WO2018191870A1 - 一种数据传输的方法和装置 - Google Patents

一种数据传输的方法和装置 Download PDF

Info

Publication number
WO2018191870A1
WO2018191870A1 PCT/CN2017/080973 CN2017080973W WO2018191870A1 WO 2018191870 A1 WO2018191870 A1 WO 2018191870A1 CN 2017080973 W CN2017080973 W CN 2017080973W WO 2018191870 A1 WO2018191870 A1 WO 2018191870A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
terminal device
feedback information
time unit
data
Prior art date
Application number
PCT/CN2017/080973
Other languages
English (en)
French (fr)
Inventor
李�远
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/080973 priority Critical patent/WO2018191870A1/zh
Priority to PCT/CN2017/111758 priority patent/WO2018192218A1/zh
Publication of WO2018191870A1 publication Critical patent/WO2018191870A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method and apparatus for data transmission.
  • GUL Grant Free UpLink
  • AUL Autonomous UL
  • the network device allocates GUL resources to the terminal device, and the terminal device When performing uplink transmission, it is not necessary to send a scheduling request (SR) to the network device, and wait for the network device to send an uplink grant (UL Grant) information, and can directly transmit the uplink through the GUL transmission resource, thereby reducing transmission time. Delay.
  • SR scheduling request
  • UL Grant uplink grant
  • the terminal device autonomously selects the hybrid automatic repeat request HARQ to perform data transmission (referred to as the first data for easy understanding and differentiation), and adopts uplink control information (for example, The scheduling permission uplink control information is reported to the network device by the process number of the HARQ process corresponding to the first data, and the network device may obtain the uplink control information by means of blind detection, and further determine the process of the HARQ process corresponding to the first data. Number to receive the first data correctly.
  • the network device does not know that the terminal device uses the HARQ process to perform the transmission of the first data, so that the first data cannot be correctly received;
  • the network device uses the uplink grant UL grant information to schedule the terminal device to use the HARQ process for initial transmission (ie, instructing the terminal device to send second data different from the first data), and the terminal device receives the UL.
  • the grant information is that the first data sent by the HARQ process has been correctly received by the network device
  • the terminal device does not send the first data, but sends the second message on the HARQ process according to the UL grant information.
  • the data which causes the loss of the first data, seriously affects the reliability of the data transmission.
  • Embodiments of the present invention provide a data transmission method and apparatus, which can reduce data packet loss, thereby improving reliability of data transmission.
  • a method for data transmission includes: the terminal device sends a first data packet to the network device by using a scheduling-free uplink GUL transmission on the first time unit, where the first data packet corresponds to the first The hybrid automatic repeat request HARQ process number; the terminal device receives the indication information sent by the network device, where the indication information is used to indicate that the terminal device sends the second data packet on the second time unit, where the The second data packet corresponds to the first HARQ process ID, the second data packet is different from the first data packet, and the second time unit is located after the first time unit in time; the terminal The device sends the second data packet according to the receiving situation of the feedback information corresponding to the first data packet, or sends the retransmission data of the first data packet, or caches the first data packet. Processing, the feedback information is used to indicate whether the network device is successfully received for the first data packet.
  • the terminal device after receiving the indication information for instructing the terminal device to send the second data packet corresponding to the first HARQ process ID, the terminal device is further configured according to the first HARQ process.
  • the terminal device does not perform the second data packet transmission according to the indication information, but sends the retransmission data of the first data packet, thereby reducing the number of the second data packet.
  • the loss of a data packet improves the reliability of data transmission and also increases the flexibility of the system.
  • the terminal device sends the retransmission data of the first data packet according to the receiving situation of the feedback information corresponding to the first data packet, or And performing the buffering process on the first data packet, including: when the terminal device does not receive the feedback information, or the terminal device receives the feedback information, and the feedback information indicates
  • the network device sends, according to the receiving status of the first data packet, an error acknowledgement NACK, the terminal device sends retransmission data of the first data packet, or the terminal device reserves the cached The first packet.
  • the indication information further includes transmission format information for indicating a transmission format of the first data packet
  • the terminal device sends the Retransmitting data of a data packet, comprising: transmitting, by the terminal device, retransmission data of the first data packet on the first time unit according to the transmission format information.
  • the terminal device when the terminal device does not perform the transmission of the second data packet based on the indication information, the first data packet may be retransmitted by using the transmission format information included in the indication information, thereby effectively utilizing the current signaling, thereby reducing The signaling overhead.
  • the terminal device sends the retransmission data of the first data packet according to the receiving situation of the feedback information corresponding to the first data packet, or And performing the buffering process on the first data packet, including: when the terminal device does not receive the feedback information, or the terminal device receives the feedback information, and the feedback information indicates When the network device receives an error response NACK for the first data packet, the terminal device ignores the indication information.
  • the sending, by the terminal device, the second data packet according to the receiving situation of the feedback information corresponding to the first data packet When the terminal device receives the feedback information, and the feedback information indicates that the network device receives the correct response ACK for the first data packet, the terminal device is configured according to the indication information.
  • the second data packet is transmitted on the first time unit.
  • the third time unit carrying the feedback information is located after the first time unit in time, and the third time unit is located in time Before the second time unit, or
  • the third time unit carrying the feedback information is not later in time than the fourth time unit carrying the indication information.
  • the GUL transmission is configured by the network device by using a semi-static uplink grant UL grant information, where the semi-static UL grant information is configured by the first wireless network
  • the temporary identifier RNTI is scrambled, and the indication information is scrambled by the second RNTI.
  • the feedback information is the scheduling-free permission downlink control information G-DCI.
  • a method for data transmission includes: the network device sending the indication information to the terminal device, where the indication information is used to indicate that the terminal device sends the second data packet on the second time unit, where Description The second data packet corresponds to the first hybrid automatic repeat request HARQ process number, where the first HARQ process number also corresponds to the first data packet, and the first data packet is adopted by the terminal device on the first time unit An unscheduled grant uplink GUL transmission is sent to the network device, the second data packet is different from the first data packet, the second time unit is temporally located after the first time unit; the terminal The device receives the indication information, and sends the second data packet according to the receiving situation of the feedback information corresponding to the first data packet, or sends the retransmission data of the first data packet, or The first data packet is buffered, and the feedback information is used to indicate whether the network device is successfully received for the first data packet; the network device receives the second data packet, or receives the first data packet Retransmission data
  • the terminal device after receiving the indication information for instructing the terminal device to send the second data packet corresponding to the first HARQ process ID, the terminal device is further configured according to the first HARQ process.
  • the receiving condition of the feedback information of the first data packet corresponding to the number determines how to transmit the data, that is, transmits the retransmitted data of the first data packet, or retains the first data packet, or sends the second data packet, In particular, when the network device does not successfully receive the first data packet, and the network device schedules the terminal device to transmit the second data packet corresponding to the first HARQ process ID by using the indication information, the terminal device does not perform according to the indication information.
  • the transmission of the second data packet instead of transmitting the retransmission data of the first data packet, reduces the loss of the first data packet, improves the reliability of data transmission, and improves the flexibility of the system.
  • the terminal device sends the retransmission data of the first data packet according to the receiving situation of the feedback information corresponding to the first data packet, or And performing the buffering process on the first data packet, including: when the terminal device does not receive the feedback information, or the terminal device receives the feedback information, and the feedback information indicates
  • the network device sends, according to the receiving status of the first data packet, an error acknowledgement NACK, the terminal device sends retransmission data of the first data packet, or the terminal device reserves the cached The first packet.
  • the indication information further includes transmission format information that is used to indicate a transmission format of the first data packet, and the terminal device sends the Retransmitting data of a data packet, comprising: transmitting, by the terminal device, retransmission data of the first data packet on the first time unit according to the transmission format information.
  • the terminal device when the terminal device does not perform the transmission of the second data packet based on the indication information, the first data packet may be retransmitted by using the transmission format information included in the indication information, thereby effectively utilizing the current signaling, thereby reducing The signaling overhead.
  • the terminal device sends the retransmission data of the first data packet according to the receiving situation of the feedback information corresponding to the first data packet, or And performing the buffering process on the first data packet, including: when the terminal device does not receive the feedback information, or the terminal device receives the feedback information, and the feedback information indicates When the network device receives an error response NACK for the first data packet, the terminal device ignores the indication information.
  • the sending, by the terminal device, the second data packet according to the receiving situation of the feedback information corresponding to the first data packet When the terminal device receives the feedback information, and the feedback information indicates that the network device receives the correct response ACK for the first data packet, the terminal device is configured according to the indication information.
  • the second data packet is transmitted on the first time unit.
  • the third time list carrying the feedback information The element is located after the first time unit in time, and the third time unit is temporally located before the second time unit, or
  • the third time unit carrying the feedback information is not later in time than the fourth time unit carrying the indication information.
  • the GUL transmission is configured by the network device by using a semi-static uplink grant UL grant information, where the semi-static UL grant information is configured by the first wireless network
  • the temporary identifier RNTI is scrambled, and the indication information is scrambled by the second RNTI.
  • the feedback information is the scheduling-free permission downlink control information G-DCI.
  • a third aspect provides a method for data transmission, where the method includes: the network device sends the indication information to the terminal device, where the indication information is used to indicate that the terminal device sends the second data packet on the second time unit, where The second data packet corresponds to the first hybrid automatic repeat request HARQ process number, where the first HARQ process number also corresponds to the first data packet, and the first data packet is used by the terminal device on the first time unit. Transmitting, by the schedule-free grant, an uplink GUL transmission to the network device, the second data packet being different from the first data packet, the second time unit being temporally located after the first time unit; The network device receives the retransmission data of the first data packet sent by the terminal device.
  • the method before the receiving, by the network device, the retransmission data of the first data packet, the method further includes:
  • the network device sends the feedback information to the terminal device, where the feedback information is used to indicate whether the network device successfully receives the first data packet, and
  • Receiving, by the network device, retransmission data of the first data packet sent by the terminal device including:
  • the network device receives the retransmission data of the first data packet.
  • the receiving, by the network device, retransmission data of the first data packet that is sent by the terminal device includes:
  • the network device Receiving, by the network device, the retransmission data of the first data packet, where the network device does not send the feedback information to the terminal device, where the feedback information is used to indicate that the network device is configured to Whether the first packet was successfully received.
  • the indication information further includes transmission format information that is used to indicate a transmission format of the first data packet, where the network device receives the The retransmission data of the first data packet is sent by the terminal device according to the transmission format information.
  • an apparatus for data transmission is provided, the apparatus being operative to perform operations of the first aspect and the terminal device in any of the possible implementations of the first aspect.
  • the apparatus may comprise a modular unit for performing the operations of the terminal device in any of the possible implementations of the first aspect or the first aspect described above.
  • an apparatus for data transmission is provided, the apparatus being operative to perform operations of a network device in any of the third and third possible implementations.
  • the apparatus may comprise a modular unit for performing the operations of the network device in any of the possible implementations of the third aspect or the third aspect described above.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the execution causes the terminal device to perform the method of the first aspect or any possible implementation of the first aspect, or the execution causes the terminal device to implement the apparatus provided by the third aspect.
  • a communication system comprising a terminal device and a network device, the terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory. When the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the method of the first aspect or any possible implementation of the first aspect, or the execution causes the terminal device to implement the apparatus provided by the third aspect ;
  • the network device includes a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory. When the processor executes the instructions stored by the memory, the executing causes the network device to perform the method of the network device in any of the possible implementations of the second aspect or the second aspect.
  • a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect and any possible implementation of the first aspect.
  • a ninth aspect a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of the second aspect and any possible implementation of the second aspect.
  • the method before the transmitting, by the terminal device, the retransmission data of the first data packet, the method includes:
  • the terminal device reserves the first data packet in the cache.
  • the terminal device prohibits or stops sending the second data packet based on the indication information.
  • the previous transmission by the terminal device using the first HARQ process ID is the scheduling-free grant uplink GUL transmission for the first data packet.
  • the terminal device returns the first data packet to a higher layer.
  • FIG. 1 is a schematic architectural diagram of a communication system of a method and apparatus for data transmission to which an embodiment of the present invention is applied.
  • FIG. 2 is a schematic interaction diagram of a method of data transmission in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of behavior between the network device and the terminal device during data transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another behavior between the network device and the terminal device during data transmission according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram of still another behavior between the network device and the terminal device during data transmission according to an embodiment of the invention.
  • FIG. 6 is a schematic block diagram of an apparatus for data transmission in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of an apparatus for data transmission in accordance with an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the supported communications are primarily for voice and data communications.
  • a traditional base station supports a limited number of connections and is easy to implement.
  • next generation of mobile communication systems will enable future mobile data traffic growth, massive IoT, and diversified new services and application scenarios.
  • 5G NR 5th Generation New Radio
  • 5G NR 5th Generation New Radio
  • 5G based on Orthogonal Frequency Division Multiplexing (OFDM) new air interface design will become a global standard, supporting 5G devices, diverse deployments, covering diverse spectrums (including for low and high frequency bands) Coverage), but also support a variety of services and terminals.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the terminal device may also be referred to as a User Equipment (UE) user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication device. , user agent or user device.
  • UE User Equipment
  • the terminal device may be a station (STAION, ST) in a Wireless Local Area Networks (WLAN), and may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, or a wireless local loop (Wireless Local) Loop, WLL) stations, Personal Digital Assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and in future 5G networks Terminal equipment or terminal equipment in a future evolved PLMN network, and the like.
  • STAION, ST Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • PDA Personal Digital Assistant
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (APCESS POINT, AP) in the WLAN, or a base station in GSM or Code Division Multiple Access (CDMA).
  • APCESS POINT AP
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • wearable devices, and network devices in future 5G networks or network devices in future evolved PLMN networks.
  • the method and apparatus provided by the embodiments of the present invention may be applied to a terminal device or a network device, where the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, for example, a Linux operating system, Unix. Operating system, Android operating system, iOS operating system or Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution subject of the method of transmitting control information is not particularly limited as long as the program capable of running the code of the method of transmitting the control information of the embodiment of the present invention can be executed.
  • the method for transmitting the control information according to the embodiment of the present invention may be a terminal device or a network device, or may be a terminal device or a network device. Call the program and execute the function module of the program.
  • the term "article of manufacture" as used in this embodiment of the invention encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 may be a public land mobile network (PLMN) network or a D2D network or an M2M network or other network.
  • PLMN public land mobile network
  • FIG. 1 is only a simplified schematic diagram of the example, and the network may also include other network devices, FIG. 1 Not drawn in the middle.
  • time-frequency resources for wireless communication used by the communication system 100 will be described in detail.
  • the time domain resource used by the network device and the terminal device to transmit information may be divided into multiple time units in the time domain.
  • a plurality of time units may be continuous, or a preset interval may be provided between some adjacent time units, which is not specifically limited in the embodiment of the present invention.
  • the time unit may be a time unit including transmissions for uplink information (eg, uplink data) and/or downlink information (eg, downlink data).
  • uplink information eg, uplink data
  • downlink information eg, downlink data
  • the length of a time unit can be arbitrarily set, which is not specifically limited in the embodiment of the present invention.
  • one time unit may include one or more subframes.
  • one time unit may include one or more time slots.
  • one time unit may include one or more symbols.
  • one time unit may include one or more TTIs.
  • one time unit may include one or more short transmission time intervals (sTTIs).
  • sTTIs short transmission time intervals
  • the time-frequency resource used by the communication system 100 for wireless communication may be divided into multiple TTIs in the time domain, and the TTI is a commonly used parameter in the current communication system (for example, an LTE system).
  • the scheduling unit that schedules data transmissions in the wireless link Refers to the scheduling unit that schedules data transmissions in the wireless link.
  • 1 TTI 1 ms is generally considered. That is, one TTI is a subframe or the size of two slots, which is the basic unit of time governed by radio resource management (scheduling, etc.).
  • the scheduling interval of the physical layer that has the most obvious impact on delay is getting smaller and smaller.
  • the scheduling interval is 10ms, and High-Speed Packet Access (HSPA) is used.
  • the scheduling interval is shortened to 2ms, and the scheduling interval (ie, TTI) in Long Term Evolution (LTE) is shortened to 1ms.
  • the hourly service requirement causes the physical layer to introduce a shorter TTI frame structure to further shorten the scheduling interval and improve the user experience.
  • the TTI length in an LTE system can be shortened from 1 ms to 1 symbol (symbol) to 1 slot (including 7 symbols).
  • the above mentioned symbols may be Orthogonal Frequency Division Multiplexing (OFDM) symbols or single carrier frequency division multiple access (Single) in an LTE system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Carrier-Frequency Division Multiple Access
  • the length of the TTI in the 5G communication system is also less than 1 ms.
  • the Round-Trip Time (RTT) of the data transmission is generally 8 ms. It is assumed that the processing time is proportionally reduced compared to the scheduling of an existing TTI of 1 ms in length, that is, the existing RTT delay is still followed. Then, in the data transmission based on the sTTI of 0.5 ms in length, the RTT of the data transmission is 4 ms, and the delay can be shortened by half relative to the data transmission based on the TTI of 1 ms in length, thereby improving the user experience.
  • a TTI having a length of less than 1 ms may be referred to as an sTTI.
  • the length of the sTTI may be any one of 1 to 7 symbols, or the sTTI length may be a combination of at least 2 different lengths of 1 to 7 symbols, for example, 6 sTTIs in 1 ms.
  • Each sTTI length may be 3 symbols, 2 symbols, 2 symbols, 2 symbols, 2 symbols, 3 symbols, or 4 sTTIs in 1 ms, and each sTTI length may be 3 symbols, respectively. 4 symbols, 3 symbols, 4 symbols, each sTTI length can also be a combination of other different lengths.
  • the uplink sTTI length may be the same as the downlink sTTI length.
  • the uplink sTTI length and the downlink sTTI length are both symbols.
  • the uplink sTTI length may be longer than the downlink sTTI length.
  • the uplink sTTI length is 7 symbols, and the downlink sTTI length is 2 symbols.
  • the uplink sTTI length may be shorter than the downlink sTTI length.
  • the uplink sTTI length is 4 symbols, and the downlink sTTI length is 1 subframe.
  • a packet whose TTI length is less than 1 subframe or 1 ms is called a short TTI packet.
  • Short TTI data transmission is in the frequency domain and can be continuously distributed or non-continuously distributed. It should be noted that, considering backward compatibility, there may be cases in which data transmission based on TTI with a length of 1 ms and data transmission based on sTTI may exist at the same time.
  • the TTI and the sTTI specified by the prior art (for example, the LTE system) (for example, the length is 1 ms or the length is greater than 1 ms) are collectively referred to as TTI, and, in the embodiment of the present invention, the length of the TTI. It can be changed according to actual needs.
  • time unit can be one subframe (Subframe).
  • one time unit may include one sTTI, or one time unit may include one slot (slot), and one time unit may include one or more ( For example, a positive integer number less than 7 or a positive integer number less than 6; one time unit may also be 1 subframe.
  • the length of the time unit for transmitting information may be 1 ms or less than 1 ms.
  • the frequency domain resource (or the spectrum resource) in the transmission resource used by the communication system 100 may be an authorization resource, or the frequency domain resource in the resource used by the communication system 100 may belong to the authorization. Frequency band.
  • the frequency domain resource (or the spectrum resource) in the resource (transmission resource or time-frequency resource) used by the communication system 100 may belong to an unlicensed band (or an unlicensed resource).
  • An unlicensed resource may refer to a resource that each communication device can share.
  • Resource sharing on an unlicensed band means that the use of a specific spectrum only specifies the limits of the transmit power and out-of-band leakage to ensure that the basic coexistence requirements are met between multiple devices sharing the band.
  • the licensed band resources can achieve the purpose of network capacity offloading, but need to comply with the regulatory requirements of different geographical regions and different spectrums for unlicensed band resources. These requirements are usually designed to protect public systems such as radar, as well as to ensure that multiple systems do not cause harmful effects and fair coexistence with each other, including emission power limits, out-of-band leak indicators, indoor and outdoor use restrictions, and areas. There are also some additional coexistence strategies and so on.
  • each communication device can adopt a contention mode or a monitoring mode, for example, a time-frequency resource used in a manner specified by Listening Before Talk (LBT).
  • LBT Listening Before Talk
  • each communication device in the communication system 100 can also perform wireless communication using the licensed spectrum resource, that is, the communication system 100 in the embodiment of the present invention is a communication system capable of using the licensed frequency band.
  • the communication device (for example, the terminal device or the network device) needs to listen to the channel before using the unlicensed band for data transmission, that is, the LBT needs to be executed, and after the LBT is successfully executed, the communication device can continuously occupy the channel, that is, the communication
  • the device may transmit data on consecutive time units.
  • the continuous time unit For downlink transmission, the continuous time unit may be referred to as a downlink burst (DL Burst), and for uplink transmission, the continuous time unit may be referred to as an uplink. Burst (UL Burst).
  • the downlink burst may include: the network device (for example, an eNB) or a cell (Cell) under the network device may continue to occupy consecutive time units after preempting the unlicensed band resources.
  • the downlink burst includes at least one downlink time unit that is consecutive in time, and one downlink burst is discontinuous in time with any other downlink burst or another uplink burst.
  • the time length of a downlink burst is not greater than the maximum time that the network device (or the cell) can continuously transmit on the unlicensed band resource.
  • the maximum time may also be referred to as a Maximum Channel Occupied Time (MCOT).
  • MCOT Maximum Channel Occupied Time
  • the length of the MCOT can be related to regional regulatory constraints. For example, in Japan, MCOT can be equal to 4ms; in Europe, MCOT can be equal to 6ms, 8ms, or 10ms, or 13ms.
  • the uplink burst may include: the terminal device may continue to occupy consecutive time units after preempting the unlicensed band resources.
  • the uplink burst includes at least one uplink time unit that is consecutive in time, and one uplink burst is discontinuous in time with any other downlink burst or another uplink burst.
  • the length of the uplink burst is not greater than the MCOT on the unlicensed band resource.
  • the uplink transmission may include uplink burst transmission, which is simply referred to as “uplink burst”.
  • the terminal device Before performing the uplink transmission, the terminal device needs to confirm whether the time-frequency resources scheduled by the network device (for example, the resources in the unlicensed frequency band scheduled by the network device) are available, for example, by LBT, etc., as to where the LBT is specifically performed.
  • the invention is not specifically limited.
  • an uplink burst may include at least one time unit (ie, one or more time units).
  • an uplink burst includes a plurality of time units
  • the plurality of time units in the uplink burst are continuous in time
  • the temporal continuity means that the time unit (eg, TTI) serial number is continuous, and one uplink is extended.
  • TTI time unit
  • the embodiment is not limited to the embodiment of the present invention.
  • the above features are equally applicable to downstream bursts.
  • two transmission mechanisms are involved, that is, one is based on scheduling transmission, and the other is based on scheduling-free transmission.
  • the two transmission mechanisms are separately introduced. .
  • the uplink transmission of the terminal device needs to be completed by the scheduling of the network device, that is, the scheduled uplink transmission (SUL).
  • the terminal device needs to send a scheduling request (SR) to the network device on the physical uplink control channel (PUCCH), and wait for the network to receive.
  • SR scheduling request
  • the network device sends the scheduling information (or the uplink grant (UL Grant) information) to the terminal device.
  • the terminal device performs the uplink transmission according to the uplink resource indicated by the scheduling information.
  • This scheduling-based transmission mechanism is highly reliable, but the transmission delay is large.
  • the uplink transmission of the terminal device does not need to be completed by the scheduling of the network device, and the unscheduled transmission may be referred to as a Grant Free Up Link (GUL) transmission, or an Autonomous UL (AUL) transmission.
  • GUL Grant Free Up Link
  • AUL Autonomous UL
  • the network device allocates the GUL resource to the terminal device in a semi-static manner.
  • the terminal device does not need to send the scheduling request SR to the network device and wait for the network device to send the UL Grant information, and can directly uplink through the GUL resource. Transfer, thereby reducing transmission delay.
  • the above two transmission mechanisms may be used in combination or separately, and the embodiment of the present invention is not limited thereto.
