WO2018201505A1 - 发送上行数据的方法和装置 - Google Patents

发送上行数据的方法和装置 Download PDF

Info

Publication number
WO2018201505A1
WO2018201505A1 PCT/CN2017/083361 CN2017083361W WO2018201505A1 WO 2018201505 A1 WO2018201505 A1 WO 2018201505A1 CN 2017083361 W CN2017083361 W CN 2017083361W WO 2018201505 A1 WO2018201505 A1 WO 2018201505A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
domain symbol
uplink data
configuration set
transport block
Prior art date
Application number
PCT/CN2017/083361
Other languages
English (en)
French (fr)
Inventor
吴作敏
官磊
马莎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17908285.4A priority Critical patent/EP3618333B1/en
Priority to RU2019139259A priority patent/RU2729047C1/ru
Priority to CN201780090140.4A priority patent/CN110679108B/zh
Priority to PCT/CN2017/083361 priority patent/WO2018201505A1/zh
Publication of WO2018201505A1 publication Critical patent/WO2018201505A1/zh
Priority to US16/672,847 priority patent/US11343808B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • H04L5/0083Timing of allocation at predetermined intervals symbol-by-symbol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for transmitting uplink data in a wireless communication field, and a method and apparatus for receiving uplink data.
  • the licensed spectrum resources are dedicated spectrum resources delineated by the government's Radio Management Committee, such as mobile operators, civil aviation, railways, and police-specific spectrum resources. Due to policy exclusivity, the quality of licensed spectrum resources is guaranteed. Generally, it can be guaranteed, and it is relatively easy to perform scheduling control.
  • the unlicensed spectrum resource is also a spectrum resource delimited by the government, but does not limit the radio technology, the operating enterprise and the service life, and does not guarantee the service quality of the frequency band.
  • Communication equipment using unlicensed spectrum resources only needs to meet the requirements of transmitting power, out-of-band leakage and other indicators, and can be used free of charge.
  • Common communication systems for applying unlicensed spectrum resources for communication include civilian walkie-talkies, radio remote controls, wireless fidelity (Wi-Fi) systems, Bluetooth communication systems, and the like.
  • the spectrum resources used by the operators are mainly licensed spectrum resources.
  • the existing licensed spectrum Resources have been difficult to meet the needs of operators' existing businesses.
  • operators are turning their attention to the unlicensed spectrum resources. It is expected that the use of unlicensed spectrum resources will be used to achieve network capacity diversion and improve service quality.
  • U-LTE unlicensed long term evolution
  • LAA-LTE licensed-assisted access using long term evolution
  • SA-LTE stand-alone long term evolution
  • the present application provides a method and apparatus for transmitting uplink data, and a method and apparatus for receiving uplink data, which can improve spectrum utilization of transmitting and receiving uplink data using an unlicensed spectrum.
  • a method for transmitting uplink data including: receiving, by a terminal device, first scheduling information from an access network device, where the first scheduling information is used to schedule the terminal device to transmit a first transport block by using an unlicensed carrier.
  • the terminal device performs rate matching on the first transport block to obtain uplink data; the terminal device detects the unlicensed carrier, and according to the detection result, at least two time domain symbols included in the first subframe.
  • the terminal device Starting from the start time domain symbol to the access network device Send the uplink data.
  • the terminal device determines a time domain symbol for transmitting uplink data from at least two time domain symbols included in one subframe.
  • the terminal device may After detecting whether a time domain symbol can be used, the probability of successful transmission in a unit time is increased, and the unlicensed spectrum utilization rate in uplink data transmission is improved.
  • the uplink data is first uplink data obtained by the first transmission block starting rate matching from the first time domain symbol.
  • the uplink data is second uplink data obtained by the first transmission block starting rate matching from the second time domain symbol,
  • the second uplink data is data remaining after the data between the first time domain symbol and the second time domain symbol is removed from the first uplink data.
  • the terminal device may perform the puncturing transmission of the data mapped on the complete subframe, that is, discarding Data before the next time domain symbol, only part of the data is transmitted starting from the latter time domain symbol. Thereby, the complexity of the terminal device when transmitting the uplink data is reduced, and the burden on the processor of the terminal device is reduced.
  • the terminal device performs rate matching on the first transport block to obtain uplink data, including:
  • the terminal device performs rate matching on the first transport block from the first time domain symbol to obtain first uplink data.
  • the terminal device may perform the puncturing transmission of the data mapped on the complete subframe, that is, discarding Data before the next time domain symbol, only part of the data is transmitted starting from the latter time domain symbol. Thereby, the complexity of the terminal device when transmitting the uplink data is reduced, and the burden on the processor of the terminal device is reduced.
  • the method further includes: the terminal device receiving first indication information from the access network device, where the first indication information is used by Instructing the first transmission mode or the second transmission mode, the first transmission mode is to start sending the uplink data from the first time domain symbol or the second time domain symbol, where the second transmission mode is The first time domain symbol begins to transmit the uplink data, and does not start to send the uplink data from the second time domain symbol.
  • the access network device can indicate the transmission mode of the terminal device, so that the transmission mode can be flexibly selected according to actual conditions.
  • the terminal device performs rate matching on the first transport block, including: determining, by the terminal device, a first modulation order from an MCS configuration set according to a first modulation and coding policy MCS index; the terminal device Rate matching the first transport block according to the first modulation order; wherein, when the first indication information indicates the first transmission mode, the MCS configuration set is a first MCS configuration set, when When the first indication information indicates the second transmission mode, the MCS configuration set is a second MCS configuration set, and the first MCS configuration set is different from the second MCS configuration set.
  • the resources used for the uplink data transmission are also different. Selecting different MCS configuration sets according to different transmission modes in one subframe may determine an appropriate code rate according to actual conditions. Thereby improving the flexibility and reliability of uplink data transmission.
  • the terminal device performs rate matching on the first transport block, including: determining, by the terminal device, a first modulation order from the first MCS configuration set according to the first MCS index, and according to the first The modulation order performs rate matching on the first transport block.
  • the method further includes: determining, by the terminal device, a second modulation order from the second MCS configuration set, and performing rate matching on the second transport block according to the second modulation order, where The second transport block is transmitted by using a second subframe, and the modulation order of the first transport block is a first modulation order included in the first MCS configuration set.
  • the start time domain symbols of the uplink data sent by different subframes may be different. Therefore, the code rate of the uplink data sent by the terminal device through different subframes may also be different. Different subframes may be selected according to actual conditions. The bit rate, which increases the flexibility and reliability of upstream data transmission.
  • the first MCS configuration set is different from the second MCS configuration set, and the first MCS index has a modulation order greater than or equal to the first MCS configuration set.
  • An MCS index corresponds to a modulation order in the second MCS configuration set.
  • the corresponding modulation order in the first MCS configuration set is greater than or equal to its corresponding modulation order in the second MCS configuration set.
  • the first transmission mode is adopted or When transmitting uplink data in a subframe, there is a certain probability that the uplink data is sent from the second time domain symbol in the first subframe, and a larger modulation order in the first MCS configuration set may be adopted, thereby reducing the code rate. Increase the probability that the access network device decodes successfully.
  • the first code rate of the third transport block corresponding to the third modulation order in the first MCS configuration set is smaller than a preset value, where the first code rate is from the second time domain.
  • the code rate of the uplink data corresponding to the third transport block in which the symbol starts to be transmitted, and the third modulation order is a modulation order other than the highest order modulation order in the first MCS configuration set.
  • the preset value may be set according to the decoding capability of the access network device and the current communication environment.
  • the code rate of the transport block is higher than the preset value, the modulation order is increased, and the code rate is decreased, thereby increasing the access network device.
  • the probability of successful decoding is set according to the decoding capability of the access network device and the current communication environment.
  • the method further includes: the terminal device receiving second indication information from the access network device, where the second indication information is used to indicate the first MCS configuration set or the second MCS configuration set.
  • the access network device can schedule the MCS configuration set used by the terminal device in a certain subframe or a certain start time domain symbol by using the second indication information, thereby enhancing the flexibility of the uplink transmission.
  • the method further includes: the terminal device sends third indication information to the access network device, where the third indication information is used to indicate the start time domain symbol.
  • the access network device can obtain the initial time domain symbol determined by the terminal device.
  • a method for receiving uplink data including: the access network device sends first scheduling information to the terminal device, where the first scheduling information is used to schedule the terminal device to transmit the first transmission by using an unlicensed carrier.
  • the access network device receives, from the start time domain symbol, the uplink data corresponding to the first transport block from the terminal device, where the start time domain symbol is at least two included in the first subframe. a first time domain symbol or a second time domain symbol in the time domain symbol, the second time domain symbol is later than the first time domain symbol, and the at least two time domain symbols are used to receive the uplink data .
  • the access network device determines, from at least two time domain symbols included in one subframe, a time domain symbol for receiving uplink data, and the current time domain symbol does not detect uplink data.
  • the access network device can detect whether the next time domain symbol has uplink data, thereby increasing the transmission per unit time. The probability of success increases the unlicensed spectrum utilization during uplink data transmission.
  • the access network device receives, from the start time domain symbol, the uplink data corresponding to the first transport block from the terminal device, where: the access network device is configured according to the first Determining, by the number or location of the reference signal symbols, the first time domain symbol or the second time domain symbol; the access network device according to the determined And receiving an uplink data corresponding to the first transport block from the terminal device.
  • the uplink data corresponding to the first transport block is that the first transport block starts rate matching from the first time domain symbol.
  • the second uplink data obtained by the rate matching is started, and the second uplink data is data remaining after the data between the first time domain symbol and the second time domain symbol is removed from the first uplink data.
  • the terminal device may perform the puncturing transmission of the data mapped on the complete subframe, that is, discarding Data before the next time domain symbol, only part of the data is transmitted starting from the latter time domain symbol. Thereby, the complexity of the terminal device when transmitting the uplink data is reduced, and the burden on the processor of the terminal device is reduced.
  • the method further includes: the access network device to the The terminal device sends the first indication information, where the first indication information is used to indicate the first transmission mode or the second transmission mode, where the first transmission mode is from the first time domain symbol or the second time domain symbol And starting to send the uplink data corresponding to the first transport block, where the second transmission mode starts sending the uplink data from the first time domain symbol, and does not start sending the first time domain symbol
  • the uplink data corresponding to a transport block the access network device to the The terminal device sends the first indication information, where the first indication information is used to indicate the first transmission mode or the second transmission mode, where the first transmission mode is from the first time domain symbol or the second time domain symbol
  • the second transmission mode starts sending the uplink data from the first time domain symbol, and does not start sending the first time domain symbol
  • the access network device can indicate the transmission mode of the terminal device, so that the transmission mode can be flexibly selected according to actual conditions.
  • the first scheduling information is used to indicate a first modulation and coding policy MCS index, and when the first indication information indicates the first transmission mode, modulation of uplink data corresponding to the first transmission block
  • the order is the first modulation order determined according to the first MCS index and the first MCS configuration set, and when the first indication information indicates the second transmission mode, the uplink data corresponding to the first transport block
  • the modulation order is a second modulation order determined according to the first MCS index and the second MCS configuration set, wherein the first MCS configuration set is different from the second MCS configuration set.
  • the code rate of the uplink data is also different. Selecting different MCS configuration sets according to different transmission modes in one subframe may determine an appropriate code rate according to actual conditions, thereby improving The flexibility and reliability of uplink data transmission.
  • the first scheduling information is used to indicate the first MCS index, so that the terminal device determines, according to the first MCS index, the uplink data corresponding to the first transport block from the first MCS configuration set.
  • the first modulation order is used to indicate the first MCS index, so that the terminal device determines, according to the first MCS index, the uplink data corresponding to the first transport block from the first MCS configuration set.
  • the method further includes:
  • the access network device sends the second scheduling information to the terminal device, where the second scheduling information is used to indicate the second MCS index, so that the terminal device configures the set from the second MCS according to the second MCS index. Determining, in the second modulation order of the uplink data corresponding to the second transport block, the second transport block is transmitted by using the second subframe, the first MCS configuration set being different from the second MCS configuration set
  • the start time domain symbols of the uplink data sent by different subframes may be different. Therefore, the code rate of the uplink data sent by the terminal device through different subframes may also be different. Different subframes may be selected according to actual conditions. The bit rate, which increases the flexibility and reliability of upstream data transmission.
  • the first MCS configuration set is different from the second MCS configuration set, and the first MCS index has a modulation order greater than or equal to the first MCS configuration set.
  • An MCS index corresponds to a modulation order in the second MCS configuration set.
  • the corresponding modulation order in the first MCS configuration set is greater than or equal to its corresponding modulation order in the second MCS configuration set.
  • the first transmission mode is adopted or When transmitting uplink data in a subframe, there is a certain probability that the uplink data is sent from the second time domain symbol in the first subframe, and a larger modulation order in the first MCS configuration set may be adopted, thereby reducing the code rate. Increase the probability that the access network device decodes successfully.
  • the first code rate of the third transport block corresponding to the third modulation order in the first MCS configuration set is smaller than a preset value, where the first code rate is from the second time domain.
  • the code rate of the uplink data corresponding to the third transport block in which the symbol starts to be transmitted, and the third modulation order is a modulation order other than the highest order modulation order in the first MCS configuration set.
  • the preset value may be set according to the decoding capability of the access network device and the current communication environment.
  • the code rate of the transport block is higher than the preset value, the modulation order is increased, and the code rate is decreased, thereby increasing the access network device.
  • the probability of successful decoding is set according to the decoding capability of the access network device and the current communication environment.
  • the method further includes: the access network device sending the second indication information to the terminal device, where the second indication information is used to indicate the first MCS configuration set or the second MCS configuration set.
  • the access network device can schedule the MCS configuration set used by the terminal device in a certain subframe or a certain start time domain symbol by using the second indication information, thereby enhancing the flexibility of the uplink transmission.
  • the method further includes: the access network device receiving third indication information from the terminal device, where the third indication information is used to indicate the start time domain symbol.
  • the access network device can obtain the initial time domain symbol determined by the terminal device.
  • the present application provides an apparatus for transmitting uplink data, where the apparatus can implement the functions performed by the terminal device in the method related to the foregoing aspect, and the functions can be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more corresponding units or modules of the above functions.
  • the apparatus includes a processor and a transceiver configured to support the apparatus to perform the corresponding functions of the above methods.
  • the transceiver is used to support communication between the device and other network elements.
  • the apparatus can also include a memory for coupling with the processor that retains the program instructions and data necessary for the apparatus.
  • the application provides an apparatus for receiving uplink data, where the apparatus can implement the functions performed by the access network device in the method related to the foregoing aspect, where the function can be implemented by hardware, or can be performed by hardware.
  • Software Implementation The hardware or software includes one or more corresponding units or modules of the above functions.
  • the apparatus includes a processor and a transceiver configured to support the apparatus to perform the corresponding functions of the above methods.
  • the transceiver is used to support communication between the device and other network elements.
  • the apparatus can also include a memory for coupling with the processor that retains the program instructions and data necessary for the apparatus.
  • a network system comprising the apparatus for transmitting uplink data and the apparatus for receiving uplink data according to the above aspects.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit, a processing unit or a transceiver of a terminal device, or a processor, causing the terminal device Perform the method in the above implementation.
  • a computer program product comprising: computer program code to enable access when the computer program code is run by a communication unit, a processing unit or a transceiver of a terminal device, or a processor
  • the network device performs the method in the above implementation manner.
  • the present application provides a computer storage medium for storing computer software instructions for use in the terminal device described above, including a program designed to perform the above aspects.
  • the present application provides a computer storage medium for storing computer software instructions for use in the access network device described above, including a program designed to perform the above aspects.
  • the present application provides a communication chip in which instructions are stored that, when run on a terminal device, cause the communication chip to perform the methods of the various aspects described above.
  • the present application provides a communication chip in which instructions are stored that, when run on a network device, cause the communication chip to perform the methods of the various aspects described above.
  • FIG. 1 is a schematic architectural diagram of a communication system to which the present application is applied;
  • FIG. 2 is a schematic diagram of a method for transmitting uplink data provided by the present application
  • FIG. 3 is a schematic diagram of another method for transmitting uplink data provided by the present application.
  • FIG. 4 is a schematic diagram of still another method for transmitting uplink data provided by the present application.
  • FIG. 5 is a schematic diagram of still another method for transmitting uplink data according to the present application.
  • FIG. 6 is a schematic diagram of a method for receiving uplink data provided by the present application.
  • FIG. 7 is a schematic diagram of a possible terminal device provided by the present application.
  • FIG. 8 is a schematic diagram of another possible terminal device provided by the present application.
  • FIG. 9 is a schematic diagram of a possible access network device provided by the present application.
  • FIG. 10 is a schematic diagram of another possible access network device provided by the present application.
  • FIG. 1 illustrates a communication system 100 to which the present application is applied.
  • the communication system 100 includes an access network device 110 and a terminal device 120.
  • the access network device 110 communicates with the terminal device 120 over a wireless network.
  • the wireless communication module can encode the information for transmission. Specifically, the wireless communication module can acquire a certain number of data bits to be transmitted to the access network device 110 through a channel, such as data bits generated by the processing module, received from other devices, or saved in the storage module. .
  • These data bits may be included in one or more transport blocks (TBs), which may be segmented to produce a plurality of coded blocks.
  • TBs transport blocks
  • a terminal device may be referred to as an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal can be a cellular telephone, a handheld device with wireless communication capabilities, a computing device or other processing device connected to the wireless modem, an in-vehicle device, a wearable device, and a user device in a 5G communication system.
  • the access network device may be a base transceiver station (BTS) in a code division multiple access (CDMA) system, or may be a wideband code division multiple access (WCDMA) system.
  • the base station (node B, NB) may also be an evolved base station (eNB) in a long term evolution (LTE) system, or may be a base station (gNB) in a 5G communication system.
  • the access network device may also be a relay station, an access point, an in-vehicle device, a wearable device, and other types of devices.
  • the communication system to which the present application is applied is merely an example.
  • the communication system to which the present application is applied is not limited thereto.
  • the number of access network devices and terminal devices included in the communication system may be other numbers.
  • LAA-LTE systems For communication systems using unlicensed spectrum, such as LAA-LTE systems, SA-LTE systems, other U-LTE systems, or 5G communication systems, compliance with local regulations for license-free spectrum usage is required.
  • LAA-LTE systems For communication systems using unlicensed spectrum, such as LAA-LTE systems, SA-LTE systems, other U-LTE systems, or 5G communication systems, compliance with local regulations for license-free spectrum usage is required.
  • LBT low-live
  • the terminal device Since the terminal device needs to detect whether the channel is idle before the license-free spectrum, the device can perform data transmission after determining that the channel is idle. Therefore, when the scheduling information scheduling terminal device performs uplink transmission in a certain time unit (for example, a certain subframe), The terminal device needs to detect whether the channel is available before the time unit.
  • a certain time unit for example, a certain subframe
  • the terminal device can detect whether the frequency domain resource corresponding to the channel is in an idle state before the time unit, or whether the frequency domain resource is used by other devices.
  • the terminal device may use the frequency domain resource for communication, for example, performing uplink transmission.
  • the terminal device cannot use the frequency domain resource.
  • the terminal device may continue to perform channel detection in the time unit. If the terminal device determines that the channel is available through channel detection before the start of a certain time domain in the time unit, the terminal device may transmit in the time unit from the start of the time domain.
  • the unlicensed spectrum resource may include a frequency band near 5 GHz (Giga Hertz, GHz), a frequency band near 2.4 GHz, a frequency band near 3.5 GHz, and a frequency band near 60 GHz. .
  • time unit represents the time unit in which the communication device performs data transmission.
  • a time unit can be one subframe or one transmission time interval (TTI).
