WO2018219353A1 - 一种数据传输的方法和装置 - Google Patents

一种数据传输的方法和装置 Download PDF

Info

Publication number
WO2018219353A1
WO2018219353A1 PCT/CN2018/089637 CN2018089637W WO2018219353A1 WO 2018219353 A1 WO2018219353 A1 WO 2018219353A1 CN 2018089637 W CN2018089637 W CN 2018089637W WO 2018219353 A1 WO2018219353 A1 WO 2018219353A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
indication information
data
value
terminal device
Prior art date
Application number
PCT/CN2018/089637
Other languages
English (en)
French (fr)
Inventor
李�远
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18809250.6A priority Critical patent/EP3624498B1/en
Priority to KR1020197038337A priority patent/KR20200011489A/ko
Priority to JP2019565816A priority patent/JP2020522183A/ja
Priority to BR112019025281-9A priority patent/BR112019025281A2/pt
Priority to AU2018278063A priority patent/AU2018278063B2/en
Publication of WO2018219353A1 publication Critical patent/WO2018219353A1/zh
Priority to US16/698,190 priority patent/US11368256B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method and apparatus for data transmission.
  • GUL Grant Free UpLink
  • AUL Autonomous UL
  • the network device allocates GUL resources to the terminal device, and the terminal device When performing uplink transmission, it is not necessary to send a scheduling request (SR) to the network device, and wait for the network device to send an uplink grant (UL Grant) information, and can directly transmit the uplink through the GUL transmission resource, thereby reducing transmission time. Delay.
  • SR scheduling request
  • UL Grant uplink grant
  • the terminal device autonomously selects the hybrid automatic repeat request HARQ to perform data transmission (referred to as the first data for easy understanding and differentiation), and adopts uplink control information (for example, The scheduling permission uplink control information is reported to the network device by the process number of the HARQ process corresponding to the first data, and the network device may obtain the uplink control information by means of blind detection, and further determine the process of the HARQ process corresponding to the first data. Number to receive the first data correctly.
  • the network device does not know that the terminal device uses the HARQ process to perform the transmission of the first data, so that the first data cannot be correctly received;
  • the network device uses the uplink grant UL grant information to schedule the terminal device to use the HARQ process for initial transmission (ie, instructing the terminal device to send second data different from the first data), and the terminal device receives the UL.
  • the grant information is that the first data sent by the HARQ process has been correctly received by the network device
  • the terminal device does not send the first data, but sends the second message on the HARQ process according to the UL grant information.
  • the data which causes the loss of the first data, seriously affects the reliability of the data transmission.
  • Embodiments of the present invention provide a data transmission method and apparatus, which can reduce data packet loss, thereby improving reliability of data transmission.
  • the first aspect provides a method for data transmission, where the method includes: the terminal device sends a first data packet to the network device by using a scheduling-free uplink GUL transmission manner on the first time unit, where the first data packet corresponds to The first hybrid automatic retransmission request HARQ process number, the first data packet corresponding to the first new data indication information, where the first new data indication information is used to indicate that the first data packet is an initial data packet or a retransmission data pack;
  • first indication information that is sent by the network device
  • the first indication information is used to indicate that the terminal device sends a second data packet on a second time unit, where the second data packet corresponds to the a first HARQ process ID, where the second time unit is located in time after the first time unit, where the second data packet corresponds to second new data indication information sent by the network device, the second The new data indication information is used to indicate that the second data packet is an initial data packet or a retransmission data packet;
  • the terminal device performs buffer processing on the first data packet or sends the second data packet according to the value of the first new data indication information and the value of the second new data indication information.
  • the second data packet is a retransmission data packet of the first data packet, or the second data packet is an initial data packet different from the first data packet.
  • the terminal device after receiving the first indication information for instructing the terminal device to send the second data packet corresponding to the first HARQ process ID, the terminal device passes the second and the second The value of the second new data indication information corresponding to the data packet and the value of the first new data indication information corresponding to the first data packet sent by the terminal device by using the GUL transmission, performing buffer processing on the first data packet, or determining Transmitting a second data packet, wherein the second data packet is a retransmission data packet of the first data packet, or the second data packet is associated with the first data packet a different initial data packet, especially if the network device does not detect the first data packet, and the network device indicates, by using the first indication information, the terminal device transmits the initial data corresponding to the first HARQ process ID.
  • the terminal device When the packet is used, the terminal device does not perform the transmission of the initial data packet according to the first indication information, but sends the retransmitted data packet of the first data packet, and does not clear the first in the cache. Packet, the first packet but remain in the cache, reducing the loss of the first packet, improving the reliability of data transmission, but also improve the flexibility of the system.
  • the terminal device according to the value of the first new data indication information and the value of the second new data indication information, A data packet is buffered, or the second data packet is sent, including:
  • the terminal device reserves the first data packet in the cache, or sends the first Two data packets, the second data packet being a retransmission data packet of the first data packet.
  • the terminal device sends the second data packet, where the second data packet is a retransmitted data packet of the first data packet, including:
  • the terminal device sends the second data packet on the second time unit according to the first indication information.
  • the terminal device when the terminal device sends the retransmission data packet of the first data packet, the first data packet may be retransmitted on the second time unit according to the indication of the first indication information, and effectively utilized.
  • the current signaling reduces the signaling overhead.
  • the terminal device sends, according to the value of the first new data indication information and the value of the second new data indication information, Two data packets, including:
  • the value of the first new data indication information is the same as the value of the second new data indication information, and the transport block size TBS corresponding to the first data packet is the same as the TBS corresponding to the second data packet.
  • the second device sends the second data packet on the second time unit according to the first indication information, where the second data packet is a retransmission data packet of the first data packet. .
  • the terminal The device sends the retransmission data packet of the first data packet on the second time unit according to the first indication information, which not only can effectively utilize the current signaling, but also reduces signaling overhead, and can also effectively improve the first
  • the transmission efficiency of the data packet reduces the complexity of the terminal device.
  • the method further includes:
  • the terminal device ignores the first indication information if the value of the first new data indication information is the same as the value of the second new data indication information.
  • the method further includes:
  • the value of the first new data indication information is the same as the value of the second new data indication information, and the transport block size TBS corresponding to the first data packet is compared with the TBS corresponding to the second data packet. In case of different, the terminal device ignores the first indication information.
  • the terminal device sends, according to the value of the first new data indication information and the value of the second new data indication information, Two data packets, including:
  • the terminal device sends the the second time unit according to the first indication information. a second data packet, the second data packet being an initial data packet different from the first data packet.
  • the method further includes:
  • the terminal device Determining, by the terminal device, the first new data indication information according to a transmission relationship between the third data packet and the first data packet and a value of the third new data indication information corresponding to the third data packet And the value of the transmission data includes: the third data packet is an initial data packet different from the first data packet, or the third data packet is the first data packet. Retransmitting the data packet, the third new data indication information is used to indicate that the third data packet is an initial data packet or a retransmission data packet, and the third data packet is used by the network device to schedule the terminal device a data packet sent on the third time unit, the third data packet corresponding to the first HARQ process number, and the third time unit being temporally located before the first time unit.
  • the terminal device according to a transmission relationship between the third data packet and the first data packet, and a third data packet corresponding to the third data packet The value of the new data indication information is determined, and the value of the first new data indication information is determined, including:
  • the terminal device determines that the value of the first new data indication information and the third new data indication information are obtained. The same value; or,
  • the terminal device determines a value of the first new data indication information and the third new data indication The value of the information is different.
  • the method before the terminal device sends the first data packet to the network device by using the scheduling-free uplink GUL transmission mode on the first time unit, the method further include:
  • the terminal device receives control information sent by the network device, where the control information includes fourth new data indication information, and the control information is used to activate or reactivate the terminal device to send information by using the GUL transmission mode.
  • the value of the fourth new data indication information is a first preset value
  • the terminal device determines a semi-static time domain resource corresponding to the GUL transmission mode according to the control information, where the first time unit belongs to the semi-static time domain resource.
  • the value of the fourth new data indication information is a second value.
  • a preset value where the fourth data packet is a data packet sent by the terminal device by using the GUL transmission mode, and the second preset value is different from the first preset value.
  • the method further includes:
  • the terminal device sends the first new data indication information to the network device.
  • a method of data transmission comprising:
  • the network device sends the first indication information to the terminal device, where the first indication information is used to indicate that the terminal device sends the second data packet on the second time unit, where the second data packet corresponds to the first HARQ process ID And the second data packet is used to indicate the second new data indication information that is sent by the network device, where the second new data indication information is used to indicate that the second data packet is an initial data packet or a retransmission data packet.
  • the first HARQ process ID is further corresponding to the first data packet, and the first data packet is sent by the terminal device to the network device by using a GUL transmission manner on the first time unit, where the first data packet is sent by the terminal device.
  • the first new data indication information is used to indicate that the first data packet is an initial data packet or a retransmission data packet, and the second time unit is located in the first time in time. After the time unit;
  • the network device may enable the terminal device And determining, according to the value of the second new data indication information corresponding to the second data packet, and the first new data indication information corresponding to the first data packet sent by the terminal device by using the GUL transmission, for the first data packet Cache processing, or determining a transmission type of the second data packet, thereby transmitting the second data packet, where the second data packet is a retransmission data packet of the first data packet, or the second data packet is
  • the initial data packet of the first data packet is different, especially if the network device does not detect the first data packet, and the network device indicates, by using the first indication information, that the terminal device transmits the first HARQ process ID Corresponding the initial data packet, the terminal device may not perform the transmission of the initial data packet according to the first indication information, but send the retransmission data of the first data packet
  • the second The data packet is a retransmission data packet of the first data packet.
  • the second data packet is a data packet that is sent by the terminal device on the second time unit.
  • the value of the first new data indication information is the same as the value of the second new data indication information
  • the first data packet is When the corresponding transport block size TBS is the same as the TBS corresponding to the second data packet
  • the second data packet is a data packet sent by the terminal device on the second time unit.
  • the two data packets are initial data packets that are different from the first data packet.
  • the value of the first new data indication information is The third new data indication information corresponding to the third data packet has the same value, wherein the third new data indication information is used to indicate that the third data packet is an initial data packet or a retransmission data packet.
  • the third data packet is used by the network device to schedule a data packet sent by the terminal device on a third time unit, where the third data packet corresponds to the first HARQ process ID, and the third time unit is in time. Located above the first time unit; or,
  • the value of the first new data indication information and the third new data indication corresponding to the third data packet The value of the information is different, wherein the third new data indication information is used to indicate that the third data packet is an initial data packet or a retransmission data packet, and the third data packet is the network device scheduling office.
  • the data packet sent by the terminal device on the third time unit, the third data packet corresponding to the first HARQ process number, and the third time unit being temporally located before the first time unit.
  • the network device in a case that the network device detects the first data packet, the network device is configured according to the first data packet The first new data indication information determines the second new data indication information.
  • the method further includes:
  • control information Transmitting, by the network device, control information to the terminal device, where the control information includes fourth new data indication information, and when the control information is used to activate or reactivate the terminal device to send information by using the GUL transmission mode
  • the value of the fourth new data indication information is a first preset value, where the first time unit belongs to a semi-static time domain resource corresponding to the GUL transmission mode.
  • the value of the fourth new data indication information is a second value.
  • a preset value where the fourth data packet is a data packet sent by the terminal device by using the GUL transmission mode, and the second preset value is different from the first preset value.
  • the method further includes:
  • the network device receives the first new data indication information sent by the terminal device.
  • an apparatus for data transmission the apparatus being operative to perform the operations of the first aspect and the terminal device in any of the possible implementations of the first aspect.
  • the apparatus may comprise a modular unit for performing the operations of the terminal device in any of the possible implementations of the first aspect or the first aspect described above.
  • an apparatus for data transmission which apparatus can be used to perform operations of a network device in any of the possible implementations of the second aspect and the second aspect.
  • the apparatus may comprise a modular unit for performing the operations of the network device in the second aspect and any possible implementation of the second aspect.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the method of the first aspect or any possible implementation of the first aspect, or the execution causes the terminal device to implement the apparatus provided by the third aspect .
  • a network device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the network device to perform the method in any of the possible implementations of the second aspect or the second aspect, or the execution causes the network device to implement the apparatus provided by the fourth aspect .
  • a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect and any possible implementation of the first aspect.
  • a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of the second aspect and any possible implementation of the second aspect.
  • the value of the second new data indication information is The first new number indicates that the value of the information is different;
  • the second new data indication information if the first data packet is not detected by the network device, or the network device detects the first data packet, and the first data packet is not successfully received.
  • the value of the first new data indication information is the same as the value of the first new data indication information.
  • the method further includes: before the sending, by the terminal device, the first data packet to the network device by using the unscheduled permission uplink GUL transmission manner on the first time unit, the method further includes:
  • the terminal device receives control information sent by the network device, where the control information includes fourth new data indication information, and the control information is used to activate or reactivate the terminal device to send information by using the GUL transmission mode.
  • the value of the fourth new data indication information is a first preset value
  • the terminal device determines the first new data indication information
  • the terminal device ignores the fourth new data indication information.
  • the second data packet is used by the network device to schedule a subsequent data packet sent by the terminal device after the first time unit and corresponding to the first HARQ process ID or a packet.
  • the third data packet is used by the network device to schedule a previous data packet sent by the terminal device before the first time unit and corresponding to the first HARQ process ID or a packet.
  • FIG. 1 is a schematic diagram of a communication system applied to data transmission in an embodiment of the present invention
  • FIG. 2 is a schematic interaction diagram of a method of data transmission in accordance with an embodiment of the present invention.
  • FIG. 3 to FIG. 12 are schematic diagrams showing behaviors between a network device and a terminal device in a data transmission process according to an embodiment of the present invention.
  • Figure 13 is a schematic block diagram of an apparatus for data transmission in accordance with an embodiment of the present invention.
  • FIG. 14 is a schematic block diagram of an apparatus for data transmission in accordance with an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the supported communications are primarily for voice and data communications.
  • a traditional base station supports a limited number of connections and is easy to implement.
  • next generation of mobile communication systems will enable future mobile data traffic growth, massive IoT, and diversified new services and application scenarios.
  • 5G NR 5th Generation New Radio
  • 5G NR 5th Generation New Radio
  • 5G based on Orthogonal Frequency Division Multiplexing (OFDM) new air interface design will become a global standard, supporting 5G devices, diverse deployments, covering diverse spectrums (including for low and high frequency bands) Coverage), but also support a variety of services and terminals.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the terminal device may also be referred to as a User Equipment (UE) user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication device. , user agent or user device.
  • UE User Equipment
  • the terminal device may be a station (STAION, ST) in a Wireless Local Area Networks (WLAN), and may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, or a wireless local loop (Wireless Local) Loop, WLL) stations, Personal Digital Assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and in future 5G networks Terminal equipment or terminal equipment in a future evolved PLMN network, and the like.
  • STAION, ST Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • PDA Personal Digital Assistant
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (APCESS POINT, AP) in the WLAN, or a base station in GSM or Code Division Multiple Access (CDMA).
  • APCESS POINT AP
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • wearable devices, and network devices in future 5G networks or network devices in future evolved PLMN networks.
  • the method and apparatus provided by the embodiments of the present invention may be applied to a terminal device or a network device, where the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution subject of the method of transmitting control information is not particularly limited as long as the program capable of running the code of the method of transmitting the control information of the embodiment of the present invention can be executed.
  • the method for transmitting the control information according to the embodiment of the present invention may be a terminal device or a network device, or may be a terminal device or a network device. Call the program and execute the function module of the program.
  • the term "article of manufacture" as used in this embodiment of the invention encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 may be a public land mobile network (PLMN) network or a D2D network or an M2M network or other network.
  • PLMN public land mobile network
  • FIG. 1 is only a simplified schematic diagram of the example, and the network may also include other network devices, FIG. 1 Not drawn in the middle.
  • time-frequency resources for wireless communication used by the communication system 100 will be described in detail.
  • the time domain resource used by the network device and the terminal device to transmit information may be divided into multiple time units in the time domain.
  • a plurality of time units may be continuous, or a preset interval may be provided between some adjacent time units, which is not specifically limited in the embodiment of the present invention.
  • the time unit may be a time unit including transmissions for uplink information (eg, uplink data) and/or downlink information (eg, downlink data).
  • uplink information eg, uplink data
  • downlink information eg, downlink data
  • the length of a time unit can be arbitrarily set, which is not specifically limited in the embodiment of the present invention.
  • one time unit may include one or more subframes.
  • one time unit may include one or more time slots.
  • one time unit may include one or more symbols.
  • one time unit may include one or more TTIs.
  • one time unit may include one or more short transmission time intervals (sTTIs).
  • sTTIs short transmission time intervals
  • the time-frequency resource used by the communication system 100 for wireless communication may be divided into multiple TTIs in the time domain, and the TTI is a commonly used parameter in the current communication system (for example, an LTE system).
  • the scheduling unit that schedules information transmission in the wireless link Refers to the scheduling unit that schedules information transmission in the wireless link.
  • 1 TTI 1 ms is generally considered. That is, one TTI is a subframe or the size of two slots, which is the basic unit of time governed by radio resource management (scheduling, etc.).
  • the scheduling interval of the physical layer that has the most obvious impact on delay is getting smaller and smaller.
  • the scheduling interval is 10ms, and High-Speed Packet Access (HSPA) is used.
  • the scheduling interval is shortened to 2ms, and the scheduling interval (ie, TTI) in Long Term Evolution (LTE) is shortened to 1ms.
  • the hourly service requirement causes the physical layer to introduce a shorter TTI frame structure to further shorten the scheduling interval and improve the user experience.
  • the TTI length in an LTE system can be shortened from 1 ms to 1 symbol (symbol) to 1 slot (including 7 symbols).
  • the symbols mentioned above may be Orthogonal Frequency Division Multiplexing (OFDM) symbols or Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols in an LTE system, and may also be Is a symbol in other communication systems.
  • the length of the TTI in the 5G communication system is also less than 1 ms.
  • the Round-Trip Time (RTT) of the data transmission is generally 8 ms. It is assumed that the processing time is proportionally reduced compared to the scheduling of an existing TTI of 1 ms in length, that is, the existing RTT delay is still followed. Then, in the data transmission based on the sTTI of 0.5 ms in length, the RTT of the data transmission is 4 ms, and the delay can be shortened by half relative to the data transmission based on the TTI of 1 ms in length, thereby improving the user experience.
  • a TTI having a length of less than 1 ms may be referred to as an sTTI.
  • the length of the sTTI may be any one of 1 to 7 symbols, or the sTTI length may be a combination of at least 2 different lengths of 1 to 7 symbols, for example, 6 sTTIs in 1 ms.
  • Each sTTI length may be 3 symbols, 2 symbols, 2 symbols, 2 symbols, 2 symbols, 3 symbols, or 4 sTTIs in 1 ms, and each sTTI length may be 3 symbols, respectively. 4 symbols, 3 symbols, 4 symbols, each sTTI length can also be a combination of other different lengths.
  • the uplink sTTI length may be the same as the downlink sTTI length.
  • the uplink sTTI length and the downlink sTTI length are both symbols.
  • the uplink sTTI length may be longer than the downlink sTTI length.
  • the uplink sTTI length is 7 symbols, and the downlink sTTI length is 2 symbols.
  • the uplink sTTI length may be shorter than the downlink sTTI length.
  • the uplink sTTI length is 4 symbols, and the downlink sTTI length is 1 subframe.
  • a packet whose TTI length is less than 1 subframe or 1 ms is called a short TTI packet.
  • Short TTI data transmission is in the frequency domain and can be continuously distributed or non-continuously distributed. It should be noted that, considering backward compatibility, there may be cases in which data transmission based on TTI with a length of 1 ms and data transmission based on sTTI may exist at the same time.
  • the TTI and the sTTI specified by the prior art (for example, the LTE system) (for example, the length is 1 ms or the length is greater than 1 ms) are collectively referred to as TTI, and, in the embodiment of the present invention, the length of the TTI. It can be changed according to actual needs.
  • time unit can be one subframe (Subframe).
  • one time unit may include one sTTI, or one time unit may include one slot (slot), and one time unit may include one or more ( For example, a positive integer number less than 7 or a positive integer number less than 6; one time unit may also be 1 subframe.
  • any one of the at least one symbol may be a complete symbol or a partial symbol, where the partial symbol means that the device occupies a part of the time domain resource sending information of the symbol, The rest does not send information or is reserved for idle.