  • the data packet in the embodiment of the present invention can be understood as a transport block, and can also be understood as a Media Access Channel (MAC) protocol data unit PDU (Protocol Data Unit).
  • MAC Media Access Channel
  • PDU Protocol Data Unit
  • FIGS. 2 through 5 is a schematic interaction diagram of a method of data transmission in accordance with an embodiment of the present invention.
  • the terminal device sends a first data packet to the network device by using the unscheduled uplink GUL transmission on the first time unit, where the first data packet corresponds to the first hybrid automatic repeat request HARQ process ID.
  • the terminal device transmits the data packet #1 (that is, an example data of the first data packet) on the time unit #1 (that is, an example of the first time unit), and the data packet #1 corresponds to a first HARQ process ID
  • the first HARQ process ID is not based on the scheduling of the network device, but is based on the GUL transmission, that is, the terminal device uses the GUL radio resource to independently select the HARQ process ID (ie, the first HARQ process ID) Send the packet #1.
  • the network device in S211, the data packet #1 needs to be received, and the network device may generate feedback information or not generate feedback information for the reception condition of the data packet #1.
  • the network device if the terminal device sends the data packet #1, the network device generates feedback information according to the receiving situation of the data packet #1, and sends the feedback information to the terminal device: for example, the network device detects To the data packet #1, the receiving state of the data packet #1 needs to be fed back through the feedback information, that is, the feedback information is used to indicate whether the network device receives success for the data packet #1; for example, the network The device does not detect the packet #1, and at the same time, needs to feed back the reception status of the plurality of HARQ process numbers including the HARQ process number corresponding to the packet #1, and also sends feedback information.
  • the terminal device sends the data packet #1, if the network device does not detect the data packet #1, and does not need to feed back other HARQ process numbers including the HARQ process number corresponding to the data packet #1. In the receiving state, the feedback information does not need to be sent, that is, the feedback information is not generated.
  • the GUL transmission may be a transmission performed by the terminal device using the GUL radio resource.
  • the GUL radio resource may be a resource that the network device separately allocates to the terminal device without being allocated to other terminal devices, or, because the transmission of the service of the terminal device is bursty, the terminal device may have no uplink service.
  • the network device may allocate the GUL radio resource to multiple terminal devices including the terminal device, and enable the multiple terminal devices to adopt statistical multiplexing.
  • the sharing of resources is not specifically limited in the embodiment of the present invention. It should be understood that the terminal device sends the uplink data through the GUL transmission, which is also called the terminal device, and sends the uplink data in the GUL manner.
  • the GUL radio resource may be allocated by the network device after determining that the terminal device needs to perform uplink transmission; or the GUL radio resource may be, for example, accessed at the terminal device.
  • the GUL radio resource may be, for example, the network device competes for some or all of the unlicensed time-frequency resources provided by the communication system.
  • the embodiment of the present invention is not specifically limited, and is determined to be allocated to the terminal device.
  • the GUL radio resource is a subset of all available GUL radio resources that the network device allocates or activates to the terminal device.
  • the available GUL radio resources are periodic, and each GUL period includes at least one time unit, and for any one of the available GUL radio resources, the terminal device can be on any one of the time units.
  • the uplink data may be sent, or the uplink data may not be sent, that is, the time unit is not occupied. For example, when the terminal device does not have uplink traffic, or performs LBT failure before a certain time unit in the GUL radio resource, the certain time unit may be skipped without transmitting uplink data.
  • the terminal device may send uplink data without occupying any one of the GUL periods, that is, skip the GUL period. Therefore, in the implementation of the present invention, the GUL radio resources determined by the terminal device belong to the available GUL resources, that is, after the network device activates the terminal device to send uplink data, the GUL radio resources are used for transmitting uplink data.
  • the GUL resource in other words, the GUL radio resource allocated by the network device is a resource for transmitting uplink data (UL-Shared CHannel, UL-SCH), and more specifically, the GUL radio resource may be a physical uplink data channel (Physical Uplink Shared) Channel, PUSCH) resource, the GUL radio resource is also referred to as GUL PUSCH, and the GUL PUSCH also includes sPUSCH (short PUSCH) corresponding to sTTI shorter than 1 ms.
  • PUSCH Physical Uplink Shared Channel
  • the network device configures the period of the available GUL radio resources through the high layer signaling, that is, the GUL PUSCH is determined according to the high layer signaling, and the PUSCH (UL grant based PUSCH) based on the network device scheduling is compared. It is scheduled according to dynamic signaling of the network device in the PDCCH.
  • the SUL radio resource occupied by the base station scheduling terminal device is also referred to as SUL PUSCH, and the SUL PUSCH also includes the sPUSCH corresponding to the sTTI shorter than 1 ms.
  • the network device configuring the GUL PUSCH does not need to report the SR based on the terminal device.
  • the PUSCH scheduled by the network device is indicated by the network device after receiving the SR sent by the terminal device.
  • the PUSCH scheduled based on the network device only takes effect once compared to the available persistent resources of the GUL resource, and the scheduled PUSCH corresponds to a limited number of time units in a limited time range, and does not persist in effect.
  • the GUL radio resource may also be used by the terminal device to transmit the uplink data information UL-SCH.
  • the GUL radio resource is a physical uplink data channel PUSCH resource, and the GUL radio resource is also referred to as a GUL PUSCH.
  • the network device may send related signaling for configuring the GUL radio resource to the terminal device (for example, high layer signaling and or a dynamic message in the PDCCH). And so that the terminal device can determine the GUL radio resource, specifically, the terminal device can determine the at least one time unit included in the time domain of the GUL radio resource, and further, the terminal device The total number and location of at least one time unit can be determined.
  • the terminal device carries the information about the uplink data corresponding to the GUL transmission, and the terminal device carries the non-scheduling permission uplink control information in the GUL transmission (Grant Free UpLink Control Information (G-UCI), the G-UCI is control information corresponding to the uplink data.
  • the G-UCI includes HARQ process number information of the HARQ process corresponding to the uplink data, New Data Indicator (NDI) information, Redundancy Version (RV) information corresponding to the uplink data, and the At least one of the user identification (denoted as UE ID) information of the terminal device.
  • the network device needs to acquire the G-UCI first, and then demodulate and decode the GUL PUSCH according to the G-UCI to obtain the uplink data.
  • the data in the data packet #1 may be initial data or retransmitted data.
  • the data in the data packet #1 is uplink.
  • Retransmission data of data #X may be the initial data or the retransmission data, which is not limited in the embodiment of the present invention.
  • the data in the data packet #1 is the retransmission data of the uplink data #X
  • the terminal device sends the uplink data #X, it is also sent by using the GUL transmission or using the GUL.
  • the GUL transmission can be configured by the network device in a semi-static manner.
  • the terminal device performs GUL transmission on the GUL radio resource and does not need dynamic scheduling signaling.
  • the network device configures the GUL radio resource in a semi-static manner, it may be semi-statically configured based on the high layer signaling or semi-statically configured through physical layer signaling (for example, UL grant information), and the UL grant information may also be referred to as a half. Static UL grant information.
  • it can also be configured through high-layer signaling and activated by physical layer signaling.
  • the network device can reuse the Semi Persistant Scheduling (SPS) mechanism in the existing LTE system and configure through high-level signaling.
  • the GUL period is activated/reactivated/deactivated by the UL grant information scrambled by the SPS Cell Radio Network Temporary Identifier (C-RNTI) or the GUL C-RNTI.
  • SPS Semi Persistant Scheduling
  • one time unit may be one TTI.
  • the TTI can be a 1 ms TTI, or a sub-frame, and has a length of 1 ms. It can also be an sTTI shorter than 1 ms or a mini-slot.
  • the time domain resource occupied by the sTTI is shorter than 1 ms TTI. That is to say, when the TTI corresponding to a certain data channel is sTTI, the time domain resource length occupied by it is shorter than 1 ms.
  • the TTI is the time domain granularity of uplink resource allocation or uplink transmission, or TTI is the minimum time domain unit for the terminal device to perform uplink transmission.
  • the optional lengths that the sTTI may support include 7SC-FDMA Symbol (SS), 1 SS, 2 SS, 3 SS, or 4 SS structures.
  • the TTI is the time domain granularity of downlink resource allocation or downlink transmission, or TTI is the minimum time domain unit for network equipment to perform downlink transmission.
  • the optional length that the sTTI may support includes a structure of 7OFDMA symbols (OFDMA, OS), 1 OS, 2 OSs, 3 OSs, or 4 OSs. sTTI also supports other TTI lengths shorter than 1ms.
  • a time unit may also be an uplink burst or a downlink burst.
  • the uplink burst includes at least one uplink TTI that is consecutive in time
  • the downlink burst includes at least one downlink TTI that is consecutive in time.
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate that the terminal device sends the second data packet on the second time unit, where the second data packet corresponds to the first HARQ process ID.
  • the second data packet is different from the first data packet, and the second time unit is located after the first time unit in time.
  • the terminal device receives the indication information.
  • the indication information is a scheduling-based information
  • the indication information may be UL grant information, and more specifically, the indication information is a dynamic UL grant information.
  • the network device sends the indication information to the terminal device, where
  • the indication information indicates that the terminal device sends the data packet #2 corresponding to the first HARQ process number on the time unit #2, and the data packet #1 is different from the data packet #2, that is, the indication information indicates The terminal device uses the first HARQ process ID to perform initial data transmission. More specifically, the indication information indicates that the terminal device sends the data packet #2 corresponding to the first HARQ process ID on the time unit #2, and also indicates that the terminal device uses the first HARQ process ID.
  • the previous transmission (or the data packet #1 corresponding to the first HARQ process number sent at the time unit #1) has succeeded, then the terminal device performs the last time using the first HARQ process number.
  • the transmission (or the packet #2 corresponding to the first HARQ process number transmitted on the time unit #2) is the initial transmission.
  • the previous transmission by the terminal device using the first HARQ process ID is the GUL transmission for the data packet #1.
  • the previous transmission may be that the terminal device uses the same HARQ process ID before the indication information schedules the terminal device to transmit the data packet #2 (or the time unit #2) using the first HARQ process ID ( That is, the first HARQ process number is transmitted in the next transmission in time.
  • the terminal device determines, according to the indication information, that the data packet #2 is sent by using the first HARQ process ID on the time unit #2, that is, the initial transmission is performed by using the first HARQ process ID. (At the same time, the previous transmission corresponding to the HARQ process ID, that is, the reception status of the packet #1 is ACK), can be determined by any of the following methods:
  • the indication information is indication information that is scrambled by using the C-RNTI, and the terminal device considers that the first HARQ process number is used for initial use, regardless of whether the NDI value indicated by the indication information of the C-RNTI scrambling is 0 or 1. pass.
  • the terminal device considers the NDI value as a few. It is an initial indication for the first HARQ process number.
  • the indication information is indication information that is scrambled by the C-RNTI.
  • the terminal device considers that it is for the first An initial indication of a HARQ process number.
  • the indication information is indication information that is scrambled by using the C-RNTI, and the NDI value indicated by the indication information is a preset value, for example, 0. That is, when determining that the value of the NDI indicated by the indication information is 0, the terminal device considers that the terminal device is an initial transmission indication for the first HARQ process ID.
  • the indication information is indication information that is scrambled by using a semi-static RNTI, and the NDI value indicated by the indication information is a preset value, for example, 0.
  • the semi-static RNTI is an SPS C-RNTI or a GUL C-RNTI. That is, the indication information is used to activate/reactivate the GUL transmission of the terminal device, and the terminal device is instructed to use the first HARQ process ID to perform the reception status of the data packet corresponding to the previous transmission as ACK.
  • the GUL transmission is configured by the network device by semi-static uplink grant UL grant information, wherein the semi-static UL grant information is scrambled by the first radio network temporary identifier RNTI, and the indication information is scrambled by the second RNTI.
  • the information used to configure the GUL transmission may be semi-static UL grant information
  • the indication information may be dynamic UL grant information.
  • different types of scrambling are used for the two types of information, that is, the semi-static UL grant information is scrambled by the first RNTI.
  • the dynamic UL grant information is scrambled by the second RNTI.
  • the first RNTI is an SPS C-RNTI or a GUL C-RNTI
  • the second RNTI is a C-RNTI.
  • the terminal device sends the second data packet according to the receiving condition of the feedback information corresponding to the first data packet, or sends the retransmission data of the first data packet, or for the first data packet.
  • the cache processing is performed, and the feedback information is used to indicate whether the network device successfully receives the first data packet.
  • the network device After the terminal device sends the data packet #1, the network device generates feedback information or does not generate feedback information according to the receiving situation of the data packet #1: if the network device detects the data packet #1 Then, the receiving state of the data packet #1 is fed back through the feedback information, that is, the feedback information is used to indicate whether the network device receives the data packet #1 successfully; if the network device does not detect the data packet # 1. At the same time, it is necessary to feed back the reception status of a plurality of HARQ process numbers including the HARQ process number corresponding to the packet #1, and also send feedback information.
  • the terminal device After the terminal device sends the data packet #1, if the network device does not detect the data packet #1, it does not need to feed back the reception of other HARQ process numbers except the HARQ process number corresponding to the data packet #1. The status does not need to send the feedback information, that is, the feedback information is not generated.
  • the terminal device can determine, according to its own reception status of the feedback information, that it needs to perform processing on the data packet #2, that is, whether to send the data packet #2, or to process the data packet #1, that is, send The retransmission data of the data packet #1 or the data packet #1 in the HARQ buffer corresponding to the first HARQ process number is reserved.
  • the receiving state for the packet #1 can also be understood as the first The receiving state of the HARQ process, which can be mutually replaced, is not specifically limited in the embodiment of the present invention.
  • the receiving status of the network device for the data packet #1 includes an Acknowledgement (ACK) or a Negative Acknowledgement (NACK), or the network device is configured to receive the first HARQ process. Is ACK or NACK. For example, if the network device determines that the data packet #1 or the first HARQ process corresponding to the data packet #1 is received correctly, the corresponding receiving state is ACK; or the network device determines the data packet #1 (or, If the first HARQ process corresponding to the data packet #1 receives an error, the corresponding receiving state is NACK; or the network device does not receive the data packet #1 (or the corresponding corresponding to the data packet #1) A HARQ process), the reception status is NACK, that is, the NACK indicates that the data packet #1 or the first HARQ process corresponding to the data packet #1 is not received.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • the indication manner of the receiving state of the data packet corresponding to the HARQ process number is two types: the indication mode 1 can be used to perform uplink scheduling indication information on the terminal device.
  • the UL grant information is based on the SUL indication method; the indication method 2 is based on the indication manner of the feedback information, and the two indication manners are described in detail below.
  • the SUL-based indication mode is described by taking the UL grant as an example.
  • the UL grant information includes receiving state information (for example, NDI, which is used to indicate whether the previous transmission by the terminal device using the HARQ process ID is correctly received. New Data Indicator), and the network device scheduling terminal device uses the HARQ process ID to perform scheduling information for initial transmission or retransmission.
  • state information for example, NDI, which is used to indicate whether the previous transmission by the terminal device using the HARQ process ID is correctly received. New Data Indicator
  • the network device scheduling terminal device uses the HARQ process ID for initial transmission (corresponding to NDI 'flip')
  • the receiving state of the previous transmission corresponding to the HARQ process number received by the network device is correctly received (or For the ACK) or the correct response
  • the terminal device will use the HARQ process ID to send a new uplink data packet on the resource scheduled by the UL grant information;
  • the network device scheduling terminal device uses a certain HARQ process ID for retransmission (corresponding to NDI 'not flipped')
  • the receiving state of the previous transmission corresponding to the HARQ process number received by the network device is an error receiving. (or NACK) or an error response
  • the terminal device will retransmit the data packet corresponding to the previous uplink transmission using the HARQ process number on the resource scheduled by the UL grant information.
  • the SUL transmission may be used to schedule the terminal device for initial transmission, and may also be used for scheduling the terminal device for retransmission.
  • the feedback information includes indication information indicating whether the previous uplink transmission corresponding to a certain HARQ process ID is correctly received by the network device, but does not include the network device scheduling terminal device using the HARQ process ID for initial transmission. Or retransmitted scheduling information.
  • the feedback information includes a receiving state corresponding to the HARQ process in the at least one TTI, where the at least one TTI has a predefined time association with the TTI where the feedback information is located or a time association indicated by the network device.
  • the feedback information uses a PHICH channel and a corresponding HARQ feedback mode, for example, a reception state of a HARQ process (or a data packet) on TTI #n is indicated on a G-DCI of TTI#n+k (k>0).
  • the feedback information includes a receiving state of each HARQ process in a HARQ process set (including at least one HARQ process, including a HARQ process corresponding to the HARQ process ID), where the HARQ process set may be configured by a network device. It can also be predefined or fixed. Specifically, the feedback information indicates the receiving state of each HARQ process in the HARQ process set in a bit map manner, and the feedback information is also referred to as G-DCI.
  • the ACK is represented by a binary '1' and the NACK is represented by a binary '0'.
  • the HARQ process contains the HARQ process (represented by the HARQ process number) ⁇ #0, #1, #2, #3 ⁇ , if #0, #1 are correctly received, #2, #3 are received incorrectly.
  • the bit map contained in the G-DCI is ⁇ 1, 1, 0, 0 ⁇ .
  • the terminal device may perform initial transmission or retransmission in the GUL manner. For example, when the G-DCI indicates that the receiving status corresponding to a certain HARQ process ID is ACK, the terminal device may use the HARQ in the next GUL transmission.
  • the process ID transmits a new data packet.
  • the terminal device can retransmit the data packet corresponding to the previous uplink transmission by using the HARQ process ID in the next GUL transmission.
  • the feedback information is the scheduling-free permission downlink control information G-DCI.
  • the receiving, by the terminal device, the receiving information of the feedback information includes whether the terminal device receives the feedback information, and when the terminal device receives the feedback information, the network device indicated by the feedback information is targeted by the network device. Receive status of packet #1.
  • the terminal device may have three situations for receiving the feedback information. In the following, three cases of the terminal device receiving the feedback information are described in detail.
  • the terminal device does not receive the feedback information.
  • the network device may send the feedback information or may not send the feedback letter. Interest, but the terminal device did not receive the feedback information.
  • the network device does not detect the data packet #1, the network device does not send the feedback information, and the terminal device naturally cannot receive the feedback information;
  • the terminal device does not detect the feedback information based on other factors. It should be understood that the network device does not detect the data packet #1, and includes the network device to send feedback information for the data packet #1, but the data packet #1 is not detected, and the network device does not have time for the data. Packet #1 sends feedback information. The network device can send the feedback information for the data packet #1, that is, the time interval between the first time unit and the fourth time unit carrying the indication information exceeds the delay of sending the feedback information of the network device to the data packet #1.
  • the network device has the ability to demodulate the data packet on the first time unit and obtain the data packet #1 reception status, but the network device does not detect for other reasons, such as poor channel conditions, etc. The existence of the packet #1.
  • the network device does not have time to send feedback information for the data packet #1, that is, when the time interval between the first time unit and the fourth time unit carrying the indication information is smaller than the demodulation delay of the network device for the data packet #1, Or, when the first time unit is located after the fourth time unit, the network device cannot complete demodulation of the data packet #1 and generate feedback information in time before sending the indication information; for example, the network device sends feedback information for the data packet #1.
  • the delay is 4 ms, the terminal device transmits the data packet #1 on the subframe #n+2, and the network device can transmit the feedback information for the data packet #1 on the subframe #n+6 at the earliest;
  • the device sends the indication information scheduling packet #2 on the subframe #n+4
  • the network device since the network device has not completed the demodulation of the data packet #1 on the subframe #n+2 at the time of the subframe #n+4, Therefore, it is impossible to complete the transmission of the feedback information before #n+4 from the timing, which is also called that the packet #1 is not detected.
  • the terminal device receives the feedback information, and the feedback information indicates that the network device fails to receive the data packet #1, that is, the network device receives an error response NACK for the data packet #1.
  • the network device sends the feedback information to the terminal device to indicate that the receiving state corresponding to the data packet #1 is NACK, and further, the terminal device receives the feedback information.
  • the receiving state is NACK, which may be a state corresponding to the case where the network device receives the data packet #1 but does not correctly demodulate and decode the data packet #1, so that the data packet #1 is not acquired;
  • the receiving state may be a NACK or a state corresponding to the case where the network device does not detect the data packet #1.
  • the network device when the network device does not detect the data packet #1 corresponding to the first HARQ process ID, but detects another HARQ process number sent by the terminal device (for ease of understanding and differentiation, The feedback information is also sent when the data packet corresponding to the second HARQ process number). This is because the indication of the reception status corresponding to the multiple HARQ processes (referred to as the HARQ process set) is included in the feedback information, and the indication of the reception status corresponding to each HARQ process needs to be implemented in a bit mapping manner.
  • the feedback information needs to indicate the receiving state of the data packet corresponding to the second HARQ process ID, and the feedback information is
  • the bit mapping also includes the receiving state corresponding to the first HARQ process ID.
  • the receiving state corresponding to the first HARQ process ID is the default state, and the default is NACK.
  • the terminal device receives the feedback information, and the feedback information indicates that the network device successfully receives the data packet #1, that is, the network device receives the correct response ACK for the data packet #1.
  • the network device sends the feedback information to the terminal device to indicate that the data packet #1 corresponds to The receiving status is ACK, and the terminal device receives the feedback information.
  • the terminal device that receives the feedback information herein indicates that the terminal device successfully receives the feedback information.
  • the network device indicated by the feedback information indicates, for the receiving state of the data packet #1, the effective receiving state of the network device for the data packet #1, or the network device is directed to the first The effective reception status of a HARQ process number.
  • the effective receiving state means that the sending timing of the feedback information can ensure that the network device can obtain feedback status for the data packet #1 (or, if the network device can detect the data packet #1, the time is available)
  • the data packet #1 receiving state is fed back by the feedback information, and the terminal device ensures that the SUL PUSCH scheduled by the indication information is grouped according to the feedback information.
  • each HARQ process in the corresponding HARQ process set has a default receiving state (for example, NACK), if the network device does not detect the first HARQ process. If the data packet corresponding to the number is detected and the data corresponding to the other HARQ process number is detected, the HARQ process set is also indicated in the bit map.
  • the receiving state corresponding to the first HARQ process number is the default state. Therefore, when the transmission timing of the feedback information cannot guarantee the above conditions, for example, premature transmission or late transmission, it also includes the default reception status corresponding to the HARQ process number, but cannot be referred to as the data packet #1.
  • the receiving state or can not be called the effective receiving state.
  • the transmission timing of the feedback information can be limited.
  • the third time unit carrying the feedback information is located after the first time unit in time, and the third time unit is temporally located before the second time unit, or
  • the third time unit carrying the feedback information is no later than the fourth time unit carrying the indication information.
  • the time unit #3 ie, an example in the third time unit
  • the time unit #3 is After the time unit #1 is temporally located, it is possible to feed back the reception status for the data packet #1 in the feedback information.
  • the terminal device can group the SUL PUSCH according to the feedback information only before the time unit #3 is temporally located before the time unit #2.
  • the time interval between the time unit #3 and the time unit #1 is not less than the first time interval.
  • the first time interval is a preset time interval.
  • the first time interval is K TTIs.
  • the network device can send the feedback information on the TTI#n+K at the earliest time to bear the The valid reception status of this packet #1.
  • the time interval between the time unit #3 and the time unit #2 is not less than the second time interval.
  • the second time interval is a preset time interval.
  • the second time interval is M TTIs.
  • the network device scheduling terminal device sends the data packet #2 through the SUL transmission on the TTI#n+M
  • the network device needs to send the feedback on the TTI#n at the latest.
  • the information carries the valid reception status for the packet #1.
  • the network device demodulates the data packet #1 and generates feedback information, there is a certain delay.
  • the data packet #1 transmitted on the TTI#n can be initially carried in the TTI#n+4.
  • the terminal device receives the feedback information on TTI#n+4 and performs SUL PUSCH according to the feedback information.
  • the PUSCH can be sent at the earliest time in TTI#n+8, and the second time interval is 4 TTIs.
  • the time unit #3 is temporally at least a later time interval (eg, 4 TTIs) than the time unit #1, and/or the time unit #3 is temporally longer than the time Unit #1 is at least a second time interval in time (eg, 4 TTIs). If the terminal device does not receive the feedback information after the time of the first time interval later than the time unit #1, and/or before the time of the second time interval earlier than the time unit #2, it may be considered that the feedback information is not received.
  • a later time interval eg, 4 TTIs
  • the first time interval and the second time interval are both 4 subframes, and when the terminal device transmits the data packet #1 in the subframe #n (ie, the time unit #1), the indication information is scheduled to be in the subframe # When n+10 (ie, time unit #2) transmits data packet #2, it is only connected between subframe #n+4 (including #n+4) to subframe #n+6 (including #n+6). When the feedback information is received, it is said to receive the feedback information.
  • the time unit #3 is not later in time than the time unit #4.
  • the time unit #3 is temporally preceding the time unit #4.
  • the time unit #3 and the time unit #4 are the same time unit, that is, the network device sends the indication information and the feedback information on the same time unit.
  • the time unit #4 may be a downlink burst, and the time unit #3 is not later than the time unit #4, and the end time of the time unit #3 is not later than the downlink burst. End time.
  • the downlink burst includes at least one downlink TTI that is temporally consecutive, and one downlink burst is discontinuous in time with any other downlink burst or uplink burst.