  • TTI transmission time interval
  • the length of a time unit may be 1 millisecond (ms) or less than 1 ms, which is not limited in this application.
  • ms millisecond
  • the technical solution provided by the present application is described in detail below with one time unit as one subframe.
  • FIG. 2 is a schematic flowchart of a method for transmitting uplink data provided by the present application.
  • the method 200 includes:
  • the terminal device receives first scheduling information from the access network device, where the first scheduling information is used to schedule the The terminal device transmits the first TB through an unlicensed carrier.
  • S220 The terminal device performs rate matching on the first TB to obtain uplink data.
  • the terminal device detects the unlicensed carrier, and determines, according to the detection result, a start time domain symbol for sending the uplink data from at least two time domain symbols included in the first subframe, where
  • the at least two time domain symbols include a first time domain symbol and a second time domain symbol, the second time domain symbol is later than the first time domain symbol, and the initial time domain symbol is the first Time domain symbol or the second time domain symbol.
  • the terminal device sends the uplink data to the access network device from the start time domain symbol.
  • the following provides a detailed description of the technical solutions provided by the present application by using the terminal device as the UE and the access network device as the base station.
  • the first scheduling information is used to schedule the UE to transmit the first TB by using an unlicensed carrier (ie, an unlicensed spectrum), and the first scheduling information may be sent through the licensed spectrum, or may be sent through the unlicensed spectrum.
  • an unlicensed carrier ie, an unlicensed spectrum
  • the spectrum of a scheduling information is not limited.
  • the first scheduling information scheduling UE transmits the first TB through the unlicensed carrier, and may be dynamic scheduling or semi-static scheduling, which is not specifically limited in the present invention.
  • the first scheduling information when the first scheduling information is dynamic scheduling information, the first scheduling information may be allocated by the base station after determining that the UE needs to perform uplink transmission, and the first scheduling information may be that the base station determines that the UE needs to perform Transmitted to the UE after uplink transmission.
  • the first scheduling information when the first scheduling information is semi-persistent scheduling information, the first scheduling information may be allocated by the base station to the UE before determining that the UE needs to perform uplink transmission, and the first scheduling information may be that the base station determines the UE. It needs to be sent to the UE before the uplink transmission.
  • the first scheduling information scheduling is used to indicate that the UE transmits the transmission parameter of the first TB by using an unlicensed carrier
  • the transmission parameter may include at least one of the following:
  • the size of the frequency domain resource corresponding to the first TB (for example, the number of resource blocks (RBs)), a Modulation and Coding Scheme (MCS) index for determining the size of the first TB, the first TB Corresponding modulation order, the code rate corresponding to the first TB, the time domain start position in the first subframe when the UE transmits the first TB, the redundancy version used when the UE transmits the first TB, and the UE transmits the first TB
  • MCS Modulation and Coding Scheme
  • the UE performs rate matching on the first TB and generates uplink data.
  • the rate matching herein includes a set of operations such as encoding, interleaving, and rate matching.
  • the S220 may be performed before the UE performs the LBT, or after the UE performs the LBT, and may also be performed simultaneously with the LBT.
  • the first subframe is one subframe for transmitting uplink data that is scheduled by the first scheduling information. It should be noted that the UE may determine, according to the first scheduling information, the first subframe used for transmitting the first TB, for example, After receiving the first scheduling information, the UE may determine, according to the predefined timing relationship, that the first subframe on the unlicensed carrier is used to transmit the first TB.
  • the first time domain symbol and the second time domain symbol are any two of the at least two time domain symbols included in the first subframe, and the second time domain symbol is later than the first time domain symbol.
  • the at least two time domain symbols may be specified by the communication system, or the at least two time domain symbols may also be configured by the base station by using high layer signaling, or the at least two time domain symbols may also be The base station is notified by physical layer signaling.
  • the first time domain symbol is one of the symbols ⁇ 0, 1, 2 ⁇ .
  • the second time domain symbol is one of the symbols ⁇ 4, 5, 6, 7, 8, 9 ⁇ .
  • the first subframe includes at least two time domain symbols, specifically: the first subframe includes two time domain symbols.
  • the first time domain symbol of the two time domain symbols included in the first subframe is symbol 0 or symbol 1
  • the second time domain symbol of the two time domain symbols included in the first subframe is symbol 7. Or symbol 8.
  • the UE sends the uplink data to the base station from the start time domain symbol, and may send the uplink data to the base station from the start boundary of the start time domain symbol, or may be the UE from the start time.
  • a time domain starting point in the domain symbol begins to send uplink data to the base station.
  • the first time domain symbol includes at least one time domain start point available for uplink data transmission.
  • the first time domain symbol includes three time domain start points that can be used for uplink data transmission, and the three time domain start points are start boundaries of the first time domain symbol, and the first time domain symbol is located from the first time domain symbol.
  • the time length of the start boundary is a preset value #1 (for example, 25 microseconds (us))
  • the time length from the start boundary of the first time domain symbol in the first time domain symbol is a preset value # 2 (for example, the moment of the sum of 25us and the length of the timing advance (TA)).
  • TA timing advance
  • the second time domain symbol includes at least one time domain start point available for uplink data transmission.
  • the second time domain symbol includes two time domain start points that can be used for uplink data transmission, the two time domain start points are the start boundary of the second time domain symbol, and the second time domain symbol is the second time domain symbol.
  • the time length of the start boundary is the time of the preset value #1 (for example, 25 us).
  • the first time domain starting point in the first time domain symbol that can be used by the UE to send the uplink data may be configured by the base station by using the high layer signaling, or may be indicated by the base station by using physical layer signaling, or may be a communication.
  • the system is pre-defined.
  • the second time domain starting point in the second time domain symbol that can be used by the UE to send the uplink data may be configured by the base station by using the high layer signaling, or may be indicated by the base station by using physical layer signaling, or may be a communication.
  • the system is pre-defined.
  • the base station can configure the start boundary of the symbol 1 as the first time domain start point, and the time at the start boundary 25us of the distance symbol 7 in the configuration symbol 7 is the second time domain start point.
  • the base station can configure the time at the start boundary 25us of the distance symbol 0 in symbol 0 as the first time domain start point, and the communication system pre-determines the start boundary of the symbol 7 as the second time domain start point.
  • the UE detects the unlicensed carrier, and determines that the time domain symbol available in the corresponding first channel of the at least two time domain symbols included in the first subframe is a start time domain symbol, and starts sending from the start time domain symbol. Upstream data.
  • the UE When detecting whether the first subframe on the unlicensed carrier is available, the UE first determines whether the unlicensed carrier is available through channel detection before the first time domain start point in the first time domain symbol. If the unlicensed carrier is available, the UE sends uplink data from the first time domain start point in the first time domain symbol; if the unlicensed carrier is unavailable, the UE continues to detect the unlicensed carrier, and in the second time Determining, by the channel detection, whether the unlicensed carrier is available before the start of the second time domain in the domain symbol, when detecting that the unlicensed carrier is available, the UE sends the uplink data from the second time domain starting point in the second time domain symbol. .
  • the time domain symbol may be, for example, an orthogonal frequency division multiplexing (OFDM) symbol, or may be a time domain symbol defined in a 5G system.
  • OFDM orthogonal frequency division multiplexing
  • the time domain symbol is simply referred to as a symbol.
  • FIG. 3 is a schematic diagram of another method for transmitting uplink data provided by the present application.
  • the first subframe shown in FIG. 3 includes 14 symbols, and is numbered 0, 1, ..., 13 from left to right according to the transmission order of the symbols in the first subframe, and the UE determines to send through the subframe according to the scheduling information.
  • the UE detects whether the channel is idle before the symbol 0. If the detection succeeds, that is, the current channel is not used by other devices, the UE may start from the start boundary position of the symbol 0 or a certain time domain position in the middle of the symbol 0.
  • the uplink data is transmitted; if the detection fails, that is, the current channel is occupied by other devices, the UE restarts or continues to perform detection in the first subframe.
  • the UE may The uplink data is transmitted from the time of detecting the success, for example, starting from the start boundary position of the symbol 7 or a certain time domain position in the middle of the symbol 7, that is, if the UE fails the channel detection in the subframe symbol 0, but The symbol 7 channel detection in the subframe is successful, and the terminal device can transmit the uplink data through the remaining partial subframes.
  • the terminal device determines, from at least two time domain symbols included in one subframe, a time domain symbol for transmitting uplink data, when the previous time domain in a time unit When the symbol cannot be used, the terminal device can transmit the uplink data through other available time domain symbols of the time unit, thereby increasing the probability of successful transmission per unit time and improving the unlicensed spectrum utilization rate during uplink data transmission.
  • mapping methods for the uplink data sent by the terminal device There are two mapping methods for the uplink data sent by the terminal device. The following two cases are described separately.
  • the uplink data is first uplink data obtained by the first transmission block starting rate matching from the first time domain symbol.
  • the uplink data is second uplink data obtained by the first transmission block starting rate matching from the second time domain symbol, where the The two uplink data is data remaining after the data between the first time domain symbol and the second time domain symbol is removed from the first uplink data.
  • the terminal device may perform the puncturing transmission of the data mapped on the complete subframe, that is, discarding Data before the next time domain symbol, only part of the data is transmitted starting from the latter time domain symbol. Thereby, the complexity of the terminal device when transmitting the uplink data is reduced, and the burden on the processor of the terminal device is reduced.
  • the terminal device performs rate matching on the first transport block to obtain uplink data, including:
  • the terminal device performs rate matching on the first transport block from the first time domain symbol to obtain first uplink data.
  • the terminal device may perform the puncturing transmission of the data mapped on the complete subframe, that is, discarding Data before the next time domain symbol, only part of the data is transmitted starting from the latter time domain symbol. Thereby, the complexity of the terminal device when transmitting the uplink data is reduced, and the burden on the processor of the terminal device is reduced.
  • the terminal device encodes the first transport block to obtain the encoded first uplink data packet, where the encoding process may include adding a cyclic redundancy check (CRC), coding, interleaving, and the like.
  • CRC cyclic redundancy check
  • the terminal device modulates the encoded first uplink data packet according to the first modulation order, and maps the modulated symbol from the first time domain symbol to the first time domain in the order of the first frequency or the first time and the second frequency. data.
  • the terminal device sends the first uplink data from the first time domain symbol, when the start time domain symbol is the second time domain symbol.
  • the terminal device sends the second uplink data from the second time domain symbol, where the second uplink data is the data in the first uplink data after the data between the first time domain symbol and the second time domain symbol is removed. The data.
  • the terminal device may perform the puncturing transmission of the data mapped on the complete subframe, that is, discarding Data before the previous time domain symbol, only part of the data is transmitted starting from the latter time domain symbol. Thereby, the complexity of the terminal device when transmitting the uplink data is reduced, and the burden on the processor of the terminal device is reduced.
  • FIG. 4 is a schematic diagram of still another method for transmitting uplink data provided by the present application.
  • the first subframe shown in FIG. 4 includes 14 symbols, which are numbered 0, 1, ..., 13, respectively according to the order of transmission of symbols in the first subframe, and the UE according to scheduling information. It is determined that the uplink data is sent by the subframe, the UE fails in the symbol 0LBT, and the symbol 7LBT succeeds. At this time, the UE can directly discard the data mapped to the symbols 0 to 6 and only transmit the mapping on the symbols 7 to 13. data. In this way, the UE does not need to re-package and map the data, and there is no additional complexity relative to the transmission of the uplink complete subframe.
  • the UE may perform rate matching on the first TB, and match the coded modulated data to the resources corresponding to the symbols #7 to #13, thus increasing the complexity of the processing task of the UE. However, the information bits in front of the packet are not lost.
  • the terminal device encodes the first transport block to obtain the encoded first uplink data packet, where the encoding process may include adding CRC, encoding, interleaving, etc., the process may be compared with the prior art.
  • the method and process of encoding the device are similar, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the terminal device sends the first uplink data from the first time domain symbol, where the first uplink data is that the terminal device encodes the first uplink data packet according to the The fourth modulation order is modulated, and the modulated symbols are mapped from the first time domain symbol in the order of the first frequency or the first time.
  • the terminal device sends the second uplink data from the second time domain symbol, where the second uplink data is the terminal device that the encoded first uplink data packet is based on.
  • the fifth modulation order is modulated, and the modulated symbols are mapped from the second time domain symbol in the order of the first frequency or the first time.
  • the fourth modulation order is determined according to a second MCS table, and the fifth modulation order is determined according to the first MCS table.
  • the fifth modulation order is greater than or equal to the first modulation order.
  • the transport block size (TBS) of the TB transmitted by the base station scheduling terminal device cannot be changed. Otherwise, the base station cannot correctly demodulate the signal sent by the UE. Therefore, when the resources robbed by the terminal device and the resources scheduled by the base station do not match, the terminal device still performs coding transmission according to the TBS scheduled by the base station.
  • TBS transport block size
  • mapping mode 1 when the UE performs uplink transmission in a puncture manner (ie, mapping mode 1), part of the information bits in front of the data packet are discarded, and when the terminal device matches in a re-rate manner (ie, a mapping manner) 2)
  • a re-rate manner ie, a mapping manner
  • the TB transmitting the same TBS the performance of the terminal equipment transmitting in the re-rate matching manner is better than the performance of the terminal equipment transmitting in the puncturing manner, but The implementation is more complex.
  • the method 200 further includes:
  • the terminal device receives first indication information from the access network device, where the first indication information is used to indicate a first transmission mode or a second transmission mode, where the first transmission mode is from the first The time domain symbol or the second time domain symbol starts to send the uplink data, where the second transmission mode is to start sending the uplink data from the first time domain symbol, and not from the second time domain symbol Start sending the uplink data.
  • the first indication information may be one bit.
  • the bit is “0”
  • the UE is instructed to send uplink data by using the second transmission mode.
  • the bit is “1”
  • the UE is instructed to pass the first transmission mode. Send upstream data.
  • the first transmission mode and the second transmission mode may be indicated by whether the first indication information exists. For example, when the UE receives the first indication information, the first indication information indicates that the UE sends the uplink data by using the first transmission manner. Otherwise, the UE sends the uplink data by using the second transmission manner.
  • the first indication information may be sent in the form of a reference signal.
  • the UE sends the uplink data by using the first transmission manner. Otherwise, the UE sends the uplink data by using the second transmission manner.
  • different reference signals can be used to indicate the first transmission mode and the second transmission mode.
  • radio network temporary identifier RNTI
  • different radio network temporary identifier (RNTI) scrambling codes may be used to indicate the first transmission mode and the second transmission mode.
  • RNTI radio network temporary identifier
  • the specific form of sending the first indication information is not limited in this application.
  • the base station indicates the transmission mode of the UE, so that the transmission mode can be flexibly selected according to actual conditions.
  • the first time domain symbol is a time domain symbol that is closest to a start boundary of the first subframe in the at least two time domain symbols.
  • the access network device indicates that the new device can only be closest to the subframe boundary.
  • the domain symbol starts to send uplink data, so that the old device can be prevented from being locked by the new device and the uplink data cannot be sent, so that the new communication system is compatible with the old device.
  • the fixed time domain symbol of the old device and the first time domain symbol of the new device may be the same symbol
  • the time domain start point can be the same time domain start point
  • FIG. 5 is a schematic diagram showing a terminal device transmitting uplink data in a communication system in which a plurality of terminal devices coexist.
  • Each rectangle in FIG. 5 represents one subframe, and the new UE can transmit uplink data in the middle of the subframe, and the old UE can only send uplink data at the start boundary of the first time domain symbol.
  • the old and new UEs may multiplex the unlicensed carrier to transmit uplink data, where the old and new UEs can multiplex the unlicensed carrier, and the base station determines of. As shown on the left side of Figure 5. If the new UE does not receive signaling indicating that the new UE does not support partial subframe transmission (or the new UE receives signaling indicating that the new UE supports partial subframe transmission), the new UE may start after the intermediate LBT of the subframe succeeds. When the uplink data is sent, the old UE performs the LBT before the next subframe, and the detection fails due to the transmission of the new UE, and the unlicensed carrier cannot be multiplexed.
  • the above signaling may be dynamic signaling or high layer signaling.
  • the signaling may indicate whether a subframe supports partial subframe transmission, and may also indicate whether consecutive subframes (for example, in an uplink multi-subframe scheduling scenario) indicate partial subframe transmission, thereby enhancing uplink transmission of uplink data by the UE. Flexibility.
  • the signaling (that is, the first indication information described below) is included in the foregoing first scheduling information, where the first scheduling information is a physical downlink with an uplink scheduling grant (Uplink_grant, UL grant) function. Carryed by the control channel. Further, for the single subframe scheduling, that is, the UL_grant schedules the transport block in the uplink subframe, the first indication information in the UL_grant is used to indicate the specific transmission mode of the uplink subframe, for example, the foregoing first transmission manner.
  • the first scheduling information is a physical downlink with an uplink scheduling grant (Uplink_grant, UL grant) function. Carryed by the control channel.
  • the first indication information in the UL_grant is used to indicate the specific transmission mode of the uplink subframe, for example, the foregoing first transmission manner.
  • the first indication information in the UL_grant is used to indicate the The specific transmission mode of the first or the first two uplink subframes of the at least two uplink subframes, for example, the first transmission mode or the second transmission mode, and the other ones of the at least two uplink subframes are scheduled.
  • the transmission mode of the uplink subframe is the second transmission mode by default, that is, the transmission mode adopted by the subframes is not indicated by the first indication information.
  • the base station may indicate that the new UE supports partial subframe transmission by using the foregoing signaling, and the new UE may continue to perform at the non-starting boundary of the subframe after the LBT fails at the start boundary of the subframe.
  • LBT as shown on the right side of FIG. 5, two new UEs succeed in the middle LBT of the subframe, and two new UEs multiplex the unlicensed carriers from the middle of the subframe to transmit uplink data, thereby improving resource utilization.
  • the terminal device performs rate matching on the first transport block, including:
  • the terminal device determines a first modulation order from the MCS configuration set according to the MCS index.
  • the terminal device performs rate matching on the first transport block according to the first modulation order.
  • the MCS configuration set is a first MCS configuration set
  • the MCS configuration The set is a second MCS configuration set
  • the first MCS configuration set is different from the second MCS configuration set.
  • the code rate of the uplink data is also different. Selecting different MCS configuration sets according to different transmission modes in one subframe may determine an appropriate code rate according to actual conditions, thereby improving The flexibility and reliability of uplink data transmission.
  • the first MCS configuration set and the second MCS configuration set may correspond to different MCS tables, or may be different parts of the same MCS table.
  • the method 200 further includes:
  • the terminal device determines a first modulation order from the first MCS configuration set according to the first MCS index, and performs rate matching on the first transport block according to the first modulation order; the terminal device Determining, in the second MCS configuration set, a second modulation order, and performing rate matching on the second transport block according to the second modulation order, where the second transport block is transmitted through the second subframe,
  • the first MCS configuration set is different from the second MCS configuration set.
  • the start time domain symbols of the uplink data sent by different subframes may be different. Therefore, the code rate of the uplink data sent by the terminal device through different subframes may also be different. Different subframes may be selected according to actual conditions. The bit rate, which increases the flexibility and reliability of upstream data transmission.
  • the first or first TTIs of the consecutive multiple TTIs may be predefined or pre-configured to determine a modulation order according to the first MCS configuration set.
  • Number 1 the remaining at least one TTI including the last one TTI determines a modulation order 2 according to the second MCS configuration set, wherein the modulation order 1 is greater than or equal to the modulation order 2; or the continuous may be predefined or pre-configured
  • the last or last TTI of the plurality of TTIs determines the modulation order 2 according to the second MCS configuration set, and the remaining at least one TTI including the first TTI determines the modulation order 1 according to the first MCS configuration set.
  • the probability that the terminal device transmits data in a partial subframe on the first few TTIs is greater than the probability of transmitting data in a partial subframe on the latter TTIs.
  • the UE determines the modulation order used according to the time domain position of the uplink subframe.
  • the first or the first plurality of TTIs of the consecutive multiple TTIs may be pre-defined or pre-configured to determine a modulation order according to the second MCS configuration set.
  • the remaining at least one TTI including the last one TTI determines a modulation order 1 according to the first MCS configuration set, wherein the modulation order 1 is greater than or equal to the modulation order 2; or the continuous may be predefined or pre-configured
  • the last or last TTI of the plurality of TTIs determines the modulation order 1 according to the first MCS configuration set, and the remaining at least one TTI including the first TTI determines the modulation order 2 according to the second MCS configuration set.
  • the terminal device determines, according to the first MCS index, a first modulation order from the first MCS configuration set, and performs rate matching on the first transport block according to the first modulation order; the terminal The device determines a sixth modulation order from the second MCS configuration set, and performs rate matching on the fourth transport block according to the sixth modulation order, where the fourth transport block is transmitted by using an authorized carrier,
