WO2019029579A1 - 无线通信的方法、芯片和系统 - Google Patents

无线通信的方法、芯片和系统 Download PDF

Info

Publication number
WO2019029579A1
WO2019029579A1 PCT/CN2018/099427 CN2018099427W WO2019029579A1 WO 2019029579 A1 WO2019029579 A1 WO 2019029579A1 CN 2018099427 W CN2018099427 W CN 2018099427W WO 2019029579 A1 WO2019029579 A1 WO 2019029579A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
information
control channel
scheduling period
candidate
Prior art date
Application number
PCT/CN2018/099427
Other languages
English (en)
French (fr)
Inventor
高飞
焦淑蓉
铁晓磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18844015.0A priority Critical patent/EP3644534A4/en
Publication of WO2019029579A1 publication Critical patent/WO2019029579A1/zh
Priority to US16/747,892 priority patent/US11272494B2/en
Priority to US17/583,911 priority patent/US11765741B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of communications and, more particularly, to a method, chip and system for wireless communication.
  • Ultra Reliable Low Latency communication requires extremely high latency.
  • the transmission delay is required to be within 0.5 milliseconds (ms) without considering reliability; the transmission delay is required to be within 1 ms while achieving 99.999% reliability.
  • directly increasing the coding gain or processing gain of the Physical Downlink Control Channel (PDCCH) is not an effective method for increasing the reliable transmission of the PDCCH. Therefore, how to improve the reliability of decoding PDCCH and improve communication quality is an urgent problem to be solved.
  • PDCCH Physical Downlink Control Channel
  • the present application provides a method for wireless communication, which can improve the reliability of decoding a PDCCH and improve communication quality.
  • a method of wireless communication comprising:
  • the first candidate downlink control channel is any one of the first control resource sets in the first scheduling period
  • the quality of the downlink control channel is avoided.
  • the user equipment cannot decode the downlink control channel in one scheduling period, obtains downlink control information, and improves the probability of successfully decoding the PDCCH.
  • the one scheduling period may be a sub-frame or a mini-slot.
  • the method before the obtaining the second candidate downlink control channel according to the first candidate downlink control channel and the first information, the method further includes:
  • Obtaining a second candidate downlink control channel according to the first candidate downlink control channel and the first information including:
  • the number of attempts to merge the PDCCH decoding is reduced, which improves the avoidance of combining decoding on the multiple candidate downlink control channels, and improves the efficiency of decoding the PDCCH.
  • the method further includes:
  • the first control resource set of the first scheduling period and the first control resource set of the second scheduling period are obtained.
  • the first scheduling period is adjacent to or not adjacent to the second scheduling period.
  • the first information, the second information, and the third information are pre-configured or received from a network device or stored locally.
  • a method for wireless communication including: selecting, according to a first information, a first candidate downlink control channel and a corresponding second candidate downlink control channel according to the first scheduling period;
  • the first candidate downlink control channel is any one of the first control resource set in the first scheduling period, and the second candidate downlink control channel is the first control of the second scheduling period. Any one of the alternative downlink control channels in the set of resources;
  • the first information is used to indicate a correspondence between any one of the candidate downlink control channels in the first scheduling period and any one of the candidate downlink control channels in the second scheduling period;
  • the quality of the downlink control channel is avoided.
  • the user equipment cannot decode the downlink control channel in one scheduling period, obtains downlink control information, and improves the probability of successfully decoding the PDCCH.
  • the selecting the first candidate downlink control channel and the corresponding second candidate downlink control channel according to the first information includes:
  • the number of attempts to merge the PDCCH decoding is reduced, which improves the avoidance of combining decoding on the multiple candidate downlink control channels, and improves the efficiency of decoding the PDCCH.
  • combining the decoding of the one first candidate downlink control channel with the one second candidate downlink control channel including:
  • the decoding modes of the candidate downlink control channels with different aggregation levels are different.
  • the first candidate downlink control channel of the first aggregation level and the second candidate downlink control channel of the second aggregation level are combined and decoded.
  • the method further includes:
  • the first control resource set in the first scheduling period and the first control resource set in the second scheduling period are obtained.
  • the first scheduling period is adjacent to or not adjacent to the second scheduling period.
  • the first information, the second information, and the third information are pre-configured or received from a network device or stored locally.
  • a third aspect of the present invention provides a method for wireless communication, including: receiving first downlink control information, where the first downlink control information includes a transmission sequence of a first downlink control channel, and the first downlink The control information includes a redundancy version and a frequency domain resource location of data carried by the downlink shared channel in the first scheduling period;
  • the data of the bearer data of the multiple downlink shared channels is combined and decoded according to the first information and the first control information, so that the quality of the downlink control channel is poor.
  • the user equipment cannot decode the downlink shared channel in one scheduling period, obtains downlink scheduling data, and improves the probability of successfully decoding the PDSCH.
  • the first information includes: a correspondence between a transmission order of the multiple downlink control channels and a redundancy version and/or a frequency domain resource location of data carried by the downlink shared channel corresponding to the multiple downlink control channels. .
  • the scheduling information of the multiple downlink shared channels is obtained according to the redundancy version and the frequency domain resource location of the data carried by the downlink shared channel in the first scheduling period, and the first information, including:
  • a redundancy version of the downlink shared channel in a plurality of scheduling periods is obtained.
  • the method further include:
  • downlink shared channel before the first downlink shared channel according to the scheduling information of the data carried by the first downlink shared channel and the scheduling information of the data carried by the downlink shared channel that is not decoded before the first downlink shared channel
  • the data carried by the bearer and the data carried by the first downlink shared channel are combined and decoded to obtain downlink scheduling data.
  • the first information is pre-configured or received from a network device or stored locally.
  • a capable chip comprising an input/output interface, at least one processor, at least one memory and a bus, the at least one memory for storing code, the at least one processing
  • the program is operative to invoke code of the at least one memory to perform the operations of the methods of the various aspects described above.
  • a fifth aspect provides a system, including a terminal device, for performing the method of any of the foregoing first aspect or any optional implementation of the first aspect, or any of the foregoing second or second aspect The method of the selected implementation or the method of any of the foregoing third or third aspect, and the network device for serving the terminal device.
  • FIG. 1 is a schematic diagram of a communication system of a method, chip, and system for wireless communication in accordance with the present application.
  • FIG. 2 is a schematic flow diagram of a method 200 of wireless communication in accordance with the present application.
  • FIG. 3 is a schematic block diagram of a downlink control channel for different scheduling periods according to the present application.
  • FIG. 4 is a schematic block diagram of a downlink control channel for different scheduling periods according to the present application.
  • FIG. 5 is a schematic flow diagram of a method 300 of wireless communication in accordance with the present application.
  • FIG. 6 is a schematic flow diagram of a method 400 of wireless communication in accordance with the present application.
  • FIG. 7 is a schematic flow diagram of a method 500 of wireless communication in accordance with the present application.
  • FIG. 8 is a schematic block diagram of a downlink control channel according to one scheduling period of the present application.
  • FIG. 9 is a schematic flow diagram of a method 600 of wireless communication in accordance with the present application.
  • FIG. 10 is a schematic block diagram of a downlink shared channel according to different scheduling periods of the present application.
  • 11 is a schematic block diagram of a downlink shared channel of different scheduling periods according to the present application.
  • FIG. 12 is a schematic flow diagram of a method 700 of wireless communication in accordance with the present application.
  • FIG. 13 is a schematic block diagram of a downlink shared channel of different scheduling periods according to the present application.
  • FIG. 14 is a schematic block diagram of a terminal device 800 in accordance with the present application.
  • FIG. 15 shows a schematic block diagram of a communication device 900 provided by the present application.
  • the PDCCH is a physical downlink control channel, and is located in a control domain part of a time-frequency resource in one subframe, and occupies the first N orthogonal frequency division multiplexing (OFDM) symbols in a TTI in the real-time domain, by physical A physical control format indicator channel (PCFICH) indication, where 0 ⁇ N ⁇ 3, for a system bandwidth of 1.4M, N may take 4; in the frequency domain, all available subcarriers in the system bandwidth are occupied, and are available here.
  • the subcarrier is a subcarrier that is removed by the PCFICH, the hybrid automatic repeat request (PHICH, the hybrid automatic repeat request, HARQ) and the reference signal.
  • An OFDM symbol in the time domain dimension a resource indicated by one subcarrier in the frequency domain dimension is referred to as a resource element (RE), and 4 REs constitute a resource element group (REG).
  • a control channel element (CCE) is also defined, and one CCE fixedly contains 9 REGs.
  • PRBs physical resource blocks
  • the resource mapping mode is fixed. The UE first detects the number of OFDM symbols occupied by the PDCCH in the PCFICH according to a fixed resource mapping manner.
  • the UE includes 600 REs, that is, 150 REGs. If the PCFICH, PHICH, and reference signals occupy 57 REGs together, the resources available for the PDCCH are 93 REGs, that is, about 10 CCEs.
  • the PDCCH has four formats, and the PDCCHs in different formats occupy different numbers of resources, that is, the aggregation level (AL) is different.
  • the content carried on the PDCCH is called downlink control information (DCI).
  • DCI downlink control information
  • the size of the DCI is fixed.
  • Different PDCCH formats are used to obtain different code rates. For example, the code rate using format 2 is the code rate using format 3. 2 times. The smaller the number of CCEs occupied, the higher the code rate, and the better the channel conditions of the UE are required, so as to improve the probability that the UE correctly decodes the PDCCH with a high code rate.
  • the channel condition of the UE is poor, only low-rate transmission can be selected, for example, a format in which the PDCCH occupies a large number of CCEs is selected.
  • the UE does not need to perform blind detection on a PDCCH with a code rate exceeding 3/4.
  • different high-level UEs may be configured to configure different transmission modes, and the transmission modes are different, and the corresponding DCIs have different sizes.
  • each UE can also use the fallback mode by default, and the size of the corresponding DCI is different from the DCI size corresponding to the current mode.
  • the available control domain resources are aggregated in a tree structure to form available PDCCH control channels of different formats.
  • PDCCH format (Format) CCE aggregation level AL Number of CCEs Format 0 1 1 Format 1 2 2 Format 2 4 4 Format 3 8 8
  • All CCEs can be divided into two types of search spaces, namely a common search space and a UE-specific search space.
  • the common search space contains CCEs numbered 0-15, that is, the first 16 CCEs.
  • the PDCCH in the common search space is mainly used to carry the common DCI, and all UEs need to detect the DCI in the common search space to obtain common scheduling information, such as system information.
  • For each PDCCH format That is, the aggregation level corresponds to a UE-specific search space.
  • the specific search spaces of different UEs may coincide.
  • the size of the search space that is, the number of PDCCH candidate channels is only related to the aggregation level, as shown in Table 2.
  • the control resource set (CORESET), the newly proposed concept in NR, can be understood as a set of time-frequency resources.
  • one CORESET can be configured as one or several consecutive OFDM symbols; in the frequency domain, one CORESET can be a set of continuous or non-contiguous frequency domain resources, including search spaces at different aggregation levels. .
  • the communication system 100 includes a network device 102, which may include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • a network device 102 may include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114.
  • network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of target terminal devices similar to terminal device 116 or 122.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 can use a different frequency band than reverse link 120, and forward link 124 can be used differently than reverse link 126. Frequency band.
  • FDD frequency division duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of target data bits to be transmitted to the wireless communication receiving device over the channel.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 may be a public land mobile network (PLMN) network or a D2D (device to device) network or an M2M (machine to machine) network or other network.
  • PLMN public land mobile network
  • D2D device to device
  • M2M machine to machine
  • FIG. 1 is only a simplified schematic diagram of an example. Other network devices may also be included in the network, which are not shown in FIG.
  • the network device may be a device that communicates with the terminal device, for example, a network device or a network device controller or the like.
  • Each network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices (eg, UEs) located within the coverage area (cell), the network device can support different standard communication protocols, or can support different Communication mode.
  • the network device may be a base transceiver station (BTS) in a GSM system or a CDMA system, or may be a network device (NodeB, NB) in a WCDMA system, or may be an evolved network in an LTE system.
  • BTS base transceiver station
  • NodeB, NB network device
  • WCDMA evolved network in an LTE system.
  • a device evolutional node b, eNB or eNodeB
  • a wireless controller in a cloud radio access network or the network device may be a network device in a future 5G network, such as a gNB or a small station And a micro station, a transmission reception point (TRP), and may also be a relay station, an access point, or a network device in a public land mobile network (PLMN) in a future evolution.
  • PLMN public land mobile network
  • the terminal device may refer to an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile terminal, a user terminal, Terminal, wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the method and device for wireless communication provided by the present application can be applied to a terminal device, which includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as a browser, an address book, word processing software, and instant messaging software.
  • a computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (DVD). Etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • CD compact disc
  • DVD digital versatile disc
  • Etc. smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a variety of media capable of storing, containing, and/or carrying instructions and/or data.
  • a second candidate downlink control channel is obtained in the corresponding first control resource set in the second scheduling period, where
  • the first information is a correspondence between the first candidate downlink control channel and the second candidate downlink control channel;
  • the first candidate downlink control channel is any one of the first control resource sets in the first scheduling period.
  • the scheduling period corresponding to the multiple downlink control channels carrying the same downlink control information is a continuous scheduling period, and the initial scheduling period for transmitting the PDCCH is preset, and the user equipment can obtain the sequence number according to the scheduling period.
  • the current scheduling period is the number of repeated transmissions of the PDCCH.
  • the first candidate downlink control channel and the second candidate downlink control channel are combined and decoded.
  • the second scheduling period according to the first candidate downlink control channel and the first information of the first period, obtaining a second candidate downlink control channel in the second scheduling period, and The first candidate downlink control channel and the second candidate downlink control channel are combined and decoded to obtain downlink control information.
  • the quality of the downlink control channel is avoided.
  • the user equipment cannot decode the downlink control channel in one scheduling period, obtains downlink control information, and improves the probability of successfully decoding the PDCCH.
  • the second scheduling period according to the sequence number and the first information of the first candidate downlink control channel, obtaining a second candidate downlink control channel in the corresponding first control resource set in the second scheduling period. Serial number.
  • the one scheduling period may be a sub-frame or a mini-slot.
  • the method before the obtaining the second candidate downlink control channel according to the first candidate downlink control channel and the first information, the method further includes:
  • Obtaining a second candidate downlink control channel according to the first candidate downlink control channel and the first information including:
  • the second information includes an offset of the second candidate downlink control channel and the first candidate downlink control channel, and a first aggregation level of the first candidate downlink control channel and the second
  • the second aggregation level of the candidate downlink control channel, the second candidate downlink control is obtained according to the first information, the first candidate downlink control channel, the offset, and the first aggregation level and the second aggregation level channel.
  • the network device and the terminal device are predefined to repeatedly transmit the PDCCH in four consecutive scheduling periods, and the network and the terminal device agree to the first subframe or the first time slot or the first micro time slot.
  • the offset of the downlink control channel sequence number which may be configured by the network to the user, and notified to the user by using high layer signaling (for example, RRC signaling); or the network is sent to the user by using physical layer signaling (for example, DCI signaling); Or the communication protocol stipulates that it is stored in the terminal.
  • the correspondence between the sequence numbers of the candidate downlink control channels that may be combined in different scheduling periods is Equation (1)
  • Table 3 shows the correspondence between the scheduling period number, the aggregation level, and the candidate channel offset.
  • the candidate PDCCH in the first scheduling period is selected during the second scheduling period, the candidate PDCCH in the second scheduling period is obtained according to the formula (1) and the table 1.
  • the candidate PDCCH in the first scheduling period is selected to be 1, the sequence numbers "1" and ⁇ 2 of the candidate PDCCH are substituted into Equation 1, and the candidate PDCCH of the second scheduling period is obtained as 2;
  • the candidate PDCCH in the first scheduling period is set to 2
  • the sequence numbers "2" and ⁇ 2 of the candidate PDCCH are substituted into Equation 1, and the candidate PDCCH of the second scheduling period is obtained as 3;
  • the candidate PDCCH in the first scheduling period is selected to be 3
  • the sequence numbers "3" and ⁇ 2 of the candidate PDCCH are substituted into Equation 1, and the candidate PDCCH of the second scheduling period is obtained as 4;
  • the candidate PDCCH in the first scheduling period is 4, the sequence numbers "4" and ⁇ 2 of the candidate PDCCH are substituted into Equation 1, and the candidate PDCCH of the second scheduling period is obtained as 1.
  • the correspondence between the sequence numbers of the candidate downlink control channels that may be combined in the different scheduling periods may also be the formula (2).
  • the aggregation levels of the candidate downlink control channels in the different scheduling periods may be the same or different.
  • the aggregation levels of the candidate downlink control channels in different scheduling periods are only used as an example, and Do not make any restrictions.
  • the PDCCH candidate in the first scheduling period and the second scheduling period are corresponding according to the first information and the second information in the second scheduling period.
  • the PDCCH candidates attempt to do the merge decoding together, and the combination of the candidate PDCCHs for this attempt is (1, 2), (2, 3), (3, 4), (4, 1).
  • the number of combinations in which the terminal device attempts to merge and decode can be reduced, that is, the terminal device does not need to decode (1, 1), (1, 3), (1, 4), (2, 1), (2, 2), Combinations of (2,4), (3,1), (3,2), (3,3), (4,2), (4,3), (4,4).
  • the method further includes:
  • the first control resource set of the first scheduling period and the first control resource set of the second scheduling period are obtained.
  • the third information includes indication information of the first control resource set of the first scheduling period and indication information of the first control resource set of the second scheduling period, and the first scheduling is obtained according to the third information. a first set of control resources of the cycle and a first set of control resources of the second scheduling period.
  • Table 4 shows indication information of the first control resource set CORESET of different scheduling periods.
  • the second information may include the third information.
  • the second information includes a scheduling period number, an offset of the second candidate downlink control channel and the first candidate downlink control channel, and a first aggregation level of the first candidate downlink control channel. And a second aggregation level of the second candidate downlink control channel, and indication information of the first control resource set of the scheduling period.
  • the network device and the terminal device are predefined to repeatedly transmit the PDCCH in four consecutive scheduling periods, and the network and the terminal device agree to the first subframe or the first time slot or the first micro time.
  • the set is configured to the terminal device, and k is used to indicate that the downlink control information is mapped to the sequence number l k ⁇ 1, 2 ⁇ of the control resource set in the subframe k or the time slot k or the minislot k;
  • the downlink control information is mapped to the aggregation level
  • the corresponding candidate downlink control channel number is ⁇ k is an alternative downlink downlink channel number carrying downlink control information in other subframes or time slots or minislots in a continuous scheduling period, and an alternative downlink carrying downlink control information in the first subframe or time slot or minislot
  • the offset of the control channel sequence number which may be configured by the network to the user, and notified to the user by high layer signaling (for example, RRC signaling); or the network is sent to the user through physical layer signaling (for example, DCI signaling); or
  • Table 5 shows the correspondence between the scheduling period number, the aggregation level, and the candidate channel offset.