  • the terminal device may start to group the scheduled SUL PUSCH after receiving the indication information, in order not to affect the MAC layer group packet process, before the time unit #4 carrying the indication information or at the time unit
  • the feedback information is received on #4 to correctly determine the processing of the HARQ buffer corresponding to the first HARQ process ID, so the time unit #3 needs to be later in time than the time unit #4.
  • the network device may also send the feedback information on the subsequent time unit;
  • the SUL PUSCH usually follows the downlink burst
  • the network device does not send feedback information on the downlink burst
  • there is no downlink transmission opportunity to send feedback information before the SUL PUSCH so in order to ensure that the network device is
  • the feedback information is sent before the SUL transmission
  • the time unit #4 is a downlink burst carrying the indication information
  • the time unit #3 is not later than the downlink burst in time.
  • duration corresponding to the time unit #1, the duration corresponding to the time unit #2, the duration corresponding to the time unit #3, and the duration corresponding to the time unit #4 may be the same or different, and the present invention may be different. The embodiment is not limited at all.
  • the terminal device can determine whether to process the data packet #2 according to the indication information or according to the foregoing three situations corresponding to the feedback information, that is, send the data packet #2, or for the data.
  • the packet #1 performs processing, that is, transmits the retransmission data of the packet #1 and/or retains the packet #1 in the HARQ buffer corresponding to the first HARQ process number.
  • the terminal device sends the retransmission data of the second data packet
  • the terminal device sends the retransmission data of the first data packet according to the receiving situation of the feedback information corresponding to the first data packet, including:
  • the terminal device If the terminal device does not receive the feedback information, or if the terminal device receives the feedback information, and the feedback information indicates that the network device receives a negative response for the first data packet, The terminal device sends retransmission data of the first data packet.
  • the data transmitted by the terminal device is the retransmission data of the data packet #1, and more specifically, the terminal device sends the first HARQ process ID. Retransmit data for a packet.
  • the terminal device receives the indication information, but does not receive the feedback information, considering that there is a possibility that the network device may not successfully receive the data packet #1, in order to avoid the loss of the data packet #1.
  • the packet the terminal device may consider that the network device failed to receive the data packet #1.
  • FIG. 3 is a schematic diagram showing the behavior between the network device and the terminal device during data transmission according to an embodiment of the present invention.
  • the terminal device transmits the data packet #1 using the first HARQ process number (ie, HARQ process number #H0) in subframe #n+8 (ie, time unit #1), and the network device does not detect.
  • the packet #1 is sent, so the feedback information is not sent.
  • the network device also transmits the indication information in subframe #n+12 (ie, time unit #4) to schedule the terminal device to use the HARQ process number #H0 in subframe #n+16 (ie, time unit # 2) Conduct an initial pass.
  • the terminal device does not receive the feedback information, it determines that the data packet #1 is not correctly received by the network device, and further transmits the retransmission data of the data packet #1 to the network device.
  • the indication information indicates that the terminal device sends the data packet #1 using the first HARQ process ID, meaning that the terminal device considers that the network device has successfully received the data packet #1, but the feedback information indicates The reception status for this packet #1 is NACK.
  • the two indication states are contradictory.
  • the terminal device takes the receiving state indicated by the feedback information as the standard, that is, the network device considers that the receiving state of the data packet #1 is NACK, and further, to the network. The device sends the retransmitted data of the packet #1.
  • FIG. 4 is a schematic diagram showing another behavior between the network device and the terminal device during data transmission according to an embodiment of the invention.
  • the terminal device transmits the data packet #1 using the HARQ process number #H0 in subframe #n+8 (ie, time unit #1), and the network device does not detect the data packet #1, but The data packet corresponding to the HARQ process number #H1 on the subframe #n+9 is detected (for the sake of understanding and difference, that is, the packet #3), and at the same time, the network device needs to be in the subframe #n+12 (ie, The time unit #3) transmits the bit map-based feedback information, wherein the reception state corresponding to the HARQ process number #H0 is the default state NACK.
  • the network device also transmits the indication information in subframe #n+12 (ie, time unit #4) to schedule the terminal device to use the HARQ process number #H0 in subframe #n+16 (ie, time unit #2). Make an initial pass.
  • the terminal device After receiving the indication information and the feedback information, the terminal device is determined by the receiving status indicated by the feedback information, that is, the data packet #1 is not correctly received by the network device.
  • the network device transmits the retransmission data of the packet #1.
  • the terminal device sends the retransmission data of the data packet #1 by using the first HARQ process ID
  • the old data in the HARQ cache corresponding to the first HARQ process ID is inevitably or not cleared (ie, the Packet #1).
  • the terminal device determines, according to the indication information, that the data packet #2 corresponding to the first HARQ process ID needs to be sent, and determines, according to the receiving state of the feedback information, that the first HARQ process number is required to be sent.
  • the terminal device no longer transmits the data packet #2 according to the indication information, but transmits the retransmission data of the data packet #1 according to the reception status of the feedback information.
  • the terminal device retains the first data packet in the cache.
  • the terminal device retains the data packet #1, that is, the terminal device reserves or does not clear the data packet in the HARQ cache corresponding to the first HARQ process ID. 1. That is, even if the terminal receives the indication information, the terminal device does not under the conditions of the above case 1 and case 2 The data packet in the HARQ buffer corresponding to the first HARQ number is cleared.
  • the terminal device sends the second data packet.
  • the terminal device sends the second data packet (using the first HARQ process ID) according to the receiving situation of the feedback information corresponding to the first data packet, including:
  • the terminal device When the terminal device receives the feedback information, and the feedback information indicates that the network device receives the correct response ACK for the first data packet, the terminal device uses the first time unit according to the indication information.
  • the first HARQ process ID sends the second data packet.
  • the terminal device transmits the packet #2. Specifically, in this case 3, the terminal device considers that the network device correctly receives the data packet #1, and the terminal device may clear or discard the original data in the HARQ cache corresponding to the first HARQ process ID (ie, the The data in packet #1, or the packet #2 is stored in the HARQ buffer corresponding to the first HARQ process number, in place of packet #1 in the HARQ buffer.
  • the terminal device considers that the network device correctly receives the data packet #1, and the terminal device may clear or discard the original data in the HARQ cache corresponding to the first HARQ process ID (ie, the The data in packet #1, or the packet #2 is stored in the HARQ buffer corresponding to the first HARQ process number, in place of packet #1 in the HARQ buffer.
  • the terminal device may send the data packet #2 by using the first HARQ process ID on the time unit #2 according to the indication information.
  • the data packet #2 and the indication information and the HARQ information indicated by the indication information are delivered to the HARQ process corresponding to the first HARQ process ID, and the initial transmission is triggered for the HARQ process.
  • the terminal device performs the clearing of the data packet #1 only when the terminal device receives the feedback information, and the feedback information indicates that the receiving state of the receiving device of the network is ACK for the data packet #1. And based on the indication information, the initial transmission of the packet #2 is performed using the first HARQ process number on the time unit #1.
  • FIG. 5 is a schematic diagram showing another behavior between the network device and the terminal device during data transmission according to an embodiment of the invention.
  • the terminal device transmits the data packet #2 using the HARQ process number #H0 in subframe #n+8 (ie, time unit #1), and the network device correctly receives the data packet #1 and
  • the subframe #n+12 ie, the time unit #3
  • the network device also transmits the indication information in subframe #n+12 (ie, time unit #4) to schedule the terminal device to perform initial transmission in subframe #n+16 using HARQ process number #H0.
  • the terminal device After receiving the feedback information, the terminal device clears the data packet #1 from the HARQ buffer, and puts the data packet #2 into the HARQ buffer to replace the original data packet, and the terminal device according to the indication information
  • the indicated transport format radio resource, modulation and coding scheme MCS, etc.
  • HARQ information HARQ ID, RV, NDI, etc.
  • the terminal device determines, according to the indication information, that the data packet #2 corresponding to the first HARQ process ID needs to be sent, and also determines that the first HARQ process number needs to be sent according to the receiving state of the feedback information.
  • the terminal device performs transmission of the packet #2 based on the indication information.
  • the network device receives the retransmission data of the data packet #1 sent by the terminal device, or When the terminal device sends the data packet #2 based on the above three conditions of the feedback information, the network device receives the data packet #2 sent by the terminal device.
  • the network device schedules the terminal device to be in the same HARQ process by using the indication information (ie, the first HARQ process).
  • the indication information ie, the first HARQ process.
  • the terminal device sends new data (ie, the packet #2), or when the network device
  • the terminal device sends the data packet #2 using the first HARQ process ID based on the indication information, so that if the network device fails to receive the If the first HARQ process ID corresponds to the data packet #1, the terminal device still uses the first HARQ process ID to perform initial transmission according to the indication information, or the terminal device transmits the data packet by using the first HARQ process ID. #2, caused the loss of the packet #1, seriously affecting the reliability of data transmission.
  • the terminal device may determine, according to the indication information, that the data needs to be transmitted by using the first HARQ process ID, and may also be corresponding to the data packet #1. Receiving the feedback information to perform transmission processing or buffer processing for the data packet #1, thereby avoiding loss due to the data packet #1.
  • the terminal device after receiving the indication information for instructing the terminal device to send the second data packet corresponding to the first HARQ process ID, the terminal device is further configured according to the first HARQ process.
  • the receiving condition of the feedback information of the first data packet corresponding to the number determines how to transmit the data, that is, transmits the retransmitted data of the first data packet, or retains the first data packet, or sends the second data packet, In particular, when the network device does not successfully receive the first data packet, and the network device schedules the terminal device to transmit the second data packet corresponding to the first HARQ process ID by using the indication information, the terminal device does not perform according to the indication information.
  • the transmission of the second data packet instead of transmitting the retransmission data of the first data packet, reduces the loss of the first data packet, improves the reliability of data transmission, and improves the flexibility of the system.
  • the indication information further includes transmission format information used to indicate a transmission format of the first data packet, and,
  • the terminal device sends the retransmission data of the first data packet, including:
  • the terminal device transmits the retransmission data of the first data packet on the first time unit according to the transmission format information.
  • the terminal device sends the retransmission data of the first data packet on the first time unit by using the first HARQ process ID according to the transmission format information.
  • the transport format information includes time-frequency resources, modulation and coding schemes (MCS), power control information, uplink pilots, or control information (SRS request and/or control information) for transmitting the data packet #2 indicated by the indication information.
  • MCS modulation and coding schemes
  • SRS request and/or control information control information for transmitting the data packet #2 indicated by the indication information.
  • SRS request and/or control information At least one of DMRS sequence information and/or CSI request and/or DL HARQ request), precoding information (PMI).
  • the terminal device determines that it needs to transmit the retransmission data of the data packet #1, the terminal device does not perform the initial transmission of the data packet #2 according to the initial transmission request indicated by the indication information, but only according to The transmission format information included in the indication information is retransmitted on the time unit #1 to the original data packet in the HARQ buffer corresponding to the first HARQ process number.
  • the terminal device may directly perform the data packet according to the indication information. If the TBS of the data packet #1 is greater than the TBS indicated by the indication information, the data packet #1 may be split and transmitted according to the TBS indicated by the indication information. When the TBS of the data packet #1 is smaller than the TBS indicated by the indication information, the new data transmitted by the data packet #1 and the upper layer may be reassembled into a new data packet, so that the TBS of the new data packet is The TBS indicated by the indication information is the same, and the new data packet is transmitted. Further, the version number of the retransmitted redundancy version (RV) is the same as the corresponding RV version number in the GUL transmission, for example, RV#0.
  • RV redundancy version
  • the indication can be utilized.
  • the transport format information included in the information retransmits the first data packet, effectively utilizing the current signaling, and reducing signaling overhead.
  • the terminal device may perform retransmission of the data packet #1 according to the transmission format information included in the indication information, and may also ignore the indication information, and perform retransmission of the data packet #1 according to other information.
  • the terminal device may perform retransmission of the data packet #1 according to a new GUL transmission (for ease of understanding and differentiation, that is, a second GUL transmission).
  • the terminal device may perform retransmission according to the other dynamic UL grant information.
  • the terminal device may retransmit the data packet #1 in a GUL manner. Specifically, the terminal device may perform retransmission in a GUL manner on a TTI that can be used for GUL transmission.
  • the RV version number used to retransmit the data packet #1 coincides with the corresponding RV version number in the GUL transmission, for example, RV#0.
  • the terminal device ignores the indication information.
  • the terminal device base prohibits or stops transmitting the data packet #2 based on the indication information, or the terminal device does not perform the packet of the data packet #2 according to the indication of the indication information, or the terminal.
  • the device does not perform the SUL initial transmission for the packet #2 according to the indication of the indication information.
  • the terminal device when the terminal device ignores the dynamic UL grant information, the terminal device may or may not clear the data packet #1 in the HARQ cache corresponding to the first HARQ process ID.
  • the terminal device sends the retransmission data of the data packet #1, and the data packet #2 is no longer sent according to the indication information, that is, the indication information is ignored.
  • the terminal device returns the first data packet in the HARQ cache corresponding to the first HARQ process ID to a higher layer.
  • the terminal device clears the original data in the HARQ buffer (ie, the packet #1). Specifically, the terminal device may re-execute the MAC layer group packet and perform new data transmission, that is, the terminal device stores a new data packet (referred to as data packet #4 for ease of understanding and differentiation) in the HARQ cache. And make a new pass for the new packet.
  • data packet #4 a new data packet
  • the terminal device returns the data packet #1 to the upper layer, where the terminal device determines to send the data packet #2, or the terminal device determines to send the data packet #1.
  • the packet #4 reassembled at the MAC layer includes the data in the packet #1.
  • the packet #1 is returned to the upper layer in the case where the terminal device determines to transmit the packet #2, the packet #4 is the packet #2.
  • the terminal device may perform the first HARQ process on the time unit #1 according to the transmission format information included in the indication information.
  • the number corresponds to the initial transmission of packet #4. More specifically, the terminal device transmits the new MAC PDU and the indication information and the HARQ information indicated by the indication information to the HARQ process corresponding to the first HARQ process ID, and triggers the initial transmission for the HARQ process.
  • the terminal device may also perform initial transmission of the data packet #4 in the HARQ buffer by using another transmission manner other than the indication information, including other dynamic UL grant information or a new GUL transmission.
  • the terminal device receives the second data packet for instructing the terminal device to use the first HARQ process ID (that is, performing the first HARQ process ID.
  • the feedback information of the first data packet corresponding to the first HARQ process number is further Receiving a situation to determine how to perform data transmission, that is, transmitting retransmission data of the first data packet, or retaining the first data packet, or transmitting the second data packet, especially if the network device does not successfully receive the first data packet a packet, and the network device schedules the terminal device to transmit the second data packet by using the first HARQ process ID by using the indication information, and the terminal device does not perform the second data packet transmission according to the indication information, but uses the Transmitting the retransmission data of the first data packet by the first HARQ process ID indicated by the indication information, reducing the loss of the first data packet, improving the reliability of the data transmission, and improving the flexibility of the system;
  • the terminal device when the terminal device does not perform the transmission of the second data packet based on the indication information, the first data packet may be retransmitted by using the transmission format information included in the indication information, and the current signaling is effectively utilized. , reducing signaling overhead.
  • the embodiment of the invention further provides a data transmission method, the method comprising:
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate that the terminal device sends the second data packet on the second time unit, where the second data packet corresponds to the first hybrid automatic repeat request HARQ process ID, where The first HARQ process ID also corresponds to the first data packet, and the first data packet is sent by the terminal device to the network device by using a scheduling-free uplink GUL transmission on the first time unit, the second data packet and the second data packet.
  • a data packet is different, the second time unit being located after the first time unit in time;
  • the terminal device receives the indication information, and sends the second data packet according to the receiving situation of the feedback information corresponding to the first data packet, or sends the retransmission data of the first data packet, or
  • the first data packet is buffered, and the feedback information is used to indicate whether the network device successfully receives the first data packet.
  • the network device receives retransmission data of the first data packet.
  • Step S310 in the method may correspond to step S220 in the foregoing method.
  • step S320 may correspond to step S230 in the foregoing method, specifically for the details of step 320.
  • step S230 in the above method.
  • step S320 the terminal device sends the second data packet
  • step S330 the network device receives the second data packet
  • step S320 the terminal device sends the first data packet
  • step S330 the network device receives retransmission data of the first data packet.
  • FIG. 6 shows a schematic block diagram of an apparatus 300 for data transmission in accordance with an embodiment of the present invention. As shown in FIG. 6, the apparatus 300 includes:
  • the sending unit 410 is configured to send, by using the scheduling-free uplink GUL transmission, the first data packet to the network device, where the first data packet corresponds to the first HARQ process ID;
  • the receiving unit 420 is configured to receive indication information that is sent by the network device, where the indication information is used to indicate that the apparatus sends the second data packet on the second time unit, where the second data packet corresponds to the first HARQ process ID, The second data packet is different from the first data packet, and the second time unit is located after the first time unit in time;
  • the sending unit 420 is further configured to: send the second data packet according to the receiving situation of the feedback information corresponding to the first data packet, or send the retransmitted data of the first data packet, or, for the first data
  • the packet is buffered, and the feedback information is used to indicate whether the network device successfully receives the first data packet.
  • the apparatus for transmitting data after receiving the indication information for instructing the terminal device to send the second data packet corresponding to the first HARQ process ID, according to the first HARQ process, the receiving condition of the feedback information of the first data packet corresponding to the number determines how to transmit the data, that is, transmits the retransmitted data of the first data packet, or retains the first data packet, or sends the second data packet, In particular, when the network device does not successfully receive the first data packet, and the network device schedules the terminal device to transmit the second data packet corresponding to the first HARQ process ID by using the indication information, the terminal device does not perform according to the indication information.
  • the transmission of the second data packet instead of transmitting the retransmission data of the first data packet, reduces the loss of the first data packet, improves the reliability of data transmission, and improves the flexibility of the system.
  • the sending unit 410 is specifically configured to:
  • the device does not receive the feedback information, or when the device receives the feedback information, and the feedback information indicates that the network device sends an error response NACK for the first data packet, Retransmitting the data of the first data packet, or retaining the first data packet in the cache.
  • the indication information further includes transmission format information used to indicate a transmission format of the first data packet, and,
  • the sending unit 410 is specifically configured to:
  • the apparatus when the apparatus does not perform the transmission of the second data packet based on the indication information, the first data packet may be retransmitted by using the transmission format information included in the indication information, thereby effectively utilizing the current signaling, thereby reducing Signaling overhead.
  • the device further includes:
  • the processing unit 430 in the case that the device does not receive the feedback information, or the device receives the feedback information, and the feedback information indicates that the network device receives an error response NACK for the first data packet. In the case, the indication is ignored.
  • the sending unit 410 is specifically configured to:
  • the device After the device receives the feedback information, and the feedback information indicates that the network device receives the correct response ACK for the first data packet, the device sends the first time unit according to the indication information.
  • the second data packet After the device receives the feedback information, and the feedback information indicates that the network device receives the correct response ACK for the first data packet, the device sends the first time unit according to the indication information.
  • the second data packet After the device receives the feedback information, and the feedback information indicates that the network device receives the correct response ACK for the first data packet, the device sends the first time unit according to the indication information.
  • the second data packet After the device receives the feedback information, and the feedback information indicates that the network device receives the correct response ACK for the first data packet, the device sends the first time unit according to the indication information. The second data packet.
  • the third time unit carrying the feedback information is located after the first time unit in time, and the third time unit is temporally located before the second time unit, or the third part carrying the feedback information.
  • the time unit is no later in time than the fourth time unit carrying the indication information.
  • the GUL transmission is configured by the network device by semi-static uplink grant UL grant information, wherein the semi-static UL grant information is scrambled by the first radio network temporary identifier RNTI, and the indication information is scrambled by the second RNTI.
  • the feedback information is the scheduling-free permission downlink control information G-DCI.
  • the device 400 for data transmission may correspond to (for example, may be configured or be itself) the terminal device described in the above method 200, and each module or unit in the device 400 for data transmission is used to execute the terminal in the method 200 described above, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the apparatus 400 may include a processor and a transceiver, and the processor and the transceiver are in communication connection.
  • the apparatus further includes a memory, and the memory is communicatively coupled to the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the transmitting unit 410 in the apparatus 400 shown in FIG. 6 can correspond to the transceiver, and the apparatus shown in FIG.
  • the receiving unit 420 in 400 may also correspond to the transceiver, and the processing unit 430 in the device 400 shown in FIG. 6 may also correspond to the processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the apparatus for data transmission provided by the embodiment of the present invention, on the one hand, after receiving the indication information for instructing the terminal device to send the second data packet corresponding to the first HARQ process ID, Receiving, by the receiving condition of the feedback information of the first data packet corresponding to the HARQ process ID, determining how to transmit the data, that is, transmitting the retransmitted data of the first data packet, or retaining the first data packet, or sending the second a data packet, in particular, when the network device fails to receive the first data packet, and the network device schedules, by using the indication information, the terminal device to transmit the second data packet corresponding to the first HARQ process ID, the terminal device is no longer Instructing the information to transmit the second data packet, but transmitting the retransmission data of the first data packet, reducing the loss of the first data packet, improving the reliability of data transmission, and improving the flexibility of the system. Sex.
  • the first data packet may be retransmitted by using the transmission format information included in the indication information, and the current signaling is effectively utilized. Reduced signaling overhead.
  • FIG. 7 shows a schematic block diagram of an apparatus 500 for data transmission in accordance with an embodiment of the present invention.
  • the device 500 includes:
  • the sending unit 510 is configured to send, to the terminal device, the indication information, where the indication information is used to indicate that the terminal device sends the second data packet on the second time unit, where the second data packet corresponds to the first hybrid automatic repeat request.
  • a HARQ process number where the first HARQ process number also corresponds to the first data packet, where the first data packet is sent by the terminal device to the device by using a scheduling-free uplink GUL transmission on the first time unit.
  • the second data packet is different from the first data packet, and the second time unit is located after the first time unit in time;
  • the receiving unit 520 is configured to receive retransmission data of the first data packet sent by the terminal device.
  • the sending unit 510 is further configured to:
  • the feedback information is used to indicate whether the device successfully receives the first data packet
  • the receiving unit 520 is specifically configured to: when the feedback information indicates that the apparatus receives an error response NACK for the first data packet, receive the retransmission data of the first data packet.
  • the receiving unit 520 is further configured to:
  • the indication information further includes transmission format information used to indicate a transmission format of the first data packet, where the retransmission data of the first data packet received by the receiving unit 520 is the terminal The device transmits according to the transmission format information.
  • the embodiment of the present invention provides a communication system, where the communication system includes a terminal device and a network device, where the terminal device is a device in any of the foregoing implementation manners;
  • the network device is configured to send, to the terminal device, indication information, where the indication information is used to indicate that the terminal device sends the second data packet on the second time unit, where the second data packet corresponds to the first hybrid automatic repeat request HARQ process.
  • the first HARQ process ID also corresponds to the first data packet, where the first data packet is sent by the terminal device to the network device by using a scheduling-free uplink GUL transmission on the first time unit, the second data packet. Different from the first data packet, the second time unit is located after the first time unit in time;
  • the network device is further configured to receive retransmission data of the first data packet.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and the present invention should not be The implementation of the embodiments constitutes any limitation.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple Units or components may be combined or integrated into another system, or some features may be omitted or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the embodiments of the present invention, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method of various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例提供了一种数据传输的方法和装置,该方法包括:终端设备在第一时间单元上使用第一HARQ进程通过GUL传输向网络设备发送第一数据包;该终端设备接收该网络设备发送的指示信息,该指示信息用于指示该终端设备在第二时间单元上使用该第一HARQ进程发送第二数据包,该第二数据包与该第一数据包相异;该终端设备根据反馈信息的接收情况,使用该第一HARQ进程发送该第二数据包,或,使用该第一HARQ进程发送该第一数据包的重传数据,或,针对该第一数据包进行缓存处理,该反馈信息用于指示该网络设备针对该第一数据包是否接收成功。因而,能够减少数据的丢失,从而提高数据传输的可靠性。