  • the first MCS configuration set is different from the second MCS configuration set.
  • the first MCS configuration set is an MCS configuration set used when transmitting the first transport block on an unlicensed carrier
  • the second MCS configuration set is an MCS used when transmitting the fourth transport block on the authorized carrier. Configure the collection.
  • the first MCS configuration set is different from the second MCS configuration set, and the first MCS index has a modulation order greater than or equal to the first MCS configuration set.
  • An MCS index corresponds to a modulation order in the second MCS configuration set.
  • the corresponding modulation order in the first MCS configuration set is greater than or equal to its corresponding modulation order in the second MCS configuration set.
  • the first transmission mode is adopted or When transmitting uplink data in a subframe, there is a certain probability that the uplink data is sent from the second time domain symbol in the first subframe, and a larger modulation order in the first MCS configuration set may be adopted, thereby reducing the code rate. Increase the probability that the base station decodes successfully.
  • the first code rate of the third transport block corresponding to the third modulation order in the first MCS configuration set is smaller than a preset value, where the first code rate is from the second time domain.
  • the code rate of the uplink data corresponding to the third transport block in which the symbol starts to be transmitted, and the third modulation order is a modulation order other than the highest order modulation order in the first MCS configuration set.
  • the preset value may be set according to the decoding capability of the base station and the current communication environment.
  • the code rate of the TB is higher than the preset value, the modulation order is increased and the code rate is decreased, so that the probability of successful decoding of the base station can be increased.
  • the preset value is specified by the communication system.
  • the preset value is a value greater than or equal to 0.93.
  • the preset value is 0.931, and for example, the preset value is 1.
  • the method 200 further includes:
  • the terminal device receives the second indication information from the access network device, where the second indication information is used to indicate the first MCS configuration set or the second MCS configuration set.
  • the access network device can schedule the MCS configuration set used by the terminal device in a certain subframe or a certain start time domain symbol by using the second indication information, thereby enhancing the flexibility of the uplink transmission.
  • the second indication information may be used to indicate the UE in a manner similar to the first indication information.
  • the specific format and the transmission manner of the second indication information are not limited in this application.
  • the method 200 further includes:
  • the terminal device sends third indication information to the access network device, where the third indication information is used to indicate the start time domain symbol.
  • the access network device can obtain the initial time domain symbol determined by the terminal device.
  • the third indication information may be used to indicate the UE in a manner similar to the first indication information.
  • the specific format and the transmission manner of the third indication information are not limited in this application.
  • the method 200 further includes:
  • the terminal device receives the fourth indication information from the access network device, where the fourth indication information is used to indicate that the terminal device performs the uplink data transmission according to the mapping mode 1 or the mapping mode 2 .
  • the fourth indication information may be used to indicate the UE in a manner similar to the first indication information.
  • the specific form and the transmission manner of the fourth indication information are not limited in this application.
  • the access network device may indicate, by using the fourth indication information, that the terminal device performs uplink data transmission according to the mapping mode 2, so that the terminal device obtains better transmission performance.
  • the mapping mode 2 needs to support the capability of the terminal device.
  • the terminal device reports the capability of the mapping mode 2 to the access network device, so that the access network device determines whether the terminal device can be instructed according to the mapping mode. Perform uplink data transmission.
  • Table 1 is an example of a table including a second MCS configuration set
  • Table 2 is an example of a table including a first MCS configuration set.
  • the modulation order included in Tables 1 and 2 is QPSK (or modulation order is 2), 16QAM (or modulation order is 4), and 64QAM (or modulation order is 6).
  • the frequency domain transmission resource is certain (for example, 100 RB)
  • a unique TBS can be determined according to the same MCS index, and when the corresponding MCS configuration set is the second MCS configuration set, the UE
  • the code rate (eg, code rate 1) when a time domain symbol (eg, symbol 0) begins to transmit uplink data is less than a preset value of 0.931 in the case of any MCS index, but the UE is from the second time domain symbol (eg, Symbol 7)
  • the code rate at the start of transmission of the uplink data (for example, code rate 2) is greater than the preset value of 0.931 in the case where the MCS index value is 8 to 10, and 15 to 28 are used.
  • the second MCS configuration set is an MCS configuration set that matches the upstream data transmission starting from the first time domain symbol (eg, symbol 0).
  • a unique TBS can be determined according to the same MCS index, and when the corresponding MCS configuration set is the first MCS configuration set, the UE
  • the code rate (for example, code rate 2) when the second time domain symbol (for example, symbol 7) starts transmitting uplink data is smaller than the preset value of 0.931 in the case where the modulation order corresponding to the MCS index value is QPSK and 16QAM.
  • the case where the modulation order corresponding to the MCS index value is 64QAM includes the case where the code rate is greater than the preset value of 0.931.
  • the code rate (for example, code rate 1) when the UE starts transmitting uplink data from the first time domain symbol (for example, symbol 0) is in the case of the MCS index value of 8 to 10, and 15 to 20 due to the modulation order.
  • the mismatch will have a certain performance penalty.
  • the first MCS configuration set is an MCS configuration set that matches the upstream data transmission starting from the second time domain symbol (eg, symbol 7).
  • the third modulation order may be a modulation order in the first MCS configuration set corresponding to any one of the MCS index values in Table 2 and 0 to 14.
  • Table 3 is an example of including a first MCS configuration set and a second MCS configuration set.
  • the modulation order included in Table 3 is QPSK, 16QAM, and 64QAM, and the third modulation order may be a modulation order in the first MCS configuration set corresponding to any one of the MCS index values in Table 3 of 0 to 14. number.
  • Table 4 is another example including a first MCS configuration set and a second MCS configuration set.
  • the modulation order included in Table 4 is QPSK, 16QAM, and 64QAM, and the third modulation order may be a modulation order in the first MCS configuration set corresponding to any one of the MCS index values in Table 4 in Table 4. number.
  • Table 5 is an example of a table including a second MCS configuration set
  • Table 6 is an example of a table including a first MCS configuration set.
  • the modulation orders included in Tables 5 and 6 are QPSK, 16QAM, 64QAM, and 256QAM (or the modulation order is 8).
  • a unique TBS can be determined according to the same MCS index, and when the corresponding MCS configuration set is the second MCS configuration set, the UE
  • the code rate (eg, code rate 1) when a time domain symbol (eg, symbol 0) begins to transmit uplink data is less than a preset value of 0.931 in the case of any MCS index, but the UE is from the second time domain symbol (eg, Symbol 7)
  • the code rate at the start of transmission of the uplink data (for example, code rate 2) is greater than the preset value of 0.931 in the case where the MCS index values are 4 and 5, and 9 to 28.
  • the second MCS configuration set is an MCS configuration set that matches the upstream data transmission starting from the first time domain symbol (eg, symbol 0).
  • a unique TBS can be determined according to the same MCS index, and when the corresponding MCS configuration set is the first MCS configuration set, the UE
  • the code rate (for example, code rate 2) when the second time domain symbol (for example, symbol 7) starts transmitting uplink data is smaller than the preset value of 0.931 in the case where the modulation order corresponding to the MCS index value is QPSK, 16QAM, and 64QAM.
  • the case where the modulation order corresponding to the MCS index value is 256QAM includes the case where the code rate is greater than the preset value of 0.931.
  • the code rate (for example, code rate 1) when the UE starts transmitting uplink data from the first time domain symbol (for example, symbol 0) is in the case of the MCS index values of 4 and 5, and 9 to 22 due to the modulation order.
  • the mismatch will have a certain performance penalty.
  • the first MCS configuration set is an MCS configuration set that matches the upstream data transmission starting from the second time domain symbol (eg, symbol 7).
  • the third modulation order may be a modulation order in the first MCS configuration set corresponding to any one of the MCS index values in Table 6 in Table 6.
  • Table 7 is an example including a first MCS configuration set and a second MCS configuration set.
  • the modulation order included in Table 7 is QPSK, 16QAM, 64QAM, and 256QAM, and the third modulation order may be in the first MCS configuration set corresponding to any one of the MCS index values of 0 to 12 in Table 7. Modulation order.
  • the method for transmitting uplink data provided by the present application is described in detail from the perspective of the UE.
  • the following describes the method for receiving uplink data provided by the present application from the perspective of a base station.
  • FIG. 6 is a schematic diagram of a method for receiving uplink data provided by the present application.
  • the method 600 includes:
  • the access network device sends first scheduling information to the terminal device, where the first scheduling information is used to schedule the terminal device to transmit the first transport block by using an unlicensed carrier.
  • the access network device receives the uplink data corresponding to the first transport block from the start time domain symbol, where the start time domain symbol is at least two included in the first time unit. a first time domain symbol or a second time domain symbol in the time domain symbol, the second time domain symbol is later than the first time domain symbol, and the at least two time domain symbols are used to receive the uplink data .
  • the access network device may be, for example, a base station, and the terminal device may be, for example, a UE.
  • the base station may determine, according to the reference signal, the starting time domain symbol used by the UE to send the uplink data from the at least two time domain symbols.
  • the base station may detect the uplink data on each symbol, reference may be made to the related prior art, and details are not described herein for brevity.
  • the access network device and the terminal device can be identical to the access network device and the terminal device in the method 200, and the actions and methods of the access network device and the terminal device
  • the operation of the access network device in the 200 corresponds to the action of the terminal device, and is not described here for brevity.
  • the access network device determines, from at least two time domain symbols included in one subframe, a time domain symbol for receiving uplink data, and the current time domain symbol does not detect uplink data.
  • the access network device can detect whether the next time domain symbol has uplink data, thereby increasing the probability of successful transmission per unit time and improving the unlicensed spectrum utilization rate during uplink data transmission.
  • the access network device receives, from the start time domain symbol, the uplink data corresponding to the first transport block from the terminal device, including:
  • the access network device determines, according to the detected number or location of reference signal symbols included in the first subframe, that the start time domain symbol is the first time domain symbol or the second Time domain symbol.
  • the access network device determines, according to the detected number of reference signal symbols included in the first subframe, that the start time domain symbol is the first time domain symbol or the second Time domain symbol. For example, when the reference signal is located in symbol 3 and symbol 10 in the first subframe, when the number of symbols of the transmission reference signal detected by the base station in the first subframe is 2, the base station may determine the start time domain symbol. For the first time domain symbol, when the number of symbols of the transmission reference signal detected by the base station in the first subframe is 1, the base station may determine that the start time domain symbol is the second time domain symbol.
  • the access network device determines, according to the detected location of the reference signal symbol included in the first subframe, that the start time domain symbol is the first time domain symbol or the second time Domain symbol.
  • the reference signal is located in symbol 3 and symbol 10 in the first subframe.
  • the base station may determine that the starting time domain symbol is the first time domain.
  • the symbol when the base station does not detect the reference signal on symbol 3 in the first subframe, and when the reference signal is detected on symbol 10, the base station may determine that the starting time domain symbol is the second time domain symbol.
  • the access network device determines, according to the detected number and location of reference signal symbols included in the first subframe, that the start time domain symbol is the first time domain symbol or Second time domain symbol. For example, when the reference signal is located in symbol 3 and symbol 10 in the first subframe, when the number of symbols of the transmission reference signal detected by the base station in the first subframe is 2, the base station may determine the start time domain symbol. For the first time domain symbol, when the number of symbols of the transmission reference signal detected by the base station in the first subframe is 1, and the symbol of the transmission reference signal is the symbol 10, the base station may determine the initial time domain. The symbol is the second time domain symbol.
  • the access network device receives, according to the determined start time domain symbol, the first device from the terminal device.
  • the uplink data corresponding to a transport block.
  • the access network device determines, from at least two time domain symbols included in one subframe, a time domain symbol for receiving uplink data, and the current time domain symbol does not detect uplink data.
  • the access network device can detect whether the next time domain symbol has uplink data, thereby increasing the probability of successful transmission per unit time and improving the unlicensed spectrum utilization rate during uplink data transmission.
  • the uplink data corresponding to the first transport block is the first obtained by the first transport block starting from the first time domain symbol rate matching.
  • the uplink data corresponding to the first transport block is a second obtained by the first transport block starting from the second time domain symbol rate matching.
  • the terminal device may perform the puncturing transmission of the data mapped on the complete subframe, that is, discarding Data before the next time domain symbol, only part of the data is transmitted starting from the latter time domain symbol. Thereby, the complexity of the terminal device when transmitting the uplink data is reduced, and the burden on the processor of the terminal device is reduced.
  • the method before the receiving network device receives the uplink data corresponding to the first transport block from the start time domain symbol, the method further includes:
  • the access network device sends first indication information to the terminal device, where the first indication information is used to indicate a first transmission mode or a second transmission mode, where the first transmission mode is from the first The time domain symbol or the second time domain symbol starts to send the uplink data corresponding to the first transport block, and the second transmission mode is to send the uplink corresponding to the first transport block from the first time domain symbol. Data, and the uplink data corresponding to the first transport block is not sent from the second time domain symbol.
  • the access network device can indicate the transmission mode of the terminal device, so that the transmission mode can be flexibly selected according to actual conditions.
  • the first scheduling information is used to indicate a first modulation and coding policy MCS index
  • the modulation order of the uplink data corresponding to the first transport block is a first modulation step determined according to the first MCS index and the first MCS configuration set. number
  • the modulation order of the uplink data corresponding to the first transport block is a first modulation step determined according to the first MCS index and the second MCS configuration set. number
  • the first MCS configuration set is different from the second MCS configuration set.
  • the code rate of the uplink data is also different. Selecting different MCS configuration sets according to different transmission modes in one subframe may determine an appropriate code rate according to actual conditions, thereby improving The flexibility and reliability of uplink data transmission.
  • the first scheduling information is used to indicate the first MCS index, so that the terminal device determines, according to the first MCS index, the uplink data corresponding to the first transport block from the first MCS configuration set.
  • the first modulation order is used to indicate the first MCS index, so that the terminal device determines, according to the first MCS index, the uplink data corresponding to the first transport block from the first MCS configuration set.
  • the method 600 further includes:
  • the access network device sends second scheduling information to the terminal device, where the second scheduling information is used to indicate a second MCS index, so that the terminal device obtains a second MCS according to the second MCS index.
  • Configuration collection Determining a second modulation order of the uplink data corresponding to the second transport block, where the second transport block is transmitted by using the second subframe, the first MCS configuration set being different from the second MCS configuration set.
  • the start time domain symbols of the uplink data sent by different subframes may be different. Therefore, the code rate of the uplink data sent by the terminal device through different subframes may also be different. Different subframes may be selected according to actual conditions. The bit rate, which increases the flexibility and reliability of upstream data transmission.
  • the first MCS configuration set is different from the second MCS configuration set, and includes:
  • the corresponding modulation order of the first MCS index in the first MCS configuration set is greater than or equal to a modulation order corresponding to the first MCS index in the second MCS configuration set.
  • the corresponding modulation order in the first MCS configuration set is greater than or equal to its corresponding modulation order in the second MCS configuration set.
  • the first transmission mode is adopted or When transmitting uplink data in a subframe, there is a certain probability that the uplink data is sent from the second time domain symbol in the first subframe, and a larger modulation order in the first MCS configuration set may be adopted, thereby reducing the code rate. Increase the probability that the access network device decodes successfully.
  • the first code rate corresponding to the third modulation order in the first MCS configuration set is smaller than a preset value, where the first code rate is an uplink that is transmitted from the second time domain symbol.
  • the code rate of the data, the third modulation order being a modulation order other than the highest order modulation order in the first MCS configuration set.
  • the preset value may be set according to the decoding capability of the access network device and the current communication environment.
  • the code rate of the transport block is higher than the preset value, the modulation order is increased, and the code rate is decreased, thereby increasing the access network device.
  • the probability of successful decoding is set according to the decoding capability of the access network device and the current communication environment.
  • the terminal device and the access network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the present application may divide a functional unit into a terminal device or the like according to the above method example.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 7 shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device 700 includes a processing unit 702 and a communication unit 703.
  • the processing unit 702 is configured to control and manage the actions of the terminal device 700.
  • the processing unit 702 is configured to support the terminal device 700 to perform S220 of FIG. 2 and/or other processes for the techniques described herein.
  • Communication unit 703 is used to support communication of terminal device 700 with other network entities, such as with access network devices.
  • the terminal device 700 may further include a storage unit 701 for storing program codes and data of the terminal device 700.
  • the processing unit 702 may be a processor or a controller, and may be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific). Integrated circuit, ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component Or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 703 can be a transceiver, a transceiver circuit, or the like.
  • the storage unit 701 can be a memory.
  • the terminal device involved in the present application may be the terminal device shown in FIG. 8.
  • the terminal device 800 includes a processor 802, a transceiver 803, and a memory 801.
  • the transceiver 803, the processor 802, and the memory 801 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the terminal device 700 and the terminal device 800 provided by the present application determine a time domain symbol for transmitting uplink data from at least two time domain symbols included in one subframe, when the previous time domain symbol in one time unit cannot be used.
  • the terminal device can transmit the uplink data through other available time domain symbols of the time unit, thereby increasing the probability of successful transmission per unit time and improving the unlicensed spectrum utilization rate during uplink data transmission.
  • FIG. 9 shows a possible structural diagram of the access network device involved in the above embodiment.
  • the access network device 900 includes a processing unit 902 and a communication unit 903.
  • the processing unit 902 is configured to control and manage the actions of the access network device 900.
  • the processing unit 902 is configured to support the access network device 900 to perform S610 of FIG. 6 and/or for the techniques described herein through the communication unit 903.
  • Other processes are configured to support communication between the access network device 900 and other network entities, such as communication with the terminal device.
  • the access network device 900 can also include a storage unit 901 for storing program codes and data of the access network device 900.
  • the processing unit 902 can be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 903 can be a transceiver, a transceiver circuit, or the like.
  • the storage unit 901 can be a memory.
  • the access network device involved in the present application may be the access network device shown in FIG.
  • the access network device 1000 includes a processor 1002, a transceiver 1003, and a memory 1001.
  • the transceiver 1003, the processor 1002, and the memory 1001 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the access network device 900 and the access network device 1000 for data transmission provided by the present application determine a time domain symbol for receiving uplink data from at least two time domain symbols included in one subframe, and the current time domain symbol is not When uplink data is detected, the access network device can detect whether the next time domain symbol has uplink data, thereby increasing the probability of successful transmission per unit time and improving the unlicensed spectrum utilization rate during uplink data transmission.
  • transceivers may include a transmitter and a receiver.
  • the transceiver may further include an antenna, and the number of antennas may be one or more.
  • the memory can be a separate device or integrated into the processor.
  • the above various devices or parts of the device can be integrated into the chip for implementation, such as integration into a baseband chip.
  • the network device or the terminal device in the device and the method embodiment are completely corresponding, and the corresponding steps are performed by the corresponding module, for example, the sending module method or the step sent by the transmitter performing the method embodiment, and the receiving module or the receiver performing the method embodiment
  • the steps of receiving, except for transmitting and receiving, may be performed by a processing module or processor.
  • a processing module or processor For the function of the specific module, reference may be made to the corresponding method embodiment, which is not described in detail.
  • the embodiment of the present application further provides a communication chip in which an instruction is stored, and when it is run on the terminal device 700 or the terminal device 800, the communication chip is caused to execute the method corresponding to the terminal device in the foregoing various implementation manners.
  • the embodiment of the present application further provides a communication chip, where instructions are stored, when it runs on the access network device 900 or the access network device 1000, causing the communication chip to execute the access network in the foregoing various implementation manners.
  • the size of the sequence number of each process does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the present application.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the terminal device.
  • the processor and the storage medium may also exist as discrete components in the terminal device and the access network device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions may be from a website site, computer, server or data center via a wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD), or a semiconductor medium (eg, a solid state disk (SSD)). Wait.

