UE#1配置的资源#1。
该指示信息#2用于指示资源#1。当资源#1是PUCCH资源时,此时需要根据UCI负荷(payload)大小确定一个PUCCH资源子集合,然后第二指示信息指示PUCCH资源子集合中用于传输第一UCI和第二UCI的资源#1,指示信息#2可以包括在上述指示信息#1中。当资源#1是PUSCH资源时,指示信息#2指示的是一个比例因子,表示PUSCH中总的可用于承载UCI#1和UCI#2的资源占该PUSCH资源的比例。本申请以资源#1是PUCCH资源为例进行以下方法的说明。
S220中,UE#1确定码率#3(r 3)。
具体地,UE#1确定的码率#3满足以下条件:
Figure PCTCN2022079300-appb-000089
Figure PCTCN2022079300-appb-000090
其中,O 1为UCI#1的比特数,O CRC1为UCI#1的循环冗余码校验的比特数,Q m为调制方式,r 1为码率#1,E tot为总的速率匹配输出序列长度,E UCI-L为UCI#2对应的速率匹配输出序列的长度,O 2为UCI#2的比特数,O CRC2为UCI#2的循环冗余码校验的比特数。需要说明的是,如果E UCI-L为0,则表示只传输UCI#1的信息,不传输UCI#2的信息。
Figure PCTCN2022079300-appb-000091
表示向上取整。
S230中,UE#1确定用于传输UCI#1和UCI#2的资源#2。
以资源#2为PUCCH资源#2进行如下通信方法的说明。
其中,PUCCH资源#2是PUCCH资源#1的部分或者全部资源。
本申请以UCI#1为高优先级的UCI,UCI#2为低优先级的UCI为例进行以下通信方法的说明。
具体地,如果UE#1能够在PUCCH资源#1上以码率r 1来发送UCI#1的全部信息比特,并且能够在PUCCH资源#1上以码率r 2来发送UCI#2的全部信息比特,那么UE#1将能够发送UCI#1和UCI#2的全部信息比特的最小的PUCCH资源作为PUCCH资源#2。UE#1在PUCCH资源#2上以码率r 1来发送UCI#1的全部信息比特,并且以码率r 2来发送UCI#2的全部信息比特。
如果UE#1能够在PUCCH资源#1以码率r 1发送UCI#1的全部信息比特,但是不能够在PUCCH资源#1上以码率r 2来发送UCI#2的全部信息比特,则UE#1将PUCCH资源#1的全部资源作为PUCCH资源#2。UE#1在PUCCH资源#2上以码率r 1来发送UCI#1的全部信息比特,并且,当码率#3(r 3)大于第一阈值时,UE#1发送UCI#2的部分信息比特或者发送经过比特与处理的UCI#2(称为传输方式b),当码率#3小于或者等于第一阈值时,UE#1发送UCI#2的全部信息比特(称为传输方式a)。
如果UE#1不能够在PUCCH资源#1以码率r 1发送UCI#1的全部信息比特,且不能够 在PUCCH资源#1上以码率r 2来发送UCI#2的全部信息比特,则UE#1将PUCCH资源#1的全部资源作为PUCCH资源#2。UE#1在PUCCH资源#2上发送UCI#1的全部信息比特,此时UCI#1的码率大于码率r 1
传输方式a和b具体如下(可结合图5理解,图5是本申请实施例的一例资源分配示意图,用以说明UCI#1和UCI#2的PUCCH资源分配):
传输方式a
传输UCI#2的全部信息比特,即比特数为O 2,然后对O 2个UCI#2的信息比特进行编码,此时UCI#2的码率#3r 3大于RAN#1配置的r 2
传输方式b
丢弃UCI#2的部分信息比特,剩余的UCI#2的信息比特数为O 2′;或者将UCI#2的部分信息比特进行比特与处理,得到处理之后的UCI#2的信息比特数为O 2′。具体对UCI#2的信息比特的处理可参见方法100中有关第二UCI的信息比特的处理方式,在此不再赘述。
确定传输方式具体可以分为以下几种情况:
情况1:如果r 3≤r max,按照传输方式a进行处理,否则,按照传输方式b进行处理。
r max为1或者0.8,也可以是其它数值,本申请不作限定。此时,第一阈值为r max
情况2:如果r 3≤min(r max,r 2·γ),其中γ>1,或者,r 3≤min(r max,r 2/γ),其中γ<1,则按照传输方式a处理,否则,按照传输方式b进行处理。
其中,γ可以是预先定义的,也可以是RAN#1指示给UE#1的。此时,第一阈值为min(r max,r 2·γ)或者min(r max,r 2/γ)。
情况3:如果r 3≤r 2 new,按照方式a进行处理,否则,按照方式b进行处理。此时,第一阈值为r 2 new
其中,r 2 new是在r 2的基础上,向上提高N档(索引增加N)得到的码率,N可以是预先定义的,也可以是RAN#1指示给UE#1的。例如,表2所示,r 2=0.25提高2档得到的码率为r 2 new=0.45
表2
索引 码率(code rate)  
0 0.08  
1 0.15  
2 0.25 r 2
3 0.35  
4 0.45 r 2 new
5 0.60  
6 0.80  
7 保留(reserved)  
当按照方式b进行处理时,O 2′的计算方式为以下方式的任意一项:
Figure PCTCN2022079300-appb-000092
Figure PCTCN2022079300-appb-000093
Figure PCTCN2022079300-appb-000094