  • the length of the time unit for transmitting information may be 1 ms or less than 1 ms.
  • the frequency domain resource (or the spectrum resource) in the transmission resource used by the communication system 100 may be an authorization resource, or the frequency domain resource in the resource used by the communication system 100 may belong to the authorization. Frequency band.
  • the frequency domain resource (or the spectrum resource) in the resource (transmission resource or time-frequency resource) used by the communication system 100 may belong to an unlicensed band (or an unlicensed resource).
  • An unlicensed resource may refer to a resource that each communication device can share.
  • Resource sharing on an unlicensed band means that the use of a specific spectrum only specifies the limits of the transmit power and out-of-band leakage to ensure that the basic coexistence requirements are met between multiple devices sharing the band.
  • the licensed band resources can achieve the purpose of network capacity offloading, but need to comply with the regulatory requirements of different geographical regions and different spectrums for unlicensed band resources. These requirements are usually designed to protect public systems such as radar, as well as to ensure that multiple systems do not cause harmful effects and fair coexistence with each other, including emission power limits, out-of-band leak indicators, indoor and outdoor use restrictions, and areas. There are also some additional coexistence strategies and so on.
  • each communication device can adopt a contention mode or a monitoring mode, for example, a time-frequency resource used in a manner specified by Listening Before Talk (LBT).
  • LBT Listening Before Talk
  • each communication device in the communication system 100 can also perform wireless communication using the licensed spectrum resource, that is, the communication system 100 in the embodiment of the present invention is a communication system capable of using the licensed frequency band.
  • two transmission modes are involved, that is, one is based on the scheduling transmission mode, and the other is based on the unscheduled transmission mode.
  • the two transmission modes respectively.
  • the uplink transmission of the terminal device needs to be completed by the scheduling of the network device, that is, the scheduled uplink transmission (SUL) mode, also referred to as the SUL transmission mode.
  • the terminal device needs to send a scheduling request (SR) to the network device on the physical uplink control channel (PUCCH), and wait for the network to receive.
  • SR scheduling request
  • the network device sends the scheduling information (or the uplink grant (UL Grant) information) to the terminal device.
  • the terminal device performs the uplink transmission according to the uplink resource indicated by the scheduling information.
  • This scheduling-based transmission method is highly reliable, but the transmission delay is large.
  • the SUL radio resource that uses the SUL transmission mode to transmit information based on the network device scheduling is also referred to as a SUL physical uplink shared channel (PUSCH), where the SUL PUSCH also includes an sTTI shorter than 1 ms. Corresponding sPUSCH.
  • PUSCH physical uplink shared channel
  • the uplink transmission of the terminal device does not need to be completed by the scheduling of the network device.
  • This unscheduled transmission mode may be referred to as a Grant Free Up Link (GUL) transmission mode, or autonomous UL (AUL). )transfer method.
  • GUL Grant Free Up Link
  • AUL autonomous UL
  • the network device allocates the GUL resource to the terminal device in a semi-static manner.
  • the terminal device does not need to send the scheduling request SR to the network device and wait for the network device to send the UL Grant information, and can directly perform the GUL resource. Uplink transmission, thereby reducing transmission delay.
  • the GUL transmission mode may be that the terminal device uses the GUL radio resource to perform data transmission.
  • the GUL radio resource may be a resource that the network device separately allocates to the terminal device without being allocated to other terminal devices, or, because the transmission of the service of the terminal device is bursty, the terminal device may not occupy the uplink service.
  • the GUL radio resource the network device may allocate the GUL radio resource to a plurality of terminal devices including the terminal device, so that the plurality of terminal devices perform resources through statistical multiplexing.
  • the sharing is not specifically limited in the embodiment of the present invention.
  • the GUL radio resource may be allocated by the network device after determining that the terminal device needs to perform uplink transmission; or the GUL radio resource may be, for example, accessed at the terminal device.
  • the GUL radio resource may be, for example, the network device competes for some or all of the unlicensed time-frequency resources provided by the communication system.
  • the embodiment of the present invention is not specifically limited, and is determined to be allocated to the terminal device.
  • the GUL radio resource is a subset of all available GUL radio resources that the network device allocates or activates to the terminal device.
  • the available GUL radio resources correspond to available GUL time domain resources and available GUL frequency domain resources.
  • the available GUL time domain resources are persistent.
  • the available GUL time domain resources are periodic, and each GUL period includes at least one time unit. For example, in a period of 4 ms, the first 2 ms in each period is an available GUL time domain resource, which includes subframes ⁇ #1, #2 ⁇ , ⁇ #5, #6 ⁇ , ⁇ #9, #10 ⁇ , and the like.
  • the terminal device may send uplink data on the any one of the time units, or may not send the uplink data, that is, does not occupy the time unit. For example, when the terminal device does not have uplink traffic, or performs LBT failure before a certain time unit in the available GUL time domain resource, the certain time unit may be skipped without transmitting uplink data. Or, in a GUL period, the terminal device may send uplink data without occupying any one of the GUL periods, that is, skip the GUL period.
  • the frequency domain resource corresponding to the GUL radio resource may also be included in the available GUL frequency domain resource, which may be equal to the available GUL frequency domain resource corresponding to the first time unit, or may be smaller than the available GUL frequency corresponding to the first time unit. Domain resources are not limited here.
  • the GUL radio resource is a resource for transmitting uplink data (UL-Shared CHannel, UL-SCH). More specifically, the GUL radio resource may be a Physical Uplink Shared Channel (PUSCH) resource, and the GUL radio resource is also used. It is called GUL PUSCH, and the GUL PUSCH also includes an sPUSCH (short PUSCH) corresponding to an sTTI shorter than 1 ms.
  • PUSCH Physical Uplink Shared Channel
  • the available GUL radio resources are periodic, and thus, the network device can configure the period of available GUL radio resources through higher layer signaling. That is, the GUL PUSCH is determined according to higher layer signaling. In contrast, the SUL PUSCH based on network device scheduling is scheduled according to dynamic signaling of the network device in the PDCCH.
  • the network device configuring the GUL PUSCH does not need to report the SR based on the terminal device.
  • the SUL PUSCH based on the network device scheduling is indicated by the network device after receiving the SR sent by the terminal device.
  • the SUL PUSCH based on the network device scheduling only takes effect once compared to the available persistent resources of the GUL resources, and the scheduled PUSCH corresponds to a limited number of time units in a limited time range, and does not last for validity.
  • the network device may send related signaling for configuring the GUL radio resource to the terminal device (for example, high layer signaling and or a dynamic message in the PDCCH). So, the terminal device can determine the GUL radio resource. Specifically, the terminal device may determine the at least one time unit included in the time domain of the GUL radio resource, and further, the terminal device may determine the total number and location of the at least one time unit.
  • the terminal device carries the information about the uplink data sent by the GUL transmission mode, and the terminal device carries the uplink control information (Grant free UpLink Control Information).
  • G-UCI the G-UCI is control information corresponding to the uplink data.
  • the G-UCI includes HARQ process number information of the HARQ process corresponding to the uplink data, New Data Indicator (NDI) information, Redundancy Version (RV) information corresponding to the uplink data, and the terminal. At least one of the user identification (denoted as UE ID) information of the device.
  • the network device In order to obtain the uplink data, the network device needs to acquire the G-UCI first, and then demodulate and decode the GUL PUSCH according to the G-UCI to obtain the uplink data. In contrast, for the PUSCH based on the network device scheduling, since the foregoing control information is included in the scheduling information dynamic UL grant, the terminal device is not required to carry the information in the uplink transmission.
  • the above two transmission modes may be used in combination or may be used alone, and the embodiment of the present invention is not limited thereto.
  • the data packet in the embodiment of the present invention may be interpreted in multiple ways: the data packet may be a bit sequence that is not subjected to code modulation processing, that is, a transport block (TB) or a media access channel (MAC) protocol data.
  • Unit Data PDU Protocol Data Unit
  • the data packet may also be a bit sequence (also referred to as a data signal) after performing code modulation processing.
  • FIGS. 2 through 12. 2 is a schematic interaction diagram of a method of data transmission in accordance with an embodiment of the present invention.
  • the terminal device sends, by using the scheduling-free uplink GUL transmission mode, the first data packet to the network device, where the first data packet corresponds to the first hybrid automatic repeat request HARQ process ID, the first data.
  • the packet corresponds to the first new data indication information, where the first new data indication information is used to indicate that the first data packet is an initial data packet or a retransmission data packet.
  • the terminal device transmits the data packet #1 (ie, an example of the first data packet) by using a GUL transmission manner, and does not need to send a scheduling request SR to the network device and wait for the network device to send the UL Grant.
  • Information can be directly transmitted through GUL resources for uplink transmission, thereby reducing transmission delay.
  • the new data indication information #1 (ie, an example of the first new data indication information) corresponds to the data packet #1, that is, the new data indication information #1 is used to indicate that the data packet #1 is an initial data packet or Retransmit the packet.
  • the size of the new data indication information #1 may be 1 bit, and the value of the new data indication information #1 corresponds to two states, namely “0” and “1”, respectively, to indicate that the data packet #1 is an initial transmission. Packet or retransmit packet.
  • the new data indication information #1 is used to indicate that the data packet #1 is an initial data packet or a retransmission data packet.
  • the receiving end for the new data indication information #1, the receiving end is a network device.
  • the data packet #1 can be determined to be an initial transmission packet or a retransmission data packet only based on the new data indication information #1, and also needs to be compared with the previous correspondence of the data packet #1.
  • the value of the new data indication information corresponding to the data packet of the same HARQ process ID determines that the data packet #1 is an initial data packet or a retransmission data packet, where the data packet #
  • the previous packet corresponding to the first HARQ process number of 1 is a packet transmitted before the time unit #1 (i.e., an example of the first time unit).
  • the new data indication information #1 is only a factor for determining that the data packet #1 is an initial data packet or a retransmission data packet, and the receiving end also needs to be combined. Other information to determine that packet #1 is an initial packet or a retransmit packet.
  • the value of the new data indication information corresponding to the data packet of the first HARQ process number of the data packet #1 is “0”, and the value of the new data indication information #1 is “1”, then
  • the receiving end it is necessary to compare the values of the two new data indication information to determine that the data packet #1 is an initial data packet or a retransmitted data packet. More specifically, if the values of the two new data indication information are different, the receiving end (or the network device) determines that the data packet #1 is an initial data packet; if the two new data indication information values are the same, Then the receiving end (or network device) determines that the data packet #1 is a retransmitted data packet.
  • the new data indicates that the information #1 is NDI information. More specifically, the new data indication information #1 is an NDI field in the G-UCI that the terminal device reports to the network device.
  • the data packet #1 is an initial data packet or a retransmission data packet
  • the specific explanation is as follows:
  • the data packet #1 indicated by the new data indication information #1 is an initial transmission packet or a retransmission data packet, indicating that the data is Packet #1 is a retransmission data packet or an initial transmission data packet of transport block #1, or the data packet #1 is a retransmission or initial transmission of transport block #1, which is before uncoded modulation processing
  • the bit sequence (or the original cell).
  • the transport block #1 is a transport block before the code modulation process corresponding to another data packet (referred to as packet #3 for convenience of distinction and understanding) before the data packet #1, that is, the data packet #3 is a bit sequence obtained by performing code modulation processing on the transport block #1.
  • the packet #1 When the packet #1 is a retransmission packet of the packet #3, the packet #1 is different from the packet #3, but both correspond to a transport block before the same encoding, that is, transport block #1.
  • the data packet #1 is an initial transmission data packet different from the data packet #3, the data packet #1 is different from the data packet #3, and the two correspond to different transmission blocks before encoding, and the data packet #1 Corresponding to a transport block different from the transport block #1.
  • the data packet #3 also corresponds to the first HARQ process number, and the time unit for carrying the data packet #3 is temporally located before the time unit #1, and the data packet is compared to the data packet #1.
  • #3 may be the most recent previous data packet corresponding to the first HARQ process ID, and the data packet #3 may also be separated from the data packet #1 by at least one data packet corresponding to the same HARQ process number, the data packet #1 The data packet #3 and at least one data packet in the middle interval correspond to the first HARQ process number.
  • the data packet #1 indicated by the new data indication information is an initial data packet or a retransmission data packet, indicating that the data packet #1 is The initial packet of the packet #3 or the retransmitted packet. Specifically, when the data packet #1 is a retransmission data packet of the data packet #3, the data packet #1 and the data packet #3 are the same data packet. When the packet #1 is an initial transmission packet different from the packet #3, the packet #1 is a new packet different from the packet #3.
  • the explanation of the initial data packet or the retransmission data packet for other data packets is related to "the data packet #1 is The interpretation of the initial data packet or the retransmission data packet is the same. For the sake of brevity, the details will not be described in detail later.
  • the terminal device When the terminal device sends the data packet #1 to the network device by using the GUL transmission mode, as described above, based on the nature of the GUL transmission mode, the network device does not know that the terminal device sends the data packet #1.
  • the terminal device can transmit the G-UCI corresponding to the data packet #1 in order to report the related information of the data packet #1 transmitted by the GUL transmission method.
  • the new data indication information #1 may be carried in the G-UCI corresponding to the data packet #1, and is used to indicate that the data packet #1 is an initial data packet or a retransmission data packet. Or, the new data indication information #1 is a field in the G-UCI corresponding to the packet #1.
  • the G-UCI further includes HARQ process number information of the HARQ process corresponding to the uplink data, Redundancy Version (RV) information corresponding to the uplink data, and user identifier of the terminal device (recorded as UE ID) At least one of the information in the information, so that the network device acquires the data packet #1 according to the G-UCI.
  • RV Redundancy Version
  • the new data indication information #1 may also be carried in other information related to the uplink transmission, and the embodiment of the present invention is not limited thereto.
  • the network device blindly detects the data packet #1, thereby attempting to receive the data packet #1.
  • the network device has three types of reception for the packet #1:
  • the network device detects the data packet #1 and successfully receives the data packet #1.
  • the network device detects the data packet #1 and does not successfully receive the data packet #1. For example, the network device detects the data packet #1, but demodulates and decodes the data packet #1. .
  • the network device does not detect the data packet #1.
  • the network device fails to receive the data packet #1.
  • the network device detects the data packet #1 or does not detect the data packet #1", indicating that "the network device detects the existence of the data packet #1 or The existence of the data packet #1 is not detected, or that the network device detects the presence of the GUL PUSCH carrying the data packet #1 or does not detect the GUL PUSCH carrying the data packet #1.
  • Existence means that the terminal device detects the presence of the GUL PUSCH (that is, the terminal device detects that the GUL PUSCH is sent); “the network device does not detect the data.
  • the packet #1" means that the network device does not detect the existence of the GUL PUSCH (that is, the terminal device does not detect that the GUL PUSCH is transmitted).
  • the network device determines the presence of the GUL PUSCH by detecting a Demodulation Reference Signal (DMRS) corresponding to the GUL PUSCH or a G-UCI for scheduling the GUL PUSCH.
  • DMRS Demodulation Reference Signal
  • the network device blindly detects the DMRS corresponding to the GUL PUSCH or blindly detects the G-UCI for scheduling the GUL PUSCH, it can be said that the GUL PUSCH is detected, and the GUL PUSCH is not detected.
  • the "the network device does not detect the data packet #1" in the embodiment of the present invention also indicates that "the network device does not have time to complete the detection or demodulation of the data packet #1, or from the receiving timing or In the demodulation capability, the network device has sent the indication information #1" without detecting or demodulating the packet #1.
  • the network device has a certain delay for demodulating the data packet #1, and when the network device has not completed demodulation for the data packet #1, the indication information #1 is sent to schedule the terminal device to use.
  • the network device does not know the existence of the data packet #1 when transmitting the indication information #1.
  • the case where the network device does not have time to complete the detection or demodulation of the packet #1 includes, if the time unit #1 is later than the time unit carrying the indication information #1, or the time unit #1 is earlier than the indication information. Time unit of #1, but the time interval between the time unit #1 and the time unit carrying the indication information #1 is shorter than a preset time interval (corresponding to the demodulation delay of the network device).
  • the delay of the network device for initial transmission or retransmission of the data packet is 4 ms, and the terminal device sends the data packet #1 on the GUL PUSCH of the subframe #n+2 (ie, the time unit #1),
  • the new data indication information #1 according to the demodulation capability of the network device, the network device can first schedule the terminal device to perform initial transmission or retransmission on the data packet #1 on the subframe #n+6; Transmitting the indication information #1 and the new data indication information corresponding to the next data packet of the packet #1 on the subframe #n+4 (ie, the time unit carrying the indication information #1) scheduling the terminal device to perform new
  • the new data indication information #2 is not inverted compared to the new data indication information #1, that is, the network device does not detect the data
  • the “the network device detects the data packet #1 or the data packet #1 is not detected” for the embodiment of the present invention is uniformly described as “the network device detects the existence of the data packet #1. Or the existence of the packet #1 is not detected.”
  • the network device sends first indication information, where the first indication information is used to indicate that the terminal device sends the second data packet on the second time unit, where the second data packet corresponds to the first HARQ process ID,
  • the second time unit is located in time after the first time unit, wherein the second data packet corresponds to the second new data indication information sent by the network device, and the second new data indication information is used to indicate the second data packet. Is the initial packet or retransmitted packet.
  • the terminal device receives the first indication information.
  • the network device when the network device needs to schedule the terminal device to send uplink data by using the same HARQ process ID (that is, the first HARQ process ID), the network device sends the indication information to the terminal device. 1 (that is, an example of the first indication information), the indication information #1 is used to instruct the terminal device to send the first HARQ process number corresponding to the time unit #2 (ie, an example of the second time unit) Packet #2 (ie, an example of the second packet).
  • the indication information #1 is used to instruct the terminal device to send the first HARQ process number corresponding to the time unit #2 (ie, an example of the second time unit) Packet #2 (ie, an example of the second packet).
  • the indication information #1 is a scheduling-based information, that is, the indication information #1 may be scheduling information corresponding to the data packet #1.
  • the indication information #1 may be UL grant information, for example, the indication information #1 is a dynamic UL grant information.
  • the indication information #1 may be a partial field in the UL grant information.
  • the indication information #1 may be a bit field or a bit in the UL grant information for data scheduling (excluding the second new The data indication information), more specifically, the indication information #1 may include other information than the second new data indication information in the UL grant information.
  • the indication information #1 is used to indicate that the terminal device sends the data packet #2 on the time unit #2, indicating that the terminal device uses the transmission format corresponding to the data packet #2 (for convenience) Distinguish and understand, record as transport format #2) Send the packet #2.
  • the indication information #1 is used to indicate the transmission format #2.
  • the transport format #2 includes at least one of a radio resource used for transmitting the data packet #2, a generation format of the data packet #2, a pilot format of the data packet #2, and a feedback format of the data packet #2. .
  • the radio resource used for transmitting the data packet #2 includes: a time domain resource corresponding to the PUSCH carrying the data packet #2 (including the time unit #1), and a frequency domain resource corresponding to the PUSCH carrying the data packet #2. At least one.
  • the generation format of the packet #2 includes a manner in which the terminal device generates the packet #2 by modulation coding, and includes, for example, at least one of a modulation and coding scheme (MCS) and a transport block size (TBS).
  • MCS modulation and coding scheme
  • TBS transport block size
  • the pilot format of the packet #2 includes the manner of the pilot sequence transmitted by the terminal device, for example, the sequence information of the DMRS corresponding to the PUSCH in which the packet #2 is located.
  • the feedback format of the data packet #2 includes: a manner in which the terminal device sends the feedback information, for example, including whether to feed back at least one of Channel State Information (CSI) and downlink HARQ-ACK information.
  • CSI Channel State Information
  • time unit carrying the indication information #1 may be located before the time unit #1 in time, or may be located after the time unit #1.
  • the data packet #2 is for the network device to schedule the next data packet sent by the terminal device after the time unit #1 and corresponding to the first HARQ process number.
  • the data packet #2 is for the network device to schedule the first data packet or the latest one of the data packets sent by the terminal device after the time unit #1 and corresponding to the first HARQ process ID.
  • the data packet #2 is for the network device to schedule the first data packet or the latest one of the data packets sent by the terminal device after the time unit #1 using the first HARQ process ID;
  • the data packet #1 is the latest one of the data packets sent by the terminal device before the time unit #2 and corresponding to the first HARQ process number.
  • the data packet #2 may also be the network device that schedules the Nth data packet sent by the terminal device after the time unit #1 and corresponds to the first HARQ process number, where N is greater than 1.
