WO2018228288A1 - 传输数据的方法、终端设备和网络设备 - Google Patents

传输数据的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018228288A1
WO2018228288A1 PCT/CN2018/090445 CN2018090445W WO2018228288A1 WO 2018228288 A1 WO2018228288 A1 WO 2018228288A1 CN 2018090445 W CN2018090445 W CN 2018090445W WO 2018228288 A1 WO2018228288 A1 WO 2018228288A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
indication information
terminal device
cbg
Prior art date
Application number
PCT/CN2018/090445
Other languages
English (en)
French (fr)
Inventor
吕永霞
王俊伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18817631.7A priority Critical patent/EP3609261B1/en
Publication of WO2018228288A1 publication Critical patent/WO2018228288A1/zh
Priority to US16/688,074 priority patent/US11224037B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of communications, and more particularly to methods, terminal devices and network devices for transmitting data in the field of communications.
  • the international telecommunication union defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), high reliable low latency communication (ultra reliable and low latency). Communications, URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC high reliable low latency communication
  • mMTC massive machine type communications
  • 5G communication systems should support data transmission requirements of multiple different services at the same time, for example, support both URLLC services and eMBB services.
  • the access network device Due to the burstiness of the data of the URLLC service, in order to improve the system resource utilization, the access network device usually does not reserve resources for downlink data transmission of the URLLC service.
  • the URLLC service data arrives at the access network device, if there is no idle time-frequency resource at this time, the access network device cannot wait for the scheduled transmission of the eMBB service data to complete after the short-latency delay of the URLLC service is satisfied.
  • the URLLC service data is scheduled.
  • the access network device can allocate resources for URLLC service data in a preemption manner.
  • the preemption means that the access network device selects part or all of the time-frequency resources for transmitting the URLLC service data on the allocated time-frequency resources for transmitting the eMBB service data, and the access network device is used for transmitting the URLLC service.
  • the data of the eMBB service is not transmitted on the time-frequency resource of the data.
  • the access network device may select the most suitable frequency domain resource for the URLLC service to ensure the reliability of the URLLC service.
  • the percentage of resources that are affected by the URLLC service of different eMBBs is different from the total resources allocated by the access network devices.
  • the greater the percentage of the affected time-frequency resources the more the reliability of the affected eMBB transmission is reduced relative to the reliability that can be achieved with the originally planned signal. This is mainly because the eMBB user does not know that the time-frequency resources that have been allocated to it are assigned to another URLLC transmission and the data that is not his own is treated as his own data for subsequent demodulation and decoding.
  • the present application provides a method for transmitting data, a terminal device, and a network device, which can improve the reliability of transmission of a service that is preempted by resources.
  • a method of transmitting data comprising:
  • the terminal device receives the first control information that is sent by the network device, where the first control information is used to indicate that the terminal device receives the first transmission block that is sent by the network device for the nth time in the first time-frequency resource;
  • first indication information that is sent by the network device, where the first indication information is used to indicate a first coding block group CBG in the first transport block, where the first CBG is in the first
  • the nth transmission of the transport block corresponds to the second time-frequency resource
  • n is an integer greater than or equal to zero.
  • the first indication information may also be referred to as CGB indication information.
  • the CBG indication information may be sent by the network device to a terminal device or a group of terminal devices.
  • the CBG indicated by the CBG indication information may be the CBG affected in the nth transmission of the first transport block.
  • the affected CBG may be: the time-frequency resource indicated by the network device to the terminal device for transmitting the signal of the first CBG does not carry the signal but is used to carry other signals during the actual transmission; or In the actual transmission process, the time-frequency resource indicated by the network device to the terminal device for transmitting the signal of the first CBG does not carry the signal, and does not carry any other signal; or is indicated by the network device to the terminal device.
  • the time-frequency resource of the signal transmitting the first CBG carries the signal, but at the same time, the signal received by the terminal device on the time-frequency resource also includes other signals than the signal of the first CBG.
  • the received signal on the second time-frequency resource may include a signal that is not used by the terminal device to decode the first transport block.
  • the received signal only includes a signal that is not used by the terminal device to decode the first transport block, or the received signal includes not only the decoding that is not used by the terminal device to decode the first transport block.
  • the signal also includes a signal for the terminal device to decode the first transport block.
  • the terminal device may clear part or all of the affected CBG corresponding signals in the nth received signal of the first transport block.
  • the first indication information is sent to the terminal device by using the network device, where the first indication information is used to indicate the first coding block group CBG in the first transport block, and the first CBG is in the first transmission.
  • the nth transmission of the block corresponds to the second time-frequency resource, and the terminal device can perform subsequent demodulation and decoding according to the first indication information, thereby improving the reliability of the transmission of the service of the preempted resource.
  • the method further includes: receiving, by the terminal device, second indication information that is sent by the network device, where the second indication information is used to indicate a third time-frequency resource, where the third time-frequency resource is The intersection of the first time-frequency resources is a fourth time-frequency resource;
  • the first time-frequency resource includes: the received signal on the fifth time-frequency resource includes a signal that is not used by the terminal device to decode the first transport block.
  • the third time-frequency resource is an affected time-frequency resource.
  • the second indication information may be referred to as resource indication information.
  • the resource indication information may be sent only to the terminal device, that is, the indication range is a corresponding time-frequency resource of the data channel of the terminal device (ie, the first time-frequency resource in the above).
  • the resource indication information may also be sent to a group of terminal devices, and the group of terminal devices includes at least the terminal device, that is, the indication range is a predefined time-frequency resource. If it is the former case, the “resource indication information indicating the affected time-frequency resource” described below is the affected time-frequency resource specifically indicated by the resource indication information, that is, the fourth time-frequency resource in the above is the upper The third time-frequency resource in the text.
  • the “resource indication information indicating the affected time-frequency resource” described below is the time-frequency resource corresponding to the affected time-frequency resource specifically indicated by the resource indication information and the terminal device data channel.
  • the intersection of the third time-frequency resource in the above is the intersection of the third time-frequency resource and the first time-frequency resource.
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • clearing the affected received signal according to the second indication information can provide a more accurate clearing operation.
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • the mapping range of the CBG is related to the time-frequency resource selected by the network device for the terminal device, the transmission method, and the size of the transmission information block. That is to say, the "affected" time-frequency resources are usually more regular, and the time-frequency resources are usually used to transmit other signals or perform other operations. Therefore, the resource indication information indicates that the affected range is generally more accurate than the CBG indication information. In other words, if the affected signal is cleared only according to the CBG indication information, the specific cleared portion will be larger than the actual affected portion with a larger probability.
  • the clearing operation is simple based on only one indication information, and the implementation complexity of the terminal device is reduced.
  • the fifth time-frequency resource is an intersection of the second time-frequency resource and the fourth time-frequency resource.
  • a single indication information can only be a minimum indication unit in a certain indication unit (for example, the CBG indication information is indicated by CBG, and the resource indication information is indicated by an hourly frequency unit), and an indication of a single indication information is provided. Accuracy is limited by the number of bits it contains. Therefore, when both kinds of indication information are available, a more accurate indication range can be obtained according to the intersection of the two. Therefore, the embodiment of the present application can enable the terminal device to clear the affected signal more accurately.
  • the fifth time-frequency resource is a resource with a smaller number of REs in the fourth time-frequency resource and the second time-frequency resource.
  • the embodiment of the present application can provide more flexibility for the network device. For example, when a certain CBG is affected by a small proportion, the network device considers that the terminal device does not affect the decoding reliability of the CBG even if the part is not cleared. . In this case, the network device can improve the efficiency and effectiveness of the clearing according to the characteristics of the two indication information, one of which is used as a clearing instruction, and then the reliability of the indication is improved by using the other as a check indicator.
  • the fifth time-frequency resource includes at least one resource, where the one resource corresponds to one CBG in the first CBG, and the one resource is when the second time-frequency resource corresponds to the one CBG A frequency resource and a time-frequency resource corresponding to the number of REs of the time-frequency resource of the one CBG on the fourth time-frequency resource.
  • the embodiments of the present application enable the terminal device to distinguish the cases of the affected CBGs one by one. It is avoided that the unnecessary affected signals are cleared only according to the CBG indication information or the resource indication information, so that the removal efficiency and effectiveness can be improved.
  • the received CBG indication information and the resource indication information may be used to verify the signal to be cleared.
  • the time-frequency resource where the CBG indicated by the CBG indication information is located is consistent with the range indicated by the resource indication information, and the terminal device clears the affected signal according to the resource indication information.
  • the terminal device may consider that at least one of the two indication information has an error, and then determine all the signals received this time as being subjected to the error. Affect the signal and implement the clearing. That is, if the second time-frequency resource does not intersect with the fourth time-frequency resource, the fifth time-frequency resource is the first time-frequency resource.
  • the first indication information and the second indication information are located in the same time period in the time domain, and the time period includes one or more time units, where the time unit is a frame, a subframe, and a time. a slot, a minislot or a symbol, wherein the time period is:
  • the terminal device monitors one cycle of downlink control information
  • the terminal device monitors one cycle of downlink control information used for scheduling data transmission; or
  • the terminal device monitors one period of the first indication information
  • the terminal device monitors one period of the second indication information.
  • the fifth time-frequency resource is the second time-frequency resource
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • the first indication information and the second indication information are located in different time segments in the time domain, or the first indication information and the second indication information are located in the same time period in the time domain.
  • the time period includes one or more time units, and the time unit is one of a frame, a subframe, a time slot, a minislot or a symbol, and the time period is:
  • the terminal device monitors one cycle of downlink control information
  • the terminal device monitors one cycle of downlink control information used for scheduling data transmission; or
  • the terminal device monitors one period of the first indication information
  • the terminal device monitors one period of the second indication information.
  • the embodiment of the present application determines the fifth time-frequency resource according to the earlier indication information in the time domain, so that the terminal device can clear the affected signal as soon as possible, thereby completing the received signal processing (eg, demodulation and decoding, etc.) and reducing the HARQ as soon as possible.
  • the time interval between the feedback information and the received signal thereby reducing the RAN side delay of the transmission, improves the user experience of the terminal device.
  • the terminal device does not use the signal on the fifth time-frequency resource to decode the first transport block. Specifically, if the terminal device determines that the fifth time-frequency resource is decoding the n+ith transmission of the first transport block, the n+i transmission of the first transport block by the terminal device And the signal on the fifth time-frequency resource is not used in the transmission decoding process after the n+ith time, where i is a natural number.
  • the sixth time-frequency resource may also be determined. If the first indication information is located before the second indication information in the time domain, the fifth time-frequency resource is the second time-frequency resource, and the sixth time-frequency resource is the fourth time a frequency resource; if the second indication information is located before the first indication information in the time domain, the fifth time-frequency resource is the fourth time-frequency resource, and the sixth time-frequency resource is the Second time-frequency resource. At this time, it also includes
  • the terminal device does not use the signal on the fifth time-frequency resource to decode the first transport block
  • the terminal device sets information corresponding to the sixth time-frequency resource in the soft memory to zero.
  • the above example provides scheduling flexibility for the network device so that the network device can instruct the terminal device to clear the affected signal by gradually transmitting two indication information. For example, after the network device sends an indication information (the first indication information or the second indication information) to the terminal device, indicating that the signal is not used for decoding, the network device determines that the terminal device fails to receive the one indication information with a large probability. (For example, according to whether the terminal device feeds back the corresponding feedback signal or the like), the network device may send the second indication information (the second indication information or the first indication information) to indicate that the terminal device may be contaminated in the soft memory. Clear (set to zero). If the network device sends an indication message to the terminal device indicating that the signal is not used for decoding, the network device determines that the terminal device correctly receives an indication information with a high probability, and the network device may not send the second indication information.
  • the network device may send the second indication information (the first indication information or the second indication information) to the terminal device, indicating that the signal is not used for decoding
  • the receiving, by the terminal device, the first indication information sent by the network device includes:
  • the terminal device receives the second control information that is sent by the network device, where the second control information includes the first indication information, where the second control information is further used to indicate that the terminal device is in the seventh time.
  • the first indication information includes Z bits
  • One bit of the Z bits corresponds to 1/Z of the first time-frequency resource corresponding to all coded bits of the second CBG;
  • One indication state of the Z bit corresponds to 1/(2 ⁇ Z) of the first time-frequency resource corresponding to all coded bits of the second CBG.
  • the embodiment of the present application can accurately indicate which parts or parts of the CBG are cleared, so as to avoid clearing the received signal of the entire CBG every time, regardless of the situation. Therefore, the efficiency of the cleaning can be effectively improved, the unnecessary transmission waste caused by the excessive cleaning can be reduced, and the terminal device receiving processing can be saved to reduce the power consumption. Moreover, the embodiment of the present application can improve the indication accuracy.
  • the first control information is further used to indicate, to the terminal device, a first redundancy version of the first CBG in a soft memory;
  • the second control information is further configured to indicate to the terminal device a second redundancy version of the second CBG in the soft memory.
  • the method further includes: if the coded bit corresponding to the second redundancy version is included in the soft memory in the coded bit block of the first CBG sent by the nth time,
  • the second time-frequency resource is a coded bit block of the first CBG that is sent from the second redundancy version to the nth time corresponding to the first CBG on the first time-frequency resource. a resource corresponding to the encoded bit of the end position in the soft memory;
  • the second time-frequency resource All resources corresponding to the first CBG on the first time-frequency resource.
  • the seventh time-frequency resource may carry T coded bits of the first transport block, and the method further includes:
  • the number of encoded bits of the one CB is equal to the rounding of T/X;
  • the number of encoded bits of the one CB is equal to the rounding of S+(TY ⁇ S)/X, or (TY ⁇ S)/ Rounding of X;
  • X is the number of CBs in the second CBG
  • S is the number of encoded bits between the first redundancy version and the second redundancy version in the soft memory
  • Y is the The number of CBs in the first CBG
  • T, X, S, and Y are all positive integers.
  • the embodiment of the present application can compensate the nth transmission and reception signal that is cleared in the n+kth transmission to the terminal device, and effectively alleviate the influence of the clear operation on the transmission reliability of the first information block.
  • the embodiment of the present invention provides a user equipment, which is used to perform the method in the foregoing first aspect or any possible implementation manner of the first aspect.
  • the user equipment includes Or a module of the method in any of the possible implementations of the first aspect.
  • an embodiment of the present invention provides a user equipment, where the user equipment includes: a memory, a processor, and a transceiver.
  • the memory is for storing instructions for executing the instructions stored by the memory, and when the processor executes the instructions stored by the memory, the executing causes the processor to perform any of the first aspect or the first aspect The method in the implementation.
  • an embodiment of the present invention provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any possible implementation of the first aspect.
  • a method of transmitting data including:
  • the network device sends the first control information to the terminal device, where the first control information is used to indicate that the terminal device receives the first transmission block that is sent by the network device for the nth time in the first time-frequency resource;
  • the network device sends first indication information to the terminal device, where the first indication information is used to indicate a first coding block group CBG in the first transport block, and the first CBG is in the first transmission
  • the nth transmission of the block corresponds to the second time-frequency resource
  • n is an integer greater than or equal to zero.
  • the first indication information may also be referred to as CGB indication information.
  • the CBG indication information may be sent by the network device to a terminal device or a group of terminal devices.
  • the CBG indicated by the CBG indication information may be the CBG affected in the nth transmission of the first transport block.
  • the affected CBG may be: the time-frequency resource indicated by the network device to the terminal device for transmitting the signal of the first CBG does not carry the signal but is used to carry other signals during the actual transmission; or In the actual transmission process, the time-frequency resource indicated by the network device to the terminal device for transmitting the signal of the first CBG does not carry the signal, and does not carry any other signal; or is indicated by the network device to the terminal device.
  • the time-frequency resource of the signal transmitting the first CBG carries the signal, but at the same time, the signal received by the terminal device on the time-frequency resource also includes other signals than the signal of the first CBG.
  • the received signal on the second time-frequency resource may include a signal that is not used by the terminal device to decode the first transport block.
  • the received signal only includes a signal that is not used by the terminal device to decode the first transport block, or the received signal includes not only the decoding that is not used by the terminal device to decode the first transport block.
  • the signal also includes a signal for the terminal device to decode the first transport block.
  • the terminal device may partially or completely discriminate the affected CBG corresponding signals in the nth received signal of the first transport block.
  • the first indication information is sent to the terminal device by using the network device, where the first indication information is used to indicate the first coding block group CBG in the first transport block, and the first CBG is in the first transmission.
  • the nth transmission of the block corresponds to the second time-frequency resource, and the terminal device can perform subsequent demodulation and decoding according to the first indication information, thereby improving the reliability of the transmission of the service of the preempted resource.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate a third time-frequency resource, where the third time-frequency resource and the first The intersection of the one-time frequency resources is the fourth time-frequency resource;
  • the first indication information and/or the second finger information is used by the terminal device to determine a fifth time-frequency resource, where the fifth time-frequency resource includes at least one resource element RE, where the at least one The RE is included by the first time-frequency resource, and the received signal on the fifth time-frequency resource includes a signal that is not used by the terminal device to decode the first transport block.
  • the third time-frequency resource is an affected time-frequency resource.
  • the second indication information may be referred to as resource indication information.
  • the resource indication information may be sent only to the terminal device, that is, the indication range is a corresponding time-frequency resource (ie, the first time-frequency resource in the above) of the data channel of the terminal device.
  • the resource indication information may also be sent to a group of terminal devices, and the group of terminal devices includes at least the terminal device, that is, the indication range is a predefined time-frequency resource. If it is the former case, the “resource indication information indicating the affected time-frequency resource” described below is the affected time-frequency resource specifically indicated by the resource indication information, that is, the fourth time-frequency resource in the above is the upper The third time-frequency resource in the text.
  • the “resource indication information indicating the affected time-frequency resource” described below is the time-frequency resource corresponding to the affected time-frequency resource specifically indicated by the resource indication information and the terminal device data channel.
  • the intersection of the third time-frequency resource in the above is the intersection of the third time-frequency resource and the first time-frequency resource.
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • clearing the affected received signal according to the second indication information can provide a more accurate clearing operation.
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • the mapping range of the CBG is related to the time-frequency resource selected by the network device for the terminal device, the transmission method, and the size of the transmission information block. That is to say, the "affected" time-frequency resources are usually more regular, and the time-frequency resources are usually used to transmit other signals or perform other operations. Therefore, the resource indication information indicates that the affected range is generally more accurate than the CBG indication information. In other words, if the affected signal is cleared only according to the CBG indication information, the specific cleared portion will be larger than the actual affected portion with a larger probability.
  • the clearing operation is simple based on only one indication information, and the implementation complexity of the terminal device is reduced.
  • the fifth time-frequency resource is an intersection of the second time-frequency resource and the fourth time-frequency resource.
  • a single indication information can only be a minimum indication unit in a certain indication unit (for example, the CBG indication information is indicated by CBG, and the resource indication information is indicated by an hourly frequency unit), and an indication of a single indication information is provided. Accuracy is limited by the number of bits it contains. Therefore, when both kinds of indication information are available, a more accurate indication range can be obtained according to the intersection of the two. Therefore, the embodiment of the present application can enable the terminal device to clear the affected signal more accurately.
  • the embodiment of the present application can provide more flexibility for the network device. For example, when a certain CBG is affected by a small proportion, the network device considers that the terminal device does not affect the decoding reliability of the CBG even if the part is not cleared. . In this case, the network device can improve the efficiency and validity of the clearing according to the characteristics of the two indication information, and then use one of them as the check indication to improve the reliability of the indication.
  • the fifth time-frequency resource includes at least one resource, where the one resource corresponds to one CBG in the first CBG, and the one resource is when the second time-frequency resource corresponds to the one CBG A frequency resource and a time-frequency resource corresponding to the number of REs of the time-frequency resource of the one CBG on the fourth time-frequency resource.
  • the embodiments of the present application enable the terminal device to distinguish the cases of the affected CBGs one by one. It is avoided that the unnecessary affected signals are cleared only according to the CBG indication information or the resource indication information, so that the removal efficiency and effectiveness can be improved.
  • the received CBG indication information and the resource indication information may be used to verify the signal to be cleared.
  • the time-frequency resource where the CBG indicated by the CBG indication information is located is consistent with the range indicated by the resource indication information, and the terminal device clears the affected signal according to the resource indication information.
  • the terminal device may consider that at least one of the two indication information has an error, and then determine all the signals received this time as being subjected to the error. Affect the signal and implement the clearing. That is, if the second time-frequency resource does not intersect with the fourth time-frequency resource, the fifth time-frequency resource is the first time-frequency resource.
  • the first indication information and the second indication information are located in the same time period in the time domain, and the time period includes one or more time units, where the time unit is a frame, a subframe, and a time. a slot, a minislot or a symbol, wherein the time period is:
  • the terminal device monitors one cycle of downlink control information
  • the terminal device monitors one cycle of downlink control information used for scheduling data transmission; or
  • the terminal device monitors one period of the first indication information
  • the terminal device monitors one period of the second indication information.
  • the fifth time-frequency resource is the second time-frequency resource
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • the first indication information and the second indication information are located in different time segments in the time domain, or the first indication information and the second indication information are located in the same time period in the time domain.
  • the time period includes one or more time units, and the time unit is one of a frame, a subframe, a time slot, a minislot or a symbol, and the time period is:
  • the terminal device monitors one cycle of downlink control information
  • the terminal device monitors one cycle of downlink control information used for scheduling data transmission; or
  • the terminal device monitors one period of the first indication information
  • the terminal device monitors one period of the second indication information.
  • the fifth time-frequency resource is the first time-frequency resource.
  • the embodiment of the present application determines the fifth time-frequency resource according to the earlier indication information in the time domain, so that the terminal device can clear the affected signal as soon as possible, thereby completing the received signal processing (eg, demodulation and decoding, etc.) and reducing the HARQ as soon as possible.
  • the time interval between the feedback information and the received signal thereby reducing the RAN side delay of the transmission, improves the user experience of the terminal device.