其中,
Figure PCTCN2022079300-appb-000095
表示向下取整。
如图5所示,UCI#1占用的资源和UCI#2占用的资源在频域上是分开的,实际中,也可以是时域上分开,只要UCI#1占用的资源和UCI#2占用的资源不重叠就可以,图5只是一个示例,也可以有其它映射方式,本发明不限制。
按照上述方法确定的UCI#1以及UCI#2,然后进行独立编码,分别对UCI#1和UCI#2(或者UCI#3)进行速率匹配,生成UCI#1和UCI#2各自对应的速率匹配输出序列,然后调制映射。
需要说明的是,S230和S220之间的顺序不做限定。
S240,在PUCCH资源#2上发送UCI。
具体地,在PUCCH资源#2上发送UCI#1和UCI#2。
S250,RAN#1根据与S220和S230中类似的方法确定码率#3,并接收UCI。
其中,包括解调,译码等操作。
应理解,RAN#1也可以根据与S220和S230中类似的方法确定码率#3、UCI#1和UCI#2的传输方式、PUCCH资源#2和传输的信息比特数等信息,再将这些信息指示给UE#1,具体内容参照S210和S220,本申请在此不再赘述。或者,基站通过信令直接指示传输方式是a还是b。
UE#1还可以根据RB数量判断PUCCH资源#1是否能够发UCI#1和UCI#2的全部信息比特,具体方式如下,可参照图4进行理解,图4是本申请实施例的再一例通信方法示意性流程图。
S310,RAN#1确定并发送指示信息#2,该指示信息#2用于指示资源#1。
指示信息#2的具体内容参见方法200中的说明,在此不再赘述。
资源#1的内容参见方法200中的说明,在此不再赘述,以资源#1为PUCCH资源#1为例进行以下通信方法的说明。
S320,UE#1确定资源#2。
具体地,UE#1根据UCI#1、UCI#2、PUCCH资源#1确定资源#2,下面以资源#2为PUCCH资源#2为例进行说明。
其中,UCI#1对应的码率为r 1,UCI#2对应的码率为r 2。UCI#1、UCI#2、码率r 1和码率r 2的相关内容参见方法200的说明,在此不再赘述。
在一种可能的实施方式中,也可以是,UCI#1对应的码率为r 1,UCI#2对应的码率为第一阈值。UCI#1、UCI#2、码率r 1和第一阈值相关内容参见方法200的说明,在此不再赘述。以UCI#1对应的码率为r 1,UCI#2对应的码率为r 2为例进行以下通信方法的说明。
确定资源#2的方式具体有如下两种方式:
方式一
根据UCI#1的比特数得到UCI#1需要的最小RB数量,根据UCI#2的比特数得到UCI#2需要的最小RB数量,然后得到发送UCI#1和UCI#2的全部信息比特所需要的最小的RB总数,然后根据RB总数和资源#1的RB数量之间的大小关系确定资源#2。
设UCI#1的信息比特数为O 1,UCI#1的循环冗余码校验比特数为O CRC1,确定的传输UCI#1的最小RB数
Figure PCTCN2022079300-appb-000096
满足以下条件:
Figure PCTCN2022079300-appb-000097
Figure PCTCN2022079300-appb-000098
其中,
Figure PCTCN2022079300-appb-000099
为一个RB内可用于承载UCI的RE个数,
Figure PCTCN2022079300-appb-000100
为PUCCH中可用于承载UCI的符号个数,Q m为调制方式,
Figure PCTCN2022079300-appb-000101
的取值需要同时满足公式(1)和公式(2)。
设UCI#2的信息比特数为O 2,UCI#2的循环冗余码校验比特数为O CRC2,确定的传输UCI#2的最小RB数
Figure PCTCN2022079300-appb-000102
满足以下条件:
Figure PCTCN2022079300-appb-000103
Figure PCTCN2022079300-appb-000104
Figure PCTCN2022079300-appb-000105
的取值需要同时满足公式(3)和公式(4)
根据
Figure PCTCN2022079300-appb-000106
Figure PCTCN2022079300-appb-000107
确定能够传输UCI#1和UCI#2的最小RB总数
Figure PCTCN2022079300-appb-000108
如公式(5)所示:
Figure PCTCN2022079300-appb-000109
当PUCCH格式为3时,如果
Figure PCTCN2022079300-appb-000110
不等于
Figure PCTCN2022079300-appb-000111
即不是2、3、5的倍数,则增加到2、3、5的倍数。例如,如果
Figure PCTCN2022079300-appb-000112
的取值为7,则增加到8,如果
Figure PCTCN2022079300-appb-000113
的取值为5,则无需增加。其中,α 2、α 3、α 5为大于或等于0的整数。
如果
Figure PCTCN2022079300-appb-000114
其中,
Figure PCTCN2022079300-appb-000115
为RAN#1配置的PUCCH资源#1中的RB数,则判断PUCCH资源#1能够发UCI#1和UCI#2的全部信息比特,此时PUCCH资源#2为PUCCH资源#1中
