WO2018141291A1 - 一种数据传输的方法和装置 - Google Patents

一种数据传输的方法和装置 Download PDF

Info

Publication number
WO2018141291A1
WO2018141291A1 PCT/CN2018/075289 CN2018075289W WO2018141291A1 WO 2018141291 A1 WO2018141291 A1 WO 2018141291A1 CN 2018075289 W CN2018075289 W CN 2018075289W WO 2018141291 A1 WO2018141291 A1 WO 2018141291A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport block
time period
information
control channel
dci
Prior art date
Application number
PCT/CN2018/075289
Other languages
English (en)
French (fr)
Inventor
张旭
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18748511.5A priority Critical patent/EP3562246B1/en
Publication of WO2018141291A1 publication Critical patent/WO2018141291A1/zh
Priority to US16/533,396 priority patent/US10912074B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method and apparatus for data transmission.
  • the control channel in the next generation wireless communication system is a two-level control channel, and the two-level control channel includes a first-level control channel and a second-level control channel.
  • the downlink control information DCI also includes the first DCI.
  • the second DCI where the first DCI is carried in the first level control channel, the first DCI may include resource indication information, etc., where the second level control channel carries the second DCI, and the second DCI may include The first DCI and the second DCI are used to jointly indicate that the terminal device receives the data signal corresponding to the same transport block.
  • the terminal device After the base station sends the data signal to the terminal device, the terminal device needs to demodulate and decode the data signal according to the first DCI and the second DCI to obtain the transport block.
  • the premise that the terminal device can obtain the transport block is that the terminal device can correctly receive the first DCI and the second DCI.
  • the second DCI can only be received after the first DCI is correctly received.
  • the DCI in the communication system supporting the two-level control channel is compared.
  • the probability of packet loss is greater than that of a communication system that supports a single-level control channel. In this way, the structure of the two-level control channel leads to an increase in the probability of packet loss, which seriously affects the reliability of data transmission, thereby affecting the data transmission efficiency.
  • Embodiments of the present invention provide a data transmission method and apparatus, which can reduce data packet loss probability, in particular, data loss caused by loss of a second-level control channel due to a structure of a two-level control channel.
  • the embodiment of the invention is more effective in reducing the probability of packet loss of data.
  • a method of data transmission comprising:
  • the terminal device Receiving, by the terminal device, the first downlink control information DCI sent by the network device on the first downlink control channel, where the time period corresponding to the first downlink control channel belongs to the first time period;
  • the fourth DCI includes first coding information, where the first coding information is used to indicate a first coding mode of the first transport block.
  • the terminal device performs decoding according to the first encoding information to obtain the first transport block.
  • the method for data transmission in the embodiment of the present invention when the terminal device fails to correctly acquire the first transport block by decoding in the first time period, may be sent by the network device in the second time period after the first time period.
  • the first encoded information of the first transport block is decoded, that is, by decoding the first encoded information transmitted in a second time period after the first set of two-level control channels corresponding to the first transport block,
  • the embodiment is more effective in reducing the probability of packet loss of data.
  • the performing, by the terminal device, the decoding, according to the first encoding information, to obtain the first transporting block includes:
  • the terminal device When the terminal device receives the second DCI sent by the network device on the second downlink control channel according to the first DCI, the terminal device performs decoding according to the first coding information to obtain the a first transport block, wherein a period corresponding to the second downlink control channel belongs to the first time period, and the second DCI includes the first coded information.
  • the method further includes:
  • the fourth DCI further includes second encoding information, where the second encoding information is used to indicate a second encoding manner of the second transport block, and the second transporting block is a retransmission of the first transporting block; as well as,
  • the decoding, by the terminal device, according to the first encoding information, to obtain the first transport block includes:
  • the terminal device performs combined decoding according to the first encoding information and the second encoding information to obtain the first transport block.
  • the terminal device can be combined and decoded according to the first coding information and the second coding information, so that the accuracy of the decoding can be effectively improved, thereby correctly acquiring the first transmission block (or the second transmission block).
  • the first encoding information includes first redundancy version information and first data indication information for the first transport block
  • the second encoding The information includes second redundancy version information and second data indication information for the second transport block, where the first data indication information is used to indicate whether the first transport block is the third downlink data of the network device a retransmission of the transport block sent on the channel, the time period corresponding to the third downlink data channel is located before the first time period, and the second data indication information is used to indicate whether the second transport block is the first Retransmission of the transport block;
  • the terminal device performs the combined decoding according to the first encoding information and the second encoding information to obtain the first transport block, including:
  • the terminal device performs combined decoding according to the first redundancy version information and the second redundancy version information to obtain the first transport block.
  • the first DCI further includes first modulation information of the first transport block, where the first modulation information is used to indicate the first transmission The modulation mode of the block;
  • the terminal device receives, on the first downlink data channel, a first data signal sent by the network device, where the first data signal is that the network device encodes and modulates the first transport block Generated after
  • the terminal device demodulates the first data signal according to the first modulation information.
  • the method further includes: the terminal device buffering the demodulated data signal of the first data signal.
  • the time period corresponding to the second downlink control channel is after the time period corresponding to the first downlink control channel, and the first downlink data channel is corresponding to a period of time after the period corresponding to the second downlink control channel;
  • the time period corresponding to the fourth downlink control channel is located after the time period corresponding to the third downlink control channel, and the time period corresponding to the second downlink data channel is located after the time period corresponding to the fourth downlink control channel.
  • a method of data transmission comprising:
  • the network device sends the first downlink control information DCI to the terminal device on the first downlink control channel, where the time period corresponding to the first downlink control channel belongs to the first time period;
  • the network device sends a first transport block to the terminal device on the first downlink data channel indicated by the first DCI, where a period corresponding to the first downlink data channel belongs to the first time period;
  • the network device sends a fourth DCI to the terminal device on the fourth downlink control channel, the time period corresponding to the fourth downlink control channel belongs to a second time period, and the second time period is located after the first time period.
  • the fourth DCI includes first coding information, where the first coding information is used to indicate a first coding mode of the first transport block.
  • the method for data transmission in the embodiment of the present invention when the terminal device fails to correctly acquire the first transport block by decoding in the first time period, may be sent by the network device in the second time period after the first time period.
  • the first encoded information of the first transport block is decoded, that is, by decoding the first encoded information transmitted in a second time period after the first set of two-level control channels corresponding to the first transport block,
  • the embodiment is more effective in reducing the probability of packet loss of data.
  • the method further includes:
  • the network device sends a second DCI to the terminal device on the second downlink control channel indicated by the first DCI, where a period corresponding to the second downlink control channel belongs to the first time period, where the The second DCI includes the first encoded information.
  • the method further includes:
  • the network device sends a third DCI to the terminal device on the third downlink control channel, and the time period corresponding to the third downlink control channel belongs to the second time period;
  • the fourth DCI further includes second encoding information, the second encoding information is used to indicate a second encoding manner of the second transport block, and the second transport block is a retransmission of the first transport block.
  • the terminal device can be combined and decoded according to the first coding information and the second coding information, so that the accuracy of the decoding can be effectively improved, thereby correctly acquiring the first transmission block (or the second transmission block).
  • the first encoding information includes first redundancy version information and first data indication information for the first transport block
  • the second encoding The information includes second redundancy version information and second data indication information for the second transport block, where the first data indication information is used to indicate whether the first transport block is the third downlink data of the network device a retransmission of the transport block sent on the channel, the time period corresponding to the third downlink data channel is located before the first time period, and the second data indication information is used to indicate whether the second transport block is the first Retransmission of the transport block.
  • the first DCI further includes first modulation information of the first transport block, where the first modulation information is used to indicate the first transmission The modulation method of the block.
  • the time period corresponding to the second downlink control channel is after the time period corresponding to the first downlink control channel, and the first downlink data channel is corresponding to a period of time after the period corresponding to the second downlink control channel;
  • the time period corresponding to the fourth downlink control channel is located after the time period corresponding to the third downlink control channel, and the time period corresponding to the second downlink data channel is located after the time period corresponding to the fourth downlink control channel.
  • an apparatus for data transmission the apparatus being operative to perform the operations of the first aspect and the terminal device in any of the possible implementations of the first aspect.
  • the apparatus may comprise a modular unit for performing the operations of the terminal device in any of the possible implementations of the first aspect or the first aspect described above.
  • an apparatus for data transmission which apparatus can be used to perform operations of a network device in any of the possible implementations of the second aspect and the second aspect.
  • the apparatus may comprise a modular unit for performing the operations of the network device in the second aspect and any possible implementation of the second aspect.
  • a terminal device for data transmission comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the method of the first aspect or any possible implementation of the first aspect, or the execution causes the terminal device to implement the apparatus provided by the third aspect .
  • a network device for data transmission comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the network device to perform the method in any of the possible implementations of the second aspect or the second aspect, or the execution causes the network device to implement the apparatus provided by the fourth aspect .
  • a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect and any possible implementation of the first aspect.
  • a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of the second aspect and any possible implementation of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system applied to data transmission in an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a two-level control channel applied to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method of data transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of an apparatus for data transmission in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an apparatus for data transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a terminal device for data transmission according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a network device for data transmission according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the supported communications are primarily for voice and data communications.
  • a traditional base station supports a limited number of connections and is easy to implement.
  • next generation of mobile communication systems will enable future mobile data traffic growth, massive IoT, and diversified new services and application scenarios.
  • 5G NR 5th Generation New Radio
  • 5G NR 5th Generation New Radio
  • 5G based on Orthogonal Frequency Division Multiplexing (OFDM) new air interface design will become a global standard, supporting 5G devices, diverse deployments, covering diverse spectrums (including for low and high frequency bands) Coverage), but also support a variety of services and terminals.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the terminal device may also be referred to as a User Equipment (UE) user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication device. , user agent or user device.
  • UE User Equipment
  • the terminal device may be a station (STAION, ST) in a Wireless Local Area Networks (WLAN), and may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, or a wireless local loop (Wireless Local) Loop, WLL) stations, Personal Digital Assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and in future 5G networks Terminal equipment or terminal equipment in a future evolved PLMN network, and the like.
  • STAION, ST Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • PDA Personal Digital Assistant
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (APCESS POINT, AP) in the WLAN, or a base station in GSM or Code Division Multiple Access (CDMA).
  • APCESS POINT AP
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • wearable devices, and network devices in future 5G networks or network devices in future evolved PLMN networks.
  • the method and apparatus provided by the embodiments of the present invention may be applied to a terminal device or a network device, where the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution subject of the method of transmitting control information is not particularly limited as long as the program capable of running the code of the method of transmitting the control information of the embodiment of the present invention can be executed.
  • the method for transmitting the control information according to the embodiment of the present invention may be a terminal device or a network device, or may be a terminal device or a network device. Call the program and execute the function module of the program.
  • the term "article of manufacture" as used in this embodiment of the invention encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 may be a public land mobile network (PLMN) network or a D2D network or an M2M network or other network.
  • PLMN public land mobile network
  • FIG. 1 is only a simplified schematic diagram of the example, and the network may also include other network devices, FIG. 1 Not drawn in the middle.
  • control channel can be a two-level control channel, ie, a first level control channel and a second level control channel.
  • the communication system including the two-stage control channel will be described in detail by taking the structure of the two-stage control channel shown in FIG. 2 as an example.
  • the transport block in the embodiment of the present invention represents original data information, including a transport block of a physical layer, and the transport block may further include an access network device that adds cyclic redundancy check to the data information.
  • Information after the Cyclic Redundancy Check (CRC), etc. the data signal represents the data signal generated after the corresponding transport block is coded, or, in some aspects, the data signal may also represent the corresponding transport block for channel coding.
  • the post-generated data signal, or, in some aspects, the data signal may also represent the data signal generated after the corresponding transport block performs channel coding and scrambling code.
  • the first-level control channel carries part of downlink control information (Downlink Control Information (DCI) (referred to as DCI#A for convenience of distinction and understanding), and the second-level control channel carries the part except the part.
  • DCI#A Downlink Control Information
  • DCI#B Another part of the downlink control information DCI
  • the data channel carries the transport block, and it can be said that the data channel carries the data signal corresponding to the transport block.
  • the indication information included in the DCI #A and the DCI #B is for the transport block, that is, it is used to instruct the terminal device to receive the transport block.
  • the base station transmits the transport block through a data channel, and the terminal device performs demodulation and decoding according to the DCI #A and the DCI #B, so as to be able to acquire the transport block, and more specifically, the terminal device according to the DCI #A and the DCI #B demodulates and decodes the data signal corresponding to the transport block to obtain the transport block.
  • the terminal device sends feedback response information of the result of the demodulation decoding: if the terminal device demodulates and decodes successfully, sends an acknowledgement message (Acknowledgement, ACK) If the terminal device fails to demodulate and decode, a Negative Acknowledgement (NACK) is sent.
  • the base station After receiving the feedback response information, the base station needs to demodulate and decode the feedback response information to determine whether the terminal device correctly acquires the transport block, thereby determining to send a new one in the next time slot according to the result of the demodulation and decoding.
  • the transport block is also the old transport block (ie, the retransmission of the last transport block).
  • the time interval between the transmission time of the transmission block in the next time slot and the transmission time of the feedback response information in the previous time slot is as short as possible.
  • the time interval between the transmission time of the transmission block in the next time slot and the transmission of the feedback response information in the previous time slot is only two-stage control.
  • the transmission mode of the channel can reduce the delay of data transmission, if the base station does not demodulate and decode the feedback response information in the previous time slot, the base station cannot determine the data transmitted in the next time slot. Whether the information is new data information or old data information, such that the coding information indicating the coding mode of the data information transmitted in the next time slot is not determined before the base station transmits the first-level control channel of the next time slot. Therefore, the coding information cannot be included in the DCI carried by the first-level control channel, and the coding information can only be included in the DCI carried by the second-level control channel.
  • the coding information when the coding information is included in the DCI carried by the second-level control channel, the content in the DCI #A carried in the first-level control channel and the DCI #B carried in the second-level control channel are respectively described in detail. .
  • DCI#A can include the following information:
  • the first resource indication information is used to indicate that the terminal device receives the time-frequency resource of the transport block.
  • the size and location of the time-frequency resource are included, the minimum scheduling granularity of the frequency domain resource is 12 consecutive subcarriers, and the minimum scheduling granularity of the time domain resource is N consecutive orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol, wherein the value of N may be 1, 2, 7 or 14, and the specific value of N is not limited in the embodiment of the present invention.
  • OFDM Orthogonal frequency division multiplexing
  • the network device can determine the time-frequency resource required for transmitting the data according to the channel quality information between the terminal device and the network device.
  • the data identification information is used to identify the transport block of the current transmission.
  • the data identification information may be a Hybrid Automatic Repeat Quest (HARQ) process number, or other identification information that can be uniquely identified.
  • HARQ Hybrid Automatic Repeat Quest
  • the device identification information may be ID information capable of uniquely identifying the terminal device.
  • the ID information of the terminal device may be scrambled as a scrambling code on a Cyclic Redundancy Code (CRC) of the first DCI, or explicitly indicated in a field in the first DCI.
  • CRC Cyclic Redundancy Code
  • the CRC sequence generated according to the bit sequence of the first DCI is ⁇ s 0 , s 1 , . . . , s V- 1 ⁇ , wherein if the ID of the terminal device is a bit sequence ⁇ e 0 , e 1 , . . . , e V-1 ⁇ of the long R, the scrambling CRC using the terminal device ID information can be given by:
  • the scrambled CRC sequence is expressed as ⁇ f 0 , f 1 , ..., f V-1 ⁇ .
  • the modulation information is used to indicate a modulation mode used by the terminal device to perform modulation on the transport block.
  • the modulation method may include: QPSK, 16QAM, 64QAM, and the like.
  • the information about the second-level control channel may include: the coding information of the second DCI carried in the second-level control channel, that is, the coding mode used by the network device to encode the second DCI; and the second DCI The bit size of the information; the number of time-frequency resources of the unit control channel occupied by the second-level control channel, for example, the size of the aggregation level of the second control channel.