  • the correspondence between the sequence numbers of the candidate downlink control channels that may be combined in the different scheduling periods may also be the formula (4).
  • a PDCCH that needs to be merged in at least one scheduling period and a fourth scheduling period may be obtained, or a PDCCH in which four scheduling periods are combined may be obtained.
  • the PDCCH candidate attempts in the four scheduling periods are combined and decoded together, and the combination of the candidate PDCCHs of the attempt is (1, 2, 4, 3), (2, 3, 1, 4) , (3, 4, 2, 1), (4, 1, 3, 2).
  • the network device and the terminal device are predefined to repeatedly send the PDCCH in four consecutive scheduling periods, and the network and the terminal device agree to start sending from the first subframe or the first time slot or the first minislot.
  • k is used to indicate that in subframe k or slot k or minislot k, the downlink control information is mapped to the sequence number l k ⁇ ⁇ 1, 2 ⁇ of the control resource set; it is assumed that in different subframe k or time slot k or Within the control resource set l k of the minislot k, the downlink control information is mapped to different aggregation levels in different control resource sets. Corresponding to an alternate downlink control channel.
  • Different aggregation levels Corresponding number of alternative downlink control channels Different, for example, when the aggregation level is 1 or 2, the number of corresponding candidate downlink control channels is 4, that is, Or 2, the corresponding candidate downlink control channel number is When the aggregation level is 4 or 8, Or 8, the number of corresponding candidate downlink control channels is 2.
  • the correspondence between the aggregation level and the number of corresponding candidate downlink control channels is sent by the network to the user or the network through physical layer signaling (for example, DCI signaling) to the user or the communication protocol through high layer signaling (for example, RRC signaling). Provisions are stored in the terminal.
  • ⁇ k is an alternative downlink downlink channel number carrying downlink control information in other subframes or time slots or minislots in a continuous scheduling period, and an alternative downlink carrying downlink control information in the first subframe or time slot or minislot
  • the offset of the control channel sequence number which may be configured by the network to the user, and notified to the user by high layer signaling (for example, RRC signaling); or the network is sent to the user through physical layer signaling (for example, DCI signaling); or
  • the communication protocol stipulates that it is stored in the terminal.
  • the correspondence between the sequence numbers of the candidate downlink control channels that may be combined in different scheduling periods is Equation (5)
  • Equation (5) Representing the subframe k or slot k or the set of control resources k in the minislot k, at the aggregation level The following alternative downlink control channel sequence number.
  • Table 6 shows the correspondence between the scheduling cycle number, the aggregation level, and the candidate channel offset.
  • the terminal device misses the PDCCH within one scheduling period, the PDCCH candidates in the multiple scheduling periods are combined and decoded together according to the first information and the second information, and the terminal device may try to reduce the decoding. Combining the numbers improves the reliability of PDCCH decoding and further improves decoding of the PDSCH.
  • the first scheduling period is adjacent to or not adjacent to the second scheduling period.
  • the first information, the second information, and the third information are pre-configured or received from a network device.
  • the first information, the second information, and the third information may be configured by the network device to the terminal device, and sent to the terminal device by using high-layer signaling (for example, RRC signaling); or the network device passes the physical layer signaling. (for example, DCI signaling) is sent to the terminal device; or the communication protocol provides for storage in the terminal device, for example, the first information, the second information, and the third information are stored in the communication protocol between the terminal and the network device.
  • high-layer signaling for example, RRC signaling
  • the network device passes the physical layer signaling.
  • DCI signaling is sent to the terminal device
  • the communication protocol provides for storage in the terminal device, for example, the first information, the second information, and the third information are stored in the communication protocol between the terminal and the network device.
  • FIG. 5 is a schematic flow diagram of a method 300 of wireless communication in accordance with the present application. As shown in FIG. 5, the method 300 includes the following.
  • the first candidate downlink control channel is any downlink control channel in the first control resource set of the first scheduling period
  • the second candidate downlink control channel is any downlink control channel in the first control resource set of the second scheduling period, and downlink control information carried by the first candidate downlink control channel and the second candidate downlink control channel the same;
  • the first information is used to indicate a correspondence between any one of the downlink control channels of the first scheduling period and any one of the downlink control channels of the second scheduling period.
  • the scheduling period corresponding to the multiple downlink control channels carrying the same downlink control information is a continuous scheduling period, and the initial scheduling period for transmitting the PDCCH is preset, and the user equipment can obtain the sequence number according to the scheduling period.
  • the current scheduling period is the number of repeated transmissions of the PDCCH.
  • the first candidate downlink control channel and the second candidate downlink control channel are combined and decoded.
  • selecting, according to the first information, a first candidate downlink control channel and a corresponding second candidate downlink control channel, and selecting the first candidate downlink control channel and the first The second candidate downlink control channel performs combined decoding to obtain downlink control information.
  • the quality of the downlink control channel is avoided.
  • the user equipment cannot decode the downlink control channel in one scheduling period, obtains downlink control information, and improves the probability of successfully decoding the PDCCH.
  • the one scheduling period may be a sub-frame or a mini-slot.
  • the first candidate downlink control channel and the corresponding second candidate downlink control channel are selected according to the first information, including:
  • the first candidate downlink control channel and the second candidate downlink control channel are obtained according to the correspondence between the downlink control channel of the first scheduling period and any one of the downlink control channels of the second scheduling period.
  • the first information includes a correspondence between any one of the downlink control channels in the first scheduling period and any one of the downlink control channels in the second scheduling period, and according to the first information, the first device that is selected to be merged is obtained. Selecting a downlink control channel and a corresponding second candidate downlink control channel.
  • the network device and the terminal device are pre-defined to repeatedly send the PDCCH in four consecutive scheduling periods, and the scheduling period for transmitting the PDCCH for the first time is predefined as the first subframe or the first mini-slot, within each CORESET.
  • the number of corresponding PDCCH candidates is 4, and the sequence number is 1 to 4.
  • the first information is shown in Table 7.
  • combining the decoding of the one first candidate downlink control channel with the one second candidate downlink control channel including:
  • the decoding modes of the candidate downlink control channels with different aggregation levels are different.
  • the first candidate downlink control channel of the first aggregation level and the second candidate downlink control channel of the second level are combined and decoded.
  • the second information includes an aggregation level of the PDCCH of the first scheduling period and an aggregation level of the PDCCH of the second scheduling period.
  • the network device and the terminal device are predefined to repeatedly transmit the PDCCH in four consecutive scheduling periods, and the scheduling period for transmitting the PDCCH for the first time is predefined as the first subframe or the first mini-slot. And the PDCCHs of the four consecutive scheduling periods have the same aggregation level.
  • the second information is shown in Table 8.
  • the method further includes:
  • the first control resource set of the first scheduling period and the first control resource set of the second scheduling period are obtained.
  • the network device and the terminal device are predefined to repeatedly transmit the PDCCH in four consecutive scheduling periods, and the scheduling period for transmitting the PDCCH for the first time is predefined as the first subframe or the first mini-slot.
  • the first control resource of the first scheduling period is the control resource set of the first control resource
  • the first control resource of the second scheduling period is the control resource set of the second control period.
  • the first control resource of the three scheduling periods is the control resource set of No. 2
  • the first control resource of the fourth scheduling period is the control resource set of No. 1.
  • the second information is shown in Table 9.
  • the first information may include the second information and the third information.
  • the first information includes a correspondence between the downlink control channel of the first scheduling period and any downlink control channel of the second scheduling period, and the second scheduling period and the second The aggregation level of the downlink control channel in the scheduling period and the indication information of the first control resource set of the first scheduling period and the first control resource set of the second scheduling period.
  • the network device and the terminal device are pre-defined to repeatedly send the PDCCH in four consecutive scheduling periods, and the scheduling period for transmitting the PDCCH for the first time is predefined as the first subframe or the first mini-slot, and each scheduling period.
  • the scheduling period for transmitting the PDCCH for the first time is predefined as the first subframe or the first mini-slot, and each scheduling period.
  • the number of corresponding PDCCH candidates in each CORESET is 4, and the sequence number is 1 to 4.
  • the first information is shown in Table 10.
  • the candidate downlink control channel of the first scheduling period, the alternate downlink control channel of the second scheduling period, and the candidate downlink control channel of the fourth scheduling period may be selected.
  • the candidate downlink control channel of the first scheduling period, the candidate downlink control channel No. 4 of the second scheduling period, and the candidate downlink control channel of the third scheduling period may be selected for combined decoding; or the first scheduling may be selected.
  • the candidate downlink downlink control channel of the period 4, the candidate downlink control channel No. 1 of the second scheduling period, and the candidate downlink control channel of the third scheduling period are combined and decoded.
  • the candidate downlink control channel No. 1 of the first scheduling period and the candidate downlink control channel No. 4 of the third scheduling period may be selected for combined decoding; or the second scheduling is selected.
  • the alternate candidate control channel No. 2 of the cycle and the candidate downlink control channel No. 4 of the third scheduling period are combined and decoded.
  • the number of the candidate downlink control channels that are combined with the current scheduling period is not limited.
  • the aggregation levels of the alternative downlink control channels of the different scheduling periods may be the same or different.
  • the network device and the terminal device are pre-defined to repeatedly transmit the PDCCH in four consecutive scheduling periods, and the network and the terminal device agree to transmit from the first subframe or the first time slot or the first mini-slot, the subframe.
  • aggregation levels Corresponding number of alternative downlink control channels Different, for example, when the aggregation level is 1 or 2, the number of corresponding candidate downlink control channels is 4, that is, Or 2, the corresponding candidate downlink control channel number is When the aggregation level is 4 or 8, Or 8, the number of corresponding candidate downlink control channels is 2.
  • the first information is shown in Table 11.
  • the first scheduling period is adjacent to or not adjacent to the second scheduling period.
  • the first information, the second information, and the third information are pre-configured or received from a network device.
  • the first information, the second information, and the third information may be configured by the network device to the terminal device, and sent to the terminal device by using high-layer signaling (for example, RRC signaling); or the network device passes the physical layer signaling. (for example, DCI signaling) is sent to the terminal device; or the communication protocol provides for storage in the terminal device, for example, the first information, the second information, and the third information are stored in the communication protocol between the terminal and the network device.
  • high-layer signaling for example, RRC signaling
  • the network device passes the physical layer signaling.
  • DCI signaling is sent to the terminal device
  • the communication protocol provides for storage in the terminal device, for example, the first information, the second information, and the third information are stored in the communication protocol between the terminal and the network device.
  • FIG. 6 is a schematic flow diagram of a method 400 of wireless communication in accordance with the present application. As shown in FIG. 6, the method 400 includes the following.
  • the first candidate downlink control channel is any downlink control channel in the first control resource set of the first scheduling period
  • the second candidate downlink control channel is any downlink control channel in the first control resource set of the second scheduling period
  • the location and size of the frequency domain resources of the downlink control channel in each of the plurality of scheduling periods indicated by the first information are the same.
  • the scheduling period corresponding to the multiple downlink control channels carrying the same downlink control information is a continuous scheduling period, and the initial scheduling period for transmitting the PDCCH is preset, and the user equipment can obtain the sequence number according to the scheduling period.
  • the current scheduling period is the number of repeated transmissions of the PDCCH.
  • the first candidate downlink control channel and the second candidate downlink control channel are combined and decoded.
  • selecting, according to the first information, a first candidate downlink control channel and a corresponding second candidate downlink control channel, and selecting the first candidate downlink control channel and the first The second candidate downlink control channel performs combined decoding to obtain downlink control information.
  • the quality of the downlink control channel is avoided.
  • the user equipment cannot decode the downlink control channel in one scheduling period, obtains downlink control information, and improves the probability of successfully decoding the PDCCH.
  • the one scheduling period may be a sub-frame or a mini-slot.
  • the first candidate downlink control channel and the corresponding second candidate downlink control channel are selected according to the first information, including:
  • the location and the size of the frequency domain resources of the downlink control channel in each of the plurality of scheduling periods indicated by the first information are the same, and the first candidate downlink of the selected merge is obtained according to the first information.
  • Control channel and corresponding second alternative downlink control channel are the same, and the first candidate downlink of the selected merge is obtained according to the first information.
  • the first information is pre-configured or received from a network device.
  • the first information may be configured by the network device to the terminal device, and sent to the terminal device by using high layer signaling (for example, RRC signaling); or the network device is sent to the terminal device by using physical layer signaling (for example, DCI signaling).
  • the communication protocol provides for storage in the terminal device, for example, the first information is stored in the terminal by the terminal and the network device as specified in the communication protocol.
  • FIG. 7 is a schematic flow diagram of a method 500 of wireless communication in accordance with the present application. As shown in FIG. 7, the method 500 includes the following.
  • a first candidate downlink control channel in the plurality of control resource sets is obtained, where the first information indicates a first of each control resource set in the multiple control resource sets in the first scheduling period.
  • the first candidate downlink control channel of each control resource set in the multiple control resource sets of the first scheduling period carries the same downlink control information
  • downlink control information is decoded on the first candidate downlink control channel in the at least one control resource set.
  • the terminal device combines multiple PDCCHs according to the first information. Obtaining downlink control information improves the probability of successfully decoding the PDCCH.
  • the first scheduling period is the current scheduling period.
  • the PDCCH in one scheduling period assumes that the number of control resource sets allocated to the terminal device in the scheduling period is 4, where l indicates that the downlink control information is mapped to the sequence number of the control resource set. 1,2,3,4 ⁇ ; It is assumed that the downlink control information is mapped to an alternative downlink control channel whose aggregation level AL l is equal to 1 in different control resource sets, and the number of candidate downlink control channels corresponding to AL l is equal to 1 4, the corresponding candidate downlink control channel number is For example, on subframe 1 or hour 1 or minislot 1, the downlink control information is respectively mapped to control resource set 1, control resource set 2, control resource set 3, and control resource set 4 with an aggregation level of one candidate. On the downlink control channel.
  • the correspondence between the serial number of the candidate downlink control channels to be combined is equation (6).
  • K denotes the subframe slots or mini-slots k or k, l in the first set of control resources at a polymerization number of alternative downlink control level AL l.
  • the combination of the candidate downlink control channel numbers under AL l in the four scheduling periods that may be combined is (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4) ), (1, 2, 3, 4).
  • the user equipment sets the first PDCCH candidate with aggregation level 1 in CORESET1, the first PDCCH candidate with aggregation level 1 in CORESET2, the first PDCCH candidate with aggregation level 1 in CORESET3, and the aggregation level 1 in CORESET4.
  • One PDCCH candidate is combined and decoded.
  • CORESET and PDCCH candidate is not limited to the case of Table 6; the number of PDCCH candidates for combining is not specified, that is, it may be 2 PDCCH candidate merge decoding, or 3 or 4 PDCCH candidate merge decoding.
  • the user equipment may blindly detect the PDCCH on one CORESET, and may also perform the combined decoding of the corresponding PDCCH candidate, and the sequence of attempting to blindly check the PDCCH and multiple CORESETs on one CORESET is not limited. .
  • the first information is further used to indicate an aggregation level of the first candidate downlink control channel in each control resource set.
  • the aggregation level of the first candidate downlink control channel in each control resource set may also be included in the first information.
  • the aggregation level of the PDCCH in each CORESET may be the same or different.
  • the PDCCH candidate aggregation level is not limited in this application, and may be the same aggregation level or different aggregation levels.
  • the first candidate downlink control channel and the second candidate downlink control channel described in the claims refer to a sequence number or identifier of an alternate downlink control channel, for example,
  • the first candidate downlink control channel corresponding to the aggregation level 1 in the first control resource set of the first scheduling period is 4, and the first candidate downlink control channel in the claim refers to the first scheduling period.
  • the second candidate downlink control channel corresponding to the aggregation level 1 in the second control resource set is 4, and the second candidate downlink control channel in the claim refers to the second The candidate downlink control channel identifier 1 corresponding to the aggregation level 1 in the second control resource set of the degree period or the candidate downlink control channel identifier 2 or the backup level corresponding to the aggregation level 1 in the second control resource set in the second scheduling period In the second control resource set of the second scheduling period, the candidate downlink control channel identifie
  • the downlink control information is carried on an alternate downlink control channel corresponding to a given aggregation level in a control resource set.
  • the number of candidate downlink control channels corresponding to aggregation level 1 is four, which are alternate downlink control channel 1, alternate downlink control channel 2, and alternate downlink control channel 3 and Alternative downlink control channel 4.
  • the network performs the radio network temporary identifier RNTI on the cyclic redundancy check code of the downlink control information of the terminal device 1 and configures the bearer on the candidate downlink control channel 2; the radio network temporary identifier RNTI is the network configuration to the terminal device. 1 The unique identifier in the service cell.
  • the terminal device 1 performs cyclic redundancy check code on the downlink control information by using the radio network temporary identifier RNTI on the candidate downlink control channel 1, the alternate downlink control channel 2, the candidate downlink control channel 3, and the candidate downlink control channel 4, respectively. check. Due to the alternative downlink control channel 1, the cyclic redundancy check code carrying data on the candidate downlink control channel 3 and the candidate downlink control channel 4 is not masked by the radio network temporary identifier RNTI, so the terminal device 1 cannot succeed. Decoding to obtain downlink control information. On the alternative downlink control channel 2, the terminal device 1 performs cyclic redundancy check code verification on the downlink control information by using the radio network temporary identifier RNTI, and can successfully decode the downlink control information under a certain signal to noise ratio.
  • the sequence number or identifier of the candidate downlink control channel corresponding to the aggregation level may be given by the control resource set of the current scheduling period, and the given aggregation level in the control resource set before the current scheduling period is pushed according to the correspondence relationship.
  • the serial number or identifier of the corresponding alternative downlink control channel For example, the terminal device needs to combine and decode the data or signals corresponding to the candidate downlink control channel sequence number or identifier obtained by the corresponding relationship in the data buffered in the current scheduling period and in the previous two scheduling periods in the third scheduling period.
  • the sequence number or identifier of the candidate downlink control channel corresponding to the aggregation level may be given by the control resource set of the current scheduling period, according to the corresponding relationship, corresponding to the given aggregation level in the control resource set before the scheduling period
  • the serial number or identifier of the alternate downlink control channel For example, currently the first scheduling period, the terminal device needs to buffer the data in the current scheduling period and the data in the following two scheduling periods, and the data buffered in the first, second, and third scheduling periods is based on The data or signal corresponding to the candidate downlink control channel sequence number or identifier obtained by the correspondence is combined and decoded.