Figure PCTCN2022079300-appb-000116
个RB的资源,从PUCCH资源#1的起始RB开始,时域上占据PUCCH#1的全部符号。
如果
Figure PCTCN2022079300-appb-000117
则判断PUCCH资源#1不能够发UCI#1和UCI#2的全部信息比特,此时PUCCH资源#2可以参考方法200中的说明,在此不再赘述。
方式二
根据UCI#1的比特数、UCI#2的比特数,直接得到发送UCI#1和UCI#2的全部信息比特所需要的最小的RB总数,然后根据RB总数和资源#1的RB数量之间的大小关系确定资源#2。可以理解位该方式是直接以RE粒度来计算所需要的最小的RB总数。
设UCI#1的信息比特数为O 1,UCI#1的循环冗余码校验比特数为O CRC1,UCI#2的信息比特数为O 2,UCI#2的循环冗余码校验比特数为O CRC2,确定的能够传输UCI#1和UCI#2的最小RB数
Figure PCTCN2022079300-appb-000118
满足以下条件:
Figure PCTCN2022079300-appb-000119
Figure PCTCN2022079300-appb-000120
其中,
Figure PCTCN2022079300-appb-000121
为一个RB内可用于承载UCI的RE个数,
Figure PCTCN2022079300-appb-000122
为PUCCH内可以用于承载UCI的符号个数,Q m为调制方式,r 1为RAN#1为UCI#1配置的码率,r 2为RAN#1为UCI#2配置的码率,
Figure PCTCN2022079300-appb-000123
为传输UCI#1所需的RE数量,
Figure PCTCN2022079300-appb-000124
为传输 UCI#2所需的RE数量,
Figure PCTCN2022079300-appb-000125
的取值需要同时满足公式(6)和公式(7)。
当PUCCH格式为3时,如果
Figure PCTCN2022079300-appb-000126
不等于
Figure PCTCN2022079300-appb-000127
即不是2、3、5的倍数,则增加到2、3、5的倍数。例如,如果
Figure PCTCN2022079300-appb-000128
的取值为7,则增加到8,如果
Figure PCTCN2022079300-appb-000129
的取值为5则无需增加。
如果
Figure PCTCN2022079300-appb-000130
其中,
Figure PCTCN2022079300-appb-000131
为RAN#1配置的PUCCH资源#1中的RB数,则判断PUCCH资源#1能够发UCI#1的全部信息比特和UCI#2的全部信息比特,此时PUCCH资源#2为PUCCH资源#1中
Figure PCTCN2022079300-appb-000132
个RB的资源,从PUCCH资源#1的起始RB开始,时域上占据PUCCH#1的全部符号。
如果
Figure PCTCN2022079300-appb-000133
则判断PUCCH资源#1不能够发UCI#1的全部信息比特和UCI#2的全部信息比特,此时PUCCH资源#2可以参考方法200中的说明,在此不再赘述。
需要说明的是,根据方法300判断PUCCH资源#1是否能够发UCI#1的全部信息比特和UCI#2的全部信息比特后,如果不够发,即
Figure PCTCN2022079300-appb-000134
时,对于UCI#1和UCI#2的传输方式,可以结合方法200来确定。即将方法200和方法300结合起来作为本申请实施例的一部分,在此不再赘述。
图6和图7是本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请实施例中,该通信装置可以是方法100中的终端设备,也可以是方法100中的网络设备,还可以是应用于终端设备或接入网设备的模块(如芯片)。
如图6所示,通信装置400包括收发模块401和处理模块402。通信装置400可用于实现上述图2所示的方法实施例中终端设备或网络设备的功能。
当通信装置400用于实现图2所述方法实施例中终端设备的功能时:收发模块401,用于接收指示信息,所述指示信息用于指示第一码率和第二码率;处理模块402,用于确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI与所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;处理模块402还用于根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率;当所述第三码率大于第一阈值,收发模块401还用于通过所述物理上行信道发送所述第一UCI的全部比特和所述第二UCI的部分比特,或者发送所述第一UCI的全部比特和经过比特与处理的第二UCI;或者,当所述第三码率小于或等于第一阈值,收发模块401还用于通过所述物理上行信道发送所述第二UCI的全部比特和所述第一UCI的全部比特。