  • DCI#B can include the following information:
  • the coding information is used to indicate a coding mode used by the network device to perform channel coding for the current transport block.
  • the coding mode may be a size of a coding rate, and the coding rate is used to indicate a relationship between the number of useful bits and the total number of bits.
  • the encoding information may include data indication information and Redundancy Version (RV) information, where the data indication information is used to indicate whether the transmission block sent by the network device is a new transmission block, and the RV information is used to indicate this time.
  • RV Redundancy Version
  • the RV number corresponding to the transmitted transport block can indirectly determine the coding rate of the transport block by using the data indication information and the RV version number in the RV information, that is, the number of bits of the transport block indicated by the data indication information and the RV number. The ratio between the number of bits is the coding rate of the transport block.
  • the location identifier information is used to indicate that the data signal corresponding to the currently received transport block is located at a starting position in the ring buffer, and the data signal corresponding to the currently received transport block is channel coded by the network device for the transport block.
  • the subsequent data signal that is, the ring buffer is used to buffer the data signal after channel coding for the transport block. .
  • the different starting positions in the ring buffer correspond to different RV numbers, and different RV numbers correspond to initial transmission or retransmission for the same transport block.
  • the initial transmission defines RV0
  • the first retransmission is defined as RV2
  • the second retransmission is defined as RV3
  • the third retransmission is defined as RV1, that is, the order of the redundancy version is ⁇ 0, 2, 3, 1 ⁇ .
  • the second resource indication information is used to indicate a specific value of the resource used by the terminal device to send the feedback response information, and the resource may be at least one of a time domain resource, a frequency domain resource, or a code domain resource.
  • the resource set used by the terminal device to send the feedback response information may be configured to the user equipment by using high layer signaling, for example, Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the high layer signaling indicates that the resource set is ⁇ 1, 2, 4 ⁇ , and the resource set indicates that after receiving the transport block, the terminal device sends the time domain location of the feedback response information and the received transport block.
  • the time domain location interval is 1, 2 or 4 time slots;
  • the time domain location of the feedback response information sent by the terminal device is the second time slot after receiving the transport block;
  • the time domain location in which the terminal device sends the feedback response information is the n+2th subframe.
  • the indication manner of the frequency domain resource and the code domain resource is the same as the indication manner of the foregoing time domain resource.
  • DCI #A and DCI #B are only a schematic description, and the embodiment of the present invention is not limited thereto.
  • DCI#B information other than the information related to the second-level control channel in DCI#A can be configured in DCI#B.
  • the second resource indication information in DCI#B can also be configured in DCI#A.
  • DCI #A and DCI #B may also include information other than the information listed above, and the embodiment of the present invention is not limited thereto.
  • the terminal device when the coding information is included in the DCI carried by the second-level control channel, when the terminal device fails to receive the second-level control channel, the data information cannot be decoded by using the coding information, thereby losing data.
  • the control channels of each level are successfully received.
  • the probability is lower than for systems with only single-level control channels.
  • the packet loss probability of the control channel increases due to the structure of the two-level control channel, thereby increasing the packet loss probability of the data information, which seriously affects the reliability of the data transmission, thereby affecting the data transmission efficiency.
  • the embodiment of the present invention provides a data transmission method, which can effectively reduce the packet loss probability of the data information.
  • FIG. 3 is a schematic interaction diagram showing a method of data transmission in an embodiment of the present invention from the perspective of device interaction.
  • a time period may be understood as a time domain resource
  • a time domain unit for indicating a time domain resource may be a symbol, or a mini-slot, or a slot, or a subframe in which the duration of one subframe in the time domain may be 1 millisecond (ms), one slot consists of 7 or 14 symbols, and one minislot may include at least one consecutive symbol. (For example, 2 symbols or 7 symbols or 14 symbols, or any number of symbols less than or equal to 14 symbols).
  • the uplink time-frequency resource (referred to as time-frequency resource #A) is recorded as a set of two-level control channels.
  • the network device sends the first downlink control information DCI to the terminal device on the first downlink control channel, where the time period corresponding to the first downlink control channel belongs to the first time period.
  • the time period corresponding to the first downlink control channel belongs to the first time period, that is, the time period corresponding to the first downlink control channel (referred to as time period #A for convenience of distinction and understanding) is smaller than the first time period. (To facilitate differentiation and understanding, record the length of time period #1).
  • the terminal device receives the first DCI (denoted as DCI #1 for ease of distinction and understanding).
  • the network device sends a first transport block to the terminal device on the first downlink data channel indicated by the first DCI, and the time period corresponding to the first downlink data channel belongs to the first time period.
  • the DCI #1 includes indication information for indicating a time-frequency resource (referred to as time-frequency resource #1) for transmitting the first downlink data channel, where the network device is in the DCI.
  • time-frequency resource #1 for transmitting the first downlink data channel, where the network device is in the DCI.
  • the first transport block is sent to the terminal device (for convenience of distinction and understanding, Recorded as transport block #1);
  • the network device sends the transport block #1 to the terminal device. It can also be understood that the network device sends the data signal after the channel block encoding of the transport block #1 to the terminal device (for the purpose of distinguishing and understanding, the data signal is recorded as a data signal. #1A) In other words, the bit sequence included in the data signal #1A contains the bit sequence of the transport block #1.
  • the period corresponding to the first downlink data channel belongs to the first period, that is, the period corresponding to the first downlink data channel (referred to as period #B for convenience of distinction and understanding) is smaller than the period #1 length;
  • the period #1 may be a period corresponding to one time domain unit, that is, one mini slot, or one slot, or one subframe. Of course, the period #1 may also be a plurality of symbols.
  • the transport block #1 can be acquired by correctly receiving the relevant information on the corresponding downlink control channel.
  • the terminal device after successfully receiving the DCI #1, the terminal device receives the transport block #1 on the first downlink data channel indicated by the DCI #1.
  • the network device sends a fourth DCI to the terminal device on the fourth downlink control channel, where the time period corresponding to the fourth downlink control channel belongs to the second time period, and the second time period is located after the first time period, where
  • the fourth DCI includes first coding information, where the first coding information is used to indicate a first coding mode of the first transport block.
  • time period #D the time period corresponding to the fourth downlink control channel
  • time period #2 the time period corresponding to the fourth downlink control channel
  • the time period #2 can be a mini time slot, or a time slot, or a subframe.
  • the time period #1 can also be multiple symbols.
  • the period #2 is different from the period #1, and the period #2 is located after the period #1, that is, the period #D is not the period of the system configuration for receiving the transport block #1, but belongs to the period #2 and the time period after time period #1.
  • the period #1 is a period corresponding to the first two-level control channels of the two sets of two-level control channels shown in FIG. 2
  • the period #2 is the period corresponding to the second group of two-level control channels.
  • the fourth DCI includes first encoding information (referred to as encoding information #1 for ease of distinction and understanding), the encoding information #1 is used to indicate the transport block #1
  • the first coding mode (referred to as coding mode #1 for convenience of distinction and understanding), such that when the information received in the period #1 cannot correctly decode the transmission block #1, it corresponds to the fourth downlink control channel.
  • the encoding information #1 transmitted in the period #D is used to decode the transport block #1.
  • the terminal device performs decoding based on the first encoding information to obtain a first transport block.
  • the terminal device receives the transport block #1, and can also be understood as receiving the data signal #1A, and the terminal device processes the data signal #1A using the encoded information #1, and finally obtains the transport block #1.
  • the processing target for decoding by the terminal device based on the encoding information #1 is a data signal obtained by demodulating the data signal #1A (denoted as data signal #1B for convenience of distinction and understanding).
  • the network device also sends a second DCI on the second downlink control channel (referred to as DCI#2 for convenience of understanding and understanding), and the time period corresponding to the second downlink control channel ( In order to facilitate the distinction and understanding, it is recorded as the period #C), and at the same time, the encoding information #1 of the transport block #1 is included in the DCI #2, and the terminal device performs the DCI #2 on the time-frequency resource indicated by the DCI #1.
  • the receiving operation is the receiving success (case A) and the receiving failure (case B).
  • the network device may send in the period #2 according to the network device.
  • the coded information #1 in DCI #4 is decoded, as follows:
  • the terminal device can correctly receive DCI#2. However, the terminal device can decode using the coded information #1 in DCI#2 due to poor channel quality, etc. However, the decoding effect is not good, and this is not correct.
  • the transport block #1 is acquired, and thus, the transport block #1 can be obtained by decoding using the coded information #1 in the DCI #4 transmitted in the period #2 by the network device.
  • the terminal device fails to receive the DCI #2, the terminal device cannot learn the coded information #1, and thus, the transport block #1 cannot be obtained.
  • the terminal device uses the coded information #1 in the DCI #4 transmitted in the period #2 by using the network device. By performing decoding, the transport block #1 can be obtained, and the packet loss probability of the data is reduced.
  • each control channel in the embodiment of the present invention will be described by taking the structure of the two-stage control channel shown in FIG. 2 as an example.
  • the first downlink control channel may be a first-level control channel of the first group of two-level control channels
  • the second downlink control channel may be a second-level control channel of the first group of two-level control channels, the first downlink data.
  • the channel may be a data channel in the first group of two-level control channels; correspondingly, the period #A may be a period corresponding to the first level control channel of the first group of two-level control channels, and the period #C may be the first group of two
  • the period #B may be a period corresponding to the data channel in the first group of two-level control channels.
  • the fourth downlink control channel may be a second-level control channel of the second group of two-level control channels.
  • the period #D may be a period corresponding to the second-level control channel of the second group of two-level control channels.
  • the first control channel in the second group of two-level control channels shown in FIG. 2 may be used to carry related control information for receiving the DCI #4, and may also be used to carry other related information.
  • the present invention The embodiment is not limited thereto, and the specific content will be described in detail later.
  • two control channels and data channels may at least partially overlap in the time domain, and a partial period in a period corresponding to the second-level control channel partially coincides with a period corresponding to the first-level control channel.
  • the partial period in the period corresponding to the data channel partially coincides with the period corresponding to the second level control channel.
  • the method for data transmission in the embodiment of the present invention when the terminal device fails to correctly acquire the first transport block by decoding in the first time period, may be sent by the network device in the second time period after the first time period.
  • the first encoded information of the first transport block is decoded, that is, by decoding the first encoded information transmitted in a second time period after the first set of two-level control channels corresponding to the first transport block,
  • the embodiment is more effective in reducing the probability of packet loss of data.
  • the first level control channel of the second group of two-level control channels shown in FIG. 2 can be used to carry related control information for receiving the DCI #4, as follows:
  • the method further includes:
  • the network device sends a third DCI to the terminal device on the third downlink control channel, and the time period corresponding to the third downlink control channel belongs to the second time period;
  • the network device sends a second transport block to the terminal device on the second downlink data channel indicated by the third DCI, where the time period corresponding to the second downlink data channel belongs to the second time period;
  • the fourth DCI further includes second encoding information, which is used to indicate a second encoding mode of the second transport block, where the second transport block is a retransmission of the first transport block.
  • the period corresponding to the third downlink control channel (in order to facilitate differentiation and understanding, denoted as the period #E) is smaller than the length of the period #2, and the period corresponding to the second downlink data channel (for the purpose of distinguishing and understanding) , the length of the period #F) is less than the length of the period #2, and the period #E and the period #F belong to the period #2;
  • the third downlink control channel may be a first level control channel in the second group two-level control channel
  • the second downlink data channel may be a second group two-level control channel
  • the period #E may be a period corresponding to the first level control channel in the second group two-level control channel
  • the period #F may be a period corresponding to the data channel in the second group two-level control channel .
  • the third DCI (referred to as DCI #3 for convenience of distinction and understanding) includes indication information for transmitting time-frequency resources of transport block #2 (referred to as time-frequency resource #2 for convenience of distinction and understanding), the terminal The device receives the transport block #2 on the second downlink data channel, that is, the terminal device receives the transport block #2 on the time-frequency resource #2; meanwhile, the DCI #3 includes the second encoded information (in order to For easy distinction and understanding, it is recorded as coded information #2), and the coded information #2 is used to indicate the second coding mode of the transport block #2 (for convenience of distinction and understanding, it is recorded as coding mode #2), so that the terminal The device can decode according to the encoded information #2 to obtain the transport block #2.
  • the terminal device when the terminal device fails to correctly acquire the transport block #1 through the DCI #2, when the network device transmits the retransmission transport block of the transport block #1 in the second group two-level control channel, the terminal device may The transport block #1 is obtained by merge decoding.
  • the transport block #2 is a retransmission of the transport block #1, so that the terminal device performs combined decoding according to the encoded information #1 and the encoded information #2, thereby obtaining the transmission.
  • Block #1 (or the transport block #2).
  • the terminal device can be combined and decoded according to the first coding information and the second coding information, so that the accuracy of the decoding can be effectively improved, thereby correctly acquiring the first transmission block (or the second transmission block).
  • the DCI #3 can not only indicate the second downlink data channel, but also the fourth downlink control channel, that is, the terminal device can be on the fourth downlink control channel indicated by the DCI #3. Receive the DCI #4.
  • the fourth downlink control channel may be indicated by the DCI #3, and the fourth downlink control channel may be indicated by the high layer signaling (for example, RRC signaling), and the embodiment of the present invention is not limited thereto.
  • the high layer signaling for example, RRC signaling
  • the network device may not transmit DCI #3, and after transmitting DCI #1 and DCI #2, only DCI #4 is transmitted. Similarly, if the transport block #1 is not obtained by using the coding information for the transport block #1 in DCI #4, the coded information for the transport block #1 is transmitted on the second-level control channel of the next two-level control channel. Until the terminal device decodes successfully or the number of transmissions exceeds the number of transmissions specified by the system.
  • the first encoding information includes first redundancy version information for the first transport block and first data indication information
  • the second encoding information includes second redundancy version information and the second transmission block
  • the first data indication information is used to indicate whether the first transmission block is a retransmission of a transport block sent by the network device on a third downlink data channel, where a time period corresponding to the third downlink data channel is located Before the first time period
  • the second data indication information is used to indicate whether the second transmission block is a retransmission of the first transmission block.
  • the first redundancy version information (referred to as redundancy version information #1 for convenience of distinction and understanding) and the first data indication information (referred to as data indication information #1 for convenience of distinction and understanding) may be used Determining the coding rate of the transport block #1, that is, the ratio between the number of bits of the transport block #1 indicated by the data indication information #1 and the number of bits of the RV number #1 indicated by the RV information #1 is the transport block # The coding rate of 1; similarly, the second redundancy version information (remembered as redundancy version information #2 for ease of distinction and understanding) and the second data indication information (for convenience of distinction and understanding, recorded as data indication information #2 Can be used to determine the coding rate of transport block #2, that is, the ratio between the number of bits of transport block #2 indicated by data indication information #2 and the number of bits of RV number #2 indicated by RV information #2 The transmission rate of block #2 is transmitted.
  • redundancy version information #1 the ratio between the number of bits of the transport block #1 indicated by the data indication information #1 and the number of bits of the RV number #1 indicated
  • the terminal device performs combined decoding according to the encoding information #1 and the encoding information #2 to obtain the transport block #1, including:
  • the terminal device determines, according to the data indication information #1 and the data indication information #2, that the transport block #2 is a retransmission of the transport block #1;
  • the terminal device performs combined decoding according to the redundancy version information #1 and the redundancy version information #2 to obtain the transport block #1.
  • the terminal device may compare the data indication information #1 with the data indication information #2: if the data indication information #2 is different from the data indication information #1, the transport block #2 is not the transport block #1.
  • the retransmission is a new transport block; if the data indication information #2 is the same as the data indication information #1, the transport block #2 is a retransmission of the transport block #1.
  • the data transmission instruction #1 and the data indication information #2 are both 1 bit as an example to describe whether the transmission block is a retransmission.