  • the sixth time-frequency resource may also be determined. If the first indication information is located before the second indication information in the time domain, the fifth time-frequency resource is the second time-frequency resource, and the sixth time-frequency resource is the fourth time a frequency resource; if the second indication information is located before the first indication information in the time domain, the fifth time-frequency resource is the fourth time-frequency resource, and the sixth time-frequency resource is the Second time-frequency resource. At this time, it also includes
  • the terminal device does not use the signal on the fifth time-frequency resource to decode the first transport block
  • the terminal device sets information corresponding to the sixth time-frequency resource in the soft memory to zero.
  • the above example provides scheduling flexibility for the network device so that the network device can instruct the terminal device to clear the affected signal by gradually transmitting two indication information. For example, after the network device sends an indication information (the first indication information or the second indication information) to the terminal device, indicating that the signal is not used for decoding, the network device determines that the terminal device fails to receive the one indication information with a large probability. (For example, according to whether the terminal device feeds back the corresponding feedback signal, etc.), the network device may send the second indication information (the second indication information or the first indication information) to indicate that the terminal device may be contaminated in the soft memory. Clear (set to zero). If the network device sends an indication message to the terminal device indicating that the signal is not used for decoding, the network device determines that the terminal device correctly receives an indication information with a high probability, and the network device may not send the second indication information.
  • the network device may send the second indication information (the first indication information or the second indication information) to the terminal device, indicating that the signal is not used for decoding
  • the network device may further send second control information to the terminal device, where the second control information includes the first indication information, where the second control information is further used to indicate the terminal
  • the device receives, on the seventh time-frequency resource, a second CBG in the first transport block that is sent by the network device in the n+thth time, where k is a positive integer.
  • the first indication information includes Z bits
  • One bit of the Z bits corresponds to 1/Z of the first time-frequency resource corresponding to all coded bits of the second CBG;
  • One indication state of the Z bit corresponds to 1/(2 ⁇ Z) of the first time-frequency resource corresponding to all coded bits of the second CBG.
  • the embodiment of the present application can accurately indicate which parts or parts of the CBG are cleared, so as to avoid clearing the received signal of the entire CBG every time, regardless of the situation. Therefore, the efficiency of the cleaning can be effectively improved, the unnecessary transmission waste caused by the excessive cleaning can be reduced, and the terminal device receiving processing can be saved to reduce the power consumption. Moreover, the embodiment of the present application can improve the indication accuracy.
  • the first control information is further used to indicate, to the terminal device, a first redundancy version of the first CBG in a soft memory;
  • the second control information is further configured to indicate to the terminal device a second redundancy version of the second CBG in the soft memory.
  • the method further includes: if the coded bit corresponding to the second redundancy version is included in the soft memory in the coded bit block of the first CBG sent by the nth time,
  • the second time-frequency resource is a coded bit block of the first CBG that is sent from the second redundancy version to the nth time corresponding to the first CBG on the first time-frequency resource. a resource corresponding to the encoded bit of the end position in the soft memory;
  • the second time-frequency resource All resources corresponding to the first CBG on the first time-frequency resource.
  • the embodiment of the present invention provides a network device, where the method in any of the foregoing fifth aspect or the fifth aspect is implemented, where the user equipment includes Or a module of the method in any of the possible implementations of the fifth aspect.
  • an embodiment of the present invention provides a network device, where the network device includes: a memory, a processor, and a transceiver.
  • the memory is for storing instructions for executing the instructions stored by the memory, and when the processor executes the instructions stored by the memory, the executing causes the processor to perform any of the fifth or fifth aspects The method in the implementation.
  • an embodiment of the present invention provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method in any of the possible implementations of the fifth aspect or the fifth aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system applied to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a time-frequency resource for pre-empting URL data of an eMBB service data.
  • FIG. 3 is a schematic interaction flowchart of a method for transmitting data in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a correspondence between a CBG and a time-frequency resource according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an affected time-frequency resource indicated by resource indication information according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an affected CBG and time-frequency resources according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another affected CBG and time-frequency resource according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another affected CBG and time-frequency resource according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another affected CBG and time-frequency resource according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another affected CBG and time-frequency resource according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of first indication information and second indication information according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another first indication information and second indication information according to an embodiment of the present application.
  • FIG. 13 is a correspondence between a CBG and a coded bit according to an embodiment of the present application.
  • FIG. 14 is a correspondence diagram of another CBG and a coded bit in the embodiment of the present application.
  • FIG. 15 is a circular buffer of an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of another terminal device according to an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of another network device according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • next-generation communication systems such as 5G systems.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V vehicle to vehicle
  • the embodiments of the present invention describe various embodiments in combination with a sending device and a receiving device, where the sending device may be one of a network device and a terminal device, and the receiving device may be the other one of the network device and the terminal device, for example, in the present invention.
  • the sending device may be a network device, and the receiving device may be a terminal device; or the sending device may be a terminal device, and the receiving device may be a network device.
  • a terminal device may also be called a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device.
  • the terminal device may be a station (STA) in a Wireless Local Area Networks (WLAN), and may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, or a wireless local loop (Wireless Local).
  • STA Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • SIP Session Initiation Protocol
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems
  • in-vehicle devices wearable devices
  • next-generation communication systems For example, a terminal device in a fifth-generation (5G) communication network or a terminal device in a future evolved public land mobile network (PLMN) network.
  • 5G fifth-generation
  • PLMN public land mobile network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (AP) in the WLAN, a Base Transceiver Station (BTS) in GSM or CDMA, or may be in WCDMA.
  • AP access point
  • BTS Base Transceiver Station
  • a base station (NodeB, NB) which may also be an evolved Node B (eNB or eNodeB) in LTE, or a relay station or an access point, or an in-vehicle device, a wearable device, and a network device in a future 5G network or a future Network devices and the like in an evolved PLMN network.
  • eNB evolved Node B
  • eNodeB evolved Node B
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell.
  • the cell may be a cell corresponding to a network device (for example, a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell, where the small cell may include: a metro cell and a micro cell ( Micro cell), Pico cell, Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the method and apparatus provided by the embodiments of the present invention may be applied to a terminal device or a network device, where the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution body of the method for transmitting a signal is not particularly limited as long as the program of the code for recording the method of transmitting the signal of the embodiment of the present invention can be executed by
  • the method for transmitting a signal according to the embodiment of the present invention may be used for communication.
  • the execution body of the method for wireless communication according to the embodiment of the present invention may be a terminal device or a network device, or may be a terminal device or a network device capable of calling a program and The functional module that executes the program.
  • a computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (DVD). Etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • CD compact disc
  • DVD digital versatile disc
  • Etc. smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • mini-slot can be applied in scenarios with large bandwidth scheduling in high-frequency systems, ie scheduling strategies tend to be smaller in time granularity.
  • an embodiment of the present invention provides a data transmission method and a data receiving method, and a corresponding network device and terminal device.
  • the wireless communication system 100 includes a network device 102, which may include one antenna or multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • a network device 102 may include one antenna or multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114.
  • network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or terminal device 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over a forward link (also referred to as downlink) 118 and through the reverse link (also Received as an uplink) 120 receives information from the terminal device 116.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 can use a different frequency band than reverse link 120, and forward link 124 can be used differently than reverse link 126. Frequency band.
  • FDD frequency division duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward chain.
  • the path 124 and the reverse link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the network device can transmit signals to all of the terminal devices in its corresponding sector through a single antenna or multiple antenna transmit diversity.
  • the transmit antenna of network device 102 may also utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 utilizes beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the associated coverage area, as compared to the manner in which the network device transmits signals to all of its terminal devices through single antenna or multi-antenna transmit diversity, Mobile devices in neighboring cells are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 may be a PLMN network or a D2D network or an M2M network or other network.
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG.
  • the URLLC service requires extremely high latency.
  • the transmission delay is required to be within 0.5 milliseconds (millisecond, ms).
  • the transmission delay is required to be within 1 ms.
  • the smallest time scheduling unit is a transmission time interval (TTI) of 1 ms duration.
  • TTI transmission time interval
  • the data transmission of the wireless air interface can use a shorter time scheduling unit, for example, using a mini-slot or a larger sub-carrier time slot as the minimum time scheduling. unit.
  • a mini-slot includes one or more time domain symbols, where the time domain symbols may be orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the corresponding time length is 0.5 ms; for a time slot with a subcarrier spacing of 60 kHz, the corresponding time The length is shortened to 0.125ms.
  • the generation of data packets of the URLLC service is bursty and random, and may not generate data packets for a long period of time, or may generate multiple data packets in a short time.
  • the packets of the URLLC service are in most cases small packets, for example 50 bytes.
  • the characteristics of the data packets of the URLLC service affect the way resources are allocated by the communication system.
  • the resources herein include but are not limited to: time domain symbols, frequency domain resources, time-frequency resources, codeword resources, and beam resources.
  • the allocation of system resources is performed by the access network device. The following uses the access network device as an example for description. If the access network device allocates resources for the URLLC service by using reserved resources, the system resources are wasted when there is no URLLC service. Moreover, the short delay feature of the URLLC service requires the data packet to be transmitted in a very short period of time. Therefore, the access network device needs to reserve a sufficient bandwidth for the URLLC service, thereby causing a serious drop in system resource utilization.
  • a longer time scheduling unit is generally used for data transmission to improve transmission efficiency.
  • one time slot with a 15 kHz subcarrier spacing corresponds to seven time domain symbols.
  • the corresponding time length is 0.5ms.
  • the URLLC service data usually adopts a shorter time scheduling unit to meet the requirements of ultra-short delay, for example, two time domain symbols with 15 kHz subcarrier spacing, or one time slot with 60 kHz subcarrier spacing, corresponding to seven time slots.
  • the domain symbol, the corresponding length of time is 0.125ms.
  • the access network device Due to the burstiness of the data of the URLLC service, in order to improve the system resource utilization, the access network device usually does not reserve resources for downlink data transmission of the URLLC service.
  • the URLLC service data arrives at the access network device, if there is no idle time-frequency resource at this time, the access network device cannot wait for the scheduled transmission of the eMBB service data to complete after the short-latency delay of the URLLC service is satisfied.
  • the URLLC service data is scheduled.
  • the access network device can allocate resources for URLLC service data in a preemption manner.
  • FIG. 2 is a schematic diagram of a time-frequency resource for pre-empting URL data of the eMBB service data.
  • the preemption means that the access network device selects part or all of the time-frequency resources for transmitting the URLLC service data on the allocated time-frequency resources for transmitting the eMBB service data, and the access network device is used for transmitting the URLLC service.
  • the data of the eMBB service is not transmitted on the time-frequency resource of the data.
  • the access network device may select the most suitable frequency domain resource for the URLLC service to ensure the reliability of the URLLC service.
  • the percentage of resources that are affected by the URLLC service of different eMBBs is different from the total resources allocated by the access network devices.
  • the greater the percentage of the affected time-frequency resources the more the reliability of the affected eMBB transmission is reduced relative to the reliability that can be achieved with the originally planned signal. This is mainly because the eMBB user does not know that the time-frequency resource that has been allocated to it is assigned to another URLLC transmission and uses its own data as its own data for subsequent demodulation decoding.
  • FIG. 3 shows a schematic interaction flowchart of a method for transmitting data in an embodiment of the present application.
  • the network device sends the first control information to the terminal device, where the first control information is used to indicate that the terminal device receives the first transmission block that is sent by the network device for the nth time in the first time-frequency resource.
  • the one information block may be a transport block, or may be a coded block or a coded block group.
  • a transport block contains several information bits.
  • the transport block is divided into one or more coded blocks depending on the number of information bits.
  • Information bits within a coded block are channel coded once to generate channel coded bits.
  • a coded block group contains at least one code block.
  • the nth transmission contains at least one coded block of the first information block, the transmission may be referred to as a first information block related transmission.
  • the resource includes one or more frequency domain units in the frequency domain, and the frequency domain unit may include one or more resource blocks, and may further include one or more resource block groups.
  • the foregoing resource includes one or more time units in the time domain, and the time unit may include one or more time domain symbols, may also include one or more slots, and may also include one or more mini time slots ( Mini-slot), or, includes one or more subframes.
  • the frequency domain unit includes a plurality of frequency domain units
  • the multiple frequency domain units may be continuous or discontinuous, which is not limited in this application.
  • the time unit includes a plurality of time units
  • the plurality of time units may be continuous or discontinuous, which is not limited in the present application.
  • the time domain symbol may be an orthogonal frequency division multiplexing (OFDM) symbol, or may be a single-carrier frequency-division multiplexing (SC-FDM) symbol. It should be understood that the symbol may contain a corresponding cyclic prefix of the symbol.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency-division multiplexing
  • n is an integer greater than or equal to 0.
  • CB groups, CBGs CB groups, CBGs
  • the network device can only schedule the transmission of the wrong CBG.
  • one TB contains at least one CBG
  • one CBG contains at least one CB.
  • FIG. 4 is a schematic diagram showing a mapping relationship between CBG and time-frequency resources in the embodiment of the present application. Specifically, FIG. 4 shows how CBG1, CBG2, CBG3, and CBG4 are mapped to allocated time-frequency resources in a certain transmission.
  • the terminal device receives the first transport block on the first time-frequency resource.
  • the terminal device may receive the first transport block on the first time-frequency resource according to the foregoing first control information.
  • the terminal device receives first indication information that is sent by the network device, where the first indication information is used to indicate a first coding block group CBG in the first transport block, where the first CBG is in the The nth transmission of the first transport block corresponds to the second time-frequency resource.
  • At least one CBG is included in the first CBG.
  • the first indication information may also be referred to as CGB indication information.
  • the CBG indication information may be sent by the network device to a terminal device or a group of terminal devices.
  • the CBG indicated by the CBG indication information may be the CBG affected in the nth transmission of the first transport block.
  • the CBG indication information can be used to indicate which code blocks CB or which code block groups CBG received by the terminal device are affected.
  • one or more TBs ie, first transport blocks
  • the CBG indication information may indicate the CBG included in the transmission signal of the nth transmission of the first transmission block.
  • the CBG indication information may adopt a bitmap method.
  • the first transport block includes S CBGs
  • the CBG indication information may include S bits corresponding to the S CBGs.
  • the CBG indication information includes L bits corresponding to L CBGs among the S CBGs scheduled by the network device in the nth transmission of the first transport block.
  • the CBG indication information may also adopt M status indications of an N-bit field (N and M are positive integers, M is less than or equal to 2 ⁇ N), and the meaning of each state representation is preset in the network device and/or the terminal device.
  • the affected may refer to at least one of the following situations:
  • a time-frequency resource for example, a resource element (Resource Element, RE), which may also be referred to as a resource element) indicated by the network device to transmit a signal of the first CBG to the terminal device does not carry the signal during actual transmission. It is used to carry other signals.
  • RE resource element
  • the time-frequency resource indicated by the network device to the terminal device for transmitting the signal of the first CBG does not carry the signal, nor does it carry any other signals.
  • the network device decides to leave the resource vacant or does not send any signal on the resource, and uses the resource to perform other purposes, for example, a network.
  • the device uses the resource to measure interference of neighboring cells and the like.
  • the "other signals” may be signals transmitted by the same network.
  • the network device transmits the signal of the first CBG and the "other signal” in a superposition manner.
  • the "superimposed manner of transmitting a signal” may be that the transmitting device also transmits the B signal on the same time-frequency resource while transmitting the A signal.
  • the transmitting device can transmit the A signal and the B signal using different signal characteristics so that the receiving device can distinguish between the A signal and the B signal.
  • the transmitting device transmits the A signal and the B signal using different modulation mapping methods or different waveforms.
  • the "other signals" may also be sent by other transmitting devices different from the "network device”.
  • the "other signal” may be an interference for the terminal device. That is, the signal of the first CBG in the signal received by the terminal device in the time-frequency resource carrying the signal of the first CBG is a useful signal expected by the terminal device, and the “other signal” is an interference signal.
  • the interference signal is a strong interference signal
  • the network device may send the indication information to the terminal device, indicating that the signal of the first CBG received by the terminal device in the time-frequency resource is affected by the interference, or indicating that the terminal device is in the The signal of the first CBG received by the time-frequency resource is unreliable, or the signal receiving reliability of the first CBG received by the terminal device at the time-frequency resource is low.
  • the received signal on the second time-frequency resource may include a signal that is not used by the terminal device to decode the first transport block.
  • the received signal only includes a signal that is not used by the terminal device to decode the first transport block, or the received signal includes not only the decoding that is not used by the terminal device to decode the first transport block.
  • the signal also includes a signal for the terminal device to decode the first transport block.
  • the terminal device may partially or completely discriminate the affected CBG corresponding signals in the nth received signal of the first transport block.
  • the CBG indication information may directly indicate which CBGs are cleared, or may cause the terminal device to determine the CBGs that need to be cleared by indicating which CBGs are not cleared.
  • the terminal device clearing signal may specifically be to clear the time-frequency signal before demodulation.
  • the clearing may be that the signal to be cleared is not used for decoding.
  • the terminal device discards the pre-demodulation signal to be cleared and no longer processes (for example, demodulation, etc.), and the bit confidence (software) device corresponding thereto is zero.
  • the terminal device clears the signal to be cleared before decoding, that is, sets the confidence (soft information) of the bit corresponding to the signal to be cleared to zero. Therefore, the clearing may also be referred to as discarding, dropping, obliterate, removing, or setting to be zero, etc., which is not limited by the present invention.
  • the terminal device may not decode according to the affected signal, and further, the terminal device may not generate a corresponding acknowledge/non-acknowledge (ACK/NACK) feedback signal according to the affected signal.
  • the terminal device may set the soft bit information corresponding to the signal to be cleared to 0 in a soft buffer; or the terminal device does not write the information corresponding to the signal to be cleared to the soft memory; or The terminal device does not use the modulation symbol corresponding to the signal to be cleared in the signal when demodulating (as if the modulation symbol is not received); or, the terminal device does not receive the signal to be cleared; or the terminal device discards the signal corresponding to the signal to be cleared.
  • the time domain receives signals, or modulation symbols, or bit information.
  • the present invention uses the URLLC to preempt the eMBB transmission resource as an example, the present invention is not limited thereto.
  • a user who preempts a resource can also be a high-priority eMBB user.
  • Low-priority URLLC users may also be preempted by high-priority users.
  • Other types of users in the network may also become preemptors or robbed.
  • Preempted resources may be used to send data or control information or be left blank (eg, to avoid interfering with other signals or to avoid interference).
  • the application background of the present invention may not be resource preemption, and the transmitted signal is subjected to uneven strong interference, and a part of the resources of the transmission is strongly interfered, and the network device indicates, by using the indication information, the terminal equipment affected by the interference to clear the interference.
  • the signal received on the time-frequency resource may not be resource preemption, and the transmitted signal is subjected to uneven strong interference, and a part of the resources of the transmission is strongly interfered, and the network device indicates, by using the indication information, the terminal equipment affected by the interference to clear the interference.
  • the first indication information is sent to the terminal device by using the network device, where the first indication information is used to indicate the first coding block group CBG in the first transport block, and the first CBG is in the first transmission.
  • the nth transmission of the block corresponds to the second time-frequency resource, and the terminal device can perform subsequent demodulation and decoding according to the first indication information, thereby improving the reliability of the transmission of the service of the preempted resource.
  • the terminal device may further receive second indication information that is sent by the network device, where the second indication information is used to indicate a third time-frequency resource, where the third time-frequency resource and the first The intersection of one time-frequency resources is the fourth time-frequency resource.
  • the terminal device determines a fifth time-frequency resource, where the fifth time-frequency resource includes at least one resource element RE, where the at least one RE is included by the first time-frequency resource, and the fifth time-frequency resource is
  • the received signal includes a signal that is not used by the terminal device to decode the first transport block.
  • the network device may further send the second indication information to the terminal device, where the second indication information is used to indicate the third time-frequency resource, where the third time-frequency resource is affected.
  • the second indication information is used to indicate the third time-frequency resource, where the third time-frequency resource is affected.
  • the third time-frequency resource and the first time-frequency resource are at least partially overlapped, and an overlapping portion (ie, an intersection) of the third time-frequency resource and the first time-frequency resource is a fourth time-frequency resource.
  • the second indication information may be a preemption indication or a preemption indication information, and the present invention is not limited thereto.
  • the resource indication information may indicate which time-frequency resources within a time-frequency resource (the time-frequency resource occupies a certain frequency range and corresponds to a duration in the time domain) are affected.
  • FIG. 5 is a schematic diagram of an affected time-frequency resource indicated by a resource indication information according to an embodiment of the present application. Specifically, the time-frequency resource indicated by one resource indication information in FIG. 5 is the frequency domain range marked in the occupation graph, and includes 7 time units in the time domain. The resource indication information indicates that the time-frequency resource marked by the black thick frame in the time-frequency resource is the affected time-frequency resource.
  • the resource indication information may be sent only to the terminal device, that is, the indication range is a corresponding time-frequency resource (ie, the first time-frequency resource in the above) of the data channel of the terminal device.
  • the resource indication information may also be sent to a group of terminal devices, and the group of terminal devices includes at least the terminal device, that is, the indication range is a predefined time-frequency resource. If it is the former case, the “resource indication information indicating the affected time-frequency resource” described below is the affected time-frequency resource specifically indicated by the resource indication information, that is, the fourth time-frequency resource in the above is the upper The third time-frequency resource in the text.
  • the “resource indication information indicating the affected time-frequency resource” described below is the time-frequency resource corresponding to the affected time-frequency resource specifically indicated by the resource indication information and the terminal device data channel.
  • the intersection of the third time-frequency resource in the above is the intersection of the third time-frequency resource and the first time-frequency resource.
  • the terminal device can receive the signal according to whether it is on the "one time-frequency resource", and then pass the signal. It is determined whether the time-frequency resource occupied by the own signal and the affected time-frequency resource notified by the access network device overlap to determine whether the received signal is affected. If there is overlap, the received signal corresponding to the overlapped portion is affected.