当通信装置400用于实现图2所述方法实施例中网络设备的功能时:收发模块401,用于发送指示信息,所述指示信息用于指示第一码率和第二码率;处理模块402,用于确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI与所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;处理模块402还用于根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率;当所述第三码率大于第一阈值,收发模块401,还用于通过所述物理上行信道接收所述第一UCI的全部比特和所述第二UCI的部分比特,或者接收所述第一UCI的全部比特和经过比特与处理的第二UCI;或者,当所述第三码率小于或等于第一阈值,收发模块401,还用于通过所述物理上行信道接收所述第二UCI的全部比特和所述第一UCI的全部比特。
关于上述收发模块401和处理模块402更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
如图7所示,通信装置500包括处理器510和接口电路520。处理器510和接口电路520之间相互耦合。可以理解的是,接口电路520可以为收发器或输入输出接口。可选的,通信装置500还可以包括存储器530,用于存储处理器510执行的指令或存储处理器510运行指令所需要的输入数据或存储处理器510运行指令后产生的数据。
当通信装置500用于实现上述方法实施例中的方法时,处理器510用于执行上述处理模块402的功能,接口电路520用于执行上述收发模块401的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例 如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (26)

  1. 一种通信方法,其特征在于,包括:
    接收指示信息,所述指示信息用于指示第一码率和第二码率;
    确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI与所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;
    根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率;
    当所述第三码率大于第一阈值,通过所述物理上行信道发送所述第一UCI的全部比特和所述第二UCI的部分比特,或者发送所述第一UCI的全部比特和经过比特与处理的第二UCI;或者,
    当所述第三码率小于或等于第一阈值,通过所述物理上行信道发送所述第二UCI的全部比特和所述第一UCI的全部比特。
  2. 根据权利要求1所述的方法,其特征在于,所述第一阈值大于或者等于所述第二码率。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一阈值为预定义的或者网络设备指示的。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率,包括:
    根据所述第二UCI的比特数、所述第二UCI的循环冗余码校验的比特数、所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述物理上行信道的资源确定第三码率。
  5. 根据权利要求4所述的方法,其特征在于,包括:
    所述第三码率满足以下条件:
    Figure PCTCN2022079300-appb-100001
    Figure PCTCN2022079300-appb-100002
    其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,E tot为总的速率匹配输出序列长度,E UCI-L为所述第二UCI对应的速率匹配输出序列的长度,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,
    Figure PCTCN2022079300-appb-100003
    表示向上取整。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第一UCI的优先级高于所述第二UCI的优先级。
  7. 一种通信方法,其特征在于,包括:
    发送指示信息,所述指示信息用于指示第一码率和第二码率;
    确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI与所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;
    根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率;
    当所述第三码率大于第一阈值,通过所述物理上行信道接收所述第一UCI的全部比特和所述第二UCI的部分比特,或者接收所述第一UCI的全部比特和经过比特与处理的第二UCI;或者,
    当所述第三码率小于或等于第一阈值,通过所述物理上行信道接收所述第二UCI的全部比特和所述第一UCI的全部比特。