  • the transport block #2 is not a retransmission of the transport block #1, and is a new transport block; if the data indication information #2 is ⁇ 0 ⁇ , transport block #2 is a retransmission of transport block #1.
  • the transport block #2 is not a retransmission of the transport block #1, and is a new transport block; if the data indicates the information # 2 is ⁇ 1 ⁇ , then transport block #2 is a retransmission of transport block #1.
  • the terminal device After determining that the transport block #2 is the retransmission of the transport block #1, the terminal device decodes according to the RV number #1 indicated by the RV information #1 and the RV number #2 indicated by the RV information #2: RV number #1 is the same as RV number #2, indicating that the coding rate of transport block #1 and transport block #2 is the same, and can be combined and decoded by means of Chase Combining (CC), if RV number #1 and If the RV number #2 is different, it means that the coding rate of the transport block #1 and the transport block #2 are different, and the merge decoding can be performed by means of Incremental Redundancy (IR).
  • CC Chase Combining
  • the CC mode and the IR mode used for the combination decoding are the same as or similar to the prior art, and are not described herein again.
  • the first DCI further includes first modulation information of the first transport block, where the first modulation information is used to indicate a modulation mode of the first transport block;
  • the terminal device demodulates the first data signal according to the first modulation information.
  • the object to be decoded by the terminal device is the data signal demodulated by the data signal #1A (for convenience of distinction and understanding, denoted as data signal #1B), then the terminal device targets the data signal #
  • the first modulation information used for demodulation by 1A may be configured in DCI #1, and the first modulation information is used to indicate the modulation mode of the transport block #1.
  • the first modulation information may also be configured in DCI #2, and embodiments of the present invention are not limited thereto.
  • the processing object of the terminal device includes not only the data signal #1B but also the data signal corresponding to the transport block #2 (for the purpose of distinguishing and distinguishing, it is recorded as the data signal #2A).
  • the demodulated data signal (referred to as data signal #2B for convenience of distinction and distinction) is thus, and the terminal device combines and decodes the data signal #1B and the data signal #2B to obtain the transport block #1.
  • the second modulation information used by the terminal device for demodulating the data signal #1B may be configured in DCI #3, the second modulation information being used to indicate a modulation mode of the transport block #2, the transmission
  • the modulation method of block #1 may be the same as or different from the modulation method of the transport block #1.
  • the terminal device buffers the demodulated data signal of the first data signal.
  • the terminal device buffers the data signal #1B demodulated by the data signal #1, and the data signal #1B can be buffered in the ring buffer, so that the terminal device transmits in the use period #2.
  • the coded information #1 decodes the data signal #1B transmitted in the period #1, the data signal 1B can be directly acquired in the ring buffer.
  • the time period corresponding to the second downlink control channel is located after the time period corresponding to the first downlink control channel, and the time period corresponding to the first downlink data channel is located after the time period corresponding to the second downlink control channel; and or,
  • the time period corresponding to the fourth downlink control channel is located after the time period corresponding to the third downlink control channel, and the time period corresponding to the second downlink data channel is located after the time period corresponding to the fourth downlink control channel.
  • the two control channels and the data channels of the two-level control channel may at least partially coincide in the time domain.
  • More signal processing time can be provided for network devices and user devices.
  • the method for data transmission in the embodiment of the present invention is such that, in a case where the terminal device fails to correctly acquire the first transport block by decoding in the first time period, on the other hand, the network device may be second through the network device after the first time period.
  • Decoding the first encoding information of the first transport block sent in the time period that is, by using the first encoded information sent in a second time period after the first two-level control channel corresponding to the first transport block Decoding, thereby obtaining the first transport block, reducing data packet loss probability, improving data transmission efficiency, especially for data loss caused by loss of second-level control channel due to structure of two-level control channel
  • the embodiment of the invention can more effectively reduce the packet loss probability of the data;
  • the terminal device can be combined and decoded according to the first encoding information and the second encoding information, which can more effectively improve the decoding accuracy, thereby correctly acquiring the first transport block (or the second transport block).
  • the apparatus 300 comprising:
  • the receiving unit 310 is configured to receive, by the network device, the first downlink control information DCI that is sent by the network device on the first downlink control channel, where the time period corresponding to the first downlink control channel belongs to the first time period;
  • the receiving unit 310 is further configured to: receive, by using the first downlink data channel indicated by the first DCI, a first transport block that is sent by the network device, where a period corresponding to the first downlink data channel belongs to the first time period ;
  • the receiving unit 310 is further configured to receive a fourth DCI that is sent by the network device on the fourth downlink control channel, where a time period corresponding to the fourth downlink control channel belongs to a second time period, and the second time period is located after the first time period,
  • the fourth DCI includes first coding information, where the first coding information is used to indicate a first coding mode of the first transport block.
  • the processing unit 320 is configured to perform decoding according to the first encoding information received by the receiving unit 310 to obtain the first transport block.
  • step S240 in the method embodiment reference may be made to the specific description of the method for the device to use the first encoding information for decoding.
  • the apparatus for data transmission in the embodiment of the present invention when the apparatus fails to correctly acquire the first transport block by decoding in the first time period, may be sent by the network device in the second time period after the first time period.
  • Decoding the first encoded information of the first transport block that is, translating the first encoded information sent by the network device in a second time period after the first set of two-level control channels corresponding to the first transport block Code, thereby obtaining the first transport block, reducing data packet loss probability, improving data transmission efficiency, especially for data loss caused by loss of second-level control channel due to structure of two-level control channel,
  • the embodiment of the invention is more effective in reducing the probability of packet loss of data.
  • processing unit 320 is specifically configured to:
  • the receiving unit 310 When the receiving unit 310 receives the second DCI that is sent by the network device on the second downlink control channel according to the first DCI, performing decoding according to the first encoding information to obtain the first transport block, where the The period corresponding to the second downlink control channel belongs to the first period, and the second DCI includes the first encoding information.
  • the receiving unit 310 is further configured to:
  • the fourth DCI further includes second encoding information, where the second encoding information is used to indicate a second encoding manner of the second transport block, where the second transport block is a retransmission of the first transport block;
  • the processing unit 320 is specifically configured to:
  • the apparatus can be combined and decoded according to the first encoding information and the second encoding information, and the decoding accuracy can be more effectively improved, thereby correctly acquiring the first transport block (or the second transport block).
  • the first encoding information includes first redundancy version information and first data indication information for the first transport block
  • the second encoding information includes a second redundancy version for the second transport block
  • the information and the second data indication information the first data indication information is used to indicate whether the first transport block is a retransmission of a transport block sent by the network device on a third downlink data channel, where the third downlink data channel corresponds to
  • the second data indication information is used to indicate whether the second transport block is a retransmission of the first transport block, and the time period is before the first time period;
  • the processing unit 320 is specifically configured to:
  • the specific process for the device to perform the decoding by using the first encoding information and the second encoding information may refer to the specific manner in which the terminal device in the method embodiment performs decoding by using the first encoding information and the second encoding information. The process is not repeated here.
  • the first DCI further includes first modulation information of the first transport block, where the first modulation information is used to indicate a modulation mode of the first transport block;
  • the receiving unit 310 is specifically configured to:
  • processing unit 320 is further configured to:
  • the data signal demodulated by the first data signal is buffered.
  • the time period corresponding to the second downlink control channel is located after the time period corresponding to the first downlink control channel, and the time period corresponding to the first downlink data channel is located after the time period corresponding to the second downlink control channel; and or,
  • the time period corresponding to the fourth downlink control channel is located after the time period corresponding to the third downlink control channel, and the time period corresponding to the second downlink data channel is located after the time period corresponding to the fourth downlink control channel.
  • the device 300 for data transmission may correspond to the terminal device of the method of the embodiment of the present invention, and the modules and the other operations and/or functions in the device 300 of the data transmission are respectively implemented to implement the method 200.
  • the corresponding process performed by the terminal device is not cumbersome here for the sake of brevity.
  • the apparatus for data transmission in the embodiment of the present invention is such that, in the case that the apparatus fails to correctly acquire the first transport block by decoding in the first time period, on the other hand, the network device may be second after the first time period by the network device.
  • Decoding the first encoding information of the first transport block sent in the time period that is, by using the first encoded information sent in a second time period after the first two-level control channel corresponding to the first transport block Decoding, thereby obtaining the first transport block, reducing data packet loss probability, improving data transmission efficiency, especially for data loss caused by loss of second-level control channel due to structure of two-level control channel
  • the embodiment of the invention can more effectively reduce the packet loss probability of the data;
  • the apparatus can be combined and decoded according to the first encoding information and the second encoding information, which can more effectively improve the decoding accuracy, thereby correctly acquiring the first transport block (or the second transport block). .
  • FIG. 5 depicts an apparatus for data transmission in accordance with an embodiment of the present invention, the apparatus 400 comprising:
  • the sending unit 410 is configured to send, by using the first downlink control channel, the first downlink control information DCI to the terminal device, where the time period corresponding to the first downlink control channel belongs to the first time period;
  • the sending unit 410 is further configured to: send, by using the first downlink data channel, the first downlink data channel to the terminal device, where the time period corresponding to the first downlink data channel belongs to the first time period;
  • the sending unit 410 is further configured to: send, on the fourth downlink control channel, a fourth DCI to the terminal device, where a time period corresponding to the fourth downlink control channel belongs to a second time period, where the second time period is after the first time period,
  • the fourth DCI includes first coding information, where the first coding information is used to indicate a first coding mode of the first transport block.
  • the apparatus for data transmission in the embodiment of the present invention when the terminal device fails to correctly acquire the first transport block by decoding in the first time period, may be sent by the device in the second time period after the first time period.
  • the first encoded information of the first transport block is decoded, that is, by decoding the first encoded information transmitted in a second time period after the first set of two-level control channels corresponding to the first transport block,
  • the embodiment is more effective in reducing the probability of packet loss of data.
  • the sending unit 410 is further configured to:
  • the second DCI is sent to the terminal device on the second downlink control channel indicated by the first DCI, where a period corresponding to the second downlink control channel belongs to the first time period, and the second DCI includes the first coded information.
  • the sending unit 410 is further configured to:
  • the fourth DCI further includes second encoding information, where the second encoding information is used to indicate a second encoding manner of the second transport block, where the second transport block is a retransmission of the first transport block.
  • the terminal device can be combined and decoded according to the first coding information and the second coding information, so that the accuracy of the decoding can be effectively improved, thereby correctly acquiring the first transmission block (or the second transmission block).
  • the first encoding information includes first redundancy version information and first data indication information for the first transport block
  • the second encoding information includes second redundancy version information for the second transport block
  • a second data indication information where the first data indication information is used to indicate whether the first transmission block is a retransmission of a transport block sent by the network device on a third downlink data channel, where a time period corresponding to the third downlink data channel is located Before the first time period, the second data indication information is used to indicate whether the second transmission block is a retransmission of the first transmission block.
  • the first DCI further includes first modulation information of the first transport block, where the first modulation information is used to indicate a modulation mode of the first transport block.
  • the time period corresponding to the second downlink control channel is located after the time period corresponding to the first downlink control channel, and the time period corresponding to the first downlink data channel is located after the time period corresponding to the second downlink control channel; and or,
  • the time period corresponding to the fourth downlink control channel is located after the time period corresponding to the third downlink control channel, and the time period corresponding to the second downlink data channel is located after the time period corresponding to the fourth downlink control channel.
  • the device 400 for data transmission may correspond to the network device of the method of the embodiment of the present invention, and each unit in the device 400 of the data transmission, that is, the module and the other operations and/or functions described above are respectively implemented to implement the method 200.
  • the corresponding process performed by the network device is not cumbersome here for the sake of brevity.
  • the apparatus for data transmission in the embodiment of the present invention in a case where the terminal device fails to correctly acquire the first transport block by decoding in the first time period, on the other hand, may be the second device after the first time period by the device Decoding the first encoding information of the first transport block sent in the time period, that is, by using the first encoded information sent in a second time period after the first two-level control channel corresponding to the first transport block Decoding, thereby obtaining the first transport block, reducing data packet loss probability, improving data transmission efficiency, especially for data loss caused by loss of second-level control channel due to structure of two-level control channel
  • the embodiment of the invention can more effectively reduce the packet loss probability of the data;
  • the terminal device can be combined and decoded according to the first encoding information and the second encoding information, which can more effectively improve the decoding accuracy, thereby correctly acquiring the first transport block (or the second transport block).
  • FIG. 6 shows a terminal device 500 for data transmission according to an embodiment of the present invention.
  • the terminal device 500 includes:
  • the memory 530 is configured to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • Memory 530 can include read only memory and random access memory and provides instructions and data to processor 510.
  • the memory 530 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor 510 executes a program stored in the memory 530 to control the transceiver 520 to receive signals or transmit signals.
  • the memory 530 can be integrated in the processor 510 or can be independent of the processor 510.
  • the transceiver 520 is configured to:
  • the network device And receiving, by the network device, the first downlink control information DCI sent by the first downlink control channel, where the time period corresponding to the first downlink control channel belongs to the first time period;
  • a fourth DCI sent on the fourth downlink control channel where the time period corresponding to the fourth downlink control channel belongs to a second time period, where the second time period is after the first time period, where the fourth DCI includes An encoding information, the first encoding information is used to indicate a first encoding mode of the first transport block;
  • the processor 510 is configured to:
  • step S240 in the method embodiment, which is not specifically described herein.
  • the terminal device for data transmission in the embodiment of the present invention when the terminal device fails to correctly acquire the first transport block by decoding in the first time period, may be in the second time period after the first time period by the network device.
  • Decoding the first encoded information of the first transport block transmitted therein that is, by translating the first encoded information sent in a second time period after the first two-level control channel corresponding to the first transport block.
  • the code thereby obtaining the first transport block, reduces the packet loss probability of the data, improves the data transmission efficiency, and in particular, the data loss caused by the loss of the second-level control channel due to the structure of the two-level control channel,
  • the embodiment of the invention can more effectively reduce the packet loss probability of data.
  • processor 510 is specifically configured to:
  • the transceiver 520 When the transceiver 520 receives the second DCI that is sent by the network device on the second downlink control channel according to the first DCI, the transceiver 520 performs decoding according to the first encoded information to obtain the first transport block, where the The period corresponding to the second downlink control channel belongs to the first period, and the second DCI includes the first encoding information.
  • the transceiver 520 is further configured to:
  • the fourth DCI further includes second encoding information, where the second encoding information is used to indicate a second encoding manner of the second transport block, where the second transport block is a retransmission of the first transport block;
  • the processor 510 is specifically configured to:
  • the terminal device can be combined and decoded according to the first encoding information and the second encoding information, and the decoding accuracy can be effectively improved, thereby correctly acquiring the first transport block (or the second transport block).
  • the first encoding information includes first redundancy version information and first data indication information for the first transport block
  • the second encoding information includes second redundancy version information for the second transport block
  • a second data indication information where the first data indication information is used to indicate whether the first transmission block is a retransmission of a transport block sent by the network device on a third downlink data channel, where a time period corresponding to the third downlink data channel is located Before the first time period, the second data indication information is used to indicate whether the second transport block is a retransmission of the first transport block;
  • the processor 510 is specifically configured to:
  • the specific process for the terminal device to decode the first coded information and the second coded information may be used by the terminal device in the method embodiment to decode the first coded information and the second coded information.
  • the specific process will not be described here.
  • the first DCI further includes first modulation information of the first transport block, where the first modulation information is used to indicate a modulation mode of the first transport block;
  • the transceiver 520 is specifically configured to:
  • processor 510 is further configured to:
  • the data signal demodulated by the first data signal is buffered.
  • the time period corresponding to the second downlink control channel is located after the time period corresponding to the first downlink control channel, and the time period corresponding to the first downlink data channel is located after the time period corresponding to the second downlink control channel; and or,
  • the time period corresponding to the fourth downlink control channel is located after the time period corresponding to the third downlink control channel, and the time period corresponding to the second downlink data channel is located after the time period corresponding to the fourth downlink control channel.