  • the resource indication information may adopt a Bitmap indication method, that is, divide the time-frequency resource into multiple shares, each bit represents one of them, and the state 1 of the bit is characterized by its corresponding time-frequency resource being affected, or the state of the bit is 0. It is indicated that the corresponding time-frequency resources are affected, and the present invention is not limited thereto.
  • the resource indication information may also be indicated by M states of an N-bit field (N and M are positive integers, M is less than or equal to 2 ⁇ N), and the meaning of each state representation is preset in the terminal device and/or the network device.
  • the resource indication information may indicate which time-frequency resources in a time-frequency resource are affected, and may also indicate which time-frequency resources are not affected, and the invention is not limited thereto.
  • the terminal device may receive the resource indication information, may also receive the CBG indication information, or may also receive the resource indication information and the CBG indication information.
  • the network device may send two types of indication information, and the terminal device receives one of the indication information, for example, the terminal device determines the behavior by itself or how the network device configuration is received; or the network device only sends one of the information.
  • the terminal device receives the transmitted indication information.
  • the network device sends two kinds of indication information, and the terminal device receives two types (self-acting or network device configuration or preset according to rules of the terminal device). How the terminal device implements "clearing the affected signal" according to these two indications will be described in detail below.
  • the terminal device determines the fifth time-frequency resource according to the first indication information and/or the second indication information.
  • the received signal on the fifth time-frequency resource may be a signal that is finally cleared by the terminal.
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • the CBG indicated by the first indication information is necessarily the CBG included in the first transport block. Therefore, when the terminal device receives the second indication information, and determines that the first transport block only includes one coded block group, the terminal device may clear the affected receive signal according to the time-frequency resource indicated by the two indication information. At this time, the fifth time-frequency resource is the fourth time-frequency resource.
  • clearing the affected received signal according to the second indication information can provide a more accurate clearing operation.
  • the first transport block may comprise at least two coded block groups.
  • how to determine the fifth time-frequency resource when the first transport block includes at least two coded block groups will be described with reference to specific embodiments.
  • the time-frequency resources occupied by the terminal device data channels in FIG. 6 to FIG. 10 are the same as those in FIG. 4, in order to more clearly show the affected time-frequency resources and the cleared time-frequency resources, FIG. 6 CBG1 to CBG4 are not shown in FIG. 10, but the embodiment of the present application does not limit this.
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • FIG. 6 is a schematic diagram of an affected CBG and time-frequency resources according to an embodiment of the present application.
  • the black box in FIG. 6 indicates that the received signal of the terminal device indicated by the resource indication information corresponds to the affected time-frequency resource in the time-frequency resource.
  • the CBG indication information indicates that CBG2 and CBG3 are affected.
  • the terminal device first clears the affected signal according to the received resource indication information, and the shaded range in the figure is the time-frequency resource corresponding to the cleared affected signal.
  • the mapping range of the CBG is related to the time-frequency resource selected by the network device for the terminal device, the transmission method, and the size of the transmission information block
  • the mapping range of the CBG is usually irregular.
  • the "affected" time-frequency resources are generally more regular, and the time-frequency resources are typically used to transmit other signals or perform other operations. Therefore, the resource indication information indicates that the affected range is generally more accurate than the CBG indication information. In other words, if the affected signal is cleared only according to the CBG indication information, the specific cleared portion will be larger than the actual affected portion with a larger probability.
  • the clearing operation is simple based on only one indication information, and the implementation complexity of the terminal device is reduced.
  • the terminal device may determine the fourth time-frequency resource according to the first indication information and the second indication information.
  • the fifth time-frequency resource is an intersection of the second time-frequency resource and the fourth time-frequency resource.
  • FIG. 7 is a schematic diagram of an affected CBG and time-frequency resources according to an embodiment of the present application.
  • the black box in FIG. 7 indicates that the received signal of the terminal device indicated by the resource indication information corresponds to the affected time-frequency resource in the time-frequency resource.
  • the CBG indication information indicates that CBG2 and CBG3 are affected.
  • the terminal device may clear the affected signal according to the received resource indication information and the CBG indication information, where the shaded range in the figure is the time-frequency resource corresponding to the cleared affected signal, and is the time-frequency resource and the CBG indication indicated by the resource indication information. The intersection of the time-frequency resources indicated by the information.
  • a single indication information can only be a minimum indication unit in a certain indication unit (for example, the CBG indication information is indicated by CBG, and the resource indication information is indicated by an hourly frequency unit), and an indication of a single indication information is provided. Accuracy is limited by the number of bits it contains. Therefore, when both kinds of indication information are available, a more accurate indication range can be obtained according to the intersection of the two. Therefore, the embodiment of the present application can enable the terminal device to clear the affected signal more accurately.
  • the affected signal may also be cleared according to the resource indication information and the indication information indicating a smaller range in the CBG indication information. Case 2 and Case 3 below will be described in detail.
  • the fifth time-frequency resource is a resource with a smaller number of REs in the fourth time-frequency resource and the second time-frequency resource.
  • the terminal device may compare all time-frequency resources indicated by the resource indication information with all CBGs indicated by the CBG indication information. Specifically, the terminal device compares the size occupied by the time-frequency resource indicated by the resource indication information (including the number of resource particles or the number of resource particles that can be used to carry the data received by the terminal device) and the time-frequency resource indicated by the CBG indication information. The size is occupied, and then the affected signal is cleared with the smaller one as a reference.
  • FIG. 8 is a schematic diagram of an affected CBG and time-frequency resources according to an embodiment of the present application.
  • the black box in FIG. 8 indicates that the received signal of the terminal device indicated by the resource indication information corresponds to the affected time-frequency resource in the time-frequency resource.
  • the CBG indication information indicates that CBG2 and CBG3 are affected.
  • the range of the shadow in the figure is the time-frequency resource corresponding to the affected signal cleared by the CBG indication information after the terminal device compares the two.
  • FIG. 9 is a schematic diagram of an affected CBG and time-frequency resources according to an embodiment of the present application.
  • the black box in FIG. 9 indicates that the terminal device receives the signal and the affected time-frequency resource in the time-frequency resource indicated by the resource indication information.
  • the CBG indication information indicates that CBG2 and CBG3 are affected.
  • the range of the shadow in the figure is the time-frequency resource corresponding to the affected signal cleared by the terminal device after the two devices have compared the resource indication information with the smaller indication range.
  • the embodiment of the present application can provide more flexibility for the network device. For example, when a certain CBG is affected by a small proportion, the network device considers that the terminal device does not affect the decoding reliability of the CBG even if the part is not cleared. . In this case, the network device can improve the efficiency and effectiveness of the clearing according to the characteristics of the two indication information, one of which is used as a clearing instruction, and then the reliability of the indication is improved by using the other as a check indicator.
  • the fifth time-frequency resource includes at least one resource, the one resource corresponds to one CBG in the first CBG, and the one resource is corresponding to the one CBG on the second time-frequency resource.
  • the time-frequency resource and the time-frequency resource corresponding to the number of REs in the time-frequency resource of the one CBG on the third time-frequency resource.
  • the terminal device first determines the CBG indicated by the CBG indication information, and then compares the size of the time-frequency resource indicated by the resource indication information of each indicated CBG one by one (including the number of resource particles or includes the terminal device that can be used for receiving The number of resource particles of the data and the size of the time-frequency resource actually occupied by the CBG, and then the smaller one is used as a reference to perform the clearing of the affected signal corresponding to the CBG.
  • FIG. 10 is a schematic diagram of an affected CBG and time-frequency resources according to an embodiment of the present application.
  • the black frame in FIG. 10 indicates that the received signal of the terminal device indicated by the resource indication information corresponds to the affected time-frequency resource in the time-frequency resource.
  • the CBG indication information indicates that CBG2 and CBG3 are affected.
  • the range of the shadow in the figure is the time-frequency resource corresponding to the affected signal that is cleared by the terminal device according to the small indication information after the CBG compares the two. For example, the terminal device clears all the time-frequency resources of the CBG2 and the affected signals corresponding to the partial time-frequency resources of the CBG3.
  • the embodiments of the present application enable the terminal device to distinguish the cases of the affected CBGs one by one. It is avoided that the unnecessary affected signals are cleared only according to the CBG indication information or the resource indication information, so that the removal efficiency and effectiveness can be improved.
  • the received CBG indication information and the resource indication information may be used to verify the signal to be cleared.
  • the time-frequency resources where CBG2 and CBG3 indicated by the CBG indication information are consistent with the range indicated by the resource indication information and the terminal device clears the affected signal according to the resource indication information. If the time-frequency resource where the CBG indicated by the CBG indication information (for example, CBG3 and CBG4 is indicated) is inconsistent with the range indicated by the resource indication information, the terminal device may consider that at least one of the two indication information has an error, and then the reception is performed. All signals arriving are identified as affected signals and cleared.
  • the time domain resources of the first indication information and the second indication information may be different, or the first indication information and the second indication information are located in different time units in the time domain.
  • the terminal device may receive one of the indication information in the first time unit and another indication information in the second time unit, the early time unit being located before the second time unit in the time domain.
  • the terminal device can immediately clear the affected signal indicated by the indication information.
  • the terminal device may also perform no action within a time period (the time period may be pre-configured in the terminal device and the network device, or determined by the terminal device or the network device) after receiving one of the indication information at the first time.
  • the terminal device determines the fifth time-frequency resource according to the first indication information and/or the second indication information, and clears the received signal on the fifth time-frequency resource.
  • the terminal device may determine the fifth time-frequency resource only according to the received indication information, and clear the received signal on the fifth time-frequency resource.
  • the first indication information and the second indication information may be in the same time period, and the terminal device may determine the fifth time-frequency resource according to the first indication information and/or the second indication information.
  • the time period includes one or more time units, which may be frames, subframes, time slots, mini-slots, or symbols.
  • the time period may be a period in which the terminal device monitors the downlink control information, or may be a period in which the terminal device monitors downlink control information used for scheduling data transmission, or may be a terminal device that monitors the first indication information.
  • the period may also be a period in which the terminal device monitors the second indication information.
  • the terminal device may determine the time period according to the indication of the network device. For example, the network device can configure the terminal device to monitor the period of the downlink control information. When the network device configures the terminal device for multiple cycles, the “terminal device monitors one cycle of the downlink control information” may be one of multiple cycles of the network device configuration. For example, the network device can configure the terminal device to monitor the period of the first indication information and/or the second indication information. Here, the network device may configure the time period for the terminal device through physical layer/MAC layer/RRC layer signaling.
  • the fifth time-frequency resource is the second time-frequency resource;
  • the second indication information is located before the first indication information in the time domain, and the fifth time-frequency resource is the fourth time-frequency resource.
  • the terminal device can clear the affected signal according to the earlier indication information in the time domain location. Moreover, the clearing action can also be verified according to the lower position information in the time domain.
  • the terminal device uses the time domain to clear the affected signal according to the earlier indication information in the time domain location, and checks the clearing action according to the later information in the time domain. If the indication information before the check is found to be less reliable, the terminal device can clear all received signals of the nth transmission. For example, in FIG. 11, the terminal device clears the affected signal according to the resource indication information in the front-end position of the time domain, and checks the clearing action according to the CBG indication information. For example, in FIG. 12, the terminal device clears the affected signal according to the front-end CBG indication information, and checks the clearing action according to the resource indication information.
  • the first indication information and the second indication information may be in the same time period or in different time periods.
  • the description of the time period can be referred to in the above description, and to avoid repetition, it will not be repeated here.
  • the embodiment of the present application determines the fifth time-frequency resource according to the earlier indication information in the time domain, so that the terminal device can clear the affected signal as soon as possible, thereby completing the received signal processing (eg, demodulation and decoding, etc.) and reducing the HARQ as soon as possible.
  • the time interval between the feedback information and the received signal thereby reducing the RAN side delay of the transmission, improves the user experience of the terminal device.
  • the time-frequency resource where the CBG indicated by the CBG indication information is consistent with the range indicated by the resource indication information includes at least one RE on the third time-frequency resource, and the terminal device The received signal on the quad-time resource is cleared.
  • the terminal device may determine that the time-frequency resource corresponding to the first transport block on the first time-frequency resource is the fourth time-frequency resource, and the first time-frequency resource The received signal on the resource is cleared, that is, the received signal of the first transport block is cleared.
  • the terminal device does not use the signal on the fifth time-frequency resource to decode the first transport block. Specifically, if the terminal device determines that the fifth time-frequency resource is decoding the n+ith transmission of the first transport block, the n+i transmission of the first transport block by the terminal device And the signal on the fifth time-frequency resource is not used in the transmission decoding process after the n+ith time, where i is a natural number.
  • the sixth time-frequency resource may also be determined. If the first indication information is located before the second indication information in the time domain, the fifth time-frequency resource is the second time-frequency resource, and the sixth time-frequency resource is the fourth time a frequency resource; if the second indication information is located before the first indication information in the time domain, the fifth time-frequency resource is the fourth time-frequency resource, and the sixth time-frequency resource is the Second time-frequency resource. At this time, it also includes
  • the terminal device does not use the signal on the fifth time-frequency resource to decode the first transport block
  • the terminal device sets information corresponding to the sixth time-frequency resource in the soft memory to zero.
  • the terminal device receives the second indication information, and determines a fifth time-frequency resource according to the second indication information, where the fifth time-frequency resource is a fourth time-frequency resource.
  • the terminal device does not use the signal on the fifth time-frequency resource to decode the first transport block.
  • the terminal device does not use the signal on the fifth time-frequency resource to decode the first transport block.
  • the terminal device stores, in the received signal of the nth transmission of the first transport block, a signal other than the signal on the fifth time-frequency resource into the soft memory.
  • the terminal device determines the sixth time-frequency resource according to the first indication information, where the sixth time-frequency resource is the second time-frequency resource.
  • the terminal device sets the information corresponding to the sixth time-frequency resource in the soft memory to zero.
  • the information corresponding to the sixth time-frequency resource may be information corresponding to the coded bit originally scheduled to be carried by the sixth time-frequency resource in the soft memory.
  • the foregoing “the coded bit originally scheduled to be carried by the sixth time-frequency resource” may be that when the first control information indicates that the terminal device receives the received signal of the nth transmission of the first transport block, the terminal device determines according to the first control information.
  • the encoded bit of the first transport block carried by the sixth time-frequency resource may be that when the first control information indicates that the terminal device receives the received signal of the nth transmission of the first transport block, the terminal device determines according to the first control information.
  • the encoded bit of the first transport block carried by the sixth time-frequency resource may be that when the first control information indicates that the
  • the terminal device receives the first indication information, and determines a fifth time-frequency resource according to the first indication information, where the fifth time-frequency resource is a second time-frequency resource.
  • the terminal device does not use the signal on the fifth time-frequency resource to decode the first transport block.
  • the terminal device does not use the signal on the fifth time-frequency resource to decode the first transport block.
  • the terminal device stores, in the received signal of the nth transmission of the first transport block, a signal other than the signal on the fifth time-frequency resource into the soft memory.
  • the terminal device determines the sixth time-frequency resource according to the second indication information, where the sixth time-frequency resource is the fourth time-frequency resource.
  • the terminal device sets the information corresponding to the sixth time-frequency resource in the soft memory to zero.
  • the above example provides scheduling flexibility for the network device so that the network device can instruct the terminal device to clear the affected signal by gradually transmitting two indication information. For example, after the network device sends an indication information (the first indication information or the second indication information) to the terminal device, indicating that the signal is not used for decoding, the network device determines that the terminal device fails to receive the one indication information with a large probability. (For example, according to whether the terminal device feeds back the corresponding feedback signal, etc.), the network device may send the second indication information (the second indication information or the first indication information) to indicate that the terminal device may be contaminated in the soft memory. Clear (set to zero). If the network device sends an indication message to the terminal device indicating that the signal is not used for decoding, the network device determines that the terminal device correctly receives an indication information with a high probability, and the network device may not send the second indication information.
  • the network device may send the second indication information (the first indication information or the second indication information) to the terminal device, indicating that the signal is not used for decoding
  • the terminal device receives at least CBG indication information, and how the terminal device implements “clearing the affected signal” according to the CBG indication information is described in detail below.
  • the terminal device may receive only the CBG indication information and clear the affected reception signal according to the CBG indication information, and may also receive the resource indication information and the CBG indication information according to the method described above (or not in the present application)
  • the disclosed method determines that the affected received signal is cleared according to the CBG indication information, and the clearing is performed using the method to be described below.
  • the network device may send the second control information to the terminal device, where the second control information includes the first indication information, where the second control information is further used. And instructing the terminal device to receive, on a seventh time-frequency resource, a second CBG in the first transport block that is sent by the network device in the n+thth time, where k is a positive integer.
  • k is a positive integer.
  • the value of k may be preset in the terminal device and/or the network device, or may be performed by the network device through physical layer signaling, media access control (MAC) layer signaling, or radio resource control. Layer (RRC) signaling is indicated to the terminal device.
  • MAC media access control
  • RRC Layer
  • the second control information may further include third indication information, where the third indication information is used to indicate that the terminal device receives the first transmission of the n+kth transmission of the network device on the seventh time-frequency resource.
  • the second CBG in the block That is to say, the third indication information is used to indicate which CBGs are scheduled this time.
  • the first indication information and the third indication information may be the same indication information, that is, the first indication information may indicate that the terminal device is on the second time-frequency resource on the first time-frequency resource.
  • the receiving signal includes a signal that is not used by the terminal device to decode the first transport block, and may also indicate that the first transmission block in the n+kth transmission of the network device is received on the seventh time-frequency resource. Two CBG.
  • the second CBG may be a supplemental transmission and may also be referred to as an additional repetition or a supplemental repetition CBG, which is not limited in the present invention.
  • part or all of the signals of the CBG may be cleared according to the following description.
  • the first indication information may include Z bits.
  • One bit of the Z bit corresponds to 1/Z of the first time-frequency resource corresponding to all coded bits of the second CBG; or one indication state of the Z bit corresponds to all of the second CBG 1/(2 ⁇ Z) of the first time-frequency resource corresponding to the encoded bit.
  • the second CBG may be divided into Z shares, each of which is identified by 1 bit of the first indication information.
  • the portion where the bit is 1 represents clearing, the portion where 0 is unclear, or vice versa.
  • the second CBG instead of the second CBG, there are Z CBGs, but all the second CBGs are put together and divided into Z shares.
  • One method is to arrange the REs corresponding to each CBG into a queue according to the order of CBG mapping, and then divide the queue into Z shares, each of which corresponds to a time-frequency resource, and the CBG of each time-frequency resource transmission corresponds to A coded bit.
  • Another method is to arrange the corresponding coded bits of each CBG in the n+kth transmission in a queue according to the size of the CBG sequence, and then divide the queue into Z shares, each of which corresponds to a coded one. Bit.
  • FIG. 13 shows the correspondence between CBG and encoded bits. It can be seen that Z1 to Z6 respectively correspond to the Z-coded bits in the encoded bit queue of the n+kth transmission of the first transport block.
  • All the second CBGs sent by the network device in the second control information may include four CBGs, which are a second CBG #1, a second CBG #2, a second CBG #3, and a second CBG #4.
  • Each CBG in the second CBG in the figure corresponds to the encoded post of the n+kth transmission of the CBG in the bit queue in the first transport block.
  • the first and second encoded bits are in the first time-frequency resource and all of the CBGs numbered #1 in the first CBG and the CBGs numbered #2 in the second CBG (as shown in the figure). Corresponding to the shaded part). Therefore, when the first indication information is 110000, it is possible to instruct to clear all of the first CBG #1 and the portion of the second CBG, and accept the second CBG #1 to the second CBG #4.
  • the second CBG can be divided into 2 ⁇ Z shares, each of which is identified by a state of Z bits of the first indication information. Only one of the logos can be cleared at a time, or vice versa. It should be noted that instead of the second CBG containing 2 ⁇ Z CBGs, all the second CBGs are put together and divided into 2 ⁇ Z shares.
  • One method is to arrange the REs corresponding to each CBG into a queue according to the order of CBG mapping, and then divide the queue into 2 ⁇ Z shares, each corresponding to a time-frequency resource, and each time-frequency resource transmission CBG. Corresponds to a coded bit.
  • Another method is to arrange the corresponding coded bits of each CBG in the n+kth transmission in a queue according to the size of the CBG sequence, and then divide the queue into 2 ⁇ Z shares, one for each copy. The encoded bit.
  • FIG. 14 shows the correspondence between CBG and encoded bits.
  • all the second CBGs sent by the network device in the second control information can be divided into four parts, namely, the second CBG#1, the second CBG#2, the second CBG#3 and the second CBG#. 4.
  • Each CBG of the second CBG corresponds to a coded bit in the encoded bit sequence of the n+thth transmission of the first transport block.
  • the first indication information has 2 bits, a total of 4 states, and each state may correspond to 1/4 of the second CBG.
  • 01 may identify the second CBG #1, corresponding to the first in the encoded bit queue.
  • the encoded bit is encoded, and at this time, the first encoded bit corresponds to all of the first CBG #1 (shown in the shaded portion in the figure) in the first time-frequency resource. Then the first encoded bit in the soft memory will all be cleared. Therefore, when the first indication information is 01, it is possible to instruct to clear all of the first CBG #1 and accept the second CBG #1 to the second CBG #4.
  • the CBG indication information (ie, the first indication information) may only indicate which CBGs in the first information block are transmitted in the n+kth transmission, and In other embodiments of the application, the CBG indication information can be used to indicate a CBG that needs to be cleared.
  • the embodiment of the present application can accurately indicate which parts or parts of the CBG are cleared, so as to avoid clearing the received signal of the entire CBG every time, regardless of the situation. Therefore, the efficiency of the cleaning can be effectively improved, the unnecessary transmission waste caused by the excessive cleaning can be reduced, and the terminal device receiving processing can be saved to reduce the power consumption. Moreover, the embodiment of the present application can improve the indication accuracy.