Description

一种数据传输的方法和装置 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种数据传输的方法和装置。
背景技术
目前已知一种基于免调度的免调度许可上行(Grant free UpLink,GUL)传输机制,或者称为自主上行(Autonomous UL,AUL)传输机制,网络设备将GUL资源分配给终端设备,终端设备在进行上行传输时,不需要向网络设备发送调度请求(Scheduling Request,SR)以及等待网络设备发送上行授权(Up Link Grant,UL Grant)信息,可以直接通过GUL传输资源进行上行传输,从而减少传输时延。
现有技术中,通过GUL传输机制进行上行传输时,终端设备自主选择混合自动重传请求HARQ进行数据(为了便于理解与区分,记为第一数据)的传输,通过上行控制信息(例如,免调度许可上行控制信息)将与该第一数据对应的HARQ进程的进程号上报给网络设备,网络设备可以通过盲检测的方式获取该上行控制信息,进而确定该第一数据对应的HARQ进程的进程号,从而正确接收该第一数据。
但是,在该现有技术中,若网络设备对该上行控制信息的盲检测失败,网络设备不知道终端设备使用了该HARQ进程进行该第一数据的传输,从而不能正确接收该第一数据;同时,网络设备在之后的时段通过上行授权UL grant信息调度终端设备使用该HARQ进程进行初传(即,指示终端设备发送与该第一数据不同的第二数据),终端设备在接收到该UL grant信息后会认为使用该HARQ进程发送的该第一数据已经被网络设备正确接收,那么,终端设备不再发送该第一数据,而是根据该UL grant信息在该HARQ进程上发送该第二数据,从而造成了该第一数据的丢失,严重影响了数据传输的可靠性。
因而,需要提供一种技术,能够减少数据的丢包问题,从而提高数据传输的可靠性。
发明内容
本发明实施例提供一种数据传输的方法和装置,能够减少数据的丢包问题,从而提高数据传输的可靠性。
第一方面,提供了一种数据传输的方法,该方法包括:终端设备在第一时间单元上通过免调度许可上行GUL传输向网络设备发送第一数据包,所述第一数据包对应第一混合自动重传请求HARQ进程号;所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,其中,所述第二数据包对应所述第一HARQ进程号,所述第二数据包与所述第一数据包相异,所述第二时间单元在时间上位于所述第一时间单元之后;所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第二数据包,或,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,所述反馈信息用于指示所述网络设备针对所述第一数据包是否接收成功。
因而,本发明实施例提供的数据传输的方法,终端设备在接收到用于指示该终端设备发送与第一HARQ进程号对应的第二数据包的指示信息后,还根据与该第一HARQ进程号对应的第一数据包的反馈信息的接收情况来确定如何进行数据的传输,即,发送该 第一数据包的重传数据,或者保留该第一数据包,或者发送该第二数据包,尤其在网络设备未成功接收该第一数据包,且网络设备通过指示信息调度该终端设备传输与该第一HARQ进程号对应的该第二数据包时,该终端设备不再根据该指示信息进行该第二数据包的传输,而是发送该第一数据包的重传数据,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性。
结合第一方面,在第一方面的第一种实现方式中,所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,包括:在所述终端设备未接收到所述反馈信息的情况下,或,在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为错误应答NACK的情况下,所述终端设备发送所述第一数据包的重传数据,或,所述终端设备保留缓存中的所述第一数据包。
结合第一方面,在第一方面的第二种实现方式中,所述指示信息还包括用于指示所述第一数据包的传输格式的传输格式信息,以及,所述终端设备发送所述第一数据包的重传数据,包括:所述终端设备根据所述传输格式信息,在所述第一时间单元上发送所述第一数据包的重传数据。
因而,当该终端设备不基于该指示信息进行第二数据包的传输时,可以利用该指示信息中包括的传输格式信息对该第一数据包进行重传,有效地利用了当前信令,减少了信令开销。
结合第一方面,在第一方面的第三种实现方式中,所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,包括:在所述终端设备未接收到所述反馈信息的情况下,或,在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为错误应答NACK的情况下,所述终端设备忽略所述指示信息。
结合第一方面,在第一方面的第四种实现方式中,所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第二数据包,包括:在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为正确应答ACK的情况下,所述终端设备根据所述指示信息,在所述第一时间单元上发送所述第二数据包。
结合第一方面,在第一方面的第五种实现方式中,承载所述反馈信息的第三时间单元在时间上位于所述第一时间单元之后,且所述第三时间单元在时间上位于所述第二时间单元之前,或,
承载所述反馈信息的第三时间单元在时间上不晚于承载所述指示信息的第四时间单元。
结合第一方面,在第一方面的第六种实现方式中,所述GUL传输由所述网络设备通过半静态上行授权UL grant信息配置,其中,所述半静态UL grant信息由第一无线网络临时标识RNTI加扰,所述指示信息由第二RNTI加扰。
结合第一方面,在第一方面的第七种实现方式中,所述反馈信息为免调度许可下行控制信息G-DCI。
第二方面,提供了一种数据传输的方法,该方法包括:网络设备向终端设备发送指示信息,所述指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,所述 第二数据包对应第一混合自动重传请求HARQ进程号,其中,所述第一HARQ进程号也对应第一数据包,所述第一数据包由所述终端设备在第一时间单元上通过免调度许可上行GUL传输向所述网络设备发送,所述第二数据包与所述第一数据包相异,所述第二时间单元在时间上位于所述第一时间单元之后;所述终端设备接收所述指示信息,且根据与所述第一数据包对应的反馈信息的接收情况,发送所述第二数据包,或,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,所述反馈信息用于指示所述网络设备针对所述第一数据包是否接收成功;所述网络设备接收所述第二数据包,或,接收所述第一数据包的重传数据。
因而,本发明实施例提供的数据传输的方法,终端设备在接收到用于指示该终端设备发送与第一HARQ进程号对应的第二数据包的指示信息后,还根据与该第一HARQ进程号对应的第一数据包的反馈信息的接收情况来确定如何进行数据的传输,即,发送该第一数据包的重传数据,或者保留该第一数据包,或者发送该第二数据包,尤其在网络设备未成功接收该第一数据包,且网络设备通过指示信息调度该终端设备传输与该第一HARQ进程号对应的该第二数据包时,该终端设备不再根据该指示信息进行该第二数据包的传输,而是发送该第一数据包的重传数据,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性。
结合第二方面,在第二方面的第一种实现方式中,所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,包括:在所述终端设备未接收到所述反馈信息的情况下,或,在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为错误应答NACK的情况下,所述终端设备发送所述第一数据包的重传数据,或,所述终端设备保留缓存中的所述第一数据包。
结合第二方面,在第二方面的第二种实现方式中,所述指示信息还包括用于指示所述第一数据包的传输格式的传输格式信息,以及,所述终端设备发送所述第一数据包的重传数据,包括:所述终端设备根据所述传输格式信息,在所述第一时间单元上发送所述第一数据包的重传数据。
因而,当该终端设备不基于该指示信息进行第二数据包的传输时,可以利用该指示信息中包括的传输格式信息对该第一数据包进行重传,有效地利用了当前信令,减少了信令开销。
结合第二方面,在第二方面的第三种实现方式中,所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,包括:在所述终端设备未接收到所述反馈信息的情况下,或,在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为错误应答NACK的情况下,所述终端设备忽略所述指示信息。
结合第二方面,在第二方面的第四种实现方式中,所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第二数据包,包括:在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为正确应答ACK的情况下,所述终端设备根据所述指示信息,在所述第一时间单元上发送所述第二数据包。
结合第二方面,在第二方面的第五种实现方式中,承载所述反馈信息的第三时间单 元在时间上位于所述第一时间单元之后,且所述第三时间单元在时间上位于所述第二时间单元之前,或,
承载所述反馈信息的第三时间单元在时间上不晚于承载所述指示信息的第四时间单元。
结合第二方面,在第二方面的第六种实现方式中,所述GUL传输由所述网络设备通过半静态上行授权UL grant信息配置,其中,所述半静态UL grant信息由第一无线网络临时标识RNTI加扰,所述指示信息由第二RNTI加扰。
结合第二方面,在第二方面的第七种实现方式中,所述反馈信息为免调度许可下行控制信息G-DCI。
第三方面,提供了一种数据传输的方法,该方法包括:网络设备向终端设备发送指示信息,所述指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,所述第二数据包对应第一混合自动重传请求HARQ进程号,其中,所述第一HARQ进程号也对应第一数据包,所述第一数据包由所述终端设备在第一时间单元上通过免调度许可上行GUL传输向所述网络设备发送,所述第二数据包与所述第一数据包相异,所述第二时间单元在时间上位于所述第一时间单元之后;所述网络设备接收所述终端设备发送的所述第一数据包的重传数据。
结合第三方面,在第三方面的第一种实现方式中,在所述网络设备接收所述第一数据包的重传数据前,所述方法还包括:
所述网络设备向所述终端设备发送所述反馈信息,所述反馈信息用于指示所述网络设备针对所述第一数据包是否接收成功,以及,
所述网络设备接收所述终端设备发送的所述第一数据包的重传数据,包括:
在所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为错误应答NACK的情况下,所述网络设备接收所述第一数据包的重传数据。
结合第三方面,在第三方面的第二种实现方式中,所述网络设备接收所述终端设备发送的所述第一数据包的重传数据,包括:
在所述网络设备未向所述终端设备发送所述反馈信息的情况下,所述网络设备接收所述第一数据包的重传数据,所述反馈信息用于指示所述网络设备针对所述第一数据包是否接收成功。
结合第三方面,在第三方面的第三种实现方式中,所述指示信息还包括用于指示所述第一数据包的传输格式的传输格式信息,其中,所述网络设备接收的所述第一数据包的重传数据是所述终端设备根据所述传输格式信息发送的。
第四方面,提供了一种数据传输的装置,该装置可以用来执行第一方面及第一方面的任意可能的实现方式中的终端设备的操作。具体地,该装置可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的操作的模块单元。
第五方面,提供了一种数据传输的装置,该装置可以用来执行第三方面及第三方面的任意可能的实现方式中的网络设备的操作。具体地,该装置可以包括用于执行上述第三方面或第三方面的任意可能的实现方式中的网络设备的操作的模块单元。
第六方面,提供了一种终端设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时, 该执行使得该终端设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第三方面提供的装置。
第七方面,提供了一种通信系统,该通信系统包括终端设备和网络设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第三方面提供的装置;
该网络设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该网络设备执行第二方面或第二方面的任意可能的实现方式中的网络设备的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面及第一方面的任意可能的实现方式中的方法的指令。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第二方面及第二方面的任意可能的实现方式中的方法的指令。
在上述某些实现方式中,在所述终端设备发送所述第一数据包的重传数据之前,包括:
所述终端设备保留缓存中的所述第一数据包。
在上述某些实现方式中,所述终端设备禁止或停止基于所述指示信息发送所述第二数据包。
在上述某些实现方式中,所述终端设备使用所述第一HARQ进程号进行的前一次传输为针对所述第一数据包的所述免调度许可上行GUL传输。
在上述某些实现方式中,所述该终端设备将所述第一数据包返回到高层。
附图说明
图1是适用本发明实施例的数据传输的方法和装置的通信系统的示意性架构图。
图2是根据本发明实施例的数据传输的方法的示意性交互图。
图3是根据本发明实施例的数据传输过程中该网络设备与该终端设备之间的行为示意图。
图4是根据发明实施例的数据传输过程中该网络设备与该终端设备之间的另一行为示意图。
图5是根据发明实施例的数据传输过程中该网络设备与该终端设备之间的再一行为示意图。
图6是根据本发明实施例的数据传输的装置的示意性框图。
图7是根据本发明实施例的数据传输的装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本发明实施例可以应用于各种通信系统,如全球移动通讯(Global System for Mobile Communication,GSM),宽带码分多址(Wideband Code Division Multiple Access,WCDMA),LTE等系统中,所支持的通信主要是针对语音和数据通信的。通常来说,一个传统基站支持的连接数有限,也易于实现。
下一代移动通信系统使未来移动数据流量增长、海量物联网、多样化的新业务和应用场景成为可能。除了充当一个统一的连接框架外,新一代蜂窝网络的基础5G新空口(5th Generation New Radio,5G NR)还有望将网络的数据速度、容量、时延、可靠性、效率和覆盖能力都提升到全新水平,并将充分利用每一比特的可用频谱资源。同时,基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)新空口设计的5G将会成为全球标准,支持5G设备,多样化的部署,涵盖多样化的频谱(包括对低频段和高频段的覆盖),还要支持多样化的服务及终端。
本发明实施例结合终端设备描述了各个实施例。终端设备也可以称为用户设备(User Equipment,UE)用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
此外,本发明实施例结合网络设备描述了各个实施例。网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(ACCESS POINT,AP),GSM或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
本发明实施例提供的方法和装置,可以应用于终端设备或网络设备,该终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix 操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,在本发明实施例中,传输控制信息的方法的执行主体的具体结构,本发明实施例并未特别限定,只要能够通过运行记录有本发明实施例的传输控制信息的方法的代码的程序,以根据本发明实施例的传输控制信息的方法进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本发明实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本发明实施例中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是应用于本发明实施例的数据传输的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。 此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。
具体而言,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络(Public Land Mobile Network,PLMN)网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
下面,对该通信系统100所使用的用于无线通信的时频资源进行详细说明。
在本发明实施例中,网络设备和终端设备用于传输信息的时域资源在时域上可以划分为多个时间单元。
并且,在本发明实施例中,多个时间单元可以是连续的,也可以是某些相邻的时间单元之间设有预设的间隔,本发明实施例并未特别限定。
在本发明实施例中,时间单元可以是包括用于上行信息(例如,上行数据)传输和/或下行信息(例如,下行数据)传输的时间单元。
在本发明实施例中,一个时间单元的长度可以任意设定,本发明实施例并未特别限定。
例如,1个时间单元可以包括一个或多个子帧。
或者,1个时间单元可以包括一个或多个时隙。
或者,1个时间单元可以包括一个或多个符号。
或者,1个时间单元可以包括一个或多个TTI。
或者,1个时间单元可以包括一个或多个短传输时间间隔(short Transmission Time Interval,sTTI)。
在本发明实施例中,通信系统100所使用的用于无线通信的时频资源在时域上可以划分为多个TTI,TTI是目前通信系统(例如,LTE系统)中的普遍使用的参数,是指在无线链路中调度数据传输的调度单位。在现有技术中,通常认为1TTI=1ms。即,一个TTI为一个子帧(subframe)或者说,两个时隙(slot)的大小,它是无线资源管理(调度等)所管辖时间的基本单位。
在通信网络中,时延是一个关键的绩效指标,同时也影响着用户的使用体验。随着通讯协议的发展,对时延影响最明显的物理层的调度间隔也越来越小,在最初的WCDMA中,调度间隔是10ms,高速分组接入(High-Speed Packet Access,HSPA)中调度间隔缩短到2ms,长期演进(Long Term Evolution,LTE)中调度间隔(即,TTI)缩短到1ms。