  • N is greater than 1.
  • the integer value, at this time, the value of the new data indication information corresponding to each of the N-1th data packets sent after the time unit #1 and corresponding to the first HARQ process number is the same.
  • the size of the new data indication information #2 (ie, an example of the second new data indication information) may also be 1 bit, and the value of the new data indication information #2 corresponds to two The states, "0" and "1", are used to indicate that the packet #2 is an initial packet or a retransmit packet. Further, the size of the new data indication information #1 is the same as the size of the new data indication information #2.
  • the new data indication information #2 may be carried in the indication information #1, that is, the new data indication information #2 is a field in the indication information #1.
  • the new data indication information #2 and the indication information #1 may be carried in the same information, and the new data indication information #2 and the indication information #1 correspond to different fields of the information, for example, are all carried in the dynamic UL grant information. It can also be carried in different information, which is not limited by the embodiment of the present invention.
  • new data indication information #2 may also be carried in other information related to the downlink transmission, and the embodiment of the present invention is not limited thereto.
  • the downlink time unit carrying the new data indication information #2 may be earlier than the time unit #1, or may be later than the time unit #1, which is not limited herein.
  • the downlink time unit carrying the indication information #1 may be earlier than the time unit #1, or may be later than the time unit #1, which is not limited herein.
  • the new data indicates that the information #2 is NDI information. More specifically, the new data indicates that the information #2 is an NDI field in the UL grant.
  • the method further includes:
  • the terminal device sends the first new data indication information to the network device.
  • the network device may determine the new data indication information #2 according to the new data indication information #1.
  • the network device may determine the new data indication information #2 based on the reception status of the data packet #1 and the new data indication information #1, and may also receive based on the data packet #3.
  • the case and the new data indication information corresponding to the packet #3 (indicated as new data indication information #3 for ease of distinction and understanding) determine the new data indication information #2, the new data indication information #3 is used to indicate the
  • the packet #1 is an initial transmission packet or a retransmission data packet, depending on the reception condition of the network packet #1 (that is, the three cases described above).
  • the process of determining the new data indication information #2 in the above three cases for the network device will be described in detail.
  • the network device determines the new data indication information #2 according to the reception condition of the data packet #1 and the new data indication information #1.
  • the terminal device can determine the existence of the data packet #1, and if it is determined whether the reception of the data packet #1 is successful, the new data indication information can be determined according to the new data indication information #1. #2.
  • the network device detects the data packet #1, and the network device receives the data packet #1 successfully, the value of the new data indication information #2 and the new data indication information #1 The values are different.
  • the network device can not only receive the data packet #1, but also demodulate and decode the data packet #1 successfully. In this case, the network device not only according to the data packet #1 and the new data.
  • the indication information #1 determines the new data indication information #2, and the value of the new data indication information #2 is different from the value of the new data indication information #1.
  • the network device detects the data packet #1, and the network device does not successfully receive the data packet #1, the value of the new data indication information #2 and the new data indication information #1 The values are the same.
  • the network device can detect the existence of the data packet #1, but cannot correctly receive the data packet #1, for example, the network device can receive the data packet #1, but for the data packet #1
  • the demodulation decoding fails.
  • the network device determines not only the new data indication information #2 according to the data packet #1 and the new data indication information #1, but the value of the new data indication information #2 is The new data indicates that the value of the information #1 is the same.
  • the network device determines the new data indication information #2 according to the reception condition of the data packet #3 and the new data indication information #3.
  • the network device does not know that the terminal device has transmitted the data packet #1 (or the network device does not know the existence of the data packet #1), and the network device can be based on the reception status of the data packet #3.
  • the new data indication information #3 determines the new data indication information #2.
  • the network device can determine the new data indication information #2 according to the reception condition of the data packet #3 and the new data indication information #3, then the network device can definitely know the existence of the data packet #3. If the data packet #3 is a data packet scheduled by the network device, the network device receives the data packet #3 on a time unit that the terminal device is expected to send the data packet #3, so the network device can definitely know Whether it successfully receives the data packet #3 and the new data indication information #3 corresponding to the data packet #3; if the data packet #3 is the data packet transmitted by the terminal device through the GUL transmission mode, the network device can detect The presence of the packet #3 (e.g., by detecting G-UCI) also knows the corresponding new data indication information #3 (e.g., the new data indication information #3 is included in the G-UCI).
  • the new data indication information #3 is transmitted by the terminal device, and the network device according to the reception condition of the data packet #3 and The process of determining the new data indication information #2 by the new data indication information #3 is as follows:
  • the value of the new data indication information #2 is the same as the value of the new data indication information #3, and the value of the new data indication information #2 is The new data indicates that the information #1 has the same value;
  • the network device receives the data packet #3 successfully, the value of the new data indication information #2 is different from the value of the new data indication information #3, and the value of the new data indication information #2 is The new data indicates that the information #1 has the same value.
  • the new data indication information #3 is sent by the network device to the terminal device, and the network device according to the reception condition of the data packet #3 and the new device
  • the process of determining the new data indication information #2 by the data indication information #3 is as follows:
  • the network device detects the data packet #3 and does not successfully receive the data packet #3, the value of the new data indication information #2 is the same as the value of the new data indication information #3, and the new data indicates The value of the information #2 is the same as the value of the new data indication information #1;
  • the network device receives the data packet #3 successfully, the value of the new data indication information #2 is different from the value of the new data indication information #3, and the value of the new data indication information #2 is The new data indicates that the information #1 has the same value.
  • the new data indicates that the information #3 is NDI information. More specifically, when the data packet #3 is a network device scheduling a data packet sent by the terminal device, the new data indication information #3 is an NDI field in the UL grant. When the data packet #3 schedules the data packet transmitted by the GUL transmission mode for the terminal device, the new data indication information #3 is an NDI field in the G-UCI reported by the terminal device to the network device.
  • the terminal device performs buffer processing on the first data packet according to the value of the first new data indication information and the value of the second new data indication information, or sends the second data packet, where
  • the second data packet is a retransmitted data packet of the first data packet, or the second data packet is an initial data packet different from the first data packet.
  • the terminal device performs transmission of the data packet #2 according to whether the value of the new data indication information #1 and the value of the new data indication information #2 are the same;
  • the terminal device transmits the data packet #2 based on whether the value of the new data indication information #1 is inverted compared to the value of the new data indication information #2.
  • the value of the new data indication information #1 and the value of the new data indication information #2 are different, and the value of the new data indication information #2 is also referred to as the new data indication information #1.
  • the value is inverted; the value of the new data indication information #1 is the same as the value of the new data indication information #2, which is also referred to as the value of the new data indication information #2, compared to the value of the new data indication information #1. Not flipped.
  • the above-mentioned flip relationship for the two new data indication information ie, the correspondence between the flip/unturned condition of the two new data indication information and the value difference/same
  • the new data indicates the flip relationship between the value of the information #1 and the value of the new data indication information #3, and the value of the new data indicates the value of the information #2 and the value of the new data indication information #3. The relationship between flipping and so on.
  • the size of the new data indication information #1 and the size of the new data indication information #2 are both 1 bit, corresponding to two states of “0” and “1”; when the new data indicates information #1 The value of the new data indicates that the value of the information #2 is "1", or the value of the new data indicates that the value of the information #1 is "1", and the value of the new data indicates the value of the information #2. If it is "0", the value of the new data indication information #1 is different from the value of the new data indication information #2, that is, the value of the new data indication information #2 is compared with the new data indication information.
  • the value of #1 is inverted; when the value of the new data indication information #1 is “0”, the value of the new data indication information #2 is “0”, or the new data indicates that the information #1 is taken. If the value of the new data indication information #2 is "1”, the value of the new data indication information #1 is the same as the value of the new data indication information #2, that is, the new value. The value of the data indication information #2 is not inverted as compared with the value of the new data indication information #1.
  • the embodiment of the present invention will be described with reference to "the new data indication information #1 is the same as or different from the value of the new data indication information #2".
  • the terminal device processes the value of the new data indication information #1 and the value of the new data indication information #2 for the data packet #2 or the data packet #1. , Case A, Case B, and Case C.
  • the terminal device transmits the retransmission data packet of the data packet #1, that is, the data packet #2 is the Retransmission packet for packet #1.
  • the terminal device transmits the retransmission packet of the data packet #1, That is, the packet #2 is a retransmission packet of the packet #1.
  • the relationship between the value of the new data indication information #1 and the value of the new data indication information #2 may correspond to the case of the new data indication information #1 in case 1-2 and case 2.
  • the relationship between the value and the value of the new data indication information #2 that is, the relationship between the two types of new data indication information in the case where the network device fails to receive the data packet #1.
  • the terminal device transmits an initial transmission packet different from the data packet #1, that is, the data packet #2 is an initial packet that is different from the packet #1.
  • the terminal device transmits the initial transmission data different from the data packet #1.
  • the packet that is, the packet #2 is an initial packet different from the packet #1.
  • the relationship between the value of the new data indication information #1 and the value of the new data indication information #2 may correspond to the value of the new data indication information #1 in the case 1-1 and the value
  • the new data indicates the relationship between the values of the information #2, that is, the relationship between the two types of new data indication information in the case where the network device successfully receives the data packet #1.
  • the terminal device retains the data packet #1 in the cache.
  • the terminal device reserves or does not clear the data packet #1 in the HARQ buffer corresponding to the first HARQ process ID.
  • the relationship between the value of the new data indication information #1 and the value of the new data indication information #2 may correspond to the new data indication information in case 1-2 and case 2.
  • the relationship between the value of #1 and the value of the new data indication information #2 that is, the relationship between the two types of new data indication information in the case where the network device fails to receive the data packet #1.
  • the terminal device sends the retransmission data packet of the data packet #1, and at the same time, the terminal device may also retain the data packet #1 in the cache.
  • the method further includes:
  • the terminal device determines the receiving status of the network device for the data packet #1 according to the value of the new data indication information #1 and the value of the new data indication information #2.
  • the reception status for the data packet #1 includes a correct response ACK or an error response NACK.
  • the method further includes:
  • the terminal device determines that the network device does not detect the data packet #1 according to the value of the new data indication information #1 and the value of the new data indication information #2.
  • the terminal device determines that the network device detects the data packet #1 and for the data packet #1
  • the receiving state is NACK, or the terminal device determines that the network device does not detect the data packet #1; if the value of the new data indicating information #1 is different from the value of the new data indicating information #2, the The terminal device determines that the network device detects the data packet #1 and the reception status for the data packet #1 is ACK.
  • the network device For the network device, if the network device fails to receive the data packet #1 (the network device detects the data packet #1 and the demodulation decoding fails, or the network device does not detect the data packet #1)
  • the value of the new data indication information #2 determined by the network device is the same as the value of the new data indication information #1; conversely, for the terminal device, if the new data indication information #2 is determined to be taken If the value is the same as the value of the new data indication information #1, it is considered that the network device is not able to correctly receive the data packet #1, that is, the network device receives the data packet #1 and receives the data packet #1.
  • the status is NACK, or it is considered that the network device does not detect the data packet #1, and can determine that it needs to reserve the data packet #1 in the cache or send the retransmission data packet of the data packet #1.
  • the network device successfully receives the data packet #1, the value of the new data indication information #2 determined by the network device is different from the value of the new data indication information #1.
  • the terminal device if it is determined that the value of the new data indication information #2 is different from the value of the new data indication information #1, it can be determined that it needs to transmit the retransmission data different from the data packet #1.
  • the packet is considered to be the network device correctly receiving the data packet #1, that is, the network device considers that the receiving state of the data packet #1 is ACK, and further can transmit an initial data packet different from the data packet #1.
  • FIG. 3 is a schematic diagram showing the behavior between a network device and a terminal device in a data transmission process according to an embodiment of the present invention.
  • the terminal device transmits a packet #3 corresponding to the first HARQ process number (ie, HARQ process number #H0) in subframe #n, and a new data indication corresponding to the packet #3
  • the network device correctly receives the data packet #3, and indicates the network device for the data packet by the HARQ feedback information.
  • the receiving state of #3 is ACK, and after receiving the HARQ feedback information, the terminal device transmits the HARQ process number #H0 in the GUL transmission mode on the subframe #n+8 (ie, the time unit #1).
  • the network device fails to detect the data packet #1, and at the same time, the network device schedules the terminal device to use the HARQ process number #H0 in the subframe #n+16 by using the indication information #1 on the subframe #n+12. (ie, the time unit #2) sends the packet #2.
  • the terminal device when the terminal device receives the new data indication After the information #2, the value of the new data indication information #2 is compared with the value of the new data indication information #1, and the value of the new data indication information #2 is determined and the new data indication information #1 is determined. If the value is the same, then the terminal device understands that the network device fails to receive the data packet #1 (or the network device receives NACK for the data packet #1 or does not detect the data packet #1, Then, the terminal device sends the retransmitted data packet of the data packet #1, or reserves the data packet #1 in the cache.
  • FIG. 4 is a schematic diagram showing another behavior between a network device and a terminal device in a data transmission process according to an embodiment of the present invention.
  • the terminal device transmits a packet #3 corresponding to the first HARQ process number (ie, HARQ process number #H0) in subframe #n, and the new data indication corresponding to the packet #3
  • the network device correctly receives the data packet #3, and indicates the network device for the data packet by the HARQ feedback information.
  • the receiving state of #3 is ACK, and after receiving the HARQ feedback information, the terminal device transmits the HARQ process number #H0 in the GUL transmission mode on the subframe #n+8 (ie, the time unit #1).
  • the network device successfully receives the data packet #1, and the network device schedules the terminal device to use the HARQ process number #H0 in the subframe #n+16 by using the indication information #1 on the subframe #n+12 ( That is, the packet #2 is transmitted on the time unit #2).
  • the reception status is ACK
  • the terminal device does not perform processing on the data packet according to the relationship between the value of the new data indication information #1 and the value of the new data indication information #2, and always according to the The indication of the indication information #1 (regardless of the value of the new data indication information #2) transmits a new data packet, which in particular causes a loss of the data packet #1.
  • the terminal device after receiving the first indication information for instructing the terminal device to send the second data packet corresponding to the first HARQ process ID, the terminal device passes the second data according to the second data packet.
  • the terminal device When the packet is used, the terminal device does not perform the transmission of the initial data packet according to the first indication information, but sends the retransmitted data packet of the first data packet, and does not clear the first in the cache. Packet, the first packet but remain in the cache, reducing the loss of the first packet, improving the reliability of data transmission, but also improve the flexibility of the system.
  • the method before the sending, by the terminal device, the first data packet to the network device by using the unscheduled permission uplink GUL transmission manner on the first time unit, the method further includes:
  • the fourth new data indication information is a first preset value
  • the terminal device determines a semi-static time domain resource corresponding to the GUL transmission mode according to the control information, where the first time unit belongs to the semi-static time domain resource.
  • the size of the new data indication information #4 (ie, an example of the fourth new data indication information) may be 1 bit, and the value of the new data indication information #1 corresponds to two states, namely “0” and "1", the first preset value may be “0" or "1".
  • the first preset value is “0” or “1”.
  • the new data indicates that the information #4 is NDI information. More specifically, the new data indication information #4 is an NDI field in the control information.
  • the control information is used to activate or reactivate the terminal device to send information through the GUL transmission mode, and the control information is used to configure the GUL transmission mode.
  • Semi-static time domain resources It can also be understood that the control information is used to enable the terminal device to send information in the GUL transmission manner on the semi-static time domain resource, that is, the terminal device can start to start after receiving the control information.
  • the semi-static time domain resource transmits information in a GUL transmission manner. Therefore, the terminal device can determine the semi-static time domain resource according to the control information, so that the data packet #1 is sent by using the GUL transmission mode using the time unit #1 in the semi-static time domain resource.
  • the semi-static time domain resource may be a persistent time domain resource. Specifically, when the terminal device receives the control information, and activates or reactivates the terminal device to send information according to the GUL transmission manner according to the control information, the semi-static time domain resource corresponding to the GUL transmission mode is persistent. That is, even if the terminal device receives the control information for a long period of time, there is still a time domain resource corresponding to the GUL transmission mode until the next reactivation control information is received again.
  • the semi-static time domain resource, or receiving a deactivated control information informs the terminal device that the information is no longer transmitted in the GUL transmission mode. In contrast, dynamic scheduling based on UL grant information is only valid for a limited number of time units.
  • the semi-static time domain resources described herein are the available GUL radio resources as described above.
  • the semi-static time domain resource may be a periodic time domain resource.
  • Each period can contain one time unit, or can contain at least two time units, or all time units within the period.
  • the semi-static time domain resource when the semi-static time domain resource activated or reactivated by the control information is the first 2 ms in each period, the semi-static time domain resource includes the subframe ⁇ #1, #2 ⁇ , ⁇ #5,#6 ⁇ , ⁇ #9,#10 ⁇ ,... ⁇ #4K+1,#4K+2 ⁇ ,...etc, K is a positive integer; semi-static time domain resource when the control information is activated or reactivated For the first 1 ms in each cycle, the semi-static time domain resource includes subframes ⁇ #1 ⁇ , ⁇ #5 ⁇ , ⁇ #9 ⁇ , ...
  • the semi-static time domain resource activated or reactivated by the control information is the 1 ms in each period, the semi-static time domain resource includes a subframe ⁇ #1 ⁇ , ⁇ #2 ⁇ , ⁇ #3 ⁇ ,... ⁇ #K ⁇ ,...etc.
  • the period is a period configured by the network device by using high layer signaling; the period may also be a predefined value, for example, 1 ms.
  • the semi-static time domain resource may also be an aperiodic time domain resource that satisfies the persistence feature.
  • the control information when the terminal device is not activated to transmit information by using the GUL transmission manner, the control information is used to activate the GUL, and after receiving the control information, the terminal device may start any of the semi-static time domain resources.
  • the information is sent in a GUL transmission manner on a time unit; when the terminal device has been previously activated to transmit information using the GUL transmission mode, the control information is used to reactivate the GUL, and the control information is used to configure the terminal device to use the updated device.
  • the semi-static time domain resource (different from the previous GUL transmission), the terminal device may start transmitting information in GUL transmission on any of the updated semi-static time domain resources.
  • activation or reactivation means that the activation or reactivation of the terminal device can transmit information in GUL transmission using all HARQ process numbers available for GUL transmission.
  • all the HARQ process IDs that can be used for GUL transmission may be predefined, or the network device may be configured by higher layer signaling.
  • activation or reactivation means that the terminal device can activate or reactivate the information in a GUL transmission manner using a specific at least one HARQ process number.
  • the specific at least one HARQ process number is indicated by the control information.
  • control information includes not only the new data indication information #4 but also other information, such as a field for indicating the terminal device power adjustment (TPC), for indicating frequency domain resource allocation. At least one of the fields of (Resource Allocation, RA).
  • the control information when the control information is used to activate or reactivate the terminal device to send information through the GUL transmission mode, not only the value of the new data indication information #4 is a preset value, but the value of other information may also be For example, the preset value of the TPC field is a state of all “0”, and the preset value of the RA field is a state of all “0”. It should be understood that when the at least one field including the new data indication #4 is its corresponding preset value, the control information is used to activate or reactivate the terminal device to send information by using the GUL transmission mode.
  • control information is not only used to activate or reactivate the semi-static time domain resource corresponding to the GUL transmission mode, but also to configure other information corresponding to the GUL transmission mode.
  • the other information corresponding to the GUL transmission mode includes at least one of a frequency domain resource corresponding to an uplink data packet transmitted by using the GUL transmission mode, a generation format, a pilot format, and a feedback format.
  • the generating format corresponding to the uplink data packet includes: a manner in which the terminal device generates an uplink data packet by using a modulation code, for example, including at least one of a modulation and coding scheme (MCS) and a TBS; and the pilot format corresponding to the uplink data packet includes: The manner of the pilot sequence sent by the terminal device, for example, the sequence information of the DMRS corresponding to the PUSCH where the uplink data packet is located; the feedback format of the uplink data packet includes: a manner in which the terminal device sends the feedback information, for example, whether to feed back CSI information, and downlink At least one of HARQ-ACK information.
  • MCS modulation and coding scheme
  • the control information may be semi-static UL grant information (referred to as semi-static UL grant information #1 for convenience of distinction and understanding), and at the same time, in order to distinguish the control information (or the semi-static UL)
  • the grant information #1) and the indication information #1 respectively use different scrambling for the two types of information, that is, the control information (or the semi-static UL grant information #1) is adopted.