Abstract

本申请提供了一种发送上行数据的方法和装置,该方法包括:终端设备从接入网设备接收第一调度信息,所述第一调度信息用于调度所述终端设备通过非授权载波传输第一传输块;所述终端设备对所述第一传输块进行速率匹配,得到上行数据;所述终端设备对所述非授权载波进行检测,并根据检测结果从第一子帧包括的至少两个时域符号中确定用于发送所述上行数据的起始时域符号,其中,所述至少两个时域符号包括第一时域符号和第二时域符号,所述第二时域符号晚于所述第一时域符号,所述起始时域符号为所述第一时域符号或所述第二时域符号;所述终端设备从所述起始时域符号开始向所述接入网设备发送所述上行数据。从而提高了上行数据传输的非授权频谱利用率。

Description

发送上行数据的方法和装置 技术领域
本申请涉及通信领域,尤其涉及无线通信领域中发送上行数据的方法和装置,以及接收上行数据的方法和装置。
背景技术
当前无线通信领域中,频谱资源分为两种,一种是许可频谱资源,另一种是免许可频谱资源。其中,许可频谱资源是由政府的无线电管理委员会划定的有专用用途的频谱资源,例如移动运营商、民航、铁路、警察专用的频谱资源,由于在政策上的排他性,许可频谱资源的业务质量一般可以得到保证,在进行调度控制时也相对容易。
免许可频谱资源也是由政府划定的频谱资源,但不对无线电技术、运营企业和使用年限进行限定,同时也不保证该频段的业务质量。应用免许可频谱资源的通信设备只需要满足发射功率、带外泄露等指标的要求,即可免费使用。常见的应用免许可频谱资源进行通信的通信系统包括民用对讲机、无线电遥控器、无线保真(wireless fidelity,Wi-Fi)系统、蓝牙通信系统等。
在现有的无线通信系统中,运营商所使用的频谱资源主要为许可频谱资源,随着移动通信网络用户数量的增加,以及用户对通信速率、服务质量的要求的提高,现有的许可频谱资源已经难以满足运营商的现有业务的需求。考虑到新的许可频谱价格高昂、资源紧缺,运营商开始将目光投向免许可频谱资源上,期望能够通过利用免许可频谱资源以达到网络容量分流、提高服务质量的目的。
例如,在免许可长期演进(unlicensed long term evolution,U-LTE)系统中,有以下两种使用免许可频谱的通信方式,一种是免许可频谱上的载波的传输以许可频谱上的载波为辅助,例如许可辅助接入长期演进(licensed-assisted access using long term evolution,LAA-LTE)系统及其演进系统,另一种是免许可频谱上的载波的传输没有许可频谱上的载波作为辅助,例如独立可长期演进(stand-alone long term evolution,SA-LTE)系统及其演进系统。
然而,上述各个通信系统的非授权频谱利用效率仍然较低。
发明内容
有鉴于此,本申请提供了一种发送上行数据的方法和装置,以及一种接收上行数据的方法和装置,能够提高使用非授权频谱发送和接收上行数据的频谱利用率。
一方面,提供了一种发送上行数据的方法,包括:终端设备从接入网设备接收第一调度信息,所述第一调度信息用于调度所述终端设备通过非授权载波传输第一传输块;所述终端设备对所述第一传输块进行速率匹配,得到上行数据;所述终端设备对所述非授权载波进行检测,并根据检测结果从第一子帧包括的至少两个时域符号中确定用于发送所述上行数据的起始时域符号,其中,所述至少两个时域符号包括第一时域符号和第二时域符号,所述第二时域符号晚于所述第一时域符号,所述起始时域符号为所述第一时域符号或所述第二时域符号;所述终端设备从所述起始时域符号开始向所述接入网设备发送所述上行数据。
根据本申请提供的发送上行数据的方法,终端设备从一个子帧包括的至少两个时域符号中确定一个用于传输上行数据的时域符号,当前一个时域符号不能使用时,终端设备可以检测后一个时域符号能否使用,从而增大了单位时间内传输成功的概率,提高了上行数据传输时的非授权频谱利用率。
可选地,当所述起始时域符号为所述第一时域符号时,所述上行数据为所述第一传输块从所述第一时域符号开始速率匹配得到的第一上行数据;当所述起始时域符号为所述第二时域符号时,所述上行数据为所述第一传输块从所述第二时域符号开始速率匹配得到的第二上行数据,所述第二上行数据为所述第一上行数据中除去所述第一时域符号至所述第二时域符号之间的数据后剩余的数据。
当至少两个时域符号中前一个时域符号不能传输上行数据,且后一个时域符号能够传输上行数据时,终端设备可以将映射在完整子帧上的数据进行打孔传输,即,丢弃后一个时域符号之前的数据,仅从后一个时域符号开始传输部分数据。从而减小了终端设备发送上行数据时的复杂度,减轻了终端设备的处理器的负担。
可选地,所述终端设备对所述第一传输块进行速率匹配,得到上行数据,包括:
所述终端设备对所述第一传输块从所述第一时域符号开始进行速率匹配,得到第一上行数据;
所述终端设备从所述起始时域符号开始向所述接入网设备发送所述上行数据,包括:
所述终端设备从所述第二时域符号开始向所述接入网设备发送所述第二上行数据,所述第二上行数据为所述第一上行数据中除去所述第一时域符号至所述第二时域符号之间的数据后剩余的数据。
当至少两个时域符号中前一个时域符号不能传输上行数据,且后一个时域符号能够传输上行数据时,终端设备可以将映射在完整子帧上的数据进行打孔传输,即,丢弃后一个时域符号之前的数据,仅从后一个时域符号开始传输部分数据。从而减小了终端设备发送上行数据时的复杂度,减轻了终端设备的处理器的负担。
可选地,所述终端设备对所述第一传输块进行速率匹配之前,所述方法还包括:所述终端设备从所述接入网设备接收第一指示信息,所述第一指示信息用于指示第一传输方式或第二传输方式,所述第一传输方式为从所述第一时域符号或者所述第二时域符号开始发送所述上行数据,所述第二传输方式为从所述第一时域符号开始发送所述上行数据,且不从所述第二时域符号开始发送所述上行数据。
接入网设备可以指示终端设备的传输方式,从而可以根据实际情况灵活选择传输方式。
可选地,所述终端设备对所述第一传输块进行速率匹配,包括:所述终端设备根据第一调制与编码策略MCS索引从MCS配置集合中确定第一调制阶数;所述终端设备根据所述第一调制阶数对所述第一传输块进行速率匹配;其中,当所述第一指示信息指示所述第一传输方式时,所述MCS配置集合为第一MCS配置集合,当所述第一指示信息指示所述第二传输方式时,所述MCS配置集合为第二MCS配置集合,所述第一MCS配置集合与所述第二MCS配置集合相异。
当发送上行数据的起始时域符号不同时,用于上行数据传输的资源也会不同,在一个子帧内根据不同的传输方式选择不同的MCS配置集合可以根据实际情况确定合适的码率,从而提高了上行数据传输的灵活性和可靠性。
可选地,所述终端设备对所述第一传输块进行速率匹配,包括:所述终端设备根据第一MCS索引从第一MCS配置集合中确定第一调制阶数,并根据所述第一调制阶数对所述第一传输块进行速率匹配。
可选地,所述方法还包括:所述终端设备从所述第二MCS配置集合中确定第二调制阶数,并根据所述第二调制阶数对第二传输块进行速率匹配,其中,所述第二传输块通过第二子帧传输,所述第一传输块的调制阶数为所述第一MCS配置集合包括的第一调制阶数。
不同子帧的发送上行数据的起始时域符号可能不同,因此,终端设备通过不同子帧发送上行数据的码率也可能不同,不同的子帧选择不同的MCS配置集合可以根据实际情况确定合适的码率,从而提高了上行数据传输的灵活性和可靠性。
可选地,所述第一MCS配置集合与所述第二MCS配置集合相异,包括:所述第一MCS索引在所述第一MCS配置集合中对应的调制阶数大于或等于所述第一MCS索引在所述第二MCS配置集合中对应的调制阶数。
对于同一个MCS索引,其在第一MCS配置集合中对应的调制阶数大于或等于其在第二MCS配置集合中对应的调制阶数,在上述实施例中,采用第一传输方式或者通过第一子帧发送上行数据时,有一定的概率从第一子帧中的第二时域符号开始发送上行数据,可以采用第一MCS配置集合中较大的调制阶数,从而可以降低码率,增大接入网设备译码成功的概率。
可选地,所述第一MCS配置集合中的第三调制阶数对应的第三传输块的第一码率小于预设值,其中,所述第一码率为从所述第二时域符号开始传输的所述第三传输块对应的上行数据的码率,所述第三调制阶数为所述第一MCS配置集合中除最高阶调制阶数外的调制阶数。
可以根据接入网设备的解码能力和当前通信环境设定预设值,当传输块的码率高于预设值时,增大调制阶数,降低码率,从而可以增大接入网设备译码成功的概率。
可选地,所述方法还包括:所述终端设备从所述接入网设备接收第二指示信息,所述第二指示信息用于指示所述第一MCS配置集合或所述第二MCS配置集合。
接入网设备可以通过第二指示信息调度终端设备在某个子帧或者某个起始时域符号使用的MCS配置集合,从而增强了上行传输的灵活性。
可选地,所述方法还包括:所述终端设备向所述接入网设备发送第三指示信息,所述第三指示信息用于指示所述起始时域符号。
从而,接入网设备可以获取终端设备自行确定的起始时域符号。
另一方面,提供了一种接收上行数据的方法,包括:接入网设备向终端设备发送第一调度信息,所述第一调度信息用于调度所述终端设备通过非授权载波传输第一传输块;所述接入网设备从起始时域符号开始从所述终端设备接收所述第一传输块对应的上行数据,其中,所述起始时域符号为第一子帧包括的至少两个时域符号中的第一时域符号或第二时域符号,所述第二时域符号晚于所述第一时域符号,所述至少两个时域符号用于接收所述上行数据。
根据本申请提供的发送上行数据的方法,接入网设备从一个子帧包括的至少两个时域符号中确定一个用于接收上行数据的时域符号,当前一个时域符号未检测到上行数据时,接入网设备可以检测后一个时域符号是否有上行数据,从而增大了单位时间内传输 成功的概率,提高了上行数据传输时的非授权频谱利用率。
可选地,所述接入网设备从起始时域符号开始从所述终端设备接收所述第一传输块对应的上行数据,包括:所述接入网设备根据检测到的所述第一子帧包括的参考信号符号的个数或位置,确定所述起始时域符号为所述第一时域符号或所述第二时域符号;所述接入网设备根据确定的所述起始时域符号,从所述终端设备接收所述第一传输块对应的上行数据。
可选地,当所述起始时域符号为所述第一时域符号时,所述第一传输块对应的上行数据为所述第一传输块从所述第一时域符号开始速率匹配得到的第一上行数据;当所述起始时域符号为所述第二时域符号时,所述第一传输块对应的上行数据为所述第一传输块从所述第二时域符号开始速率匹配得到的第二上行数据,所述第二上行数据为所述第一上行数据中除去所述第一时域符号至所述第二时域符号之间的数据后剩余的数据。
当至少两个时域符号中前一个时域符号不能传输上行数据,且后一个时域符号能够传输上行数据时,终端设备可以将映射在完整子帧上的数据进行打孔传输,即,丢弃后一个时域符号之前的数据,仅从后一个时域符号开始传输部分数据。从而减小了终端设备发送上行数据时的复杂度,减轻了终端设备的处理器的负担。
可选地,所述接入网设备从起始时域符号开始从所述终端设备接收所述第一传输块对应的上行数据之前,所述方法还包括:所述接入网设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示第一传输方式或第二传输方式,所述第一传输方式为从所述第一时域符号或者所述第二时域符号开始发送所述第一传输块对应的上行数据,所述第二传输方式为从所述第一时域符号开始发送所述上行数据,且不从所述第二时域符号开始发送所述第一传输块对应的上行数据。
接入网设备可以指示终端设备的传输方式,从而可以根据实际情况灵活选择传输方式。
可选地,所述第一调度信息用于指示第一调制与编码策略MCS索引,当所述第一指示信息指示所述第一传输方式时,所述第一传输块对应的上行数据的调制阶数为根据所述第一MCS索引和第一MCS配置集合确定的第一调制阶数,当所述第一指示信息指示所述第二传输方式时,所述第一传输块对应的上行数据的调制阶数为根据所述第一MCS索引和第二MCS配置集合确定的第二调制阶数,其中,所述第一MCS配置集合与所述第二MCS配置集合相异。
当发送上行数据的起始时域符号不同时,上行数据的码率也会不同,在一个子帧内根据不同的传输方式选择不同的MCS配置集合可以根据实际情况确定合适的码率,从而提高了上行数据传输的灵活性和可靠性。
可选地,所述第一调度信息用于指示第一MCS索引,以使所述终端设备根据所述第一MCS索引从第一MCS配置集合中确定所述第一传输块对应的上行数据的第一调制阶数。
可选地,所述方法还包括:
所述接入网设备向所述终端设备发送第二调度信息,所述第二调度信息用于指示第二MCS索引,以使所述终端设备根据所述第二MCS索引从第二MCS配置集合中确定第二传输块对应的上行数据的第二调制阶数,所述第二传输块通过第二子帧传输,所述第一MCS配置集合与所述第二MCS配置集合相异
不同子帧的发送上行数据的起始时域符号可能不同,因此,终端设备通过不同子帧发送上行数据的码率也可能不同,不同的子帧选择不同的MCS配置集合可以根据实际情况确定合适的码率,从而提高了上行数据传输的灵活性和可靠性。
可选地,所述第一MCS配置集合与所述第二MCS配置集合相异,包括:所述第一MCS索引在所述第一MCS配置集合中对应的调制阶数大于或等于所述第一MCS索引在所述第二MCS配置集合中对应的调制阶数。
对于同一个MCS索引,其在第一MCS配置集合中对应的调制阶数大于或等于其在第二MCS配置集合中对应的调制阶数,在上述实施例中,采用第一传输方式或者通过第一子帧发送上行数据时,有一定的概率从第一子帧中的第二时域符号开始发送上行数据,可以采用第一MCS配置集合中较大的调制阶数,从而可以降低码率,增大接入网设备译码成功的概率。
可选地,所述第一MCS配置集合中的第三调制阶数对应的第三传输块的第一码率小于预设值,其中,所述第一码率为从所述第二时域符号开始传输的所述第三传输块对应的上行数据的码率,所述第三调制阶数为所述第一MCS配置集合中除最高阶调制阶数外的调制阶数。
可以根据接入网设备的解码能力和当前通信环境设定预设值,当传输块的码率高于预设值时,增大调制阶数,降低码率,从而可以增大接入网设备译码成功的概率。
可选地,所述方法还包括:所述接入网设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一MCS配置集合或所述第二MCS配置集合。
接入网设备可以通过第二指示信息调度终端设备在某个子帧或者某个起始时域符号使用的MCS配置集合,从而增强了上行传输的灵活性。
可选地,所述方法还包括:所述接入网设备从所述终端设备接收第三指示信息,所述第三指示信息用于指示所述起始时域符号。
从而,接入网设备可以获取终端设备自行确定的起始时域符号。
再一方面,本申请提供了一种发送上行数据的装置,该装置可以实现上述方面所涉及方法中终端设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元或模块。
在一种可能的设计中,该装置的结构中包括处理器和收发器,该处理器被配置为支持该装置执行上述方法中相应的功能。该收发器用于支持该装置与其它网元之间的通信。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
再一方面,本申请提供了一种接收上行数据的装置,该装置可以实现上述方面所涉及方法中接入网设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元或模块。
在一种可能的设计中,该装置的结构中包括处理器和收发器,该处理器被配置为支持该装置执行上述方法中相应的功能。该收发器用于支持该装置与其它网元之间的通信。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
再一方面,提供了一种网络系统,所述网络系统包括上述各个方面所述的发送上行数据的装置和接收上行数据的装置。
再一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的通信单元、处理单元或收发器、处理器运行时,使得终端设备执行上述实现方式中的方法。
再一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的通信单元、处理单元或收发器、处理器运行时,使得接入网设备执行上述实现方式中的方法。
再一方面,本申请提供了一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请提供了一种计算机存储介质,用于储存为上述接入网设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请提供了一种通信芯片,其中存储有指令,当其在终端设备上运行时,使得所述通信芯片执行上述各个方面的方法。
再一方面,本申请提供了一种通信芯片,其中存储有指令,当其在网络设备上运行时,使得所述通信芯片执行上述各个方面的方法。
附图说明
图1是适用本申请的通信系统的示意性架构图;
图2是本申请提供的一种发送上行数据的方法的示意图;
图3是本申请提供的另一种发送上行数据的方法的示意图;
图4是本申请提供的再一种发送上行数据的方法的示意图;
图5是本申请提供的再一种发送上行数据的方法的示意图;
图6是本申请提供的一种接收上行数据的方法的示意图;
图7是本申请提供的一种可能的终端设备的示意图;
图8是本申请提供的另一种可能的终端设备的示意图;
图9是本申请提供的一种可能的接入网设备的示意图;
图10是本申请提供的另一种可能的接入网设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了一种适用本申请的通信系统100。该通信系统100包括接入网设备110和终端设备120,接入网设备110与终端设备120通过无线网络进行通信,当终端设备120发送数据时,无线通信模块可对信息进行编码以用于传输,具体地,无线通信模块可获取要通过信道发送至接入网设备110的一定数目的数据比特,这些数据比特例如是处理模块生成的、从其它设备接收的或者在存储模块中保存的数据比特。这些数据比特可包含在一个或多个传输块(transport block,TB)中,TB可被分段以产生多个编码块。
在本申请中,终端设备可称为接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G通信系统中的用户设备。
接入网设备可以是码分多址(code division multiple access,CDMA)系统中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(node B,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional node B,eNB),还可以是5G通信系统中的基站(gNB),上述基站仅是举例说明,接入网设备还可以为中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统中包括的接入网设备和终端设备的数量还可以是其它的数量。
为了便于理解本申请,在介绍本申请提供的发送上行数据的方法前,首先对本申请涉及的概念做简要介绍。
对于使用免许可频谱的通信系统,例如LAA-LTE系统、SA-LTE系统、其它U-LTE系统或者5G通信系统,均需要遵从各地对免许可频谱使用制定的规范。例如,各个系统的设备或同一个系统的不同设备在免许可频谱上共存时,需要解决不同设备间资源竞争的问题,因此,某些国家或地区规定使用免许可频谱的设备应遵循先检测后发送(listen before talk,LBT)的竞争资源方法,即只有检测到信道空闲,设备才能发送信号。
由于在免许可频谱上终端设备需要先检测信道是否空闲,当设备判断信道空闲后才能进行数据传输,因此,当调度信息调度终端设备在某个时间单元(例如某个子帧)进行上行传输时,该终端设备需要在该时间单元前检测该信道是否可用。
例如,终端设备可以检测该信道对应的频域资源在该时间单元前是否处于空闲状态,或者说,该频域资源是否被其他设备使用。
若该频域资源处于空闲状态,或者说,该频域资源未被其他设备使用,则终端设备可以使用该频域资源进行通信,例如,进行上行传输。
若该频域资源不处于空闲状态,或者说,该频域资源已被其他设备使用,则终端设备无法使用该频域资源。
需要说明的是,在本发明实施例中,上述信道检测的具体方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
为了提高免许可频谱上的传输效率,当终端设备在该时间单元前通过信道检测判断该信道不可用后,该终端设备可以继续在该时间单元内进行信道检测。如果该终端设备在该时间单元中的某一个时域起点前通过信道检测判断该信道可用,该终端设备可以从该时域起点开始在该时间单元内进行传输。
作为示例而非限定,在本发明实施例中,该免许可频谱资源可以包括5千兆赫兹(Giga Hertz,GHz)附近的频段,2.4GHz附近的频段,3.5GHz附近的频段,60GHz附近的频段。