小时延的业务需求导致物理层需要引入更短的TTI帧结构,以进一步缩短调度间隔,提高用户体验。例如,LTE系统中TTI长度可以从1ms缩短为1符号(symbol)到1时隙(包括7个符号)之间。上述提及的符号可以是LTE系统中的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号或单载波频分多址(Single  Carrier-Frequency Division Multiple Access,SC-FDMA)符号,还可以是其他通信系统中的符号。又例如,5G通信系统中TTI长度也小于1ms。
LTE系统在基于长度为1ms的TTI的数据传输中,一般情况下数据传输的来回时间(Round-Trip Time,简称“RTT”)为8ms。假设,和现有长度为1ms的TTI的调度相比,处理时间是等比例缩减的,即仍然遵循现有的RTT时延。那么,当基于长度为0.5ms的sTTI的数据传输中,数据传输的RTT为4ms,相对于基于长度为1ms的TTI的数据传输,时延能够缩短一半,从而提高用户体验。
长度小于1ms的TTI可以称为sTTI。例如,LTE系统中,sTTI的长度可以为1~7个符号中任意一种长度,或者,sTTI长度也可以是1~7个符号中至少2种不同长度的组合,例如1ms内包含6个sTTI,各sTTI长度可以分别是3个符号、2个符号、2个符号、2个符号、2个符号、3个符号,或者,1ms内包含4个sTTI,各sTTI长度可以分别是3个符号、4个符号、3个符号、4个符号,各sTTI长度还可以是其他不同长度的组合。
并且,上行的sTTI长度可以和下行的sTTI长度相同,例如上行的sTTI长度和下行的sTTI长度均为2个符号。
或者,上行的sTTI长度可以长于下行的sTTI长度,例如上行的sTTI长度为7个符号,下行的sTTI长度为2个符号。
再或者,上行的sTTI长度可以短于下行的sTTI长度,例如上行的sTTI长度为4个符号,下行的sTTI长度为1个子帧。
TTI长度小于1个子帧或1ms的数据包称为短TTI数据包。短TTI数据传输在频域上,可连续分布,也可非连续分布。需要说明的是,考虑到后向兼容性,系统中可能同时存在基于长度为1ms的TTI的数据传输和基于sTTI的数据传输的情况。
在本发明实施例中,可以将现有技术(例如LTE系统)规定的(例如,长度为1ms或长度大于1ms的)TTI和sTTI统称为TTI,并且,在本发明实施例中,TTI的长度可以根据实际需要进行变更。
应理解,以上列举的时间单元的结构仅为示例性说明,本发明实施例并未特别限定,可以根据实际需要对时间单元的结构进行任意变更,例如,对于不支持sTTI的LTE系统而言,1个时间单元可以为1个子帧(Subframe)。再例如,对于支持sTTI的LTE系统而言,1个时间单元可以包括1个sTTI,或者说,1个时间单元可以包括1个时隙(Slot),1个时间单元可以包括一个或多个(例如,小于7的正整数个或小于6的正整数个)符号;1个时间单元也可以为1个子帧。
需要说明的是,在本发明实施例中,时间单元用于传输信息的长度(或者说,信息传输时长)可以是1ms,也可以小于1ms。
在本发明实施例中,通信系统100所使用的传输资源中的频域资源(或者说,频谱资源)可以是授权资源,或者说,通信系统100所使用的资源中的频域资源可以属于授权频段。
或者,在本发明实施例中,通信系统100所使用的资源(传输资源或者时频资源)中的频域资源(或者说,频谱资源)可以属于非授权频段(或者说,非授权资源)。
非授权资源可以是指:各个通信设备可以共享使用的资源。
非授权频段上的资源共享是指对特定频谱的使用只规定发射功率、带外泄露等指标上的限制,以保证共同使用该频段的多个设备之间满足基本的共存要求,运营商利用非 授权频段资源可以达到网络容量分流的目的,但是需要遵从不同的地域和不同的频谱对非授权频段资源的法规要求。这些要求通常是为保护雷达等公共系统,以及保证多系统尽可能互相之间不造成有害影响、公平共存而制定的,包括发射功率限制、带外泄露指标、室内外使用限制,以及有的地域还有一些附加的共存策略等。例如,各通信设备能够采用竞争方式或者监听方式,例如,先听后说(Listen Before Talk,LBT)规定的方式使用的时频资源。
此外,在本发明实施例中,通信系统100中的各通信设备还可以使用授权频谱资源进行无线通信,即,本发明实施例的通信系统100是能够使用授权频段的通信系统。
通信设备(例如,终端设备或网络设备)在使用非授权频段进行数据传输前,需要对信道进行侦听,即,需要执行LBT,在执行LBT成功后,通信设备可以持续占用信道,即,通信设备可以在连续的时间单元上传输数据,对于下行传输来说,可以将该连续的时间单元称为下行突发(DL Burst),对于上行传输来说,可以将该连续的时间单元称为上行突发(UL Burst)。
其中,下行突发可以包括:网络设备(例如eNB)或网络设备下的小区(Cell)在抢占到非授权频段资源之后可以持续占用连续的时间单元。具体地,下行突发包括时间上连续的至少一个下行时间单元,且一个下行突发与任意另一个下行突发或另一个上行突发在时间上不连续。
一个下行突发的时间长度不大于该网络设备(或该小区)在该非授权频段资源上可以连续传输的最大时间,该最大时间也可以称为最大信道占用时间(Maximum Channel Occupied Time,MCOT)。当网络设备持续占用信道达到MCOT长度时,需要释放信道,若要继续发送信息则需要通过LBT重新抢占信道。MCOT的长度可以与地域法规约束有关,例如,在日本,MCOT可以等于4ms;在欧洲,MCOT可以等于6ms,8ms,或者10ms,或者13ms。
类似地,上行突发可以包括:终端设备在抢占到非授权频段资源之后可以持续占用连续的时间单元。具体地,上行突发包括时间上连续的至少一个上行时间单元,且一个上行突发与任意另一个下行突发或另一个上行突发在时间上不连续。对于单个终端设备而言,其上行突发的时间长度不大于在该非授权频段资源上的MCOT。在本发明实施例中,上行传输可以包括上行突发传输,简称为“上行突发”。终端设备在进行上行传输之前,需要先通过例如,LBT等方式确认网络设备调度的时频资源(例如,网络设备调度的非授权频段上的资源)是否可用,至于具体在什么位置进行LBT,本发明不做具体限定。
以上行突发为例,在本发明实施例中,一个上行突发可以包括至少一个时间单元(即,一个或多个时间单元)。
并且,当一个上行突发包括多个时间单元时,该上行突发中的多个时间单元在时间上是连续的,时间上的连续是指时间单元(例如,TTI)序号连续,一个上行突发中包含的任意两个相邻的时间单元之间可以有空隙(也就是说,终端设备不占用前一个时间单元的结尾处或者后一个时间单元的起始处的时域资源,而将其保留为空闲),也可以没有空隙,本发明实施例并未特别限定。上述特征同样适用于下行突发。
在本发明实施例中,对于上行传输来说,涉及两种传输机制,即,一种是基于调度的传输,一种是基于免调度的传输,下面,对这两种传输机制分别进行简单介绍。
基于调度的上行传输
即,终端设备的上行传输需要通过网络设备的调度完成,即,基于调度的上行传输(Scheduled Up Link,SUL)。具体地,终端设备进行上行传输(或者说,传输上行数据)之前,需要在物理控制上行制信道(Physical Uplink Control Channel,PUCCH)上向网络设备发送调度请求(Scheduling Request,SR),等待网络接收到该SR后,网络设备会向终端设备发送调度信息(或者说,上行授权(Up Link Grant,UL Grant)信息),进而,终端设备根据该调度信息指示的上行资源进行上行传输。这种基于调度的传输机制可靠性高,但是传输时延较大。
基于免调度的上行传输
即,终端设备的上行传输不需要通过网络设备的调度完成,这种免调度的传输可以称为免调度许可上行(Grant free UpLink,GUL)传输,或者称为自主上行(Autonomous UL,AUL)传输。具体地,网络设备将GUL资源通过半静态方式分配给终端设备,终端设备在进行上行传输时,不需要向网络设备发送调度请求SR以及等待网络设备发送UL Grant信息,可以直接通过GUL资源进行上行传输,从而减少传输时延。
在现有的通信系统中,上述两种传输机制可以综合使用,也可以单独使用,本发明实施例并不限于此。
本发明实施例中的数据包可以理解为传输块,也可以理解为媒体接入控制MAC(Media Access Channel)协议数据单元PDU(Protocol Data Unit)。
下面,结合图2至图5详细说明根据本发明实施例的数据传输的方法。图2是根据本发明实施例的数据传输的方法的示意性交互图。
在S210中,终端设备在第一时间单元上通过免调度上行GUL传输向网络设备发送第一数据包,该第一数据包对应第一混合自动重传请求HARQ进程号
具体而言,该终端设备在该时间单元#1(即,第一时间单元的一例)上发送该数据包#1(即,该第一数据包的一例数据),该数据包#1对应该第一HARQ进程号,该第一HARQ进程号并不是基于网络设备的调度,而是基于GUL传输,即该终端设备使用GUL无线资源,自主选择HARQ进程号(即,该第一HARQ进程号)发送该数据包#1。
同时,对于网络设备来说,在S211中,需要接收该数据包#1,该网络设备针对该数据包#1的接收情况可以生成反馈信息或不生成反馈信息。
具体而言,若该终端设备发送该数据包#1后,该网络设备根据针对该数据包#1的接收情况,生成反馈信息,并将该反馈信息发送给终端设备:例如,该网络设备检测到该数据包#1,则需要通过该反馈信息将该数据包#1的接收状态进行反馈,即该反馈信息用于指示该网络设备针对该数据包#1是否接收成功;再例如,该网络设备未检测到该数据包#1,同时,需要反馈包括与该数据包#1对应的HARQ进程号在内的多个HARQ进程号的接收状态,也会发送反馈信息。
若该终端设备发送该数据包#1后,若该网络设备未检测到该数据包#1,同时,不需要反馈除与该数据包#1对应的HARQ进程号在内的其他HARQ进程号的接收状态,则不需要发送该反馈信息,即不生成该反馈信息。
在本发明实施例中,该GUL传输可以是终端设备使用GUL无线资源进行的传输。该GUL无线资源可以是网络设备单独分配给该终端设备而不分配给其他终端设备的资源,或者,由于终端设备的业务的传输是突发性的,终端设备在没有上行业务的时候可 以不占用GUL无线资源,那么,为了提高资源使用效率,该网络设备可以将该GUL无线资源分配给包括该终端设备在内的多个终端设备,使该多个终端设备通过统计复用的方式进行资源的共享,本发明实施例并未特别限定。应理解,终端设备通过GUL传输发送上行数据也称为终端设备以GUL方式发送上行数据。
并且,在本发明实施例中,该GUL无线资源可以是网络设备在确定终端设备需要进行上行传输之后为该终端设备分配的;或者,该GUL无线资源可以是,例如,在该终端设备接入该网络设备提供的小区时,分配给该终端设备的;再或者,该GUL无线资源可以是,例如,该网络设备在竞争到通信系统提供的部分或全部非授权时频资源时,从所竞争到的非授权时频资源中确定并该分配给该终端设备的,本发明实施例并未特别限定。
该GUL无线资源是该网络设备向该终端设备分配或激活的全部的可用GUL无线资源的子集。具体地说,该可用GUL无线资源是周期性的,每个GUL周期中都包含至少一个时间单元,对于该可用的GUL无线资源中的任意一个时间单元,终端设备可以在该任意一个时间单元上发送上行数据,也可以不发送上行数据,即不占用该时间单元。例如,终端设备没有上行业务时,或者在GUL无线资源中的某个时间单元之前执行LBT失败,可以跳过(skip)该某个时间单元而不发送上行数据。或者终端设备在一个GUL周期中,可以不占用该GUL周期中的任一个时间单元发送上行数据,也就是说跳过该GUL周期。因此,在本发明实施中,该终端设备确定的GUL无线资源都属于可用GUL资源,即,在该网络设备激活该终端设备发送上行数据后,该GUL无线资源都是用于传输上行数据的可用GUL资源,换句话说,该网络设备分配的GUL无线资源是传输上行数据(UL-Shared CHannel,UL-SCH)的资源,更具体地,该GUL无线资源可以为物理上行数据信道(Physical Uplink Shared Channel,PUSCH)资源,该GUL无线资源也称为GUL PUSCH,其中,GUL PUSCH也包括短于1ms的sTTI对应的sPUSCH(short PUSCH)。
需要说明的是,网络设备通过高层信令配置可用GUL无线资源的周期,也就是说该GUL PUSCH是根据高层信令确定的,相比而言,基于网络设备调度的PUSCH(UL grant based PUSCH)是根据网络设备在PDCCH中的动态信令调度的。
类似地,基站调度终端设备占用的SUL无线资源也称为SUL PUSCH,其中,SUL PUSCH也包括短于1ms的sTTI对应的sPUSCH。
此外,网络设备配置该GUL PUSCH不需要基于终端设备上报SR,相比而言,基于网络设备调度的PUSCH是网络设备在接收到终端设备发送的SR之后才指示给终端设备的。
并且,相比于可用GUL资源是周期性的持续性的资源,基于网络设备调度的PUSCH只生效一次,调度的PUSCH对应有限时间范围内的有限个时间单元,而不会持续性生效。
需要说明的是,GUL无线资源也可以用于终端设备发送上行数据信息UL-SCH,具体地,GUL无线资源为物理上行数据信道PUSCH资源,GUL无线资源也称为GUL PUSCH。
另外,在本发明实施例中,作为示例而非限定,例如,该网络设备可以向该终端设备发送用于配置该GUL无线资源的相关信令(例如,高层信令和或PDCCH中的动态信令等),从而,该终端设备可以确定该GUL无线资源,具体地说,该终端设备可以确定该GUL无线资源在时域上所包括的该至少一个时间单元,更进一步地说,该终端设备可以确定至少一个时间单元的总数量和位置。
此外,在本发明实施例中的GUL传输中,终端设备为了上报与GUL传输所对应的上行数据的相关的信息,该终端设备在GUL传输中会携带免调度许可上行控制信息(Grant  free UpLink Control Information,G-UCI),该G-UCI为该上行数据所对应的控制信息。该G-UCI包括与该上行数据对应的HARQ进程的HARQ进程号信息、初传数据指示(New Data Indicator,NDI)信息、与该上行数据对应的冗余版本(Redundancy Version,RV)信息以及该终端设备的用户标识(记为UE ID)信息中的至少一种信息。为了能够获取该上行数据,网络设备需要先获取该G-UCI,进而根据该G-UCI解调译码GUL PUSCH,从而获得该上行数据。
需要说明的是,在本发明实施例中,该数据包#1中的数据可以是初传数据,也可以是重传数据,为了便于理解和说明,设该数据包#1中的数据是上行数据#X的重传数据。其中,该上行数据#X可以是初传数据,也可以是重传数据,本发明实施例并未特别限定。可选地,当该数据包#1中的数据为上行数据#X的重传数据时,终端设备发送上行数据#X时也是通过GUL传输承载的或者说使用GUL的方式发送的。
可选地,该GUL传输可以由该网络设备通过半静态方式配置。
也就是说,该终端设备在GUL无线资源上进行GUL传输并不需要基于动态的调度信令。该网络设备通过半静态方式配置该GUL无线资源时,可以基于高层信令半静态配置,也可以通过物理层信令(例如,UL grant信息)半静态配置,该UL grant信息也可以称为半静态UL grant信息。此外,也可以通过高层信令配置并通过物理层信令激活,具体而言,该网络设备可以复用现有LTE系统中的半静态调度(Semi Persistant Scheduling,SPS)机制,通过高层信令配置GUL的周期,并通过SPS小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)或GUL C-RNTI加扰的UL grant信息对GUL传输进行激活/重激活/去激活。
需要说明的是,在本发明实施例中,一个时间单元可以是一个TTI。TTI可以是1ms TTI,或者称为子帧,长度为1ms;也可以是短于1ms的sTTI或者称为迷你时隙(mini-slot),sTTI所占用的时域资源长度短于1ms TTI,也就是说,当某个数据信道对应的TTI为sTTI时,其占用的时域资源长度短于1ms。对于上行传输而言,TTI是上行资源分配或上行传输的时域粒度,或者说TTI是终端设备进行上行传输的最小时域单元。sTTI可能支持的可选长度包括7SC-FDMA符号(SC-FDMA Symbol,SS)、1个SS、2个SS、3个SS或4个SS等结构。对于下行传输而言,TTI是下行资源分配或下行传输的时域粒度,或者说TTI是网络设备进行下行传输的最小时域单元。sTTI可能支持的可选长度包括7OFDMA符号(OFDMA Symbol,OS)、1个OS、2个OS、3个OS或4个OS等结构。sTTI还支持其他短于1ms的TTI长度。
需要说明的是,在本发明实施例中,一个时间单元还可以是一个上行突发或下行突发。其中上行突发包括时间上连续的至少一个上行TTI,下行突发包括时间上连续的至少一个下行TTI。
在S220中,该网络设备向该终端设备发送指示信息,该指示信息用于指示该终端设备在第二时间单元上发送第二数据包,其中,该第二数据包对应该第一HARQ进程号,该第二数据包与该第一数据包相异,该第二时间单元在时间上位于该第一时间单元之后。
进而,在S220中,该终端设备接收该指示信息。
应理解,该指示信息是一种基于调度的信息,该指示信息可以是UL grant信息,更具体地,该指示信息是一种动态UL grant信息。
具体而言,在该时间单元#1之后,该网络设备会向该终端设备发送该指示信息,该 指示信息指示该终端设备在该时间单元#2上发送与该第一HARQ进程号对应的数据包#2,该数据包#1与该数据包#2相异,也就是说,该指示信息指示该终端设备使用该第一HARQ进程号进行数据的初传。更具体地,该指示信息指示该终端设备在该时间单元#2上发送与该第一HARQ进程号对应的该数据包#2的同时,也指示:该终端设备使用该第一HARQ进程号进行的前一次传输(或者说,在该时间单元#1发送的与该第一HARQ进程号对应的该数据包#1)已经成功,那么,该终端设备使用该第一HARQ进程号进行的后一次传输(或者说,在该时间单元#2上发送的与该第一HARQ进程号对应的该数据包#2)即为初传。
可选地,该终端设备使用该第一HARQ进程号进行的前一次传输(在该时间单元#1)为针对该数据包#1的该GUL传输。该前一次传输为可以是,在该指示信息调度该终端设备使用该第一HARQ进程号传输该数据包#2(或者,该时间单元#2)之前,该终端设备使用同一个HARQ进程号(即,该第一HARQ进程号)发送的在时间上距离其最近的一次传输。
在本发明实施例中,该终端设备根据该指示信息确定自己在该时间单元#2上使用该第一HARQ进程号发送的是该数据包#2,即使用该第一HARQ进程号进行初传(同时代表该HARQ进程号对应的前一次传输,即数据包#1的接收状态为ACK),可以通过通过以下方式中的任一种方式确定:
方式1
该指示信息为采用C-RNTI加扰的指示信息,不论采用该C-RNTI加扰的指示信息指示的NDI取值是0还是1,该终端设备都认为指示使用该第一HARQ进程号进行初传。在现有的SPS机制下,对于一个可用于SPS传输的HARQ进程,当采用C-RNTI加扰的指示信息对该HARQ进程进行调度时,不论NDI取值是几,该终端设备都将其认为是针对该第一HARQ进程号的初传指示。
方式2
该指示信息为采用C-RNTI加扰的指示信息,当指示信息指示的NDI与该第一HARQ进程号对应的前一次传输对应的NDI相比发生翻转时,该终端设备认为其是对于该第一HARQ进程号的初传指示。