  • the information transmitted by the PDCCH is the same.
  • the same PDCCH is the same downlink control information DCI.
  • the same PDCCH information is encoded by the cyclic code channel of a certain code rate after being attached by the cyclic redundancy check (CRC), and then mapped to the UE-specific search space of the CORESET.
  • CRC cyclic redundancy check
  • the same PDCCH information is CRC-attached and then encoded by the Polar code channel of the code rate R1 and the code rate R2, respectively, and the channel-encoded control information is mapped to different after a series of processes (eg, scrambling, modulation, etc.).
  • the PDCCHs in different CORESETs are the same PDCCH.
  • the same PDCCH information is encoded by the Polar code channel of the code rate R after the CRC is attached, and the control information of the channel coding is obtained by direct interception or interleaving mapping (not limited to these two methods) to obtain the length a and the length respectively.
  • the information sequence of b is mapped to the UE-specific search space of the aggregation level AL 1 and the aggregation level AL 2 in different CORESETs after a series of processing (for example, scrambling, modulation, etc.), and the PDCCHs in different CORESETs are the same. PDCCH.
  • the DCI since the time-frequency resource locations of the scheduled PDSCHs are the same, the DCI includes one field, which is used to indicate the time-frequency resource location of the scheduled PDSCH.
  • the DCI is the same, all the information contained in the DCI is the same.
  • the DCI does not include the specific time-frequency resource location of the scheduled PDSCH, but only transmits parameters related to scheduling the PDSCH, such as the PDSCH duration in the time domain Y symbols, the bandwidth occupied in the frequency domain X PRBs, etc. parameter.
  • a time-frequency resource mapping formula or mapping pattern is known between the network device and the terminal device, as specified by the protocol or predefined. This mapping relationship is related to the scheduling PDSCH in the time domain duration Y, the bandwidth X occupied in the frequency domain, the current slot number slot index, the terminal device ID, and the like, and obtains different time-frequency positions of the scheduled PDSCHs in different time slots. This way, the DCI is guaranteed to be the same, but the location of the scheduled PDSCH is different.
  • FIG. 9 is a schematic flow diagram of a method 600 of wireless communication in accordance with the present application. As shown in Figure 9, the method 600 includes the following.
  • the first downlink control information is received, where the first downlink control information includes a transmission sequence of the downlink control channel, where the first downlink control information includes data carried by the downlink shared channel in the first scheduling period. Redundancy version and frequency domain resource location.
  • the transmission order is further used to indicate that the first downlink control information includes scheduling data for scheduling a downlink shared channel.
  • the network device and the terminal device preset the k scheduling periods to transmit the same PDSCH, and the k scheduling periods may be continuous or discontinuous.
  • the user determines, according to the transmission order n in the DCI, that the first received PDCCH transmission is the first PDCCH, so as to know the information of the first PDSCH scheduled in the first received PDCCH, such as the RV version, the frequency domain resource location.
  • the user only knows that the information of the PDSCH is scheduled for each of the k times of scheduling, and cannot be obtained by the subframe number, because it is not necessarily continuous transmission, but the first is the first time and the PDSCH is not known.
  • scheduling information of multiple downlink shared channels is obtained, where the first information is used to indicate Correspondence between the transmission order of multiple downlink control channels and the scheduling information of data carried by multiple downlink shared channels.
  • the first information includes: a correspondence between a transmission order of the multiple downlink control channels and a redundancy version and/or a frequency domain resource location of data carried by the downlink shared channel corresponding to the multiple downlink control channels. .
  • the first information includes: a correspondence between a transmission order of the multiple downlink control channels and a redundancy version and/or a frequency domain resource location of data carried by the downlink shared channel corresponding to the multiple downlink control channels. .
  • the first information may include only the data sequence of the downlink control channels and the data carried by the downlink shared channel corresponding to the multiple downlink control channels. Correspondence between redundant versions.
  • the first information may include only the data sequence of the downlink control channels and the data carried by the downlink shared channel corresponding to the multiple downlink control channels. The correspondence between the locations of frequency domain resources.
  • the first information may be as shown in Table 13.
  • Table 13 shows the redundancy version and frequency domain resources of the data carried by the downlink shared channel corresponding to the transmission order of the multiple downlink control channels and the multiple downlink control channels. The correspondence between the locations.
  • PDCCH transmission order 1 2 3 4 Frequency domain resource location offset of PDSCH —— ⁇ 1 ⁇ 2 ⁇ 3 RSCH version number of PDSCH 1 2 3 4
  • the RV version number of the multiple PDSCHs may not be included in the first information.
  • the version number of the RV of the multiple PDSCHs may be carried in the scheduling information of its corresponding PDCCH, and is not stored in the first information.
  • the first information may not include the frequency domain resource location offset of the multiple PDSCHs.
  • the scheduling information of the multiple downlink shared channels is obtained according to the redundancy version and the frequency domain resource location of the data carried by the downlink shared channel in the first scheduling period, and the first information, including:
  • a redundancy version of the downlink shared channel in the plurality of scheduling periods is obtained.
  • the method further include:
  • the network device and the terminal device pre-define the transmission of the PDSCH four times.
  • the terminal device monitors the first PDCCH transmission in the four PDCCH transmissions but fails to successfully decode the corresponding scheduled PDSCH.
  • the frequency domain resource location where the current PDCCH transmission corresponding scheduling PDSCH is located is f 1
  • the RV version is 1
  • the offset of the frequency domain resource location of the PDSCH corresponding to the other three transmission PDCCHs is obtained according to Table 11. They are ⁇ 1 , ⁇ 2 and ⁇ 3 respectively, and the RV versions are 2, 3 , and 4 respectively (the four RV version numbers in Table 13 are obtained, or one dynamic mapping relationship).
  • the terminal device needs to continue to monitor the PDCCH, and determines whether the current subframe or the mini-slot has a scheduled PDSCH by correctly decoding the indication information indicating that the PDCCH is transmitted in the PDCCH. If the terminal device detects the PDCCH next time, it is determined that the current PDCCH transmission is the fourth PDCCH according to the domain information, and the RV version of the corresponding scheduled PDSCH is 3 according to the mapping relationship of Table 4, in the current subframe or mini-slot.
  • the known PDSCH frequency domain resource location f 1 + ⁇ 3 is decoded, or the corresponding information of the PDSCH with the previous RV version 1 is combined and decoded.
  • the network device and the terminal device pre-define the transmission of the PDSCH four times, and the frequency domain location resource of the PDSCH transmitted in each scheduling period is fixed, and the terminal device monitors the fourth of the four PDCCH transmissions.
  • the frequency domain resource location where the PDSCH is scheduled can be obtained according to the domain information in the successfully decoded DCI, and the frequency domain resource location of the other three PDSCH schedulings is known.
  • the RV version of the current scheduled PDCCH transmission scheduling PDSCH is 2.
  • the terminal device can continue to monitor the PDCCH until the next PDCCH is monitored, and the current PDCCH transmission is obtained.
  • the RV version of the corresponding scheduled PDSCH is 3, and the previous RV version is 2.
  • the PDSCH performs corresponding data merging to increase the probability of successful decoding; or the terminal device no longer monitors the PDCCH, and after obtaining the RV version of the PDSCH is 2, the data is decoded on the PDSCH frequency domain resource location that is known in the next scheduling period, or Combine and decode the previously buffered PDSCH data.
  • the first information is pre-configured or received from a network device.
  • the first information may be configured by the network device to the terminal device, and sent to the terminal device by using high layer signaling (for example, RRC signaling); or the network device is sent to the terminal device by using physical layer signaling (for example, DCI signaling).
  • the communication protocol provides for storage in the terminal device, for example, the first information is stored in the terminal by the terminal and the network device as specified in the communication protocol.
  • the data of the bearer data of the multiple downlink shared channels is combined and decoded according to the first information and the first control information, so that the quality of the downlink control channel is poor.
  • the user equipment cannot decode the downlink shared channel in one scheduling period, obtains downlink scheduling data, and improves the probability of successfully decoding the PDSCH.
  • FIG. 12 is a schematic flow diagram of a method 700 of wireless communication in accordance with the present application. As shown in FIG. 12, the method 700 includes the following.
  • the downlink control information of the first scheduling period is received, where the first downlink control information includes a transmission order of the downlink control channel, and the downlink control information includes scheduling information of data carried by the multiple downlink shared channels.
  • the transmission order is further used to indicate that the first downlink control information includes scheduling data for scheduling a downlink shared channel.
  • the network device and the terminal device preset the k scheduling periods to transmit the same PDSCH, and the k scheduling periods may be continuous or discontinuous.
  • the user determines, according to the transmission order n in the DCI, that the first received PDCCH transmission is the first PDCCH, so as to know the information of the first PDSCH scheduled in the first received PDCCH, such as the RV version, the frequency domain resource location.
  • the user only knows that the information of the PDSCH is scheduled for each of the k times of scheduling, and cannot be obtained by the subframe number, because it is not necessarily continuous transmission, but the first is the first time and the PDSCH is not known.
  • the at least one downlink shared channel is decoded according to scheduling information of at least one downlink shared channel in the scheduling information of the data carried by the multiple downlink shared channels.
  • one downlink control information DCI further includes scheduling information of k times of PDSCH, for example, a redundancy version RV of a PDSCH, a frequency domain resource location, and the like are scheduled.
  • the scheduling information of the PDSCH transmitted in k times is known, and the PDSCH may be decoded on the corresponding PDSCH or combined and decoded on multiple downlink shared channels, thereby improving the PDSCH.
  • the probability of decoding is the probability of decoding.
  • the first scheduling period may be the current scheduling period.
  • the at least one downlink shared channel is decoded according to the scheduling information of the data carried by the at least one downlink shared channel in the scheduling information of the data carried by the multiple downlink shared channels, including:
  • the downlink shared channel and the current downlink shared before the current downlink shared channel are not decoded.
  • the channel is combined and decoded.
  • the first information is pre-configured or received from a network device.
  • the first information may be configured by the network device to the terminal device, and sent to the terminal device by using high layer signaling (for example, RRC signaling); or the network device is sent to the terminal device by using physical layer signaling (for example, DCI signaling).
  • the communication protocol provides for storage in the terminal device, for example, the first information is stored in the terminal by the terminal and the network device as specified in the communication protocol.
  • the one downlink control information DCI further includes scheduling information of k times of PDSCH, for example, a redundancy version RV of the PDSCH, a frequency domain resource location, and the like.
  • the user equipment blindly detects any one PDCCH transmission in the k-th PDCCH transmission, it knows that the scheduling information of the PDSCH transmitted in k times can be decoded on the corresponding PDSCH.
  • the user equipment knows that the currently received PDCCH transmission is received according to the indication information in the DCI, so as to know the information of the current PDSCH scheduled in the currently received PDCCH, such as the RV version, the frequency domain resource location.
  • the user equipment does not monitor the PDCCH in the current scheduling period, it can continue to monitor the PDCCH in the next scheduling period. Once it is monitored, it knows that all information of the PDSCH is scheduled for k times, and does not affect the reception of the PDSCH.
  • the user equipment can correctly decode the currently scheduled PDSCH, stop monitoring the PDCCH and decoding the PDCCH scheduled PDSCH, and feed back the HARQ-ACK; if the user equipment cannot correctly decode the PDSCH, the PDCCH needs to continue to be monitored, and the current PDCCH transmission is indicated by the DCI. Several times of information to get the current scheduling period or whether the mini-slot contains the scheduled PDSCH. If yes, the PDSCH information is decoded on the frequency domain resource location of the scheduling PDSCH corresponding to the current PDCCH transmission number information, or is combined with the PDSCH information of the different RV versions buffered before and then decoded. The order of decoding after directly decoding the PDSCH or combining the PDSCH is not specified.
  • the network device and the terminal device pre-define 4 times of transmitting PDSCH, that is, transmit 4 different PDCCHs on 4 scheduling periods.
  • the first scheduling period transmits PDCCH1, the second scheduling period transmission PDCCH2, the third scheduling period transmission PDCCH3, and the fourth scheduling period transmission PDCCH4, and PDCCH1, PDCCH2, PDCCH3, and PDCCH4 include scheduling information of 4 PDSCHs. It is assumed that the user equipment does not blindly detect PDCCH1 in the first scheduling period control resource set, but blindly detects PDCCH2 in the second scheduling period control resource set, and obtains information about all PDSCHs scheduled in the four scheduling periods, and according to DCI.
  • the indication information in the current information indicates which of the four schedulings the currently scheduled PDSCH is, so that information such as the RV version and the time-frequency resource location of the currently scheduled PDSCH can be obtained; if the user equipment does not blindly detect the PDCCH 2, then The PDCCH continues to be monitored on the scheduling period.
  • FIG. 14 is a schematic block diagram of a terminal device 800 in accordance with the present application. As shown in FIG. 14, the terminal device includes:
  • the determining module 810 is configured to obtain, according to the first candidate downlink control channel and the first information, a second candidate downlink control channel, where the first information is used for the downlink from the first candidate Corresponding relationship between the control channel and the second candidate downlink control channel;
  • the first candidate downlink control channel is any one of the first control resource set in the first scheduling period
  • the second candidate downlink control channel is the first control resource in the second scheduling period. Any one of the alternative downlink control channels in the set, where the downlink control information carried by the first candidate downlink control channel and the second candidate downlink control channel is the same;
  • the processing module 820 is configured to combine and decode the first candidate downlink control channel and the second candidate downlink control channel.
  • the determining module 810 and the processing module 820 are used to perform various operations of the method 200 for wireless communication in the embodiment of the present application. For brevity, details are not described herein again.
  • the determining module 810 of the terminal device 800 of the present application is further configured to: in the second scheduling period, select, according to the first information, a first candidate downlink control channel and a corresponding second candidate downlink control channel, where the first candidate downlink The control channel and the downlink control information carried by the second candidate downlink control channel are the same;
  • the first candidate downlink control channel is any downlink control channel in the first control resource set of the first scheduling period
  • the second candidate downlink control channel is any downlink control channel in the first control resource set of the second scheduling period
  • the first information is used to indicate a correspondence between any one of the downlink control channels of the first scheduling period and any one of the downlink control channels of the second scheduling period.
  • the processing module 820 is further configured to: combine and decode the first candidate downlink control channel and the second candidate downlink control channel.
  • the determining module 810 and the processing module 820 are used to perform various operations of the method 300 for wireless communication in the embodiment of the present application. For brevity, details are not described herein again.
  • the determining module 810 of the terminal device 800 of the present application is further configured to: in the second scheduling period, select, according to the first information, a first candidate downlink control channel and a corresponding second candidate downlink control channel, where the first candidate downlink The control channel and the downlink control information carried by the second candidate downlink control channel are the same;
  • the first candidate downlink control channel is any downlink control channel in the first control resource set of the first scheduling period
  • the second candidate downlink control channel is any downlink control channel in the first control resource set of the second scheduling period
  • the location and size of the frequency domain resources of the downlink control channel in each of the plurality of scheduling periods indicated by the first information are the same.
  • the processing module 820 is further configured to: combine and decode the first candidate downlink control channel and the second candidate downlink control channel.
  • the determining module 810 and the processing module 820 are used to perform various operations of the method 400 for wireless communication in the embodiment of the present application. For brevity, details are not described herein again.
  • the determining module 810 of the terminal device 800 of the present application is further configured to: obtain, according to the first information, a first candidate downlink control channel in the multiple control resource sets, where the first information indicates multiple control resources in the first scheduling period Corresponding relationship of the first candidate downlink control channel of each control resource set in the set,
  • the first candidate downlink control channel of each control resource set in the multiple control resource sets of the first scheduling period carries the same downlink control information.
  • the processing module 820 is further configured to: decode the downlink control information on the first candidate downlink control channel in the at least one control resource set.
  • the determining module 810 and the processing module 820 are used to perform various operations of the method 500 for wireless communication in the embodiment of the present application. For brevity, details are not described herein again.
  • the determining module 810 of the terminal device 800 of the present application is further configured to: receive first downlink control information, where the first downlink control information includes a transmission order of the downlink control channel, where the first downlink control information includes the first scheduling A redundancy version and a frequency domain resource location of data carried by the downlink shared channel within the period.
  • the processing module 820 is further configured to: obtain scheduling information of multiple downlink shared channels according to the redundancy version and the frequency domain resource location of the data carried by the downlink shared channel in the first scheduling period, and the first information, where the first The information is used to indicate a correspondence between a transmission order of the multiple downlink control channels and scheduling information of data carried by the multiple downlink shared channels.
  • the determining module 810 and the processing module 820 are used to perform various operations of the method 600 for wireless communication in the embodiment of the present application. For brevity, details are not described herein again.
  • the determining module 810 of the terminal device 800 of the present application is further configured to: receive downlink control information of a first scheduling period, where the first downlink control information includes a transmission order of the downlink control channel, where the downlink control information includes multiple downlink shared channels. Scheduling information of the carried data.
  • the processing module 820 is further configured to: decode the at least one downlink shared channel according to scheduling information of the at least one downlink shared channel in the scheduling information of the data carried by the multiple downlink shared channels.
  • the determining module 810 and the processing module 820 are used to perform various operations of the method 700 for wireless communication in the embodiment of the present application. For brevity, details are not described herein again.
  • the terminal device is completely corresponding to the terminal device in the method embodiment, and corresponding steps are performed by the corresponding module. For details, refer to the corresponding method embodiment.
  • FIG. 15 shows a schematic block diagram of a communication device 900 provided by the present application, the communication device 900 comprising:
  • a memory 910 configured to store a program, where the program includes a code
  • transceiver 920 configured to communicate with other devices
  • the processor 930 is configured to execute program code in the memory 910.
  • the processor 930 can implement various operations of the method 200 or the method 300 or the method 400 or the method 500 or the method 600 or the method 700.
  • the communication device 600 is a terminal device.
  • the transceiver 920 is configured to perform specific signal transceiving under the driving of the processor 930.
  • the communication device 900 can be the above-mentioned terminal device, and performs the operation of obtaining the module.
  • the transceiver can include a transmitter and/or a receiver, and respectively perform corresponding steps of obtaining the module and the processing module.
  • An embodiment of the present invention further provides a system chip, the system chip includes an input and output interface, at least one processor, at least one memory, and a bus, the at least one memory is configured to store an instruction, and the at least one processor is configured to invoke the at least one The instructions of the memory perform the operations of the methods of the various aspects described above.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信的方法、芯片和系统,能够提高解码物理下行控制信道的可靠性,提高了通信质量。该方法包括:在第二调度周期,根据第一备选下行控制信道和第一信息,在所述第二调度周期内对应的第一控制资源集合中得到一个第二备选下行控制信道,其中,所述第一信息为用于从所述第一备选下行控制信道到所述第二备选下行控制信道的对应关系;其中,所述第一备选下行控制信道为第一调度周期的第一控制资源集合中的任意一个备选下行控制信道,对所述第一备选下行控制信道与所述第二备选下行控制信道合并解码。