  8. 根据权利要求7所述的方法,其特征在于,所述第一阈值大于或者等于所述第二码率。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一阈值为预定义的。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,所述根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率,包括:
    根据所述第二UCI的比特数、所述第二UCI的循环冗余码校验的比特数、所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述物理上行信道的资源确定第三码率。
  11. 根据权利要求10所述的方法,其特征在于,包括:
    所述第三码率满足以下条件:
    Figure PCTCN2022079300-appb-100004
    Figure PCTCN2022079300-appb-100005
    其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,E tot为总的速率匹配输出序列长度,E UCI-L为所述第二UCI对应的速率匹配输出序列的长度,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,
    Figure PCTCN2022079300-appb-100006
    表示向上取整。
  12. 根据权利要求7-11中任一项所述的方法,其特征在于,所述第一UCI的优先级高于所述第二UCI的优先级。
  13. 一种终端设备,其特征在于,包括:
    接收单元,所述接收单元用于接收指示信息,所述指示信息用于指示第一码率和第二码率;
    处理单元,所述处理单元用于确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI与所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;
    所述处理单元还用于根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率;
    发送单元,当所述第三码率大于第一阈值,所述发送单元用于通过所述物理上行信道发送所述第一UCI的全部比特和所述第二UCI的部分比特,或者发送所述第一UCI的全部比特和经过比特与处理的第二UCI;或者,
    当所述第三码率小于或等于第一阈值,所述发送单元用于通过所述物理上行信道发送所述第二UCI的全部比特和所述第一UCI的全部比特。
  14. 根据权利要求13所述的终端设备,其特征在于,所述第一阈值大于或者等于所 述第二码率。
  15. 根据权利要求13或14所述的终端设备,其特征在于,所述第一阈值为预定义的或者网络设备指示的。
  16. 根据权利要求13-15中任一项所述的终端设备,其特征在于,所述处理单元还用于根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率,包括:
    所述处理单元还用于根据所述第二UCI的比特数、所述第二UCI的循环冗余码校验的比特数、所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述物理上行信道的资源确定第三码率。
  17. 根据权利要求16所述的终端设备,其特征在于,包括:
    所述第三码率满足以下条件:
    Figure PCTCN2022079300-appb-100007
    Figure PCTCN2022079300-appb-100008
    其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,E tot为总的速率匹配输出序列长度,E UCI-L为所述第二UCI对应的速率匹配输出序列的长度,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,
    Figure PCTCN2022079300-appb-100009
    表示向上取整。
  18. 根据权利要求13-17中任一项所述的终端设备,其特征在于,所述第一UCI的优先级高于所述第二UCI的优先级。
  19. 一种网络设备,其特征在于,包括:
    发送单元,所述发送单元用于发送指示信息,所述指示信息用于指示第一码率和第二码率;
    处理单元,所述处理单元用于确定物理上行信道待承载的第一上行控制信息UCI和第二UCI,所述第一UCI与所述第二UCI独立编码,所述第一码率对应第一UCI,所述第二码率对应第二UCI;
    所述处理单元还用于根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率;
    接收单元,当所述第三码率大于第一阈值,所述接收单元用于通过所述物理上行信道接收所述第一UCI的全部比特和所述第二UCI的部分比特,或者接收所述第一UCI的全部比特和经过比特与处理的第二UCI;或者,
    当所述第三码率小于或等于第一阈值,所述接收单元用于通过所述物理上行信道接收所述第二UCI的全部比特和所述第一UCI的全部比特。
  20. 根据权利要求19所述的网络设备,其特征在于,所述第一阈值大于或者等于所述第二码率。
  21. 根据权利要求19或20所述的网络设备,其特征在于,所述第一阈值为预定义的。