  • the first control information is further used to indicate, to the terminal device, a first redundancy version (RV) of the first CBG in a soft memory;
  • the second control information is further configured to indicate to the terminal device a second redundancy version of the second CBG in the soft memory.
  • the second time-frequency resource is the a coded bit block of the first CBG corresponding to the first CBG from the second redundancy version to the nth transmission on a first time-frequency resource ending in the soft memory a resource corresponding to the coded bit; if the coded bit corresponding to the second redundancy version is not included in the soft memory, the coded bit block of the first CBG sent by the nth time,
  • the second time-frequency resource is all resources corresponding to the first CBG on the first time-frequency resource.
  • the transmitting device performs channel coding on each CB after dividing the information block to be transmitted into a plurality of CBs. Then, a cyclic buffer buffer as shown in FIG. 15 is constructed based on the channel-coded bits. There are a plurality of locations on the loop buffer. These locations can be the starting position of a transmission, which is usually called a redundancy version (also called a transmission start location or a version location, etc., and the invention is not limited thereto). There are 4 redundancy versions per loop buffer in LTE. The redundancy version of a cyclic buffer in the NR system is greater than or equal to four.
  • the code modulation mode, the redundancy version, and the time-frequency resource of the transmission are specified, that is, the coded bits sent by the transmission are read from the cyclic buffer, and the starting position of the reading is
  • the specified redundancy version, the length of the read is determined by the modulation scheme and the number of resource particles available to carry the data.
  • the transmitted CB/CBG is started from the a-th RV in the cyclic buffer, and the entire read bit sequence includes x RVs. , ie RVa,..., RV(a+x-1).
  • the terminal device When the terminal device receives the scheduling information of the n+kth transmission related to the first transport block (ie, the second control information, the scheduling information carries the CBG indication information related to the nth reception), if the scheduling information indicates The second redundancy version is one of the x RVs, for example, RV(a+1), then the terminal device clears the CBG related signal indicated by the CBG indication information in the nth received signal, specifically, clears the CBGs. The signal corresponding to the encoded bit from the beginning of the RV (a+1) to the current end. Then, the CBG in the n+kth transmission, the second redundancy version starts from the RV(a+1).
  • the terminal device clears all signals related to the CBG indicated by the CBG indication information in the nth received signal.
  • the second CBG in the first transport block that is sent by the network device in the n+th time may carry T coded bits of the first transport block.
  • the terminal device may further determine a number of coded bits of one CB of the second CBGs that are carried on the seventh time-frequency resource.
  • the number of encoded bits of the one CB is equal to the rounding of T/X; if the first redundancy version and the second If the redundancy versions are not equal, the number of encoded bits of the one CB is equal to the rounding of S+(TY ⁇ S)/X, or the rounding of (TY ⁇ S)/X, and the rounding may be upper taking. One of the whole, the next, or one of the rounding.
  • X is the number of CBs in the second CBG
  • S is the number of encoded bits between the first redundancy version and the second redundancy version in the soft memory
  • Y is the The number of CBs in the first CBG
  • T, X, S, and Y are all positive integers.
  • the terminal device may confirm the time-frequency resource occupied by the scheduled CB according to the second control information after performing the clearing of the affected signal.
  • each CB occupies the same resource (that is, the resources are equally divided according to the number of CBs), and the RV version of all CB transmissions is the same.
  • the CBG of the CBG in this transmission has its n-th transmitted signal cleared, and the CB in the cleared CBG occupies a larger resource than the CB in the CBG that is not emptied.
  • the previous RV (the RV indicated by the nth transmission network device) and the RV (the RV indicated by the n+kth transmission network device) are not equal
  • the previous RV is from the previous RV to the current RV.
  • X CBs are scheduled, and Y of them are cleared.
  • the total time-frequency resource of this transmission can carry T coded bits, then the transmission is from each CB that is emptied.
  • the number of encoded bits read by the cyclic buffer is S+(TY*S)/X, and the starting position of this reading is the RV indicated by the nth transmission network device.
  • the number of encoded bits read out from the cyclic buffer of each CB that has not been emptied is (TY ⁇ S)/X, and the starting position of this reading is the RV indicated by the n+kth transmission network device. .
  • each CB is equal to T/X.
  • the number of encoded bits of one CB in the second CBG may be determined according to the following method.
  • (X-1) of the X numbers are calculated according to the following formula:
  • the number of encoded bits of this transmission is [S+(T-Y ⁇ S)/X] rounded. If the CB is not the cleared CB, the number of encoded bits of this transmission is [(T-Y ⁇ S)/X] rounded.
  • the 1 CB can be the first of all CBs or the last of all CBs.
  • the 1 CB can be the first of all cleared CBs or the last of all cleared CBs.
  • the 1 CB can be the first of all CBs that have not been cleared, or the last of all CBs that have not been cleared.
  • the embodiment of the present application can compensate the nth transmission and reception signal that is cleared in the n+kth transmission to the terminal device, and effectively alleviate the influence of the clear operation on the transmission reliability of the first information block.
  • FIG. 16 is a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the first receiving unit 510 is configured to receive, by the terminal device, first control information that is sent by the network device, where the first control information is used to indicate that the terminal device receives the nth transmission of the network device by using the first time-frequency resource.
  • the second receiving unit 520 is configured to receive, by the terminal device, the first transport block on the first time-frequency resource
  • the third receiving unit 530 is configured to receive, by the terminal device, first indication information that is sent by the network device, where the first indication information is used to indicate a first coding block group CBG in the first transport block,
  • the first CBG corresponds to the second time-frequency resource at the nth transmission of the first transport block;
  • n is an integer greater than or equal to zero.
  • the first indication information is sent to the terminal device by using the network device, where the first indication information is used to indicate the first coding block group CBG in the first transport block, and the first CBG is in the first transmission.
  • the nth transmission of the block corresponds to the second time-frequency resource, and the terminal device can perform subsequent demodulation and decoding according to the first indication information, thereby improving the reliability of the transmission of the service of the preempted resource.
  • the third receiving unit 530 is further configured to: receive, by the terminal device, second indication information that is sent by the network device, where the second indication information is used to indicate a third time-frequency resource, where The intersection of the third time-frequency resource and the first time-frequency resource is a fourth time-frequency resource;
  • a determining unit configured to determine, by the terminal device, a fifth time-frequency resource according to the first indication information and/or the second indication information, where the fifth time-frequency resource includes at least one resource element RE, where The at least one RE is included by the first time-frequency resource, and the received signal on the fifth time-frequency resource includes a signal that is not used by the terminal device to decode the first transport block.
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • the fifth time-frequency resource is an intersection of the second time-frequency resource and the fourth time-frequency resource;
  • the fifth time-frequency resource is a resource with a smaller number of REs in the fourth time-frequency resource and the second time-frequency resource;
  • the fifth time-frequency resource includes at least one resource, the one resource corresponds to one CBG in the first CBG, and the one resource is a time-frequency corresponding to the one CBG on the second time-frequency resource.
  • the first indication information and the second indication information are located in the same time period in the time domain, and the time period includes one or more time units, where the time unit is a frame, a subframe, and a time. a slot, a minislot or a symbol, wherein the time period is:
  • the terminal device monitors one cycle of downlink control information
  • the terminal device monitors one cycle of downlink control information used for scheduling data transmission; or
  • the terminal device monitors one period of the first indication information
  • the terminal device monitors one period of the second indication information.
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • the fifth time-frequency resource is the second time-frequency resource
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • the first indication information and the second indication information are located in different time segments in the time domain, or the first indication information and the second indication information are located in the same time period in the time domain.
  • the time period includes one or more time units, and the time unit is one of a frame, a subframe, a time slot, a minislot or a symbol, and the time period is:
  • the terminal device monitors one cycle of downlink control information
  • the terminal device monitors one cycle of downlink control information used for scheduling data transmission; or
  • the terminal device monitors one period of the first indication information
  • the terminal device monitors one period of the second indication information.
  • the fifth time-frequency resource is the first time-frequency resource.
  • the first receiving unit 510, the second receiving unit 520, and the third receiving unit 530 may be implemented by a transceiver, and the determining unit may be implemented by a processor.
  • the terminal device 600 may include a processor 610, a memory 620, and a transceiver 630.
  • the memory 620 can be used to store code and the like executed by the processor 610.
  • the transceiver described above can include a transmitter and a receiver.
  • the transceiver may further include an antenna, and the number of antennas may be one or more.
  • the memory can be a separate device or integrated into the processor.
  • the above various devices or parts of the device can be integrated into the chip for implementation, such as integration into a baseband chip.
  • the network device or the terminal device in the device and the method embodiment are completely corresponding, and the corresponding steps are performed by the corresponding module, for example, the sending module method or the step sent by the transmitter performing the method embodiment, and the receiving module or the receiver performing the method embodiment
  • the steps of receiving, except for transmitting and receiving, may be performed by a processing module or processor.
  • a processing module or processor For the function of the specific module, reference may be made to the corresponding method embodiment, which is not described in detail.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 620, and the processor 610 reads the information in the memory 620 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the terminal device 500 shown in FIG. 16 or the terminal device 600 shown in FIG. 17 can implement the processes corresponding to the foregoing method embodiment shown in FIG. 3 .
  • the terminal device 500 or the terminal device 600 can refer to FIG. 3 above. The description, to avoid repetition, will not be repeated here.
  • the embodiment of the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for executing the method corresponding to the terminal device in the various implementation manners in FIG. 3 above.
  • the embodiment of the present application further provides a communication chip in which an instruction is stored, and when it is run on the terminal device 500 or the terminal device 600, the communication chip is caused to perform the terminal device corresponding to the foregoing implementation manners in FIG. Methods.
  • FIG. 18 is a schematic block diagram of a network device 700 according to an embodiment of the present application.
  • the first sending unit 710 is configured to send the first control information to the terminal device, where the first control information is used to indicate that the terminal device receives the nth transmission of the network device by using the first time-frequency resource.