Description

无线通信的方法、芯片和系统
本申请要求于2017年08月11日提交中国专利局、申请号为201710687175.8、申请名称为“无线通信的方法、芯片和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种无线通信的方法、芯片和系统。
背景技术
在超高可靠低延时通信场景下(Ultra Reliable Low Latency communication,URLLC)对时延要求极高。在不考虑可靠性的情况下,传输时延要求在0.5毫秒(millisecond,ms)以内;在达到99.999%的可靠性的前提下,传输时延要求在1ms以内。然而直接增加物理下行控制信道(Physical Downlink Control Channel,PDCCH)的编码增益或处理增益(例如采用高聚合等级)并不是增加PDCCH可靠传输的一个有效方法。因此如何提高解码PDCCH的可靠性,提高通信质量是一项亟待及解决的问题。
发明内容
本申请提供一种无线通信的方法,能够提高解码PDCCH的可靠性,提高了通信质量。
第一方面,提供了一种无线通信的方法,包括:
在第二调度周期,根据第一备选下行控制信道和第一信息,在所述第二调度周期内对应的第一控制资源集合中得到一个第二备选下行控制信道,其中,所述第一信息为用于从所述第一备选下行控制信道到所述第二备选下行控制信道的对应关系,
其中,所述第一备选下行控制信道为第一调度周期的第一控制资源集合中的任意一个备选下行控制信道;
对该第一备选下行控制信道与该第二备选下行控制信道合并解码。
因此,通过在第二调度周期内,将第二调度周期内的第二备选下行控制信道和第一调度周期内德第一备选下行控制信道进行合并解码,避免了在下行控制信道质量较差时,用户设备无法在一个调度周期内对该下行控制信道解码,获得下行控制信息,提高了成功解码PDCCH的概率。
可选地,该一个调度周期可以是一个子帧(sub-frame),也可以是一个微时隙(mini-slot)。
可选地,在该根据第一备选下行控制信道和第一信息,得到第二备选下行控制信道之前,该方法还包括:
根据第二信息,得到该第二备选下行控制信道序号与该第一备选下行控制信道序号的偏移量,以及该第一备选下行控制信道的第一聚合等级和该第二备选下行控制信道的第二 聚合等级;
该根据第一备选下行控制信道和第一信息,得到第二备选下行控制信道,包括:
根据该第一信息、该第一备选下行控制信道、该偏移量以及该第一聚合等级和该第二聚合等级,得到该第二备选下行控制信道。
此时,减少了尝试合并PDCCH解码的次数,提高了避免了在多个备选下行控制信道上合并解码,提高了解码PDCCH的效率。
可选地,当该第一个调度周期对应多个控制资源集合时,或该第二调度周期对应多个控制资源集合时,该方法还包括:
根据第三信息,得到该第一调度周期的第一控制资源集合和该第二调度周期的第一控制资源集合。
可选地,该第一调度周期与该第二调度周期相邻或不相邻。
可选地,该第一信息、该第二信息和该第三信息预先配置或从网络设备接收或本地存储。
第二方面,提供了一种无线通信的方法,包括:在第二调度周期,根据第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道;
其中,该第一备选下行控制信道为第一调度周期内的第一控制资源集合中的任意一个备选下行控制信道,该第二备选下行控制信道为该第二调度周期的第一控制资源集合中的任意一个备选下行控制信道;
该第一信息用于指示该第一调度周期内的任意一个备选下行控制信道与该第二调度周期内的任意一个备选下行控制信道的对应关系;
对该第一备选下行控制信道与该第二备选下行控制信道合并解码。
因此,通过在第二调度周期内,将第二调度周期内的第二备选下行控制信道和第一调度周期内的第一备选下行控制信道进行合并解码,避免了在下行控制信道质量较差时,用户设备无法在一个调度周期内对该下行控制信道解码,获得下行控制信息,提高了成功解码PDCCH的概率。
可选地,该根据第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道,包括:
根据该第一调度周期内的任意一个备选下行控制信道与该第二调度周期内的任意一个备选下行控制信道的对应关系,得到该第一备选下行控制信道和该第二备选下行控制信道。
此时,减少了尝试合并PDCCH解码的次数,提高了避免了在多个备选下行控制信道上合并解码,提高了解码PDCCH的效率。
可选地,该对该一个第一备选下行控制信道与该一个第二备选下行控制信道合并解码,包括:
根据第二信息,得到该第一备选下行控制信道的第一聚合等级和该第二备选下行控制信道的第二聚合等级,
其中,聚合等级不同的备选下行控制信道的解码方式不同;
对第一聚合等级的该第一备选下行控制信道和第二聚合等级的该第二备选下行控制信道合并解码。
可选地,当该第一个调度周期对应多个控制资源集合时,或该第二调度周期对应多个控制资源集合时,该方法还包括:
根据第三信息,得到该第一调度周期内的第一控制资源集合和该第二调度周期内的第一控制资源集合。
可选地,该第一调度周期与该第二调度周期相邻或不相邻。
可选地,该第一信息、该第二信息和该第三信息预先配置或从网络设备接收或本地存储。
第三方面,提供了一种无线通信的方法,其特征在于,包括:接收第一下行控制信息,该第一下行控制信息包括第一下行控制信道的传输次序,该第一下行控制信息包括第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置;
根据该第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置,以及第一信息,得到多个下行共享信道承载的数据的调度信息,该第一信息用于指示多个下行控制信道的传输次序与多个下行共享信道承载的数据的调度信息的对应关系。
因此,通过根据第一信息和第一控制信息得到多个下行共享信道的承载的数据的调度信息,对多个下行共享信道的承载的数据的进行合并解码,避免了在下行控制信道质量较差时,用户设备无法在一个调度周期内对该下行共享信道解码,获得下行调度数据,提高了成功解码PDSCH的概率。
可选地,该第一信息包括:该多个下行控制信道的传输次序与该多个下行控制信道对应的下行共享信道承载的数据的冗余版本和/或频域资源位置之间的对应关系。
可选地,该根据该第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置,以及第一信息,得到多个下行共享信道的调度信息,包括:
根据第一调度周期内的下行共享信道承载的数据的频域资源位置,以及该第一信息中的多个调度周期中的下行共享信道与第一下行共享信道的偏移量,得到多个下行共享信道的频域位置资源;和/或
从该第一信息中,得到多个调度周期中的下行共享信道的冗余版本。
可选地,根据该第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置,以及第一信息,得到多个下行共享信道承载的数据的调度信息之后,该方法还包括:
根据第一下行共享信道承载的数据的调度信息,对该第一共享信道承载的数据解码,得到下行调度数据;或
根据该第一下行共享信道承载的数据的调度信息,以及该第一下行共享信道之前未解码的下行共享信道承载的数据的调度信息,对该第一下行共享信道之前的下行共享信道承载的数据和第一下行共享信道承载的数据进行合并解码,得到下行调度数据。
可选地,该第一信息预先配置或从网络设备接收或本地存储。
第四方面,提供了一种能够芯片,提供了一种系统芯片,该系统芯片包括输入输出接口、至少一个处理器、至少一个存储器和总线,该至少一个存储器用于存储代码,该至少一个处理器用于调用该至少一个存储器的代码,以进行上述各个方面的方法的操作。
第五方面,提供了一种系统,包括终端设备,该终端设备用于执行上述第一方面或第一方面的任意可选的实现方式中的方法或上述第二方面或第二方面的任意可选的实现方式中的方法或上述第三方面或第三方面的中任意可选的实现方式中的方法,以及用于对该 终端设备进行服务的网络设备。
附图说明
图1是根据本申请的一种无线通信的方法、芯片和系统的通信系统的示意图。
图2是根据本申请的一种无线通信的方法200的示意性流程图。
图3是根据本申请的不同调度周期的下行控制信道的示意性框图。
图4是根据本申请的不同调度周期的下行控制信道的示意性框图。
图5是根据本申请的一种无线通信的方法300的示意性流程图。
图6是根据本申请的一种无线通信的方法400的示意性流程图。
图7是根据本申请的一种无线通信的方法500的示意性流程图。
图8是根据本申请的一个调度周期的下行控制信道的示意性框图。
图9是根据本申请的一种无线通信的方法600的示意性流程图。
图10是根据本申请的不同调度周期的下行共享信道的示意性框图。
图11是根据本申请的不同调度周期的下行共享信道的示意性框图。
图12是根据本申请的一种无线通信的方法700的示意性流程图。
图13是根据本申请的不同调度周期的下行共享信道的示意性框图。
图14是根据本申请的终端设备800的示意性框图。
图15示出了本申请提供的通信装置900的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了方便理解本发明实施例,首先在此介绍本发明实施例之前引入以下的几个要素。
PDCCH是物理下行控制信道,位于一个子帧内的时频资源的控制域部分,即时域上占用一个TTI内的前N个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,由物理控制格式指示信道(physical control format indicator channel,PCFICH)指示,其中0<N≤3,对于系统带宽为1.4M时,N可以取4;频域上占用系统带宽内所有可用的子载波,这里可用子载波是指去除PCFICH、混合自动重传请求物理指示信道(physical harq indicator channel,PHICH,其中,hybrid automatic repeat request,HARQ)以及参考信号占用的子载波。时域维度上一个OFDM符号,频域维度上一个子载波所指示的资源被称为一个资源单元(resource element,RE),4个RE构成一个资源单元组(resource element group,REG)。对于PDCCH而言,还定义了控制信道单元(control channel element,CCE),一个CCE固定包含9个REG。例如当系统带宽为5M时,频域上共包含25个物理资源块(physical resource block,PRB),一个PRB频域上是12个子载波,时域上占0.5ms,PCFICH、PHICH以及参考信号的资源映射方式固定,UE按照固定的资源映射方式先检测PCFICH获得PDCCH占用的OFDM符号数量N,例如N=2,则共包含600个RE,即150个REG。如果PCFICH、PHICH以及参考信号共占57个REG,则PDCCH可用的资源为93个REG,即约为10个CCE。
PDCCH具有4种格式,不同格式的PDCCH占用的资源个数不同,即聚合等级(aggregation level,AL)不同。PDCCH上承载的内容称为下行控制信息(downlink control  information,DCI),DCI的大小固定,采用不同的PDCCH格式则会获得不同的码率,如使用格式2的码率是使用格式3的码率的2倍。占用的CCE的数量越少,码率越高,要求UE的信道条件越好,这样才能提高UE正确解码码率高的PDCCH的概率。即如果UE的信道条件较差,则只能选择低码率传输,例如选择PDCCH占用CCE数量较多的格式。另外,UE不需要对码率超过3/4的PDCCH进行盲检测。根据UE的信道条件不同,可以选择由高层为UE配置不同的传输模式,传输模式不同,对应的DCI的大小不同。每个UE除了高层配置的当前的传输模式外,还默认可以使用回退模式,对应的DCI的大小和当前模式对应的DCI大小不同。
在一个TTI内,可用的控制域资源是按照树形结构对CCE进行聚合,从而组成可用的不同格式的PDCCH控制信道。当CCE聚合等级AL=1时,每个CCE构成一个格式0的PDCCH;当CCE聚合等级AL=2时,连续2个CCE构成一个格式1的PDCCH;当CCE聚合等级AL=4时,连续4个CCE构成一个格式2的PDCCH;当CCE聚合等级AL=8时,连续8个CCE聚合成一个格式3的PDCCH。即,PDCCH的格式与CCE聚合等级以及占用的CCE的数量的关系如下表1所示。
表1
PDCCH格式(Format) CCE聚合等级AL CCE的数量
格式0 1 1
格式1 2 2
格式2 4 4
格式3 8 8
所有的CCE可以分为两类搜索空间,即公共搜索空间和UE特定的搜索空间。公共搜索空间包含标号为0~15的CCE,即前16个CCE。公共搜索空间里面的PDCCH主要用来承载公共的DCI,所有的UE都需要检测公共搜索空间里的DCI以获得公共调度信息,如系统信息等。公共搜索空间中只存在两种格式的PDCCH,即格式2和格式3;而UE特定的搜索空间中存在上述四种格式的PDCCH,用来承载针对UE特定的DCI,对于每一种PDCCH格式,即聚合等级,都对应一个UE特定的搜索空间。不同UE的特定搜索空间可以重合。搜索空间的大小即PDCCH候选信道的个数仅和聚合等级有关,如表2所示。
表2
Figure PCTCN2018099427-appb-000001
例如,在UE特定的搜索空间中,对应于AL=2的搜索空间中的PDCCH候选信道的个数为6个,并且连续的6个PDCCH候选信道构成一个AL=2的搜索空间。
控制资源集合(control resource set,CORESET),NR中新提出的概念,可以理解为一个时频资源集合。在时域上,1个CORESET可以被配置为1个或连续几个OFDM符号;在频域上,1个CORESET可以是一组连续或非连续的频域资源,包含不同聚合等级下的搜索空间。
图1是使用本申请的一种无线通信的方法和设备的通信系统的示意图。如图1所示,所述通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目标终端设备通信。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目标数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,所述通信系统100可以是公共陆地移动网络(public land mobile network,PLMN)网络或者D2D(device to device)网络或者M2M(machine to machine)网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
可选地,在本申请中,所述网络设备可以是与终端设备进行通信的设备,例如,网络 设备或网络设备控制器等。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于所述覆盖区域(小区)内的终端设备(例如UE)进行通信,网络设备可以支持不同制式的通信协议,或者可以支持不同的通信模式。例如,所述网络设备可以是GSM系统或CDMA系统中的网络设备(base transceiver station,BTS),也可以是WCDMA系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(evolutional node b,eNB或eNodeB),或者是云无线网络(cloud radio access network,CRAN)中的无线控制器,或者所述网络设备可以为未来5G网络中的网络设备,如gNB或小站、微站,传输接收点(transmission reception point,TRP),还可以是中继站、接入点或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等。
可选地,在本申请中,终端设备可以指接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动终端、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、物联网中的终端设备、虚拟现实设备、未来5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
本申请提供的无线通信的方法和设备,可以应用于终端设备,所述终端设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。所述硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。所述操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。所述应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种介质。
为了更好地理解本申请,以下将结合图2-图15,以与图1所示的系统相同或相似的系统为例对本申请进行说明。
在210中,在第二调度周期,根据第一备选下行控制信道和第一信息,在所述第二调度周期内对应的第一控制资源集合中得到一个第二备选下行控制信道,其中,所述第一信息为用于从所述第一备选下行控制信道到所述第二备选下行控制信道的对应关系;
其中,所述第一备选下行控制信道为第一调度周期的第一控制资源集合中的任意一个备选下行控制信道。
在该方法中,承载相同下行控制信息的多个下行控制信道对应的调度周期为连续的调度周期,并且传输该PDCCH的起始调度周期预先设定,该用户设备根据该调度周期的序号可以得到当前调度周期是第几次重复传输PDCCH。
在220中,对该第一备选下行控制信道与该第二备选下行控制信道合并解码。
具体而言,在该第二调度周期内,根据该第一周期的该第一备选下行控制信道和第一信息,得到该第二调度周期内的第二备选下行控制信道,并对该第一备选下行控制信道和该第二备选下行控制信道进行合并解码,以便于得到下行控制信息。
因此,通过在第二调度周期内,将第二调度周期内的第二备选下行控制信道和第一调度周期内德第一备选下行控制信道进行合并解码,避免了在下行控制信道质量较差时,用户设备无法在一个调度周期内对该下行控制信道解码,获得下行控制信息,提高了成功解码PDCCH的概率。
可选地,在第二调度周期,根据第一备选下行控制信道的序号和第一信息,在所述第二调度周期内对应的第一控制资源集合中得到一个第二备选下行控制信道的序号。
可选地,该一个调度周期可以是一个子帧(sub-frame),也可以是一个微时隙(mini-slot)。
可选地,在该根据第一备选下行控制信道和第一信息,得到第二备选下行控制信道之前,该方法还包括:
根据第二信息,获取该第二备选下行控制信道与该第一备选下行控制信道的偏移量,以及该第一备选下行控制信道的第一聚合等级和该第二备选下行控制信道的第二聚合等级;
该根据第一备选下行控制信道和第一信息,得到第二备选下行控制信道,包括:
根据该第一信息、该第一备选下行控制信道、该偏移量以及该第一聚合等级和该第二聚合等级,得到该第二备选下行控制信道。
具体而言,该第二信息包括了该第二备选下行控制信道与该第一备选下行控制信道的偏移量,以及该第一备选下行控制信道的第一聚合等级和该第二备选下行控制信道的第二聚合等级,根据第一信息、该第一备选下行控制信道、该偏移量以及该第一聚合等级和该第二聚合等级,得到该第二备选下行控制信道。
例如,图3所示,网络设备和终端设备预定义在4个连续调度周期内分别重复发送PDCCH,网络和终端设备约定从第一个子帧或第一个时隙或第一个微时隙开始发送,子帧或时隙或微时隙的序号为k,其中k=1,2,3,4;在不同子帧k或时隙k或微时隙k内,假设下行控制信息映射到聚合等级AL k等于1的一个备选下行控制信道上,AL k等于1对应的备选下行控制信道个数