  • the RNTI #1 (that is, an example in the first RNTI) is scrambled, and the indication information #1 is scrambled by using the RNTI #2 (that is, an example in the second RNTI), and the RNTI #1 and the RNTI #2 are scrambled.
  • the RNTI #1 may be a Semi-Persistant Scheduling (SPS) C-RNTI or a GUL C-RNTI or a G-RNTI
  • the RNTI #2 may be a C-RNTI.
  • SPS Semi-Persistant Scheduling
  • the method before the sending, by the terminal device, the first data packet to the network device by using the unscheduled permission uplink GUL transmission manner on the first time unit, the method further includes:
  • the fourth new data indication information is a first preset value
  • the terminal device determines the first new data indication information
  • the terminal device ignores the fourth new data indication information.
  • the new data indication information #4 when the value of the new data indication information #4 is the first preset value, it also indicates that the uplink data packet (including the data packet #1) is an initial data packet.
  • the new data since the new data indication information #1 is determined by the transmission relationship between the packet #1 and the packet #3 and the new data indication information #3 corresponding to the packet #3 (as described later), not a preset value, so the new data indicates the initial transmission or retransmission of the data packet indicated by the information #1 and the initial transmission of the data packet indicated by the new data indication information #4. Or the retransmission may be inconsistent, so when the terminal device determines the new data indication information #1, the new data indication information #4 is ignored.
  • the terminal device does not determine the new data indication information #1 according to the new data indication information #4 carried in the control information, but the terminal device corresponds to the GUL transmission mode carried in the control information.
  • the other information (the frequency domain resource of the uplink packet described above, at least one of a generation format, a pilot format, and a feedback format) transmits the packet #1.
  • the value of the fourth new data indication information is a second preset value, where the fourth data packet is used by the terminal device The data packet sent by the GUL transmission mode, the second preset value is different from the first preset value.
  • the value of the new data indication information #4 has two types, that is, the first preset value described above and the second preset value here, and the new number indicates different value pairs of the information #4.
  • the different functions of the information should be controlled, that is, when the value of the new data indication information #4 is the first preset value, the control information is used to activate or reactivate the terminal device to send information through the GUL transmission mode, where When the value of the data indication information #4 is the second preset value, the control information is used to schedule the retransmission packet of the data packet #4 (ie, an example of the fourth data packet) (or, for the control information) Retransmitting the data packet, or saying that the control information is used to instruct the terminal device to retransmit the data packet #4, or the control information is used to schedule the terminal device to send the data packet #4.
  • the control information is used to schedule the retransmission packet of the data packet #4 (ie, an example of the fourth data packet) (or, for the control information) Retransmitting the data packet, or
  • the value of the new data indication information #1 corresponds to two states, namely “0” and “1”.
  • the first preset value is “0”
  • the second preset value is “1”.
  • the first preset value is "1”
  • the second preset value is "0”.
  • the new data indication #4 corresponds to the second preset value
  • the control information further includes other corresponding presets.
  • the field of the value For example, at least one of the above TPC field and RA field.
  • the preset value corresponding to the other field in the control information may be the same as or different from the activation or reactivation.
  • the terminal device can directly determine, according to the value of the new data indication information #4, that it needs to send the data packet #4.
  • Retransmission data packet since the value of the new data indication information #2 described above, since the value of the new data indication information #2 is not preset, but is related to the network device for the data packet #1 The receiving status is related, and the value of the new data indication information #2 is based on the value of the new data indication information corresponding to the previous data packet (ie, the value of the new data indication information #1 or the new data indication information #3 Determined, for the terminal device, "the terminal device sends a retransmission data packet or a first transmission data packet according to the value of the new data indication information #1 and the value of the new data indication information #2" It is not possible to determine that it is transmitting an initial transmission packet or retransmitting a data packet based solely on the new data indication information #2.
  • the network device may use the HARQ feedback information in addition to the semi-static UL grant information and the dynamic UL grant information for the indication of the receiving status of the uplink data packet.
  • the uplink data packet may be sent according to a SUL transmission manner, or may be sent based on a GUL transmission manner.
  • the indication that the previous uplink transmission corresponding to a certain HARQ process ID (or the previous data packet corresponding to the HARQ process ID) is correctly received by the network device The information does not include the scheduling information of the network device scheduling terminal device using the HARQ process ID for initial transmission or retransmission.
  • the HARQ feedback information includes a receiving state corresponding to the HARQ process in the at least one TTI, where the at least one TTI has a predefined time association with the TTI where the HARQ feedback information is located or a time indication indicated by the network device.
  • the HARQ feedback information uses a PHICH channel and a corresponding HARQ feedback mode, for example, a receiving state of a HARQ process (or a data packet) on the TTI #n is on a HARQ feedback information of TTI #n+k (k>0). Instructions.
  • the HARQ feedback information includes a receiving state of each HARQ process in a HARQ process set (including at least one HARQ process, including a HARQ process corresponding to the first HARQ process ID), where the HARQ process set may be
  • the configuration of the network device can also be predefined or fixed.
  • the HARQ feedback information indicates a receiving state of each HARQ process in the HARQ process set in a bit map manner.
  • the HARQ feedback information is also referred to as an unscheduled permission downlink control information (Grantfree- Downlink Control Information, G-DCI).
  • the ACK is represented by a binary '1' and the NACK is represented by a binary '0'.
  • the HARQ process contains the HARQ process (represented by the HARQ process number) ⁇ #0, #1, #2, #3 ⁇ , if #0, #1 are correctly received, #2, #3 are received incorrectly.
  • the bit map contained in the G-DCI is ⁇ 1, 1, 0, 0 ⁇ .
  • the terminal device may perform initial transmission or retransmission in the GUL manner. For example, when the G-DCI indicates that the receiving status corresponding to a certain HARQ process ID is ACK, the terminal device may perform the GUL transmission mode in the next transmission.
  • the new data packet is transmitted by using the HARQ process ID.
  • the terminal device may use the HARQ process ID when transmitting data through the GUL transmission mode for the next transmission. Retransmit the packet corresponding to the previous uplink transmission.
  • the foregoing describes the content related to the GUL transmission mode of the embodiment of the present invention (that is, the semi-static UL grant information #1 configuring the transmission format #1 of the GUL transmission mode and the RNTI #1 for scrambling the semi-static UL grant information.
  • the semi-static UL grant information #1 configuring the transmission format #1 of the GUL transmission mode and the RNTI #1 for scrambling the semi-static UL grant information.
  • Etc. in the following, for the above case A, the specific situation in which the terminal device transmits the retransmission data packet of the data packet #1 is described.
  • the terminal device sends the retransmission data packet of the data packet #1, and there are two cases, that is, case A-1 and case A-2.
  • the terminal device sends the second data packet, where the second data packet is the first Retransmission packets for packets, including:
  • the terminal device sends the second data packet on the second time unit according to the first indication information.
  • the terminal device determines that the value of the new data indication information #2 is the same as the value of the new data indication information #1 by comparing the two new data indication information, and may further need to send the data packet #1 by itself. Retransmitting the data packet, then the terminal device can directly transmit the retransmission data packet of the data packet #1 on the time unit #2 according to the indication information #1, or the terminal device according to the indication information# 1. The retransmission packet of the packet #1 is transmitted using the transport format #2 corresponding to the packet #2.
  • the terminal device when the terminal device sends the retransmission data packet of the first data packet, the first data packet may be retransmitted on the second time unit according to the indication of the first indication information, and effectively utilized.
  • the current signaling reduces the signaling overhead.
  • the terminal device may perform the retransmission of the data packet #1 according to the indication information #1, and may also ignore the indication information #1, thereby performing the data packet according to other information or by other transmission methods. 1 retransmission.
  • the terminal device may perform retransmission of the data packet #1 through a new GUL PUSCH, specifically, a time unit (included in the available GUL time domain resource) that can be used for GUL transmission after the time unit #2. Retransmitted in GUL transmission mode. Further, the RV version number for retransmitting the packet #1 coincides with the RV version number corresponding to the packet #1, for example, RV#0.
  • the terminal device may perform retransmission according to the other dynamic UL grant information.
  • the terminal device sends the second data packet according to the value of the first new data indication information and the value of the second new data indication information, including:
  • the terminal device sends the second data packet on the second time unit according to the first indication information, where the second data packet is a retransmission data packet of the first data packet.
  • the transport block size TBS corresponding to the packet #1 (denoted as TBS#1 for ease of distinction and understanding) and the TBS corresponding to the packet #2 (for convenience of distinction and understanding, denoted as TBS#2) are the same.
  • the indication information #1 the retransmission packet of the data packet #1 is sent, the loss of the valid data information does not occur and the complexity of the terminal device is increased, because the indication information #1
  • the transmission format #2 included in the transmission corresponds to the TBS configured when the network device schedules the packet #2.
  • the terminal device when the terminal device sends the retransmission data packet of the data packet #1, the relationship between the TBS#1 and the TBS#2 may be corresponding to the network device described in the foregoing.
  • the TBS #1 and the TBS #2 are necessarily the same. This is because, in this case, the network device knows the existence of the data packet #1, and considering that only two data packets having the same TBS can be retransmitted and merged, the network device is scheduling the data packet. At 2 o'clock, the TBS #2 corresponding to the packet #2 must be the same as the TBS #1.
  • the network device If the network device does not detect the data packet #1, or the network device does not detect the existence of the data packet #1, assuming that the network device described above successfully receives the data packet #3, then The network device schedules the terminal device to send the initial data packet by using the first HARQ process ID. In this case, since the network device does not know the existence of the data packet #1, the TBS #1 may be the same as or different from the TBS #2.
  • the terminal device does not need to distinguish the intention of the network device (ie, the above two cases: the network device detects the data packet #1 but does not Successfully receiving; and, the network device does not detect the data packet #1), when transmitting the retransmission data packet of the data packet #1, as long as the TBS#1 is the same as the TBS#2, the terminal device according to the The instruction information #1 transmits the retransmission packet of the packet #1 on the time unit #2.
  • the terminal device when the TBS#1 is different from the TBS#2, the network device does not detect the data packet #1, and the resource (or the transmission format #2) scheduled by the network device matches the TBS#. 2, without matching TBS#1, since the terminal device cannot transmit data on a resource that does not match TBS#1, the terminal device can ignore the indication information #1 and not transmit the information on the time unit #2.
  • the weight of the data packet #1 is transmitted according to the relationship between the TBS #1 and the TBS #2 by using the network device in conjunction with the receiving situation of the data packet #1 in FIG. 5 to FIG. The process of passing data packets.
  • FIG. 5 is a schematic diagram showing another behavior between a terminal device and a terminal device during data transmission according to an embodiment of the present invention.
  • the terminal device transmits a packet #3 corresponding to the first HARQ process number (ie, HARQ process number #H0) in subframe #n, and a new data indication corresponding to the packet #3
  • the network device correctly receives the data packet #3, and indicates the network device for the data packet by the HARQ feedback information.
  • the receiving state of #3 is ACK, and after receiving the HARQ feedback information, the terminal device transmits the HARQ process number #H0 in the GUL transmission mode on the subframe #n+8 (ie, the time unit #1).
  • the network device detects the data packet #1, but the demodulation decoding fails. At the same time, the network device schedules the terminal device to use the HARQ process number #H0 in the sub-frame #n+12 through the indication information #1.
  • the packet #2 is transmitted on frame #n+16 (ie, the time unit #2).
  • FIG. 6 is a schematic diagram showing another behavior between a network device and a terminal device in a data transmission process according to an embodiment of the present invention.
  • the network device fails to detect the data packet #1, and at the same time, the network device schedules the terminal device to use the HARQ process number #H0 in the subframe #n+16 by using the indication information #1 on the subframe #n+12. (ie, the time unit #2) sends the packet #2.
  • FIG. 7 is a schematic diagram showing another behavior between a network device and a terminal device in a data transmission process according to an embodiment of the present invention.
  • the network device fails to detect the data packet #1, and at the same time, the network device schedules the terminal device to use the HARQ process number #H0 in the subframe #n+16 by using the indication information #1 on the subframe #n+12. (ie, the time unit #2) sends the packet #2.
  • the new data indication information #2 is compared with the value of the new data indication information #1 to determine the new The value of the data indication information #2 is the same as the value of the new data indication information #1, then the terminal device understands that the network device fails to receive the data packet #1, and at the same time, because TBS#2 is related to TBS#2 Therefore, the terminal device does not transmit the data packet #2 according to the indication information #1, and therefore does not occupy the subframe #n+16 to transmit the data information.
  • the terminal The device sends the retransmission data packet of the first data packet on the second time unit according to the first indication information, which not only can effectively utilize the current signaling, but also reduces signaling overhead, and can also effectively improve the first
  • the transmission efficiency of the data packet reduces the complexity of the terminal device.
  • the terminal device may also transmit the retransmission data of the data packet #1 on the time unit #2 according to the indication information #1. package.
  • the packet #1 can be divided and transmitted in accordance with the TBS #2 indicated by the instruction information #1.
  • the new data transmitted by the data packet #1 and the upper layer may be reorganized into a new data packet, and the TBS of the new data packet is made.
  • the new packet is transmitted in the same manner as TBS#2 indicated by the instruction information #1.
  • the version number of the redistributed version (RV) of the retransmission is the same as the RV version number corresponding to the packet #1, for example, RV#0.
  • the terminal device can determine the TBS #2 according to the indication information #1.
  • the indication information #1 indicates the physical resource corresponding to the data packet #2 and a modulation and coding scheme (MCS), and the TBS#2 can be obtained by mapping the physical resource and the MCS.
  • MCS modulation and coding scheme
  • the terminal device can determine the TBS #1 according to the configuration information (or the control information described above) configuring the data packet #1.
  • the configuration information includes a physical resource corresponding to the data packet #1 and MCS information, and the TBS #1 can be obtained by mapping the physical resource and the MCS.
  • the terminal device may determine the TBS #1 autonomously, and the terminal device may report the TBS #1, or the physical resource and the MCS used to map the TBS to the network device.
  • the terminal device ignores the first indication information if the value of the first new data indication information is the same as the value of the second new data indication information.
  • the terminal device prohibits or stops transmitting the data packet #2 based on the indication information #1, or the terminal device does not perform the packet of the data packet #2 according to the indication of the indication information #1, or The terminal device does not transmit the data packet #1 on the time unit #1 according to the instruction of the indication information #1.
  • the terminal device when the terminal device ignores the indication information #1, the terminal device may or may not clear the data packet #1 in the HARQ cache corresponding to the first HARQ process ID.
  • the terminal device ignores the indication information #1, the retransmission of the data packet #1 may be performed according to other information or in other transmission manners, as described above, and details are not described herein.
  • the network device schedules the terminal device to send the data packet #2 through the indication information #1, and may also correspond to
  • the network device described herein is directed to the second and third cases of the reception of the packet #1. details as follows:
  • the network device detects the data packet #1, and if the data packet #1 fails to receive, for example, the network device detects the data packet #1, but for the data packet #1 Demodulation and decoding fails.
  • the network device schedules the data packet #2 sent by the terminal device to be a retransmission data packet of the data packet #1.
  • the network device may have two types of data packets. The mode schedules the terminal device to send the retransmission data packet of the data packet #1.
  • the network device schedules the terminal device to transmit the retransmission data packet of the data packet #1 by using semi-static UL grant information (referred to as semi-static UL grant information #2 for convenience of distinction and understanding).
  • semi-static UL grant information #2 for convenience of distinction and understanding
  • the semi-static UL grant #2 functions similarly to the semi-static UL grant #1 for scheduling the retransmission packet of the packet #4.
  • the semi-static UL grant #2 is scrambled using RNTI #1.
  • the terminal device when the network device schedules the terminal device to perform retransmission of the data packet #1, the terminal device does not receive the indication information #1 and the new data indication information #2.
  • the indication information #1 and the new data indicate information #2.
  • the network device detects that the network device detects the data packet #2 by using the indication information #1.
  • the existence of the data packet #1 the network device schedules the terminal device to retransmit the data packet #1 through the semi-static UL grant information #2. Therefore, when the terminal device receives the indication information #1 (and the new data indication information #2), it must be due to the third case that the network device does not detect the existence of the data packet #1 ( The network device hopes that the data packet #2 scheduled by the indication information #1 and the new data indication information #2 is an initial data packet, that is, it can be determined that the network device does not detect the data packet #1. Considering that the probability that the TBS #2 is the same as the TBS #1 is small, the terminal device can directly ignore the indication information #1 for convenience of implementation.
  • FIG. 8 is a schematic diagram showing another relationship between a network device and a terminal device in a data transmission process according to an embodiment of the present invention. That is, in the second case, the network device schedules the behavior between the terminal device and the network device in the process of transmitting the retransmission data packet of the data packet #1 by the mode 1.
  • the network device correctly receives the data packet #3, and indicates that the receiving state of the network device for the data packet #3 is ACK by the HARQ feedback information, the terminal device
  • the data packet #1 corresponding to the HARQ process number #H0 is transmitted by the GUL transmission mode on the subframe #n+8 (ie, the time unit #1)
  • the data packet # 1 is an initial transmission packet different from the packet #3
  • TBS#1 1000 bits corresponding to the packet #1.
  • the network device schedules the terminal device to use only the semi-static UL grant information #2 for a single retransmission of the data packet corresponding to the first HARQ process ID.
  • the network device schedules the terminal device to perform retransmission of the data packet #1 by the indication information #1 and the new data indication information #2.
  • the network device can also schedule the retransmission of the data packet #1 in mode 2.
  • the network device can obtain The TBS #1, therefore, the TBS #2 corresponding to the data packet #2 scheduled by the indication information #1 transmitted by the network device must be the same as the TBS #1.
  • the network device does not detect the data packet #1, and the data packet is successfully received for the data packet #3, the network device sends the indication information #1 and the new data indication information #2, and It is desirable to schedule the terminal device to transmit an initial data packet different from the data packet #3 using the first HARQ process number.
  • the TBS #2 included in the indication information #1 may be the same as or different from the TBS #1 for the packet #1.
  • the terminal device may determine that the network device does not detect the data packet #1.
  • FIG. 9 and FIG. 10 are respectively schematic diagrams showing another behavior between a network device and a terminal device in a data transmission process according to an embodiment of the present invention. That is, the network device schedules the behavior between the terminal device and the network device in the process of transmitting the retransmission data packet of the data packet #1 by using the mode 1 and the mode 2.
  • the network device schedules the terminal device to use only the semi-static UL grant information #2 for a single retransmission of the data packet corresponding to the first HARQ process ID.
  • the network device since the network device does not detect the data packet #1, the network device schedules the terminal device to use the HARQ process number #H0 in the sub-frame #n+12 by using the indication information #1.
  • the retransmission packet of the packet #1 is transmitted on the frame #n+16 (ie, the time unit #2).
  • the new data indication information #2 is compared with the value of the new data indication information #1 to determine the new The value of the data indication information #2 is the same as the value of the new data indication information #1, and then the terminal device understands that the network device fails to receive the data packet #1.
  • the terminal device considers that the network device uses only the semi-static UL grant information #2 to perform retransmission scheduling of the first HARQ process number, so the terminal device It can be understood that the scheduling performed by the network device by the indication information #1 is that some error condition occurs, and therefore, the retransmission packet of the data packet #1 is not transmitted on the subframe #n+16 according to the indication information #1. Or, the terminal device ignores the indication information #1.
  • the network device since the network device does not detect the data packet #1, the network device schedules the terminal device to use the HARQ process number #H0 through the indication information #1 on the subframe #n+12.
  • the retransmission packet of the packet #1 is transmitted on the subframe #n+16 (ie, the time unit #2).
  • the new data indication information #2 is compared with the value of the new data indication information #1 to determine the new The value of the data indication information #2 is the same as the value of the new data indication information #1, and then the terminal device understands that the network device fails to receive the data packet #1.
  • the terminal device considers that the network device uses only the semi-static UL grant information #2 to perform retransmission scheduling of the first HARQ process number, so the terminal device It can be understood that the scheduling performed by the network device by the indication information #1 is that some error condition occurs, and therefore, the retransmission packet of the data packet #1 is not transmitted on the subframe #n+16 according to the indication information #1. Or, the terminal device ignores the indication information #1.
  • the value of the first new data indication information is the same as the value of the second new data indication information, and the transport block size TBS corresponding to the first data packet is compared with the TBS corresponding to the second data packet.
  • the terminal device ignores the first indication information.
  • the indication information #1 is ignored only when the TBS#2 is different from the TBS#1.