  • a second sending unit 720 configured to send, by the network device, the first transport block to the terminal device on the first time-frequency resource
  • the third sending unit 730 is configured to send the first indication information to the terminal device, where the first indication information is used to indicate a first coding block group CBG in the first transport block, where the a CBG corresponding to the second time-frequency resource at the nth transmission of the first transport block;
  • n is an integer greater than or equal to zero.
  • the first indication information is sent to the terminal device by using the network device, where the first indication information is used to indicate the first coding block group CBG in the first transport block, and the first CBG is in the first transmission.
  • the nth transmission of the block corresponds to the second time-frequency resource, and the terminal device can perform subsequent demodulation and decoding according to the first indication information, thereby improving the reliability of the transmission of the service of the preempted resource.
  • the third sending unit 730 is further configured to send, by the network device, second indication information to the terminal device, where the second indication information is used to indicate a third time-frequency resource, where the third The intersection of the time-frequency resource and the first time-frequency resource is a fourth time-frequency resource;
  • the first indication information and/or the second finger information is used by the terminal device to determine a fifth time-frequency resource, where the fifth time-frequency resource includes at least one resource element RE, where the at least one The RE is included by the first time-frequency resource, and the received signal on the fifth time-frequency resource includes a signal that is not used by the terminal device to decode the first transport block.
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • the fifth time-frequency resource is an intersection of the second time-frequency resource and the fourth time-frequency resource;
  • the fifth time-frequency resource is a resource with a smaller number of REs in the fourth time-frequency resource and the second time-frequency resource;
  • the fifth time-frequency resource includes at least one resource, the one resource corresponds to one CBG in the first CBG, and the one resource is a time-frequency corresponding to the one CBG on the second time-frequency resource.
  • the first indication information and the second indication information are located in the same time period in the time domain, and the time period includes one or more time units, where the time unit is a frame, a subframe, and a time. a slot, a minislot or a symbol, wherein the time period is:
  • the terminal device monitors one cycle of downlink control information
  • the terminal device monitors one cycle of downlink control information used for scheduling data transmission; or
  • the terminal device monitors one period of the first indication information
  • the terminal device monitors one period of the second indication information.
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • the fifth time-frequency resource is the second time-frequency resource
  • the fifth time-frequency resource is the fourth time-frequency resource.
  • the first indication information and the second indication information are located in different time segments in the time domain, or the first indication information and the second indication information are located in the same time period in the time domain.
  • the time period includes one or more time units, and the time unit is one of a frame, a subframe, a time slot, a minislot or a symbol, and the time period is:
  • the terminal device monitors one cycle of downlink control information
  • the terminal device monitors one cycle of downlink control information used for scheduling data transmission; or
  • the terminal device monitors one period of the first indication information
  • the terminal device monitors one period of the second indication information.
  • the fifth time-frequency resource is the first time-frequency resource.
  • the first sending unit 710, the second sending unit 720, and the third sending unit 730 may be implemented by a transceiver.
  • network device 800 can include a processor 810, a memory 820, and a transceiver 830.
  • the processor 810 can be used to determine that the transceiver 830 sends information
  • the memory 820 can be used to store code and the like executed by the processor 810.
  • the transceiver described above can include a transmitter and a receiver.
  • the transceiver may further include an antenna, and the number of antennas may be one or more.
  • the memory can be a separate device or integrated into the processor. The above various devices or parts of the device can be integrated into the chip for implementation, such as integration into a baseband chip.
  • the network device or the terminal device in the device and the method embodiment are completely corresponding, and the corresponding steps are performed by the corresponding module, for example, the sending module method or the step sent by the transmitter performing the method embodiment, and the receiving module or the receiver performing the method embodiment
  • the steps of receiving, except for transmitting and receiving, may be performed by a processing module or processor.
  • a processing module or processor For the function of the specific module, reference may be made to the corresponding method embodiment, which is not described in detail.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 820, and the processor 810 reads the information in the memory 820 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the network device 700 shown in FIG. 18 or the device 800 shown in FIG. 19 can implement the processes corresponding to the foregoing method embodiments shown in FIG. 3. Specifically, the network device 700 or the network device 800 can refer to FIG. 3 above. Description, to avoid repetition, we will not repeat them here.
  • the embodiment of the present application provides a computer readable medium for storing a computer program, where the computer program includes instructions for executing the method corresponding to the network device in the various implementation manners in FIG. 3 above.
  • the embodiment of the present application further provides a communication chip, where instructions are stored, when it is run on the network device 700 or the network device 800, so that the communication chip performs the network device corresponding to the various implementation manners in FIG. 3 above. Methods.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了传输数据的方法、终端设备和网络设备,包括:终端设备接收网络设备发送的第一控制信息,所述第一控制信息用于指示所述终端设备在第一时频资源接收所述网络设备第n次发送的第一传输块;所述终端设备在所述第一时频资源上接收所述第一传输块;所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源;n为大于或等于0的整数。本申请实施例能够提高被抢占资源的业务的传输的可靠性。

Description

传输数据的方法、终端设备和网络设备
本申请要求于2017年06月16日提交中国专利局、申请号为201710461651.4、申请名称为“传输数据的方法、终端设备和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信领域中的传输数据的方法、终端设备和网络设备。
背景技术
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
不同业务对移动通信系统的需求不同,当前5G通信系统应当同时支持多种不同业务的数据传输需求,例如,同时支持URLLC业务和eMBB业务。由于URLLC业务的数据的突发性,为了提高系统资源利用率,接入网设备通常不会为URLLC业务的下行数据传输预留资源。当URLLC业务数据到达接入网设备时,如果此时没有空闲的时频资源,接入网设备为了满足URLLC业务的超短时延需求,无法等待将本次调度的eMBB业务数据传输完成之后再对URLLC业务数据进行调度。接入网设备可以采用抢占(preemption)的方式,为URLLC业务数据分配资源。这里的抢占是指接入网设备在已经分配的、用于传输eMBB业务数据的时频资源上选择部分或全部的时频资源用于传输URLLC业务数据,接入网设备在用于传输URLLC业务数据的时频资源上不发送eMBB业务的数据。
由于URLLC业务的紧急性和重要性,接入网设备可能为URLLC业务选择最合适的频域资源以保证URLLC业务的可靠性。这种情况下,受到URLLC业务影响的eMBB用户(或者被URLLC业务抢占资源的eMBB用户)可能不止一个。不同eMBB被URLLC业务影响的资源占接入网设备为其分配的总资源的百分比也不一样。一般来说,受影响的时频资源所占的百分比越大,被影响的eMBB传输的可靠性相对于原计划发送的信号能够达到的可靠性降低的越多。这主要是因为eMBB用户不知道已经分配给它的时频资源又分配给了另一个URLLC传输而将不是自己的数据当做自己的数据进行后续的解调解码造成的。
因此,亟需一种能够提高被URLLC业务抢占资源的eMBB业务的可靠性的技术方案。
发明内容
本申请提供了传输数据的方法、终端设备和网络设备,能够提高被抢占资源的业务的传输的可靠性。
第一方面,提供了一种传输数据的方法,包括:
终端设备接收网络设备发送的第一控制信息,所述第一控制信息用于指示所述终端设备在第一时频资源接收所述网络设备第n次发送的第一传输块;
所述终端设备在所述第一时频资源上接收所述第一传输块;
所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源;
n为大于或等于0的整数。
所述第一CBG中包括至少一个CBG。第一指示信息也可以称为CGB指示信息。另外,该CBG指示信息可以是网络设备发送给一个终端设备或一组终端设备的。CBG指示信息指示的CBG可以为第一传输块的第n次传输中受到影响的CBG。
具体的,受影响的CBG可以为:由网络设备向终端设备指示的用于发送第一CBG的信号的时频资源在实际发送过程中没有承载该信号而是用来承载其它的信号了;或者在实际发送过程中,由网络设备向终端设备指示的用于发送第一CBG的信号的时频资源没有承载该信号,也没有承载其它的任何信号;或者由网络设备向终端设备指示的用于发送第一CBG的信号的时频资源承载了该信号,但是同时终端设备在该时频资源上接收到的信号中也包含除所述第一CBG的信号以外的其它信号。
在本申请实施例中,第二时频资源上的接收信号可以包括不用于所述终端设备对所述第一传输块译码的信号。这可以理解为:该接收信号仅仅包括不用于所述终端设备对所述第一传输块译码的信号,或者该接收信号不仅包括不用于所述终端设备对所述第一传输块译码的信号,还包括用于所述终端设备对所述第一传输块译码的信号。
这里,终端设备可以将第一传输块的第n次接收信号中的受影响的CBG对应信号部分或全部清除。
因此,本申请实施例通过网络设备向终端设备发送第一指示信息,该第一指示信息用于指示第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源,进而终端设备可以根据第一指示信息进行后续的解调解码,提高被抢占资源的业务的传输的可靠性。
可选的,还包括:所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示第三时频资源,其中,所述第三时频资源与所述第一时频资源的交集为第四时频资源;
所述终端设备根据所述第一指示信息和/或所述第二指示信息,确定第五时频资源,所述第五时频资源包含至少一个资源元素RE,其中,所述至少一个RE被所述第一时频资源包含,所述第五时频资源上的接收信号包括不用于所述终端设备对所述第一传输块译码的信号。
该第三时频资源为受影响的时频资源。第二指示信息可以称为资源指示信息。
这里,资源指示信息可以是仅发送给该终端设备的,即其指示范围是该终端设备的数 据信道等对应的时频资源(即上文中的第一时频资源)。资源指示信息也可以是发送给一组终端设备的且该一组终端设备至少包含该终端设备的,即其指示范围是预定义的时频资源。如果是前一种情况,下文中所述的“资源指示信息指示受影响的时频资源”即为该资源指示信息具体指示的受影响时频资源,即上文中的第四时频资源为上文中的第三时频资源。如果是后一种情况,下文中所述的“资源指示信息指示受影响的时频资源”即为该资源指示信息具体指示的受影响时频资源与该终端设备数据信道等对应的时频资源的交集,即上文中的第四时频资源为第三时频资源与第一时频资源的交集。
可选的,若所述第一传输块仅包含一个编码块,则所述第五时频资源为所述第四时频资源。这种情况下,根据第二指示信息清除受影响的接收信号可以提供更精准的清除操作。
可选的,所述第五时频资源为所述第四时频资源。因为CBG的映射范围与网络设备为终端设备选择的时频资源、传输方法以及此次传输信息块的大小等都有联系,因此CBG的映射范围通常是不规则的。也就是说,“受影响”的时频资源通常是较为规则的,该时频资源通常被用来传输其它信号或者实施其它操作。因此,相比于CBG指示信息,资源指示信息指示受影响的范围的通常更为准确。或者说,如果仅根据CBG指示信息清除的受影响的信号,那么具体清除的部分会以较大概率大于实际受影响部分。
此外,仅根据一种指示信息进行清除操作简单,减小终端设备的实现复杂度。
或者所述第五时频资源为所述第二时频资源和所述第四时频资源的交集。因为单独一种指示信息都只能以某个指示单位为最小指示单位(例如,CBG指示信息以CBG为指示单位,资源指示信息以一个小时频单位为指示单位),单独一种指示信息的指示精度都受到了其包含比特数的限制。因此,当两种指示信息都可用的时候,可以根据两者的交集获得更准确的指示范围。因而本申请实施例可以使得终端设备能够更为精准的清除受影响的信号。
或者所述第五时频资源为所述第四时频资源与所述第二时频资源二者中RE数量较少的资源。本申请实施例可以为网络设备提供更多的灵活性,例如,当某个CBG受影响的比例较小的时候网络设备认为终端设备即使不清除该部分也不会影响该CBG的译码可靠性。这种情况下,网络设备可以根据两种指示信息的特点,以其中一种作为清除指示从而提高清除的效率和有效性,然后以另一种作为校验指示提高指示的可靠性。
或者所述第五时频资源至少包含一个资源,所述一个资源对应于所述第一CBG中的一个CBG,所述一个资源为所述第二时频资源上对应于所述一个CBG的时频资源和所述第四时频资源上对应于所述一个CBG的时频资源中RE数量较少的时频资源。
本申请实施例能够使得终端设备逐个分辨受影响的CBG的情况。避免只根据CBG指示信息或者资源指示信息过大的清除不必要的受影响信号,从而能够提高清除效率和有效性。
本申请实施例中,终端设备清除受影响信号之前,可以利用接收到的CBG指示信息和资源指示信息对要清除的信号进行校验。例如,CBG指示信息指示的CBG所在的时频资源与资源指示信息指示的范围一致,终端设备根据资源指示信息清除受影响信号。
如果CBG指示信息指示的CBG所在的时频资源与资源指示信息指示的范围不一致,终端设备可以认为两个指示信息中至少有一个出现了错误,进而将此次接收到的所有信号都确定为受影响的信号并实施清除。也就是说,若所述第二时频资源与所述第四时频资源 没有交集,则所述第五时频资源为所述第一时频资源。
可选的,所述第一指示信息和所述第二指示信息在时域上位于同一时间段内,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号,其中,所述时间段为:
所述终端设备监测下行控制信息的一个周期;或者,
所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
所述终端设备监测所述第一指示信息的一个周期;或者,
所述终端设备监测所述第二指示信息的一个周期。
可选的,若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源;
若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源。
可选的,所述第一指示信息和所述第二指示信息在时域上位于不同时间段内,或所述第一指示信息和所述第二指示信息在时域上位于同一个时间段内,其中,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号中的一项,所述时间段为:
所述终端设备监测下行控制信息的一个周期;或者,
所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
所述终端设备监测所述第一指示信息的一个周期;或者,
所述终端设备监测所述第二指示信息的一个周期。
本申请实施例根据时域上较早的指示信息来确定第五时频资源,可以使得终端设备尽快清除受影响的信号,进而尽快完成接收信号处理(例如,解调解码等)、减小HARQ反馈信息和接收信号之间的时间间隔,从而降低该次传输的RAN侧时延提高终端设备的用户体验感受。
本申请实施例中,所述终端设备不使用所述第五时频资源上的信号对所述第一传输块译码。具体而言,如果所述终端设备确定第五时频资源在对所述第一传输块的第n+i次传输译码之前,所述终端设备对第一传输块的第n+i次传输以及第n+i次以后的传输译码过程中不使用第五时频资源上的信号,其中,i为自然数。
可选的,所述终端设备确定第五时频资源之后,还可以确定第六时频资源。若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源,所述第六时频资源为所述第四时频资源;若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源,所述第六时频资源为所述第二时频资源。这时,还包括,
所述终端设备不使用所述第五时频资源上的信号对所述第一传输块译码;
所述终端设备将软存储器中与所述第六时频资源对应的信息设置为零。
上述例子为网络设备提供了调度灵活度使得网络设备能够通过逐步发送两个指示信息指示终端设备清除受影响的信号。例如,当网络设备发送了一个指示信息(第一指示信息或者第二指示信息)向终端设备指示了不用于译码的信号之后,网络设备判断终端设备以较大概率未能接收该一个指示信息(例如依据终端设备是否反馈了相应的反馈信号等), 网络设备可以再终端设备发送第二个指示信息(第二指示信息或者第一指示信息)指示终端设备将软存储器中可能被污染的信息清除(设置为零)。如果网络设备发送了一个指示信息向终端设备指示了不用于译码的信号之后,网络设备判断终端设备以较大概率正确的接收了一个指示信息,网络设备可以不发送第二个指示信息。
可选的,所述终端设备接收所述网络设备发送的第一指示信息包括:
所述终端设备接收所述网络设备发送的第二控制信息,所述第二控制信息包括所述第一指示信息,其中,所述第二控制信息还用于指示所述终端设备在第七时频资源上接收所述网络设备第n+k次发送的第一传输块中的第二CBG,其中,k为正整数。
在本申请实施例的一种可能的实现方式中,哪个CBG被第一指示信息所指示,就清除该CBG的全部信号。或者,在本申请实施例的另一种可能的实现方式中,可以根据下面的指示清除该CBG的部分或者全部信号。
可选的,所述第一指示信息包含Z比特;
所述Z比特中的一比特对应于所述第二CBG的全部编码后比特对应的第一时频资源的1/Z;或者
所述Z比特的一个指示状态对应于所述第二CBG的全部编码后比特对应的第一时频资源的1/(2^Z)。
因此,本申请实施例可以精确的指示清除CBG中的哪些部分或哪一部分,从而避免不分情况地每次将整个CBG的接收信号清除掉。因此可以有效地提高清除的效率,降低由于过度清除造成的不必要的传输浪费,进而节省终端设备接收处理降低耗电。并且,本申请实施例能够提高指示精度。
可选的,所述第一控制信息还用于向所述终端设备指示所述第一CBG在软存储器中的第一冗余版本;
所述第二控制信息还用于向所述终端设备指示所述第二CBG在所述软存储器中的第二冗余版本。
可选的,还包括:若所述第二冗余版本对应的编码后比特在所述软存储器中包含于第n次发送的所述第一CBG的编码后比特块之内,则所述第二时频资源为所述第一时频资源上对应于所述第一CBG的从所述第二冗余版本开始至所述第n次发送的所述第一CBG的编码后比特块在所述软存储器中结束位置的编码后比特对应的资源;
若所述第二冗余版本对应的编码后比特在所述软存储器中不包含于所述第n次发送的所述第一CBG的编码后比特块之内,则所述第二时频资源为所述第一时频资源上对应于所述第一CBG的全部资源。
因此,本申请实施例中,无需额外的指示信息即可以避免不分情况地每次将整个CBG的接收信号清除掉。因而可以有效地提高清除的效率,降低由于过度清除造成的不必要的传输浪费,进而节省终端设备接收处理降低耗电。
可选的,所述第七时频资源可以承载所述第一传输块的T个编码后比特,所述方法还包括:
所述终端设备确定承载于所述第七时频资源上的所述第二CBG中一个CB的编码后比特的数量;
若所述第一冗余版本与所述第二冗余版本相等,则所述一个CB的编码后比特的数量 等于T/X的取整;
若所述第一冗余版本与所述第二冗余版本不相等,则所述一个CB的编码后比特数量等于S+(T-Y×S)/X的取整,或者,(T-Y×S)/X的取整;
其中,X为所述第二CBG中CB的数量,S为所述软存储器中的所述第一冗余版本和所述第二冗余版本之间的编码后比特的数量,Y为所述第一CBG中CB的数量,T、X、S、Y均为正整数。
因此,本申请实施例可以在第n+k次传输中将被清除的第n次传输接收信号补偿给终端设备,有效缓解因为清除操作对第一信息块传输可靠性的影响。
第二方面,本发明实施例提供了一种用户设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法,具体的,该用户设备包括用于执行上述第一方面或第一方面任意可能的实现方式中的方法的模块。
第三方面,本发明实施例提供了一种用户设备,该用户设备包括:存储器、处理器和收发器。其中,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,本发明实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第五方面,提供了一种传输数据的方法,包括:
网络设备向终端设备发送第一控制信息,所述第一控制信息用于指示所述终端设备在第一时频资源接收所述网络设备第n次发送的第一传输块;
所述网络设备在所述第一时频资源上向所述终端设备发送所述第一传输块;