Figure PCTCN2018099427-appb-000002
为4,对应的备选下行控制信道序号为
Figure PCTCN2018099427-appb-000003
Δ k是连续调度周期内其他子帧或时隙或微时隙内承载下行控制信息的备选下行控制信道序号相对于第一个子帧或时隙或微时隙承载下行控制信息的备选下行控制信道序号的偏移量,其取值可以是网络给用户配置,通过高层信令(例如RRC信令)告诉用户;或网络通过物理层信令(例如DCI信令)下发给用户;或通信协议规定,在终端中存储。通信协议规定Δ2=0,Δ3=2,Δ4=1。不同调度周期内可能合并的备选下行控制信道序号之间的对应关系为式(1)
Figure PCTCN2018099427-appb-000004
Figure PCTCN2018099427-appb-000005
表示子帧k或时隙k或微时隙k内,在聚合等级AL k下的备选下行控制信道序 号,mod表示取余。
该第二信息如表3所示,表3示出了调度周期号、聚合等级和备选信道偏移量之间的对应关系。
表3
调度周期号k 1 2 3 4
聚合等级AL k 1 1 1 1
备选下行控制信道偏移量Δ k —— Δ2 Δ3 Δ4
若当在该第二调度周期时,选择一个第一调度周期内的备选PDCCH,再根据该式(1)和表1得到一个第二调度周期内的备选PDCCH。
当选择第一调度周期内的备选PDCCH为1时,将备选PDCCH的序号“1”、Δ2代入式1,得到第二调度周期的备选PDCCH为2;
当选择第一调度周期内的备选PDCCH为2时,将备选PDCCH的序号“2”、Δ2代入式1,得到第二调度周期的备选PDCCH为3;
当选择第一调度周期内的备选PDCCH为3时,将备选PDCCH的序号“3”、Δ2代入式1,得到第二调度周期的备选PDCCH为4;
当选择第一调度周期内的备选PDCCH为4时,将备选PDCCH的序号“4”、Δ2代入式1,得到第二调度周期的备选PDCCH为1。
如果将每个子帧或时隙或微时隙号、聚合等级和在给定聚合等级下的备选下行控制信道序号带入公式得到
k=1时,
Figure PCTCN2018099427-appb-000006
或4;
k=2时,
Figure PCTCN2018099427-appb-000007
或1;
k=3时,
Figure PCTCN2018099427-appb-000008
或3;
k=4时,
Figure PCTCN2018099427-appb-000009
或2;
可能做合并的4个调度周期内AL k=1下的备选下行控制信道序号组合为(1,2,4,3),(2,3,1,4),(3,4,2,1),(4,1,3,2)。
再例如,在上述图3描述的场景下,该不同调度周期内可能合并的备选下行控制信道序号之间的对应关系也可以为式(2)
Figure PCTCN2018099427-appb-000010
在式(2)中,
Figure PCTCN2018099427-appb-000011
假设通信协议规定Δ2=0,Δ3=2,Δ4=1,如果将每个子帧或时隙或微时隙号、聚合等级和在给定聚合等级下的备选下行控制信道序号带入公式得到
k=1时,
Figure PCTCN2018099427-appb-000012
或4;
k=2时,
Figure PCTCN2018099427-appb-000013
或1;
k=3时,
Figure PCTCN2018099427-appb-000014
或3;
k=4时,
Figure PCTCN2018099427-appb-000015
或2;
应理解,该不同调度周期内的备选下行控制信道的聚合等级可以一样也可以不一样,在该实施例中,不同调度周期内的备选下行控制信道的聚合等级一样仅用做举例,并不做任何限定。
如果终端设备漏检了第一个调度周期内的PDCCH,那么在第二个调度周期内根据第一信息和第二信息,将第一个调度周期内的PDCCH candidate和第二个调度周期内对应的PDCCH candidate尝试一起做合并解码,该尝试的备选PDCCH的组合为(1,2),(2,3),(3,4),(4,1)。此时,可以减少终端设备尝试合并解码的组合数,即终端设备就不用解码(1,1),(1,3),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,3),(4,2),(4,3),(4,4)这几种合并的组合。
可选地,当该第一个调度周期对应多个控制资源集合时,或该第二调度周期对应多个控制资源集合时,该方法还包括:
根据第三信息,得到该第一调度周期的第一控制资源集合和该第二调度周期的第一控制资源集合。
具体而言,该第三信息包括了该第一调度周期的第一控制资源集合的指示信息和该第二调度周期的第一控制资源集合的指示信息,根据第三信息,得到该第一调度周期的第一控制资源集合和该第二调度周期的第一控制资源集合。
例如,如表4所示,表4示出了不同的调度周期的第一控制资源集合CORESET的指示信息。
表4
调度周期号k 1 2 3 4
CORESET序号l k 1 2 2 1
可选地,该第二信息可以包含该第三信息。
具体而言,该第二信息包括了调度周期号、该第二备选下行控制信道与该第一备选下行控制信道的偏移量,以及该第一备选下行控制信道的第一聚合等级和该第二备选下行控制信道的第二聚合等级,和调度周期的第一控制资源集合的指示信息。
例如,如图4所示,网络设备和终端设备预定义在4个连续调度周期内分别重复发送PDCCH,网络和终端设备约定从第一个子帧或第一个时隙或第一个微时隙开始发送,子帧或时隙或微时隙的序号为k,其中k=1,2,3,4;假设每个调度周期内有控制资源集合个数为2,网络选择其中一个控制资源集合配置给终端设备,l k用来表示在子帧k或时隙k或微时隙k内,下行控制信息映射到控制资源集合的序号l k∈{1,2};假设在不同子帧k或时隙k或微时隙k的控制资源集合l k内,下行控制信息映射到聚合等级
Figure PCTCN2018099427-appb-000016
等于1的一个备选下行控制信道上,
Figure PCTCN2018099427-appb-000017
对应的备选下行控制信道个数
Figure PCTCN2018099427-appb-000018
为4,对应的备选下行控制信道序号为
Figure PCTCN2018099427-appb-000019
Δk是连续调度周期内其他子帧或时隙或微时隙内承载下行控制信息的备选下行控制信道序号相对于第一个子帧或时隙或微时隙承载下行控制信息的备选下行控制信道序号的偏移量,其取值可以是网络给用户配置,通过高层信令(例如RRC信令)告诉用户;或网络通过物理层信令(例如DCI信令)下发给用户;或通信协议规定,在终端中存储。通信协议规定Δ2=0,Δ3=2,Δ4=1。不同调度周期内可能合并的备选下行控制信道序号之间的对应关系为
Figure PCTCN2018099427-appb-000020
式中,
Figure PCTCN2018099427-appb-000021
表示子帧k或时隙k或微时隙k内的控制资源集合l k上,在聚合等级
Figure PCTCN2018099427-appb-000022
下的备选下行控制信道序号。
该第二信息如表5所示,表5示出了调度周期号、聚合等级和备选信道偏移量之间的对应关系。
表5
Figure PCTCN2018099427-appb-000023
将每个子帧或时隙或微时隙号、控制资源集合序号、聚合等级和在给定聚合等级下的备选下行控制信道序号带入公式(3)得到
k=1时,
Figure PCTCN2018099427-appb-000024
或4;
k=2时,
Figure PCTCN2018099427-appb-000025
或1;
k=3时,
Figure PCTCN2018099427-appb-000026
或3;
k=4时,
Figure PCTCN2018099427-appb-000027
或2;
再例如,在上述图4描述的场景下,该不同调度周期内可能合并的备选下行控制信道序号之间的对应关系也可以为式(4)
Figure PCTCN2018099427-appb-000028
在式(2)中,
Figure PCTCN2018099427-appb-000029
假设通信协议规定Δ2=0,Δ3=2,Δ4=1,如果将每个子帧或时隙或微时隙号、聚合等级和在给定聚合等级下的备选下行控制信道序号带入公式(4)得到
k=1时,
Figure PCTCN2018099427-appb-000030
或4;
k=2时,
Figure PCTCN2018099427-appb-000031
或1;
k=3时,
Figure PCTCN2018099427-appb-000032
或3;
k=4时,
Figure PCTCN2018099427-appb-000033
或2;
可能做合并的4个调度周期内
Figure PCTCN2018099427-appb-000034
下的备选下行控制信道序号组合为(1,2,4,3),(2,3,1,4),(3,4,2,1),(4,1,3,2)。
当在该第四调度周期时,可以得到之前至少一个调度周期与第四调度周期需要合并的PDCCH,也可以将得到四个调度周期合并的PDCCH。根据式2和表3得到将四个调度周期内的PDCCH candidate尝试一起做合并解码,该尝试的备选PDCCH的组合为(1,2,4,3),(2,3,1,4),(3,4,2,1),(4,1,3,2)。
再例如,网络设备和终端设备预定义在4个连续调度周期内分别重复发送PDCCH,网络和终端设备约定从第一个子帧或第一个时隙或第一个微时隙开始发送,子帧或时隙或微时隙的序号为k,其中k=1,2,3,4;假设每个调度周期内有控制资源集合个数为2,网络选择其中一个控制资源集合配置给终端设备,k用来表示在子帧k或时隙k或微时隙k内,下行控制信息映射到控制资源集合的序号l k∈{1,2};假设在不同子帧k或时隙k或微时隙k的控制资源集合l k内,下行控制信息映射到不同控制资源集合内不同聚合等级
Figure PCTCN2018099427-appb-000035
对应 的一个备选下行控制信道上。不同聚合等级
Figure PCTCN2018099427-appb-000036
对应的备选下行控制信道个数
Figure PCTCN2018099427-appb-000037
也不同,例如,聚合等级为1或2时,对应的备选下行控制信道个数为4,即
Figure PCTCN2018099427-appb-000038
或2,对应的备选下行控制信道序号为
Figure PCTCN2018099427-appb-000039
聚合等级为4或8时,
Figure PCTCN2018099427-appb-000040
或8,对应的备选下行控制信道个数为2,
Figure PCTCN2018099427-appb-000041
所述聚合等级和对应备选下行控制信道个数的对应关系由网络通过高层信令(例如RRC信令)告诉用户或网络通过物理层信令(例如DCI信令)下发给用户或通信协议规定,在终端中存储。Δk是连续调度周期内其他子帧或时隙或微时隙内承载下行控制信息的备选下行控制信道序号相对于第一个子帧或时隙或微时隙承载下行控制信息的备选下行控制信道序号的偏移量,其取值可以是网络给用户配置,通过高层信令(例如RRC信令)告诉用户;或网络通过物理层信令(例如DCI信令)下发给用户;或通信协议规定,在终端中存储。通信协议规定Δ2=0,Δ3=2,Δ4=1。不同调度周期内可能合并的备选下行控制信道序号之间的对应关系为式(5)
Figure PCTCN2018099427-appb-000042
式(5)中,
Figure PCTCN2018099427-appb-000043
表示子帧k或时隙k或微时隙k内的控制资源集合k上,在聚合等级
Figure PCTCN2018099427-appb-000044
下的备选下行控制信道序号。
该第二信息如表6所示,表6示出了调度周期号、聚合等级和备选信道偏移量之间的对应关系。
表6
Figure PCTCN2018099427-appb-000045
将每个子帧或时隙或微时隙号、控制资源集合序号、聚合等级和在给定聚合等级下的备选下行控制信道序号带入公式得到
k=1时,
Figure PCTCN2018099427-appb-000046
或4;
k=2时,
Figure PCTCN2018099427-appb-000047
或1;
k=3时,
Figure PCTCN2018099427-appb-000048
或1;
k=4时,
Figure PCTCN2018099427-appb-000049
或2;
可能做合并的4个调度周期内ALk=1下的备选下行控制信道序号组合为(1,2,2,3),(2,1,1,2),(3,2,2,4),(4,1,1,2)。
因此,如果终端设备漏检了一个调度周期内的PDCCH,那么在根据第一信息和第二信息,将多个调度周期内的PDCCH candidate一起做合并解码,并且,可以减少终端设备尝试合并解码的组合数,提高PDCCH解码的可靠性,进而提高解码PDSCH。
可选地,该第一调度周期与该第二调度周期相邻或不相邻。
可选地,该第一信息、该第二信息和该第三信息预先配置或从网络设备接收。
具体而言,该第一信息、该第二信息和该第三信息可以网络设备给终端设备配置,通过高层信令(例如RRC信令)下发给终端设备;或网络设备通过物理层信令(例如DCI信令)发送给终端设备;或通信协议规定,在终端设备中存储,例如所述第一信息、第二 信息、第三信息是终端与网络设备在通信协议中规定的而存储在终端中。
图5是根据本申请的一种无线通信的方法300的示意性流程图。如图5所示,该方法300包括以下内容。
在310中,在第二调度周期,根据第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道;
其中,该第一备选下行控制信道为第一调度周期的第一控制资源集合中的任一个下行控制信道,
该第二备选下行控制信道为该第二调度周期的第一控制资源集合中的任一个下行控制信道,该第一备选下行控制信道和该第二备选下行控制信道承载的下行控制信息相同;
该第一信息用于指示该第一调度周期的任一个下行控制信道与该第二调度周期的任一个下行控制信道的对应关系。
在该方法中,承载相同下行控制信息的多个下行控制信道对应的调度周期为连续的调度周期,并且传输该PDCCH的起始调度周期预先设定,该用户设备根据该调度周期的序号可以得到当前调度周期是第几次重复传输PDCCH。
在320中,对该第一备选下行控制信道与该第二备选下行控制信道合并解码。
具体而言,在该第二调度周期内,根据该第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道,并对该第一备选下行控制信道和该第二备选下行控制信道进行合并解码,以便于得到下行控制信息。
因此,通过在第二调度周期内,将第二调度周期内的第二备选下行控制信道和第一调度周期内德第一备选下行控制信道进行合并解码,避免了在下行控制信道质量较差时,用户设备无法在一个调度周期内对该下行控制信道解码,获得下行控制信息,提高了成功解码PDCCH的概率。
可选地,该一个调度周期可以是一个子帧(sub-frame),也可以是一个微时隙(mini-slot)。
可选地,根据第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道,包括:
根据该第一调度周期的任一个下行控制信道与该第二调度周期的任一个下行控制信道的对应关系,得到该第一备选下行控制信道和该第二备选下行控制信道。
具体而言,该第一信息包括了该第一调度周期的任一个下行控制信道与该第二调度周期的任一个下行控制信道的对应关系,根据该第一信息,得到选择合并的第一备选下行控制信道与对应的第二备选下行控制信道。
例如,网络设备和终端设备预定义在4个连续调度周期内分别重复发送PDCCH,而且第一次发送PDCCH的调度周期预定义为第一个子帧或者第一个mini-slot,每个CORESET内对应的PDCCH candidate个数为4,序号为1~4。该第一信息如表7所示。
表7
Figure PCTCN2018099427-appb-000050
Figure PCTCN2018099427-appb-000051
可选地,该对该一个第一备选下行控制信道与该一个第二备选下行控制信道合并解码,包括:
根据第二信息,获取该第一备选下行控制信道的第一聚合等级和该第二备选下行控制信道的第二聚合等级,
其中,聚合等级不同的备选下行控制信道的解码方式不同;
对第一聚合等级的该第一备选下行控制信道和第二等级的该第二备选下行控制信道合并解码。
具体而言,该第二信息包括了该第一调度周期的PDCCH的聚合等级与该第二调度周期的PDCCH的聚合等级。
例如,网络设备和终端设备预定义在4个连续调度周期内分别重复发送PDCCH,而且第一次发送PDCCH的调度周期预定义为第一个子帧或者第一个mini-slot。并且该4个连续调度周期的PDCCH的聚合等级一样。该第二信息如表8所示。
表8
调度周期号k 1 2 3 4
聚合等级AL k 1 1 1 1
可选地,当该第一个调度周期对应多个控制资源集合时,或该第二调度周期对应多个控制资源集合时,该方法还包括:
根据第三信息,得到该第一调度周期的第一控制资源集合和该第二调度周期的第一控制资源集合。
例如,网络设备和终端设备预定义在4个连续调度周期内分别重复发送PDCCH,而且第一次发送PDCCH的调度周期预定义为第一个子帧或者第一个mini-slot。并且该4个连续调度周期的对应多个控制资源集合,第一个调度周期的第一控制资源为1号控制资源集合,第二个调度周期的第一控制资源为2号控制资源集合,第三个调度周期的第一控制资源为2号控制资源集合,第四个调度周期的第一控制资源为1号控制资源集合。该第二信息如表9所示。
表9
调度周期号k 1 2 3 4
CORESET序号l k 1 2 2 1
可选地,该第一信息可以包括该第二信息和该第三信息。
具体而言,该第一信息包括用于指示该第一调度周期的任一个下行控制信道与该第二调度周期的任一个下行控制信道的对应关系、以及该第一调度周期内和该第二调度周期内的下行控制信道的聚合等级和该第一调度周期的第一控制资源集合和该第二调度周期的第一控制资源集合的指示信息。
例如,网络设备和终端设备预定义在4个连续调度周期内分别重复发送PDCCH,而且第一次发送PDCCH的调度周期预定义为第一个子帧或者第一个mini-slot,每个调度周期的带宽内只有1个CORESET,每个PDCCH的聚合等级都一样,每个CORESET内对应的PDCCH candidate个数为4,序号为1~4。该第一信息如表10所示。
表10
Figure PCTCN2018099427-appb-000052
如果当前调度周期是第三调度周期,可以选择第一调度周期的1号备选下行控制信道、第二调度周期的2号备选下行控制信道和第三调度周期的4号备选下行控制信道进行合并解码;或可以选择第一调度周期的2号备选下行控制信道、第二调度周期的3号备选下行控制信道和第三调度周期的1号备选下行控制信道进行合并解码;或可以选择第一调度周期的3号备选下行控制信道、第二调度周期的4号备选下行控制信道和第三调度周期的2号备选下行控制信道进行合并解码;或可以选择第一调度周期的4号备选下行控制信道、第二调度周期的1号备选下行控制信道和第三调度周期的3号备选下行控制信道进行合并解码。
应理解,如果当前调度周期是第三调度周期,也可以选择第一调度周期的1号备选下行控制信道和第三调度周期的4号备选下行控制信道进行合并解码;或者选择第二调度周期的2号备选下行控制信道和第三调度周期的4号备选下行控制信道进行合并解码。