  • the network device may also pass the mode 2, that is, the indication information.
  • #1 and the new data indication information #2 schedule the terminal device to perform retransmission of the data packet #1, and the TBS#2 and the TBS#1 must be the same at this time.
  • the network device may also schedule the terminal device to send the detected retransmission data packet of the data packet #1 by using mode 1, and when the network device does not detect the data packet #1, the indication information is passed.
  • #1 (and the new data indication information #2) schedule retransmission, at which time the TBS #2 may be the same as or different from the TBS #1.
  • the terminal device when the terminal device receives the indication information #1 (and the new data indication information #2), it may be the second case corresponding to the network device (the network) The device really wants to schedule retransmission. It may also correspond to the third case of the network device (the network device does not detect the data packet #1 and wants to schedule the initial transmission). At this time, in order to efficiently utilize resources, the terminal device does not It is necessary to distinguish the intention of the network device, and when the TBS #2 is the same as the TBS #1, the terminal device sends the data packet #2 as the data packet on the time unit #2 according to the indication information #1.
  • the retransmission data packet of #1 that is, as described above for FIG. 5 and FIG.
  • the terminal device can directly transmit the data packet #2 on the subframe #n+16 (ie, the time unit #2) according to the indication information #1; and when the TBS When #2 is different from the TBS#1, the resources scheduled by the network device match TBS#2 at this time and do not match TBS#1 because The resource indicated by the indication information #1 (or the transmission format #2) cannot bear the TBS #1 in a matching manner, so the indication information #1 is ignored in this case, that is, as described above for FIG.
  • the terminal device uses the first data in the HARQ cache corresponding to the first HARQ process ID.
  • the package returns to the top.
  • the terminal device clears the original data in the HARQ buffer (ie, the packet #1). Specifically, the terminal device may re-execute the MAC layer group packet and perform new data transmission, that is, the terminal device stores the new data packet (referred to as data packet #5 for convenience of distinguishing and understanding) into the HARQ cache. And proceed to the initial transmission of the packet #5.
  • the new data packet referred to as data packet #5 for convenience of distinguishing and understanding
  • the terminal device and the first HARQ are The first data packet in the HARQ buffer corresponding to the process number is returned to the upper layer.
  • the terminal device When the terminal device performs the initial transmission of the new data packet #5 corresponding to the first HARQ process ID, the terminal device may perform the first HARQ process number corresponding to the first HARQ process number according to the indication information #1. The initial transmission of the packet #5.
  • the terminal device may perform initial transmission of the data packet #4 in the HARQ buffer by using another transmission manner other than the indication information #1, including other dynamic UL grant information or a new GUL PUSCH.
  • the method further includes:
  • the transmission relationship includes: the third data packet is an initial data packet different from the first data packet, or the third data packet is a retransmission data packet of the first data packet, the third new packet
  • the data indication information is used to indicate that the third data packet is an initial data packet or a retransmission data packet, where the third data packet is used by the network device to schedule a data packet sent by the terminal device on a third time unit, the third data packet.
  • the packet corresponds to the first HARQ process number, which is temporally located before the first time unit.
  • the terminal device determines, according to the transmission relationship between the third data packet and the first data packet, and the value of the third new data indication information corresponding to the third data packet, the first new data indication The value of the information, where the third data packet is a data packet sent by the terminal device on the third time unit.
  • the new data indication information #1 is determined by the terminal device and sent to the network device, and then, when determining the value of the new data indication information #1, the terminal device needs to be based on the time unit.
  • #2 The transmission relationship between the data packet sent by the terminal device or scheduled by the network device (ie, the third data packet, denoted as packet #3) and the data packet #1 and the corresponding data packet #
  • the new data indication information #3 of 3 determines the value of the new data indication information #1.
  • the data packet #3 here is the same data packet as the data packet #3 described above.
  • the new data indication information #3 and the new data indication information #3 described above are similar. It is also the same data packet.
  • the terminal device before determining the value of the new data indication information #1, the terminal device needs to determine a transmission relationship between the data packet #3 and the data packet #1, and the specific manner may be as follows:
  • the terminal device may use the indication information of the HARQ receiving status of the data packet #3 that is fed back by the network device, that is, the third data packet is an initial data packet different from the first data packet.
  • the third data packet is a retransmission data packet of the first data packet, or, according to the information about the HARQ reception status of the data packet #3 fed back by the network device, determining, by the network device, the network device for the data packet # The receiving status of 3.
  • the terminal device may determine the transmission relationship according to the UL grant information sent by the network device, or the terminal device may determine, according to the UL grant information sent by the network device, the HARQ receiving status of the network device for the data packet #3 (ie, Whether the network device successfully receives the packet #3).
  • the UL grant information schedules the terminal device to retransmit the data packet #3
  • the data packet #1 is a retransmission data packet of the data packet #3
  • the packet #1 is the initial packet of the packet #3.
  • the terminal device may determine the transmission relationship according to the HARQ feedback information sent by the network device, where the description of the HARQ feedback information is as described above, and details are not described herein. Specifically, when the HARQ reception status corresponding to the data packet #3 (or the first HARQ process) is ACK in the HARQ feedback information sent by the network device, the data packet #1 is different from the data packet #3.
  • the terminal device determines, according to the transmission relationship between the data packet #3 and the data packet #1 and the value of the new data indication information #3, the process of determining the value of the new data indication information #1 is as follows: :
  • the terminal device determines that the value of the first new data indication information is the same as the value of the third new data indication information;
  • the terminal device determines that the value of the first new data indication information is different from the value of the third new data indication information. different.
  • the data packet #3 may be a data packet scheduled by the network device, that is, the data packet #3 schedules the terminal device for the network device in time unit #3 (ie, the first
  • the data packet sent on the example of the three-time unit may be sent to the terminal device based on the actual situation or some special considerations, or may not be sent (for example, The terminal device does not successfully transmit the data packet #3) due to failure of the LBT failure to preempt the channel.
  • the terminal device can determine the new data indication information #1 based on the value of the data packet #3 and the new data indication information #3.
  • the data packet #3 is a data packet scheduled by the network device, but the terminal device does not send the data packet #3, and directly sends the data packet #1 on the time unit #1
  • the The packet #3 is the same packet as the packet #1, or the packet #3 corresponds to the same pre-encoding block as the packet #1.
  • the data packet #3 is a data packet sent by the terminal device on the time unit #3, and the terminal device can send the data packet #3 in two ways, that is, Mode A and Mode B.
  • the data packet #3 is that the terminal device sends the network device by using a GUL transmission mode, and the new data indication information #3 is that the terminal device sends the network device.
  • the transmission mode of the data packet #3 is the same as the transmission mode of the data packet #1, and details are not described herein again.
  • the terminal device may determine the new number indication information only according to the transmission relationship between the data packet #3 and the data packet #1 transmitted according to the GUL transmission mode and the value of the corresponding new data indication information #3.
  • the value of #1 That is, if the data packet #3 is sent by the terminal device to the network device based on other transmission modes, the terminal device does not according to the data packet #3 and the corresponding new data indication information #3 transmitted based on other transmission modes.
  • the value of the new data indicates the value of the information #2.
  • the data packet #3 is sent by the terminal device to the network device according to the scheduling of the network device, and the new data indication information #3 is sent by the network device to the terminal device.
  • the transmission mode based on network device scheduling may also be referred to as SUL transmission.
  • the SUL transmission includes two modes: one is that the network device is scheduled by dynamic UL grant information, and the other is that the network device passes the semi-static UL grant information.
  • the semi-static UL grant information is scrambled using RNTI #1, similar to the manner in which semi-static UL grant information #1 and semi-static UL grant information #2 are scheduled for retransmission.
  • the terminal device may determine the new number indication information #1 only according to the transmission relationship between the data packet #3 based on the SUL transmission and the data packet #1 and the value of the corresponding new data indication information #3.
  • the value That is, if the data packet #3 is sent by the terminal device to the network device based on other transmission modes, the terminal device does not according to the data packet #3 and the corresponding new data indication information #3 transmitted based on other transmission modes.
  • the value of the new data indicates the value of the information #2.
  • the SUL transmission-based data packet #3 may be limited to the data packet actually sent by the terminal device, or may not be limited to whether the terminal device actually transmits, for example, the network device may also be scheduled to be sent by the terminal device. However, the terminal device does not actually send the data packet.
  • the data packet #3 is a previous data packet corresponding to the first HARQ process ID sent by the network device before the time unit #1.
  • the data packet #3 is a previous data packet corresponding to the first HARQ process ID sent by the terminal device before the time unit #1.
  • the data packet #3 is the latest one of the data packets corresponding to the first HARQ process number before the time unit #1.
  • the data packet #1 is the latest one of the data packets sent by the terminal device after the time unit #3 and corresponding to the first HARQ process number.
  • the time unit #3 is the most recent time unit corresponding to the first HARQ process number and temporally before the time unit #1.
  • the terminal device determines whether the data packet #3 is sent by the terminal device through the GUL transmission mode or the network device schedules the terminal device, the terminal device is based on the latest data packet ( Subsequent for convenience of description, assuming that the previous data packet of the packet #1 and the corresponding new data indication information determine the value of the new data indication information #2.
  • the terminal device can also determine the new data indication information #2 according to the transmission relationship between the previous data packet of the data packet #1 and the data packet #1 and the corresponding new data indication information, ie, The previous data packet is a data packet that does not limit the transmission mode.
  • the terminal device transmits the packet according to the GUL transmission mode.
  • the transmission relationship between a data packet and the data packet #1 and the value of the new data indication information corresponding to the previous data packet determine the value of the new data indication information #2.
  • the terminal device when the previous data packet of the data packet #1 is a data packet corresponding to the first HARQ process scheduled by the network device, the terminal device according to the previous data packet scheduled by the network device and the data packet The transmission relationship of #1 and the value of the new data indication information corresponding to the previous data packet determine the value of the new data indication information #2.
  • the previous data packet is limited to the data packet actually sent by the terminal device, that is, when the previous data packet of the data packet #1 is scheduled based on the network device and the terminal device actually sends the corresponding packet.
  • the data packet of the first HARQ process, the terminal device according to the network device scheduling and the transmission relationship between the previous data packet and the data packet #1 actually transmitted by the terminal device and the new data indication corresponding to the previous data packet The value of the information determines the value of the new data indication information #2.
  • the previous data packet does not limit whether the terminal device is actually sent.
  • the previous data packet may also be a data packet that the network device schedules the terminal device to send, but the terminal device does not actually send.
  • the following is a detailed description of the transmission relationship between the data packet #3 and the data packet #1 and the value of the new data indication information #3 in the implementation of the present invention in conjunction with FIG. 11 and FIG.
  • the data indicates the process of taking the value of information #1.
  • FIG. 11 is a schematic diagram showing another behavior between a network device and a terminal device in a data transmission process according to an embodiment of the present invention.
  • the terminal device transmits the data packet #3 corresponding to the first HARQ process number (ie, the HARQ process number #H0) in the subframe #n by the GUL transmission mode, and the new data indication information corresponding to the data packet #3
  • the network device correctly receives the packet #3, and indicates the HARQ feedback information corresponding to the packet #3.
  • the receiving status of the network device for the data packet #3 is ACK.
  • the terminal device determines the data packet #1 and the data packet #3 sent on the subframe #n+8 (ie, the time unit #1).
  • FIG. 12 is a schematic diagram showing still another behavior between a network device and a terminal device in a data transmission process according to an embodiment of the present invention.
  • the terminal device transmits the data packet #3 corresponding to the first HARQ process number (ie, the HARQ process number #H0) in the subframe #n by the SUL transmission mode (ie, based on the scheduling of the network device), and the data
  • the HARQ feedback information corresponding to the packet #3 indicates that the receiving status of the network device for the data packet #3 is ACK.
  • the terminal device determines the data packet #1 and the data packet #3 sent on the subframe #n+8 (ie, the time unit #1).
  • the terminal device can determine the new data indication information #2 according to the previous data packet of the data packet #1 and the corresponding new data indication information, that is,
  • the previous data packet is a data packet that does not limit the transmission mode.
  • the terminal device after receiving the first indication information for instructing the terminal device to send the second data packet corresponding to the first HARQ process ID, the terminal device passes the The value of the second new data indication information corresponding to the second data packet and the first new data indication information corresponding to the first data packet sent by the terminal device by using the GUL transmission, and performing buffer processing on the first data packet Or determining a transmission type of the second data packet, thereby transmitting the second data packet, where the second data packet is a retransmission data packet of the first data packet, or the second data packet is the first data packet.
  • the initial data packet with different data packets especially if the network device does not detect the first data packet, and the network device indicates, by using the first indication information, that the terminal device transmits the corresponding corresponding to the first HARQ process ID.
  • the terminal device When the data packet is initially transmitted, the terminal device does not perform the transmission of the initial data packet according to the first indication information, but sends the retransmission data packet of the first data packet, and the cache is no longer cleared.
  • a first data packet but to retain the first data packet cache, reducing the loss of the first packet, improving the reliability of data transmission, but also improve the flexibility of the system;
  • the terminal device when the terminal device sends the retransmission data packet of the first data packet, the first data packet may be retransmitted on the second time unit according to the indication of the first indication information, which is effective.
  • the current signaling is utilized, reducing signaling overhead;
  • the terminal device sends the retransmission data packet of the first data packet on the second time unit according to the first indication information, which not only can effectively utilize the current signaling, but also reduces signaling overhead, and can also effectively improve the The transmission efficiency of the first data packet reduces the complexity of the terminal device.
  • FIG. 13 shows a schematic block diagram of an apparatus 300 for data transmission in accordance with an embodiment of the present invention. As shown in FIG. 13, the apparatus 300 includes:
  • the sending unit 310 is configured to send, by using the scheduling-free uplink GUL transmission mode, the first data packet to the network device, where the first data packet corresponds to the first hybrid automatic repeat request HARQ process ID, the first data.
  • the packet corresponds to the first new data indication information, where the first new data indication information is used to indicate that the first data packet is an initial data packet or a retransmission data packet;
  • the receiving unit 320 is configured to receive first indication information that is sent by the network device, where the first indication information is used to indicate that the apparatus sends the second data packet on the second time unit, where the second data packet corresponds to the first HARQ process.
  • the second time unit is located in time after the first time unit, wherein the second data packet corresponds to the second new data indication information sent by the network device, where the second new data indication information is used to indicate the first
  • the second data packet is an initial data packet or a retransmitted data packet;
  • the sending unit 310 is further configured to: perform buffer processing on the first data packet, or send the second data packet according to the value of the first new data indication information and the value of the second new data indication information,
  • the second data packet is a retransmission data packet of the first data packet, or the second data packet is an initial transmission data packet different from the first data packet.
  • the apparatus for transmitting data after receiving the first indication information for instructing the apparatus to send the second data packet corresponding to the first HARQ process ID, the apparatus passes the second data according to the second data
  • the initial data packet in particular, when the network device does not detect the first data packet, and the network device indicates, by using the first indication information, that the device transmits the initial data packet corresponding to the first HARQ process ID, The device no longer performs the transmission of the initial data packet according to the first indication information, but sends the retransmission data packet of the first data packet, and does not clear the first data packet in the cache, but
  • the sending unit 310 is specifically configured to:
  • the second data packet Retransmit the packet for the first packet.
  • the sending unit 310 is specifically configured to:
  • the first data packet may be retransmitted on the second time unit according to the indication of the first indication information, and the information packet is effectively utilized.
  • Current signaling reduces signaling overhead.
  • the sending unit 310 is specifically configured to:
  • the transmission efficiency of the package reduces the complexity of the device.
  • the device further includes:
  • the processing unit 330 is configured to ignore the first indication information if the value of the first new data indication information is the same as the value of the second new data indication information.
  • the device further includes:
  • the processing unit 330 is configured to: the value of the first new data indication information is the same as the value of the second new data indication information, and the transport block size TBS corresponding to the first data packet corresponds to the second data packet. In the case where the TBS is different, the first indication information is ignored.
  • the sending unit 310 is specifically configured to:
  • the packet is an initial packet that is different from the first packet.
  • the device further includes:
  • the processing unit 330 is configured to determine, according to a transmission relationship between the third data packet and the first data packet, and a value of the third new data indication information corresponding to the third data packet, determining the first new data indication information.
  • the value of the transmission relationship includes: the third data packet is an initial data packet different from the first data packet, or the third data packet is a retransmitted data packet of the first data packet, where The third new data indication information is used to indicate that the third data packet is an initial data packet or a retransmission data packet, where the third data packet is used by the network device to schedule a data packet sent by the device on the third time unit.
  • the three data packets correspond to the first HARQ process number, and the third time unit is located in time before the first time unit.
  • processing unit 330 is specifically configured to:
  • the first data packet is a retransmission data packet of the third data packet, determining that the value of the first new data indication information is the same as the value of the third new data indication information;
  • the first data packet is an initial data packet different from the third data packet, determining that the value of the first new data indication information is different from the value of the third new data indication information.
  • the receiving unit 320 is further configured to:
  • control information sent by the network device where the control information includes fourth new data indication information, and when the control information is used to activate or reactivate the device to send information by using the GUL transmission manner, the fourth new data indicates information
  • the value is the first preset value; and the device further includes:
  • the processing unit 330 is configured to determine, according to the control information, a semi-static time domain resource corresponding to the GUL transmission mode, where the first time unit belongs to the semi-static time domain resource.
  • the value of the fourth new data indication information is a second preset value, where the fourth data packet is that the device passes the GUL.
  • the data packet sent by the transmission mode, the second preset value is different from the first preset value.
  • the sending unit 310 is further configured to:
  • the device 300 for data transmission may correspond to (for example, may be configured or be itself) the terminal device described in the above method 200, and each module or unit in the device 300 for data transmission is used to execute the terminal in the method 200 described above, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the apparatus 300 may include a processor, a transmitter and a receiver, a processor, a transmitter, and a receiver communication connection.
  • the apparatus further includes a memory, and the memory is communicatively coupled to the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the transmitting unit 310 in the device 300 shown in FIG. 13 may correspond to the transmitter.
  • the receiving unit 320 in the device 300 shown in FIG. 13 may correspond to the receiver.
  • the processing unit 330 in the device 300 shown in FIG. It can also be used with the processor.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • FIG. 14 shows a schematic block diagram of an apparatus 400 for data transmission in accordance with an embodiment of the present invention.
  • the apparatus 400 includes:
  • the sending unit 410 is configured to send the first indication information to the terminal device, where the first indication information is used to indicate that the terminal device sends the second data packet on the second time unit, where the second data packet corresponds to the first HARQ process ID. And the second data packet is corresponding to the second new data indication information that is sent by the device, where the second new data indication information is used to indicate that the second data packet is an initial data packet or a retransmission data packet, where the first data packet The first data packet is sent by the terminal device to the device by using the GUL transmission on the first time unit, where the first data packet corresponds to the first new data indication information, where the first data packet is corresponding to the first data packet.
  • the new data indication information is used to indicate that the first data packet is an initial data packet or a retransmission data packet, and the second time unit is located after the first time unit in time;
  • the receiving unit 420 is configured to receive a second data packet sent by the terminal device, where the second data packet is a retransmission data packet of the first data packet, or the second data packet is the first data packet Different initial packets.
  • the apparatus for data transmission may enable the terminal device after transmitting the first indication information for instructing the terminal device to send the second data packet corresponding to the first HARQ process ID to the terminal device. And determining, according to the value of the second new data indication information corresponding to the second data packet, and the first new data indication information corresponding to the first data packet sent by the terminal device by using the GUL transmission, for the first data packet Cache processing, or determining the type of the second data packet, thereby transmitting the second data packet, where the second data packet is a retransmitted data packet of the first data packet, or the second data packet is a first data packet with a different data packet, especially if the first data packet is not detected by the device, and the device indicates, by using the first indication information, that the terminal device transmits the initial corresponding to the first HARQ process ID.
  • the terminal device may not perform the transmission of the initial data packet according to the first indication information, but send the retransmission data packet of the first data packet, and the second data packet is not cleared.
  • the terminal device may not perform the transmission of the initial data packet according to the first indication information, but send the retransmission data packet of the first data packet, and the second data packet is not cleared.
  • Stored in the first data packet but to retain the first data packet cache, reducing the loss of the first packet, improving the reliability of data transmission, but also improve the flexibility of the system.
  • the second data packet is a retransmission data packet of the first data packet.
  • the second data packet is a data packet sent by the terminal device on the second time unit.