  • Embodiments of the invention may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in a form of software.
  • the processor 510 may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc.; or may be a digital signal processor (DSP) or an application specific integrated circuit (ASIC). ), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP network processor
  • ASIC application specific integrated circuit
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 530, and processor 510 reads the information in memory 530 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the terminal device 500 for data transmission may correspond to a terminal device of the method 200 according to an embodiment of the present invention, or may correspond to the device 300 according to an embodiment of the present invention, and the terminal device 500 of the data transmission
  • the modules and the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes performed by the terminal device in the method 200, and are not burdened here for the sake of brevity.
  • the network device may be after the first time period. Decoding the first encoding information of the first transport block transmitted in the second period, that is, by transmitting the first encoded information in a second period after the first group of two-level control channels corresponding to the first transport block Decoding, thereby obtaining the first transport block, reducing data packet loss probability, improving data transmission efficiency, especially for data loss caused by loss of second-level control channel due to structure of two-level control channel
  • the embodiment of the present invention can more effectively reduce the packet loss probability of the data;
  • the terminal device can be combined and decoded according to the first encoding information and the second encoding information, which can more effectively improve the decoding accuracy, thereby correctly acquiring the first transport block (or the second transport block).
  • FIG. 7 shows a network device 600 for data transmission according to an embodiment of the present invention.
  • the network device 600 includes:
  • the memory 630 is configured to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • Memory 630 can include read only memory and random access memory and provides instructions and data to processor 610.
  • the memory 630 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor 610 executes a program stored in the memory 630 to control the transceiver 620 to receive signals or transmit signals.
  • the memory 630 can be integrated in the processor 610 or can be independent of the processor 610.
  • the transceiver 620 is configured to:
  • a fourth DCI transmitting, on the fourth downlink control channel, a fourth DCI, where the time period corresponding to the fourth downlink control channel belongs to a second time period, where the second time period is after the first time period, where the fourth DCI includes An encoding information, the first encoding information being used to indicate a first encoding mode of the first transport block.
  • the network device for data transmission in the embodiment of the present invention when the terminal device fails to correctly acquire the first transport block by decoding in the first time period, may pass the network device in the second time period after the first time period.
  • Decoding the first encoded information of the first transport block transmitted therein that is, by translating the first encoded information sent in a second time period after the first two-level control channel corresponding to the first transport block.
  • the code thereby obtaining the first transport block, reduces the packet loss probability of the data, improves the data transmission efficiency, and in particular, the data loss caused by the loss of the second-level control channel due to the structure of the two-level control channel,
  • the embodiment of the invention can more effectively reduce the packet loss probability of data.
  • the transceiver 620 is further configured to:
  • the second DCI is sent to the terminal device on the second downlink control channel indicated by the first DCI, where a period corresponding to the second downlink control channel belongs to the first time period, and the second DCI includes the first coded information.
  • the transceiver 620 is further configured to:
  • the fourth DCI further includes second encoding information, where the second encoding information is used to indicate a second encoding manner of the second transport block, where the second transport block is a retransmission of the first transport block.
  • the terminal device can be combined and decoded according to the first coding information and the second coding information, so that the accuracy of the decoding can be effectively improved, thereby correctly acquiring the first transmission block (or the second transmission block).
  • the first encoding information includes first redundancy version information and first data indication information for the first transport block
  • the second encoding information includes second redundancy version information for the second transport block
  • a second data indicating information where the first data indicating information is used to indicate whether the first transport block is a retransmission of a transport block sent by the network device on a third downlink data channel, and a time period corresponding to the third downlink data channel Before the first time period, the second data indication information is used to indicate whether the second transport block is a retransmission of the first transport block.
  • the first DCI further includes first modulation information of the first transport block, where the first modulation information is used to indicate a modulation mode of the first transport block.
  • the time period corresponding to the second downlink control channel is located after the time period corresponding to the first downlink control channel, and the time period corresponding to the first downlink data channel is located after the time period corresponding to the second downlink control channel; and or,
  • the time period corresponding to the fourth downlink control channel is located after the time period corresponding to the third downlink control channel, and the time period corresponding to the second downlink data channel is located after the time period corresponding to the fourth downlink control channel.
  • Embodiments of the invention may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the processor 610 may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc.; or may be a digital signal processor (DSP) or an application specific integrated circuit (ASIC). ), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP network processor
  • ASIC application specific integrated circuit
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 630, and the processor 610 reads the information in the memory 630 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the network device 600 for data transmission may correspond to a network device of the method 200 according to an embodiment of the present invention, and may also correspond to the device 400 according to an embodiment of the present invention, and the network device 600 of the data transmission
  • the modules and the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes performed by the network device in the method 200, and are not cumbersome here for brevity.
  • the network device when the terminal device fails to correctly acquire the first transport block by decoding in the first time period, on the other hand, the network device may be after the first time period.
  • Decoding the first encoding information of the first transport block transmitted in the second period that is, by transmitting the first encoded information in a second period after the first group of two-level control channels corresponding to the first transport block Decoding, thereby obtaining the first transport block, reducing data packet loss probability, improving data transmission efficiency, especially for data loss caused by loss of second-level control channel due to structure of two-level control channel
  • the embodiment of the present invention can more effectively reduce the packet loss probability of the data;
  • the terminal device can be combined and decoded according to the first encoding information and the second encoding information, which can more effectively improve the decoding accuracy, thereby correctly acquiring the first transport block (or the second transport block).
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种数据传输的方法,该方法包括:终端设备接收网络设备在第一下行控制信道上发送的第一下行控制信息DCI;该终端设备在该第一DCI所指示的第一下行数据信道上,接收该网络设备发送的第一传输块;该终端设备接收该网络设备在第四下行控制信道上发送的第四DCI,其中,该第四DCI包括第一编码信息,该第一编码信息用于指示该第一传输块的第一编码方式;该终端设备根据该第一编码信息进行译码,以获得该第一传输块。这样,能够减少了数据的丢包概率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率。

Description

一种数据传输的方法和装置
本申请要求于2017年2月6日提交中国专利局、申请号为201710065943.6、申请名称为“一种数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种数据传输的方法和装置。
背景技术
下一代无线通信系统中的控制信道为两级控制信道,该两级控制信道包括第一级控制信道和第二级控制信道,相应地,在下行传输中,下行控制信息DCI也包括第一DCI和第二DCI,其中,该第一级控制信道中承载该第一DCI,该第一DCI可以包括资源指示信息等,该第二级控制信道中承载第二DCI,该第二DCI可以包括与传输块的编码信息相关的指示信息等,该第一DCI和该第二DCI用于共同指示终端设备接收同一个传输块对应的数据信号。