对于选择与当前调度周期合并解码的备选下行控制信道的个数,本申请并不做限定。
应理解,该不同调度周期的备选下行控制信道的聚合等级可以相同也可以不同。
再例如网络设备和终端设备预定义在4个连续调度周期内分别重复发送PDCCH,网络和终端设备约定从第一个子帧或第一个时隙或第一个微时隙开始发送,子帧或时隙或微时隙的序号为k,其中k=1,2,3,4;假设每个调度周期内有控制资源集合个数为2,网络选择其中一个控制资源集合配置给终端设备,k用来表示在子帧k或时隙k或微时隙k内,下行控制信息映射到控制资源集合的序号l k∈{1,2};假设在不同子帧k或时隙k或微时隙k的控制资源集合l k内,下行控制信息映射到不同控制资源集合内不同聚合等级
Figure PCTCN2018099427-appb-000053
对应的一个备选下行控制信道上。不同聚合等级
Figure PCTCN2018099427-appb-000054
对应的备选下行控制信道个数
Figure PCTCN2018099427-appb-000055
也不同,例如,聚合等级为1或2时,对应的备选下行控制信道个数为4,即
Figure PCTCN2018099427-appb-000056
或2,对应的备选下行控制信道序号为
Figure PCTCN2018099427-appb-000057
聚合等级为4或8时,
Figure PCTCN2018099427-appb-000058
或8,对应的备选下行控制信道个数为2,
Figure PCTCN2018099427-appb-000059
该第一信息如表11所示。
表11
Figure PCTCN2018099427-appb-000060
可选地,该第一调度周期与该第二调度周期相邻或不相邻。
可选地,该第一信息、该第二信息和该第三信息预先配置或从网络设备接收。
具体而言,该第一信息、该第二信息和该第三信息可以网络设备给终端设备配置,通过高层信令(例如RRC信令)下发给终端设备;或网络设备通过物理层信令(例如DCI信令)发送给终端设备;或通信协议规定,在终端设备中存储,例如所述第一信息、第二信息、第三信息是终端与网络设备在通信协议中规定的而存储在终端中。
图6是根据本申请的一种无线通信的方法400的示意性流程图。如图6所示,该方法400包括以下内容。
在410中,在第二调度周期,根据第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道;
其中,该第一备选下行控制信道为第一调度周期的第一控制资源集合中的任一个下行控制信道,
该第二备选下行控制信道为该第二调度周期的第一控制资源集合中的任一个下行控制信道,
该第一信息指示的该多个调度周期中每个调度周期中的下行控制信道的频域资源的位置和大小相同。
在该方法中,承载相同下行控制信息的多个下行控制信道对应的调度周期为连续的调度周期,并且传输该PDCCH的起始调度周期预先设定,该用户设备根据该调度周期的序号可以得到当前调度周期是第几次重复传输PDCCH。
在420中,对该第一备选下行控制信道与该第二备选下行控制信道合并解码。
具体而言,在该第二调度周期内,根据该第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道,并对该第一备选下行控制信道和该第二备选下行控制信道进行合并解码,以便于得到下行控制信息。
因此,通过在第二调度周期内,将第二调度周期内的第二备选下行控制信道和第一调度周期内的第一备选下行控制信道进行合并解码,避免了在下行控制信道质量较差时,用户设备无法在一个调度周期内对该下行控制信道解码,获得下行控制信息,提高了成功解码PDCCH的概率。
可选地,该一个调度周期可以是一个子帧(sub-frame),也可以是一个微时隙(mini-slot)。
可选地,根据第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道,包括:
根据该第一信息,得到该第一备选下行控制信道和该第二备选下行控制信道。
具体而言,该第一信息指示的该多个调度周期中每个调度周期中的下行控制信道的频域资源的位置和大小相同,根据该第一信息,得到选择合并的第一备选下行控制信道与对应的第二备选下行控制信道。
可选地,该第一信息预先配置或从网络设备接收。
具体而言,该第一信息可以网络设备给终端设备配置,通过高层信令(例如RRC信令)下发给终端设备;或网络设备通过物理层信令(例如DCI信令)发送给终端设备;或通信协议规定,在终端设备中存储,例如所述第一信息是终端与网络设备在通信协议中规 定的而存储在终端中。
图7是根据本申请的一种无线通信的方法500的示意性流程图。如图7所示,该方法500包括以下内容。
在510中,根据第一信息,得到多个控制资源集合中的第一备选下行控制信道,该第一信息指示第一调度周期中的多个控制资源集合中的每个控制资源集合的第一备选下行控制信道的对应关系,
其中,该第一调度周期的多个控制资源集合中的每个控制资源集合的第一备选下行控制信道承载了相同的下行控制信息;
在520中,在该至少一个控制资源集合中的该第一备选下行控制信道上解码下行控制信息。
因此,该第一调度周期内对应的多个控制资源集合,在该多个控制资源集合中的每个控制资源集合中发送相同的PDCCH,终端设备根据第一信息,将多个PDCCH进行合并,获得下行控制信息,提高了成功解码PDCCH的概率。
应理解,该第一调度周期为当前调度周期。
例如,如图8所示,在一个调度周期内的PDCCH假设所述调度周期内配置给终端设备的控制资源集合个数为4,其中l表示下行控制信息映射到控制资源集合的序号l∈{1,2,3,4};假设下行控制信息映射到不同控制资源集合内聚合等级AL l等于1的一个备选下行控制信道上,AL l等于1对应的备选下行控制信道个数
Figure PCTCN2018099427-appb-000061
为4,对应的备选下行控制信道序号为
Figure PCTCN2018099427-appb-000062
例如:在子帧1或时1或微时隙1上,下行控制信息分别映射到控制资源集合1,控制资源集合2,控制资源集合3和控制资源集合4上聚合等级为1的一个备选下行控制信道上。要做合并的备选下行控制信道序号之间的对应关系为式(6)
Figure PCTCN2018099427-appb-000063
式中,
Figure PCTCN2018099427-appb-000064
表示子帧k或时隙k或微时隙k内,在第l个控制资源集合上聚合等级AL l下的备选下行控制信道序号。将每个子帧或时隙或微时隙号、聚合等级、控制资源集合序号和在给定聚合等级下的备选下行控制信道序号带入公式得到在子帧1或时隙1或微时隙1上:
控制资源集合1时,
Figure PCTCN2018099427-appb-000065
或4;
控制资源集合2时,
Figure PCTCN2018099427-appb-000066
或4;
控制资源集合3时,
Figure PCTCN2018099427-appb-000067
或4;
控制资源集合4时,
Figure PCTCN2018099427-appb-000068
或4;
可能做合并的4个调度周期内AL l下的备选下行控制信道序号的组合分别(1,2,3,4),(1,2,3,4),(1,2,3,4),(1,2,3,4)。
表12中示出了在每个CORESET中的PDCCH的聚合等级为1时,CORESET1与第一备选PDCCH之间的对应关系。
用户设备将CORESET1中聚合等级为1的第1个PDCCH candidate、CORESET2中聚合等级为1的第1个PDCCH candidate、CORESET3中聚合等级为1的第1个PDCCH  candidate和CORESET4中聚合等级为1的第1个PDCCH candidate合并解码。
表12
Figure PCTCN2018099427-appb-000069
应理解,CORESET和PDCCH candidate的对应关系不限于表6的情况;对做合并的PDCCH candidate数量不作规定,即可能是2个PDCCH candidate合并解码,也可能是3或4个PDCCH candidate合并解码。
还应理解,用户设备可能在1个CORESET上盲检PDCCH,也可能将对应的PDCCH candidate做合并解码,对在1个CORESET上尝试盲检PDCCH和多个CORESET合并接收的顺序本申请并不限定。
可选地,该第一信息还用于指示该每个控制资源集合中的第一备选下行控制信道的聚合等级。
具体而言,在该第一信息中还可以包括该每个控制资源集合中的第一备选下行控制信道的聚合等级。
应理解,每个CORESET下的PDCCH的聚合等级可以一样,也可以不一样,本申请对PDCCH candidate聚合等级不做限制,可以是相同聚合等级也可以是不同聚合等级。
在上述方法200、方法300、方法400和方法500中,权利要求中所述的第一备选下行控制信道和第二备选下行控制信道指的是备选下行控制信道的序号或标识,例如第一调度周期的第一控制资源集合内聚合等级为1对应的第一备选下行控制信道个数为4,权利要求中所述的第一备选下行控制信道指的是第一调度周期的第一控制资源集合内聚合等级为1对应的备选下行控制信道标识1或第一调度周期的第一控制资源集合内聚合等级为1对应的备选下行控制信道标识2或第一调度周期的第一控制资源集合内聚合等级为1对应的备选下行控制信道标识3或第一调度周期的第一控制资源集合内聚合等级为1对应的备选下行控制信道标识4;第二调度周期的第二控制资源集合内聚合等级为1对应的第二备选下行控制信道个数为4,权利要求中所述的第二备选下行控制信道指的是第二调度周期的第二控制资源集合内聚合等级为1对应的备选下行控制信道标识1或第二调度周期的第二控制资源集合内聚合等级为1对应的备选下行控制信道标识2或备第二调度周期的第二控制资源集合内聚合等级为1对应的备选下行控制信道标识3或第二调度周期的第二控制资源集合内聚合等级为1对应的备选下行控制信道标识4。
下行控制信息承载在一个控制资源集合内给定聚合等级对应的一个备选下行控制信道上。例如在第一个控制资源集合内,聚合等级为1对应的备选下行控制信道个数为4个,分别为备选下行控制信道1,备选下行控制信道2,备选下行控制信道3和备选下行控制信道4。网络对终端设备1的下行控制信息的循环冗余校验码进行无线网络临时标识RNTI加掩,并配置承载在备选下行控制信道2上;所述无线网络临时标识RNTI是网络配置给终端设备1在服务小区唯一的标识。终端设备1分别在备选下行控制信道1,备选下行控 制信道2,备选下行控制信道3和备选下行控制信道4上用无线网络临时标识RNTI对下行控制信息进行循环冗余校验码校验。由于备选下行控制信道1,备选下行控制信道3和备选下行控制信道4上承载数据的循环冗余校验码并不是通过无线网络临时标识RNTI进行加掩的,因此终端设备1无法成功解码得到下行控制信息。在备选下行控制信道2上,终端设备1利用无线网络临时标识RNTI对下行控制信息进行循环冗余校验码校验,在一定信噪比下可以成功解码得到下行控制信息。
在所有对应关系中,可以由当前调度周期的控制资源集合中给定聚合等级下对应的备选下行控制信道的序号或标识,根据对应关系推出当前调度周期之前的控制资源集合中给定聚合等级下对应的备选下行控制信道的序号或标识。例如终端设备需要在第三个调度周期内,对当前调度周期内和之前两个调度周期内缓存下来的数据中根据对应关系得到的备选下行控制信道序号或标识对应的数据或信号进行合并解码;或者,可以由当前调度周期的控制资源集合中给定聚合等级下对应的备选下行控制信道的序号或标识,根据对应关系推出之后调度周期之前的控制资源集合中给定聚合等级下对应的备选下行控制信道的序号或标识。例如当前为第一个调度周期,终端设备需要缓存当前调度周期内的数据以及之后两个调度周期内的数据,对第一、第二和第三这三个调度周期内缓存下来的数据中根据对应关系得到的备选下行控制信道序号或标识对应的数据或信号进行合并解码。
在上述方法200、方法300、方法400和方法500中,PDCCH传输的信息均是相同的。相同的PDCCH的为相同的下行控制信息DCI。相同的PDCCH信息,被循环冗余校验(CRC)附着后经过一定码率的Polar码信道编码后,映射到CORESET的UE-specific search space中。可能有以下3种实现形式:
(1)相同的PDCCH信息经过CRC附着后分别经过码率R1和码率R2的Polar码信道编码,得到信道编码后的控制信息分别经过一系列处理后(例如加扰,调制等)映射到不同CORESET中聚合等级AL 1和聚合等级AL 2的UE-specific search space中,当码率当R1=R2时,则不同CORESET中的PDCCH为相同的PDCCH。
(2)相同的PDCCH信息经过CRC附着后经过码率R的Polar码信道编码,得到信道编码后的控制信息通过直接截取或者交织映射的方式(不限于这2种方式)分别得到长度a和长度b的信息序列,分别经过一系列处理后(例如加扰,调制等)映射到不同CORESET中聚合等级AL 1和聚合等级AL 2的UE-specific search space中,则不同CORESET中的PDCCH为相同的PDCCH。
在以上2种方式中,由于调度的PDSCH的时频资源位置是相同,因为DCI中包含一个域,用来指示调度的PDSCH的时频资源位置。当DCI相同的时候,所有包含在DCI中的信息都相同。
(3)如果DCI中不包含调度的PDSCH的具体时频资源位置,而是仅传输与调度PDSCH有关的参数,例如PDSCH在时域上持续时间Y symbols,在频域上所占带宽X PRBs等参数。网络设备和终端设备之间都知道一个时频资源映射公式或者映射图案,由协议规定或者预定义。这个映射关系与调度PDSCH在时域持续时间Y、在频域所占带宽X、当前时隙号slot index、终端设备ID等有关,得到调度的PDSCH在不同时隙上的不同时频位置。这种方式就保证了DCI相同,但调度的PDSCH的位置不同。
图9是根据本申请的一种无线通信的方法600的示意性流程图。如图9所示,该方法 600包括以下内容。
在610中,接收第一下行控制信息,该第一下行控制信息包括该下行控制信道的传输次序,该第一下行控制信息包括该第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置。
应理解,该传输次序还用于指示第一下行控制信息包括调度下行共享信道的调度数据。网络设备和终端设备预设这k个调度周期来传输相同的PDSCH,该k个调度周期可以是连续的,也可以是不连续的。用户根据DCI中所述传输次序n判断第一接收的是第几次PDCCH传输,从而知道第一接收的PDCCH中调度第一PDSCH的信息,例如RV版本,频域资源位置。如果没有这个域信息,用户只是知道k次调度中每一次调度PDSCH的信息,无法依靠子帧号来得到,因为不一定是连续传输,但是第一是第几次并传输PDSCH并不知道。
在620中,根据该第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置,以及第一信息,得到多个下行共享信道的调度信息,该第一信息用于指示多个下行控制信道的传输次序与多个下行共享信道承载的数据的调度信息的对应关系。
可选地,该第一信息包括:该多个下行控制信道的传输次序与该多个下行控制信道对应的下行共享信道承载的数据的冗余版本和/或频域资源位置之间的对应关系。
具体而言,该第一信息包括:该多个下行控制信道的传输次序与该多个下行控制信道对应的下行共享信道承载的数据的冗余版本和/或频域资源位置之间的对应关系。
当该多个下行控制信道的承载的数据的频域资源位置一样时,该第一信息可以只包含该多个下行控制信道的传输次序与该多个下行控制信道对应的下行共享信道承载的数据的冗余版本之间的对应关系。
当该多个下行控制信道的承载的数据的冗余版本一样时,该第一信息可以只包含该多个下行控制信道的传输次序与该多个下行控制信道对应的下行共享信道承载的数据的频域资源位置之间的对应关系。
例如,该第一信息可以如表13所示,表13示出了该多个下行控制信道的传输次序与该多个下行控制信道对应的下行共享信道承载的数据的冗余版本和频域资源位置之间的对应关系。
表13
PDCCH传输次序 1 2 3 4
PDSCH所在频域资源位置偏移量 —— Δ 1 Δ 2 Δ 3
PDSCH的RV版本号 1 2 3 4
应理解,当该多个PDSCH的RV版本号不变时,该第一信息中可以不包括该PDCSH的RV版本号。
应理解,该多个PDSCH的RV的版本号可能在其对应的PDCCH的调度信息中携带,并不保存在该第一信息中。
还应理解,当该多个PDSCH所在频域资源位置偏移量为0时,该第一信息中可以不包括该该多个PDSCH所在频域资源位置偏移量。
可选地,该根据该第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置,以及第一信息,得到多个下行共享信道的调度信息,包括:
根据第一调度周期内的下行共享信道承载的数据的频域资源位置,以及该第一信息中的多个调度周期中的下行共享信道与第一下行共享信道的偏移量,得到多个下行共享信道的频域位置资源;和/或
从该第一信息中,获取多个调度周期中的下行共享信道的冗余版本。
可选地,根据该第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置,以及第一信息,得到多个下行共享信道承载的数据的调度信息之后,该方法还包括:
根据第一下行共享信道承载的数据的调度信息,对该第一共享信道承载的数据解码;或
根据该第一下行共享信道承载的数据的调度信息,以及该第一下行共享信道之前未解码的下行共享信道承载的数据的调度信息,对该第一下行共享信道之前未解码的下行共享信道和第一下行共享信道进行合并解码。
应理解,对在该第一调度周期直接解码PDSCH或在多个调度周期合并PDSCH后再解码的顺序不做规定。
例如,如图10所示,网络设备和终端设备预定义4次传输PDSCH,在当终端设备监听到4次PDCCH传输中的其中第1次PDCCH传输,但无法成功解码对应调度的PDSCH时,先根据DCI中的域信息得到当前PDCCH传输对应调度PDSCH所在的频域资源位置为f 1,RV版本为1,再根据表11得到其他3次传输PDCCH对应调度PDSCH的所在频域资源位置的偏置分别为Δ 1,Δ 2和Δ 3,RV版本分别为2,3,4(表13中4次RV版本号是得到的,也可以是1个动态的映射关系)。终端设备需要继续监听PDCCH,通过正确解码PDCCH中包含指示第几次传输PDCCH的指示信息来判断当前子帧或mini-slot是否有调度的PDSCH。如果终端设备在下一次监听到PDCCH时,根据所述域信息得知当前是第4次PDCCH传输,根据表4的映射关系得到对应调度的PDSCH的RV版本为3,在当前个子帧或mini-slot上已知的PDSCH频域资源位置f 13上解码,或与之前RV版本为1的PDSCH做相应的信息合并再解码。
再例如,如图11所示,网络设备和终端设备预定义4次传输PDSCH,并且每个调度周期传输PDSCH的频域位置资源固定不变,当终端设备监听到4次PDCCH传输中的其中第2次PDCCH传输,但无法成功解码对应调度的PDSCH时,可以根据成功解码的DCI中的域信息得到调度PDSCH所在的频域资源位置,就知道其他3次PDSCH调度的频域资源位置。再根据表13(此时,表13中不用包括PDSCH所在频域资源位置偏移量),得到当前PDCCH传输对应调度PDSCH的RV版本为2。终端设备可以继续监听PDCCH,直到得到下一次监听到的PDCCH时,得知当前是第4次PDCCH传输,根据表7的映射关系得到对应调度的PDSCH的RV版本为3,与之前RV版本为2的PDSCH做相应的数据合并,增大成功解码的概率;或者终端设备不再监听PDCCH,在得到PDSCH的RV版本为2后,在下一个调度周期已知的PDSCH频域资源位置上解码数据,或与之前缓存下来的PDSCH数据进行合并再解码。