  22. 根据权利要求19-21中任一项所述的网络设备,其特征在于,所述处理单元还用于根据所述物理上行信道的资源、所述第一UCI和所述第二UCI,确定第三码率,包括:
    所述处理单元还用于根据所述第二UCI的比特数、所述第二UCI的循环冗余码校验 的比特数、所述第一UCI的比特数、所述第一UCI的循环冗余码校验的比特数、所述物理上行信道的资源确定第三码率。
  23. 根据权利要求22所述的网络设备,其特征在于,包括:
    所述第三码率满足以下条件:
    Figure PCTCN2022079300-appb-100010
    Figure PCTCN2022079300-appb-100011
    其中,O 1为所述第一UCI的比特数,O CRC1为所述第一UCI的循环冗余码校验的比特数,Q m为调制方式,r 1为所述第一码率,E tot为总的速率匹配输出序列长度,E UCI-L为所述第二UCI对应的速率匹配输出序列的长度,O 2为所述第二UCI的比特数,O CRC2为所述第二UCI的循环冗余码校验的比特数,
    Figure PCTCN2022079300-appb-100012
    表示向上取整。
  24. 根据权利要求19-23中任一项所述的网络设备,其特征在于,所述第一UCI的优先级高于所述第二UCI的优先级。
  25. 一种通信系统,其特征在于,所述通信系统包括根据权利要求13至18中任一项所述的终端设备以及根据权利要求19至24中任一项所述的网络设备。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至6或7至12中任一项所述的方法。
PCT/CN2022/079300 2021-04-02 2022-03-04 一种通信方法和设备 WO2022206283A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110363765.1 2021-04-02
CN202110363765.1A CN115189839A (zh) 2021-04-02 2021-04-02 一种通信方法和设备

Publications (1)

Publication Number Publication Date
WO2022206283A1 true WO2022206283A1 (zh) 2022-10-06

Family

ID=83456843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079300 WO2022206283A1 (zh) 2021-04-02 2022-03-04 一种通信方法和设备

Country Status (2)

Country Link
CN (1) CN115189839A (zh)
WO (1) WO2022206283A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359983A (zh) * 2008-10-08 2009-02-04 北京新邮通通信设备有限公司 一种hs-sich的信息承载和编码方法
CN108353402A (zh) * 2015-11-05 2018-07-31 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
CN109150440A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种传输信息的方法、终端设备和网络设备
CN109600201A (zh) * 2017-10-01 2019-04-09 电信科学技术研究院 一种极化编码方法、装置、电子设备及存储介质
CN109802819A (zh) * 2017-11-16 2019-05-24 北京三星通信技术研究有限公司 上行控制信息处理方法及终端
CN110752904A (zh) * 2018-07-24 2020-02-04 电信科学技术研究院有限公司 一种信息传输方法、终端及基站
CN111034077A (zh) * 2017-08-11 2020-04-17 高通股份有限公司 修改上行链路共享资源上的csi传输
US20200146018A1 (en) * 2017-06-15 2020-05-07 Huawei Technologies Co., Ltd. Method for Sending Control Information, Method for Receiving Control Information, and Apparatus
CN111133815A (zh) * 2017-07-21 2020-05-08 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111247755A (zh) * 2017-10-19 2020-06-05 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111742526A (zh) * 2017-12-27 2020-10-02 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111771389A (zh) * 2017-12-27 2020-10-13 株式会社Ntt都科摩 无线基站以及无线通信方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359983A (zh) * 2008-10-08 2009-02-04 北京新邮通通信设备有限公司 一种hs-sich的信息承载和编码方法