当基站向终端设备发送数据信号后,终端设备需要根据该第一DCI和该第二DCI针对该数据信号进行解调译码,从而获得该传输块。因而,终端设备能够获得该传输块的前提是,终端设备能够正确接收该第一DCI和该第二DCI。
但是,由于系统中存在的两级控制信道,第二DCI只有在第一DCI正确接收后才能接收,与支持单级控制信道的通信系统比较而言,支持两级控制信道的通信系统中的DCI的丢包概率要大于支持单级控制信道的通信系统。这样,两级控制信道的结构会导致数据的丢包概率增大,从而严重影响了数据传输的可靠性,进而影响了数据传输效率。
因而,如何减少由于两级控制信道的结构引起的数据的丢包概率增大的问题,已成为业界亟需解决的问题。
发明内容
本发明实施例提供一种数据传输的方法和装置,能够减少了数据的丢包概率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率。
第一方面,提供了一种数据传输的方法,所述方法包括:
终端设备接收网络设备在第一下行控制信道上发送的第一下行控制信息DCI,所述第一下行控制信道对应的时段属于第一时段;
所述终端设备在所述第一DCI所指示的第一下行数据信道上,接收所述网络设备发送的第一传输块,所述第一下行数据信道对应的时段属于所述第一时段;
所述终端设备接收所述网络设备在第四下行控制信道上发送的第四DCI,所述第四下 行控制信道对应的时段属于第二时段,所述第二时段位于所述第一时段之后,其中,所述第四DCI包括第一编码信息,所述第一编码信息用于指示所述第一传输块的第一编码方式;
所述终端设备根据所述第一编码信息进行译码,以获得所述第一传输块。
因而,本发明实施例的数据传输的方法,使得终端设备在第一时段内未能通过译码正确获取第一传输块的情况下,可以通过网络设备在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得上述第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率。
结合第一方面,在第一方面的第一种实现方式中,所述终端设备根据所述第一编码信息进行译码,以获得所述第一传输块,包括:
在所述终端设备根据所述第一DCI接收所述网络设备在第二下行控制信道上发送的第二DCI失败时,所述终端设备根据所述第一编码信息进行译码,以获得所述第一传输块,其中,所述第二下行控制信道对应的时段属于所述第一时段,所述第二DCI包括所述第一编码信息。
结合第一方面,在第一方面的第二种实现方式中,所述方法还包括:
所述终端设备接收所述网络设备在第三下行控制信道上发送的第三DCI,所述第三下行控制信道对应的时段属于所述第二时段;
所述终端设备在所述第三DCI所指示的第二下行数据信道上,接收所述网络设备发送的第二传输块,所述第二下行数据信道对应的时段属于所述第二时段;以及,
所述第四DCI还包括第二编码信息,所述第二编码信息用于指示所述第二传输块的第二编码方式,所述第二传输块为所述第一传输块的重传;以及,
所述终端设备根据所述第一编码信息进行译码,以获得所述第一传输块,包括:
所述终端设备根据所述第一编码信息和所述第二编码信息进行合并译码,以获得所述第一传输块。
这样,可以使得终端设备根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
结合第一方面,在第一方面的第三种实现方式中,所述第一编码信息包括针对所述第一传输块的第一冗余版本信息和第一数据指示信息,所述第二编码信息包括针对所述第二传输块的第二冗余版本信息和第二数据指示信息,所述第一数据指示信息用于指示所述第一传输块是否为所述网络设备在第三下行数据信道上发送的传输块的重传,所述第三下行数据信道对应的时段位于所述第一时段之前,所述第二数据指示信息用于指示所述第二传输块是否为所述第一传输块的重传;以及,
所述终端设备根据所述第一编码信息和所述第二编码信息进行合并译码,以获得所述第一传输块,包括:
所述终端设备根据所述第一数据指示信息和所述第二数据指示信息,确定所述第二传输块为所述第一传输块的重传;
所述终端设备根据所述第一冗余版本信息和所述第二冗余版本信息进行合并译码,以 获得所述第一传输块。
结合第一方面,在第一方面的第四种实现方式中,所述第一DCI还包括所述第一传输块的第一调制信息,所述第一调制信息用于指示所述第一传输块的调制方式;以及,
所述终端设备在所述第一DCI所指示的第一下行数据信道上,接收所述网络设备发送的第一传输块,包括:
所述终端设备在所述第一下行数据信道上,接收所述网络设备发送的第一数据信号,其中,所述第一数据信号是所述网络设备对所述第一传输块进行编码调制后生成的;
所述终端设备根据所述第一调制信息,对所述第一数据信号进行解调。
结合第一方面,在第一方面的第五种实现方式中,所述方法还包括:所述终端设备将所述第一数据信号进行解调后的数据信号进行缓存。
结合第一方面,在第一方面的第六种实现方式中,所述第二下行控制信道对应的时段位于所述第一下行控制信道对应的时段之后,所述第一下行数据信道对应的时段位于所述第二下行控制信道对应的时段之后;和/或,
所述第四下行控制信道对应的时段位于所述第三下行控制信道对应的时段之后,所述第二下行数据信道对应的时段位于所述第四下行控制信道对应的时段之后。
这样,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为网络设备和终端设备提供更多的信号处理时间。
第二方面,提供了一种数据传输的方法,所述方法包括:
网络设备在第一下行控制信道上,向终端设备发送第一下行控制信息DCI,所述第一下行控制信道对应的时段属于第一时段;
所述网络设备在所述第一DCI所指示的第一下行数据信道上,向所述终端设备发送第一传输块,所述第一下行数据信道对应的时段属于所述第一时段;
所述网络设备在第四下行控制信道上,向所述终端设备发送第四DCI,所述第四下行控制信道对应的时段属于第二时段,所述第二时段位于所述第一时段之后,其中,所述第四DCI包括第一编码信息,所述第一编码信息用于指示所述第一传输块的第一编码方式。
因而,本发明实施例的数据传输的方法,使得终端设备在第一时段内未能通过译码正确获取第一传输块的情况下,可以通过网络设备在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得上述第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率。
结合第二方面,在第二方面的第一种实现方式中,所述方法还包括:
所述网络设备在所述第一DCI所指示的第二下行控制信道上,向所述终端设备发送第二DCI,所述第二下行控制信道对应的时段属于所述第一时段,所述第二DCI包括所述第一编码信息。
结合第二方面,在第二方面的第二种实现方式中,所述方法还包括:
所述网络设备在第三下行控制信道上,向所述终端设备发送第三DCI,所述第三下行控制信道对应的时段属于所述第二时段;
所述网络设备在所述第三DCI所指示的第二下行数据信道上,向所述终端设备发送第 二传输块,所述第二下行数据信道对应的时段属于所述第二时段;以及,
所述第四DCI还包括第二编码信息,所述第二编码信息用于指示所述第二传输块的第二编码方式,所述第二传输块为所述第一传输块的重传。
这样,可以使得终端设备根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
结合第二方面,在第二方面的第三种实现方式中,所述第一编码信息包括针对所述第一传输块的第一冗余版本信息和第一数据指示信息,所述第二编码信息包括针对所述第二传输块的第二冗余版本信息和第二数据指示信息,所述第一数据指示信息用于指示所述第一传输块是否为所述网络设备在第三下行数据信道上发送的传输块的重传,所述第三下行数据信道对应的时段位于所述第一时段之前,所述第二数据指示信息用于指示所述第二传输块是否为所述第一传输块的重传。
结合第二方面,在第二方面的第四种实现方式中,所述第一DCI还包括所述第一传输块的第一调制信息,所述第一调制信息用于指示所述第一传输块的调制方式。
结合第二方面,在第二方面的第五种实现方式中,所述第二下行控制信道对应的时段位于所述第一下行控制信道对应的时段之后,所述第一下行数据信道对应的时段位于所述第二下行控制信道对应的时段之后;和/或,
所述第四下行控制信道对应的时段位于所述第三下行控制信道对应的时段之后,所述第二下行数据信道对应的时段位于所述第四下行控制信道对应的时段之后。
这样,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为网络设备和终端设备提供更多的信号处理时间。
第三方面,提供了一种数据传输的装置,该装置可以用来执行第一方面及第一方面的任意可能的实现方式中的终端设备的操作。具体地,该装置可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的操作的模块单元。
第四方面,提供了一种数据传输的装置,该装置可以用来用于执行第二方面及第二方面的任意可能的实现方式中的网络设备的操作。具体地,该装置可以包括用于执行第二方面及第二方面的任意可能的实现方式中的网络设备的操作的模块单元。
第五方面,提供了一种数据传输的终端设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第三方面提供的装置。
第六方面,提供了一种数据传输的网络设备,该网络设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该网络设备执行第二方面或第二方面的任意可能的实现方式中的方法,或者该执行使得该网络设备实现第四方面提供的装置。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面及第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包 括用于执行第二方面及第二方面的任意可能的实现方式中的方法的指令。
附图说明
图1是应用于本发明实施例的数据传输的通信系统的示意图
图2是应用于本发明实施例的两级控制信道的结构示意图。
图3是根据本发明实施例的数据传输的方法的示意性流程图。
图4是根据本发明实施例的数据传输的装置的示意性框图。
图5是根据本发明实施例的数据传输的装置的示意性框图。
图6是根据本发明实施例的数据传输的终端设备的示意性结构图。
图7是根据本发明实施例的数据传输的网络设备的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本发明实施例可以应用于各种通信系统,如全球移动通讯(Global System for Mobile Communication,GSM),宽带码分多址(Wideband Code Division Multiple Access,WCDMA),LTE等系统中,所支持的通信主要是针对语音和数据通信的。通常来说,一个传统基站支持的连接数有限,也易于实现。
下一代移动通信系统使未来移动数据流量增长、海量物联网、多样化的新业务和应用场景成为可能。除了充当一个统一的连接框架外,新一代蜂窝网络的基础5G新空口(5th Generation New Radio,5G NR)还有望将网络的数据速度、容量、时延、可靠性、效率和覆盖能力都提升到全新水平,并将充分利用每一比特的可用频谱资源。同时,基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)新空口设计的5G将会成为全球标准,支持5G设备,多样化的部署,涵盖多样化的频谱(包括对低频段和高频段的覆盖),还要支持多样化的服务及终端。
本发明实施例结合终端设备描述了各个实施例。终端设备也可以称为用户设备(User Equipment,UE)用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线 本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
此外,本发明实施例结合网络设备描述了各个实施例。网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(ACCESS POINT,AP),GSM或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
本发明实施例提供的方法和装置,可以应用于终端设备或网络设备,该终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,在本发明实施例中,传输控制信息的方法的执行主体的具体结构,本发明实施例并未特别限定,只要能够通过运行记录有本发明实施例的传输控制信息的方法的代码的程序,以根据本发明实施例的传输控制信息的方法进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本发明实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本发明实施例中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是应用于本发明实施例的数据传输的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信 的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。
具体而言,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络(Public Land Mobile Network,PLMN)网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
在下一代无线通信系统中,控制信道可以为两级控制信道,即,第一级控制信道和第二级控制信道。
下面,以下行传输为例,对应用于本发明实施例的两级控制信道进行详细说明。
首先,从两级控制信道的结构方面,以图2所示的两级控制信道的结构为例,对包括有两级控制信道的通信系统进行详细说明。
需要说明的是,本发明实施例中的传输块表示的是原始数据信息,包括一个物理层的传输块,另外,上述传输块还可以包括接入网设备对数据信息加循环冗余校验(Cyclic Redundancy Check,CRC)后的信息等,数据信号表示的是对应的传输块进行编码调制后生成的数据信号,或者,在某些方面,数据信号也可以表示的是对应的传输块进行信道编码后生成的数据信号,或者,在某些方面,数据信号也可以表示的是对应的传输块进行信道编码和加扰码后生成的数据信号。
在图2所示的时隙内,第一级控制信道承载部分下行控制信息(Downlink Control  Information,DCI)(为了便于区分与理解,记为DCI#A),第二级控制信道承载除该部分下行控制信息中另一部分DCI(为了便于区分与理解,记为DCI#B),数据信道承载传输块,也可以说,数据信道承载与该传输块对应的数据信号。该DCI#A和该DCI#B内包括的指示信息都是针对该传输块的,即,都是用于指示终端设备接收该传输块的。基站通过数据信道发送该传输块,终端设备根据该DCI#A和该DCI#B进行解调译码,以便于能够获取该传输块,更具体地说,终端设备根据该DCI#A和该DCI#B对与该传输块对应的数据信号进行解调译码,从而获得该传输块。在图2所示的时隙内的最后一个时段上,终端设备发送此次解调译码的结果的反馈应答信息:若终端设备解调译码成功,则发送肯定应答信息(Acknowledgement,ACK),若终端设备解调译码失败,则发送否定应答信息(Negative Acknowledgement,NACK)。基站在接收该反馈应答信息后,需要对该反馈应答信息进行解调译码以确定终端设备是否正确获取到该传输块,从而,根据解调译码的结果确定在下一个时隙内发送新的传输块还是旧的传输块(即,上次传输块的重传)。
为了保证数据传输的低时延指标,下一个时隙内的传输块的发送时间与上一个时隙内的反馈应答信息的发送时间之间间隔的时间间隔尽量较短。
同样以图2所示的两级控制信道的结构为例,下一个时隙内的传输块的发送时间与上一个时隙内的反馈应答信息的发送之间间隔的时间段仅仅是两级控制信道所占用的时段,这样的传输方式虽然能够降低数据传输的时延,但是,若是基站未将上一个时隙内的反馈应答信息进行解调译码,基站不能确定在下一个时隙发送的数据信息是新的数据信息还是旧的数据信息,这样,基站在发送下一个时隙的第一级控制信道之前,用于指示在下一个时隙内发送的数据信息的编码方式的编码信息是不能确定的,这样,第一级控制信道承载的DCI中无法包括该编码信息,只能在第二级控制信道承载的DCI中包括该编码信息。
下面,当在第二级控制信道承载的DCI中包括编码信息时,针对第一级控制信道中承载的DCI#A和第二级控制信道中承载的DCI#B中的内容分别做一详细说明。
DCI#A可以包括下述信息:
(1)第一资源指示信息
该第一资源指示信息用于指示终端设备接收传输块的时频资源。
具体地,包括时频资源的大小和位置,频域资源的最小调度粒度为连续的12个子载波,时域资源的最小调度粒度为N个连续的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,其中,N的取值可以为1,2,7或14,N的具体取值本发明实施例并不限制。
网络设备可以根据终端设备与网络设备间的信道质量信息确定发送数据所需的时频资源。
(2)数据标识信息
该数据标识信息用于标识本次传输的传输块。
具体地,该数据标识信息可以为混合自动重传(Hybrid Automatic Repeat Quest,HARQ)过程号,或其他可以能够唯一标识数据的标识信息。
(3)设备标识信息
该设备标识信息可以为能够唯一标识终端设备的ID信息。
具体地,该终端设备的ID信息可以作为扰码加扰在第一DCI的循环冗余码(Cyclic  Redundancy Code,CRC)上,或在第一DCI中的字段中显性指示。
例如,若第一DCI的比特序列为{n 0,n 1,…,n K-1},则根据第一DCI的比特序列生成的CRC序列为{s 0,s 1,…,s V-1},其中,若终端设备的ID为长R的比特序列{e 0,e 1,…,e V-1},则采用终端设备ID信息加扰CRC可由下式给出:
f i=(e i+s i)mod2,i∈{0,1,2,…,V-1}
则,加扰后的CRC序列表示为{f 0,f 1,…,f V-1}。
(4)调制信息
该调制信息用于指示终端设备,网络设备针对传输块进行调制时采用的调制方式。
具体地,该调制方式可以包括:QPSK,16QAM,64QAM等。
(5)第二级控制信道的相关信息
该第二级控制信道的相关信息可以包括:承载于第二级控制信道中的第二DCI的编码信息,即网络设备针对第二DCI进行编码时所使用的编码方式;第二DCI中包含的信息的比特大小;该第二级控制信道占用的单位控制信道时频资源的个数,例如,第二控制信道聚合等级的大小。
DCI#B可以包括下述信息:
(1)编码信息
该编码信息用于指示网络设备针对本次传输块进行信道编码时使用的编码方式。具体地,该编码方式可以为编码速率的大小,编码速率用于表示有用比特数与总比特数之间的关系。
该编码信息可以包括数据指示信息和冗余版本(Redundancy Version,RV)信息,该数据指示信息用于指示网络设备本次发送的传输块是否为新的传输块,该RV信息用于指示本次发送的传输块对应的RV号,通过该数据指示信息和该RV信息中的RV版本号就可以间接确定传输块的编码速率,即,数据指示信息所指示的传输块的比特数与RV号的比特数之间的比值即为传输块的编码速率。
(2)位置标识信息
该位置标识信息用于指示本次接收的传输块所对应的数据信号位于环形缓存器中的起始位置,与本次接收的传输块所对应的数据信号为网络设备针对该传输块进行信道编码后的数据信号,即,该环形缓存器用于缓存针对传输块进行信道编码后的数据信号。。
该环形缓存器中的不同起始位置对应不同的RV号,不同的RV号对应针对同一个传输块的初传或者重传。例如,初传定义RV0,第一重传定义为RV2,第二次重传定义为RV3,第三次重传定义为RV1,即冗余版本的顺序为{0,2,3,1}。
(3)第二资源指示信息
该第二资源指示信息用于指示终端设备发送反馈应答信息所使用的资源的具体取值,该资源可以是时域资源、频域资源或者码域资源中的至少一种。其中,终端设备发送反馈应答信息所使用的资源集合,可以通过高层信令,例如,无线资源控制(Radio Resource Control,RRC)信令配置给用户设备。
具体地,例如:高层信令指示该资源集合为{1,2,4},该资源集合表示,终端设备在接收到传输块后,终端设备发送反馈应答信息的时域位置与接收传输块的时域位置间隔为1个,2个或4个时隙;
若第二资源指示信息中指示的时域位置为2,则终端设备发送反馈应答信息的时域位置在接收到传输块后第二个时隙;
或者,若接收传输块的时域位置记为第n个时隙,则终端设备发送反馈应答信息的时域位置为第n+2个子帧。
类似的,频域资源和码域资源的指示方式同上述时域资源的指示方式。
应理解,上述描述的DCI#A和DCI#B中包括的相关信息仅为示意性说明,本发明实施例并不限于此。
例如,DCI#A中除了第二级控制信道的相关信息以外的信息,都可以配置在DCI#B中,同理,DCI#B中的第二资源指示信息也可以配置在DCI#A中。
除此以外,该DCI#A和DCI#B还可以包括除上述列举的信息之外的信息,本发明实施例并不限于此。