  • the value of the first new data indication information is the same as the value of the second new data indication information
  • the transport block size TBS corresponding to the first data packet is the same as the TBS corresponding to the second data packet.
  • the data packet sent by the terminal device on the second time unit is the same as the TBS corresponding to the second data packet.
  • the second data packet is initial data that is different from the first data packet. package.
  • the value of the first new data indication information and the third new data indication information corresponding to the third data packet is the same, wherein the third new data indication information is used to indicate that the third data packet is an initial data packet or a retransmission data packet, and the third data packet is used by the device to schedule the terminal device on the third time unit.
  • the third data packet is used by the device to schedule the terminal device on the third time unit.
  • the value of the first new data indication information and the third new data indication information corresponding to the third data packet are obtained.
  • the value is different, wherein the third new data indication information is used to indicate that the third data packet is an initial data packet or a retransmission data packet, and the third data packet is used by the device to schedule the terminal device on the third time unit.
  • the transmitted data packet, the third data packet corresponding to the first HARQ process number, the third time unit being located in time before the first time unit.
  • the device further includes:
  • the processing unit 430 is configured to determine, according to the receiving condition of the first data packet and the first new data indication information, the second new data indication information, when the device detects the first data packet.
  • the sending unit 410 is further configured to:
  • control information includes fourth new data indication information
  • the control information includes fourth new data indication information
  • the fourth new data indication information is a first preset value, where the first time unit belongs to a semi-static time domain resource corresponding to the GUL transmission mode.
  • the value of the fourth new data indication information is a second preset value, where the fourth data packet is used by the terminal device The data packet sent by the GUL transmission mode, the second preset value is different from the first preset value.
  • the receiving unit 410 is further configured to:
  • the device 400 for data transmission may correspond to (for example, may be configured or be itself) the network device described in the above method 200, and each module or unit in the device 400 for data transmission is used to perform the network in the method 200 described above, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the apparatus 400 may include a processor, a transmitter and a receiver, a processor, a transmitter, and a receiver communication connection.
  • the apparatus further includes a memory, and the memory is communicatively coupled to the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the transmitting unit 410 in the device 400 shown in FIG. 14 may correspond to the transmitter.
  • the receiving unit 420 in the device 400 shown in FIG. 14 may correspond to the receiver.
  • the processing unit 430 in the device 400 shown in FIG. It can also be used with the processor.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and the present invention should not be The implementation of the embodiments constitutes any limitation.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the embodiments of the present invention, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例提供了一种数据传输的方法和装置,该方法包括:终端设备在第一时间单元上通过GUL传输方式向网络设备发送第一数据包,该第一数据包对应第一HARQ进程号,该第一数据包对应第一新数据指示信息;该终端设备接收该网络设备发送的第一指示信息,该第一指示信息用于指示该终端设备在第二时间单元上发送第二数据包,该第二数据包对应该第一HARQ进程号,其中,该第二数据包对应该网络设备发送的第二新数据指示信息;该终端设备根据该第一新数据指示信息的取值与该第二新数据指示信息的取值,针对该第一数据包进行缓存处理,或,发送该第二数据包。从而,能够减少数据的丢包问题,提高数据传输的可靠性。

Description

一种数据传输的方法和装置
本申请要求于2017年6月2日提交中国专利局、申请号为201710409942.9、申请名称为“一种数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种数据传输的方法和装置。
背景技术
目前已知一种基于免调度的免调度许可上行(Grant free UpLink,GUL)传输机制,或者称为自主上行(Autonomous UL,AUL)传输机制,网络设备将GUL资源分配给终端设备,终端设备在进行上行传输时,不需要向网络设备发送调度请求(Scheduling Request,SR)以及等待网络设备发送上行授权(Up Link Grant,UL Grant)信息,可以直接通过GUL传输资源进行上行传输,从而减少传输时延。
现有技术中,通过GUL传输机制进行上行传输时,终端设备自主选择混合自动重传请求HARQ进行数据(为了便于理解与区分,记为第一数据)的传输,通过上行控制信息(例如,免调度许可上行控制信息)将与该第一数据对应的HARQ进程的进程号上报给网络设备,网络设备可以通过盲检测的方式获取该上行控制信息,进而确定该第一数据对应的HARQ进程的进程号,从而正确接收该第一数据。
但是,在该现有技术中,若网络设备对该上行控制信息的盲检测失败,网络设备不知道终端设备使用了该HARQ进程进行该第一数据的传输,从而不能正确接收该第一数据;同时,网络设备在之后的时段通过上行授权UL grant信息调度终端设备使用该HARQ进程进行初传(即,指示终端设备发送与该第一数据不同的第二数据),终端设备在接收到该UL grant信息后会认为使用该HARQ进程发送的该第一数据已经被网络设备正确接收,那么,终端设备不再发送该第一数据,而是根据该UL grant信息在该HARQ进程上发送该第二数据,从而造成了该第一数据的丢失,严重影响了数据传输的可靠性。
因而,需要提供一种技术,能够减少数据的丢包问题,从而提高数据传输的可靠性。
发明内容
本发明实施例提供了一种数据传输的方法和装置,能够减少数据的丢包问题,从而提高数据传输的可靠性。
第一方面,提供了一种数据传输的方法,所述方法包括:终端设备在第一时间单元上通过免调度许可上行GUL传输方式向网络设备发送第一数据包,所述第一数据包对应第一混合自动重传请求HARQ进程号,所述第一数据包对应第一新数据指示信息,所述第一新数据指示信息用于指示所述第一数据包是初传数据包或重传数据包;
所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,所述第二数据包对应所述第一HARQ进程号,所述第二时间单元在时间上位于所述第一时间单元之后,其中,所述第二数据包对应所述网络设备发送的第二新数据指示信息,所述第二新数据指示信息用于指示所述第二数据包是初传数据包或重传数据包;
所述终端设备根据所述第一新数据指示信息的取值与所述第二新数据指示信息的取值,针对所述第一数据包进行缓存处理,或,发送所述第二数据包,其中,所述第二数据包为所述第一数据包的重传数据包,或,所述第二数据包为与所述第一数据包相异的初传数据包。
因而,本发明实施例提供的数据传输的方法,终端设备在接收到用于指示该终端设备发送与第一HARQ进程号对应的第二数据包的第一指示信息后,通过根据与该第二数据包对应的第二新数据指示信息的取值和对应于该终端设备通过GUL传输发送的第一数据包的第一新数据指示信息取值,针对该第一数据包进行缓存处理,或确定该第二数据包的传输类型,从而发送该第二数据包,其中,第二数据包为该第一数据包的重传数据包,或,该第二数据包为与该第一数据包相异的初传数据包,尤其在该网络设备未检测到该第一数据包的情况下,且网络设备通过该第一指示信息指示该终端设备传输与该第一HARQ进程号对应的初传数据包时,该终端设备不再根据该第一指示信息进行该初传数据包的传输,而是发送该第一数据包的重传数据包,不再清除该缓存中的第一数据包,而是保留缓存中的该第一数据包,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性。
结合第一方面,在第一方面的第一种实现方式中,所述终端设备根据所述第一新数据指示信息的取值与所述第二新数据指示信息的取值,针对所述第一数据包进行缓存处理,或,发送所述第二数据包,包括:
在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同的情况下,所述终端设备保留缓存中的所述第一数据包,或,发送所述第二数据包,所述第二数据包为所述第一数据包的重传数据包。
结合第一方面,在第一方面的第二种实现方式中,所述终端设备发送所述第二数据包,所述第二数据包为所述第一数据包的重传数据包,包括:
所述终端设备根据所述第一指示信息,在所述第二时间单元上发送所述第二数据包。
因而,当该终端设备发送该第一数据包的重传数据包时,可以直接根据该第一指示信息的指示,在该第二时间单元上对该第一数据包进行重传,有效地利用了当前信令,减少了信令开销。
结合第一方面,在第一方面的第三种实现方式中,所述终端设备根据所述第一新数据指示信息的取值与所述第二新数据指示信息的取值,发送所述第二数据包,包括:
在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同,且所述第一数据包对应的传输块大小TBS与所述第二数据包对应的TBS相同的情况下,所述终端设备根据所述第一指示信息,在所述第二时间单元上发送所述第二数据包,所述第二数据包为所述第一数据包的重传数据包。
因而,在第一新数据指示信息的取值与第二新数据指示信息的取值相同,且第一数据 包对应的传输块大小TBS与第二数据包对应的TBS相同的情况下,该终端设备根据第一指示信息,在该第二时间单元上发送该第一数据包的重传数据包,不仅可以有效地利用当前信令,减少信令开销,同时,也可以有效地提高该第一数据包的传输效率,减少该终端设备的复杂度。
结合第一方面,在第一方面的第四种实现方式中,所述方法还包括:
在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同的情况下,所述终端设备忽略所述第一指示信息。
结合第一方面,在第一方面的第五种实现方式中,所述方法还包括:
在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同,且所述第一数据包对应的传输块大小TBS与所述第二数据包对应的TBS相异的情况下,所述终端设备忽略所述第一指示信息。
结合第一方面,在第一方面的第六种实现方式中,所述终端设备根据所述第一新数据指示信息的取值与所述第二新数据指示信息的取值,发送所述第二数据包,包括:
在所述第一新数据指示信息的取值与所述第二新数据指示信息相异的情况下,所述终端设备根据所述第一指示信息,在所述第二时间单元上发送所述第二数据包,所述第二数据包为与所述第一数据包相异的初传数据包。
结合第一方面,在第一方面的第七种实现方式中,所述方法还包括:
所述终端设备根据第三数据包与所述第一数据包之间的传输关系和对应于所述第三数据包的第三新数据指示信息的取值,确定所述第一新数据指示信息的取值,其中,所述传输关系包括:所述第三数据包为与所述第一数据包相异的初传数据包,或,所述第三数据包为所述第一数据包的重传数据包,所述第三新数据指示信息用于指示所述第三数据包为初传数据包或重传数据包,所述第三数据包为所述网络设备调度所述终端设备在第三时间单元上发送的数据包,所述第三数据包对应所述第一HARQ进程号,所述第三时间单元在时间上位于所述第一时间单元之前。
结合第一方面,在第一方面的第八种实现方式中,所述终端设备根据第三数据包与所述第一数据包之间的传输关系和对应于所述第三数据包的第三新数据指示信息的取值,确定所述第一新数据指示信息的取值,包括:
在所述第一数据包为所述第三数据包的重传数据包的情况下,所述终端设备确定所述第一新数据指示信息的取值与所述第三新数据指示信息的取值相同;或,
在所述第一数据包为与所述第三数据包相异的初传数据包的情况下,所述终端设备确定所述第一新数据指示信息的取值与所述第三新数据指示信息的取值相异。
结合第一方面,在第一方面的第九种实现方式中,在所述终端设备在第一时间单元上通过免调度许可上行GUL传输方式向网络设备发送第一数据包之前,所述方法还包括:
所述终端设备接收所述网络设备发送的控制信息,所述控制信息包括第四新数据指示信息,且在所述控制信息用于激活或重激活所述终端设备通过所述GUL传输方式发送信息时,所述第四新数据指示信息的取值为第一预设值;
所述终端设备根据所述控制信息确定与所述GUL传输方式对应的半静态时域资源,其中,所述第一时间单元属于所述半静态时域资源。
结合第一方面,在第一方面的第十种实现方式中,在所述控制信息用于调度第四数据 包的重传数据包时,所述第四新数据指示信息的取值为第二预设值,所述第四数据包为所述终端设备通过所述GUL传输方式发送的数据包,所述第二预设值与所述第一预设值相异。
结合第一方面,在第一方面的第十一种实现方式中,所述方法还包括:
所述终端设备向所述网络设备发送所述第一新数据指示信息。
第二方面,提供了一种数据传输的方法,所述方法包括:
网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,所述第二数据包对应所述第一HARQ进程号,且所述第二数据包对应所述网络设备发送的第二新数据指示信息,所述第二新数据指示信息用于指示所述第二数据包是初传数据包或重传数据包,其中,所述第一HARQ进程号还对应第一数据包,所述第一数据包由所述终端设备在第一时间单元上通过GUL传输方式向所述网络设备发送,所述第一数据包对应第一新数据指示信息,所述第一新数据指示信息用于指示所述第一数据包是初传数据包或重传数据包,所述第二时间单元在时间上位于所述第一时间单元之后;
所述网络设备接收所述终端设备发送的第二数据包,其中,所述第二数据包为所述第一数据包的重传数据包,或,所述第二数据包为与所述第一数据包相异的初传数据包。
因而,本发明实施例的数据传输的方法,网络设备在向终端设备发送用于指示该终端设备发送与第一HARQ进程号对应的第二数据包的第一指示信息后,可以使得该终端设备根据与该第二数据包对应的第二新数据指示信息的取值和对应于该终端设备通过GUL传输发送的第一数据包的第一新数据指示信息取值,针对该第一数据包进行缓存处理,或确定该第二数据包的传输类型,从而发送该第二数据包,其中,第二数据包为该第一数据包的重传数据包,或,该第二数据包为与该第一数据包相异的初传数据包,尤其在该网络设备未检测到该第一数据包的情况下,且网络设备通过该第一指示信息指示该终端设备传输与该第一HARQ进程号对应的初传数据包时,可以使得该终端设备不再根据该第一指示信息进行该初传数据包的传输,而是发送该第一数据包的重传数据包,不再清除该缓存中的第一数据包,而是保留缓存中的该第一数据包,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性。
结合第二方面,在第二方面的第一种实现方式中,在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同的情况下,所述第二数据包为所述第一数据包的重传数据包。
结合第二方面,在第二方面的第二种实现方式中,所述第二数据包为所述终端设备在所述第二时间单元上发送的数据包。
结合第二方面,在第二方面的第三种实现方式中,在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同,且所述第一数据包对应的传输块大小TBS与所述第二数据包对应的TBS相同的情况下,所述第二数据包为所述终端设备在所述第二时间单元上发送的数据包。
结合第二方面,在第二方面的第四种实现方式中,在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相异的情况下,所述第二数据包为与所述第一数据包相异的初传数据包。
结合第二方面,在第二方面的第五种实现方式中,在所述第一数据包为第三数据包的重传数据包的情况下,所述第一新数据指示信息的取值与对应于所述第三数据包的第三新数据指示信息的取值相同,其中,所述第三新数据指示信息用于指示所述第三数据包为初传数据包或重传数据包,所述第三数据包为所述网络设备调度所述终端设备在第三时间单元上发送的数据包,所述第三数据包对应所述第一HARQ进程号,所述第三时间单元在时间上位于所述第一时间单元之前;或,
在所述第一数据包为与第三数据包相异的初传数据包的情况下,所述第一新数据指示信息的取值与对应于所述第三数据包的第三新数据指示信息的取值相异,其中,所述第三新数据指示信息用于指示所述第三数据包为初传数据包或重传数据包,所述第三数据包为所述网络设备调度所述终端设备在第三时间单元上发送的数据包,所述第三数据包对应所述第一HARQ进程号,所述第三时间单元在时间上位于所述第一时间单元之前。
结合第二方面,在第二方面的第六种实现方式中,在所述网络设备检测到所述第一数据包的情况下,所述网络设备根据所述第一数据包的接收情况和所述第一新数据指示信息确定所述第二新数据指示信息。
结合第二方面,在第二方面的第七种实现方式中,所述方法还包括:
所述网络设备向所述终端设备发送控制信息,所述控制信息包括第四新数据指示信息,且在所述控制信息用于激活或重激活所述终端设备通过所述GUL传输方式发送信息时,所述第四新数据指示信息的取值为第一预设值,其中,所述第一时间单元属于与所述GUL传输方式对应的半静态时域资源。
结合第二方面,在第二方面的第八种实现方式中,在所述控制信息用于调度第四数据包的重传数据包时,所述第四新数据指示信息的取值为第二预设值,所述第四数据包为所述终端设备通过所述GUL传输方式发送的数据包,所述第二预设值与所述第一预设值相异。