应理解,时间单元表示通信设备进行数据传输的时间单位。例如,一个时间单元可以为一个子帧或一个传输时间间隔(transmission time interval,TTI)。一个时间单元的长度可以为1毫秒(ms),也可以小于1ms,本申请并不限定。为了便于理解本申请的技术方案,以下,以一个时间单元为一个子帧对本申请提供的技术方案进行详细描述。
图2示出了本申请提供的一种发送上行数据的方法的示意性流程图。该方法200包括:
S210,终端设备从接入网设备接收第一调度信息,所述第一调度信息用于调度所述 终端设备通过非授权载波传输第一TB。
S220,所述终端设备对所述第一TB进行速率匹配,得到上行数据。
S230,所述终端设备对所述非授权载波进行检测,并根据检测结果从第一子帧包括的至少两个时域符号中确定用于发送所述上行数据的起始时域符号,其中,所述至少两个时域符号包括第一时域符号和第二时域符号,所述第二时域符号晚于所述第一时域符号,所述起始时域符号为所述第一时域符号或所述第二时域符号。
S240,所述终端设备从所述起始时域符号开始向所述接入网设备发送所述上行数据。
为了便于理解本申请的技术方案,以下,以终端设备为UE、接入网设备为基站对本申请提供的技术方案进行详细描述。
S210中,第一调度信息用于调度UE通过非授权载波(即,免许可频谱)传输第一TB,第一调度信息可以通过许可频谱发送,也可以通过免许可频谱发送,本申请对发送第一调度信息的频谱不作限定。
在申请中,第一调度信息调度UE通过非授权载波传输第一TB,可以是动态调度,也可以是半静态调度,本发明并未特别限定。
例如,当第一调度信息是动态调度信息时,该第一调度信息可以是基站在确定UE需要进行上行传输之后为该UE分配的,并且,该第一调度信息可以是基站在确定UE需要进行上行传输之后发送给该UE的。
再例如,当第一调度信息是半静态调度信息时,该第一调度信息可以是基站在确定UE需要进行上行传输之前为该UE分配的,并且,该第一调度信息可以是基站在确定UE需要进行上行传输之前发送给该UE的。
应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
作为示例而非限定,在本申请中,该第一调度信息调度用于指示UE通过非授权载波传输第一TB的传输参数,该传输参数可以包括以下至少一项:
第一TB对应的频域资源的大小(例如资源块(resource block,RB)的数量),用于确定第一TB的大小的调制与编码策略(Modulation and Coding Scheme,MCS)索引,第一TB对应的调制阶数,第一TB对应的码率,UE传输第一TB时在第一子帧中的时域起始位置,UE传输第一TB时使用的冗余版本,UE传输第一TB时使用的天线端口,UE传输第一TB时使用的预编码矩阵索引。
S220中,UE对第一TB进行速率匹配,并生成上行数据,应理解,这里的速率匹配包括编码、交织和速率匹配等操作的集合。UE具体如何进行上述操作可参考现有技术中速率匹配的方法,本申请对此不作限定。此外,S220可以在UE进行LBT之前进行,也可以在UE进行LBT之后进行,还可以与LBT同时进行。
S230中,第一子帧为第一调度信息调度的用于传输上行数据的一个子帧,需要说明的是,UE可以根据第一调度信息确定用于传输第一TB的第一子帧,例如,UE在收到第一调度信息后可以根据预定义的时序关系确定非授权载波上的第一子帧用于传输该第一TB。
第一时域符号和第二时域符号为第一子帧所包括至少两个时域符号中的任意两个时域符号,第二时域符号晚于第一时域符号。
可选地,该至少两个时域符号可以是通信系统规定的,或者,该至少两个时域符号也可以是基站通过高层信令配置的,或者,该至少两个时域符号也可以是基站通过物理层信令通知的。
可选地,第一时域符号为符号{0,1,2}中的一个符号。
可选地,第二时域符号为符号{4,5,6,7,8,9}中的一个符号。
可选地,第一子帧包括至少两个时域符号,具体为:第一子帧包括两个时域符号。
可选地,第一子帧包括的两个时域符号中的第一时域符号为符号0或符号1,第一子帧包括的两个时域符号中的第二时域符号为符号7或符号8。
需要说明的是,S240中,UE从起始时域符号开始向基站发送上行数据,可以为UE从起始时域符号的起始边界开始向基站发送上行数据,也可以为UE从起始时域符号中的一个时域起点开始向基站发送上行数据。
可选地,第一时域符号包括至少一个可用于上行数据发送的时域起点。例如,第一时域符号包括3个可用于上行数据发送的时域起点,该3个时域起点为第一时域符号的起始边界,第一时域符号中距离第一时域符号的起始边界的时间长度为预设值#1(例如,25微秒(us))的时刻,以及第一时域符号中距离第一时域符号的起始边界的时间长度为预设值#2(例如,25us与定时提前量(timing advance,TA)的长度之和)的时刻。
可选地,第二时域符号包括至少一个可用于上行数据发送的时域起点。例如,第二时域符号包括2个可用于上行数据发送的时域起点,该2个时域起点为第二时域符号的起始边界,以及第二时域符号中距离第二时域符号的起始边界的时间长度为预设值#1(例如,25us)的时刻。
可选地,第一时域符号中可用于UE发送上行数据的第一时域起点可以是基站通过高层信令配置的,或者,可以是基站通过物理层信令指示的,或者,可以是通信系统预先规定的。
可选地,第二时域符号中可用于UE发送上行数据的第二时域起点可以是基站通过高层信令配置的,或者,可以是基站通过物理层信令指示的,或者,可以是通信系统预先规定的。
例如,基站可以配置符号1的起始边界为第一时域起点,配置符号7中距离符号7的起始边界25us处的时刻为第二时域起点。
又例如,基站可以配置符号0中距离符号0的起始边界25us处的时刻为第一时域起点,通信系统预先规定符号7的起始边界为第二时域起点。
UE对非授权载波进行检测,并确定第一子帧包括的至少两个时域符号中对应的第一个信道可用的时域符号为起始时域符号,并从起始时域符号开始发送上行数据。
UE检测非授权载波上的第一子帧是否可用时,首先在第一时域符号中的第一时域起点前通过信道检测判断该非授权载波是否可用。如果该非授权载波可用,UE从该第一时域符号中的第一时域起点开始发送上行数据;如果该非授权载波不可用,UE对该非授权载波继续进行检测,并在第二时域符号中的第二时域起点前通过信道检测判断该非授权载波是否可用,当检测到该非授权载波可用时,UE从该第二时域符号中的第二时域起点开始发送上行数据。
在本申请中,时域符号例如可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是5G系统中定义的时域符号,为了简洁,有时也将 时域符号简称为符号。
图3示出了本申请提供的另一种发送上行数据的方法的示意图。图3所示的第一子帧包括14个符号,根据第一子帧内的符号的发送顺序从左至右编号分别为0,1,…,13,UE根据调度信息确定通过该子帧发送上行数据,则UE在符号0之前检测信道是否空闲,若检测成功,即检测到当前信道未被其它设备使用,则UE可以从符号0的起始边界位置或者符号0中间的某个时域位置开始传输上行数据;若检测失败,即检测到当前信道已被其它设备占用,则UE重新或者继续在该第一子帧内进行检测,当后续某个时域符号的信道检测成功时,UE可以从检测成功时刻起开始传输上行数据,例如从符号7的起始边界位置或者符号7中间的某个时域位置开始上行传输,也就是说,如果UE在该子帧符号0信道检测失败,但在该子帧内的符号7信道检测成功,终端设备可以通过剩余的部分子帧传输上行数据。
综上,根据本申请提供的发送上行数据的方法,终端设备从一个子帧包括的至少两个时域符号中确定一个用于传输上行数据的时域符号,当一个时间单元中前一个时域符号不能使用时,终端设备可以通过该时间单元其它可用的时域符号传输上行数据,从而增大了单位时间内传输成功的概率,提高了上行数据传输时的非授权频谱利用率。
终端设备发送的上行数据有两种映射方式,以下,分别对这两种情况进行描述。
映射方式1,
可选地,当所述起始时域符号为所述第一时域符号时,所述上行数据为所述第一传输块从所述第一时域符号开始速率匹配得到的第一上行数据;
当所述起始时域符号为所述第二时域符号时,所述上行数据为所述第一传输块从所述第二时域符号开始速率匹配得到的第二上行数据,所述第二上行数据为所述第一上行数据中除去所述第一时域符号至所述第二时域符号之间的数据后剩余的数据。
当至少两个时域符号中前一个时域符号不能传输上行数据,且后一个时域符号能够传输上行数据时,终端设备可以将映射在完整子帧上的数据进行打孔传输,即,丢弃后一个时域符号之前的数据,仅从后一个时域符号开始传输部分数据。从而减小了终端设备发送上行数据时的复杂度,减轻了终端设备的处理器的负担。
可选地,所述终端设备对所述第一传输块进行速率匹配,得到上行数据,包括:
所述终端设备对所述第一传输块从所述第一时域符号开始进行速率匹配,得到第一上行数据;
所述终端设备从所述起始时域符号开始向所述接入网设备发送所述上行数据,包括:
所述终端设备从所述第二时域符号开始向所述接入网设备发送所述第二上行数据,所述第二上行数据为所述第一上行数据中除去所述第一时域符号至所述第二时域符号之间的数据后剩余的数据。
当至少两个时域符号中前一个时域符号不能传输上行数据,且后一个时域符号能够传输上行数据时,终端设备可以将映射在完整子帧上的数据进行打孔传输,即,丢弃后一个时域符号之前的数据,仅从后一个时域符号开始传输部分数据。从而减小了终端设备发送上行数据时的复杂度,减轻了终端设备的处理器的负担。
可选地,终端设备对第一传输块进行编码,得到编码后的第一上行数据包,其中,该编码的过程可以包括添加循环冗余校验(cyclic redundancy check,CRC)、编码、交织等,该过程可以与现有技术中的通信设备(网络设备或终端设备)编码的方法和过程 相似,这里,为了避免赘述,省略其详细说明。终端设备将编码后的第一上行数据包根据第一调制阶数进行调制,并将调制后的符号按先频后时或先时后频的顺序从第一时域符号开始映射得到第一上行数据。当所述起始时域符号为所述第一时域符号时,终端设备从第一时域符号开始发送第一上行数据,当所述起始时域符号为所述第二时域符号时,终端设备从第二时域符号开始发送第二上行数据,第二上行数据为所述第一上行数据中除去所述第一时域符号至所述第二时域符号之间的数据后剩余的数据。
当至少两个时域符号中前一个时域符号不能传输上行数据,且后一个时域符号能够传输上行数据时,终端设备可以将映射在完整子帧上的数据进行打孔传输,即,丢弃前一个时域符号之前的数据,仅从后一个时域符号开始传输部分数据。从而减小了终端设备发送上行数据时的复杂度,减轻了终端设备的处理器的负担。
图4示出了本申请提供的再一种发送上行数据的方法的示意图。如图4所示,图4所示的第一子帧包括14个符号,根据第一子帧内的符号的发送顺序从左至右编号分别为0,1,…,13,UE根据调度信息确定通过该子帧发送上行数据,UE在符号0LBT失败,在符号7LBT成功,此时,UE可以将映射到符号0至符号6上的数据直接丢弃,仅传输映射在符号7至符号13上的数据。这样,UE不需要对数据进行重新组包和映射,相对于上行完整子帧的传输,没有额外的复杂度。
映射方式2
作为一个可选的示例,UE也可以将第一TB重新进行速率匹配,将编码调制后的数据匹配到符号#7至符号#13对应的资源上,这样,增加了UE处理任务的复杂度,但数据包前面的信息比特没有丢失。
可选地,终端设备对第一传输块进行编码,得到编码后的第一上行数据包,其中,该编码的过程可以包括添加CRC、编码、交织等,该过程可以与现有技术中的通信设备(网络设备或终端设备)编码的方法和过程相似,这里,为了避免赘述,省略其详细说明。当所述起始时域符号为所述第一时域符号时,终端设备从第一时域符号开始发送第一上行数据,第一上行数据为终端设备将编码后的第一上行数据包根据第四调制阶数进行调制,并将调制后的符号按先频后时或先时后频的顺序从第一时域符号开始映射得到的数据。当所述起始时域符号为所述第二时域符号时,终端设备从第二时域符号开始发送第二上行数据,第二上行数据为终端设备将编码后的第一上行数据包根据第五调制阶数进行调制,并将调制后的符号按先频后时或先时后频的顺序从第二时域符号开始映射得到的数据。可选地,第四调制阶数是根据第二MCS表格确定的,第五调制阶数是根据第一MCS表格确定的。可选地,第五调制阶数大于或等于第一调制阶数。
需要说明的是,在上行数据传输过程中,基站调度终端设备传输的TB的传输块尺寸(transport block size,TBS)不能改变,否则,基站不能正确解调UE发送的信号。因此,当终端设备抢到的资源和基站调度的资源不匹配时,终端设备仍然按基站调度的TBS进行编码传输。
可以理解,由于UE以打孔(puncture)的方式(即,映射方式1)进行上行传输时,丢弃了数据包前面的部分信息比特,而当终端设备以重新速率匹配的方式(即,映射方式2)进行上行传输时,数据包前面的信息比特没有丢失,因此,传输相同的TBS的TB,终端设备以重新速率匹配的方式传输的性能好于终端设备以打孔的方式传输的性能,但实现的复杂度较高。
可选地,所述终端设备对所述第一传输块进行速率匹配之前,方法200还包括:
S250,所述终端设备从所述接入网设备接收第一指示信息,所述第一指示信息用于指示第一传输方式或第二传输方式,所述第一传输方式为从所述第一时域符号或者所述第二时域符号开始发送所述上行数据,所述第二传输方式为从所述第一时域符号开始发送所述上行数据,且不从所述第二时域符号开始发送所述上行数据。
例如,第一指示信息可以为一个比特位,当该比特位为“0”时,指示UE通过第二传输方式发送上行数据,当该比特位为“1”时,指示UE通过第一传输方式发送上行数据。
又例如,可以用第一指示信息是否存在来指示第一传输方式和第二传输方式。例如,当UE收到第一指示信息时,第一指示信息指示UE通过第一传输方式发送上行数据,否则,UE通过第二传输方式发送上行数据。
又例如,第一指示信息可以以参考信号的形式发送,当该参考信号出现时,UE通过第一传输方式发送上行数据,否则,UE通过第二传输方式发送上行数据。
又例如,可以用不同的参考信号来指示第一传输方式和第二传输方式。
又例如,可以用不同的无线网络临时标识(radio network temporary identifier,RNTI)扰码来指示第一传输方式和第二传输方式。本申请对第一指示信息的具体形式发送方式均不作限定。
根据本实施例提供的发送上行数据的方法,基站指示UE的传输方式,从而可以根据实际情况灵活选择传输方式。
可选地,所述第一时域符号为所述至少两个时域符号中距离所述第一子帧的起始边界最近的时域符号。
在一些通信系统中,存在可以应用本申请提供的发送上行数据的方法的新设备,还存在不能应用本申请提供的发送上行数据的方法的旧设备,旧设备无法从多个时域符号中确定起始时域符号,只能从一个子帧内固定的时域符号开始发送上行数据,因此,根据上述本申请提供的方法,接入网设备指示新设备只可以在距离子帧边界最近的时域符号开始发送上行数据,从而可以避免旧设备被新设备锁定导致无法发送上行数据,使新的通信系统兼容旧设备。其中,旧设备的固定的时域符号和新设备的第一时域符号可以是相同的符号,并且,旧设备的用于发送上行数据的时域起点和新设备在第一时域符号中的时域起点可以为相同的时域起点。
图5示出了一种多种终端设备共存的通信系统中终端设备发送上行数据的示意图。图5中每个矩形表示一个子帧,新UE可以在子帧中间发送上行数据,旧UE只能在第一时域符号的起始边界发送上行数据。
当新旧UE共存时,若新UE接收到指示新UE不支持部分子帧传输的信令,则新旧UE可以复用非授权载波发送上行数据,其中,新旧UE能够复用非授权载波是基站确定的。如图5左侧所示。若新UE未接收到指示新UE不支持部分子帧传输的信令(或者,新UE接收到指示新UE支持部分子帧传输的信令),则新UE可能在子帧中间LBT成功后开始发送上行数据,旧UE在下一个子帧前进行LBT时由于新UE的传输会导致检测失败,无法复用非授权载波。
上述信令可以是动态信令,也可以是高层信令。该信令可以指示一个子帧是否支持部分子帧传输,也可以指示连续的多个子帧(例如,在上行的多子帧调度场景中)是否指示部分子帧传输,从而增强了UE发送上行数据的灵活性。
作为一个可选的示例,该信令(即下面所述的第一指示信息)包含在上述第一调度信息中,该第一调度信息由具有上行调度授权(Uplink_grant,UL grant)功能的物理下行控制信道所携带。进一步的,对于单子帧调度,即UL_grant调度了一个上行子帧中的传输块,则该UL_grant中的第一指示信息用于指示该上行子帧的具体传输方式,比如为上述的第一传输方式或第二传输方式;对于多子帧调度,即UL_grant调度了至少2个上行子帧中的传输块,比如调度了4个上行子帧,则该UL_grant中的第一指示信息用于指示该被调度的至少2个上行子帧中的第一个或前2个上行子帧的具体传输方式,比如为第一传输方式或第二传输方式,而对于上述至少2个上行子帧中其他被调度的上行子帧的传输方式默认为上述的第二传输方式,即这些子帧所采用的传输方式不受上述第一指示信息所指示。
当通信系统中不存在旧UE时,基站可以通过上述信令指示新UE支持部分子帧传输,则新UE可以在子帧起始边界处LBT失败后继续在子帧的非起始边界处进行LBT,如图5右侧所示,两个新UE在子帧的中间LBT成功,两个新UE从子帧的中间开始复用非授权载波发送上行数据,从而提高了资源利用率。
可选地,所述终端设备对所述第一传输块进行速率匹配,包括:
S260,所述终端设备根据MCS索引从MCS配置集合中确定第一调制阶数。
S270,所述终端设备根据所述第一调制阶数对所述第一传输块进行速率匹配。
其中,当所述第一指示信息指示所述第一传输方式时,所述MCS配置集合为第一MCS配置集合,当所述第一指示信息指示所述第二传输方式时,所述MCS配置集合为第二MCS配置集合,所述第一MCS配置集合与所述第二MCS配置集合相异。
当发送上行数据的起始时域符号不同时,上行数据的码率也会不同,在一个子帧内根据不同的传输方式选择不同的MCS配置集合可以根据实际情况确定合适的码率,从而提高了上行数据传输的灵活性和可靠性。
第一MCS配置集合和第二MCS配置集合可以对应不同的MCS表格,也可以是同一个MCS表格的不同部分。
可选地,方法200还包括:
S280,所述终端设备根据第一MCS索引从第一MCS配置集合中确定第一调制阶数,并根据所述第一调制阶数对所述第一传输块进行速率匹配;所述终端设备从所述第二MCS配置集合中确定第二调制阶数,并根据所述第二调制阶数对第二传输块进行速率匹配,其中,所述第二传输块通过第二子帧传输,所述第一MCS配置集合与所述第二MCS配置集合相异。
不同子帧的发送上行数据的起始时域符号可能不同,因此,终端设备通过不同子帧发送上行数据的码率也可能不同,不同的子帧选择不同的MCS配置集合可以根据实际情况确定合适的码率,从而提高了上行数据传输的灵活性和可靠性。
可选地,当基站为UE调度连续的多个TTI进行上行传输时,可以预定义或预配置该连续的多个TTI中的第一个或前几个TTI根据第一MCS配置集合确定调制阶数1,其余的包括最后1个TTI的至少1个TTI根据第二MCS配置集合确定调制阶数2,其中调制阶数1大于或等于调制阶数2;或者可以预定义或预配置该连续的多个TTI中的最后一个或最后几个TTI根据第二MCS配置集合确定调制阶数2,其余的包括第一个TTI在内的至少1个TTI根据第一MCS配置集合确定调制阶数1。这主要是因为在上行的多个 TTI连续传输的过程中,由于LBT,终端设备在前几个TTI上以部分子帧进行数据发送的概率大于在后几个TTI上以部分子帧进行数据发送的概率,作为折中,可以使UE根据上行子帧的时域位置来确定使用的调制阶数。
可选地,当基站为UE调度连续的多个TTI进行上行传输时,可以预定义或预配置该连续的多个TTI中的第一个或前几个TTI根据第二MCS配置集合确定调制阶数2,其余的包括最后1个TTI的至少1个TTI根据第一MCS配置集合确定调制阶数1,其中调制阶数1大于或等于调制阶数2;或者可以预定义或预配置该连续的多个TTI中的最后一个或最后几个TTI根据第一MCS配置集合确定调制阶数1,其余的包括第一个TTI在内的至少1个TTI根据第二MCS配置集合确定调制阶数2。
可选的,所述终端设备根据第一MCS索引从第一MCS配置集合中确定第一调制阶数,并根据所述第一调制阶数对所述第一传输块进行速率匹配;所述终端设备从所述第二MCS配置集合中确定第六调制阶数,并根据所述第六调制阶数对第四传输块进行速率匹配,其中,所述第四传输块通过授权载波传输,所述第一MCS配置集合与所述第二MCS配置集合相异。具体的,在该实施例中,第一MCS配置集合为非授权载波上传输上述第一传输块时采用的MCS配置集合,第二MCS配置集合为授权载波上传输第四传输块时采用的MCS配置集合。
可选地,所述第一MCS配置集合与所述第二MCS配置集合相异,包括:所述第一MCS索引在所述第一MCS配置集合中对应的调制阶数大于或等于所述第一MCS索引在所述第二MCS配置集合中对应的调制阶数。