在所述描述中,当在第二级控制信道承载的DCI中包括编码信息时,终端设备在接收第二级控制信道失败时,无法采用编码信息对数据信息进行译码,从而丢失数据。
因此,本发明实施例中的包括有两级控制信道的系统,相比较于只有单级控制信道的系统,若假设每一级控制信道的丢包概率相同,保证各级控制信道都接收成功的概率要低于只有单级级控制信道的系统。
因而,由于两级控制信道的结构导致的控制信道的丢包概率增大,从而导致数据信息的丢包概率增大,严重影响了数据传输的可靠性,进而影响了数据传输效率。
为了减少由于两级控制信道的结构而导致的数据信息的丢包概率增大的问题,本发明实施例提出了一种数据传输的方法,能够有效地减少数据信息的丢包概率。
图3是从设备交互的角度示出了本发明实施例的数据传输的方法的示意性交互图。
在本发明实施例中,时段可以理解为时域资源,用于表示时域资源的时域单位可以是一个符号,或者一个迷你时隙(Mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个连续的符号(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。
同时,为了方便描述,以图2所示的两级控制信道的结构为例,将对应于同一个传输块的第一级控制信道、第二级控制信道、保护间隔和用于发送反馈应答信息的上行时频资源(记为时频资源#A)记为一组两级控制信道。
在S210中,网络设备在第一下行控制信道上,向终端设备发送第一下行控制信息DCI,该第一下行控制信道对应的时段属于第一时段。
其中,该第一下行控制信道对应的时段属于第一时段,也就是说,该第一下行控制信道对应的时段(为了便于区分和理解,记为时段#A)的长度小于第一时段(为了便于区分和理解,记为时段#1)的长度。
从而,在S210中,该终端设备接收该第一DCI(为了便于区分和理解,记为DCI#1)。
在S220中,该网络设备在该第一DCI所指示的第一下行数据信道上,向该终端设备发送第一传输块,该第一下行数据信道对应的时段属于该第一时段。
具体而言,该DCI#1中包括用于指示传输该第一下行数据信道的时频资源(为了便于区分与理解,记为时频资源#1)的指示信息,该网络设备在该DCI#1所指示的时频资源#1 上(即,该网络设备在该第一DCI所指示的第一下行数据信道上),向该终端设备发送第一传输块(为了便于区分与理解,记为传输块#1);
需要说明的是,网络设备向终端设备发送传输块#1,也可以理解为,网络设备向终端设备发送将传输块#1进行信道编码后的数据信号(为了便于区分与理解,记为数据信号#1A),换句话说,数据信号#1A中包括的比特序列包含传输块#1的比特序列。
该第一下行数据信道对应的时段属于该第一时段,也就是说,该第一下行数据信道对应的时段(为了便于区分和理解,记为时段#B)的长度小于该时段#1的长度;
该时段#1可以为一个时域单位对应的时段,即,一个迷你时隙,或者一个时隙,或者一个子帧,当然,该时段#1也可以是多个符号。
该时段#A和该时段#B都属于该时段#1,换句话说,时段#1可以是针对接收传输块#1有关的信息的发送时段,逻辑上来说,只要终端设备在该时段#1对应的下行控制信道上能够正确接收相关信息,就能够获取传输块#1。
从而,在S220中,该终端设备在成功接收该DCI#1后,在该DCI#1所指示的该第一下行数据信道上接收该传输块#1。
在S230中,该网络设备在第四下行控制信道上,向该终端设备发送第四DCI,该第四下行控制信道对应的时段属于第二时段,该第二时段位于该第一时段之后,其中,该第四DCI包括第一编码信息,该第一编码信息用于指示该第一传输块的第一编码方式。
具体而言,该第四下行控制信道对应的时段(为了便于区分与理解,记为时段#D)小于该第二时段(为了便于区分与理解,记为时段#2),同理,该时段#2可以为一个迷你时隙,或者一个时隙,或者一个子帧,当然,该时段#1也可以是多个符号。
该时段#2与该时段#1相异,且该时段#2位于该时段#1之后,也就是说,时段#D并非是系统配置的用于接收传输块#1的时段,而是属于时段#2且在时段#1之后的时段。
更具体地,以图2所示的两组两级控制信道为例,当时段#1为图2所示的两组两级控制信道中的第一组两级控制信道对应的时段时,该时段#2即为第二组两级控制信道对应的时段。
该第四DCI(为了便于区分与理解,记为DCI#4)包括第一编码信息(为了便于区分与理解,记为编码信息#1),该编码信息#1用于指示该传输块#1的第一编码方式(为了便于区分与理解,记为编码方式#1),这样,当在时段#1中接收的信息不能正确译码传输块#1时,通过在第四下行控制信道对应的时段#D中发送的编码信息#1来译码传输块#1。
从而,在S240中,终端设备根据该第一编码信息进行译码,以获得第一传输块。
具体而言,如上所述,终端设备接收传输块#1,也可以理解为接收数据信号#1A,终端设备利用编码信息#1对数据信号#1A进行处理,最终获得传输块#1。
这里,终端设备在根据编码信息#1进行译码的处理对象是对数据信号#1A进行解调后的数据信号(为了便于区分与理解,记为数据信号#1B)。
需要说明的是,在该时段#1内网络设备还会在第二下行控制信道上发送第二DCI(为了便于区分与理解,记为DCI#2),该第二下行控制信道对应的时段(为了便于区分与理解,记为时段#C),同时,该DCI#2中包括该传输块#1的编码信息#1,终端设备根据DCI#1所指示的时频资源上进行针对DCI#2的接收操作,该接收操作为接收成功(情况A)和接收失败(情况B),在本发明实施例中,无论终端设备是否接收DCI#2成功,都可以根据 网络设备在时段#2内发送的DCI#4中的编码信息#1进行译码,具体情况如下:
情况A
终端设备能够正确接收DCI#2,但是,由于信道质量较差等原因,终端设备虽然也能够利用DCI#2中的编码信息#1进行译码,但是,译码效果不佳,这样也不能正确获取传输块#1,这样,通过使用网络设备在时段#2内发送的DCI#4中的编码信息#1进行译码可以获得传输块#1。
情况B
终端设备接收DCI#2失败,终端设备无法获知编码信息#1,从而,无法获得传输块#1,这样,终端设备通过使用网络设备在时段#2内发送的DCI#4中的编码信息#1进行译码,就可以获得传输块#1,减少数据的丢包概率。
下面,以图2所示的两级控制信道的结构为例,对本发明实施例中的各个控制信道进行说明。
第一下行控制信道可以为第一组两级控制信道中的第一级控制信道,第二下行控制信道可以为第一组两级控制信道中的第二级控制信道,第一下行数据信道可以为第一组两级控制信道中的数据信道;对应地,时段#A可以为第一组两级控制信道中的第一级控制信道对应的时段,时段#C可以为第一组两级控制信道中的第二级控制信道对应的时段,时段#B可以为第一组两级控制信道中的数据信道对应的时段。
第四下行控制信道可以为第二组两级控制信道中的第二级控制信道,对应地,时段#D可以为第二组两级控制信道中的第二级控制信道对应的时段。至于图2中所示的第二组两级控制信道中的第一级控制信道,可以用来承载用于接收该DCI#4的相关控制信息,也可以用来承载其他的相关信息,本发明实施例并不限于此,具体的内容后续进行详细说明。
应理解,图2所示的两级控制信道的结构仅为示意性说明,本发明实施例并不限于此。例如,在一组两级控制信道中,两个控制信道以及数据信道在时域上可以至少部分重合,第二级控制信道对应的时段中的部分时段与第一级控制信道对应的时段部分重合,数据信道对应的时段中的部分时段与第二级控制信道对应的时段部分重合。
因而,本发明实施例的数据传输的方法,使得终端设备在第一时段内未能通过译码正确获取第一传输块的情况下,可以通过网络设备在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得上述第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率。
如上所述,图2中所示的第二组两级控制信道中的第一级控制信道,可以用来承载用于接收该DCI#4的相关控制信息,具体如下:
可选地,该方法还包括:
该网络设备在第三下行控制信道上,向该终端设备发送第三DCI,该第三下行控制信道对应的时段属于该第二时段;
该网络设备在该第三DCI所指示的第二下行数据信道上,向该终端设备发送第二传输块,该第二下行数据信道对应的时段属于第二时段;以及,
该第四DCI还包括第二编码信息,该第二编码信息用于指示该第二传输块的第二编码 方式,该第二传输块为所述第一传输块的重传。
具体而言,该第三下行控制信道对应的时段(为了便于区分与理解,记为时段#E)的长度小于时段#2的长度,该第二下行数据信道对应的时段(为了便于区分与理解,记为时段#F)的长度小于时段#2的长度,该时段#E和该时段#F都属于时段#2;
更具体地,同样以图2为例,该第三下行控制信道可以为第二组两级控制信道中的第第一级控制信道,该第二下行数据信道可以为第二组两级控制信道中的数据信道;对应地,时段#E可以为第二组两级控制信道中的第一级控制信道对应的时段,时段#F可以为第二组两级控制信道中的数据信道对应的时段。
该第三DCI(为了便于区分与理解,记为DCI#3)中包括用于传输传输块#2的时频资源(为了便于区分与理解,记为时频资源#2)的指示信息,终端设备在第二下行数据信道上接收该传输块#2,也就是说,终端设备在该时频资源#2上接收该传输块#2;同时,该DCI#3中包括第二编码信息(为了便于区分与理解,记为编码信息#2),该编码信息#2用于指示该传输块#2的第二编码方式(为了便于区分与理解,记为编码方式#2),这样,该终端设备可以根据该编码信息#2进行译码,以获得该传输块#2。
实际上,当该终端设备未能通过该DCI#2正确获取传输块#1时,该网络设备在第二组两级控制信道中发送该传输块#1的重传传输块时,终端设备可以通过合并译码来获取传输块#1。
因而,在本发明实施例中,该传输块#2为该传输块#1的重传,这样,该终端设备根据该编码信息#1和该编码信息#2进行合并译码,从而获得该传输块#1(或该传输块#2)。
这样,可以使得终端设备根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
需要补充的是,该DCI#3不仅可以指示该第二下行数据信道,也可以指示该第四下行控制信道,即,该终端设备可以在该DCI#3中所指示的第四下行控制信道上接收该DCI#4。
作为示例而非限定,不仅可以通过DCI#3指示该第四下行控制信道,也可以通过高层信令(例如,RRC信令)指示该第四下行控制信道,本发明实施例并不限于此。
应理解,在终端设备利用第一编码信息进行译码时,虽然系统配置有两级控制信道,网络设备可以不发送DCI#3,在发送DCI#1和DCI#2之后,仅仅发送DCI#4,同理,若是利用DCI#4中针对传输块#1的编码信息也未能获取传输块#1,在下一组两级控制信道的第二级控制信道上发送针对传输块#1的编码信息,直到终端设备译码成功或者发送次数超过系统规定的发送次数为止。
可选地,该第一编码信息包括针对第一传输块的第一冗余版本信息和第一数据指示信息,该第二编码信息包括针对该第二传输块的第二冗余版本信息和第二数据指示信息,该第一数据指示信息用于指示该第一传输块是否为该网络设备在第三下行数据信道上发送的传输块的重传,该第三下行数据信道对应的时段位于该第一时段之前,该第二数据指示信息用于指示该第二传输块是否为该第一传输块的重传。
具体而言,第一冗余版本信息(为了便于区分与理解,记为冗余版本信息#1)和第一数据指示信息(为了便于区分与理解,记为数据指示信息#1)可以用来确定传输块#1的编码速率,即,数据指示信息#1所指示的传输块#1的比特数与RV信息#1所指示的RV号#1的比特数之间的比值即为传输块#1的编码速率;同理,第二冗余版本信息(为了便 于区分与理解,记为冗余版本信息#2)和第二数据指示信息(为了便于区分与理解,记为数据指示信息#2)可以用来确定传输块#2的编码速率,即,数据指示信息#2所指示的传输块#2的比特数与RV信息#2所指示的RV号#2的比特数之间的比值即为传输块#2的编码速率。
上述确定传输块的编码速率的具体方法和过程与现有技术类似或相同,这里不再赘述。
那么,对于终端设备来说,终端设备根据该编码信息#1和该编码信息#2进行合并译码,以获得该传输块#1,包括:
该终端设备根据该数据指示信息#1和该数据指示信息#2,确定该传输块#2为该传输块#1的重传;
该终端设备根据该冗余版本信息#1和该冗余版本信息#2进行合并译码,以获得该传输块#1.
具体而言,该终端设备可以将该数据指示信息#1和该数据指示信息#2进行比较:若数据指示信息#2与数据指示信息#1不同,则传输块#2不是传输块#1的重传,是新的传输块;若数据指示信息#2与数据指示信息#1相同,则传输块#2是传输块#1的重传。
以该数据指示信息#1和该数据指示信息#2的大小都1比特为例对上述传输块是否为重传进行详细说明。
假设,数据指示信息#1为{0},若数据指示信息#2为{1},则传输块#2不是传输块#1的重传,是新的传输块;若数据指示信息#2为{0},则传输块#2为传输块#1的重传。
同理,假设数据指示信息#1为{1},若数据指示信息#2为{0},则传输块#2不是传输块#1的重传,是新的传输块;若数据指示信息#2为{1},则传输块#2为传输块#1的重传。
在确定传输块#2为传输块#1的重传后,该终端设备根据该RV信息#1所指示的RV号#1和该RV信息#2所指示的RV号#2进行译码:若RV号#1与RV号#2相同,则表示传输块#1与传输块#2的编码速率相同,可以采用软合并(Chase Combining,CC)的方式进行合并译码,若RV号#1与RV号#2不同,则表示传输块#1与传输块#2的编码速率不同,可以采用增量冗余(Incremental Redundancy,IR)的方式进行合并译码。
上述进行合并译码使用的CC方式和IR方式与现有技术相同或相似,此处不再赘述。
可选地,该第一DCI还包括该第一传输块的第一调制信息,该第一调制信息用于指示该第一传输块的调制方式;以及,
该终端设备在该第一DCI所指示的第一下行数据信道上,接收该网络设备发送的第一传输块,包括:
该终端设备在该第一下行数据信道上,该所述网络设备发送的第一数据信号,其中,该第一数据信号是该网络设备对该第一传输块进行编码调制后生成的;
该终端设备根据该第一调制信息,对该第一数据信号进行解调。
如前所述,终端设备进行译码的对象是将数据信号#1A进行解调后的数据信号(为了便于区分与理解,记为数据信号#1B),那么,该终端设备针对该数据信号#1A进行解调所使用的第一调制信息可以配置在DCI#1中,该第一调制信息用于指示该传输块#1的调制方式。
作为示例而非限定,该第一调制信息也可以配置在DCI#2中,本发明实施例并不限于 此。
需要说明的是,在进行合并译码时,终端设备的处理对象不仅包括数据信号#1B,还包括将与传输块#2对应的数据信号(为了便于区分和区分,记为数据信号#2A)进行解调后的数据信号(为了便于区分和区分,记为数据信号#2B),这样,终端设备将数据信号#1B和数据信号#2B进行合并译码,从而获得传输块#1。
同理,这里,终端设备针对该数据信号#1B进行解调所使用的第二调制信息可以配置在DCI#3中,该第二调制信息用于指示该传输块#2的调制方式,该传输块#1的调制方式与该传输块#1的调制方式可以相同也可以不同。
可选地,该终端设备将该第一数据信号进行解调后的数据信号进行缓存。
也就是说,该终端设备在将数据信号#1进行解调后的数据信号#1B进行缓存,可以将数据信号#1B缓存于环形缓存器中,这样,终端设备在利用时段#2内发送的编码信息#1对时段#1内发送的数据信号#1B进行译码时,可以直接在环形缓存器中获取该数据信号1B。
可选地,该第二下行控制信道对应的时段位于该第一下行控制信道对应的时段之后,该第一下行数据信道对应的时段位于该第二下行控制信道对应的时段之后;和/或,
该第四下行控制信道对应的时段位于该第三下行控制信道对应的时段之后,该第二下行数据信道对应的时段位于该第四下行控制信道对应的时段之后。
如前所示,两级控制信道中的两个控制信道以及数据信道在时域上可以至少部分重合,这里,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为网络设备和用户设备提供更多的信号处理时间。
因而,本发明实施例的数据传输的方法,使得终端设备在第一时段内未能通过译码正确获取第一传输块的情况下,一方面,可以通过网络设备在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得上述第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率;
另一方面,可以使得终端设备根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
再一方面,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为网络设备和用户设备提供更多的信号处理时间。
以上,结合图1至图3详细描述了根据本发明实施例的数据传输的方法,下面,结合图4至图7描述根据本发明实施例的数据传输的装置,方法实施例所描述的技术特征同样适用于以下装置实施例。
图4描述了根据本发明实施例的数据传输的装置,该装置300包括:
接收单元310,用于接收网络设备在第一下行控制信道上发送的第一下行控制信息DCI,该第一下行控制信道对应的时段属于第一时段;
该接收单元310还用于,在该第一DCI所指示的第一下行数据信道上,接收该网络设备发送的第一传输块,该第一下行数据信道对应的时段属于该第一时段;
该接收单元310还用于,接收该网络设备在第四下行控制信道上发送的第四DCI,该第四下行控制信道对应的时段属于第二时段,该第二时段位于该第一时段之后,其中,该第四DCI包括第一编码信息,该第一编码信息用于指示该第一传输块的第一编码方式;
处理单元320,用于根据在该接收单元310接收到的该第一编码信息进行译码,以获得该第一传输块。
具体针对上述各个时段以及控制信道的描述可以参见方法实施例中关于图2的描述此处不再赘述。
同时,具体针对该装置利用该第一编码信息进行译码的多种情况可以参见方法实施例中关于步骤S240的具体描述,此处不再赘述。
因此,本发明实施例的数据传输的装置,使得该装置在第一时段内未能通过译码正确获取第一传输块的情况下,可以通过网络设备在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过网络设备在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得该第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率。
可选地,该处理单元320具体用于:
在该接收单元310根据该第一DCI接收该网络设备在第二下行控制信道上发送的第二DCI失败时,根据该第一编码信息进行译码,以获得该第一传输块,其中,该第二下行控制信道对应的时段属于该第一时段,该第二DCI包括该第一编码信息。
可选地,该接收单元310还用于:
接收该网络设备在第三下行控制信道上发送的第三DCI,该第三下行控制信道对应的时段属于该第二时段;
在该第三DCI所指示的第二下行数据信道上,接收该网络设备发送的第二传输块,该第二下行数据信道对应的时段属于该第二时段;以及,
该第四DCI还包括第二编码信息,该第二编码信息用于指示该第二传输块的第二编码方式,该第二传输块为该第一传输块的重传;以及,
该处理单元320具体用于:
根据该第一编码信息和该第二编码信息进行合并译码,以获得所述第一传输块。
这样,可以使得该装置根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
可选地,所述第一编码信息包括针对所述第一传输块的第一冗余版本信息和第一数据指示信息,该第二编码信息包括针对该第二传输块的第二冗余版本信息和第二数据指示信息,该第一数据指示信息用于指示该第一传输块是否为该网络设备在第三下行数据信道上发送的传输块的重传,该第三下行数据信道对应的时段位于该第一时段之前,该第二数据指示信息用于指示该第二传输块是否为该第一传输块的重传;以及,
该处理单元320具体用于:
根据该第一数据指示信息和该第二数据指示信息,确定该第二传输块为该第一传输块的重传;
根据该第一冗余版本信息和该第二冗余版本信息进行合并译码,以获得该第一传输块。
上述关于第四DCI中的该第一编码信息和该第二编码信息的内容的进一步描述可以参见方法实施例中关于该第一编码信息和该第二编码信息的具体描述。
同时,上述关于该装置通过该第一编码信息和该第二编码信息进行译码的具体过程可以参见方法实施例中的终端设备通过该第一编码信息和该第二编码信息进行译码的具体过程,此处不再赘述。
可选地,该第一DCI还包括该第一传输块的第一调制信息,所述第一调制信息用于指示所述第一传输块的调制方式;以及,
所述接收单元310具体用于:
在所述第一下行数据信道上,接收所述网络设备发送的第一数据信号,其中,所述第一数据信号是所述网络设备对所述第一传输块进行编码调制后生成的;
根据该第一调制信息,对该第一数据信号进行解调。
上述关于该装置根据该第一调制信息对该第一数据信号进行解调的具体过程可以参见方法实施例中的终端设备根据该第一调制信息对该第一数据信号进行解调的具体过程,此处不再赘述。
同时,上述关于该第一调制信息的相关配置可以参见方法实施例中关于该第一调制信息的描述,此处不再赘述。
可选地,该处理单元320还用于:
将该第一数据信号进行解调后的数据信号进行缓存。
可选地,该第二下行控制信道对应的时段位于该第一下行控制信道对应的时段之后,该第一下行数据信道对应的时段位于该第二下行控制信道对应的时段之后;和/或,
该第四下行控制信道对应的时段位于该第三下行控制信道对应的时段之后,该第二下行数据信道对应的时段位于该第四下行控制信道对应的时段之后。