所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源;
n为大于或等于0的整数。
所述第一CBG中包括至少一个CBG。第一指示信息也可以称为CGB指示信息。另外,该CBG指示信息可以是网络设备发送给一个终端设备或一组终端设备的。CBG指示信息指示的CBG可以为第一传输块的第n次传输中受到影响的CBG。
具体的,受影响的CBG可以为:由网络设备向终端设备指示的用于发送第一CBG的信号的时频资源在实际发送过程中没有承载该信号而是用来承载其它的信号了;或者在实际发送过程中,由网络设备向终端设备指示的用于发送第一CBG的信号的时频资源没有承载该信号,也没有承载其它的任何信号;或者由网络设备向终端设备指示的用于发送第一CBG的信号的时频资源承载了该信号,但是同时终端设备在该时频资源上接收到的信号中也包含除所述第一CBG的信号以外的其它信号。
在本申请实施例中,第二时频资源上的接收信号可以包括不用于所述终端设备对所述第一传输块译码的信号。这可以理解为:该接收信号仅仅包括不用于所述终端设备对所述第一传输块译码的信号,或者该接收信号不仅包括不用于所述终端设备对所述第一传输块译码的信号,还包括用于所述终端设备对所述第一传输块译码的信号。
这里,终端设备可以将第一传输块的第n次接收信号中的受影响的CBG对应信号部 分或全部清除(eliminate)。
因此,本申请实施例通过网络设备向终端设备发送第一指示信息,该第一指示信息用于指示第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源,进而终端设备可以根据第一指示信息进行后续的解调解码,提高被抢占资源的业务的传输的可靠性。
可选的,还包括:所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示第三时频资源,其中,所述第三时频资源与所述第一时频资源的交集为第四时频资源;
其中,所述第一指示信息和/或所述第二指信息用于所述终端设备确定第五时频资源,所述第五时频资源包含至少一个资源元素RE,其中,所述至少一个RE被所述第一时频资源包含,所述第五时频资源上的接收信号包括不用于所述终端设备对所述第一传输块译码的信号。
该第三时频资源为受影响的时频资源。第二指示信息可以称为资源指示信息。
这里,资源指示信息可以是仅发送给该终端设备的,即其指示范围是该终端设备的数据信道等对应的时频资源(即上文中的第一时频资源)。资源指示信息也可以是发送给一组终端设备的且该一组终端设备至少包含该终端设备的,即其指示范围是预定义的时频资源。如果是前一种情况,下文中所述的“资源指示信息指示受影响的时频资源”即为该资源指示信息具体指示的受影响时频资源,即上文中的第四时频资源为上文中的第三时频资源。如果是后一种情况,下文中所述的“资源指示信息指示受影响的时频资源”即为该资源指示信息具体指示的受影响时频资源与该终端设备数据信道等对应的时频资源的交集,即上文中的第四时频资源为第三时频资源与第一时频资源的交集。
可选的,若所述第一传输块仅包含一个编码块,则所述第五时频资源为所述第四时频资源。这种情况下,根据第二指示信息清除受影响的接收信号可以提供更精准的清除操作。
可选的,所述第五时频资源为所述第四时频资源。因为CBG的映射范围与网络设备为终端设备选择的时频资源、传输方法以及此次传输信息块的大小等都有联系,因此CBG的映射范围通常是不规则的。也就是说,“受影响”的时频资源通常是较为规则的,该时频资源通常被用来传输其它信号或者实施其它操作。因此,相比于CBG指示信息,资源指示信息指示受影响的范围的通常更为准确。或者说,如果仅根据CBG指示信息清除的受影响的信号,那么具体清除的部分会以较大概率大于实际受影响部分。
此外,仅根据一种指示信息进行清除操作简单,减小终端设备的实现复杂度。
或者所述第五时频资源为所述第二时频资源和所述第四时频资源的交集。因为单独一种指示信息都只能以某个指示单位为最小指示单位(例如,CBG指示信息以CBG为指示单位,资源指示信息以一个小时频单位为指示单位),单独一种指示信息的指示精度都受到了其包含比特数的限制。因此,当两种指示信息都可用的时候,可以根据两者的交集获得更准确的指示范围。因而本申请实施例可以使得终端设备能够更为精准的清除受影响的信号。
本申请实施例可以为网络设备提供更多的灵活性,例如,当某个CBG受影响的比例较小的时候网络设备认为终端设备即使不清除该部分也不会影响该CBG的译码可靠性。这种情况下,网络设备可以根据两种指示信息的特点,以其中一种作为清除指示从而提高 清除的效率和有效性,然后以另一种作为校验指示提高指示的可靠性。
或者所述第五时频资源至少包含一个资源,所述一个资源对应于所述第一CBG中的一个CBG,所述一个资源为所述第二时频资源上对应于所述一个CBG的时频资源和所述第四时频资源上对应于所述一个CBG的时频资源中RE数量较少的时频资源。
本申请实施例能够使得终端设备逐个分辨受影响的CBG的情况。避免只根据CBG指示信息或者资源指示信息过大的清除不必要的受影响信号,从而能够提高清除效率和有效性。
本申请实施例中,终端设备清除受影响信号之前,可以利用接收到的CBG指示信息和资源指示信息对要清除的信号进行校验。例如,CBG指示信息指示的CBG所在的时频资源与资源指示信息指示的范围一致,终端设备根据资源指示信息清除受影响信号。
如果CBG指示信息指示的CBG所在的时频资源与资源指示信息指示的范围不一致,终端设备可以认为两个指示信息中至少有一个出现了错误,进而将此次接收到的所有信号都确定为受影响的信号并实施清除。也就是说,若所述第二时频资源与所述第四时频资源没有交集,则所述第五时频资源为所述第一时频资源。
可选的,所述第一指示信息和所述第二指示信息在时域上位于同一时间段内,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号,其中,所述时间段为:
所述终端设备监测下行控制信息的一个周期;或者,
所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
所述终端设备监测所述第一指示信息的一个周期;或者,
所述终端设备监测所述第二指示信息的一个周期。
可选的,若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源;
若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源。
可选的,所述第一指示信息和所述第二指示信息在时域上位于不同时间段内,或所述第一指示信息和所述第二指示信息在时域上位于同一个时间段内,其中,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号中的一项,所述时间段为:
所述终端设备监测下行控制信息的一个周期;或者,
所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
所述终端设备监测所述第一指示信息的一个周期;或者,
所述终端设备监测所述第二指示信息的一个周期。
可选的,若所述第二时频资源与所述第四时频资源没有交集,则所述第五时频资源为所述第一时频资源。
本申请实施例根据时域上较早的指示信息来确定第五时频资源,可以使得终端设备尽快清除受影响的信号,进而尽快完成接收信号处理(例如,解调解码等)、减小HARQ反馈信息和接收信号之间的时间间隔,从而降低该次传输的RAN侧时延提高终端设备的用户体验感受。
可选的,所述终端设备确定第五时频资源之后,还可以确定第六时频资源。若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源,所述第六时频资源为所述第四时频资源;若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源,所述第六时频资源为所述第二时频资源。这时,还包括,
所述终端设备不使用所述第五时频资源上的信号对所述第一传输块译码;
所述终端设备将软存储器中与所述第六时频资源对应的信息设置为零。
上述例子为网络设备提供了调度灵活度使得网络设备能够通过逐步发送两个指示信息指示终端设备清除受影响的信号。例如,当网络设备发送了一个指示信息(第一指示信息或者第二指示信息)向终端设备指示了不用于译码的信号之后,网络设备判断终端设备以较大概率未能接收该一个指示信息(例如依据终端设备是否反馈了相应的反馈信号等),网络设备可以再终端设备发送第二个指示信息(第二指示信息或者第一指示信息)指示终端设备将软存储器中可能被污染的信息清除(设置为零)。如果网络设备发送了一个指示信息向终端设备指示了不用于译码的信号之后,网络设备判断终端设备以较大概率正确的接收了一个指示信息,网络设备可以不发送第二个指示信息。
可选的,所述网络设备还可以向所述终端设备发送第二控制信息,所述第二控制信息包括所述第一指示信息,其中,所述第二控制信息还用于指示所述终端设备在第七时频资源上接收所述网络设备第n+k次发送的第一传输块中的第二CBG,其中,k为正整数。
在本申请实施例的一种可能的实现方式中,哪个CBG被第一指示信息所指示,就清除该CBG的全部信号。或者,在本申请实施例的另一种可能的实现方式中,可以根据下面的指示清除该CBG的部分或者全部信号。
可选的,所述第一指示信息包含Z比特;
所述Z比特中的一比特对应于所述第二CBG的全部编码后比特对应的第一时频资源的1/Z;或者
所述Z比特的一个指示状态对应于所述第二CBG的全部编码后比特对应的第一时频资源的1/(2^Z)。
因此,本申请实施例可以精确的指示清除CBG中的哪些部分或哪一部分,从而避免不分情况地每次将整个CBG的接收信号清除掉。因此可以有效地提高清除的效率,降低由于过度清除造成的不必要的传输浪费,进而节省终端设备接收处理降低耗电。并且,本申请实施例能够提高指示精度。
可选的,所述第一控制信息还用于向所述终端设备指示所述第一CBG在软存储器中的第一冗余版本;
所述第二控制信息还用于向所述终端设备指示所述第二CBG在所述软存储器中的第二冗余版本。
可选的,还包括:若所述第二冗余版本对应的编码后比特在所述软存储器中包含于第n次发送的所述第一CBG的编码后比特块之内,则所述第二时频资源为所述第一时频资源上对应于所述第一CBG的从所述第二冗余版本开始至所述第n次发送的所述第一CBG的编码后比特块在所述软存储器中结束位置的编码后比特对应的资源;
若所述第二冗余版本对应的编码后比特在所述软存储器中不包含于所述第n次发送 的所述第一CBG的编码后比特块之内,则所述第二时频资源为所述第一时频资源上对应于所述第一CBG的全部资源。
因此,本申请实施例中,无需额外的指示信息即可以避免不分情况地每次将整个CBG的接收信号清除掉。因而可以有效地提高清除的效率,降低由于过度清除造成的不必要的传输浪费,进而节省终端设备接收处理降低耗电。
第六方面,本发明实施例提供了一种网络设备,用于执行上述第五方面或第五方面的任意可能的实现方式中的方法,具体的,该用户设备包括用于执行上述第五方面或第五方面任意可能的实现方式中的方法的模块。
第七方面,本发明实施例提供了一种网络设备,该网络设备包括:存储器、处理器和收发器。其中,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第五方面或第五方面的任意可能的实现方式中的方法。
第八方面,本发明实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第五方面或第五方面的任意可能的实现方式中的方法的指令。
附图说明
图1是应用于本发明实施例无线通信系统的示意图。
图2是URLLC业务数据抢占用于传输eMBB业务数据的时频资源示意图。
图3是本申请实施例中的传输数据的方法的示意性交互流程图。
图4是本申请实施例的一种CBG与时频资源的对应关系的示意图。
图5是本申请实施例的一种资源指示信息指示的受影响的时频资源的示意图。
图6是本申请实施例的一种受影响CBG和时频资源的示意图。
图7是本申请实施例的另一种受影响CBG和时频资源的示意图。
图8是本申请实施例的另一种受影响CBG和时频资源的示意图。
图9是本申请实施例的另一种受影响CBG和时频资源的示意图。
图10是本申请实施例的另一种受影响CBG和时频资源的示意图。
图11是本申请实施例的一种第一指示信息和第二指示信息的示意图。
图12是本申请实施例的另一种第一指示信息和第二指示信息的示意图。
图13是本申请实施例的一种CBG和编码后比特的对应关系。
图14是本申请实施例的另一种CBG和编码后比特的对应关系。
图15是本申请实施例的一种循环缓存。
图16是本申请实施例的一种终端设备的示意性框图。
图17是本申请实施例的另一种终端设备的示意性框图。
图18是本申请实施例的一种网络设备的示意性框图。
图19是本申请实施例的另一种网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本发明实施例可以应用于各种通信系统,例如:全球移动通讯(Global System  of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或下一代通信系统,如5G系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信。
本发明实施例结合发送设备和接收设备描述了各个实施例,其中,发送设备可以为网络设备和终端设备中的一方,接收设备可以为网络设备和终端设备中的另一方,例如,在本发明实施例中,发送设备可以为网络设备,接收设备可以为终端设备;或者,发送设备可以为终端设备,接收设备可以为网络设备。
终端设备也可以称为用户设备(user Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(station,STA),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代(fifth-Generation,5G)通信网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例,在本发明实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(access point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
另外,在本发明实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信。该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对 应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小和发射功率低的特点,适用于提供高速率的数据传输服务。
本发明实施例提供的方法和装置,可以应用于终端设备或网络设备,该终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本发明实施例中,传输信号的方法的执行主体的具体结构,本发明实施例并未特别限定,只要能够通过运行记录有本发明实施例的传输信号的方法的代码的程序,以根据本发明实施例的传输信号的方法进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本发明实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在当前的讨论中,一个共识是mini-slot的概念可以应用在高频系统中大带宽调度的场景下,即调度策略倾向于较小的时间颗粒度。但是,对于如何基于mini-slot进行数据调度还没有确定的方案。此外,如何基于mini-slot监听下行控制信道也没有确定的方案。
针对上述问题,本发明实施例提出了一种数据发送方法和一种数据接收方法以及相应的网络设备和终端设备。
图1是应用于本发明实施例无线通信系统的示意图。如图1所示,该无线通信系统100包括网络设备102,网络设备102可包括1个天线或多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路) 120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(time division duplex,TDD)系统、全双工(full duplex)系统和灵活双工系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。网络设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络或者D2D网络或者M2M网络或者其它网络,图1只是举例的简化示意图,网络中还可以包括其它网络设备,图1中未予以画出。
URLLC业务对时延要求极高,不考虑可靠性的情况下,传输时延要求在0.5毫秒(millisecond,ms)以内;在达到99.999%的可靠性的前提下,传输时延要求在1ms以内。
在长期演进(long term evolution,LTE)系统中,最小的时间调度单元为一个1ms时间长度的传输时间间隔(transmission time interval,TTI)。为了满足URLLC业务的传输时延需求,无线空口的数据传输可以使用更短的时间调度单元,例如,使用迷你时隙(mini-slot)或更大的子载波间隔的时隙作为最小的时间调度单元。其中,一个mini-slot包括一个或多个时域符号,这里的时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。对于子载波间隔为15千赫兹(kilohertz,kHz)的一个时隙,包括6个或7个时域符号,对应的时间长度为0.5ms;对于子载波间隔为60kHz的一个时隙,对应的时间长度则缩短为0.125ms。
URLLC业务的数据包的产生具有突发性和随机性,可能在很长一段时间内都不会产生数据包,也可能在很短时间内产生多个数据包。URLLC业务的数据包在多数情况下为小包,例如50个字节。URLLC业务的数据包的特性会影响通信系统的资源分配方式。这里的资源包括但不限于:时域符号、频域资源、时频资源、码字资源以及波束资源等。通常系统资源的分配由接入网设备来完成,下面以接入网设备为例进行说明。如果接入网设备采用预留资源的方式为URLLC业务分配资源,则在无URLLC业务的时候系统资源是 浪费的。而且URLLC业务的短时延特性要求数据包在极短的时间内传输完成,所以接入网设备需要预留足够大的带宽给URLLC业务,从而导致系统资源利用率严重下降。
由于eMBB业务的数据量比较大,而且传输速率比较高,因此通常采用较长的时间调度单元进行数据传输以提高传输效率,例如,采用15kHz子载波间隔的一个时隙,对应7个时域符号,对应的时间长度为0.5ms。URLLC业务数据通常采用较短的时间调度单元,以满足超短时延的需求,例如,采用15kHz子载波间隔的2个时域符号,或者采用60kHz子载波间隔的一个时隙,对应7个时域符号,对应的时间长度为0.125ms。
由于URLLC业务的数据的突发性,为了提高系统资源利用率,接入网设备通常不会为URLLC业务的下行数据传输预留资源。当URLLC业务数据到达接入网设备时,如果此时没有空闲的时频资源,接入网设备为了满足URLLC业务的超短时延需求,无法等待将本次调度的eMBB业务数据传输完成之后再对URLLC业务数据进行调度。接入网设备可以采用抢占(preemption)的方式,为URLLC业务数据分配资源。图2示出了URLLC业务数据抢占用于传输eMBB业务数据的时频资源示意图。这里的抢占是指接入网设备在已经分配的、用于传输eMBB业务数据的时频资源上选择部分或全部的时频资源用于传输URLLC业务数据,接入网设备在用于传输URLLC业务数据的时频资源上不发送eMBB业务的数据。
进一步地,由于URLLC业务的紧急性和重要性,接入网设备可能为URLLC业务选择最合适的频域资源以保证URLLC业务的可靠性。这种情况下,受到URLLC业务影响的eMBB用户(或者被URLLC业务抢占资源的eMBB用户)可能不止一个。不同eMBB被URLLC业务影响的资源占接入网设备为其分配的总资源的百分比也不一样。一般来说,受影响的时频资源所占的百分比越大,被影响的eMBB传输的可靠性相对于原计划发送的信号能够达到的可靠性降低的越多。这主要是因为eMBB用户不知道已经分配给它的时频资源又分配给了另一个URLLC传输而将不是自己的数据当做自己的数据进行后续的解调解码。
图3示出了本申请实施例中的传输数据的方法的示意性交互流程图。
310,网络设备向终端设备发送第一控制信息,所述第一控制信息用于指示终端设备在第一时频资源接收网络设备第n次发送的第一传输块。
网络设备调度终端设备进行物理层数据传输时,实际传输的是一个或者多个信息块。所述一个信息块可以是一个传输块,也可以是一个编码块或者一个编码块组。一个传输块包含若干信息比特。根据该信息比特的数目,该传输块被分为一个或者多个编码块。一个编码块内的信息比特经过一次信道编码,生成信道编码比特。一个编码块组至少包含一个编码块。这里,如果第n次传输至少包含了第一信息块的一个编码块,可以称该传输为第一信息块相关的传输。
在本申请实施例中,资源在频域上包括一个或多个频域单元,频域单元可以包括一个或多个资源块,还可以包括一个或多个资源块组。上述资源在时域上包括一个或多个时间单元,时间单元可以包括一个或多个时域符号,也可以包括一个或多个时隙(slot),还可以包括一个或多个迷你时隙(mini-slot),或者,包括一个或多个子帧(subframe)。上述频域单元包括多个频域单元时,该多个频域单元可以是连续的,也可是不连续的,本申请不做限定。上述时间单元包括多个时间单元时,该多个时间单元可以是连续的,也可 是不连续的,本申请不做限定。其中,上述时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分复用(single-carrier frequency-division multiplexing,SC-FDM)符号。应理解,所述符号可以包含该符号相应的循环前缀。
本申请实施例中,n为大于或等于0的整数。在5G NR系统中,可以指示基于一组CB(CB group,CBG)的重传。即,初始传输(即第n=0次传输)中传输的是完整的TB,在重传(即第n>0次传输)中网络设备可以仅调度传输错误的CBG即可。这里,一个TB包含至少一个CBG,一个CBG包含至少一个CB。图4示出了本申请实施例的CBG与时频资源的一种映射关系的示意图。具体的,图4示出了某一次传输中,CBG1、CBG2、CBG3和CBG4是如何映射到分配的时频资源上的。
320,终端设备在所述第一时频资源上接收所述第一传输块。
具体的,终端设备可以根据上述第一控制信息,在第一时频资源上接收第一传输块。330,所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源。
所述第一CBG中包括至少一个CBG。第一指示信息也可以称为CGB指示信息。另外,该CBG指示信息可以是网络设备发送给一个终端设备或一组终端设备的。
本申请实施例中,CBG指示信息指示的CBG可以为第一传输块的第n次传输中受到影响的CBG。换句话说,CBG指示信息可以用于指示终端设备收到的哪些编码块CB或者哪些编码块组CBG受到了影响。通常,该终端设备的某一次传输中发送或者接收一个或者一个以上TB(即第一传输块),例如1个TB或者2个TB。CBG指示信息所指示的可以是该第一传输块第n次传输的传输信号中包含的CBG。
CBG指示信息可以采用位图(Bitmap)的方法,例如,第一传输块包含S个CBG,CBG指示信息可以包含S个比特对应这S个CBG。或者,CBG指示信息包含L个比特对应第一传输块第n次传输中由网络设备调度的S个CBG中的L个CBG。CBG指示信息还可以采用一个N比特字段的M个状态指示(N和M为正整数,M小于等于2^N),并且每个状态代表的含义预先设置于网络设备和/或终端设备中。
本申请实施例中,受影响可以指代以下情况中的至少一种:
情况1:由网络设备向终端设备指示的用于发送第一CBG的信号的时频资源(例如资源粒子(Resource Element,RE),也可以称为资源元素)在实际发送过程中没有承载该信号而是用来承载其它的信号了。
情况2:在实际发送过程中,由网络设备向终端设备指示的用于发送第一CBG的信号的时频资源没有承载该信号,也没有承载其它的任何信号。具体而言,网络设备在向终端设备指示该资源用于承载第一CBG的信号之后,又决定将该资源空置或者不在该资源上发送任何信号,而利用该资源完成其它的目的,例如,网络设备利用该资源测量邻小区的干扰等。
情况3:在实际发送过程中,由网络设备向终端设备指示的用于发送第一CBG的信号的时频资源承载了该信号,但是同时终端设备在该时频资源上接收到的信号中也包含除所述第一CBG的信号以外的其它信号。
这里,所述“其它信号”可以是,由同一个网络发送的信号。例如,该网络设备采用叠加(superposition)的方式发送该第一CBG的信号和“其它信号”。所述“叠加的方式发送信号”可以是发送设备在发送A信号的同时在相同的时频资源上还发送B信号。发送设备可以使用不同的信号特征发送A信号和B信号,以便于接收设备能够区分出A信号和B信号。例如,发送设备采用不同的调制映射方式或者不同的波形等发送A信号和B信号。
或者,所述“其它信号”还可以是由不同于所述“网络设备”的其它发送设备发送的。
一种可能的情况,对于所述终端设备该“其它信号”可以是一种干扰。即,该终端设备在承载该第一CBG的信号的时频资源接收到的信号中该第一CBG的信号是终端设备期待的有用信号,而该“其它信号”为干扰信号。当该干扰信号为强干扰信号的时候,网络设备可以向终端设备发送指示信息,指示该终端设备在该时频资源收到的该第一CBG的信号受到干扰影响,或者说指示该终端设备在该时频资源收到的该第一CBG的信号不可靠,或者说指示该终端设备在该时频资源收到的该第一CBG的信号接收可靠性较低。
在本申请实施例中,第二时频资源上的接收信号可以包括不用于所述终端设备对所述第一传输块译码的信号。这可以理解为:该接收信号仅仅包括不用于所述终端设备对所述第一传输块译码的信号,或者该接收信号不仅包括不用于所述终端设备对所述第一传输块译码的信号,还包括用于所述终端设备对所述第一传输块译码的信号。
这里,终端设备可以将第一传输块的第n次接收信号中的受影响的CBG对应信号部分或全部清除(eliminate)。具体地,该CBG指示信息可以是直接指示清除哪些CBG,也可以通过指示不清除哪些CBG从而使终端设备确定需要被清除的CBG。
终端设备清除信号具体可以是清除解调前的时频信号,换句话说,所述清除可以是待清除信号不用于译码。例如,终端设备将待清除的解调前信号丢弃不再进行处理(例如解调等),与之对应的比特的置信度(软信息)设备为零。或者,终端设备在译码前对待清除信号进行清除,即将与待清除信号对应的比特的置信度(软信息)置零。因此,所述清除还可以指丢弃(discard)、丢掉(drop)、抹掉(obliterate)、去除(remove)或置零(set to be zero)等,本发明不作限定。
具体而言,终端设备可以不根据该受影响的信号进行译码,进一步地,终端设备可以不根据该受影响的信号生成相应的确认/不确认(ACK/NACK)反馈信号。例如,终端设备可以在软存储器(soft buffer)中将待清除信号对应的软比特信息(soft bit information)设置为0;或者,终端设备不将待清除信号对应的信息写入软存储器;或者,终端设备在解调时不使用信号中与待清除信号对应的调制符号(当做没有收到该调制符号处理);或者,终端设备不接收待清除信号;或者,终端设备丢弃该待清除信号对应的时域接收信号,或者调制符号,或者比特信息。
应理解,有信号受影响是需要清除信号的原因,但是在实际清除的过程中,被清除的信号和受影响的信号不是完全等位的。
需要注意的是,尽管本发明中以URLLC抢占eMBB传输资源为例,本发明不以此为限。例如,抢占资源的用户也可以是高优先级的eMBB用户。低优先级的URLLC用户也可能被高优先级的用户抢占。网络中的其它类型用户也可能成为抢占者或者被抢者。被抢占的资源可能用来发送数据或者控制信息或者被留空白(例如避免干扰其它信号或者躲避 干扰)。又例如,本发明应用背景也可以不是资源抢占,而且发送信号受到了不均匀强干扰,该次传输的某一部分资源受到了强干扰,网络设备通过指示信息指示被干扰影响的终端设备清楚该干扰所在的时频资源上接收到的信号。
因此,本申请实施例通过网络设备向终端设备发送第一指示信息,该第一指示信息用于指示第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源,进而终端设备可以根据第一指示信息进行后续的解调解码,提高被抢占资源的业务的传输的可靠性。
可选的,所述终端设备还可以接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示第三时频资源,其中,所述第三时频资源与所述第一时频资源的交集为第四时频资源。
所述终端设备确定第五时频资源,所述第五时频资源包含至少一个资源元素RE,其中,所述至少一个RE被所述第一时频资源包含,所述第五时频资源上的接收信号包括不用于所述终端设备对所述第一传输块译码的信号。
具体而言,本申请实施例中,网络设备还可以向终端设备发送的第二指示信息,所述第二指示信息用于指示第三时频资源,该第三时频资源为受影响的时频资源。这里,第三时频资源与第一时频资源至少部分重叠,且所述第三时频资源与所述第一时频资源的重叠部分(即交集)为第四时频资源。并且,第二指示信息可以为资源指示信息(preemption indication)或者抢占指示信息等,本发明不以此为限。
资源指示信息可以指示在一个时频资源(该时频资源占据一定频域范围并对应时域上的一段持续时间)内的哪些时频资源受到了影响。图5示出了本申请实施例的一种资源指示信息指示的受影响的时频资源的示意图。具体的,图5中一个资源指示信息指示的时频资源是占据图中标注的频域范围,同时在时域上包含7个时间单位。该资源指示信息指示在这个时频资源内由黑色粗框标注的时频资源为受影响的时频资源。
这里,资源指示信息可以是仅发送给该终端设备的,即其指示范围是该终端设备的数据信道等对应的时频资源(即上文中的第一时频资源)。资源指示信息也可以是发送给一组终端设备的且该一组终端设备至少包含该终端设备的,即其指示范围是预定义的时频资源。如果是前一种情况,下文中所述的“资源指示信息指示受影响的时频资源”即为该资源指示信息具体指示的受影响时频资源,即上文中的第四时频资源为上文中的第三时频资源。如果是后一种情况,下文中所述的“资源指示信息指示受影响的时频资源”即为该资源指示信息具体指示的受影响时频资源与该终端设备数据信道等对应的时频资源的交集,即上文中的第四时频资源为第三时频资源与第一时频资源的交集。
由于网络设备和终端设备均知道该资源指示信息指示的“一个时频资源”在频域和时域上的位置,终端设备可以根据自己是否在该“一个时频资源”上接收信号,进而通过比对自己的信号所占的时频资源和接入网设备通知的受影响的时频资源是否有重叠来确定自己的接收信号是否受到影响。如果有重叠,则重叠的部分对应的接收信号受到了影响。
资源指示信息可以采用Bitmap的指示方法,即将时频资源分为多份,每比特代表其中的一份,由该比特的状态1表征其对应的时频资源受影响,或者用该比特的状态0指示其对应的时频资源受影响,本发明不以此为限。资源指示信息也可以采用一个N比特字段的M个状态进行指示(N和M为正整数,M小于等于2^N),每个状态代表的含义预先 设置在终端设备和/或网络设备中。
此外,本申请实施例中,该资源指示信息可以指示一个时频资源中的哪些时频资源受影响了,也可以指示哪些时频资源不受影响,本发明不以此为限。