对于同一个MCS索引,其在第一MCS配置集合中对应的调制阶数大于或等于其在第二MCS配置集合中对应的调制阶数,在上述实施例中,采用第一传输方式或者通过第一子帧发送上行数据时,有一定的概率从第一子帧中的第二时域符号开始发送上行数据,可以采用第一MCS配置集合中较大的调制阶数,从而可以降低码率,增大基站译码成功的概率。
可选地,所述第一MCS配置集合中的第三调制阶数对应的第三传输块的第一码率小于预设值,其中,所述第一码率为从所述第二时域符号开始传输的所述第三传输块对应的上行数据的码率,所述第三调制阶数为所述第一MCS配置集合中除最高阶调制阶数外的调制阶数。
可以根据基站的解码能力和当前通信环境设定预设值,当TB的码率高于预设值时,增大调制阶数,降低码率,从而可以增大基站译码成功的概率。
可选地,该预设值是通信系统规定的。
可选地,该预设值为大于或等于0.93的数值。例如,该预设值为0.931,又例如,该预设值为1。
可选地,方法200还包括:
S290,所述终端设备从所述接入网设备接收第二指示信息,所述第二指示信息用于指示所述第一MCS配置集合或所述第二MCS配置集合。
接入网设备可以通过第二指示信息调度终端设备在某个子帧或者某个起始时域符号使用的MCS配置集合,从而增强了上行传输的灵活性。第二指示信息可以采用与第一指示信息类似的方式指示UE,本申请对第二指示信息的具体形式以及传输方式均不作限定。
可选地,方法200还包括:
S291,所述终端设备向所述接入网设备发送第三指示信息,所述第三指示信息用于指示所述起始时域符号。
从而,接入网设备可以获取终端设备自行确定的起始时域符号。第三指示信息可以采用与第一指示信息类似的方式指示UE,本申请对第三指示信息的具体形式以及传输方式均不作限定。
可选地,方法200还包括:
S292,所述终端设备从所述接入网设备接收第四指示信息,所述第四指示信息用于指示所述终端设备根据所述映射方式1或所述映射方式2进行所述上行数据发送。
如前所述,使用所述映射方式2传输上行数据的性能好于使用所述映射方式1传输上行数据的性能,但所述映射方式2的复杂度较高,因此需要终端设备的能力支持。第四指示信息可以采用与第一指示信息类似的方式指示UE,本申请对第四指示信息的具体形式以及传输方式均不作限定。
从而,对于支持所述映射方式2的终端设备,接入网设备可以通过第四指示信息指示该终端设备根据映射方式2进行上行数据发送,从而使该终端设备获得更好的传输性能。
由于映射方式2需要终端设备的能力支持,可选地,终端设备将其是否支持映射方式2的能力上报给接入网设备,以使接入网设备确定是否可以指示该终端设备根据映射方式2进行上行数据发送。
下面给出适用于本申请的几个包括第一MCS配置集合和/或第二MCS配置集合的表格。
例如,表1为包括第二MCS配置集合的表格的一例,表2为包括第一MCS配置集合的表格的一例。需要说明表1和表2中包括的调制阶数为QPSK(或调制阶数为2)、16QAM(或调制阶数为4)和64QAM(或调制阶数为6)。
从表1可以看出,在频域传输资源一定(例如,100RB)的情况下,根据同一个MCS索引可以确定唯一的TBS,当对应的MCS配置集合为第二MCS配置集合时,UE从第一时域符号(例如,符号0)开始传输上行数据时的码率(例如,码率1)在任一MCS索引的情况下都小于预设值0.931,但UE从第二时域符号(例如,符号7)开始传输上行数据时的码率(例如,码率2)在MCS索引值为8~10,以及15~28的情况下都大于预设值0.931。因此,第二MCS配置集合是与从第一时域符号(例如,符号0)开始的上行数据传输相匹配的MCS配置集合。
从表2可以看出,在频域传输资源一定(例如,100RB)的情况下,根据同一个MCS索引可以确定唯一的TBS,当对应的MCS配置集合为第一MCS配置集合时,UE从第二时域符号(例如,符号7)开始传输上行数据时的码率(例如,码率2)在MCS索引值对应的调制阶数为QPSK和16QAM的情况下都小于预设值0.931。需要说明的是,由于表1中不包括比64QAM更高阶的调制阶数,因此,MCS索引值对应的调制阶数为64QAM的情况中包括码率大于预设值0.931的情况。另外,UE从第一时域符号(例如,符号0)开始传输上行数据时的码率(例如,码率1)在MCS索引值为8~10,以及15~20的情况下由于调制阶数的不匹配会有一定的性能损失。因此,第一MCS配置集合是与从第二时域符号(例如,符号7)开始的上行数据传输相匹配的MCS配置集合。其中,上 述第三调制阶数可以是表2中MCS索引值为0~14中任一项对应的第一MCS配置集合中的调制阶数。
又例如,表3为包括第一MCS配置集合和第二MCS配置集合的一例。其中,表3中包括的调制阶数为QPSK、16QAM和64QAM,上述第三调制阶数可以是表3中MCS索引值为0~14中任一项对应的第一MCS配置集合中的调制阶数。
又例如,表4为包括第一MCS配置集合和第二MCS配置集合的另一例。其中,表4中包括的调制阶数为QPSK、16QAM和64QAM,上述第三调制阶数可以是表4中MCS索引值为0~14中任一项对应的第一MCS配置集合中的调制阶数。
例如,表5为包括第二MCS配置集合的表格的一例,表6为包括第一MCS配置集合的表格的一例。需要说明表5和表6中包括的调制阶数为QPSK、16QAM、64QAM和256QAM(或调制阶数为8)。
从表5可以看出,在频域传输资源一定(例如,100RB)的情况下,根据同一个MCS索引可以确定唯一的TBS,当对应的MCS配置集合为第二MCS配置集合时,UE从第一时域符号(例如,符号0)开始传输上行数据时的码率(例如,码率1)在任一MCS索引的情况下都小于预设值0.931,但UE从第二时域符号(例如,符号7)开始传输上行数据时的码率(例如,码率2)在MCS索引值为4和5,以及9~28的情况下都大于预设值0.931。因此,第二MCS配置集合是与从第一时域符号(例如,符号0)开始的上行数据传输相匹配的MCS配置集合。
从表6可以看出,在频域传输资源一定(例如,100RB)的情况下,根据同一个MCS索引可以确定唯一的TBS,当对应的MCS配置集合为第一MCS配置集合时,UE从第二时域符号(例如,符号7)开始传输上行数据时的码率(例如,码率2)在MCS索引值对应的调制阶数为QPSK、16QAM和64QAM的情况下都小于预设值0.931。需要说明的是,由于表6中不包括比256QAM更高阶的调制阶数,因此,MCS索引值对应的调制阶数为256QAM的情况中包括码率大于预设值0.931的情况。另外,UE从第一时域符号(例如,符号0)开始传输上行数据时的码率(例如,码率1)在MCS索引值为4和5,以及9~22的情况下由于调制阶数的不匹配会有一定的性能损失。因此,第一MCS配置集合是与从第二时域符号(例如,符号7)开始的上行数据传输相匹配的MCS配置集合。其中,上述第三调制阶数可以是表6中MCS索引值为0~12中任一项对应的第一MCS配置集合中的调制阶数。
又例如,表7为包括第一MCS配置集合和第二MCS配置集合的一例。其中,表7中包括的调制阶数为QPSK、16QAM、64QAM和256QAM,上述第三调制阶数可以是表7中MCS索引值为0~12中任一项对应的第一MCS配置集合中的调制阶数。
表1
Figure PCTCN2017083361-appb-000001
Figure PCTCN2017083361-appb-000002
表2
Figure PCTCN2017083361-appb-000003
Figure PCTCN2017083361-appb-000004
表3
Figure PCTCN2017083361-appb-000005
Figure PCTCN2017083361-appb-000006
表4
Figure PCTCN2017083361-appb-000007
Figure PCTCN2017083361-appb-000008
表5
Figure PCTCN2017083361-appb-000009
Figure PCTCN2017083361-appb-000010
表6
Figure PCTCN2017083361-appb-000011
Figure PCTCN2017083361-appb-000012
表7
Figure PCTCN2017083361-appb-000013
上文从UE的角度详细介绍了本申请提供的发送上行数据的方法,下面,将从基站的角度介绍本申请提供的接收上行数据的方法。
图6示出了本申请提供的一种接收上行数据的方法的示意图。该方法600包括:
S610,接入网设备向终端设备发送第一调度信息,所述第一调度信息用于调度所述终端设备通过非授权载波传输第一传输块。
S620,所述接入网设备从起始时域符号开始从所述终端设备接收所述第一传输块对应的上行数据,其中,所述起始时域符号为第一时间单元包括的至少两个时域符号中的第一时域符号或第二时域符号,所述第二时域符号晚于所述第一时域符号,所述至少两个时域符号用于接收所述上行数据。
方法600中,接入网设备例如可以是基站,终端设备例如可以是UE。
S620中,基站可以根据参考信号从至少两个时域符号中确定UE发送上行数据所使用的起始时域符号。基站具体在每个符号上检测上行数据的方法可参考相关现有技术,为了简洁,不再赘述。
本领域技术人员可以清楚地了解到:在方法600中,接入网设备和终端设备均可等同于方法200中的接入网设备和终端设备,且接入网设备和终端设备的动作与方法200中的接入网设备和终端设备的动作相对应,为了简洁,在此不再赘述。
根据本申请提供的发送上行数据的方法,接入网设备从一个子帧包括的至少两个时域符号中确定一个用于接收上行数据的时域符号,当前一个时域符号未检测到上行数据时,接入网设备可以检测后一个时域符号是否有上行数据,从而增大了单位时间内传输成功的概率,提高了上行数据传输时的非授权频谱利用率。
可选地,所述接入网设备从起始时域符号开始从所述终端设备接收所述第一传输块对应的上行数据,包括:
S621,所述接入网设备根据检测到的所述第一子帧包括的参考信号符号的个数或位置,确定所述起始时域符号为所述第一时域符号或所述第二时域符号。
可选地,所述接入网设备根据检测到的所述第一子帧包括的参考信号符号的个数,确定所述起始时域符号为所述第一时域符号或所述第二时域符号。例如,参考信号位于第一子帧中的符号3和符号10,当基站在第一子帧中检测到的发送参考信号的符号的个数为2时,该基站可以确定该起始时域符号为第一时域符号,当基站在第一子帧中检测到的发送参考信号的符号的个数为1时,该基站可以确定该起始时域符号为第二时域符号。
可选地,所述接入网设备根据检测到的所述第一子帧包括的参考信号符号的位置,确定所述起始时域符号为所述第一时域符号或所述第二时域符号。例如,参考信号位于第一子帧中的符号3和符号10,当基站在第一子帧中检测到符号3上的参考信号时,该基站可以确定该起始时域符号为第一时域符号,当基站在第一子帧中的符号3上没有检测到参考信号,在符号10上检测到参考信号时,该基站可以确定该起始时域符号为第二时域符号。
可选地,所述接入网设备根据检测到的所述第一子帧包括的参考信号符号的个数和位置,确定所述起始时域符号为所述第一时域符号或所述第二时域符号。例如,参考信号位于第一子帧中的符号3和符号10,当基站在第一子帧中检测到的发送参考信号的符号的个数为2时,该基站可以确定该起始时域符号为第一时域符号,当基站在第一子帧中检测到的发送参考信号的符号的个数为1,且该发送参考信号的符号为符号10时,该基站可以确定该起始时域符号为第二时域符号。
S622,所述接入网设备根据确定的所述起始时域符号,从所述终端设备接收所述第 一传输块对应的上行数据。
根据本申请提供的发送上行数据的方法,接入网设备从一个子帧包括的至少两个时域符号中确定一个用于接收上行数据的时域符号,当前一个时域符号未检测到上行数据时,接入网设备可以检测后一个时域符号是否有上行数据,从而增大了单位时间内传输成功的概率,提高了上行数据传输时的非授权频谱利用率。
可选地,其特征在于,
当所述起始时域符号为所述第一时域符号时,所述第一传输块对应的上行数据为所述第一传输块从所述第一时域符号开始速率匹配得到的第一上行数据;
当所述起始时域符号为所述第二时域符号时,所述第一传输块对应的上行数据为所述第一传输块从所述第二时域符号开始速率匹配得到的第二上行数据,所述第二上行数据为所述第一上行数据中除去所述第一时域符号至所述第二时域符号之间的数据后剩余的数据。
当至少两个时域符号中前一个时域符号不能传输上行数据,且后一个时域符号能够传输上行数据时,终端设备可以将映射在完整子帧上的数据进行打孔传输,即,丢弃后一个时域符号之前的数据,仅从后一个时域符号开始传输部分数据。从而减小了终端设备发送上行数据时的复杂度,减轻了终端设备的处理器的负担。
可选地,所述接入网设备从起始时域符号开始从所述终端设备接收所述第一传输块对应的上行数据之前,所述方法还包括:
S630,所述接入网设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示第一传输方式或第二传输方式,所述第一传输方式为从所述第一时域符号或者所述第二时域符号开始发送所述第一传输块对应的上行数据,所述第二传输方式为从所述第一时域符号开始发送所述第一传输块对应的上行数据,且不从所述第二时域符号开始发送所述第一传输块对应的上行数据。
接入网设备可以指示终端设备的传输方式,从而可以根据实际情况灵活选择传输方式。
可选地,所述第一调度信息用于指示第一调制与编码策略MCS索引,
当所述第一指示信息指示所述第一传输方式时,所述第一传输块对应的上行数据的调制阶数为根据所述第一MCS索引和第一MCS配置集合确定的第一调制阶数,
当所述第一指示信息指示所述第二传输方式时,所述第一传输块对应的上行数据的调制阶数为根据所述第一MCS索引和第二MCS配置集合确定的第一调制阶数,
其中,所述第一MCS配置集合与所述第二MCS配置集合相异。
当发送上行数据的起始时域符号不同时,上行数据的码率也会不同,在一个子帧内根据不同的传输方式选择不同的MCS配置集合可以根据实际情况确定合适的码率,从而提高了上行数据传输的灵活性和可靠性。
可选地,所述第一调度信息用于指示第一MCS索引,以使所述终端设备根据所述第一MCS索引从第一MCS配置集合中确定所述第一传输块对应的上行数据的第一调制阶数。
可选地,方法600还包括:
S640,所述接入网设备向所述终端设备发送第二调度信息,所述第二调度信息用于指示第二MCS索引,以使所述终端设备根据所述第二MCS索引从第二MCS配置集合 中确定第二传输块对应的上行数据的第二调制阶数,所述第二传输块通过第二子帧传输,所述第一MCS配置集合与所述第二MCS配置集合相异。
不同子帧的发送上行数据的起始时域符号可能不同,因此,终端设备通过不同子帧发送上行数据的码率也可能不同,不同的子帧选择不同的MCS配置集合可以根据实际情况确定合适的码率,从而提高了上行数据传输的灵活性和可靠性。
可选地,所述第一MCS配置集合与所述第二MCS配置集合相异,包括:
所述第一MCS索引在所述第一MCS配置集合中对应的调制阶数大于或等于所述第一MCS索引在所述第二MCS配置集合中对应的调制阶数。
对于同一个MCS索引,其在第一MCS配置集合中对应的调制阶数大于或等于其在第二MCS配置集合中对应的调制阶数,在上述实施例中,采用第一传输方式或者通过第一子帧发送上行数据时,有一定的概率从第一子帧中的第二时域符号开始发送上行数据,可以采用第一MCS配置集合中较大的调制阶数,从而可以降低码率,增大接入网设备译码成功的概率。
可选地,所述第一MCS配置集合中的第三调制阶数对应的第一码率小于预设值,其中,所述第一码率为从所述第二时域符号开始传输的上行数据的码率,所述第三调制阶数为所述第一MCS配置集合中除最高阶调制阶数外的调制阶数。
可以根据接入网设备的解码能力和当前通信环境设定预设值,当传输块的码率高于预设值时,增大调制阶数,降低码率,从而可以增大接入网设备译码成功的概率。
上文详细介绍了本申请提供的发送上行数据的方法示例。可以理解的是,终端设备和接入网设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对终端设备等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。终端设备700包括:处理单元702和通信单元703。处理单元702用于对终端设备700的动作进行控制管理,例如,处理单元702用于支持终端设备700执行图2的S220和/或用于本文所描述的技术的其它过程。通信单元703用于支持终端设备700与其它网络实体的通信,例如与接入网设备之间的通信。终端设备700还可以包括存储单元701,用于存储终端设备700的程序代码和数据。
其中,处理单元702可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件 或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元703可以是收发器、收发电路等。存储单元701可以是存储器。
当处理单元702为处理器,通信单元703为收发器,存储单元701为存储器时,本申请所涉及的终端设备可以为图8所示的终端设备。
参阅图8所示,该终端设备800包括:处理器802、收发器803、存储器801。其中,收发器803、处理器802以及存储器801可以通过内部连接通路相互通信,传递控制和/或数据信号。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
本申请提供的终端设备700和终端设备800,从一个子帧包括的至少两个时域符号中确定一个用于传输上行数据的时域符号,当一个时间单元中前一个时域符号不能使用时,终端设备可以通过该时间单元其它可用的时域符号传输上行数据,从而增大了单位时间内传输成功的概率,提高了上行数据传输时的非授权频谱利用率。
在采用集成的单元的情况下,图9示出了上述实施例中所涉及的接入网设备的一种可能的结构示意图。接入网设备900包括:处理单元902和通信单元903。处理单元902用于对接入网设备900的动作进行控制管理,例如,处理单元902用于支持接入网设备900通过通信单元903执行图6的S610和/或用于本文所描述的技术的其它过程。通信单元903用于支持接入网设备900与其它网络实体的通信,例如与终端设备之间的通信。接入网设备900还可以包括存储单元901,用于存储接入网设备900的程序代码和数据。
其中,处理单元902可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元903可以是收发器、收发电路等。存储单元901可以是存储器。
当处理单元902为处理器,通信单元903为收发器,存储单元901为存储器时,本申请所涉及的接入网设备可以为图10所示的接入网设备。
参阅图10所示,该接入网设备1000包括:处理器1002、收发器1003、存储器1001。其中,收发器1003、处理器1002以及存储器1001可以通过内部连接通路相互通信,传递控制和/或数据信号。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
本申请提供的数据传输的接入网设备900和接入网设备1000,从一个子帧包括的至少两个时域符号中确定一个用于接收上行数据的时域符号,当前一个时域符号未检测到上行数据时,接入网设备可以检测后一个时域符号是否有上行数据,从而增大了单位时间内传输成功的概率,提高了上行数据传输时的非授权频谱利用率。
应理解,上述收发器可以包括发射机和接收机。收发器还可以进一步包括天线,天线的数量可以为一个或多个。存储器可以是一个单独的器件,也可以集成在处理器中。 上述的各个器件或部分器件可以集成到芯片中实现,如集成到基带芯片中实现。
装置和方法实施例中的网络设备或终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块方法或发射器执行方法实施例中发送的步骤,接收模块或接收器执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块或处理器执行。具体模块的功能可以参考相应的方法实施例,不再详述。
本申请实施例还提供了一种通信芯片,其中存储有指令,当其在终端设备700或终端设备800上运行时,使得所述通信芯片执行上述各种实现方式中终端设备对应的方法。
本申请实施例还提供了一种通信芯片,其中存储有指令,当其在接入网设备900或接入网设备1000上运行时,使得所述通信芯片执行上述各种实现方式中接入网设备对应的方法。
在本申请各个实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施过程构成任何限定。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备和接入网设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申 请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (34)