这样,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为网络设备和终端设备提供更多的信号处理时间。
根据本发明实施例的数据传输的装置300可对应于本发明实施例的方法的终端设备,且该数据传输的装置300中的各单元即模块和上述其他操作和/或功能分别为了实现方法200中由终端设备执行的相应流程,为了简洁,此处不再累赘。
因而,本发明实施例的数据传输的装置,使得该装置在第一时段内未能通过译码正确获取第一传输块的情况下,一方面,可以通过网络设备在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得上述第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率;
另一方面,可以使得该装置根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
再一方面,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为 网络设备和用户设备提供更多的信号处理时间。
图5描述了根据本发明实施例的数据传输的装置,该装置400包括:
发送单元410,用于在第一下行控制信道上,向终端设备发送第一下行控制信息DCI,该第一下行控制信道对应的时段属于第一时段;
该发送单元410还用于,在该第一DCI所指示的第一下行数据信道上,向该终端设备发送第一传输块,该第一下行数据信道对应的时段属于该第一时段;
该发送单元410还用于,在第四下行控制信道上,向该终端设备发送第四DCI,该第四下行控制信道对应的时段属于第二时段,该第二时段位于该第一时段之后,其中,该第四DCI包括第一编码信息,该第一编码信息用于指示该第一传输块的第一编码方式。
具体针对上述各个时段以及控制信道的描述可以参见方法实施例中关于图2的描述此处不再赘述。
因而,本发明实施例的数据传输的装置,使得终端设备在第一时段内未能通过译码正确获取第一传输块的情况下,可以通过该装置在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得上述第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率。
可选地,该发送单元410还用于:
在该第一DCI所指示的第二下行控制信道上,向该终端设备发送第二DCI,该第二下行控制信道对应的时段属于该第一时段,该第二DCI包括该第一编码信息。
可选地,该发送单元410还用于:
在第三下行控制信道上,向该终端设备发送第三DCI,该第三下行控制信道对应的时段属于该第二时段;
在该第三DCI所指示的第二下行数据信道上,向该终端设备发送第二传输块,该第二下行数据信道对应的时段属于该第二时段;以及,
该第四DCI还包括第二编码信息,该第二编码信息用于指示该第二传输块的第二编码方式,该第二传输块为该第一传输块的重传。
这样,可以使得终端设备根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
可选地,该第一编码信息包括针对该第一传输块的第一冗余版本信息和第一数据指示信息,该第二编码信息包括针对该第二传输块的第二冗余版本信息和第二数据指示信息,该第一数据指示信息用于指示该第一传输块是否为该网络设备在第三下行数据信道上发送的传输块的重传,该第三下行数据信道对应的时段位于该第一时段之前,该第二数据指示信息用于指示该第二传输块是否为该第一传输块的重传。
上述关于第四DCI中的该第一编码信息和该第二编码信息的内容的进一步描述可以参见方法实施例中关于该第一编码信息和该第二编码信息的具体描述。
可选地,该第一DCI还包括该第一传输块的第一调制信息,该第一调制信息用于指示该第一传输块的调制方式。
上述关于该第一调制信息的相关配置可以参见方法实施例中关于该第一调制信息的 描述,此处不再赘述。
可选地,该第二下行控制信道对应的时段位于该第一下行控制信道对应的时段之后,该第一下行数据信道对应的时段位于该第二下行控制信道对应的时段之后;和/或,
该第四下行控制信道对应的时段位于该第三下行控制信道对应的时段之后,该第二下行数据信道对应的时段位于该第四下行控制信道对应的时段之后。
这样,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为网络设备和终端设备提供更多的信号处理时间。
根据本发明实施例的数据传输的装置400可对应于本发明实施例的方法的网络设备,且该数据传输的装置400中的各单元即模块和上述其他操作和/或功能分别为了实现方法200中由网络设备执行的相应流程,为了简洁,此处不再累赘。
因而,本发明实施例的数据传输的装置,使得终端设备在第一时段内未能通过译码正确获取第一传输块的情况下,一方面,可以通过该装置在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得上述第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率;
另一方面,可以使得终端设备根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
再一方面,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为网络设备和用户设备提供更多的信号处理时间。
图6示出了根据本发明实施例的数据传输的终端设备500,该终端设备500包括:
处理器510、收发器520和存储器530,其中,该处理器510、收发器520和存储器530之间通过内部连接通路互相通信。
该存储器530,用于存放程序。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。存储器530可以包括只读存储器和随机存取存储器,并向处理器510提供指令和数据。存储器530可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少1个磁盘存储器。
该处理器510,执行存储器530所存放的程序,以控制该收发器520接收信号或发送信号。存储器530可以集成在处理器中510,也可以独立于处理器510。
具体地,该收发器520用于:
接收网络设备在第一下行控制信道上发送的第一下行控制信息DCI,该第一下行控制信道对应的时段属于第一时段;
在该第一DCI所指示的第一下行数据信道上,接收该网络设备发送的第一传输块,该第一下行数据信道对应的时段属于该第一时段;
接收该网络设备在第四下行控制信道上发送的第四DCI,该第四下行控制信道对应的时段属于第二时段,该第二时段位于该第一时段之后,其中,该第四DCI包括第一编码信息,该第一编码信息用于指示该第一传输块的第一编码方式;
该处理器510用于:
具体针对上述各个时段以及控制信道的描述可以参见方法实施例中关于图2的描述此处不再赘述。
同时,具体针对该终端设备利用该第一编码信息进行译码的多种情况可以参见方法实施例中关于步骤S240的具体描述,此处不再赘述。
因而,本发明实施例的数据传输的终端设备,使得该终端设备在第一时段内未能通过译码正确获取第一传输块的情况下,可以通过网络设备在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得上述第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率。
可选地,该处理器510具体用于:
在该收发器520根据该第一DCI接收该网络设备在第二下行控制信道上发送的第二DCI失败时,根据该第一编码信息进行译码,以获得该第一传输块,其中,该第二下行控制信道对应的时段属于该第一时段,该第二DCI包括该第一编码信息。
可选地,该收发器520还用于:
接收该网络设备在第三下行控制信道上发送的第三DCI,该第三下行控制信道对应的时段属于该第二时段;
在该第三DCI所指示的第二下行数据信道上,接收该网络设备发送的第二传输块,该第二下行数据信道对应的时段属于该第二时段;以及,
该第四DCI还包括第二编码信息,该第二编码信息用于指示该第二传输块的第二编码方式,该第二传输块为该第一传输块的重传;以及,
该处理器510具体用于:
根据该第一编码信息和该第二编码信息进行合并译码,以获得该第一传输块。
这样,可以使得该终端设备根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
可选地,该第一编码信息包括针对该第一传输块的第一冗余版本信息和第一数据指示信息,该第二编码信息包括针对该第二传输块的第二冗余版本信息和第二数据指示信息,该第一数据指示信息用于指示该第一传输块是否为该网络设备在第三下行数据信道上发送的传输块的重传,该第三下行数据信道对应的时段位于该第一时段之前,该第二数据指示信息用于指示该第二传输块是否为该第一传输块的重传;以及,
该处理器510具体用于:
根据该第一数据指示信息和该第二数据指示信息,确定该第二传输块为该第一传输块的重传;
根据该第一冗余版本信息和该第二冗余版本信息进行合并译码,以获得该第一传输块。
上述关于第四DCI中的该第一编码信息和该第二编码信息的内容的进一步描述可以参见方法实施例中关于该第一编码信息和该第二编码信息的具体描述。
同时,上述关于该终端设备通过该第一编码信息和该第二编码信息进行译码的具体过 程可以参见方法实施例中的终端设备通过该第一编码信息和该第二编码信息进行译码的具体过程,此处不再赘述。
可选地,该第一DCI还包括该第一传输块的第一调制信息,该第一调制信息用于指示该第一传输块的调制方式;以及,
该收发器520具体用于:
在该第一下行数据信道上,接收该网络设备发送的第一数据信号,其中,该第一数据信号是该网络设备对该第一传输块进行编码调制后生成的;
根据该第一调制信息,对该第一数据信号进行解调。
上述关于该终端设备根据该第一调制信息对该第一数据信号进行解调的具体过程可以参见方法实施例中的终端设备根据该第一调制信息对该第一数据信号进行解调的具体过程,此处不再赘述。
同时,上述关于该第一调制信息的相关配置可以参见方法实施例中关于该第一调制信息的描述,此处不再赘述。
可选地,该处理器510还用于:
将该第一数据信号进行解调后的数据信号进行缓存。
可选地,该第二下行控制信道对应的时段位于该第一下行控制信道对应的时段之后,该第一下行数据信道对应的时段位于该第二下行控制信道对应的时段之后;和/或,
该第四下行控制信道对应的时段位于该第三下行控制信道对应的时段之后,该第二下行数据信道对应的时段位于该第四下行控制信道对应的时段之后。
这样,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为网络设备和终端设备提供更多的信号处理时间。
本发明实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器510可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器530,处理器510读取存储器530中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM), 其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本发明实施例的数据传输的终端设备500可对应于根据本发明实施例的方法200的终端设备,也可以对应于根据本发明实施例的装置300,且该数据传输的终端设备500中的各单元即模块和上述其他操作和/或功能分别为了实现方法200中由终端设备执行的相应流程,为了简洁,此处不再累赘。
因而,本发明实施例的数据传输的终端设备,使得终端设备在第一时段内未能通过译码正确获取第一传输块的情况下,一方面,可以通过网络设备在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得上述第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率;
另一方面,可以使得终端设备根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
再一方面,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为网络设备和用户设备提供更多的信号处理时间。
图7示出了根据本发明实施例的数据传输的网络设备600,该网络设备600包括:
处理器610、收发器620和存储器630,其中,该处理器610、收发器620和存储器630之间通过内部连接通路互相通信。
该存储器630,用于存放程序。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。存储器630可以包括只读存储器和随机存取存储器,并向处理器610提供指令和数据。存储器630可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少1个磁盘存储器。
该处理器610,执行存储器630所存放的程序,以控制该收发器620接收信号或发送信号。存储器630可以集成在处理器中610,也可以独立于处理器610。
具体地,该收发器620用于:
在第一下行控制信道上,向终端设备发送第一下行控制信息DCI,该第一下行控制信道对应的时段属于第一时段;
在该第一DCI所指示的第一下行数据信道上,向该终端设备发送第一传输块,该第一下行数据信道对应的时段属于该第一时段;
在第四下行控制信道上,向该终端设备发送第四DCI,该第四下行控制信道对应的时段属于第二时段,该第二时段位于该第一时段之后,其中,该第四DCI包括第一编码信息,该第一编码信息用于指示该第一传输块的第一编码方式。
具体针对上述各个时段以及控制信道的描述可以参见方法实施例中关于图2的描述此处不再赘述。
因而,本发明实施例的数据传输的网络设备,使得终端设备在第一时段内未能通过译码正确获取第一传输块的情况下,可以通过该网络设备在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得上述第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率。
可选地,该收发器620还用于:
在该第一DCI所指示的第二下行控制信道上,向该终端设备发送第二DCI,该第二下行控制信道对应的时段属于该第一时段,该第二DCI包括该第一编码信息。
可选地,该收发器620还用于:
在第三下行控制信道上,向该终端设备发送第三DCI,该第三下行控制信道对应的时段属于该第二时段;
在该第三DCI所指示的第二下行数据信道上,向该终端设备发送第二传输块,该第二下行数据信道对应的时段属于该第二时段;以及,
该第四DCI还包括第二编码信息,该第二编码信息用于指示该第二传输块的第二编码方式,该第二传输块为该第一传输块的重传。
这样,可以使得终端设备根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
可选地,该第一编码信息包括针对该第一传输块的第一冗余版本信息和第一数据指示信息,该第二编码信息包括针对该第二传输块的第二冗余版本信息和第二数据指示信息,该第一数据指示信息用于指示该第一传输块是否为所述网络设备在第三下行数据信道上发送的传输块的重传,该第三下行数据信道对应的时段位于该第一时段之前,该第二数据指示信息用于指示该第二传输块是否为该第一传输块的重传。
上述关于第四DCI中的该第一编码信息和该第二编码信息的内容的进一步描述可以参见方法实施例中关于该第一编码信息和该第二编码信息的具体描述。
可选地,该第一DCI还包括该第一传输块的第一调制信息,该第一调制信息用于指示该第一传输块的调制方式。
上述关于该第一调制信息的相关配置可以参见方法实施例中关于该第一调制信息的描述,此处不再赘述。
可选地,该第二下行控制信道对应的时段位于该第一下行控制信道对应的时段之后,该第一下行数据信道对应的时段位于该第二下行控制信道对应的时段之后;和/或,
该第四下行控制信道对应的时段位于该第三下行控制信道对应的时段之后,该第二下行数据信道对应的时段位于该第四下行控制信道对应的时段之后。
这样,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为网络设备和终端设备提供更多的信号处理时间。
本发明实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路 芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器610中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器610可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器630,处理器610读取存储器630中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本发明实施例的数据传输的网络设备600可对应于根据本发明实施例的方法200的网络设备,也可以对应于根据本发明实施例的装置400,且该数据传输的网络设备600中的各单元即模块和上述其他操作和/或功能分别为了实现方法200中由网络设备执行的相应流程,为了简洁,此处不再累赘。
因而,本发明实施例的数据传输的网络设备,使得终端设备在第一时段内未能通过译码正确获取第一传输块的情况下,一方面,可以通过网络设备在第一时段之后的第二时段内发送的该第一传输块的第一编码信息进行译码,即,通过在对应于该第一传输块的第一组两级控制信道之后的第二时段内发送的第一编码信息进行译码,从而获得上述第一传输块,减少了数据的丢包概率,提高了数据传输效率,尤其是针对由于两级控制信道的结构导致的第二级控制信道丢失而引发的数据丢失的情况,本发明实施例更能有效地减少数据的丢包概率;
另一方面,可以使得终端设备根据第一编码信息和第二编码信息进行合并译码,更能有效地提高译码的准确性,从而正确获取该第一传输块(或该第二传输块)。
再一方面,通过将两级控制信道中的两个控制信道和数据信道在时域上分开,可以为网络设备和用户设备提供更多的信号处理时间。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发送实施例中所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种数据传输的方法,其特征在于,所述方法包括:
    终端设备接收网络设备在第一下行控制信道上发送的第一下行控制信息DCI,所述第一下行控制信道对应的时段属于第一时段;
    所述终端设备在所述第一DCI所指示的第一下行数据信道上,接收所述网络设备发送的第一传输块,所述第一下行数据信道对应的时段属于所述第一时段;
    所述终端设备接收所述网络设备在第四下行控制信道上发送的第四DCI,所述第四下行控制信道对应的时段属于第二时段,所述第二时段位于所述第一时段之后,其中,所述第四DCI包括第一编码信息,所述第一编码信息用于指示所述第一传输块的第一编码方式;
    所述终端设备根据所述第一编码信息进行译码,以获得所述第一传输块。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一编码信息进行译码,以获得所述第一传输块,包括:
    在所述终端设备根据所述第一DCI接收所述网络设备在第二下行控制信道上发送的第二DCI失败时,所述终端设备根据所述第一编码信息进行译码,以获得所述第一传输块,其中,所述第二下行控制信道对应的时段属于所述第一时段,所述第二DCI包括所述第一编码信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备在第三下行控制信道上发送的第三DCI,所述第三下行控制信道对应的时段属于所述第二时段;
    所述终端设备在所述第三DCI所指示的第二下行数据信道上,接收所述网络设备发送的第二传输块,所述第二下行数据信道对应的时段属于所述第二时段;以及,
    所述第四DCI还包括第二编码信息,所述第二编码信息用于指示所述第二传输块的第二编码方式,所述第二传输块为所述第一传输块的重传;以及,
    所述终端设备根据所述第一编码信息进行译码,以获得所述第一传输块,包括:
    所述终端设备根据所述第一编码信息和所述第二编码信息进行合并译码,以获得所述第一传输块。
  4. 根据权利要求3所述的方法,其特征在于,所述第一编码信息包括针对所述第一传输块的第一冗余版本信息和第一数据指示信息,所述第二编码信息包括针对所述第二传输块的第二冗余版本信息和第二数据指示信息,所述第一数据指示信息用于指示所述第一传输块是否为所述网络设备在第三下行数据信道上发送的传输块的重传,所述第三下行数据信道对应的时段位于所述第一时段之前,所述第二数据指示信息用于指示所述第二传输块是否为所述第一传输块的重传;以及,
    所述终端设备根据所述第一编码信息和所述第二编码信息进行合并译码,以获得所述第一传输块,包括:
    所述终端设备根据所述第一数据指示信息和所述第二数据指示信息,确定所述第二传输块为所述第一传输块的重传;
    所述终端设备根据所述第一冗余版本信息和所述第二冗余版本信息进行合并译码,以获得所述第一传输块。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一DCI还包括所述第一传输块的第一调制信息,所述第一调制信息用于指示所述第一传输块的调制方式;以及,