可选地,该第一信息预先配置或从网络设备接收。
具体而言,该第一信息可以网络设备给终端设备配置,通过高层信令(例如RRC信令)下发给终端设备;或网络设备通过物理层信令(例如DCI信令)发送给终端设备;或通信协议规定,在终端设备中存储,例如所述第一信息是终端与网络设备在通信协议中规 定的而存储在终端中。
因此,通过根据第一信息和第一控制信息得到多个下行共享信道的承载的数据的调度信息,对多个下行共享信道的承载的数据的进行合并解码,避免了在下行控制信道质量较差时,用户设备无法在一个调度周期内对该下行共享信道解码,获得下行调度数据,提高了成功解码PDSCH的概率。
图12是根据本申请的一种无线通信的方法700的示意性流程图。如图12所示,该方法700包括以下内容。
在710中,接收第一调度周期的下行控制信息,该第一下行控制信息包括该下行控制信道的传输次序,该下行控制信息包括多个下行共享信道承载的数据的调度信息。
应理解,该传输次序还用于指示第一下行控制信息包括调度下行共享信道的调度数据。网络设备和终端设备预设这k个调度周期来传输相同的PDSCH,该k个调度周期可以是连续的,也可以是不连续的。用户根据DCI中所述传输次序n判断第一接收的是第几次PDCCH传输,从而知道第一接收的PDCCH中调度第一PDSCH的信息,例如RV版本,频域资源位置。如果没有这个域信息,用户只是知道k次调度中每一次调度PDSCH的信息,无法依靠子帧号来得到,因为不一定是连续传输,但是第一是第几次并传输PDSCH并不知道。
在720中,根据该多个下行共享信道承载的数据的调度信息中的至少一个下行共享信道的调度信息对该至少一个下行共享信道进行解码。
因此,当一个下行控制信息DCI还包含k次PDSCH的调度信息,例如调度PDSCH的冗余版本RV、频域资源位置等。当用户设备盲检到k次PDCCH传输中任意1次PDCCH传输时,就知道k次传输的PDSCH的调度信息,可以在对应的PDSCH上解码或者对多个下行共享信道进行合并解码,提高了PDSCH解码的概率。
应理解,该第一调度周期可以是当前调度周期。
可选地,该根据该多个下行共享信道承载的数据的调度信息中的至少一个下行共享信道承载的数据的调度信息对该至少一个下行共享信道进行解码,包括:
根据当前调度周期的下行共享信道承载的数据的调度信息,对该当前共享信道承载的数据解码;或
根据该多个下行共享信道承载的数据的调度信息,以及当前下行共享信道之前未解码的下行共享信道承载的数据的调度信息,对该当前下行共享信道之前未解码的下行共享信道和当前下行共享信道进行合并解码。
可选地,该第一信息预先配置或从网络设备接收。
具体而言,该第一信息可以网络设备给终端设备配置,通过高层信令(例如RRC信令)下发给终端设备;或网络设备通过物理层信令(例如DCI信令)发送给终端设备;或通信协议规定,在终端设备中存储,例如所述第一信息是终端与网络设备在通信协议中规定的而存储在终端中。
具体而言,1个下行控制信息DCI还包含k次PDSCH的调度信息,例如调度PDSCH的冗余版本RV、频域资源位置等。当用户设备盲检到k次PDCCH传输中任意1次PDCCH传输时,就知道k次传输的PDSCH的调度信息,可以在对应的PDSCH上解码。用户设备根据DCI中所述指示信息知道当前接收的是第几次PDCCH传输,从而知道当前接收的PDCCH中调度 当前PDSCH的信息,例如RV版本,频域资源位置。如果用户设备在当前调度周期没有监听到PDCCH,可以继续监听下一调度周期中的PDCCH,一旦监听到了就知道k次调度PDSCH的全部信息,不会影响PDSCH的接收。
如果用户设备可以正确解码当前调度的PDSCH,则停止监听PDCCH和解码PDCCH调度的PDSCH,反馈HARQ-ACK;如果用户设备当前无法正确解码PDSCH,需要继续监听PDCCH,通过DCI中指示当前PDCCH传输是第几次的信息来得到当前调度周期或mini-slot中是否含有调度的PDSCH。如果有,就在当前PDCCH传输次数信息对应的调度PDSCH的频域资源位置上解码PDSCH信息,或与之前缓存下来的不同RV版本的PDSCH信息合并后再解码。对直接解码PDSCH或合并PDSCH后再解码的顺序不做规定。
例如,如图13,网络设备和终端设备预定义4次传输PDSCH,即4个调度周期上传输4个不同的PDCCH。第一调度周期传输PDCCH1、第二调度周期传输PDCCH2、第三调度周期传输PDCCH3和第四调度周期传输PDCCH4,并且PDCCH1、PDCCH2、PDCCH3和PDCCH4包含了4个PDSCH的调度信息。假设用户设备没有盲检到第一调度周期控制资源集合中的PDCCH1,而盲检到了第二调度周期控制资源集合中的PDCCH2,得到调度在这4个调度周期上所有PDSCH的信息,以及根据DCI中的指示信息知道当前调度的PDSCH是这4次调度中的哪一次,从而可以得到当前调度PDSCH的RV版本、时频资源位置等信息;如果用户设备没有盲检到PDCCH2,则可以在接下来的调度周期上继续监听PDCCH。
图14是根据本申请的终端设备800的示意性框图。如图14所示,该终端设备包括:
确定模块810,用于在第二调度周期,根据第一备选下行控制信道和第一信息,得到第二备选下行控制信道,其中,该第一信息为用于从该第一备选下行控制信道到该第二备选下行控制信道的对应关系;
其中,该第一备选下行控制信道为第一调度周期的第一控制资源集合中的任意一个备选下行控制信道,该第二备选下行控制信道为该第二调度周期的第一控制资源集合中的任意一个备选下行控制信道,该第一备选下行控制信道和该第二备选下行控制信道承载的下行控制信息相同;
处理模块820,用于对该第一备选下行控制信道与该第二备选下行控制信道合并解码。
可选地,该确定模块810和该处理模块820用于执行本申请实施例的一种无线通信的方法200的各个操作,为了简洁,在此不再赘述。
本申请的终端设备800的确定模块810还用于:在第二调度周期,根据第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道,该第一备选下行控制信道和该第二备选下行控制信道承载的下行控制信息相同;
其中,该第一备选下行控制信道为第一调度周期的第一控制资源集合中的任一个下行控制信道,
该第二备选下行控制信道为该第二调度周期的第一控制资源集合中的任一个下行控制信道,
该第一信息用于指示该第一调度周期的任一个下行控制信道与该第二调度周期的任一个下行控制信道的对应关系。
该处理模块820还用于:对该第一备选下行控制信道与该第二备选下行控制信道合并解码。
可选地,该确定模块810和该处理模块820用于执行本申请实施例的一种无线通信的方法300的各个操作,为了简洁,在此不再赘述。
本申请的终端设备800的确定模块810还用于:在第二调度周期,根据第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道,该第一备选下行控制信道和该第二备选下行控制信道承载的下行控制信息相同;
其中,该第一备选下行控制信道为第一调度周期的第一控制资源集合中的任一个下行控制信道,
该第二备选下行控制信道为该第二调度周期的第一控制资源集合中的任一个下行控制信道,
该第一信息指示的该多个调度周期中每个调度周期中的下行控制信道的频域资源的位置和大小相同。
该处理模块820还用于:对该第一备选下行控制信道与该第二备选下行控制信道合并解码。
可选地,该确定模块810和该处理模块820用于执行本申请实施例的一种无线通信的方法400的各个操作,为了简洁,在此不再赘述。
本申请的终端设备800的确定模块810还用于:根据第一信息,得到多个控制资源集合中的第一备选下行控制信道,该第一信息指示第一调度周期中的多个控制资源集合中的每个控制资源集合的第一备选下行控制信道的对应关系,
其中,该第一调度周期的多个控制资源集合中的每个控制资源集合的第一备选下行控制信道承载了相同的下行控制信息。
该处理模块820还用于:在该至少一个控制资源集合中的该第一备选下行控制信道上解码下行控制信息。
可选地,该确定模块810和该处理模块820用于执行本申请实施例的一种无线通信的方法500的各个操作,为了简洁,在此不再赘述。
本申请的终端设备800的确定模块810还用于:接收第一下行控制信息,该第一下行控制信息包括该下行控制信道的传输次序,该第一下行控制信息包括该第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置。
该处理模块820还用于:根据该第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置,以及第一信息,得到多个下行共享信道的调度信息,该第一信息用于指示多个下行控制信道的传输次序与多个下行共享信道承载的数据的调度信息的对应关系。
可选地,该确定模块810和该处理模块820用于执行本申请实施例的一种无线通信的方法600的各个操作,为了简洁,在此不再赘述。
本申请的终端设备800的确定模块810还用于:接收第一调度周期的下行控制信息,该第一下行控制信息包括该下行控制信道的传输次序,该下行控制信息包括多个下行共享信道承载的数据的调度信息。
该处理模块820还用于:根据该多个下行共享信道承载的数据的调度信息中的至少一个下行共享信道的调度信息对该至少一个下行共享信道进行解码。
可选地,该确定模块810和该处理模块820用于执行本申请实施例的一种无线通信的 方法700的各个操作,为了简洁,在此不再赘述。
上述终端设备与方法实施例中的终端设备完全对应,由相应的模块执行相应的步骤,具体可以参考相应的方法实施例。
图15示出了本申请提供的通信装置900的示意性框图,该通信装置900包括:
存储器910,用于存储程序,该程序包括代码;
收发器920,用于和其他设备进行通信;
处理器930,用于执行存储器910中的程序代码。
可选地,当该代码被执行时,该处理器930可以实现方法200或方法300或方法400或方法500或方法600或方法700的各个操作,为了简洁,在此不再赘述。此时,通信装置600为终端设备。收发器920用于在处理器930的驱动下执行具体的信号收发。
通信装置900可以为上述终端设备,执行得到模块的操作,收发器可以包括发射机和/或接收机,分别执行得到模块及处理模块相应的步骤。
本发明实施例还提供了一种系统芯片,该系统芯片包括输入输出接口、至少一个处理器、至少一个存储器和总线,该至少一个存储器用于存储指令,该至少一个处理器用于调用该至少一个存储器的指令,以进行上述各个方面的方法的操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机 存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种无线通信的方法,其特征在于,包括:
    在第二调度周期,根据第一备选下行控制信道和第一信息,在所述第二调度周期内对应的第一控制资源集合中得到一个第二备选下行控制信道,其中,所述第一信息为用于从所述第一备选下行控制信道到所述第二备选下行控制信道的对应关系;
    其中,所述第一备选下行控制信道为第一调度周期的第一控制资源集合中的任意一个备选下行控制信道,
    对所述第一备选下行控制信道与所述第二备选下行控制信道合并解码。
  2. 根据权利要求1所述的方法,其特征在于,在所述根据第一备选下行控制信道和第一信息,得到第二备选下行控制信道之前,所述方法还包括:
    根据第二信息,得到所述第二备选下行控制信道与所述第一备选下行控制信道的偏移量,以及所述第一备选下行控制信道的第一聚合等级和所述第二备选下行控制信道的第二聚合等级;
    所述根据第一备选下行控制信道和第一信息,得到第二备选下行控制信道,包括:
    根据所述第一信息、所述第一备选下行控制信道、所述偏移量以及所述第一聚合等级和所述第二聚合等级,得到所述第二备选下行控制信道。
  3. 根据权利要求1或2所述的方法,其特征在于,当所述第一个调度周期对应多个控制资源集合时,或所述第二调度周期对应多个控制资源集合时,所述方法还包括:
    根据第三信息,得到所述第一调度周期的第一控制资源集合和所述第二调度周期的第一控制资源集合。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一调度周期与所述第二调度周期相邻或不相邻。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一信息、所述第二信息和所述第三信息预先配置或从网络设备接收或本地存储。
  6. 一种芯片,其特征在于,包括:用于实现权利要求1至5中任一所述的方法的装置。
  7. 一种无线通信的方法,其特征在于,包括:
    在第二调度周期,根据第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道;
    其中,所述第一备选下行控制信道为第一调度周期内的第一控制资源集合中的任意一个备选下行控制信道,所述第二备选下行控制信道为所述第二调度周期的第一控制资源集合中的任意一个备选下行控制信道;
    所述第一信息用于指示所述第一调度周期内的任意一个备选下行控制信道与所述第二调度周期内的任意一个备选下行控制信道的对应关系;
    对所述第一备选下行控制信道与所述第二备选下行控制信道合并解码。
  8. 根据权利要求7所述的方法,其特征在于,所述根据第一信息,选择第一备选下行控制信道与对应的第二备选下行控制信道,包括:
    根据所述第一调度周期内的任意一个备选下行控制信道与所述第二调度周期内的任意一个备选下行控制信道的对应关系,得到所述第一备选下行控制信道和所述第二备选下行控制信道。
  9. 根据权利要求7或8所述的方法,其特征在于,所述对所述一个第一备选下行控制信道与所述一个第二备选下行控制信道合并解码,包括:
    根据第二信息,得到所述第一备选下行控制信道的第一聚合等级和所述第二备选下行控制信道的第二聚合等级,
    其中,聚合等级不同的备选下行控制信道的解码方式不同;
    对第一聚合等级的所述第一备选下行控制信道和第二聚合等级的所述第二备选下行控制信道合并解码。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,
    当所述第一个调度周期对应多个控制资源集合时,或所述第二调度周期对应多个控制资源集合时,所述方法还包括:
    根据第三信息,得到所述第一调度周期内的第一控制资源集合和所述第二调度周期内的第一控制资源集合。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述第一调度周期与所述第二调度周期相邻或不相邻。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一信息、所述第二信息和所述第三信息预先配置或从网络设备接收或本地存储。
  13. 一种芯片,其特征在于,包括:用于实现权利要求7至12中任一所述的方法的装置。
  14. 一种无线通信的方法,其特征在于,包括:
    接收第一下行控制信息,所述第一下行控制信息包括第一下行控制信道的传输次序,所述第一下行控制信息包括第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置;
    根据所述第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置,以及第一信息,得到多个下行共享信道承载的数据的调度信息,所述第一信息用于指示多个下行控制信道的传输次序与多个下行共享信道承载的数据的调度信息的对应关系。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信息包括:
    所述多个下行控制信道的传输次序与所述多个下行控制信道对应的下行共享信道承载的数据的冗余版本和/或频域资源位置之间的对应关系。
  16. 根据权利要求14或15所述的方法,其特征在于,所述根据所述第一调度周期内的下行共享信道承载的数据的冗余版本和频域资源位置,以及第一信息,得到多个下行共享信道的调度信息,包括:
    根据第一调度周期内的下行共享信道承载的数据的频域资源位置,以及所述第一信息中的多个调度周期中的下行共享信道与当前下行共享信道的偏移量,得到多个下行共享信道的频域位置资源;和/或
    从所述第一信息中,得到多个调度周期中的下行共享信道的冗余版本。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,根据所述第一调度周 期内的下行共享信道承载的数据的冗余版本和频域资源位置,以及第一信息,得到多个下行共享信道承载的数据的调度信息之后,所述方法还包括:
    根据所述下行共享信道承载的数据的调度信息,对所述下行共享信道承载的数据解码,得到下行调度数据;或
    根据所述下行共享信道承载的数据的调度信息,以及所述下行共享信道之前未解码的下行共享信道承载的数据的调度信息,对所述下行共享信道之前的下行共享信道承载的数据和所述下行共享信道承载的数据进行合并解码,得到下行调度数据。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第一信息预先配置或从网络设备接收或本地存储。
  19. 一种芯片,其特征在于,包括:用于实现权利要求14至18中任一所述的方法的装置。
  20. 一种系统,其特征在于,包括终端设备,所述终端设备用于执行权利要求1至5、7至12、14至18中任一项所述的方法,以及用于对所述终端设备进行服务的网络设备。
  21. 根据权利要求20所述的系统,其特征在于,所述网络设备向所述终端设备发送配置信息,所述配置信息为方法5所述的第一信息、第二信息和第三信息;或所述配置信息为方法12所述的第一信息、第二信息和第三信息;或所述配置信息为方法18所述的第一信息。
PCT/CN2018/099427 2017-08-11 2018-08-08 无线通信的方法、芯片和系统 WO2019029579A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18844015.0A EP3644534A4 (en) 2017-08-11 2018-08-08 PROCEDURE, CHIP AND SYSTEM FOR WIRELESS COMMUNICATION
US16/747,892 US11272494B2 (en) 2017-08-11 2020-01-21 Radio communication method, chip, and system
US17/583,911 US11765741B2 (en) 2017-08-11 2022-01-25 Radio communication method, chip, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710687175.8 2017-08-11
CN201710687175.8A CN109391355B (zh) 2017-08-11 2017-08-11 无线通信的方法、芯片和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/747,892 Continuation US11272494B2 (en) 2017-08-11 2020-01-21 Radio communication method, chip, and system