需要说明的是,终端设备可以接收资源指示信息,也可以接收CBG指示信息,或者还可以接收资源指示信息和CBG指示信息。具体地,可以是网络设备发送了两种指示信息,而终端设备接收了其中的一种,例如终端设备自行决定行为或者由网络设备配置如何接收;也可以是网络设备只发送了其中的一种,相应地终端设备接收了发送的指示信息。
本申请实施例的一种可能的实现方式中,假设网络设备发送了两种指示信息,终端设备接收了两种(自行行为或者网络设备配置或预先设定于终端设备的规则规定的)。下文将详细描述终端设备如何根据这两种指示信息实施“清除受影响的信号”。
具体而言,本申请实施例中,所述终端设备根据所述第一指示信息和/或所述第二指示信息,确定第五时频资源。本申请实施例中,第五时频资源上的接收信号可以为终端最终清除的信号。
作为一例,若所述第一传输块仅包含一个编码块组,则所述第五时频资源为所述第四时频资源。
具体而言,当第一传输块仅包含一个编码块组时,第一指示信息指示的CBG必然为该第一传输块包含的该CBG。因此,在终端设备接收到第二指示信息,且确定第一传输块仅包含一个编码块组时,终端设备可以根据二指示信息指示的时频资源来清除受影响的接收信号。此时,第五时频资源为所述第四时频资源。
这种情况下,根据第二指示信息清除受影响的接收信号可以提供更精准的清除操作。
下文中的实施例中,所述第一传输块可以包含至少两个编码块组。下文中将结合具体实施例,描述当所述第一传输块至少包含两个编码块组时,如何确定所述第五时频资源。需要说明的是,下面图6至图10中的终端设备数据信道所占时频资源与图4中相同,为了更清楚地示出受影响的时频资源与被清除的时频资源,图6至图10中并未示出CBG1至CBG4,但本申请实施例对此并不限定。
作为另一例,所述第五时频资源为所述第四时频资源。
图6示出了本申请实施例的一种受影响的CBG和时频资源的示意图。图6中黑框标注的是资源指示信息指示的该终端设备接收信号对应时频资源内受影响的时频资源。并且,CBG指示信息指示CBG2和CBG3受影响。终端设备首先根据接收到的资源指示信息清除受影响的信号,图中阴影的范围为被清除的受影响信号对应的时频资源。
因为CBG的映射范围与网络设备为终端设备选择的时频资源、传输方法以及此次传输信息块的大小等都有联系,因此CBG的映射范围通常是不规则的。参照上文中的介绍,“受影响”的时频资源通常是较为规则的,该时频资源通常被用来传输其它信号或者实施其它操作。因此,相比于CBG指示信息,资源指示信息指示受影响的范围的通常更为准确。或者说,如果仅根据CBG指示信息清除的受影响的信号,那么具体清除的部分会以较大概率大于实际受影响部分。
此外,仅根据一种指示信息进行清除操作简单,减小终端设备的实现复杂度。
作为另一例,所述终端设备可以根据所述第一指示信息和所述第二指示信息,确定所述第四时频资源。
情况1,所述第五时频资源为所述第二时频资源和所述第四时频资源的交集。
图7示出了本申请实施例的一种受影响的CBG和时频资源的示意图。图7中黑框标注的是资源指示信息指示的该终端设备接收信号对应时频资源内受影响的时频资源。CBG指示信息指示CBG2和CBG3受影响。终端设备可以根据接收到的资源指示信息和CBG指示信息清除受影响的信号,图中阴影的范围为被清除的受影响信号对应的时频资源,是资源指示信息指示的时频资源和CBG指示信息指示的时频资源的交集。
因为单独一种指示信息都只能以某个指示单位为最小指示单位(例如,CBG指示信息以CBG为指示单位,资源指示信息以一个小时频单位为指示单位),单独一种指示信息的指示精度都受到了其包含比特数的限制。因此,当两种指示信息都可用的时候,可以根据两者的交集获得更准确的指示范围。因而本申请实施例可以使得终端设备能够更为精准的清除受影响的信号。
本申请实施例中,还可以根据资源指示信息和CBG指示信息中指示范围较小的指示信息清除受影响的信号。下文中的情况2和情况3将进行详细描。
情况2,所述第五时频资源为所述第四时频资源与所述第二时频资源二者中RE数量较少的资源。
具体的,终端设备可以比较资源指示信息指示的所有时频资源和CBG指示信息指示的所有CBG。具体而言,终端设备比较资源指示信息指示的时频资源所占的大小(包含资源粒子的数目或者包含可用于承载终端设备接收数据的资源粒子的数目)和CBG指示信息指示的时频资源所占的大小,而后以较小的那个作为参考对受影响信号实施清除。
图8示出了本申请实施例的一种受影响的CBG和时频资源的示意图。图8中黑框标注的是资源指示信息指示的该终端设备接收信号对应时频资源内受影响的时频资源。CBG指示信息指示CBG2和CBG3受影响。图中阴影的范围为终端设备比较过两者之后根据指示范围较小的CBG指示信息清除的受影响信号对应的时频资源。
图9示出了本申请实施例的一种受影响的CBG和时频资源的示意图。图9中黑框标注的是资源指示信息指示的该终端设备接收信号对应时频资源内受影响的时频资源。CBG指示信息指示CBG2和CBG3受影响。图中阴影的范围为终端设备比较过两者之后根据指示范围较小的资源指示信息清除的受影响信号对应的时频资源。
本申请实施例可以为网络设备提供更多的灵活性,例如,当某个CBG受影响的比例较小的时候网络设备认为终端设备即使不清除该部分也不会影响该CBG的译码可靠性。这种情况下,网络设备可以根据两种指示信息的特点,以其中一种作为清除指示从而提高清除的效率和有效性,然后以另一种作为校验指示提高指示的可靠性。
情况3,所述第五时频资源至少包含一个资源,所述一个资源对应于所述第一CBG中的一个CBG,所述一个资源为所述第二时频资源上对应于所述一个CBG的时频资源和所述第三时频资源上对应于所述一个CBG的时频资源中RE数量较少的时频资源。
具体的,终端设备首先确定CBG指示信息指示的CBG,然后逐个比较每一个被指示的CBG的资源指示信息指示的时频资源所占的大小(包含资源粒子的数目或者包含可用于承载终端设备接收数据的资源粒子的数目)和该CBG实际占的时频资源所占的大小,而后以较小的那个作为参考对该CBG对应的受影响信号实施清除。
图10示出了本申请实施例的一种受影响的CBG和时频资源的示意图。图10中黑框 标注的是资源指示信息指示的该终端设备接收信号对应时频资源内受影响的时频资源。CBG指示信息指示CBG2和CBG3受影响。图中阴影的范围为终端设备逐CBG比较过两者之后根据指示范围较小指示信息清除的受影响信号对应的时频资源。例如,终端设备清除CBG2的全部时频资源和CBG3的部分时频资源对应的受影响信号。
本申请实施例能够使得终端设备逐个分辨受影响的CBG的情况。避免只根据CBG指示信息或者资源指示信息过大的清除不必要的受影响信号,从而能够提高清除效率和有效性。
进一步地,本申请实施例中,终端设备清除受影响信号之前,可以利用接收到的CBG指示信息和资源指示信息对要清除的信号进行校验。例如在图6至图10所示的例子中,CBG指示信息指示的CBG2和CBG3所在的时频资源与资源指示信息指示的范围一致,终端设备根据资源指示信息清除受影响信号。如果CBG指示信息指示的CBG(例如指示了CBG3和CBG4)所在的时频资源与资源指示信息指示的范围不一致,终端设备可以认为两个指示信息中至少有一个出现了错误,进而将此次接收到的所有信号都确定为受影响的信号并实施清除。
本申请实施例中,第一指示信息和第二指示信息的时域资源可以不同,或者说,第一指示信息和第二指示信息在时域上位于不同的时间单位。例如,终端设备可以在第一时间单位接收其中一个指示信息,在第二时间单位接收另一个指示信息,第一时间早单位在时域上位于于第二时间单位之前。相应的,终端设备在第一时间接收到其中一个指示信息之后,可以立即对该指示信息指示的受影响的信号进行清除。终端设备也可以在第一时间接收到其中一个指示信息之后,在一个时间段(该时间段可以预配置在终端设备和网络设备中,或者由终端设备或网络设备确定)内不作为。当在该时间段内收到另一个指示信息时,终端设备根据第一指示信息和/或第二指示信息,确定第五时频资源,并对第五时频资源上的接收信号进行清除。当在该时间段内没有收到另一个指示信息时,终端设备可以只根据收到的指示信息确定第五时频资源,并对第五时频资源上的接收信号进行清除。
在上文的实施例中,第一指示信息和第二指示信息可以在同一个时间段内,所述终端设备可以根据第一指示信息和/或第二指示信息确定第五时频资源。该时间段包含一个或者多个时间单位,所述时间单位可以为帧、子帧、时隙、迷你时隙或者符号。其中,该时间段可以是终端设备监测下行控制信息的一个周期,也可以是终端设备监测用于调度数据传输的下行控制信息的一个周期,也可以是终端设备监测所述第一指示信息的一个周期,还可以是终端设备监测所述第二指示信息的一个周期。
终端设备可以根据网络设备的指示确定上述时间段。例如,网络设备可以为终端设备配置监测下行控制信息的周期。当网络设备为终端设备配置了多个周期的时候,该“终端设备监测下行控制信息的一个周期”可以是网络设备配置的多个周期中的一个。例如,网络设备可以为终端设备配置监测第一指示信息和/或第二指示信息的周期。这里,网络设备可以通过物理层/MAC层/RRC层信令为终端设备配置所述时间段。
作为另一例,本申请实施例中,若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源;若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源。
也就是说,终端设备可以根据时域位置上比较靠前的指示信息清除受到影响的信号。 并且,还可以根据时域上位置比较靠后的指示信息对清除动作进行校验。
具体而言,终端设备使用时域根据时域位置上比较靠前的指示信息清除受到影响的信号,并根据时域上位置比较靠后的指示信息对清除动作进行校验。如果校验发现之前的指示信息可靠性不高,那么终端设备可以清除第n次传输的所有接收信号。例如图11中终端设备根据时域位置比较靠前的资源指示信息清除受影响信号,而根据CBG指示信息对该清除动作进行校验。例如图12中终端设备根据时域位置比较靠前的CBG指示信息清除受影响信号,而根据资源指示信息对该清除动作进行校验。
具体的,本申请实施例中,上述第一指示信息和第二指示信息可以在同一个时间段内,也可以在不同的时间段内。时间段的描述可以参加上文中的描述,为避免重复,这里不再赘述。
本申请实施例根据时域上较早的指示信息来确定第五时频资源,可以使得终端设备尽快清除受影响的信号,进而尽快完成接收信号处理(例如,解调解码等)、减小HARQ反馈信息和接收信号之间的时间间隔,从而降低该次传输的RAN侧时延提高终端设备的用户体验感受。
本申请实施例中,在利用接收到的CBG指示信息和资源指示信息对要清除的信号进行校验的过程中,当CBG指示信息指示的CBG所在的时频资源与资源指示信息指示的范围一致时,可以理解为所述第一时频资源上对应于所述第一CBG中的任意一个CBG的时频资源包含所述第三时频资源上的至少一个RE,此时终端设备对上述第四时频资源上的接收信号进行清除。当CBG指示信息指示的CBG所在的时频资源与资源指示信息指示的范围不一致时,可以理解为所述第一时频资源上对应于第一CBG中的一个CBG的时频资源不包含所述第三时频资源上的任一个RE,此时终端设备可以确定所述第一时频资源上对应于所述第一传输块的时频资源为第四时频资源,并对第一时频资源上的接收信号进行清除,即清除第一传输块的接收信号。
本申请实施例中,所述终端设备不使用所述第五时频资源上的信号对所述第一传输块译码。具体而言,如果所述终端设备确定第五时频资源在对所述第一传输块的第n+i次传输译码之前,所述终端设备对第一传输块的第n+i次传输以及第n+i次以后的传输译码过程中不使用第五时频资源上的信号,其中,i为自然数。
作为另一例,所述终端设备确定第五时频资源之后,还可以确定第六时频资源。若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源,所述第六时频资源为所述第四时频资源;若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源,所述第六时频资源为所述第二时频资源。这时,还包括,
所述终端设备不使用所述第五时频资源上的信号对所述第一传输块译码;
所述终端设备将软存储器中与所述第六时频资源对应的信息设置为零。
具体的,终端设备接收所述第二指示信息,并根据所述第二指示信息确定第五时频资源,第五时频资源为第四时频资源。终端设备不使用第五时频资源上的信号对第一传输块进行译码。具体地,在第五时频资源确定之后启动的译码过程中,所述终端设备不使用第五时频资源上的信号对第一传输块进行译码。以及,终端设备将第一传输块的第n次发送的接收信号中除第五时频资源上的信号以外的信号存储进软存储器。如果所述终端设备在 接收到第二指示信息之后,又接收到了第一指示信息,终端设备根据所述第一指示信息确定第六时频资源,第六时频资源为第二时频资源。终端设备将软存储器中与第六时频资源对应的信息设置为零。其中,与第六时频资源对应的信息可以是软存储器中与原定于由第六时频资源承载的编码后比特对应的信息。上述“原定于由第六时频资源承载的编码后比特”可以是由第一控制信息指示终端设备接收第一传输块的第n次发送的接收信号时,终端设备根据第一控制信息确定的由第六时频资源承载的第一传输块的编码后比特。
或者,具体的,终端设备接收所述第一指示信息,并根据所述第一指示信息确定第五时频资源,第五时频资源为第二时频资源。终端设备不使用第五时频资源上的信号对第一传输块进行译码。具体地,在第五时频资源确定之后启动的译码过程中,所述终端设备不使用第五时频资源上的信号对第一传输块进行译码。以及,终端设备将第一传输块的第n次发送的接收信号中除第五时频资源上的信号以外的信号存储进软存储器。如果所述终端设备在接收到第一指示信息之后,又接收到了第二指示信息,终端设备根据所述第二指示信息确定第六时频资源,第六时频资源为第四时频资源。终端设备将软存储器中与第六时频资源对应的信息设置为零。
上述例子为网络设备提供了调度灵活度使得网络设备能够通过逐步发送两个指示信息指示终端设备清除受影响的信号。例如,当网络设备发送了一个指示信息(第一指示信息或者第二指示信息)向终端设备指示了不用于译码的信号之后,网络设备判断终端设备以较大概率未能接收该一个指示信息(例如依据终端设备是否反馈了相应的反馈信号等),网络设备可以再终端设备发送第二个指示信息(第二指示信息或者第一指示信息)指示终端设备将软存储器中可能被污染的信息清除(设置为零)。如果网络设备发送了一个指示信息向终端设备指示了不用于译码的信号之后,网络设备判断终端设备以较大概率正确的接收了一个指示信息,网络设备可以不发送第二个指示信息。
本申请实施例的另一种可能的实现方式中,终端设备至少接收了CBG指示信息,下文将详细描述终端设备如何根据CBG指示信息实施“清除受影响的信号”。此时,终端设备可以是只接收了CBG指示信息并根据CBG指示信息清除受影响的接收信号,也可以接收了资源指示信息和CBG指示信息并根据上文中描述的方法(或者未在本申请中披露的方法)确定根据CBG指示信息清除受影响的接收信号,以及采用下文中将要描述的方法实施清除。
可选的,本申请实施例中,所述网络设备可以向所述终端设备发送第二控制信息,所述第二控制信息包括所述第一指示信息,其中,所述第二控制信息还用于指示所述终端设备在第七时频资源上接收所述网络设备第n+k次发送的第一传输块中的第二CBG,其中,k为正整数。应注意,k的取值可以预先设置在终端设备和/或网络设备中,也可以由网络设备通过物理层信令,媒体接入控制(media access control,MAC)层信令,或者无线资源控制层(RRC)信令向终端设备指示。
具体的,该第二控制信息还可以包括第三指示信息,该第三指示信息用于指示所述终端设备在第七时频资源上接收所述网络设备第n+k次发送的第一传输块中的第二CBG。也就是说,第三指示信息用于指示此次调度的CBG是哪些。
在一种可能的实现方式中,第一指示信息和第三指示信息可以为同一个指示信息,即第一指示信息既可以指示终端设备在第一时频资源上的第二时频资源上的接收信号包括 不用于所述终端设备对所述第一传输块译码的信号,又可以指示在第七时频资源上接收所述网络设备第n+k次发送的第一传输块中的第二CBG。
在本申请实施例中,第二CBG可以为补充传输(supplemental transmission)还可以称为额外重复(additional repetition)或者补充重复(supplemental repetition)的CBG,本发明不作限定。
在本申请实施例的一种可能的实现方式中,哪个CBG被第一指示信息所指示,就清除该CBG的全部信号。
或者,在本申请实施例的另一种可能的实现方式中,可以根据下文中的描述,清除该CBG的部分或者全部信号。
作为一例,所述第一指示信息可以包含Z比特。所述Z比特中的一比特对应于所述第二CBG的全部编码后比特对应的第一时频资源的1/Z;或者所述Z比特的一个指示状态对应于所述第二CBG的全部编码后比特对应的第一时频资源的1/(2^Z)。
这里,可以将所第二CBG分为Z份,每份由第一指示信息的1比特标识。该比特为1的部分代表清除,为0的部分代表不清楚,或者反之。应注意,这里不是第二CBG包含Z个CBG,而是将所有第二CBG放在一起,分成Z份。一种方法是,把各个CBG对应的RE按照CBG映射的先后顺序排成一个队列,而后将该队列分成Z份,每份对应着一份时频资源,每份时频资源传输的CBG对应着一份编码后比特。另一种方法是,把各个CBG在第n+k次传输中对应的编码后比特按照CBG序号的大小顺序排成一个队列,而后将该队列分为Z份,每份对应着一份编码后比特。
例如,图13示出了CBG和编码后比特的对应关系。可以看出,Z1至Z6分别对应着第一传输块的第n+k次传输的编码后比特队列中Z份编码后比特。第二控制信息中指示网络设备发送的所有第二CBG可以包含4个CBG,分别是第二CBG#1,第二CBG#2,第二CBG#3和第二CBG#4。图中第二CBG中的每个CBG对应该编码后比特队列中的该CBG在第一传输块的第n+k次传输的编码后比特。假设第一指示信息包含的Z(Z=6)比特分别为110000,则将该该编码后比特队列中的第一份和第二份编码后比特将被清除。而此时第一份和第二份编码后比特在第一时频资源中与第一CBG中编号为#1的CBG的全部和第二CBG中编号为#2的CBG的部分(如图中阴影部分所示)对应。因此,当第一指示信息为110000时,可以指示清除第一CBG#1的全部和第二CBG的部分,并接受第二CBG#1至第二CBG#4。
类似的,可以将所第二CBG分为2^Z份,每份由第一指示信息的Z比特的一个状态标识。每次可以只清除标识的其中的一份,或者反之。应注意,这里不是第二CBG包含2^Z个CBG,而是将所有第二CBG放在一起,分成2^Z份。一种方法是,把各个CBG对应的RE按照CBG映射的先后顺序排成一个队列,而后将该队列分成2^Z份,每份对应着一份时频资源,每份时频资源传输的CBG对应着一份编码后比特。另一种方法是,把各个CBG在第n+k次传输中对应的编码后比特按照CBG序号的大小顺序排成一个队列,而后将该队列分为2^Z份,每份对应着一份编码后比特。
例如,图14示出了CBG和编码后比特的对应关系。假设Z=2,则第二控制信息中指示网络设备发送的所有第二CBG可以分为4份,分别是第二CBG#1,第二CBG#2,第二CBG#3和第二CBG#4,第二CBG的每个CBG对应着第一传输块的第n+k次传输的编码 后比特队列中的编码后比特。此时,第一指示信息有2比特,共4个状态,每个状态可以对应着第二CBG的1/4,例如为01可以标识第二CBG#1,对应着编码后比特队列中第一份编码后比特,而此时第一份编码后比特在第一时频资源中与第一CBG#1的全部(如图中阴影部分所示)对应。则软存储器中的第一份编码后比特全部将被清除。因此,当第一指示信息为01时,可以指示清除第一CBG#1的全部,并接受第二CBG#1至第二CBG#4。
应注意,在图13和图14所对应的实施例中,CBG指示信息(即第一指示信息)可以仅表示第n+k次传输中传输了第一信息块中的哪些CBG,而在本申请的其它实施例中,CBG指示信息可以用于表示需要被清除的CBG。
因此,本申请实施例可以精确的指示清除CBG中的哪些部分或哪一部分,从而避免不分情况地每次将整个CBG的接收信号清除掉。因此可以有效地提高清除的效率,降低由于过度清除造成的不必要的传输浪费,进而节省终端设备接收处理降低耗电。并且,本申请实施例能够提高指示精度。
可选的,本申请实施例中,所述第一控制信息还用于向所述终端设备指示所述第一CBG在软存储器中的第一冗余版本(Redundancy version,RV);所述第二控制信息还用于向所述终端设备指示所述第二CBG在所述软存储器中的第二冗余版本。若所述第二冗余版本对应的编码后比特在所述软存储器中包含于第n次发送的所述第一CBG的编码后比特块之内,则所述第二时频资源为所述第一时频资源上对应于所述第一CBG的从所述第二冗余版本开始至所述第n次发送的所述第一CBG的编码后比特块在所述软存储器中结束位置的编码后比特对应的资源;若所述第二冗余版本对应的编码后比特在所述软存储器中不包含于所述第n次发送的所述第一CBG的编码后比特块之内,则所述第二时频资源为所述第一时频资源上对应于所述第一CBG的全部资源。
具体而言,5GNR系统和LTE系统中,发送设备在将待发送信息块分割为多个CB之后,会对每个CB进行信道编码。而后根据信道编码后比特构建如图15所示的循环缓存buffer。这个循环buffer上有多个位置,这些位置可以是一次传输的起始位置,通常称为冗余版本(也可以叫传输起始位置或者版本位置等,本发明不以此为限)。在LTE中每个循环buffer有4个冗余版本。NR系统中一个循环buffer的冗余版本大于或等于4。网络设备调度终端设备传输的时候,会指定该次传输的编码调制方式、冗余版本和时频资源,即该次传输发送的编码后比特从循环buffer中读取,读取的起始位置为该指定冗余版本、读取的长度由调制方式和可用于承载该数据的资源粒子的数目决定。
例如,终端设备接收到的第一传输块相关的第n次传输时,被传输的CB/CBG在循环buffer中是从第a个RV起始的,整个读取的比特序列包含了x个RV,即RVa,…,RV(a+x-1)。例如,图15所示箭头代表某次传输被读取除的编码后比特序列。该序列从RV0开始,经过RV1和RV2停留在虚线位置。那么a=0,x=3。
终端设备接收到第一传输块相关的第n+k次传输的调度信息(即第二控制信息,该调度信息承载与第n次接收相关的CBG指示信息)的时候,如果该调度信息指示的第二冗余版本为该x个RV中的一个,例如RV(a+1),那么终端设备将第n次接收信号中由CBG指示信息指示的CBG相关信号清除,具体地,清除掉这些CBG从第RV(a+1)开始到当次结束的编码后比特对应的信号。而后,第n+k次传输中的CBG,其第二冗余版本从第RV(a+1)开始。
如果该调度信息指示的第二冗余版本没有包含在上述x个RV中,那么终端设备将第n次接收信号中由CBG指示信息指示的CBG相关的所有信号清除。
因此,本申请实施例中,无需额外的指示信息即可以避免不分情况地每次将整个CBG的接收信号清除掉。因而可以有效地提高清除的效率,降低由于过度清除造成的不必要的传输浪费,进而节省终端设备接收处理降低耗电。
可选的,所述网络设备第n+k次发送的第一传输块中的第二CBG(即所述第七时频资源的第二CBG)可以承载第一传输块的T个编码后比特,所述终端设备还可以确定承载于所述第七时频资源上的所述第二CBG中一个CB的编码后比特的数量。
若所述第一冗余版本与所述第二冗余版本相等,则所述一个CB的编码后比特的数量等于T/X的取整;若所述第一冗余版本与所述第二冗余版本不相等,则所述一个CB的编码后比特数量等于S+(T-Y×S)/X的取整,或者,(T-Y×S)/X的取整,所述取整可以是上取整,下取整,或者四舍五入中的一种。
其中,X为所述第二CBG中CB的数量,S为所述软存储器中的所述第一冗余版本和所述第二冗余版本之间的编码后比特的数量,Y为所述第一CBG中CB的数量,T、X、S、Y均为正整数。
这里,终端设备在接收到第n+k次传输的调度信息后,在实施了受影响信号的清除之后,可以根据第二控制信息确认该次被调度的CB所占的时频资源。
作为一例,当终端设备将第二时频资源上的CBG全部清除或者全部不清除时,每个CB所占资源相同(即资源根据CB个数均分),且所有CB传输的RV版本为第n+k次传输的调度信息指示的RV版本。这样实现简单,可以减小终端设备的实现复杂度。
作为另一例,此次传输的CBG中只有部分CBG其第n次传输的信号被清空,且被清空的CBG中CB占的资源大于没有被清空的CBG中CB占的资源。
具体地,当上一个RV(第n次传输网络设备指示的RV)和此次的RV(第n+k次传输网络设备指示的RV)不相等的时候,假设从上一个RV到此次RV之间包含S个编码后比特,此次调度X个CB,其中Y个被清空,此次传输的总时频资源能够承载T个编码后比特,那么此次传输从被清空的每个CB的循环buffer读出来的编码后比特数目为S+(T-Y*S)/X,此次读取的起始位置为第n次传输网络设备指示的RV。此次传输从没被清空的每个CB的循环buffer读出来的编码后比特数目为(T-Y×S)/X,此次读取的起始位置为第n+k次传输网络设备指示的RV。
当上一个RV和此次的RV相等的时候,每个CB都等于T/X。
进一步地,由于上述方法里实施除法的时候得到的比特数可能不是整数,可以根据下述方法确定第二CBG中一个CB的编码后比特的数量。
具体的,X个中的(X-1)个按照以下公式计算比特数:
如果该CB是被清除的CB,此次传输的编码后比特数为[S+(T-Y×S)/X]取整。如果该CB不是被清除的CB,此次传输的编码后比特数为[(T-Y×S)/X]取整。
而X中的另外1个,等于:
T-其余(X-1))个CB根据上述公式计算的编码后比特的总和
该1个CB可以是所有CB里的第一个,也可以是所有CB里的最后一个。该1个CB可以是所有被清除的CB里的第一个,也可以是所有被清除的CB里的最后一个。该1个 CB可以是所有没被清除的CB里的第一个,也可以是所有没被清除的CB里的最后一个。
因此,本申请实施例可以在第n+k次传输中将被清除的第n次传输接收信号补偿给终端设备,有效缓解因为清除操作对第一信息块传输可靠性的影响。
图16示出了本申请实施例的一种终端设备500的示意性框图。
第一接收单元510,用于所述终端设备接收网络设备发送的第一控制信息,所述第一控制信息用于指示所述终端设备在第一时频资源接收所述网络设备第n次发送的第一传输块;
第二接收单元520,用于所述终端设备在所述第一时频资源上接收所述第一传输块;
第三接收单元530,用于所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源;
n为大于或等于0的整数。
因此,本申请实施例通过网络设备向终端设备发送第一指示信息,该第一指示信息用于指示第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源,进而终端设备可以根据第一指示信息进行后续的解调解码,提高被抢占资源的业务的传输的可靠性。
可选的,还包括:所述第三接收单元530还用于所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示第三时频资源,其中,所述第三时频资源与所述第一时频资源的交集为第四时频资源;
确定单元,用于所述终端设备根据所述第一指示信息和/或所述第二指示信息,确定第五时频资源,所述第五时频资源包含至少一个资源元素RE,其中,所述至少一个RE被所述第一时频资源包含,所述第五时频资源上的接收信号包括不用于所述终端设备对所述第一传输块译码的信号。
可选的,所述第五时频资源为所述第四时频资源;或者
所述第五时频资源为所述第二时频资源和所述第四时频资源的交集;或者
所述第五时频资源为所述第四时频资源与所述第二时频资源二者中RE数量较少的资源;或者
所述第五时频资源至少包含一个资源,所述一个资源对应于所述第一CBG中的一个CBG,所述一个资源为所述第二时频资源上对应于所述一个CBG的时频资源和所述第四时频资源上对应于所述一个CBG的时频资源中RE数量较少的时频资源。
可选的,所述第一指示信息和所述第二指示信息在时域上位于同一时间段内,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号,其中,所述时间段为:
所述终端设备监测下行控制信息的一个周期;或者,
所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
所述终端设备监测所述第一指示信息的一个周期;或者,
所述终端设备监测所述第二指示信息的一个周期。
可选的,若所述第一传输块仅包含一个编码块,则所述第五时频资源为所述第四时频资源。
可选的,若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源;
若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源。
可选的,所述第一指示信息和所述第二指示信息在时域上位于不同时间段内,或所述第一指示信息和所述第二指示信息在时域上位于同一个时间段内,其中,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号中的一项,所述时间段为:
所述终端设备监测下行控制信息的一个周期;或者,
所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
所述终端设备监测所述第一指示信息的一个周期;或者,
所述终端设备监测所述第二指示信息的一个周期。
可选的,若所述第二时频资源与所述第四时频资源没有交集,则所述第五时频资源为所述第一时频资源。
应注意,本申请实施例中,第一接收单元510,第二接收单元520和第三接收单元530可以由收发器实现,确定单元可以由处理器实现。如图17所示,终端设备600可以包括处理器610、存储器620和收发器630。其中,存储器620可以用于存储处理器610执行的代码等。应理解,上述的收发器可以包括发射机和接收机。收发器还可以进一步包括天线,天线的数量可以为一个或多个。存储器可以是一个单独的器件,也可以集成在处理器中。上述的各个器件或部分器件可以集成到芯片中实现,如集成到基带芯片中实现。
装置和方法实施例中的网络设备或终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块方法或发射器执行方法实施例中发送的步骤,接收模块或接收器执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块或处理器执行。具体模块的功能可以参考相应的方法实施例,不再详述。
在实现过程中,上述方法的各步骤可以通过处理器610中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器620,处理器610读取存储器620中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
图16所示的终端设备500或图17所示的终端设备600能够实现前述图3所示的方法实施例对应的各个过程,具体的,该终端设备500或终端设备600可以参见上述图3中的描述,为避免重复,这里不再赘述。
本申请实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述图3中的各种实现方式中终端设备对应的方法的指令。
本申请实施例还提供了一种通信芯片,其中存储有指令,当其在终端设备500或终端设备600上运行时,使得所述通信芯片执行上述图6中的各种实现方式中终端设备对应的方法。
图18示出了本申请实施例的一种网络设备700的示意性框图。
第一发送单元710,用于所述网络设备向终端设备发送第一控制信息,所述第一控制信息用于指示所述终端设备在第一时频资源接收所述网络设备第n次发送的第一传输块;
第二发送单元720,用于所述网络设备在所述第一时频资源上向所述终端设备发送所述第一传输块;
第三发送单元730,用于所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源;