    所述终端设备在所述第一DCI所指示的第一下行数据信道上,接收所述网络设备发送的第一传输块,包括:
    所述终端设备在所述第一下行数据信道上,接收所述网络设备发送的第一数据信号,其中,所述第一数据信号是所述网络设备对所述第一传输块进行编码调制后生成的;
    所述终端设备根据所述第一调制信息,对所述第一数据信号进行解调。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端设备将所述第一数据信号进行解调后的数据信号进行缓存。
  7. 根据权利要求3至6中任一项所述的方法,其特征在于,所述第二下行控制信道对应的时段位于所述第一下行控制信道对应的时段之后,所述第一下行数据信道对应的时段位于所述第二下行控制信道对应的时段之后;和/或,
    所述第四下行控制信道对应的时段位于所述第三下行控制信道对应的时段之后,所述第二下行数据信道对应的时段位于所述第四下行控制信道对应的时段之后。
  8. 一种数据传输的方法,其特征在于,所述方法包括:
    网络设备在第一下行控制信道上,向终端设备发送第一下行控制信息DCI,所述第一下行控制信道对应的时段属于第一时段;
    所述网络设备在所述第一DCI所指示的第一下行数据信道上,向所述终端设备发送第一传输块,所述第一下行数据信道对应的时段属于所述第一时段;
    所述网络设备在第四下行控制信道上,向所述终端设备发送第四DCI,所述第四下行控制信道对应的时段属于第二时段,所述第二时段位于所述第一时段之后,其中,所述第四DCI包括第一编码信息,所述第一编码信息用于指示所述第一传输块的第一编码方式。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述第一DCI所指示的第二下行控制信道上,向所述终端设备发送第二DCI,所述第二下行控制信道对应的时段属于所述第一时段,所述第二DCI包括所述第一编码信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述网络设备在第三下行控制信道上,向所述终端设备发送第三DCI,所述第三下行控制信道对应的时段属于所述第二时段;
    所述网络设备在所述第三DCI所指示的第二下行数据信道上,向所述终端设备发送第二传输块,所述第二下行数据信道对应的时段属于所述第二时段;以及,
    所述第四DCI还包括第二编码信息,所述第二编码信息用于指示所述第二传输块的第二编码方式,所述第二传输块为所述第一传输块的重传。
  11. 根据权利要求10所述的方法,其特征在于,所述第一编码信息包括针对所述第一传输块的第一冗余版本信息和第一数据指示信息,所述第二编码信息包括针对所述第二传输块的第二冗余版本信息和第二数据指示信息,所述第一数据指示信息用于指示所述第 一传输块是否为所述网络设备在第三下行数据信道上发送的传输块的重传,所述第三下行数据信道对应的时段位于所述第一时段之前,所述第二数据指示信息用于指示所述第二传输块是否为所述第一传输块的重传。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述第一DCI还包括所述第一传输块的第一调制信息,所述第一调制信息用于指示所述第一传输块的调制方式。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述第二下行控制信道对应的时段位于所述第一下行控制信道对应的时段之后,所述第一下行数据信道对应的时段位于所述第二下行控制信道对应的时段之后;和/或,
    所述第四下行控制信道对应的时段位于所述第三下行控制信道对应的时段之后,所述第二下行数据信道对应的时段位于所述第四下行控制信道对应的时段之后。
  14. 一种数据传输的装置,其特征在于,所述装置包括:
    接收单元,用于接收网络设备在第一下行控制信道上发送的第一下行控制信息DCI,所述第一下行控制信道对应的时段属于第一时段;
    所述接收单元还用于,在所述第一DCI所指示的第一下行数据信道上,接收所述网络设备发送的第一传输块,所述第一下行数据信道对应的时段属于所述第一时段;
    所述接收单元还用于,接收所述网络设备在第四下行控制信道上发送的第四DCI,所述第四下行控制信道对应的时段属于第二时段,所述第二时段位于所述第一时段之后,其中,所述第四DCI包括第一编码信息,所述第一编码信息用于指示所述第一传输块的第一编码方式;
    处理单元,用于根据在所述接收单元接收到的所述第一编码信息进行译码,以获得所述第一传输块。
  15. 根据权利要求14所述的装置,其特征在于,所述处理单元具体用于:
    在所述接收单元根据所述第一DCI接收所述网络设备在第二下行控制信道上发送的第二DCI失败时,根据所述第一编码信息进行译码,以获得所述第一传输块,其中,所述第二下行控制信道对应的时段属于所述第一时段,所述第二DCI包括所述第一编码信息。
  16. 根据权利要求14或15所述的装置,其特征在于,所述接收单元还用于:
    接收所述网络设备在第三下行控制信道上发送的第三DCI,所述第三下行控制信道对应的时段属于所述第二时段;
    在所述第三DCI所指示的第二下行数据信道上,接收所述网络设备发送的第二传输块,所述第二下行数据信道对应的时段属于所述第二时段;以及,
    所述第四DCI还包括第二编码信息,所述第二编码信息用于指示所述第二传输块的第二编码方式,所述第二传输块为所述第一传输块的重传;以及,
    所述处理单元具体用于:
    根据所述第一编码信息和所述第二编码信息进行合并译码,以获得所述第一传输块。
  17. 根据权利要求16所述的装置,其特征在于,所述第一编码信息包括针对所述第一传输块的第一冗余版本信息和第一数据指示信息,所述第二编码信息包括针对所述第二传输块的第二冗余版本信息和第二数据指示信息,所述第一数据指示信息用于指示所述第一传输块是否为所述网络设备在第三下行数据信道上发送的传输块的重传,所述第三下行 数据信道对应的时段位于所述第一时段之前,所述第二数据指示信息用于指示所述第二传输块是否为所述第一传输块的重传;以及,
    所述处理单元具体用于:
    根据所述第一数据指示信息和所述第二数据指示信息,确定所述第二传输块为所述第一传输块的重传;
    根据所述第一冗余版本信息和所述第二冗余版本信息进行合并译码,以获得所述第一传输块。
  18. 根据权利要求14至17中任一项所述的装置,其特征在于,所述第一DCI还包括所述第一传输块的第一调制信息,所述第一调制信息用于指示所述第一传输块的调制方式;以及,
    所述接收单元具体用于:
    在所述第一下行数据信道上,接收所述网络设备发送的第一数据信号,其中,所述第一数据信号是所述网络设备对所述第一传输块进行编码调制后生成的;
    根据所述第一调制信息,对所述第一数据信号进行解调。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元还用于:
    将所述第一数据信号进行解调后的数据信号进行缓存。
  20. 根据权利要求16至19中任一项所述的装置,其特征在于,所述第二下行控制信道对应的时段位于所述第一下行控制信道对应的时段之后,所述第一下行数据信道对应的时段位于所述第二下行控制信道对应的时段之后;和/或,
    所述第四下行控制信道对应的时段位于所述第三下行控制信道对应的时段之后,所述第二下行数据信道对应的时段位于所述第四下行控制信道对应的时段之后。
  21. 一种数据传输的装置,其特征在于,所述装置包括:
    发送单元,用于在第一下行控制信道上,向终端设备发送第一下行控制信息DCI,所述第一下行控制信道对应的时段属于第一时段;
    所述发送单元还用于,在所述第一DCI所指示的第一下行数据信道上,向所述终端设备发送第一传输块,所述第一下行数据信道对应的时段属于所述第一时段;
    所述发送单元还用于,在第四下行控制信道上,向所述终端设备发送第四DCI,所述第四下行控制信道对应的时段属于第二时段,所述第二时段位于所述第一时段之后,其中,所述第四DCI包括第一编码信息,所述第一编码信息用于指示所述第一传输块的第一编码方式。
  22. 根据权利要求21所述的装置,其特征在于,所述发送单元还用于:
    在所述第一DCI所指示的第二下行控制信道上,向所述终端设备发送第二DCI,所述第二下行控制信道对应的时段属于所述第一时段,所述第二DCI包括所述第一编码信息。
  23. 根据权利要求21或22所述的装置,其特征在于,所述发送单元还用于:
    在第三下行控制信道上,向所述终端设备发送第三DCI,所述第三下行控制信道对应的时段属于所述第二时段;
    在所述第三DCI所指示的第二下行数据信道上,向所述终端设备发送第二传输块,所述第二下行数据信道对应的时段属于所述第二时段;以及,
    所述第四DCI还包括第二编码信息,所述第二编码信息用于指示所述第二传输块的第 二编码方式,所述第二传输块为所述第一传输块的重传。
  24. 根据权利要求23所述的装置,其特征在于,所述第一编码信息包括针对所述第一传输块的第一冗余版本信息和第一数据指示信息,所述第二编码信息包括针对所述第二传输块的第二冗余版本信息和第二数据指示信息,所述第一数据指示信息用于指示所述第一传输块是否为所述网络设备在第三下行数据信道上发送的传输块的重传,所述第三下行数据信道对应的时段位于所述第一时段之前,所述第二数据指示信息用于指示所述第二传输块是否为所述第一传输块的重传。
  25. 根据权利要求21至24中任一项所述的装置,其特征在于,所述第一DCI还包括所述第一传输块的第一调制信息,所述第一调制信息用于指示所述第一传输块的调制方式。
  26. 根据权利要求23至25中任一项所述的装置,其特征在于,所述第二下行控制信道对应的时段位于所述第一下行控制信道对应的时段之后,所述第一下行数据信道对应的时段位于所述第二下行控制信道对应的时段之后;和/或,
    所述第四下行控制信道对应的时段位于所述第三下行控制信道对应的时段之后,所述第二下行数据信道对应的时段位于所述第四下行控制信道对应的时段之后。
PCT/CN2018/075289 2017-02-06 2018-02-05 一种数据传输的方法和装置 WO2018141291A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18748511.5A EP3562246B1 (en) 2017-02-06 2018-02-05 Data transmission method and device
US16/533,396 US10912074B2 (en) 2017-02-06 2019-08-06 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710065943.6A CN108401296B (zh) 2017-02-06 2017-02-06 一种数据传输的方法和装置
CN201710065943.6 2017-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/533,396 Continuation US10912074B2 (en) 2017-02-06 2019-08-06 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018141291A1 true WO2018141291A1 (zh) 2018-08-09

Family

ID=63040379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075289 WO2018141291A1 (zh) 2017-02-06 2018-02-05 一种数据传输的方法和装置

Country Status (4)

Country Link
US (1) US10912074B2 (zh)
EP (1) EP3562246B1 (zh)
CN (1) CN108401296B (zh)
WO (1) WO2018141291A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10171144B2 (en) * 2017-03-24 2019-01-01 At&T Intellectual Property I, L.P. Low complexity high performance single codeword MIMO for 5G wireless communication systems
CN112997568B (zh) * 2018-11-02 2023-02-07 华为技术有限公司 数据调度的方法、设备及系统
WO2020103028A1 (zh) * 2018-11-21 2020-05-28 Oppo广东移动通信有限公司 一种传输数据的方法和终端设备
CN114448558A (zh) * 2020-11-05 2022-05-06 华为技术有限公司 一种信道编码方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610564A (zh) * 2009-04-29 2009-12-23 中兴通讯股份有限公司 一种下行控制信息的发送和检测方法
CN102056198A (zh) * 2009-10-31 2011-05-11 华为技术有限公司 一种下行信道传输及检测方法、装置和系统
CN102123524A (zh) * 2010-01-07 2011-07-13 夏普株式会社 下行控制信息发送和检测方法、基站和用户设备
CN106162907A (zh) * 2015-04-03 2016-11-23 上海贝尔股份有限公司 基于机器型通信的通信系统中传输dci的方法和装置
US20160366672A1 (en) * 2013-03-28 2016-12-15 Samsung Electronics Co., Ltd Downlink signaling for adaptation of an uplink-downlink configuration in tdd communication systems

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877621A (zh) * 2009-04-30 2010-11-03 三星电子株式会社 用于lte-a系统中下行控制信道pdcch的发送方法及发送装置
US20110222491A1 (en) * 2010-03-09 2011-09-15 Qualcomm Incorporated Method and apparatus for sending control information with enhanced coverage in a wireless network
KR20140034281A (ko) 2011-07-27 2014-03-19 후지쯔 가부시끼가이샤 다운링크 제어 정보의 송수신 방법, 기지국, 및 이동 단말기
US9119197B2 (en) * 2012-05-22 2015-08-25 Futurewei Technologies, Inc. System and method for delay scheduling
US10021677B2 (en) * 2014-10-31 2018-07-10 Qualcomm Incorporated Two-stage PDCCH with DCI flag and DCI format size indicator
WO2016119232A1 (en) * 2015-01-30 2016-08-04 Mediatek Singapore Pte. Ltd. Methods for determination of repetition number of physical data channel
US10231228B2 (en) * 2016-09-23 2019-03-12 Mediatek Inc. Methods of two-stage scheduling in downlink control channel
US11825482B2 (en) * 2016-10-03 2023-11-21 Qualcomm Incorporated Techniques for improved control channels
US11146358B2 (en) * 2016-12-13 2021-10-12 Nokia Technologies Oy Polar codes for downlink control channels for wireless networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610564A (zh) * 2009-04-29 2009-12-23 中兴通讯股份有限公司 一种下行控制信息的发送和检测方法
CN102056198A (zh) * 2009-10-31 2011-05-11 华为技术有限公司 一种下行信道传输及检测方法、装置和系统
CN102123524A (zh) * 2010-01-07 2011-07-13 夏普株式会社 下行控制信息发送和检测方法、基站和用户设备
US20160366672A1 (en) * 2013-03-28 2016-12-15 Samsung Electronics Co., Ltd Downlink signaling for adaptation of an uplink-downlink configuration in tdd communication systems
CN106162907A (zh) * 2015-04-03 2016-11-23 上海贝尔股份有限公司 基于机器型通信的通信系统中传输dci的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3562246A4

Also Published As

Publication number Publication date
EP3562246A4 (en) 2019-12-25
EP3562246B1 (en) 2021-07-28
US20190364568A1 (en) 2019-11-28
US10912074B2 (en) 2021-02-02
CN108401296A (zh) 2018-08-14
CN108401296B (zh) 2021-04-09
EP3562246A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6523578B1 (ja) Puschにおけるharq−ack多重化
US11368256B2 (en) Data transmission method and apparatus
US20180041858A1 (en) Base station assisted outer code usage
US10912074B2 (en) Data transmission method and apparatus
KR102238228B1 (ko) 제어 정보 송신 방법 및 장치, 및 제어 정보 수신 방법 및 장치
WO2018171603A1 (zh) 发送数据的方法及其装置和接收数据的方法及其装置
JP2013522964A (ja) 無線ネットワークにおいて、拡大された有効通信範囲を用いて、制御情報を送信するための方法および装置
WO2016078082A1 (zh) 传输信息的方法、装置和设备
JP6813211B2 (ja) データ伝送方法および装置
WO2018121227A1 (zh) 发送控制信息的方法和装置及接收控制信息的方法和装置
WO2018228600A1 (zh) 一种发送和接收数据的方法和装置
US11765741B2 (en) Radio communication method, chip, and system
WO2018228288A1 (zh) 传输数据的方法、终端设备和网络设备
WO2022142814A1 (zh) 基于混合自动重传请求的码块处理的方法和装置
WO2020063838A1 (zh) 传输数据的方法及装置
WO2018191870A1 (zh) 一种数据传输的方法和装置
CN111133817A (zh) 通信方法和装置
CN114402636A (zh) 发送和接收侧行控制信息的方法、终端装置和系统
TW201729572A (zh) 通信方法、終端設備和網絡設備
CN113412595B (zh) 无线通信方法、终端设备和网络设备
WO2018082637A1 (zh) 传输数据的方法和装置
WO2021159261A1 (zh) 下行相位跟踪参考信号ptrs传输方法及相关装置
US20220353024A1 (en) Urllc physical uplink control channel (pucch) with repetitions
US20230361924A1 (en) Method and apparatus for harq-ack feedback transmission
CN114696943B (zh) 序列传输方法、接收方法、终端、网络设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018748511

Country of ref document: EP

Effective date: 20190725