方式3
该指示信息为采用C-RNTI加扰的指示信息,该指示信息指示的NDI取值为预设值,例如为0。即,该终端设备在确定该指示信息指示的NDI的取值为0时,该终端设备认为是对于该第一HARQ进程号的初传指示。
方式4
该指示信息为采用半静态RNTI加扰的指示信息,该指示信息指示的NDI取值为预设值,例如为0。具体地,该半静态RNTI为SPS C-RNTI或GUL C-RNTI。即,该指示信息用于激活/重激活该终端设备的GUL传输,并且指示该终端设备使用该第一HARQ进程号进行前一次传输所对应的数据包的接收状态为ACK。
可选地,该GUL传输由该网络设备通过半静态上行授权UL grant信息配置,其中,该半静态UL grant信息由第一无线网络临时标识RNTI加扰,该指示信息由第二RNTI加扰。
也就是说,如前所述,用于配置该GUL传输的信息可以为半静态UL grant信息,该 指示信息可以为动态UL grant信息,为了区别该半静态UL grant信息和该动态UL grant信息,分别为两种信息采用不同的加扰,即,该半静态UL grant信息采用该第一RNTI加扰,该动态UL grant信息采用该第二RNTI加扰。例如,第一RNTI为SPS C-RNTI或GUL C-RNTI,第二RNTI为C-RNTI。
在S230中,该终端设备根据与该第一数据包对应的反馈信息的接收情况,发送该第二数据包,或,发送该第一数据包的重传数据,或,针对该第一数据包进行缓存处理,该反馈信息用于指示该网络设备针对该第一数据包是否接收成功。
如前所述,该终端设备发送该数据包#1后,该网络设备根据针对该数据包#1的接收情况,生成反馈信息或不生成反馈信息:若该网络设备检测到该数据包#1,则需要通过该反馈信息将该数据包#1的接收状态进行反馈,即该反馈信息用于指示该网络设备针对该数据包#1是否接收成功;若该网络设备未检测到该数据包#1,同时,需要反馈包括与该数据包#1对应的HARQ进程号在内的多个HARQ进程号的接收状态,也会发送反馈信息。
该终端设备发送该数据包#1后,若该网络设备未检测到该数据包#1,同时,不需要反馈除与该数据包#1对应的HARQ进程号在内的其他HARQ进程号的接收状态,则不需要发送该反馈信息,即不生成该反馈信息。
进而,该终端设备可以根据自己针对该反馈信息的接收情况,确定自己是需要针对该数据包#2进行处理,即,发送该数据包#2,还是针对该数据包#1进行处理,即发送该数据包#1的重传数据或者保留该第一HARQ进程号对应的HARQ缓存(buffer)中的该数据包#1。
在本发明实施例中,该网络设备针对该数据包#1是否接收成功,表示的是该网络设备针对该数据包#1的接收状态,或者,表示的是该网络设备针对与该数据包#1对应的该第一HARQ进程号的HARQ进程(为了便于理解与区分,记为第一HARQ进程)的接收状态,因而,文中描述针对数据包#1的接收状态也可以理解为针对该第一HARQ进程的接收状态,两种可以互相替换,本发明实施例并未特别限定。
具体而言,该网络设备针对该数据包#1的接收状态包括正确应答(Acknowledgement,ACK)或错误应答(Negative Acknowledgement,NACK),或者说,该网络设别针对该第一HARQ进程的接收状态为ACK或NACK。例如,网络设备确定该数据包#1或与该数据包#1对应的该第一HARQ进程接收正确,则对应的接收状态为ACK;或者,该网络设备确定该数据包#1(或者,与该数据包#1对应的该第一HARQ进程)接收错误,则对应的接收状态为NACK;或者,该网络设备未接收到该数据包#1(或者,与该数据包#1对应的该第一HARQ进程),则接收状态为NACK,也就是说,通过NACK指示该数据包#1或与该数据包#1对应的该第一HARQ进程没有接收到。
在本发明实施例中,不失一般性地,网络设备针对与HARQ进程号对应的数据包的接收状态的指示方式有两种:指示方式1,可以通过对终端设备进行上行调度的指示信息(例如UL grant信息),基于SUL的指示方式;指示方式2,基于反馈信息的指示方式,下面,针对上述两种指示方式进行详细说明。
指示方式1
基于SUL的指示方式,以UL grant为例进行说明,UL grant信息包含用于指示终端设备使用该HARQ进程号进行的前一次传输是否被正确接收的接收状态信息(例如NDI, New Data Indicator),以及网络设备调度终端设备针使用该HARQ进程号进行初传或重传的调度信息。
例如,当网络设备调度终端设备使用该HARQ进程号进行初传(对应NDI’翻转’)时,则代表网络设备接收到的该HARQ进程号对应的前一次传输的接收状态为正确接收(或称为ACK)或者说正确应答,终端设备将在UL grant信息调度的资源上使用该HARQ进程号发送新的上行数据包;
再例如,当网络设备调度终端设备使用某个HARQ进程号进行重传(对应NDI’未翻转’)时,则代表网络设备接收到的该HARQ进程号对应的前一次传输的接收状态为错误接收(或称为NACK)或者说错误应答,终端设备将在UL grant信息调度的资源上重传使用该HARQ进程号进行前一次上行传输时所对应的数据包。应理解,SUL传输可以用于调度终端设备进行初传,也可以用于调度终端设备进行重传。
指示方式2
基于反馈信息的指示方式,反馈信息包含用于指示针对某个HARQ进程号对应的前一次上行传输是否被网络设备正确接收的指示信息但不包含网络设备调度终端设备使用该HARQ进程号进行初传或重传的调度信息。
可选地,反馈信息中包含至少一个TTI中的HARQ进程对应的接收状态,该至少一个TTI与反馈信息所在的TTI有预定义的时间关联或网络设备指示的时间关联。具体的,反馈信息使用PHICH信道以及对应的HARQ反馈方式,例如TTI#n上的HARQ进程(或者说数据包)的接收状态在TTI#n+k(k>0)的G-DCI上指示。
可选地,反馈信息中包含针对一个HARQ进程集合(包含至少一个HARQ进程,包含该HARQ进程号所对应的HARQ进程)中每个HARQ进程的接收状态,该HARQ进程集合可以是网络设备配置的,也可以是预定义的或者说固定的。具体来说,反馈信息中以比特映射(bit map)的方式指示该HARQ进程集合中每个HARQ进程的接收状态,此时反馈信息也称为G-DCI。
可选地,ACK通过二进制‘1’表示,NACK通过二进制‘0’表示。例如当该HARQ进程集合包含的HARQ进程(以HARQ进程号表示){#0,#1,#2,#3}时,若#0、#1为正确接收,#2、#3为错误接收,则G-DCI中包含的bit map为{1,1,0,0}。终端设备接收到G-DCI之后,可以通过GUL的方式进行初传或重传,例如G-DCI指示某个HARQ进程号对应的接收状态为ACK时,终端设备可以在下一次GUL传输时用该HARQ进程号传输新的数据包,G-DCI指示某个HARQ进程号对应的接收状态为NACK时,终端设备可以在下一次GUL传输时使用该HARQ进程号重传前一次上行传输所对应的数据包。
可选地,该反馈信息为免调度许可下行控制信息G-DCI。
在本发明实施例中,该终端设备针对该反馈信息的接收情况既包括该终端设备是否接收到该反馈信息,也包括当终端设备接收到该反馈信息时,该反馈信息所指示的网络设备针对数据包#1的接收状态。具体地,该终端设备针对该反馈信息的接收情况可以有三种情况,下面,对上述该终端设备针对该反馈信息的接收情况的三种情况进行详细说明。
情况1
该终端设备未接收到该反馈信息
从网络设备角度来说,网络设备可能会发送该反馈信息,也可能不会发送该反馈信 息,但是该终端设备都未接收到该反馈信息。
例如,若是该网络设备未检测到该数据包#1,那么,该网络设备不会发送该反馈信息,该终端设备自然不能接收到反馈信息;
再例如,若是该网络设备检测到该数据包#1且发送了该反馈信息,但是该终端设备基于其他因素并未检测到该反馈信息。应理解,该网络设备未检测到该数据包#1,既包括网络设备来得及针对该数据包#1发送反馈信息,而未检测到该数据包#1的情况,也包括网络设备来不及针对该数据包#1发送反馈信息的情况。网络设备来得及针对该数据包#1发送反馈信息是指,当第一时间单元与承载该指示信息的第四时间单元之间的时间间隔超过网络设备对该数据包#1的发送反馈信息时延(例如4个TTI)时,网络设备有能力对第一时间单元上的数据包进行解调并获取该数据包#1接收状态,但是由于其他原因,例如信道条件较差等,网络设备未检测到该数据包#1的存在性。网络设备来不及针对该数据包#1发送反馈信息是指,当第一时间单元与承载该指示信息的第四时间单元之间的时间间隔小于网络设备对该数据包#1的解调时延,或者第一时间单元位于第四时间单元之后时,网络设备无法在发送指示信息之前及时完成对该数据包#1的解调并生成反馈信息;例如,网络设备针对该数据包#1发送反馈信息的时延为4ms,该终端设备在子帧#n+2上发送该数据包#1,网络设备最早能在子帧#n+6上发送针对该数据包#1的反馈信息;而当网络设备在子帧#n+4上发送指示信息调度数据包#2时,由于在子帧#n+4时刻网络设备尚未完成对子帧#n+2上的该数据包#1的解调,因此从时序上无法完成在#n+4之前发送该反馈信息,也称之为未检测到该数据包#1。
情况2
该终端设备接收到该反馈信息,且该反馈信息指示该网络设备针对该数据包#1接收失败,即该网络设备针对该数据包#1的接收状态为错误应答NACK。
从网络设备角度来说,网络设备向该终端设备发送该反馈信息指示该数据包#1对应的接收状态为NACK,进而,该终端设备接收该反馈信息。
更具体地,该接收状态为NACK可以是该网络设备接收到该数据包#1但是没有正确解调译码该数据包#1的情况所对应的状态,从而未获取该数据包#1;
或者,该接收状态为NACK也可以是该网络设备并没有检测到该数据包#1的情况所对应的状态。在这种情况下,当该网络设备未检测到与该第一HARQ进程号对应的该数据包#1,但是检测到该终端设备发送的与另一个HARQ进程号(为了便于理解与区分,记为第二HARQ进程号)对应的数据包时,也会发送该反馈信息。这是因为,在该反馈信息中包括针对多个HARQ进程(称之为HARQ进程集合)对应的接收状态的指示,需要以比特映射的方式实现针对与每个HARQ进程对应的接收状态的指示,当这两个HARQ进程号对应的HARQ进程都包含在该反馈信息所对应的HARQ进程集合中时,由于该反馈信息需要指示该第二HARQ进程号对应的数据包的接收状态,该反馈信息的比特映射中也会包含该第一HARQ进程号对应的接收状态,此时该第一HARQ进程号对应的接收状态为缺省状态,默认为NACK。
情况3
该终端设备接收到该反馈信息,且该反馈信息指示该网络设备针对该数据包#1接收成功,即该网络设备针对该数据包#1的接收状态为正确应答ACK。
从网络设备角度来说,网络设备向该终端设备发送该反馈信息指示该数据包#1对应 的接收状态为ACK,进而,该终端设备接收该反馈信息。
应理解,这里所说的该终端设备接收到该反馈信息,表示的是该终端设备成功接收该反馈信息。
需要说明的是,该反馈信息所指示的该网络设备针对该数据包#1的接收状态表示的是该网络设备针对该数据包#1的有效接收状态,或者说,该网络设备针对针对该第一HARQ进程号的有效接收状态。具体来说,有效接收状态是指,该反馈信息的发送时机可以确保该网络设备来得及反馈针对该数据包#1的接收状态(或者说,若网络设备能检测到该数据包#1,则来得及通过该反馈信息反馈该数据包#1接收状态),并确保该终端设备来得及根据该反馈信息对该指示信息调度的SUL PUSCH进行组包。
此外,考虑到反馈信息可能是基于比特映射的,其对应的HARQ进程集合中的每个HARQ进程都有一个缺省接收状态(例如为NACK),若该网络设备未检测到该第一HARQ进程号对应的数据包而检测到其他HARQ进程号对应的数据的传输,也会在比特映射中把HARQ进程集合都指示下来,此时该第一HARQ进程号对应的接收状态为缺省状态。因此,当反馈信息的发送时机不能保障上述条件时,例如过早发送或过晚发送,其也会包含该HARQ进程号对应的缺省接收状态,但不能称之为针对该数据包#1的接收状态,或者说不能称之为有效接收状态。
因而,为了保证该反馈信息中针对该数据包#1的有效接收状态,可以限定该反馈信息的发送时机。
可选地,承载该反馈信息的第三时间单元在时间上位于该第一时间单元之后,且该第三时间单元在时间上位于该第二时间单元之前,或,
承载该反馈信息的第三时间单元不晚于承载该指示信息的第四时间单元。
对于该时间单元#3(即,第三时间单元中的一例)和该时间单元#1,只有当发送该反馈信息的时间晚于发送该数据包#1的时间,即该时间单元#3在时间上位于该时间单元#1之后,该反馈信息中才有可能反馈针对该数据包#1的接收状态。
对于该时间单元#3与该时间单元#2,只有在时间单元#3在时间上位于该时间单元#2之前,该终端设备才能根据该反馈信息对SUL PUSCH进行组包。
可选地,该时间单元#3与该时间单元#1之间间隔的时长不小于第一时间间隔。具体的,第一时间间隔为预设时间间隔。具体地,该第一时间间隔为K个TTI,例如当终端设备在TTI#n上通过GUL传输发送了数据包#1,则网络设备最早能在TTI#n+K上发送反馈信息以承载针对该数据包#1的有效接收状态。
可选地,该时间单元#3与该时间单元#2之间间隔的时长不小于第二时间间隔。具体的,第二时间间隔为预设时间间隔。具体地,该第二时间间隔为M个TTI,例如当网络设备调度终端设备在TTI#n+M上通过SUL传输发送数据包#2时,则网络设备最晚需要在TTI#n上发送反馈信息以承载针对该数据包#1的有效接收状态。
由于网络设备对数据包#1的解调和生成反馈信息都有一定的时延,例如,在TTI#n上发送的数据包#1,其有效接收状态最早可以承载在TTI#n+4的反馈信息上(若反馈信息早于#n+4发送,则反馈针对该GUL传输的有效接收状态);终端设备在TTI#n+4上接收到该反馈信息且根据该反馈信息对SUL PUSCH进行组包时,最早能在TTI#n+8发送PUSCH,第二时间间隔为4个TTI。因此,可选地,该时间单元#3在时间上比该时间单元#1在时间上至少晚第一时间间隔(例如4个TTI),和/或该时间单元#3在时间上比该时间 单元#1在时间上至少早第二时间间隔(例如4个TTI)。如果终端设备在比该时间单元#1晚第一时间间隔的时刻之后,和/或比该时间单元#2早第二时间间隔的时刻之前未接收到反馈信息,可以认为未接收该反馈信息。
例如,第一时间间隔和第二时间间隔都为4个子帧,当终端设备在子帧#n(即,时间单元#1)发送该数据包#1,指示信息调度该终端设备在子帧#n+10(即,时间单元#2)上发送数据包#2,则只有在子帧#n+4(包含#n+4)~子帧#n+6(包含#n+6)之间接收到反馈信息,才称之为接收到该反馈信息。
对于该时间单元#4(即,第四时间单元的一例)和该时间单元#3,该时间单元#3在时间上不晚于该时间单元#4。可选地,该时间单元#3在时间上在该时间单元#4之前。可选地,该时间单元#3和该时间单元#4是同一个时间单元,也就是说,网络设备在同一个时间单元上发送该指示信息和该反馈信息。可选地,该时间单元#4可以是下行突发,该时间单元#3在时间上不晚于该时间单元#4是指,该时间单元#3的结束时刻不晚于该下行突发的结束时刻。应理解,下行突发包括时间上连续的至少一个下行TTI,且一个下行突发与任意另一个下行突发或上行突发在时间上不连续。
考虑到终端设备有可能接收到该指示信息之后就开始对其调度的SUL PUSCH进行组包,为了不影响MAC层组包流程,需要在承载该指示信息的时间单元#4之前或者在该时间单元#4上接收到该反馈信息以正确判断对该第一HARQ进程号对应的HARQ缓存的处理,因此该时间单元#3在时间上需要不晚于该时间单元#4。
或者,当该时间单元#4在下行突发比较靠前的时间单元时,该网络设备也可以在之后的时间单元上发送反馈信息;
考虑到SUL PUSCH通常跟在下行突发之后,若网络设备在该下行突发上未发送反馈信息,则在SUL PUSCH之前就没有下行传输的机会用于发送反馈信息了,因此为了确保网络设备在该SUL传输之前发送反馈信息,该时间单元#4为承载该指示信息的下行突发,该时间单元#3在时间上不晚于该下行突发。
需要说明的是,上述该时间单元#1对应的时长、该时间单元#2对应的时长、该时间单元#3对应的时长以及该时间单元#4对应的时长可以相同,也可以不同,本发明实施例并不做任何限定。
这样,该终端设备不仅可以根据该指示信息,也可以根据该反馈信息所对应的上述三种情况来确定是针对该数据包#2进行处理,即发送该数据包#2,或者,针对该数据包#1进行处理,即,发送该数据包#1的重传数据和/保留该第一HARQ进程号对应的HARQ缓存中的数据包#1。
下面,对于该终端设备根据该反馈信息所对应的上述三种情况进行的数据传输进行详细说明。
情况A
该终端设备发送该第二数据包的重传数据
可选地,该终端设备根据与该第一数据包对应的反馈信息的接收情况,发送该第一数据包的重传数据,包括:
在该终端设备未接收到该反馈信息的情况下,或,在该终端设备接收到该反馈信息,且该反馈信息指示该网络设备针对该第一数据包的接收状态为否定应答的情况下,该终端设备发送该第一数据包的重传数据。
具体而言,在上述情况1与上述情况2的条件下,该终端设备发送的数据为该数据包#1的重传数据,更具体地,该终端设备使用该第一HARQ进程号发送该第一数据包的重传数据。
在情况1中,该终端设备接收该指示信息,但是未接收到该反馈信息,考虑到存在该网络设备可能并没有成功接收该数据包#1的可能性,为了避免该数据包#1的丢包,该终端设备可以认为该网络设备针对该数据包#1的接收失败。
图3所示为根据本发明实施例的数据传输过程中该网络设备与该终端设备之间的行为示意图。如图3所示,终端设备在子帧#n+8(即,时间单元#1)利用该第一HARQ进程号(即HARQ进程号#H0)发送该数据包#1,该网络设备未检测到该数据包#1,从而未发送该反馈信息。同时,该网络设备还在子帧#n+12(即,时间单元#4)发送该指示信息来调度该终端设备利用该HARQ进程号#H0在子帧#n+16(即,时间单元#2)进行初传。那么,该终端设备在未接收到该反馈信息的情况下,则判断该数据包#1未能被该网络设备正确接收,进而,向该网络设备发送该数据包#1的重传数据。
在情况2中,该指示信息指示该终端设备使用该第一HARQ进程号发送该数据包#1,意味着该终端设备认为该网络设备已经成功接收该数据包#1,但是该反馈信息表示的针对该数据包#1的接收状态为NACK。显然,两种指示状态是矛盾的,此时,该终端设备以该反馈信息所指示的接收状态为准,即认为该网络设备对该数据包#1的接收状态为NACK,进而,向该网络设备发送该数据包#1的重传数据。
图4所示为根据发明实施例的数据传输过程中该网络设备与该终端设备之间的另一行为示意图。如图4所示,终端设备在子帧#n+8(即,时间单元#1)利用该HARQ进程号#H0发送该数据包#1,该网络设备未检测到该数据包#1,但检测到子帧#n+9上的HARQ进程号#H1对应的数据包(为了便于理解与区别,即为数据包#3),同时,该网络设备需要在子帧#n+12(即,时间单元#3)发送基于比特映射的反馈信息,其中,HARQ进程号#H0对应的接收状态为缺省状态NACK。此外,该网络设备还在子帧#n+12(即,时间单元#4)发送该指示信息调度该终端设备利用HARQ进程号#H0在子帧#n+16(即,时间单元#2)进行初传。终端设备接收到该指示信息和该反馈信息之后,以该反馈信息所指示的接收状态为准,即判断该数据包#1未能被该网络设备正确接收。从而,该网络设备发送该数据包#1的重传数据。
应理解,该终端设备使用该第一HARQ进程号发送该数据包#1的重传数据时,必然保留了或者说不清除该第一HARQ进程号对应的HARQ缓存中的旧数据(即,该数据包#1)。