结合第二方面,在第二方面的第九种实现方式中,所述方法还包括:
所述网络设备接收所述终端设备发送的所述第一新数据指示信息。
第三方面,提供了一种数据传输的装置,该装置可以用来执行第一方面及第一方面的任意可能的实现方式中的终端设备的操作。具体地,该装置可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的操作的模块单元。
第四方面,提供了一种数据传输的装置,该装置可以用来用于执行第二方面及第二方面的任意可能的实现方式中的网络设备的操作。具体地,该装置可以包括用于执行第二方面及第二方面的任意可能的实现方式中的网络设备的操作的模块单元。
第五方面,提供了一种终端设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第三方面提供的装置。
第六方面,提供了一种网络设备,该网络设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使 得该网络设备执行第二方面或第二方面的任意可能的实现方式中的方法,或者该执行使得该网络设备实现第四方面提供的装置。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面及第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第二方面及第二方面的任意可能的实现方式中的方法的指令。
在上述某些实现方式中,在所述网络设备检测到所述第一数据包,且针对所述第一数据包接收成功的情况下,所述第二新数据指示信息的取值与所述第一新数指示信息的取值相异;或,
在所述网络设备未检测到该第一数据包,或所述网络设备检测到该第一数据包,且未成功接收到所述第一数据包的情况下,所述第二新数据指示信息的取值与所述第一新数据指示信息的取值相同。
在上述某些实现方式中,在所述终端设备在第一时间单元上通过免调度许可上行GUL传输方式向网络设备发送第一数据包之前,所述方法还包括:
所述终端设备接收所述网络设备发送的控制信息,所述控制信息包括第四新数据指示信息,且在所述控制信息用于激活或重激活所述终端设备通过所述GUL传输方式发送信息时,所述第四新数据指示信息的取值为第一预设值;
在所述终端设备确定所述第一新数据指示信息时,所述终端设备忽略所述第四新数据指示信息。
在上述某些实现方式中,所述第二数据包为所述网络设备调度所述终端设备在所述第一时间单元之后发送的且对应所述第一HARQ进程号的后一个数据包或最近的一个数据包。
在上述某些实现方式中,所述第三数据包为所述网络设备调度所述终端设备在所述第一时间单元之前发送的且对应所述第一HARQ进程号的前一个数据包或最近的一个数据包。
附图说明
图1是应用于本发明实施例的数据传输的通信系统的示意图
图2是根据本发明实施例的数据传输的方法的示意性交互图。
图3至图12是根据本发明实施例的数据传输过程中的网络设备与终端设备之间的行为示意图。
图13是根据本发明实施例的数据传输的装置的示意性框图。
图14是根据本发明实施例的数据传输的装置的示意性框图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过 图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本发明实施例可以应用于各种通信系统,如全球移动通讯(Global System for Mobile Communication,GSM),宽带码分多址(Wideband Code Division Multiple Access,WCDMA),LTE等系统中,所支持的通信主要是针对语音和数据通信的。通常来说,一个传统基站支持的连接数有限,也易于实现。
下一代移动通信系统使未来移动数据流量增长、海量物联网、多样化的新业务和应用场景成为可能。除了充当一个统一的连接框架外,新一代蜂窝网络的基础5G新空口(5th Generation New Radio,5G NR)还有望将网络的数据速度、容量、时延、可靠性、效率和覆盖能力都提升到全新水平,并将充分利用每一比特的可用频谱资源。同时,基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)新空口设计的5G将会成为全球标准,支持5G设备,多样化的部署,涵盖多样化的频谱(包括对低频段和高频段的覆盖),还要支持多样化的服务及终端。
本发明实施例结合终端设备描述了各个实施例。终端设备也可以称为用户设备(User Equipment,UE)用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
此外,本发明实施例结合网络设备描述了各个实施例。网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(ACCESS POINT,AP),GSM或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
本发明实施例提供的方法和装置,可以应用于终端设备或网络设备,该终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,在本发明实施例中,传输控制 信息的方法的执行主体的具体结构,本发明实施例并未特别限定,只要能够通过运行记录有本发明实施例的传输控制信息的方法的代码的程序,以根据本发明实施例的传输控制信息的方法进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本发明实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本发明实施例中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是应用于本发明实施例的数据传输的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移 动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。
具体而言,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络(Public Land Mobile Network,PLMN)网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
下面,对该通信系统100所使用的用于无线通信的时频资源进行详细说明。
在本发明实施例中,网络设备和终端设备用于传输信息的时域资源在时域上可以划分为多个时间单元。
并且,在本发明实施例中,多个时间单元可以是连续的,也可以是某些相邻的时间单元之间设有预设的间隔,本发明实施例并未特别限定。
在本发明实施例中,时间单元可以是包括用于上行信息(例如,上行数据)传输和/或下行信息(例如,下行数据)传输的时间单元。
在本发明实施例中,一个时间单元的长度可以任意设定,本发明实施例并未特别限定。
例如,1个时间单元可以包括一个或多个子帧。
或者,1个时间单元可以包括一个或多个时隙。
或者,1个时间单元可以包括一个或多个符号。
或者,1个时间单元可以包括一个或多个TTI。
或者,1个时间单元可以包括一个或多个短传输时间间隔(short Transmission Time Interval,sTTI)。
在本发明实施例中,通信系统100所使用的用于无线通信的时频资源在时域上可以划分为多个TTI,TTI是目前通信系统(例如,LTE系统)中的普遍使用的参数,是指在无线链路中调度信息传输的调度单位。在现有技术中,通常认为1TTI=1ms。即,一个TTI为一个子帧(subframe)或者说,两个时隙(slot)的大小,它是无线资源管理(调度等)所管辖时间的基本单位。
在通信网络中,时延是一个关键的绩效指标,同时也影响着用户的使用体验。随着通讯协议的发展,对时延影响最明显的物理层的调度间隔也越来越小,在最初的WCDMA中,调度间隔是10ms,高速分组接入(High-Speed Packet Access,HSPA)中调度间隔缩短到2ms,长期演进(Long Term Evolution,LTE)中调度间隔(即,TTI)缩短到1ms。
小时延的业务需求导致物理层需要引入更短的TTI帧结构,以进一步缩短调度间隔,提高用户体验。例如,LTE系统中TTI长度可以从1ms缩短为1符号(symbol)到1时隙(包括7个符号)之间。上述提及的符号可以是LTE系统中的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号或单载波频分多址(Single Carrier-Frequency Division Multiple Access,SC-FDMA)符号,还可以是其他通信系统中的符号。又例如,5G通信系统中TTI长度也小于1ms。
LTE系统在基于长度为1ms的TTI的数据传输中,一般情况下数据传输的来回时间(Round-Trip Time,RTT)为8ms。假设,和现有长度为1ms的TTI的调度相比,处理时间是等比例缩减的,即仍然遵循现有的RTT时延。那么,当基于长度为0.5ms的sTTI的数据传输中,数据传输的RTT为4ms,相对于基于长度为1ms的TTI的数据传输,时延能够缩短一半,从而提高用户体验。
长度小于1ms的TTI可以称为sTTI。例如,LTE系统中,sTTI的长度可以为1~7个符号中任意一种长度,或者,sTTI长度也可以是1~7个符号中至少2种不同长度的组合,例如1ms内包含6个sTTI,各sTTI长度可以分别是3个符号、2个符号、2个符号、2个符号、2个符号、3个符号,或者,1ms内包含4个sTTI,各sTTI长度可以分别是3个符号、4个符号、3个符号、4个符号,各sTTI长度还可以是其他不同长度的组合。
并且,上行的sTTI长度可以和下行的sTTI长度相同,例如上行的sTTI长度和下行的sTTI长度均为2个符号。
或者,上行的sTTI长度可以长于下行的sTTI长度,例如上行的sTTI长度为7个符号,下行的sTTI长度为2个符号。
再或者,上行的sTTI长度可以短于下行的sTTI长度,例如上行的sTTI长度为4个符号,下行的sTTI长度为1个子帧。
TTI长度小于1个子帧或1ms的数据包称为短TTI数据包。短TTI数据传输在频域上,可连续分布,也可非连续分布。需要说明的是,考虑到后向兼容性,系统中可能同时存在基于长度为1ms的TTI的数据传输和基于sTTI的数据传输的情况。
在本发明实施例中,可以将现有技术(例如LTE系统)规定的(例如,长度为1ms或长度大于1ms的)TTI和sTTI统称为TTI,并且,在本发明实施例中,TTI的长度可以根据实际需要进行变更。
应理解,以上列举的时间单元的结构仅为示例性说明,本发明实施例并未特别限定,可以根据实际需要对时间单元的结构进行任意变更,例如,对于不支持sTTI的LTE系统而言,1个时间单元可以为1个子帧(Subframe)。再例如,对于支持sTTI的LTE系统而言,1个时间单元可以包括1个sTTI,或者说,1个时间单元可以包括1个时隙(Slot),1个时间单元可以包括一个或多个(例如,小于7的正整数个或小于6的正整数个)符号;1个时间单元也可以为1个子帧。
应理解,一个时间单元包括至少一个符号时,该至少一个符号中的任意一个符号可以是完整符号,也可以是部分符号,其中部分符号是指,设备占用该符号的一部分时域资源发送信息,而剩余部分不发送信息或者说预留为空闲。
需要说明的是,在本发明实施例中,时间单元用于传输信息的长度(或者说,信息传输时长)可以是1ms,也可以小于1ms。
在本发明实施例中,通信系统100所使用的传输资源中的频域资源(或者说,频谱资源)可以是授权资源,或者说,通信系统100所使用的资源中的频域资源可以属于授权频段。
或者,在本发明实施例中,通信系统100所使用的资源(传输资源或者时频资源)中的频域资源(或者说,频谱资源)可以属于非授权频段(或者说,非授权资源)。
非授权资源可以是指:各个通信设备可以共享使用的资源。
非授权频段上的资源共享是指对特定频谱的使用只规定发射功率、带外泄露等指标上的限制,以保证共同使用该频段的多个设备之间满足基本的共存要求,运营商利用非授权频段资源可以达到网络容量分流的目的,但是需要遵从不同的地域和不同的频谱对非授权频段资源的法规要求。这些要求通常是为保护雷达等公共系统,以及保证多系统尽可能互相之间不造成有害影响、公平共存而制定的,包括发射功率限制、带外泄露指标、室内外使用限制,以及有的地域还有一些附加的共存策略等。例如,各通信设备能够采用竞争方式或者监听方式,例如,先听后说(Listen Before Talk,LBT)规定的方式使用的时频资源。
此外,在本发明实施例中,通信系统100中的各通信设备还可以使用授权频谱资源进行无线通信,即,本发明实施例的通信系统100是能够使用授权频段的通信系统。
在本发明实施例中,对于上行传输,涉及两种传输方式,即,一种是基于调度的传输方式,一种是基于免调度的传输方式,下面,对这两种传输方式分别进行简单介绍。
基于调度的上行传输方式
即,终端设备的上行传输需要通过网络设备的调度完成,即,基于调度的上行传输(Scheduled Up Link,SUL)方式,也称为SUL传输方式。具体地,终端设备进行上行传输(或者说,传输上行数据)之前,需要在物理控制上行制信道(Physical Uplink Control Channel,PUCCH)上向网络设备发送调度请求(Scheduling Request,SR),等待网络接收到该SR后,网络设备会向终端设备发送调度信息(或者说,上行授权(Up Link Grant,UL Grant)信息),进而,终端设备根据该调度信息指示的上行资源进行上行传输。这种基于调度的传输方式可靠性高,但是传输时延较大。
在本发明实施例中,基于网络设备调度使用SUL传输方式发送信息的SUL无线资源也称为SUL物理控制上行共享信道(Physical Uplink Shared Channel,PUSCH),其中,SUL PUSCH也包括短于1ms的sTTI对应的sPUSCH。
基于免调度的上行传输方式
即,终端设备的上行传输不需要通过网络设备的调度完成,这种免调度的传输方式可以称为免调度许可上行(Grant free UpLink,GUL)传输方式,或者称为自主上行(Autonomous UL,AUL)传输方式。简单来说,网络设备将GUL资源通过半静态方式分配给终端设备,终端设备在进行上行传输时,不需要向网络设备发送调度请求SR以及等待网络设备发送UL Grant信息,可以直接通过GUL资源进行上行传输,从而减少传输时延。
下面,对发明实施例中的GUL传输方式进行详细说明。
在本发明实施例中,该GUL传输方式可以是终端设备使用GUL无线资源进行数据的传输。该GUL无线资源可以是网络设备单独分配给该终端设备而不分配给其他终端设备的资源,或者,由于终端设备的业务的传输是突发性的,终端设备在没有上行业务的时候可以不占用GUL无线资源,那么,为了提高资源使用效率,该网络设备可以将该GUL无线资源分配给包括该终端设备在内的多个终端设备,使该多个终端设备通过统计复用的方式进行资源的共享,本发明实施例并未特别限定。并且,在本发明实施例中,该GUL无线资源可以是网络设备在确定终端设备需要进行上行传输之后为该终端设备分配的;或者,该GUL无线资源可以是,例如,在该终端设备接入该网络设备提供的小区时,分配给该终端设备的;再或者,该GUL无线资源可以是,例如,该网络设备在竞争到通信系 统提供的部分或全部非授权时频资源时,从所竞争到的非授权时频资源中确定并该分配给该终端设备的,本发明实施例并未特别限定。
该GUL无线资源是该网络设备向该终端设备分配或激活的全部的可用GUL无线资源的子集。该可用GUL无线资源对应可用GUL时域资源和可用GUL频域资源。该可用GUL时域资源是持续性的。具体地说,该可用GUL时域资源是周期性的,每个GUL周期中都包含至少一个时间单元。例如,以4ms为周期,每个周期内的前2ms为可用GUL时域资源,其包括子帧{#1,#2},{#5,#6},{#9,#10}等。对于该可用GUL时域资源中的任意一个时间单元,终端设备可以在该任意一个时间单元上发送上行数据,也可以不发送上行数据,即不占用该时间单元。例如,终端设备没有上行业务时,或者在该可用GUL时域资源中的某个时间单元之前执行LBT失败,可以跳过(skip)该某个时间单元而不发送上行数据。或者终端设备在一个GUL周期中,可以不占用该GUL周期中的任一个时间单元发送上行数据,也就是说跳过该GUL周期。该GUL无线资源所对应的频域资源也包含在对于该可用GUL频域资源中,可以等于第一时间单元对应的该可用GUL频域资源,也可以小于第一时间单元对应的该可用GUL频域资源,此处不作限定。
该GUL无线资源是传输上行数据(UL-Shared CHannel,UL-SCH)的资源,更具体地,该GUL无线资源可以为物理上行数据信道(Physical Uplink Shared Channel,PUSCH)资源,该GUL无线资源也称为GUL PUSCH,其中,GUL PUSCH也包括短于1ms的sTTI对应的sPUSCH(short PUSCH)。
如上所述,可用GUL无线资源是周期性的,因而,网络设备可以通过高层信令配置可用GUL无线资源的周期。也就是说,该GUL PUSCH是根据高层信令确定的,相比而言,基于网络设备调度的SUL PUSCH是根据网络设备在PDCCH中的动态信令调度的。
此外,网络设备配置该GUL PUSCH不需要基于终端设备上报SR,相比而言,基于网络设备调度的SUL PUSCH是网络设备在接收到终端设备发送的SR之后才指示给终端设备的。
并且,相比于可用GUL资源是周期性的持续性的资源,基于网络设备调度的SUL PUSCH只生效一次,调度的PUSCH对应有限时间范围内的有限个时间单元,而不会持续性生效。
另外,在本发明实施例中,作为示例而非限定,例如,该网络设备可以向该终端设备发送用于配置该GUL无线资源的相关信令(例如,高层信令和或PDCCH中的动态信令等),从而,该终端设备可以确定该GUL无线资源。具体地说,该终端设备可以确定该GUL无线资源在时域上所包括的该至少一个时间单元,更进一步地说,该终端设备可以确定至少一个时间单元的总数量和位置。
此外,在本发明实施例中的GUL传输方式中,终端设备为了上报通过GUL传输方式所发送的上行数据的相关的信息,该终端设备在会携带免调度许可上行控制信息(Grant free UpLink Control Information,G-UCI),该G-UCI为该上行数据所对应的控制信息。该G-UCI包括与该上行数据对应的HARQ进程的HARQ进程号信息、新数据指示(New Data Indicator,NDI)信息、与该上行数据对应的冗余版本(Redundancy Version,RV)信息以及该终端设备的用户标识(记为UE ID)信息中的至少一种信息。为了能够获取该上行数据,网络设备需要先获取该G-UCI,进而根据该G-UCI解调译码GUL PUSCH,从而获得该 上行数据。相比而言,对于基于网络设备调度的PUSCH,由于上述控制信息包含在调度信息动态UL grant中,因此不需要终端设备在上行传输中携带这些信息。
在现有的通信系统中,上述两种传输方式可以综合使用,也可以单独使用,本发明实施例并不限于此。
本发明实施例中的数据包可以有多种解释:数据包可以是未进行编码调制处理的比特序列,即传输块(Transport Block,TB)或媒体接入控制(Media Access Channel,MAC)协议数据单元PDU(Protocol Data Unit);数据包也可以是进行编码调制处理后的比特序列(也可以理解为数据信号)。
下面,结合图2至图12详细说明根据本发明实施例的数据传输的方法。图2是根据本发明实施例的数据传输的方法的示意性交互图。
在S210中,终端设备在第一时间单元上通过免调度许可上行GUL传输方式向网络设备发送第一数据包,该第一数据包对应第一混合自动重传请求HARQ进程号,该第一数据包对应第一新数据指示信息,该第一新数据指示信息用于指示该第一数据包是初传数据包或重传数据包。
具体而言,如前所述,该终端设备通过GUL传输方式发送该数据包#1(即,该第一数据包的一例),不需要向网络设备发送调度请求SR以及等待网络设备发送UL Grant信息,可以直接通过GUL资源进行上行传输,从而减少传输时延。具体对于该GUL传输方式的相关描述前文已经详细描述,此处不再赘述。
该新数据指示信息#1(即,该第一新数据指示信息的一例)对应该数据包#1,即,该新数据指示信息#1用于指示该数据包#1是初传数据包或重传数据包。该新数据指示信息#1的大小可以是1比特,该新数据指示信息#1的取值对应两种状态,即“0”和“1”,分别用来表示该数据包#1是初传数据包或重传数据包。
需要说明的是,新数据指示信息#1用于指示该数据包#1是初传数据包或重传数据包,对于接收端(对于该新数据指示信息#1来说,接收端为网络设备)来说,并不是说仅仅根据该新数据指示信息#1就能确定该数据包#1是初传数据包或重传数据包,还需要根据相比于该数据包#1的前一个对应同一HARQ进程号(即,该第一HARQ进程号)的数据包对应的新数据指示信息的取值来确定该数据包#1是初传数据包或重传数据包,其中,该数据包#1的前一个对应该第一HARQ进程号的数据包为在该时间单元#1(即,第一时间单元的一例)之前发送的数据包。或者,也可以这么理解,对于接收端来说,该新数据指示信息#1仅仅是用于确定该数据包#1是初传数据包或重传数据包的一个因素,该接收端还需要结合其他信息来确定该数据包#1是初传数据包或重传数据包。
例如,该数据包#1的前一个对应该第一HARQ进程号的数据包对应的新数据指示信息的取值为“0”,该新数据指示信息#1的取值为“1”,那么,对于接收端(或,网络设备)来说,需要将上述两个新数据指示信息的取值进行比较来确定该数据包#1是初传数据包或重传数据包。更具体地,若两个新数据指示信息的取值相异,则接收端(或,网络设备)确定该数据包#1是初传数据包;若两个新数据指示信息的取值相同,则接收端(或,网络设备)确定该数据包#1是重传数据包。下文对于第二新数据指示信息、第三新数据指示信息、第四新数据指示信息等各种新数据指示信息的解释同此处针对该第一新数据指示信息的解释,为了简洁,后续不再详细赘述。
具体地,该新数据指示信息#1为NDI信息。更具体地,该新数据指示信息#1为该终端设备在上报给该网络设备的G-UCI中的NDI字段。
在本发明实施例中,针对该“该数据包#1是初传数据包或重传数据包”可以有多种解释,具体解释如下:
若是该数据包#1是进行编码调制处理后的比特序列,那么,该新数据指示信息#1所指示的该数据包#1是初传数据包或重传数据包,表示的是,该数据包#1是传输块#1的重传数据包或初传数据包,或者,该数据包#1是传输块#1的重传或初传,该传输块#1为未经过编码调制处理前的比特序列(或者说,原始信元)。具体而言,该传输块#1是在该数据包#1之前的另一个数据包(为了便于区分和理解,记为数据包#3)对应的编码调制处理前的传输块,即该数据包#3是对该传输块#1进行编码调制处理后的比特序列。当该数据包#1是该数据包#3的重传数据包时,该数据包#1与该数据包#3不同,但两者对应同一编码前的传输块,即传输块#1。当该数据包#1是与该数据包#3不同的初传数据包时,该数据包#1与该数据包#3不同,且两者对应不同编码前的传输块,该数据包#1对应与该传输块#1不同的传输块。