Publications (1)

Publication Number Publication Date
WO2019029579A1 true WO2019029579A1 (zh) 2019-02-14

Family

ID=65273178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099427 WO2019029579A1 (zh) 2017-08-11 2018-08-08 无线通信的方法、芯片和系统

Country Status (4)

Country Link
US (2) US11272494B2 (zh)
EP (1) EP3644534A4 (zh)
CN (2) CN112636886B (zh)
WO (1) WO2019029579A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112636886B (zh) * 2017-08-11 2022-06-14 华为技术有限公司 无线通信的方法、芯片和通信装置
CN112398577B (zh) * 2019-08-16 2022-04-22 华为技术有限公司 处理数据的方法和通信装置
US20220225368A1 (en) * 2021-01-12 2022-07-14 Qualcomm Incorporated Techniques for timing relationships for physical downlink control channel repetition
WO2022151345A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 Pdcch重复传输的配置方法及相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447529A (zh) * 2011-11-18 2012-05-09 中兴通讯股份有限公司 一种控制信道的传输方法及装置
US20130315113A1 (en) * 2011-02-08 2013-11-28 Lg Electronics Inc. Method and device for scheduling in carrier aggregation system
CN105007617A (zh) * 2015-08-03 2015-10-28 上海工程技术大学 一种无线传感器网络中继节点发射功率优化方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8238475B2 (en) * 2007-10-30 2012-08-07 Qualcomm Incorporated Methods and systems for PDCCH blind decoding in mobile communications
US8687652B2 (en) * 2008-03-27 2014-04-01 Qualcomm Incorporated Uplink ACK/NAK resource allocation
US8385281B2 (en) * 2009-01-30 2013-02-26 Interdigital Patent Holdings, Inc. Method and apparatus for component carrier aggregation in wireless communications
CN102056198B (zh) * 2009-10-31 2015-06-03 华为技术有限公司 一种下行信道传输及检测方法、装置和系统
CN102170703A (zh) * 2011-05-11 2011-08-31 电信科学技术研究院 一种物理下行控制信道上的信息收发方法及设备
KR101925031B1 (ko) * 2011-06-24 2018-12-04 엘지전자 주식회사 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
CN102946640B (zh) * 2011-08-15 2016-12-21 华为技术有限公司 控制信道资源的分配方法及装置
CN107425951B (zh) * 2011-08-16 2020-08-21 Lg 电子株式会社 在无线通信系统中基站复用下行链路控制信道的方法及其设备
US10039088B2 (en) * 2012-01-26 2018-07-31 Samsung Electronics Co., Ltd. Method and apparatus for scheduling communication for low capability devices
EP2833570B1 (en) * 2012-03-30 2019-06-05 LG Electronics Inc. Method and device for receiving control information in wireless communication system
CN103874202B (zh) * 2012-12-07 2017-05-03 工业和信息化部电信传输研究所 一种增强控制信道中搜索空间的方法
WO2014110778A1 (zh) 2013-01-18 2014-07-24 富士通株式会社 发送下行控制信息、确定搜索空间的方法及其装置
JP2015065621A (ja) * 2013-09-26 2015-04-09 株式会社Nttドコモ ユーザ端末、基地局及び無線通信方法
JP6273973B2 (ja) * 2014-03-31 2018-02-07 富士通株式会社 無線通信システム、無線基地局装置及び無線通信システムの制御方法
CN106160954B (zh) * 2015-03-23 2019-09-24 联想(北京)有限公司 信息传输方法、基站及终端
CN107683576B (zh) * 2015-04-09 2021-09-17 瑞典爱立信有限公司 对于上行链路控制信息的自适应传送方法
EP3573280B1 (en) * 2015-04-10 2020-12-16 Telefonaktiebolaget LM Ericsson (publ) Method for efficient transmission of uplink control channel information and a corresponding device
MX2018003617A (es) * 2015-09-25 2018-04-30 Ericsson Telefon Ab L M Empaquetado de bits de informacion.
CA3019345C (en) * 2016-03-30 2023-03-28 Interdigital Patent Holdings, Inc. Methods and systems for scheduling in uu-based vehicle-to-vehicle communication
US10448408B2 (en) * 2016-08-04 2019-10-15 Samsung Electronics Co., Ltd. Method and apparatus for coordinating multi-point transmission in advanced wireless systems
RU2736529C2 (ru) * 2016-08-10 2020-11-17 Идак Холдингз, Инк. Способы и устройство для обеспечения эффективного энергосбережения в беспроводных сетях
EP3300285A1 (en) * 2016-09-23 2018-03-28 Alcatel Lucent Methodes and apparatus to operate a two step downlink control information
KR102476067B1 (ko) * 2017-03-10 2022-12-12 가부시키가이샤 엔티티 도코모 유저단말 및 무선 통신 방법
US20200336957A1 (en) * 2017-03-22 2020-10-22 Motorola Mobility Llc A condition for handover
CN110771224A (zh) * 2017-05-05 2020-02-07 摩托罗拉移动有限责任公司 侧链路控制信息指示
CN110731063B (zh) * 2017-06-16 2023-04-07 摩托罗拉移动有限责任公司 同步信号块传输
WO2018232755A1 (zh) * 2017-06-23 2018-12-27 北京小米移动软件有限公司 抢占时频资源的确定方法及装置和用户设备
WO2019000177A1 (en) * 2017-06-26 2019-01-03 Motorola Mobility Llc DEMODULATION REFERENCE SIGNAL CONFIGURATION
CN117880982A (zh) * 2017-08-04 2024-04-12 联想(北京)有限公司 免许可资源分配
CN112636886B (zh) * 2017-08-11 2022-06-14 华为技术有限公司 无线通信的方法、芯片和通信装置
KR20220136788A (ko) * 2021-04-01 2022-10-11 삼성전자주식회사 네트워크 협력 통신에서 하향링크 제어정보 반복 전송 방법 및 장치
EP4322663A1 (en) * 2021-04-05 2024-02-14 LG Electronics Inc. Method and device for transmitting and receiving signal in wireless communication system
CN115250535A (zh) * 2021-04-28 2022-10-28 华硕电脑股份有限公司 用于考虑多收发点来进行跨载波调度的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315113A1 (en) * 2011-02-08 2013-11-28 Lg Electronics Inc. Method and device for scheduling in carrier aggregation system
CN102447529A (zh) * 2011-11-18 2012-05-09 中兴通讯股份有限公司 一种控制信道的传输方法及装置
CN105007617A (zh) * 2015-08-03 2015-10-28 上海工程技术大学 一种无线传感器网络中继节点发射功率优化方法

Also Published As

Publication number Publication date
EP3644534A1 (en) 2020-04-29
CN112636886B (zh) 2022-06-14
US20200163063A1 (en) 2020-05-21
US11272494B2 (en) 2022-03-08
US20220150953A1 (en) 2022-05-12
CN112636886A (zh) 2021-04-09
EP3644534A4 (en) 2020-10-14
CN109391355A (zh) 2019-02-26
CN109391355B (zh) 2020-10-23
US11765741B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
CN111404637B (zh) 无线通信设备以及操作无线通信设备的方法
WO2017024559A1 (zh) 数据传输的方法、终端设备、基站和通信系统
CN107736069B (zh) 数据传输方法及装置
US11330610B2 (en) Data sending and receiving method and apparatus
US11765741B2 (en) Radio communication method, chip, and system
CN110166207B (zh) 一种资源确定方法和装置
US11224037B2 (en) Data transmission method, terminal device, and network device
WO2018082043A1 (zh) 通信方法、终端和网络设备
US10873430B2 (en) Signal sending method and apparatus
WO2018126833A1 (zh) 无线通信的方法和设备
WO2018141291A1 (zh) 一种数据传输的方法和装置
WO2018228236A1 (zh) 数据传输方法和装置
EP3641443A1 (en) Method and apparatus for sending and receiving data
CN111277371B (zh) 数据传输方法及设备
US11991684B2 (en) Data transmission method and apparatus
WO2018201505A1 (zh) 发送上行数据的方法和装置
WO2020143743A1 (zh) 接收数据的方法和装置
US11317429B2 (en) Method for transmitting and receiving scheduling information in communication system
CN109983818B (zh) 用于发送/接收调度命令的方法和设备
WO2019191911A1 (zh) 数据传输的方法和设备
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
WO2020187217A1 (zh) 一种传输信息的方法和装置
WO2023001284A1 (en) Method and apparatus for tboms transmission
CN110943799B (zh) 一种通信方法及装置
WO2018137234A1 (zh) 下行控制信息的传输方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018844015

Country of ref document: EP

Effective date: 20200121

NENP Non-entry into the national phase

Ref country code: DE