也可以这么理解,在该终端设备根据该指示信息确定需要发送与该第一HARQ进程号对应的数据包#2,而根据该反馈信息的接收状态确定需要发送与该第一HARQ进程号对应的数据包#1的重传数据时,该终端设备不再根据该指示信息进行该数据包#2的发送,而是根据该反馈信息的接收情况发送该数据包#1的重传数据。
情况B
该终端设备保留缓存中的该第一数据包。
具体而言,在上述情况1与上述情况2的条件下,该终端设备保留该数据包#1,即,该终端设备保留或不清除该第一HARQ进程号对应的HARQ缓存中的数据包#1。也就是说,即使该终端接收到该指示信息,在上述情况1和情况2的条件下,该终端设备也不 会将该第一HARQ号对应的HARQ缓存中的数据包清除。
情况C
该终端设备发送该第二数据包。
可选地,该终端设备根据与该第一数据包对应的反馈信息的接收情况,(使用该第一HARQ进程号)发送该第二数据包,包括:
在该终端设备接收到该反馈信息,且该反馈信息指示该网络设备针对该第一数据包的接收状态为正确应答ACK情况下,该终端设备根据该指示信息,在该第一时间单元上使用该第一HARQ进程号发送该第二数据包。
即,在上述情况3的条件下,该终端设备发送该数据包#2。具体而言,在此情况3下,该终端设备认为该网络设备正确接收该数据包#1,该终端设备可以清除或丢弃将该第一HARQ进程号对应的HARQ缓存中的原始数据(即该数据包#1中的数据),或者说,将该数据包#2存储至该第一HARQ进程号对应的HARQ缓存中,替代该HARQ缓存中的数据包#1。
此外,该终端设备可以根据该指示信息,在该时间单元#2上使用该第一HARQ进程号发送该数据包#2。具体地,该终端设备该数据包#2和该指示信息以及该指示信息所指示的HARQ信息传递到该第一HARQ进程号对应的HARQ进程中,并针对该HARQ进程触发初传。
应理解,只有当该终端设备接收到该反馈信息,且该反馈信息指示该网络的接收状设备针对该数据包#1的接收状态为ACK时,该终端设备才执行将该数据包#1清除,并根据该指示信息,在该时间单元#1上使用该第一HARQ进程号进行数据包#2的初传。
图5所示为根据发明实施例的数据传输过程中该网络设备与该终端设备之间的另一行为示意图。如图5所示,终端设备在子帧#n+8(即,时间单元#1)利用该HARQ进程号#H0发送该数据包#2,该网络设备正确接收到该数据包#1并在子帧#n+12(即,时间单元#3)发送基于比特映射的反馈信息指示该网络设备针对该HARQ进程号#H0对应的数据包#1的接收状态为ACK。同时,该网络设别还在子帧#n+12(即,时间单元#4)发送该指示信息来调度该终端设备利用HARQ进程号#H0在子帧#n+16进行初传。该终端设备接收到该反馈信息之后,将该数据包#1从该HARQ缓存中清除,并将数据包#2放入该HARQ缓存中替代原数据包,并且,该终端设备根据该指示信息所指示的传输格式(无线资源、调制编码方式MCS等)以及HARQ信息(HARQ ID、RV、NDI等)在子帧#n+16上进行新数据包的初传。
也可以这么理解,在该终端设备根据该指示信息确定需要发送与该第一HARQ进程号对应的数据包#2,同时根据该反馈信息的接收状态也确定需要发送与该第一HARQ进程号对应的数据包#2时,该终端设备根据该指示信息进行该数据包#2的发送。
因而,当该终端设备基于该反馈信息的上述三种情况发送该数据包#1的重传数据时,该网络设备接收该终端设备发送的该数据包#1的重传数据,或,当该终端设备基于该反馈信息的上述三种情况发送该数据包#2时,该网络设备接收该终端设备发送的该数据包#2。
现有技术中,无论网络设备对于与该第一HARQ进程号对应的该数据包#1是否接收成功,当该网络设备通过指示信息调度该终端设备在同一个HARQ进程(即,该第一HARQ进程号对应的HARQ进程)发送新数据(即,该数据包#2)时,或者说,当该网络设备 调度该终端设备使用该第一HARQ进程号进行初传时,该终端设备都会基于该指示信息使用该第一HARQ进程号发送该数据包#2,这样,若是该网络设备未成功接收到与该第一HARQ进程号对应的该数据包#1,那么该终端设备若还是根据该指示信息使用该第一HARQ进程号进行初传,或者,该终端设备使用该第一HARQ进程号传输该数据包#2,造成了该数据包#1的丢失,严重影响了数据传输的可靠性。
而在本发明实施例中,相比于现有技术,该终端设备不仅可以根据该指示信息确定自己需要使用该第一HARQ进程号进行数据的传输,还可以根据与该数据包#1对应的反馈信息的接收情况来针对该数据包#1的进行传输处理或针对该数据包#2进行传输处理或缓存处理,避免了由于该数据包#1的丢失,
因而,本发明实施例提供的数据传输的方法,终端设备在接收到用于指示该终端设备发送与第一HARQ进程号对应的第二数据包的指示信息后,还根据与该第一HARQ进程号对应的第一数据包的反馈信息的接收情况来确定如何进行数据的传输,即,发送该第一数据包的重传数据,或者保留该第一数据包,或者发送该第二数据包,尤其在网络设备未成功接收该第一数据包,且网络设备通过指示信息调度该终端设备传输与该第一HARQ进程号对应的该第二数据包时,该终端设备不再根据该指示信息进行该第二数据包的传输,而是发送该第一数据包的重传数据,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性。
可选地,该指示信息还包括用于指示该第一数据包的传输格式的传输格式信息,以及,
该终端设备发送该第一数据包的重传数据,包括:
该终端设备根据该传输格式信息,在该第一时间单元上发送该第一数据包的重传数据。
或者说,该终端设备根据该传输格式信息,使用该第一HARQ进程号在该第一时间单元上发送该第一数据包的重传数据。
具体而言,该传输格式信息包括该指示信息所指示的用于传输该数据包#2的时频资源、调制编码方式(MCS)、功控信息、上行导频或控制信息(SRS请求和或DMRS序列信息和/或CSI请求和/或DL HARQ请求)、预编码信息(PMI)中的至少一种。
也就是说,当该终端设备确定自己需要发送该数据包#1的重传数据时,该终端设备并不根据该指示信息所指示的初传要求进行数据包#2的初传,而仅根据该指示信息所包括的传输格式信息在该时间单元#1上对该第一HARQ进程号对应的HARQ缓存中原有的数据包进行重传。
当该指示信息所对应的传输块大小(Transport Block Size,TBS)与该第一HARQ缓存中原有的数据包#1所对应的TBS相同时,该终端设备可以直接根据该指示信息进行该数据包#1的重传;当该数据包#1的TBS大于该指示信息所指示的TBS时,可以将该数据包#1切分,按照该指示信息所指示的TBS进行传输。当该数据包#1的TBS小于该指示信息所指示的TBS时,可以将该数据包#1与高层传递下来的新的数据重组为一个新的数据包,使该新的数据包的TBS与该指示信息所指示的TBS相同,再对该新的数据包进行传输。进一步地,该重传的冗余版本(Redundancy Version,RV)的版本号与该GUL传输中对应的RV版本号一致,例如为RV#0。
这样,当该终端设备不基于该指示信息进行该数据包#2的传输时,可以利用该指示 信息中包括的传输格式信息对该第一数据包进行重传,有效地利用了当前信令,减少了信令开销。
作为示例而非限定,该终端设备除了可以根据该指示信息所包括的传输格式信息进行该数据包#1的重传,也可以忽略该指示信息,根据其他信息进行该数据包#1的重传。例如,该终端设备可以根据新的GUL传输(为了便于理解与区分,即为第二GUL传输)进行该数据包#1的重传。
再例如,若是该终端设备后续又接收到其他动态UL grant信息来指示重传,则可以根据该其他动态UL grant信息进行重传。
再例如,该终端设备可以将该数据包#1再次以GUL的方式进行重传,具体地,可以在一个可用于GUL传输的TTI上以GUL的方式进行重传。此外,该用于重传该数据包#1的RV版本号与该GUL传输中对应的RV版本号一致,例如为RV#0。
可选地,该终端设备忽略该指示信息。
也就是说,该终端设备基禁止或停止基于该指示信息发送该数据包#2,或者说,该终端设备不再根据该指示信息的指示进行数据包#2的组包,或者说,该终端设备不根据该指示信息的指示进行针对该数据包#2的SUL初传。
在本发明实施例中,终端设备忽略该动态UL grant信息时,可以保留或者不清除与该第一HARQ进程号对应的HARQ缓存中的数据包#1。
应理解,该终端设备发送该数据包#1的重传数据,必然不再根据该指示信息发送该数据包#2,即,忽略该指示信息。
可选地,该终端设备将与该第一HARQ进程号对应的HARQ缓存中的该第一数据包返回高层。
也就说,该终端设备清除该HARQ缓存中的原始数据(即,该数据包#1)。具体而言,该终端设备可以重新进行MAC层组包并进行新的数据传输,即该终端设备将新的数据包(为了便于理解与区分,记为数据包#4)存储至该HARQ缓存中,并进行新数据包的初传。
需要说明的是,该终端设备将该数据包#1返回至高层,可以是在该终端设备确定发送该数据包#2的情况下,也可以是在该终端设备确定发送该数据包#1的重传数据的情况下。当在该终端设备确定发送该数据包#1的重传数据的情况下将该数据包#1返回至高层时,在MAC层重新组包的数据包#4包括该数据包#1内的数据,当在该终端设备确定发送该数据包#2的情况下将该数据包#1返回至高层时,该数据包#4为该数据包#2。
当该终端设备进行该第一HARQ进程号对应的数据包#4的初传时,该终端设备可以根据该指示信息所包括的传输格式信息,在该时间单元#1上进行该第一HARQ进程号对应的数据包#4的初传。更具体地,终端设备将新的MAC PDU和该指示信息以及该指示信息指示的HARQ信息传递到该第一HARQ进程号对应的HARQ进程中,并针对该HARQ进程触发初传。
此外,该终端设备也可以通过该指示信息以外的其他传输方式,包括其他动态UL grant信息或者新的GUL传输,对该HARQ缓存中的数据包#4进行初传。
因而,本发明实施例提供的数据传输的方法,一方面,终端设备在接收到用于指示该终端设备使用第一HARQ进程号发送第二数据包(即,进行使用该第一HARQ进程号进行初传)的指示信息后,还根据与该第一HARQ进程号对应的第一数据包的反馈信息的 接收情况来确定如何进行数据的传输,即,发送该第一数据包的重传数据,或者保留该第一数据包,或者发送该第二数据包,尤其在网络设备未成功接收该第一数据包,且网络设备通过指示信息调度该终端设备也使用该第一HARQ进程号传输该第二数据包时,该终端设备不再根据该指示信息进行该第二数据包的传输,而是使用该指示信息所指示的第一HARQ进程号发送该第一数据包的重传数据,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性;
另一方面,当该终端设备不基于该指示信息进行第二数据包的传输时,可以利用该指示信息中包括的传输格式信息对该第一数据包进行重传,有效地利用了当前信令,减少了信令开销。
本发明实施例还提供了一种数据传输的方法,该方法包括:
S310,网络设备向终端设备发送指示信息,该指示信息用于指示该终端设备在第二时间单元上发送第二数据包,该第二数据包对应第一混合自动重传请求HARQ进程号,其中,该第一HARQ进程号也对应第一数据包,该第一数据包由该终端设备在第一时间单元上通过免调度许可上行GUL传输向该网络设备发送,该第二数据包与该第一数据包相异,该第二时间单元在时间上位于该第一时间单元之后;
S320,该终端设备接收该指示信息,且根据与该第一数据包对应的反馈信息的接收情况,发送该第二数据包,或,发送该第一数据包的重传数据,或,针对该第一数据包进行缓存处理,该反馈信息用于指示该网络设备针对该第一数据包是否接收成功;
S320,该网络设备接收该第一数据包的重传数据。
该方法中的步骤S310可以对应上述方法中的步骤S220,具体针对该步骤310的详细描述可以参考上述方法中的步骤S220,步骤S320可以对应上述方法中的步骤S230,具体针对该步骤320的详细描述可以参考上述方法中的步骤S230。
应理解,在步骤S320中,该终端设备发送该第二数据包,在步骤S330中,该网络设备接收该第二数据包;同理,在步骤S320中,该终端设备发送该第一数据包的重传数据,在步骤S330中,该网络设备接收该第一数据包的重传数据。
以上,结合图1至图5详细描述了根据本发明实施例的数据传输的方法,下面,结合图6至图7描述根据本发明实施例的数据传输的装置,方法实施例所描述的技术特征同样适用于以下装置实施例。
图6示出了根据本发明实施例的数据传输的装置300的示意性框图。如图6所示,该装置300包括:
发送单元410,用于在第一时间单元上通过免调度许可上行GUL传输向网络设备发送第一数据包,该第一数据包对应第一HARQ进程号;
接收单元420,用于接收该网络设备发送的指示信息,该指示信息用于指示该装置在第二时间单元上发送第二数据包,其中,该第二数据包对应该第一HARQ进程号,该第二数据包与该第一数据包相异,该第二时间单元在时间上位于该第一时间单元之后;
该发送单元420还用于,根据与该第一数据包对应的反馈信息的接收情况,发送该第二数据包,或,发送该第一数据包的重传数据,或,针对该第一数据包进行缓存处理,该反馈信息用于指示该网络设备针对该第一数据包是否接收成功。
因而,本发明实施例提供的数据传输的装置,该装置在接收到用于指示该终端设备发送与第一HARQ进程号对应的第二数据包的指示信息后,还根据与该第一HARQ进程 号对应的第一数据包的反馈信息的接收情况来确定如何进行数据的传输,即,发送该第一数据包的重传数据,或者保留该第一数据包,或者发送该第二数据包,尤其在网络设备未成功接收该第一数据包,且网络设备通过指示信息调度该终端设备传输与该第一HARQ进程号对应的该第二数据包时,该终端设备不再根据该指示信息进行该第二数据包的传输,而是发送该第一数据包的重传数据,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性。
可选地,该发送单元410具体用于:
在该装置未接收到该反馈信息的情况下,或,在该装置接收到该反馈信息,且该反馈信息指示该网络设备针对该第一数据包的接收状态为错误应答NACK的情况下,发送该第一数据包的重传数据,或,保留缓存中的该第一数据包。
可选地,该指示信息还包括用于指示该第一数据包的传输格式的传输格式信息,以及,
该发送单元410具体用于:
根据该传输格式信息,在该第一时间单元上发送该第一数据包的重传数据。
因而,当该装置不基于该指示信息进行第二数据包的传输时,可以利用该指示信息中包括的传输格式信息对该第一数据包进行重传,有效地利用了当前信令,减少了信令开销。
可选地,该装置还包括:
处理单元430,在该装置未接收到该反馈信息的情况下,或,在该装置接收到该反馈信息,且该反馈信息指示该网络设备针对该第一数据包的接收状态为错误应答NACK的情况下,忽略该指示信息。
可选地,该发送单元410具体用于:
在该装置接收到该反馈信息,且该反馈信息指示该网络设备针对该第一数据包的接收状态为正确应答ACK的情况下,该装置根据该指示信息,在该第一时间单元上发送该第二数据包。
可选地,承载该反馈信息的第三时间单元在时间上位于该第一时间单元之后,且该第三时间单元在时间上位于该第二时间单元之前,或,承载该反馈信息的第三时间单元在时间上不晚于承载该指示信息的第四时间单元。
可选地,该GUL传输由该网络设备通过半静态上行授权UL grant信息配置,其中,该半静态UL grant信息由第一无线网络临时标识RNTI加扰,该指示信息由第二RNTI加扰。
可选地,该反馈信息为免调度许可下行控制信息G-DCI。
该数据传输的装置400可以对应(例如,可以配置于或本身即为)上述方法200中描述的终端设备,并且,该数据传输的装置400中各模块或单元分别用于执行上述方法200中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本发明实施例中,该装置400可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
其中,图6所示的装置400中的发送单元410可以对应该收发器,图6所示的装置 400中的接收单元420也可以对应该收发器,图6所示的装置400中的处理单元430也可以对应该处理器。
应注意,本发明实施例上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
因而,本发明实施例提供的数据传输的装置,一方面,该装置在接收到用于指示该终端设备发送与第一HARQ进程号对应的第二数据包的指示信息后,还根据与该第一HARQ进程号对应的第一数据包的反馈信息的接收情况来确定如何进行数据的传输,即,发送该第一数据包的重传数据,或者保留该第一数据包,或者发送该第二数据包,尤其在网络设备未成功接收该第一数据包,且网络设备通过指示信息调度该终端设备传输与该第一HARQ进程号对应的该第二数据包时,该终端设备不再根据该指示信息进行该第二数据包的传输,而是发送该第一数据包的重传数据,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性。
另一方面,当该装置不基于该指示信息进行第二数据包的传输时,可以利用该指示信息中包括的传输格式信息对该第一数据包进行重传,有效地利用了当前信令,减少了信令开销。
图7示出了根据本发明实施例的数据传输的装置500的示意性框图。如图6所示, 该装置500包括:
发送单元510,用于向终端设备发送指示信息,所述指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,所述第二数据包对应第一混合自动重传请求HARQ进程号,其中,所述第一HARQ进程号也对应第一数据包,所述第一数据包由所述终端设备在第一时间单元上通过免调度许可上行GUL传输向所述装置发送,所述第二数据包与所述第一数据包相异,所述第二时间单元在时间上位于所述第一时间单元之后;
接收单元520,用于接收所述终端设备发送的所述第一数据包的重传数据。
可选地,所述发送单元510还用于:
向所述终端设备发送所述反馈信息,所述反馈信息用于指示所述装置针对所述第一数据包是否接收成功,以及,
所述接收单元520具体用于,在所述反馈信息指示所述装置针对所述第一数据包的接收状态为错误应答NACK的情况下,接收所述第一数据包的重传数据。
可选地,所述接收单元520还用于:
在所述装置未向所述终端设备发送所述反馈信息的情况下,接收所述第一数据包的重传数据。
可选地,所述指示信息还包括用于指示所述第一数据包的传输格式的传输格式信息,其中,所述接收单元520接收的所述第一数据包的重传数据是所述终端设备根据所述传输格式信息发送的。
本发明实施例提供了一种通信系统,该通信系统包括终端设备和网络设备,其中,该终端设备为上述任一种实现方式中的装置;
该网络设备用于,向该终端设备发送指示信息,该指示信息用于指示该终端设备在第二时间单元上发送第二数据包,该第二数据包对应第一混合自动重传请求HARQ进程号,其中,该第一HARQ进程号也对应第一数据包,该第一数据包由该终端设备在第一时间单元上通过免调度许可上行GUL传输向该网络设备发送,该第二数据包与该第一数据包相异,该第二时间单元在时间上位于该第一时间单元之后;
该网络设备还用于,接收该第一数据包的重传数据。
应理解,在本发明实施例的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发送实施例中所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多 个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上仅为本发明的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应以该权利要求的保护范围为准。