CN108353402A (zh) * 2015-11-05 2018-07-31 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
US20200146018A1 (en) * 2017-06-15 2020-05-07 Huawei Technologies Co., Ltd. Method for Sending Control Information, Method for Receiving Control Information, and Apparatus
CN109150440A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种传输信息的方法、终端设备和网络设备
CN111133815A (zh) * 2017-07-21 2020-05-08 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111034077A (zh) * 2017-08-11 2020-04-17 高通股份有限公司 修改上行链路共享资源上的csi传输
CN109600201A (zh) * 2017-10-01 2019-04-09 电信科学技术研究院 一种极化编码方法、装置、电子设备及存储介质
CN111247755A (zh) * 2017-10-19 2020-06-05 株式会社Ntt都科摩 用户终端以及无线通信方法
CN109802819A (zh) * 2017-11-16 2019-05-24 北京三星通信技术研究有限公司 上行控制信息处理方法及终端
CN111742526A (zh) * 2017-12-27 2020-10-02 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111771389A (zh) * 2017-12-27 2020-10-13 株式会社Ntt都科摩 无线基站以及无线通信方法
CN110752904A (zh) * 2018-07-24 2020-02-04 电信科学技术研究院有限公司 一种信息传输方法、终端及基站

Also Published As

Publication number Publication date
CN115189839A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
US11665101B2 (en) Contention window size determining method and apparatus
CN110431815B (zh) 终端及通信方法
CN107925990B (zh) 传输反馈信息的方法、终端设备和基站
US11438921B2 (en) Uplink control information sending and receiving method and apparatus
US11540259B2 (en) Resource determining method and apparatus
CN111757518B (zh) 信息传输的方法和通信装置
WO2020029927A1 (zh) 信息传输的方法和装置
US11451347B2 (en) Communication method, apparatus, and system
JP7287494B2 (ja) 信号送受信方法、装置及びシステム
WO2021026917A1 (zh) 信号发送方法、装置和系统
WO2019191912A1 (zh) 数据传输的方法、终端设备和网络设备
CN114501642A (zh) 传输物理上行链路控制信道的方法及相关装置
WO2018203438A1 (ja) 端末及び通信方法
WO2018228236A1 (zh) 数据传输方法和装置
WO2019029579A1 (zh) 无线通信的方法、芯片和系统
CN111277371B (zh) 数据传输方法及设备
WO2021212391A1 (zh) 信息传输方法及装置
WO2019080071A1 (zh) 上行控制信道传输方法、终端设备和网络设备
WO2022206283A1 (zh) 一种通信方法和设备
WO2019028917A1 (zh) 一种上行数据反馈的方法和装置
WO2020143743A1 (zh) 接收数据的方法和装置
WO2019191911A1 (zh) 数据传输的方法和设备
WO2022198421A1 (zh) 一种信息传输方法、电子设备及存储介质
WO2023283958A1 (zh) 信息处理方法、装置、设备及存储介质
WO2019028775A1 (zh) 反馈信息的发送和接收方法、装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778467

Country of ref document: EP

Kind code of ref document: A1