n为大于或等于0的整数。
因此,本申请实施例通过网络设备向终端设备发送第一指示信息,该第一指示信息用于指示第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源,进而终端设备可以根据第一指示信息进行后续的解调解码,提高被抢占资源的业务的传输的可靠性。
可选的,所述第三发送单元730还用于所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示第三时频资源,其中,所述第三时频资源与所述第一时频资源的交集为第四时频资源;
其中,所述第一指示信息和/或所述第二指信息用于所述终端设备确定第五时频资源,所述第五时频资源包含至少一个资源元素RE,其中,所述至少一个RE被所述第一时频资源包含,所述第五时频资源上的接收信号包括不用于所述终端设备对所述第一传输块译码的信号。
可选的,所述第五时频资源为所述第四时频资源;或者
所述第五时频资源为所述第二时频资源和所述第四时频资源的交集;或者
所述第五时频资源为所述第四时频资源与所述第二时频资源二者中RE数量较少的资源;或者
所述第五时频资源至少包含一个资源,所述一个资源对应于所述第一CBG中的一个CBG,所述一个资源为所述第二时频资源上对应于所述一个CBG的时频资源和所述第四时频资源上对应于所述一个CBG的时频资源中RE数量较少的时频资源。
可选的,所述第一指示信息和所述第二指示信息在时域上位于同一时间段内,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号,其中,所述时间段为:
所述终端设备监测下行控制信息的一个周期;或者,
所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
所述终端设备监测所述第一指示信息的一个周期;或者,
所述终端设备监测所述第二指示信息的一个周期。
可选的,若所述第一传输块仅包含一个编码块,则所述第五时频资源为所述第四时频资源。
可选的,若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源;
若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源。
可选的,所述第一指示信息和所述第二指示信息在时域上位于不同时间段内,或所述第一指示信息和所述第二指示信息在时域上位于同一个时间段内,其中,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号中的一项,所述时间段为:
所述终端设备监测下行控制信息的一个周期;或者,
所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
所述终端设备监测所述第一指示信息的一个周期;或者,
所述终端设备监测所述第二指示信息的一个周期。
可选的,若所述第二时频资源与所述第四时频资源没有交集,则所述第五时频资源为所述第一时频资源。
应注意,本申请实施例中,第一发送单元710、第二发送单元720和第三发送单元730可以由收发器实现。如图19所示,网络设备800可以包括处理器810、存储器820和收发器830。其中,处理器810可以用于确定收发器830发送信息,存储器820可以用于存储处理器810执行的代码等。应理解,上述的收发器可以包括发射机和接收机。收发器还可以进一步包括天线,天线的数量可以为一个或多个。存储器可以是一个单独的器件,也可以集成在处理器中。上述的各个器件或部分器件可以集成到芯片中实现,如集成到基带芯片中实现。
装置和方法实施例中的网络设备或终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块方法或发射器执行方法实施例中发送的步骤,接收模块或接收器执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块或处理器执行。具体模块的功能可以参考相应的方法实施例,不再详述。
在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器820,处理器810读取存储器820中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
图18所示的网络设备700或图19所示的设备800能够实现前述图3所示的方法实施例对应的各个过程,具体的,该网络设备700或网络设备800可以参见上述图3中的描述,为避免重复,这里不再赘述。
本申请实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述图3中的各种实现方式中网络设备对应的方法的指令。
本申请实施例还提供了一种通信芯片,其中存储有指令,当其在网络设备700或网络设备800上运行时,使得所述通信芯片执行上述图3中的各种实现方式中网络设备对应的方法。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如DVD)或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种传输数据的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一控制信息,所述第一控制信息用于指示所述终端设备在第一时频资源接收所述网络设备第n次发送的第一传输块;
    所述终端设备在所述第一时频资源上接收所述第一传输块;
    所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源;
    n为大于或等于0的整数。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示第三时频资源,其中,所述第三时频资源与所述第一时频资源的交集为第四时频资源;
    所述终端设备确定第五时频资源,所述第五时频资源包含至少一个资源元素RE,其中,所述至少一个RE被所述第一时频资源包含,所述第五时频资源上的接收信号包括不用于所述终端设备对所述第一传输块译码的信号。
  3. 根据权利要求2所述的方法,其特征在于:
    所述第五时频资源为所述第四时频资源;或者
    所述第五时频资源为所述第二时频资源和所述第四时频资源的交集;或者
    所述第五时频资源为所述第四时频资源与所述第二时频资源二者中RE数量较少的资源;或者
    所述第五时频资源至少包含一个资源,所述一个资源对应于所述第一CBG中的一个CBG,所述一个资源为所述第二时频资源上对应于所述一个CBG的时频资源和所述第四时频资源上对应于所述一个CBG的时频资源中RE数量较少的时频资源。
  4. 根据权利要求3所述的方法,其特征在于,所述第一指示信息和所述第二指示信息在时域上位于同一时间段内,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号,其中,所述时间段为:
    所述终端设备监测下行控制信息的一个周期;或者,
    所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
    所述终端设备监测所述第一指示信息的一个周期;或者,
    所述终端设备监测所述第二指示信息的一个周期。
  5. 根据权利要求2所述的方法,其特征在于,若所述第一传输块包含一个编码块,则所述第五时频资源为所述第四时频资源。
  6. 根据权利要求2所述的方法,其特征在于,若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源;
    若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源。
  7. 根据权利要求6所述的方法,其特征在于,所述第一指示信息和所述第二指示信 息在时域上位于不同时间段内,或所述第一指示信息和所述第二指示信息在时域上位于同一个时间段内,其中,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号中的一项,所述时间段为:
    所述终端设备监测下行控制信息的一个周期;或者,
    所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
    所述终端设备监测所述第一指示信息的一个周期;或者,
    所述终端设备监测所述第二指示信息的一个周期。
  8. 根据权利要求2所述的方法,其特征在于,若所述第二时频资源与所述第四时频资源没有交集,则所述第五时频资源为所述第一时频资源。
  9. 一种传输数据的方法,其特征在于,包括:
    网络设备向终端设备发送第一控制信息,所述第一控制信息用于指示所述终端设备在第一时频资源接收所述网络设备第n次发送的第一传输块;
    所述网络设备在所述第一时频资源上向所述终端设备发送所述第一传输块;
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源;
    n为大于或等于0的整数。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示第三时频资源,其中,所述第三时频资源与所述第一时频资源的交集为第四时频资源;
    其中,所述第一指示信息和/或所述第二指信息用于所述终端设备确定第五时频资源,所述第五时频资源包含至少一个资源元素RE,其中,所述至少一个RE被所述第一时频资源包含,所述第五时频资源上的接收信号包括不用于所述终端设备对所述第一传输块译码的信号。
  11. 根据权利要求10所述的方法,其特征在于:
    所述第五时频资源为所述第四时频资源;或者
    所述第五时频资源为所述第二时频资源和所述第四时频资源的交集;或者
    所述第五时频资源为所述第四时频资源与所述第二时频资源二者中RE数量较少的资源;或者
    所述第五时频资源至少包含一个资源,所述一个资源对应于所述第一CBG中的一个CBG,所述一个资源为所述第二时频资源上对应于所述一个CBG的时频资源和所述第四时频资源上对应于所述一个CBG的时频资源中RE数量较少的时频资源。
  12. 根据权利要求11所述的方法,其特征在于,所述第一指示信息和所述第二指示信息在时域上位于同一时间段内,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号,其中,所述时间段为:
    所述终端设备监测下行控制信息的一个周期;或者,
    所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
    所述终端设备监测所述第一指示信息的一个周期;或者,
    所述终端设备监测所述第二指示信息的一个周期。
  13. 根据权利要求10所述的方法,其特征在于,若所述第一传输块包含一个编码块,则所述第五时频资源为所述第四时频资源。
  14. 根据权利要求10所述的方法,其特征在于,若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源;
    若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源。
  15. 根据权利要求14所述的方法,其特征在于,所述第一指示信息和所述第二指示信息在时域上位于不同时间段内,或所述第一指示信息和所述第二指示信息在时域上位于同一个时间段内,其中,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号中的一项,所述时间段为:
    所述终端设备监测下行控制信息的一个周期;或者,
    所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
    所述终端设备监测所述第一指示信息的一个周期;或者,
    所述终端设备监测所述第二指示信息的一个周期。
  16. 根据权利要求10所述的方法,其特征在于,若所述第二时频资源与所述第四时频资源没有交集,则所述第五时频资源为所述第一时频资源。
  17. 一种终端设备,其特征在于,包括:
    第一接收单元,用于所述终端设备接收网络设备发送的第一控制信息,所述第一控制信息用于指示所述终端设备在第一时频资源接收所述网络设备第n次发送的第一传输块;
    第二接收单元,用于所述终端设备在所述第一时频资源上接收所述第一传输块;
    第三接收单元,用于所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源;
    n为大于或等于0的整数。
  18. 根据权利要求17所述的终端设备,其特征在于,还包括:
    所述第三接收单元还用于所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示第三时频资源,其中,所述第三时频资源与所述第一时频资源的交集为第四时频资源;
    确定单元,用于所述终端设备确定第五时频资源,所述第五时频资源包含至少一个资源元素RE,其中,所述至少一个RE被所述第一时频资源包含,所述第五时频资源上的接收信号包括不用于所述终端设备对所述第一传输块译码的信号。
  19. 根据权利要求18所述的终端设备,其特征在于:
    所述第五时频资源为所述第四时频资源;或者
    所述第五时频资源为所述第二时频资源和所述第四时频资源的交集;或者
    所述第五时频资源为所述第四时频资源与所述第二时频资源二者中RE数量较少的资源;或者
    所述第五时频资源至少包含一个资源,所述一个资源对应于所述第一CBG中的一个CBG,所述一个资源为所述第二时频资源上对应于所述一个CBG的时频资源和所述第四时频资源上对应于所述一个CBG的时频资源中RE数量较少的时频资源。
  20. 根据权利要求19所述的终端设备,其特征在于,所述第一指示信息和所述第二指示信息在时域上位于同一时间段内,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号,其中,所述时间段为:
    所述终端设备监测下行控制信息的一个周期;或者,
    所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
    所述终端设备监测所述第一指示信息的一个周期;或者,
    所述终端设备监测所述第二指示信息的一个周期。
  21. 根据权利要求18所述的终端设备,其特征在于,若所述第一传输块包含一个编码块,则所述第五时频资源为所述第四时频资源。
  22. 根据权利要求18所述的终端设备,其特征在于,若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源;
    若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源。
  23. 根据权利要求22所述的终端设备,其特征在于,所述第一指示信息和所述第二指示信息在时域上位于不同时间段内,或所述第一指示信息和所述第二指示信息在时域上位于同一个时间段内,其中,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号中的一项,所述时间段为:
    所述终端设备监测下行控制信息的一个周期;或者,
    所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
    所述终端设备监测所述第一指示信息的一个周期;或者,
    所述终端设备监测所述第二指示信息的一个周期。
  24. 根据权利要求18所述的终端设备,其特征在于,若所述第二时频资源与所述第四时频资源没有交集,则所述第五时频资源为所述第一时频资源。
  25. 一种网络设备,其特征在于,包括:
    第一发送单元,用于所述网络设备向终端设备发送第一控制信息,所述第一控制信息用于指示所述终端设备在第一时频资源接收所述网络设备第n次发送的第一传输块;
    第二发送单元,用于所述网络设备在所述第一时频资源上向所述终端设备发送所述第一传输块;
    第三发送单元,用于所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一传输块中的第一编码块组CBG,所述第一CBG在所述第一传输块的第n次传输时对应于第二时频资源;
    n为大于或等于0的整数。
  26. 根据权利要求25所述的网络设备,其特征在于,
    所述第三发送单元还用于所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示第三时频资源,其中,所述第三时频资源与所述第一时频资源的交集为第四时频资源;
    其中,所述第一指示信息和/或所述第二指信息用于所述终端设备确定第五时频资源,所述第五时频资源包含至少一个资源元素RE,其中,所述至少一个RE被所述第一时频资源包含,所述第五时频资源上的接收信号包括不用于所述终端设备对所述第一传输块译 码的信号。
  27. 根据权利要求26所述的网络设备,其特征在于:
    所述第五时频资源为所述第四时频资源;或者
    所述第五时频资源为所述第二时频资源和所述第四时频资源的交集;或者
    所述第五时频资源为所述第四时频资源与所述第二时频资源二者中RE数量较少的资源;或者
    所述第五时频资源至少包含一个资源,所述一个资源对应于所述第一CBG中的一个CBG,所述一个资源为所述第二时频资源上对应于所述一个CBG的时频资源和所述第四时频资源上对应于所述一个CBG的时频资源中RE数量较少的时频资源。
  28. 根据权利要求27所述的网络设备,其特征在于,所述第一指示信息和所述第二指示信息在时域上位于同一时间段内,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号,其中,所述时间段为:
    所述终端设备监测下行控制信息的一个周期;或者,
    所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
    所述终端设备监测所述第一指示信息的一个周期;或者,
    所述终端设备监测所述第二指示信息的一个周期。
  29. 根据权利要求26所述的网络设备,其特征在于,若所述第一传输块包含一个编码块,则所述第五时频资源为所述第四时频资源。
  30. 根据权利要求26所述的网络设备,其特征在于,若所述第一指示信息在时域上位于所述第二指示信息之前,则所述第五时频资源为所述第二时频资源;
    若所述第二指示信息在时域上位于所述第一指示信息之前,则所述第五时频资源为所述第四时频资源。
  31. 根据权利要求30所述的网络设备,其特征在于,所述第一指示信息和所述第二指示信息在时域上位于不同时间段内,或所述第一指示信息和所述第二指示信息在时域上位于同一个时间段内,其中,所述时间段包含一个或者多个时间单位,所述时间单位为帧,子帧,时隙,迷你时隙或者符号中的一项,所述时间段为:
    所述终端设备监测下行控制信息的一个周期;或者,
    所述终端设备监测用于调度数据传输的下行控制信息的一个周期;或者,
    所述终端设备监测所述第一指示信息的一个周期;或者,
    所述终端设备监测所述第二指示信息的一个周期。
  32. 根据权利要求26所述的网络设备,其特征在于,若所述第二时频资源与所述第四时频资源没有交集,则所述第五时频资源为所述第一时频资源。
PCT/CN2018/090445 2017-06-16 2018-06-08 传输数据的方法、终端设备和网络设备 WO2018228288A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18817631.7A EP3609261B1 (en) 2017-06-16 2018-06-08 Data transmission method, terminal device and network device
US16/688,074 US11224037B2 (en) 2017-06-16 2019-11-19 Data transmission method, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710461651.4 2017-06-16
CN201710461651.4A CN109152040B (zh) 2017-06-16 2017-06-16 传输数据的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/688,074 Continuation US11224037B2 (en) 2017-06-16 2019-11-19 Data transmission method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2018228288A1 true WO2018228288A1 (zh) 2018-12-20

Family

ID=64660871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090445 WO2018228288A1 (zh) 2017-06-16 2018-06-08 传输数据的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US11224037B2 (zh)
EP (1) EP3609261B1 (zh)
CN (1) CN109152040B (zh)
WO (1) WO2018228288A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11224037B2 (en) * 2017-06-16 2022-01-11 Huawei Technologies Co., Ltd. Data transmission method, terminal device, and network device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113994616B (zh) * 2019-06-28 2022-12-06 华为技术有限公司 用于增强传输抢占的设备和方法
CN113709867A (zh) * 2020-05-21 2021-11-26 展讯半导体(南京)有限公司 数据传输方法、装置及设备
CN114827962A (zh) * 2021-01-28 2022-07-29 华为技术有限公司 侧行链路通信的资源协商方法和装置
KR102458106B1 (ko) * 2021-09-07 2022-10-24 주식회사 블랙핀 무선 이동 통신 시스템에서 축소된 성능의 단말이 복수의 pucch 공통 설정 정보를 이용해서 랜덤 액세스를 수행하는 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983489A (zh) * 2008-03-31 2011-03-02 马维尔国际贸易有限公司 对传输块的多码块进行选择性组合和译码的方法和装置
US20110280133A1 (en) * 2010-05-11 2011-11-17 Qualcomm Incorporated Scalable scheduler architecture for channel decoding
CN102333376A (zh) * 2011-09-21 2012-01-25 中兴通讯股份有限公司 数据传输方法及装置、数据处理方法及装置
CN104160649A (zh) * 2012-03-09 2014-11-19 Lg电子株式会社 用于收发信号的方法及其设备
US20160173130A1 (en) * 2014-12-10 2016-06-16 Qualcomm Incorporated Early decode attempt of lower rate lte code blocks that are repeat combined multiple times

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2648470B1 (en) 2010-03-22 2018-05-02 Samsung Electronics Co., Ltd Multiplexing control and data information from a user equipment in a physical data channel
US11382081B2 (en) * 2015-10-16 2022-07-05 Samsung Electronics Co., Ltd. Method and apparatus for system information acquisition in wireless communication system
CN106817772B (zh) 2015-11-27 2020-04-14 华为技术有限公司 一种传输数据的方法及装置
CN106385709B (zh) * 2016-10-31 2022-12-20 宇龙计算机通信科技(深圳)有限公司 资源调度方法及资源调度装置
CN115102671A (zh) * 2017-01-03 2022-09-23 北京三星通信技术研究有限公司 数据传输的方法及设备
CN106851846A (zh) * 2017-01-23 2017-06-13 深圳市金立通信设备有限公司 一种控制信息发送方法、基站、用户设备及系统
CN106793127B (zh) * 2017-02-17 2020-11-10 宇龙计算机通信科技(深圳)有限公司 微时隙的指示方法及装置
EP3603259B1 (en) * 2017-03-20 2021-05-26 Convida Wireless, LLC Scheduling and control in new radio using preemption indication
CN109152040B (zh) * 2017-06-16 2020-10-27 华为技术有限公司 传输数据的方法、终端设备和网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983489A (zh) * 2008-03-31 2011-03-02 马维尔国际贸易有限公司 对传输块的多码块进行选择性组合和译码的方法和装置
US20110280133A1 (en) * 2010-05-11 2011-11-17 Qualcomm Incorporated Scalable scheduler architecture for channel decoding
CN102333376A (zh) * 2011-09-21 2012-01-25 中兴通讯股份有限公司 数据传输方法及装置、数据处理方法及装置
CN104160649A (zh) * 2012-03-09 2014-11-19 Lg电子株式会社 用于收发信号的方法及其设备
US20160173130A1 (en) * 2014-12-10 2016-06-16 Qualcomm Incorporated Early decode attempt of lower rate lte code blocks that are repeat combined multiple times

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3609261A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11224037B2 (en) * 2017-06-16 2022-01-11 Huawei Technologies Co., Ltd. Data transmission method, terminal device, and network device

Also Published As

Publication number Publication date
US20200092863A1 (en) 2020-03-19
US11224037B2 (en) 2022-01-11
EP3609261A4 (en) 2020-05-13
CN109152040A (zh) 2019-01-04
EP3609261A1 (en) 2020-02-12
CN109152040B (zh) 2020-10-27
EP3609261B1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
WO2018171605A1 (zh) 接收信息的方法及其装置和发送信息的方法及其装置
WO2018166447A1 (zh) 传输信息的方法和装置
WO2018188561A1 (zh) 上行信息发送方法、接收方法和装置
WO2018228288A1 (zh) 传输数据的方法、终端设备和网络设备
CN116405171A (zh) 上行传输方法、终端设备和网络设备
WO2018219353A1 (zh) 一种数据传输的方法和装置
WO2018171603A1 (zh) 发送数据的方法及其装置和接收数据的方法及其装置
KR102238228B1 (ko) 제어 정보 송신 방법 및 장치, 및 제어 정보 수신 방법 및 장치
EP3925144A1 (en) Method and apparatus for decoding a pdsch using pre-emption
WO2018171606A1 (zh) 接收数据的方法及其装置和发送数据的方法及其装置
US11570800B2 (en) Data transmission method, terminal device and network device
US11330610B2 (en) Data sending and receiving method and apparatus
WO2018209803A1 (zh) 一种传输信息的方法和装置
CN108400857B (zh) 一种信号发送方法、相关设备及系统
WO2018188637A1 (zh) 发送信息的方法及其装置和接收信息的方法及其装置
CN111886894B (zh) 一种资源确定方法、指示方法及装置
WO2018191870A1 (zh) 一种数据传输的方法和装置
WO2018126833A1 (zh) 无线通信的方法和设备
CN113796032B (zh) 用于半静态harq-ack码本确定的方法及设备
WO2019029579A1 (zh) 无线通信的方法、芯片和系统
US11122601B2 (en) Buffer status report sending method, terminal device, and network device
CN108809593B (zh) 数据传输的方法及其网络设备、终端设备
CN117751539A (zh) 方法、通信装置和基础设施设备
JP2020503776A (ja) 複数のキャリア上でデータを送信するための方法、端末装置、およびネットワーク装置
CN109831824B (zh) 用于上行捎带传输的方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018817631

Country of ref document: EP

Effective date: 20191107

NENP Non-entry into the national phase

Ref country code: DE