  1. 一种发送上行数据的方法,其特征在于,包括:
    终端设备从接入网设备接收第一调度信息,所述第一调度信息用于调度所述终端设备通过非授权载波传输第一传输块;
    所述终端设备对所述第一传输块进行速率匹配,得到上行数据;
    所述终端设备对所述非授权载波进行检测,并根据检测结果从第一时间单元包括的至少两个时域符号中确定用于发送所述上行数据的起始时域符号,其中,所述至少两个时域符号包括第一时域符号和第二时域符号,所述第二时域符号晚于所述第一时域符号,所述起始时域符号为所述第一时域符号或所述第二时域符号;
    所述终端设备从所述起始时域符号开始向所述接入网设备发送所述上行数据。
  2. 根据权利要求1所述的方法,其特征在于,
    当所述起始时域符号为所述第一时域符号时,所述上行数据为所述第一传输块从所述第一时域符号开始速率匹配得到的第一上行数据;
    当所述起始时域符号为所述第二时域符号时,所述上行数据为所述第一传输块从所述第二时域符号开始速率匹配得到的第二上行数据,所述第二上行数据为所述第一上行数据中除去所述第一时域符号至所述第二时域符号之间的数据后剩余的数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备对所述第一传输块进行速率匹配之前,所述方法还包括:
    所述终端设备从所述接入网设备接收第一指示信息,所述第一指示信息用于指示第一传输方式或第二传输方式,所述第一传输方式为从所述第一时域符号或者所述第二时域符号开始发送所述上行数据,所述第二传输方式为从所述第一时域符号开始发送所述上行数据,且不从所述第二时域符号开始发送所述上行数据。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备对所述第一传输块进行速率匹配,包括:
    所述终端设备根据第一调制与编码策略MCS索引从MCS配置集合中确定第一调制阶数;
    所述终端设备根据所述第一调制阶数对所述第一传输块进行速率匹配;
    其中,当所述第一指示信息指示所述第一传输方式时,所述MCS配置集合为第一MCS配置集合,当所述第一指示信息指示所述第二传输方式时,所述MCS配置集合为第二MCS配置集合,所述第一MCS配置集合与所述第二MCS配置集合相异。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述终端设备对所述第一传输块进行速率匹配,包括:
    所述终端设备根据第一MCS索引从第一MCS配置集合中确定第一调制阶数,并根据所述第一调制阶数对所述第一传输块进行速率匹配。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第二MCS索引从第二MCS配置集合中确定第二调制阶数,并根据所述第二调制阶数对第二传输块进行速率匹配,其中,所述第二传输块通过第二时间单元传输,所述第一MCS配置集合与所述第二MCS配置集合相异。
  7. 根据权利要求4或6所述的方法,其特征在于,所述第一MCS配置集合与所述第二MCS配置集合相异,包括:
    所述第一MCS索引在所述第一MCS配置集合中对应的调制阶数大于或等于所述第一MCS索引在所述第二MCS配置集合中对应的调制阶数。
  8. 根据权利要求4至7中任一项所述的方法,其特征在于,所述第一MCS配置集合中的第三调制阶数对应的第三传输块的第一码率小于预设值,其中,所述第一码率为从所述第二时域符号开始传输的所述第三传输块对应的上行数据的码率,所述第三调制阶数为所述第一MCS配置集合中除最高阶调制阶数外的调制阶数。
  9. 一种接收上行数据的方法,其特征在于,包括:
    接入网设备向终端设备发送第一调度信息,所述第一调度信息用于调度所述终端设备通过非授权载波传输第一传输块;
    所述接入网设备从起始时域符号开始从所述终端设备接收所述第一传输块对应的上行数据,其中,所述起始时域符号为第一时间单元包括的至少两个时域符号中的第一时域符号或第二时域符号,所述第二时域符号晚于所述第一时域符号,所述至少两个时域符号用于接收所述上行数据。
  10. 根据权利要求9所述的方法,其特征在于,所述接入网设备从起始时域符号开始从所述终端设备接收所述第一传输块对应的上行数据,包括:
    所述接入网设备根据检测到的所述第一时间单元包括的参考信号符号的个数或位置,确定所述起始时域符号为所述第一时域符号或所述第二时域符号;
    所述接入网设备根据确定的所述起始时域符号,从所述终端设备接收所述第一传输块对应的上行数据。
  11. 根据权利要求9或10所述的方法,其特征在于,
    当所述起始时域符号为所述第一时域符号时,所述第一传输块对应的上行数据为所述第一传输块从所述第一时域符号开始速率匹配得到的第一上行数据;
    当所述起始时域符号为所述第二时域符号时,所述第一传输块对应的上行数据为所述第一传输块从所述第二时域符号开始速率匹配得到的第二上行数据,所述第二上行数据为所述第一上行数据中除去所述第一时域符号至所述第二时域符号之间的数据后剩余的数据。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述接入网设备从起始时域符号开始从所述终端设备接收所述第一传输块对应的上行数据之前,所述方法还包括:
    所述接入网设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示第一传输方式或第二传输方式,所述第一传输方式为从所述第一时域符号或者所述第二时域符号开始发送所述第一传输块对应的上行数据,所述第二传输方式为从所述第一时域符号开始发送所述第一传输块对应的上行数据,且不从所述第二时域符号开始发送所述第一传输块对应的上行数据。
  13. 根据权利要求12所述的方法,其特征在于,所述第一调度信息用于指示第一调制与编码策略MCS索引,
    当所述第一指示信息指示所述第一传输方式时,所述第一传输块对应的上行数据的调制阶数为根据所述第一MCS索引和第一MCS配置集合确定的第一调制阶数,
    当所述第一指示信息指示所述第二传输方式时,所述第一传输块对应的上行数据的调制阶数为根据所述第一MCS索引和第二MCS配置集合确定的第一调制阶数,
    其中,所述第一MCS配置集合与所述第二MCS配置集合相异。
  14. 根据权利要求9至12中任一项所述的方法,其特征在于,
    所述第一调度信息用于指示第一MCS索引,以使所述终端设备根据所述第一MCS索引从第一MCS配置集合中确定所述第一传输块对应的上行数据的第一调制阶数。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述终端设备发送第二调度信息,所述第二调度信息用于指示第二MCS索引,以使所述终端设备根据所述第二MCS索引从第二MCS配置集合中确定第二传输块对应的上行数据的第二调制阶数,所述第二传输块通过第二时间单元传输,所述第一MCS配置集合与所述第二MCS配置集合相异。
  16. 根据权利要求13或15所述的方法,其特征在于,所述第一MCS配置集合与所述第二MCS配置集合相异,包括:
    所述第一MCS索引在所述第一MCS配置集合中对应的调制阶数大于或等于所述第一MCS索引在所述第二MCS配置集合中对应的调制阶数。
  17. 根据权利要求13至16中任一项所述的方法,其特征在于,所述第一MCS配置集合中的第三调制阶数对应的第三传输块的第一码率小于预设值,其中,所述第一码率为从所述第二时域符号开始传输的所述第三传输块对应的上行数据的码率,所述第三调制阶数为所述第一MCS配置集合中除最高阶调制阶数外的调制阶数。
  18. 一种发送上行数据的装置,其特征在于,包括处理单元和通信单元,
    所述通信单元用于从接入网设备接收第一调度信息,所述第一调度信息用于调度所述终端设备通过非授权载波传输第一传输块;
    所述处理单元用于对所述第一传输块进行速率匹配,得到上行数据;
    所述处理单元还用于对所述非授权载波进行检测,并根据检测结果从第一时间单元包括的至少两个时域符号中确定用于发送所述上行数据的起始时域符号,其中,所述至少两个时域符号包括第一时域符号和第二时域符号,所述第二时域符号晚于所述第一时域符号,所述起始时域符号为所述第一时域符号或所述第二时域符号;
    所述通信单元还用于从所述起始时域符号开始向所述接入网设备发送所述处理单元生成的所述上行数据。
  19. 根据权利要求18所述的装置,其特征在于,
    当所述起始时域符号为所述第一时域符号时,所述上行数据为所述第一传输块从所述第一时域符号开始速率匹配得到的第一上行数据;
    当所述起始时域符号为所述第二时域符号时,所述上行数据为所述第一传输块从所述第二时域符号开始速率匹配得到的第二上行数据,所述第二上行数据为所述第一上行数据中除去所述第一时域符号至所述第二时域符号之间的数据后剩余的数据。
  20. 根据权利要求18或19所述的装置,其特征在于,所述通信单元还用于:
    从所述接入网设备接收第一指示信息,所述第一指示信息用于指示第一传输方式或第二传输方式,所述第一传输方式为从所述第一时域符号或者所述第二时域符号开始发送所述上行数据,所述第二传输方式为从所述第一时域符号开始发送所述上行数据,且不从所述第二时域符号开始发送所述上行数据。
  21. 根据权利要求20所述的装置,其特征在于,所述处理单元具体用于:
    根据第一调制与编码策略MCS索引从MCS配置集合中确定第一调制阶数;
    根据所述第一调制阶数对所述第一传输块进行速率匹配;
    其中,当所述第一指示信息指示所述第一传输方式时,所述MCS配置集合为第一MCS配置集合,当所述第一指示信息指示所述第二传输方式时,所述MCS配置集合为第二MCS配置集合,所述第一MCS配置集合与所述第二MCS配置集合相异。
  22. 根据权利要求18至20中任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据第一MCS索引从第一MCS配置集合中确定第一调制阶数,并根据所述第一调制阶数对所述第一传输块进行速率匹配。
  23. 根据权利要求22所述的装置,其特征在于,所述处理单元还用于:
    根据第二MCS索引从第二MCS配置集合中确定第二调制阶数,并根据所述第二调制阶数对第二传输块进行速率匹配,其中,所述第二传输块通过第二时间单元传输,所述第一MCS配置集合与所述第二MCS配置集合相异。
  24. 根据权利要求21或23所述的装置,其特征在于,所述第一MCS配置集合与所述第二MCS配置集合相异,包括:
    所述第一MCS索引在所述第一MCS配置集合中对应的调制阶数大于或等于所述第一MCS索引在所述第二MCS配置集合中对应的调制阶数。
  25. 根据权利要求21至24中任一项所述的装置,其特征在于,所述第一MCS配置集合中的第三调制阶数对应的第三传输块的第一码率小于预设值,其中,所述第一码率为从所述第二时域符号开始传输的所述第三传输块对应的上行数据的码率,所述第三调制阶数为所述第一MCS配置集合中除最高阶调制阶数外的调制阶数。
  26. 一种接收上行数据的装置,其特征在于,包括处理单元和通信单元,
    所述处理单元用于通过所述通信单元向终端设备发送第一调度信息,所述第一调度信息用于调度所述终端设备通过非授权载波传输第一传输块;
    以及用于通过所述通信单元从起始时域符号开始从所述终端设备接收所述第一传输块对应的上行数据,其中,所述起始时域符号为第一时间单元包括的至少两个时域符号中的第一时域符号或第二时域符号,所述第二时域符号晚于所述第一时域符号,所述至少两个时域符号用于接收所述上行数据。
  27. 根据权利要求26所述的装置,其特征在于,
    所述处理单元还用于根据检测到的所述第一时间单元包括的参考信号符号的个数或位置,确定所述起始时域符号为所述第一时域符号或所述第二时域符号;
    所述通信单元还用于根据确定的所述起始时域符号,从所述终端设备接收所述第一传输块对应的上行数据。
  28. 根据权利要求26或27所述的装置,其特征在于,
    当所述起始时域符号为所述第一时域符号时,所述第一传输块对应的上行数据为所述第一传输块从所述第一时域符号开始速率匹配得到的第一上行数据;
    当所述起始时域符号为所述第二时域符号时,所述第一传输块对应的上行数据为所述第一传输块从所述第二时域符号开始速率匹配得到的第二上行数据,所述第二上行数据为所述第一上行数据中除去所述第一时域符号至所述第二时域符号之间的数据后剩余的数据。
  29. 根据权利要求26至28中任一项所述的装置,其特征在于,所述通信单元还用 于:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示第一传输方式或第二传输方式,所述第一传输方式为从所述第一时域符号或者所述第二时域符号开始发送所述第一传输块对应的上行数据,所述第二传输方式为从所述第一时域符号开始发送所述第一传输块对应的上行数据,且不从所述第二时域符号开始发送所述第一传输块对应的上行数据。
  30. 根据权利要求29所述的装置,其特征在于,所述第一调度信息用于指示第一调制与编码策略MCS索引,
    当所述第一指示信息指示所述第一传输方式时,所述第一传输块对应的上行数据的调制阶数为根据所述第一MCS索引和第一MCS配置集合确定的第一调制阶数,
    当所述第一指示信息指示所述第二传输方式时,所述第一传输块对应的上行数据的调制阶数为根据所述第一MCS索引和第二MCS配置集合确定的第一调制阶数,
    其中,所述第一MCS配置集合与所述第二MCS配置集合相异。
  31. 根据权利要求26至29中任一项所述的装置,其特征在于,
    所述第一调度信息用于指示第一MCS索引,以使所述终端设备根据所述第一MCS索引从第一MCS配置集合中确定所述第一传输块对应的上行数据的第一调制阶数。
  32. 根据权利要求31所述的装置,其特征在于,所述通信单元还用于:
    向所述终端设备发送第二调度信息,所述第二调度信息用于指示第二MCS索引,以使所述终端设备根据所述第二MCS索引从第二MCS配置集合中确定第二传输块对应的上行数据的第二调制阶数,所述第二传输块通过第二时间单元传输,所述第一MCS配置集合与所述第二MCS配置集合相异。
  33. 根据权利要求30或32所述的装置,其特征在于,所述第一MCS配置集合与所述第二MCS配置集合相异,包括:
    所述第一MCS索引在所述第一MCS配置集合中对应的调制阶数大于或等于所述第一MCS索引在所述第二MCS配置集合中对应的调制阶数。
  34. 根据权利要求30至33中任一项所述的装置,其特征在于,所述第一MCS配置集合中的第三调制阶数对应的第三传输块的第一码率小于预设值,其中,所述第一码率为从所述第二时域符号开始传输的所述第三传输块对应的上行数据的码率,所述第三调制阶数为所述第一MCS配置集合中除最高阶调制阶数外的调制阶数。
PCT/CN2017/083361 2017-05-05 2017-05-05 发送上行数据的方法和装置 WO2018201505A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17908285.4A EP3618333B1 (en) 2017-05-05 2017-05-05 Uplink data sending method and apparatus
RU2019139259A RU2729047C1 (ru) 2017-05-05 2017-05-05 Способ и аппарат отправки данных восходящей линии связи
CN201780090140.4A CN110679108B (zh) 2017-05-05 2017-05-05 发送上行数据的方法和装置
PCT/CN2017/083361 WO2018201505A1 (zh) 2017-05-05 2017-05-05 发送上行数据的方法和装置
US16/672,847 US11343808B2 (en) 2017-05-05 2019-11-04 Uplink data sending method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083361 WO2018201505A1 (zh) 2017-05-05 2017-05-05 发送上行数据的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/672,847 Continuation US11343808B2 (en) 2017-05-05 2019-11-04 Uplink data sending method and apparatus