Claims (25)

  1. 一种数据传输的方法,其特征在于,所述方法包括:
    终端设备在第一时间单元上通过免调度许可上行GUL传输向网络设备发送第一数据包,所述第一数据包对应第一混合自动重传请求HARQ进程号;
    所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,其中,所述第二数据包对应所述第一HARQ进程号,所述第二数据包与所述第一数据包相异,所述第二时间单元在时间上位于所述第一时间单元之后;
    所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第二数据包,或,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,所述反馈信息用于指示所述网络设备针对所述第一数据包是否接收成功。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,包括:
    在所述终端设备未接收到所述反馈信息的情况下,或,在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为错误应答NACK的情况下,所述终端设备发送所述第一数据包的重传数据,或,所述终端设备保留缓存中的所述第一数据包。
  3. 根据权利要求2所述的方法,其特征在于,所述指示信息还包括用于指示所述第一数据包的传输格式的传输格式信息,以及,
    所述终端设备发送所述第一数据包的重传数据,包括:
    所述终端设备根据所述传输格式信息,在所述第一时间单元上发送所述第一数据包的重传数据。
  4. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,包括:
    在所述终端设备未接收到所述反馈信息的情况下,或,在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为错误应答NACK的情况下,所述终端设备忽略所述指示信息。
  5. 根据权利要求1所述的方法,其特征在于,所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第二数据包,包括:在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为正确应答ACK的情况下,所述终端设备根据所述指示信息,在所述第一时间单元上发送所述第二数据包。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,承载所述反馈信息的第三时间单元在时间上位于所述第一时间单元之后,且所述第三时间单元在时间上位于所述第二时间单元之前,或,
    承载所述反馈信息的第三时间单元在时间上不晚于承载所述指示信息的第四时间单元。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述GUL传输由所述 网络设备通过半静态上行授权UL grant信息配置,其中,所述半静态UL grant信息由第一无线网络临时标识RNTI加扰,所述指示信息由第二RNTI加扰。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述反馈信息为免调度许可下行控制信息G-DCI。
  9. 一种数据传输的方法,其特征在于,所述方法包括:
    网络设备向终端设备发送指示信息,所述指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,所述第二数据包对应第一混合自动重传请求HARQ进程号,其中,所述第一HARQ进程号也对应第一数据包,所述第一数据包由所述终端设备在第一时间单元上通过免调度许可上行GUL传输向所述网络设备发送,所述第二数据包与所述第一数据包相异,所述第二时间单元在时间上位于所述第一时间单元之后;
    所述终端设备接收所述指示信息,且根据与所述第一数据包对应的反馈信息的接收情况,发送所述第二数据包,或,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,所述反馈信息用于指示所述网络设备针对所述第一数据包是否接收成功;
    所述网络设备接收所述第一数据包的重传数据。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备接收所述指示信息,且根据与所述第一数据包对应的反馈信息的接收情况,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,包括:
    在所述终端设备未接收到所述反馈信息的情况下,或,在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为错误应答NACK的情况下,所述终端设备发送所述第一数据包的重传数据,或,所述终端设备保留缓存中的所述第一数据包。
  11. 根据权利要求10所述的方法,其特征在于,所述指示信息还包括用于指示所述第一数据包的传输格式的传输格式信息,以及,
    所述终端设备发送所述第一数据包的重传数据,包括:
    所述终端设备根据所述传输格式信息,在所述第一时间单元上发送所述第一数据包的重传数据。
  12. 根据权利要求9或10所述的方法,其特征在于,所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,包括:
    在所述终端设备未接收到所述反馈信息的情况下,或,在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为错误应答NACK的情况下,所述终端设备忽略所述指示信息。
  13. 根据权利要求9所述的方法,其特征在于,所述终端设备根据与所述第一数据包对应的反馈信息的接收情况,发送所述第二数据包,包括:
    在所述终端设备接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为正确应答ACK的情况下,所述终端设备根据所述指示信息,在所述第一时间单元上发送所述第二数据包。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,承载所述反馈信息的第三时间单元在时间上位于所述第一时间单元之后,且所述第三时间单元在时间上位于 所述第二时间单元之前,或,
    承载所述反馈信息的第三时间单元在时间上不晚于承载所述指示信息的第四时间单元。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述GUL传输由所述网络设备通过半静态上行授权UL grant信息配置,其中,所述半静态UL grant信息由第一无线网络临时标识RNTI加扰,所述指示信息由第二RNTI加扰。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述反馈信息为免调度许可下行控制信息G-DCI。
  17. 一种数据传输的装置,其特征在于,所述装置包括:
    发送单元,用于在第一时间单元上通过免调度许可上行GUL传输向网络设备发送第一数据包,所述第一数据包对应第一HARQ进程号;
    接收单元,用于接收所述网络设备发送的指示信息,所述指示信息用于指示所述装置在第二时间单元上发送第二数据包,其中,所述第二数据包对应所述第一HARQ进程号,所述第二数据包与所述第一数据包相异,所述第二时间单元在时间上位于所述第一时间单元之后;
    所述发送单元还用于,根据与所述第一数据包对应的反馈信息的接收情况,发送所述第二数据包,或,发送所述第一数据包的重传数据,或,针对所述第一数据包进行缓存处理,所述反馈信息用于指示所述网络设备针对所述第一数据包是否接收成功。
  18. 根据权利要求17所述的装置,其特征在于,所述发送单元具体用于:
    在所述装置未接收到所述反馈信息的情况下,或,在所述装置接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为错误应答NACK的情况下,发送所述第一数据包的重传数据,或,保留缓存中的所述第一数据包。
  19. 根据权利要求18所述的装置,其特征在于,所述指示信息还包括用于指示所述第一数据包的传输格式的传输格式信息,以及,
    所述发送单元具体用于:
    根据所述传输格式信息,在所述第一时间单元上发送所述第一数据包的重传数据。
  20. 根据权利要求17或18所述的装置,其特征在于,所述发送单元具体用于:
    在所述装置未接收到所述反馈信息的情况下,或,在所述装置接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为错误应答NACK的情况下,忽略所述指示信息。
  21. 根据权利要求17所述的装置,其特征在于,所述发送单元具体用于:
    在所述装置接收到所述反馈信息,且所述反馈信息指示所述网络设备针对所述第一数据包的接收状态为正确应答ACK的情况下,所述装置根据所述指示信息,在所述第一时间单元上发送所述第二数据包。
  22. 根据权利要求17至21中任一项所述的装置,其特征在于,承载所述反馈信息的第三时间单元在时间上位于所述第一时间单元之后,且所述第三时间单元在时间上位于所述第二时间单元之前,或,
    承载所述反馈信息的第三时间单元在时间上不晚于承载所述指示信息的第四时间单元。
  23. 根据权利要求17至22中任一项所述的装置,其特征在于,所述GUL传输由所 述网络设备通过半静态上行授权UL grant信息配置,其中,所述半静态UL grant信息由第一无线网络临时标识RNTI加扰,所述指示信息由第二RNTI加扰。
  24. 根据权利要求17至23中任一项所述的装置,其特征在于,所述反馈信息为免调度许可下行控制信息G-DCI。
  25. 一种通信系统,所述通信系统包括终端设备和网络设备,其特征在于,所述终端设备为权利要求17至24中任一项所述的装置;
    所述网络设备用于,向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,所述第二数据包对应第一混合自动重传请求HARQ进程号,其中,所述第一HARQ进程号也对应第一数据包,所述第一数据包由所述终端设备在第一时间单元上通过免调度许可上行GUL传输向所述网络设备发送,所述第二数据包与所述第一数据包相异,所述第二时间单元在时间上位于所述第一时间单元之后;
    所述网络设备还用于,接收所述第一数据包的重传数据。
PCT/CN2017/080973 2017-04-18 2017-04-18 一种数据传输的方法和装置 WO2018191870A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/080973 WO2018191870A1 (zh) 2017-04-18 2017-04-18 一种数据传输的方法和装置
PCT/CN2017/111758 WO2018192218A1 (zh) 2017-04-18 2017-11-17 一种数据传输的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/080973 WO2018191870A1 (zh) 2017-04-18 2017-04-18 一种数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2018191870A1 true WO2018191870A1 (zh) 2018-10-25

Family

ID=63855482

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/080973 WO2018191870A1 (zh) 2017-04-18 2017-04-18 一种数据传输的方法和装置
PCT/CN2017/111758 WO2018192218A1 (zh) 2017-04-18 2017-11-17 一种数据传输的方法和装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111758 WO2018192218A1 (zh) 2017-04-18 2017-11-17 一种数据传输的方法和装置

Country Status (1)

Country Link
WO (2) WO2018191870A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398579A (zh) * 2019-08-14 2021-02-23 联发科技股份有限公司 下行链路反馈信息发送以及接收的方法
US11368256B2 (en) * 2017-06-02 2022-06-21 Huawei Technologies Co., Ltd. Data transmission method and apparatus
CN114788204A (zh) * 2020-02-28 2022-07-22 Oppo广东移动通信有限公司 Harq进程的状态确定方法、装置及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756479B (zh) * 2019-03-27 2021-12-10 华为技术有限公司 一种通信方法及装置
CN116491146A (zh) * 2020-12-24 2023-07-25 中兴通讯股份有限公司 用于通过用于波束指示的特定dci发起harq-ack过程的系统和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160219627A1 (en) * 2015-01-27 2016-07-28 Kelvin Kar Kin Au System and method for transmission in a grant-free uplink transmission scheme
CN106507497A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、终端设备和网络设备
CN106550439A (zh) * 2015-09-23 2017-03-29 华为技术有限公司 一种非连续接收的方法以及终端设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105722234B (zh) * 2016-02-05 2019-11-08 北京佰才邦技术有限公司 在非授权频段中调度资源的方法、基站和终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160219627A1 (en) * 2015-01-27 2016-07-28 Kelvin Kar Kin Au System and method for transmission in a grant-free uplink transmission scheme
CN106507497A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、终端设备和网络设备
CN106550439A (zh) * 2015-09-23 2017-03-29 华为技术有限公司 一种非连续接收的方法以及终端设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11368256B2 (en) * 2017-06-02 2022-06-21 Huawei Technologies Co., Ltd. Data transmission method and apparatus
CN112398579A (zh) * 2019-08-14 2021-02-23 联发科技股份有限公司 下行链路反馈信息发送以及接收的方法
CN114788204A (zh) * 2020-02-28 2022-07-22 Oppo广东移动通信有限公司 Harq进程的状态确定方法、装置及设备
CN114788204B (zh) * 2020-02-28 2023-11-10 Oppo广东移动通信有限公司 Harq进程的状态确定方法、装置及设备

Also Published As

Publication number Publication date
WO2018192218A1 (zh) 2018-10-25

Similar Documents

Publication Publication Date Title
US11368256B2 (en) Data transmission method and apparatus
ES2927975T3 (es) Canal de control del enlace descendente para comunicaciones ultra confiables y de baja latencia del enlace ascendente
WO2018166447A1 (zh) 传输信息的方法和装置
US9756617B2 (en) Simultaneous reporting of ACK/NACK and channel-state information using PUCCH format 3 resources
EP3619874B1 (en) Short pucch formats and scheduling request (sr) transmission for 5th generation (5g) new radio access technology (nr)
JP6745360B2 (ja) ダウンリンク送信の設定
WO2020145271A1 (en) User equipment and base stations that achieve mini-slot-based repetitions
US20180242347A1 (en) Configuration of uplink transmission for a wireless device
WO2018191870A1 (zh) 一种数据传输的方法和装置
WO2019099393A1 (en) User equipments, base stations and methods
WO2019099738A1 (en) User equipments, base stations and methods
US11224037B2 (en) Data transmission method, terminal device, and network device
CN113412595B (zh) 无线通信方法、终端设备和网络设备
WO2021157277A1 (en) Signaling and configurations of subslot-based pucch repetition
WO2018209803A1 (zh) 一种传输信息的方法和装置
US20190364568A1 (en) Data transmission method and apparatus
GB2580129A (en) Uplink HARQ in cellular wireless communication networks
WO2021066015A1 (en) Urllc physical uplink control channel (pucch) with repetitions
CA3049107A1 (en) Long physical uplink control channel (pucch) design for 5th generation (5g) new radio (nr)
RU2747389C1 (ru) Способ и оборудование для выделения ресурсов при беспроводной связи
WO2022085702A1 (en) Signaling and configurations of enhanced subslot-based pucch repetition
WO2021098719A1 (en) Feedback for periodic resources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906308

Country of ref document: EP

Kind code of ref document: A1