Publications (1)

Publication Number Publication Date
WO2018201505A1 true WO2018201505A1 (zh) 2018-11-08

Family

ID=64016834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083361 WO2018201505A1 (zh) 2017-05-05 2017-05-05 发送上行数据的方法和装置

Country Status (5)

Country Link
US (1) US11343808B2 (zh)
EP (1) EP3618333B1 (zh)
CN (1) CN110679108B (zh)
RU (1) RU2729047C1 (zh)
WO (1) WO2018201505A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11516834B2 (en) * 2017-11-13 2022-11-29 Qualcomm Incorporated Uplink control information transmission
CN116582882A (zh) * 2022-01-30 2023-08-11 华为技术有限公司 一种通信方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3013109A1 (en) * 2014-10-22 2016-04-27 HTC Corporation Device and method of handling resource availability of unlicensed band
EP3016312A2 (en) * 2014-10-28 2016-05-04 HTC Corporation Device of handling transmission on unlicensed component carrier
CN105592468A (zh) * 2015-12-17 2016-05-18 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关设备、系统
CN105611637A (zh) * 2016-02-06 2016-05-25 北京佰才邦技术有限公司 信道发送状态的指示方法和终端
CN106301733A (zh) * 2015-06-26 2017-01-04 中兴通讯股份有限公司 数据的传输方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2409896C2 (ru) * 2005-11-24 2011-01-20 Нокиа Корпорейшн Способ, модуль, терминал и система, обеспечивающие согласованную работу подсистемы радиочастотной идентификации и подсистемы беспроводной связи
WO2007124710A1 (de) 2006-04-28 2007-11-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren und vorrichtung zum adaptieren der steuerung der kupplungen eines doppelkupplungsgetriebes
ES2938769T3 (es) * 2012-08-02 2023-04-14 Ericsson Telefon Ab L M Un nodo y un método para proporcionar una interfaz entre nodos B mejorados (eNB)
CN104980247B (zh) * 2014-04-04 2019-11-22 北京三星通信技术研究有限公司 自适应调整调制编码方式和参考信号图样的方法、基站、终端和系统
CN105162562B (zh) * 2014-08-25 2019-11-15 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法和装置
WO2016030299A1 (en) * 2014-08-26 2016-03-03 Koninklijke Philips N.V. Accessory for a steaming device
US10051617B2 (en) * 2015-03-17 2018-08-14 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier
WO2016185945A1 (ja) * 2015-05-15 2016-11-24 京セラ株式会社 基地局及びユーザ端末
CN105050189B (zh) 2015-08-10 2019-02-05 上海华为技术有限公司 一种无线资源调度的方法及相关设备
EP3806378A1 (en) * 2015-08-14 2021-04-14 Sun Patent Trust Modulation order adaptation for partial subframes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3013109A1 (en) * 2014-10-22 2016-04-27 HTC Corporation Device and method of handling resource availability of unlicensed band
EP3016312A2 (en) * 2014-10-28 2016-05-04 HTC Corporation Device of handling transmission on unlicensed component carrier
CN106301733A (zh) * 2015-06-26 2017-01-04 中兴通讯股份有限公司 数据的传输方法及装置
CN105592468A (zh) * 2015-12-17 2016-05-18 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关设备、系统
CN105611637A (zh) * 2016-02-06 2016-05-25 北京佰才邦技术有限公司 信道发送状态的指示方法和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618333A4 *

Also Published As

Publication number Publication date
CN110679108B (zh) 2021-03-02
EP3618333A1 (en) 2020-03-04
RU2729047C1 (ru) 2020-08-04
EP3618333A4 (en) 2020-04-15
CN110679108A (zh) 2020-01-10
EP3618333B1 (en) 2022-12-21
US20200068562A1 (en) 2020-02-27
US11343808B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
EP3834569B1 (en) Method and apparatus for generating mac pdu
KR102221648B1 (ko) 물리 하향링크 제어 채널을 송신 또는 수신하는 방법 및 디바이스
CN106851744B (zh) 无线通信的方法和装置
EP3637821A1 (en) Control information transmission method and apparatus
KR101635864B1 (ko) 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
CN108292983B (zh) 业务传输的方法和装置
CN107736069B (zh) 数据传输方法及装置
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
US20190261332A1 (en) Control Information Detection Method, Control Information Sending Method, And Device
US11330610B2 (en) Data sending and receiving method and apparatus
US11224037B2 (en) Data transmission method, terminal device, and network device
WO2019242776A1 (zh) 无线通信方法及装置
US10873430B2 (en) Signal sending method and apparatus
US20200045733A1 (en) Uplink Scheduling For NR-U
AU2018417481A1 (en) Data transmission method, terminal device and network device
CN112636886B (zh) 无线通信的方法、芯片和通信装置
WO2018201505A1 (zh) 发送上行数据的方法和装置
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
EP3496480A1 (en) Method, apparatus and system for sending control information
EP3641443B1 (en) Method and apparatus for sending and receiving data
CN116017487A (zh) 无线通信方法、网络设备和终端设备
WO2021159484A1 (en) Method and apparatus for scheduling pusch or pdsch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017908285

Country of ref document: EP

Effective date: 20191126