其中,该数据包#3也对应该第一HARQ进程号,用于承载该数据包#3的时间单元在时间上位于该时间单元#1之前,相比于该数据包#1,该数据包#3可以是对应该第一HARQ进程号的最近的前一个数据包,该数据包#3也可以与该数据包#1之前间隔至少一个对应相同HARQ进程号的数据包,该数据包#1、该数据包#3以及中间间隔的至少一个数据包都对应该第一HARQ进程号。
若是该数据包#1是编码调制前的比特序列,那么,该新数据指示信息所指示的该数据包#1是初传数据包或重传数据包,表示的是,该数据包#1是该数据包#3的初传数据包或重传数据包。具体地,当该数据包#1是该数据包#3的重传数据包时,该数据包#1与该数据包#3为同一数据包。当该数据包#1是与该数据包#3不同的初传数据包时,该数据包#1为与该数据包#3不同的新数据包。
同理,下文中描述的针对其他数据包(第二数据包、第三数据包、第四数据包)的初传数据包或重传数据包的解释与此处针对“该数据包#1是初传数据包或重传数据包”的解释相同,为了简洁,后续不再详细赘述。
该终端设备在通过GUL传输方式向所述网络设备发送的该数据包#1时,如前所述,基于GUL传输方式的性质,该网络设备并不不知道该终端设备发送该数据包#1,该终端设备为了上报通过GUL传输方式所发送的数据包#1的相关的信息,该终端设备可以发送与该数据包#1对应的G-UCI。
因而,在本发明实施例中,该新数据指示信息#1可以承载在与该数据包#1对应的G-UCI中,用于指示该数据包#1是初传数据包或重传数据包,或者说,该新数据指示信息#1为与该数据包#1对应的G-UCI中的字段。
此外,该G-UCI还包括与该上行数据对应的HARQ进程的HARQ进程号信息、与该上行数据对应的冗余版本(Redundancy Version,RV)信息以及该终端设备的用户标识(记为UE ID)信息中的至少一种信息,以便于该网络设备根据该G-UCI获取该数据包#1。
作为示例而非限定,该新数据指示信息#1也可以承载在别的与上行传输相关的信息中,本发明实施例并不限定于此。
进而,在S210中,该网络设备对该数据包#1进行盲检测,从而尝试接收该数据包#1。
更具体地,该网络设备针对该数据包#1的接收情况有3种:
1、该网络设备检测到该数据包#1,且针对该数据包#1接收成功。
2、该网络设备检测到该数据包#1,且未成功接收该数据包#1,例如,该网络设备检测到该数据包#1,但是针对该数据包#1解调译码失败。。
3、该网络设备未检测到该数据包#1。
针对上述第2种情况与第3种情况,都可以理解为该网络设备针对该数据包#1接收失败。
应理解,本发明实施例所说的“该网络设备检测到该数据包#1或未检测到该数据包#1”,表示的是“该网络设备检测到该数据包#1的存在性或未检测到该数据包#1的存在性”,或者说,表示的是“该网络设备检测到承载该数据包#1的GUL PUSCH的存在性或未检测到承载该数据包#1的GUL PUSCH的存在性”。其中,“该网络设备检测到该数据包#1”是指该终端设备检测到该GUL PUSCH的存在性(即检测到该终端设备发送了该GUL PUSCH);“该网络设备未检测到该数据包#1”是指该网络设备未检测到该GUL PUSCH的存在性(即该未检测到终端设备发送了该GUL PUSCH)。
具体地,该网络设备通过检测GUL PUSCH所对应的解调参考信号(DeModulation Reference Signal,DMRS)或用于调度该GUL PUSCH的G-UCI确定该GUL PUSCH的存在性。
例如,若该网络设备盲检测到GUL PUSCH所对应的DMRS,或者盲检测到用于调度该GUL PUSCH的G-UCI,则可以说检测到GUL PUSCH,反之未检测到GUL PUSCH。
此外,本发明实施例所说的“该网络设备未检测到该数据包#1”,也表示“该网络设备来不及完成对该数据包#1的检测或解调,或者说,从接收时序或者解调能力上,该网络设备尚未完成对数据包#1的检测或解调就发送了指示信息#1”。
具体而言,该网络设备对该数据包#1的解调具有一定时延,当该网络设备还没完成针对该数据包#1的解调就发送了该指示信息#1调度该终端设备使用该第一HARQ进程号发送下一个数据包时,网络设备在发送该指示信息#1时不知道数据包#1的存在性。该网络设备来不及完成对数据包#1的检测或解调的情况包括,若该时间单元#1晚于承载该指示信息#1的时间单元,或者,该时间单元#1早于承载该指示信息#1的时间单元,但该时间单元#1与承载该指示信息#1的时间单元之间的时间间隔短于一个预设的时间间隔(对应该网络设备的解调时延)。
例如,该网络设备针对数据包调度初传或重传的时延为4ms,该终端设备在子帧#n+2(即,时间单元#1)的GUL PUSCH上发送该数据包#1,对应该新数据指示信息#1,根据网络设备的解调能力,该网络设备最早能在子帧#n+6上调度该终端设备对该数据包#1进行初传或重传;而当网络设备在子帧#n+4(即,承载该指示信息#1的时间单元)上发送该指示信息#1以及对应该数据包#1的下一个数据包的新数据指示信息调度该终端设备进行新数据包的初传时,由于在子帧#n+4时刻该网络设备尚未完成对子帧#n+2上的该数据包#1(或者说,承载该数据包#1的GUL PUSCH)的解调,因此该新数据指示信息#2相比于该新数据指示信息#1未翻转,也即,该网络设备未检测到该数据包#1。
下文将会详细描述该网络设备在上述3种情况下的相关操作。
下文为了描述方便,针对本发明实施例的“该网络设备检测到该数据包#1或未检测到该数据包#1”,统一描述为“该网络设备检测到该数据包#1的存在性或未检测到该数据包#1的存在性”。
在S220中,该网络设备发送第一指示信息,该第一指示信息用于指示该终端设备在第二时间单元上发送第二数据包,该第二数据包对应该第一HARQ进程号,该第二时间单元在时间上位于该第一时间单元之后,其中,该第二数据包对应该网络设备发送的第二新数据指示信息,该第二新数据指示信息用于指示该第二数据包是初传数据包或重传数据包。
从而,该终端设备接收该第一指示信息。
具体而言,当该网络设备需要通过调度方式调度该终端设备使用同一个HARQ进程号(即,该第一HARQ进程号)发送上行数据时,该网络设备会向该终端设备发送该指示信息#1(即,该第一指示信息的一例),该指示信息#1用于指示该终端设备在该时间单元#2(即,第二时间单元的一例)上发送与该第一HARQ进程号对应的数据包#2(即,第二数据包的一例)。
换句话说,该指示信息#1是一种基于调度的信息,即,该指示信息#1可以是对应于该数据包#1的调度信息。
可选地,该指示信息#1可以是UL grant信息,例如,该指示信息#1是一种动态UL grant信息。
可选地,该指示信息#1可以是UL grant信息中的部分字段,具体地,该指示信息#1可以是UL grant信息中用于数据调度的比特域或比特位(而不包含第二新数据指示信息),更具体地,该指示信息#1可以包括UL grant信息中除第二新数据指示信息以外的其他信息。
需要说明的是,该指示信息#1用于指示该终端设备在该时间单元#2上发送该数据包#2,指示的是该终端设备使用与该数据包#2对应的传输格式(为了便于区分与理解,记为传输格式#2)发送该数据包#2。或者说,该指示信息#1用于指示该传输格式#2。
具体地,传输格式#2包括,用于传输数据包#2所用的无线资源,数据包#2的生成格式,数据包#2的导频格式,数据包#2的反馈格式中的至少一种。
用于传输数据包#2所用的无线资源包括:承载该数据包#2的PUSCH对应的时域资源(包括该时间单元#1)、承载该数据包#2的PUSCH对应的频域资源中的至少一种。
数据包#2的生成格式包括:终端设备通过调制编码生成数据包#2的方式,例如,包括调制编码方式(MCS)和传输块大小(Transport Block Size,TBS)中的至少一种。
数据包#2的导频格式包括:终端设备发送的导频序列的方式,例如,数据包#2所在的PUSCH对应的DMRS的序列信息。
数据包#2的反馈格式包括:终端设备发送反馈信息的方式,例如,包括是否反馈信道状态信息(Channel State Information,CSI)、下行HARQ-ACK信息中的至少一种。
需要说明的是,承载该指示信息#1的时间单元在时间上可以位于该时间单元#1之前,也可以位于该时间单元#1之后。
应理解,该数据包#2为该网络设备调度该终端设备在该时间单元#1之后发送的且对应该第一HARQ进程号的后一个数据包。
可选地,该数据包#2为该网络设备调度该终端设备在该时间单元#1之后发送的且对应该第一HARQ进程号的第一个数据包或最近的一个数据包。
换句话说,该数据包#2为该网络设备调度该终端设备在该时间单元#1之后使用该第一HARQ进程号发送的第一个数据包或最近的一个数据包;
或者说,该数据包#1为该终端设备在该时间单元#2之前发送的且对应该第一HARQ进程号的最近的一个数据包。
作为示例而非限定,该数据包#2也可以是该网络设备调度该终端设备在该时间单元#1之后发送的且对应该第一HARQ进程号的第N个数据包,该N为大于1的整数,此时,在该时间单元#1之后发送的且对应该第一HARQ进程号的第N-1个数据包中每个数据包对应的新数据指示信息的取值都是相同的。
与该新数据指示信息#1类似,该新数据指示信息#2(即,第二新数据指示信息中的一例)的大小也可以是1比特,该新数据指示信息#2的取值对应两种状态,即“0”和“1”,分别用来表示该数据包#2是初传数据包或重传数据包。此外,该新数据指示信息#1的大小与该新数据指示信息#2的大小是相同的。
该新数据指示信息#2可以承载在指示信息#1中,即该新数据指示信息#2为该指示信息#1中的字段。
该新数据指示信息#2与该指示信息#1可以承载在同一个信息中,该新数据指示信息#2与该指示信息#1对应该信息的不同字段,例如,都承载在动态UL grant信息中;也可以承载于不同的信息中,本发明实施例并不做限定。
此外,该新数据指示信息#2也可以承载在别的与下行传输相关的信息中,本发明实施例并不限定于此。
应理解,承载该新数据指示信息#2的下行时间单元可以早于该时间单元#1,也可以晚于该时间单元#1,此处不做限定。
类似的,承载该指示信息#1的下行时间单元可以早于该时间单元#1,也可以晚于该时间单元#1,此处不做限定。
具体地,该新数据指示信息#2为NDI信息。更具体地,该新数据指示信息#2为UL grant中的NDI字段。
可选地,该方法还包括:
该终端设备向该网络设备发送该第一新数据指示信息。
进而,在某些情况下,该网络设备可以根据该新数据指示信息#1确定该新数据指示信息#2。
具体而言,在本发明实施例中,该网络设备可以基于该数据包#1的接收情况和新数据指示信息#1确定该新数据指示信息#2,也可以基于该数据包#3的接收情况和对应于该数据包#3的新数据指示信息(为了便于区分与理解,记为新数据指示信息#3)确定该新数据指示信息#2,该新数据指示信息#3用于指示该数据包#1是初传数据包或重传数据包,具体情况视该网络设备针对该数据包#1的接收情况(即,前文所述的3种情况)而定。下面,分别针对该网络设备在上述3种情况下确定该新数据指示信息#2的过程进行详细说明。
情况1
可选地,在该网络设备检测到该数据包#1的情况下,该网络设备根据该数据包#1的接收情况和该新数据指示信息#1确定该新数据指示信息#2。
此种情况下,该终端设备能够确定该数据包#1的存在性,在确定针对该数据包#1的接收是否成功的情况下,可以根据该新数据指示信息#1确定该新数据指示信息#2。
情况1-1
可选地,在该网络设备检测到该数据包#1,且该网络设备针对该数据包#1接收成功的情况下,该新数据指示信息#2的取值与该新数据指示信息#1的取值相异。
也就是说,在该网络设备不仅能够接收到该数据包#1,且针对该数据包#1解调译码成功,此种情况下,该网络设备不仅根据该数据包#1和该新数据指示信息#1确定该新数据指示信息#2,且该新数据指示信息#2的取值与该新数据指示信息#1的取值相异。
情况1-2
可选地,在该网络设备检测到该数据包#1,且该网络设备未成功接收该数据包#1的情况下,该新数据指示信息#2的取值与该新数据指示信息#1的取值相同。
也就是说,该网络设备能够检测到该数据包#1的存在性,但是不能正确接收该数据包#1,例如,该网络设备能够接收到该数据包#1,但是针对该数据包#1解调译码失败,此种情况下,该网络设备不仅根据该数据包#1和该新数据指示信息#1确定该新数据指示信息#2,且该新数据指示信息#2的取值与该新数据指示信息#1的取值相同。
情况2
可选地,在该网络设备未检测到该数据包#1的情况下,该网络设备根据该数据包#3的接收情况和该新数据指示信息#3确定该新数据指示信息#2。
即,该网络设备不知道该终端设备发送了该数据包#1(或者说,该网络设备不知道该数据包#1的存在性),该网络设备可以根据该数据包#3的接收情况和该新数据指示信息#3确定该新数据指示信息#2。
应理解,该网络设备能够根据该数据包#3的接收情况和该新数据指示信息#3确定该新数据指示信息#2,那么,该网络设备肯定能够知道该该数据包#3的存在性:若该数据包#3是该网络设备调度的数据包,那么该网络设备会在预期该终端设备发送该数据包#3的时间单元上接收该数据包#3,因此该网络设备肯定能够知道自己是否成功接收该数据包#3以及对应该数据包#3的新数据指示信息#3;若数据包#3是该终端设备通过GUL传输方式发送的数据包,那么,该网络设备能够检测到该数据包#3的存在性(例如通过检测到G-UCI),也就知道对应的新数据指示信息#3(例如该新数据指示信息#3包含在G-UCI中)。
对于该数据包#3是该终端设备通过GUL传输方式发送的数据包的情况,该新数据指示信息#3是由该终端设备发送的,该网络设备根据该数据包#3的接收情况以及给新数据指示信息#3确定该新数据指示信息#2的过程如下:
若该网络设备针对该数据包#3接收失败,则该新数据指示信息#2的取值与该新数据指示信息#3的取值相同,且该新数据指示信息#2的取值与该新数据指示信息#1的取值相同;
若该网络设备针对该数据包#3接收成功,该新数据指示信息#2的取值与该新数据指示信息#3的取值相异,且该新数据指示信息#2的取值与该新数据指示信息#1的取值相同。
对于该数据包#3是该网络设备调度的数据包的情况,该新数据指示信息#3是该网络设备发送给该终端设备的,该网络设备根据该数据包#3的接收情况以及给新数据指示信息#3确定该新数据指示信息#2的过程如下:
若该网络设备检测到该数据包#3且未成功接收该数据包#3,则该新数据指示信息#2的取值与该新数据指示信息#3的取值相同,且该新数据指示信息#2的取值与该新数据指示信息#1的取值相同;
若该网络设备针对该数据包#3接收成功,该新数据指示信息#2的取值与该新数据指示信息#3的取值相异,且该新数据指示信息#2的取值与该新数据指示信息#1的取值相同。
具体地,该新数据指示信息#3为NDI信息。更具体地,当该数据包#3为网络设备调度该终端设备发送的数据包时,该新数据指示信息#3为UL grant中的NDI字段。当该数据包#3为该终端设备调度通过GUL传输方式发送的数据包时,该新数据指示信息#3为该终端设备在上报给该网络设备的G-UCI中的NDI字段。
从而,该终端设备在获取到该新数据指示信息#1和该新数据指示信息#2之后,
在S230中,该终端设备根据该第一新数据指示信息的取值与该第二新数据指示信息的取值,针对该第一数据包进行缓存处理,或,发送该第二数据包,其中,该第二数据包为该第一数据包的重传数据包,或,该第二数据包为与该第一数据包相异的初传数据包。
换句话说,该终端设备根据该新数据指示信息#1的取值与该新数据指示信息#2的取值是否相同,进行该数据包#2的发送;
或者说,该终端设备根据该新数据指示信息#1的取值相比于该新数据指示信息#2的取值是否发生翻转,进行该数据包#2的发送。
应理解,该新数据指示信息#1的取值和该新数据指示信息#2的取值相异也称为该新数据指示信息#2的取值相比该新数据指示信息#1的取值翻转;该新数据指示信息#1的取值和该新数据指示信息#2的取值相同也称为该新数据指示信息#2的取值相比该新数据指示信息#1的取值未翻转。类似地上述针对两个新数据指示信息的翻转关系(即两个新数据指示信息的翻转/未翻转情况与取值相异/相同之间的对应关系)可以适用于任意两个新数据指示信息。例如,该新数据指示信息#1的取值和该新数据指示信息#3的取值之间的翻转关系,该新数据指示信息#2的取值和该新数据指示信息#3的取值之间的翻转关系等。
具体而言,假设,该新数据指示信息#1的大小与该新数据指示信息#2的大小都为1比特,对应“0”和“1”两个状态;当该新数据指示信息#1的取值为“0”,该新数据指示信息#2的取值为“1”,或者,该新数据指示信息#1的取值为“1”,该新数据指示信息#2的取值为“0”,则该新数据指示信息#1的取值与该新数据指示信息#2的取值不同,也就是说该新数据指示信息#2的取值相比于该新数据指示信息#1的取值发生翻转;当该新数据指示信息#1的取值为“0”,该新数据指示信息#2的取值为“0”,或者,该新数据指示信息#1的取值为“1”,该新数据指示信息#2的取值为“1”,则该新数据指示信息#1的取值与该新数据指示信息#2的取值相同,也就是说该新数据指示信息#2的取值相比于该新数据指示信息#1的取值未发生翻转。
后文中为了描述方便,统一使用“该新数据指示信息#1与该新数据指示信息#2的取值相同或相异”对本发明实施例进行描述。
在本发明实施例中,该终端设备根据该新数据指示信息#1的取值与该新数据指示信 息#2的取值针对该数据包#2或该数据包#1进行处理有3种情况,即情况A、情况B和情况C。
情况A
在该新数据指示信息#1的取值与新数据指示信息#2的取值相同的情况下,该终端设备发送该数据包#1的重传数据包,即,该数据包#2为该数据包#1的重传数据包。
也就是说,在该新数据指示信息#2的取值相比于该新数据指示信息#1的取值未发生翻转的情况下,该终端设备发送该数据包#1的重传数据包,即,该数据包#2为该数据包#1的重传数据包。
对于网络设备来说,该新数据指示信息#1的取值与该新数据指示信息#2的取值之间的关系可以对应情况1-2与情况2中该新数据指示信息#1的取值与该新数据指示信息#2的取值之间的关系,即在该网络设备针对该数据包#1接收失败的情况下上述两种新数据指示信息之间的关系。
情况B
在该新数据指示信息#1的取值与新数据指示信息#2的取值相异的情况下,该终端设备发送与该数据包#1相异的初传数据包,即,该数据包#2为与该数据包#1相异的初传数据包。
也就是说,在该新数据指示信息#2的取值相比于该新数据指示信息#1的取值发生翻转的情况下,该终端设备发送与该数据包#1相异的初传数据包,即,该数据包#2为与该数据包#1相异的初传数据包。
对于网络设备来说,该新数据指示信息#1的取值与该新数据指示信息#2的取值之间的关系可以对应情况1-1中该新数据指示信息#1的取值与该新数据指示信息#2的取值之间的关系,即在该网络设备针对该数据包#1接收成功的情况下上述两种新数据指示信息之间的关系。
情况C
在该新数据指示信息#1的取值与新数据指示信息#2的取值相同的情况下,该终端设备保留缓存中的该数据包#1。
也就是说,该终端设备保留或不清除该第一HARQ进程号对应的HARQ缓存中的该数据包#1。
同情况A,对于网络设备来说,该新数据指示信息#1的取值与该新数据指示信息#2的取值之间的关系可以对应情况1-2与情况2中该新数据指示信息#1的取值与该新数据指示信息#2的取值之间的关系,即在该网络设备针对该数据包#1接收失败的情况下上述两种新数据指示信息之间的关系。
需要说明的是,上述情况A与情况C可以同时存在,即该终端设备发送该数据包#1的重传数据包,同时,该终端设备也可以保留缓存中的该数据包#1。
在本发明实施例中,可选地,该方法还包括:
该终端设备根据该新数据指示信息#1的取值与该新数据指示信息#2的取值,确定该网络设备针对该数据包#1的接收状态。
可选地,该针对该数据包#1的接收状态包括正确应答ACK或错误应答NACK。
可选地,该方法还包括:
该终端设备根据该新数据指示信息#1的取值与该新数据指示信息#2的取值,确定该网 络设备未检测到该该数据包#1。
具体而言,若该新数据指示信息#1的取值与该新数据指示信息#2的取值相同,则该终端设备确定该网络设备检测到给数据包#1且针对该数据包#1的接收状态为NACK,或者,终端设备确定该网络设备未检测到该数据包#1;若该新数据指示信息#1的取值与该新数据指示信息#2的取值相异,则该终端设备确定该网络设备检测到该数据包#1且针对该数据包#1的接收状态为ACK。对于网络设备来说,若该网络设备针对该数据包#1接收失败(该网络设备检测到该数据包#1且解调译码失败,或者,该网络设备未检测到该数据包#1),则该网络设备确定的该新数据指示信息#2的取值与该新数据指示信息#1的取值相同;反过来,对于终端设备来说,若确定该新数据指示信息#2的取值与该新数据指示信息#1的取值相同,则认为该网络设备未能够正确接收该数据包#1,即认为该网络设备接收到该数据包#1且针对该数据包#1的接收状态为NACK,或者,认为该网络设备未检测到该数据包#1,进而能够确定自己需要保留缓存中的该数据包#1或发送该数据包#1的重传数据包。
同理,若该网络设备针对该数据包#1接收成功,则该网络设备确定的该新数据指示信息#2的取值与该新数据指示信息#1的取值相异。对于终端设备来说,若确定该新数据指示信息#2的取值与该新数据指示信息#1的取值相异,则能够确定自己需要发送与该数据包#1相异的重传数据包,则认为该网络设备正确接收该数据包#1,即认为该网络设备针对该数据包#1的接收状态为ACK,进而可以发送与该数据包#1不同的初传数据包。
下面,结合图3和图4详细描述本发明实施例的数据传输过程。
图3所示为本发明实施例的数据传输过程中的网络设备与终端设备之间的行为示意图。
如图3所示,该终端设备在子帧#n发送与该第一HARQ进程号(即,HARQ进程号#H0)对应的数据包#3,且与该数据包#3对应的新数据指示信息#3的取值为“0”(即,图3中所示的NDI#3=0),该网络设备正确接收该数据包#3,且通过HARQ反馈信息指示该网络设备针对该数据包#3的接收状态为ACK,该终端设备在接收到该HARQ反馈信息后,在子帧#n+8(即,该时间单元#1)上通过GUL传输方式发送与该HARQ进程号#H0对应的该数据包#1,该数据包#1为与该数据包#3相异的初传数据包,且与该数据包#1对应的新数据指示信息#1的取值为“1”(即,图3中所示的NDI#1=1)。该网络设备未能检测到该数据包#1,同时,该网络设备在子帧#n+12上通过该指示信息#1调度该终端设备使用该HARQ进程号#H0在子帧#n+16(即,该时间单元#2)上发送该数据包#2。
此种情况下,由于该网络设备未检测到该数据包#1(即,图3中子帧#8中所示“x”所表示的是该网络设备未检测到该数据包#1),该网络设备会基于该数据包#3以及对应的该新数据指示信息#3来确定该新数据指示信息#2,即,该网络设备确定该数据包#2为该数据包#3的初传数据包,从而确定该新数据指示信息#2的取值为“1”(即,图3所示的NDI#2=1);对于终端设备来说,当该终端设备接收到该新数据指示信息#2后,通过将该新数据指示信息#2的取值与该新数据指示信息#1的取值进行对比,确定该新数据指示信息#2的取值与该新数据指示信息#1的取值相同,那么,该终端设备理解该网络设备针对该数据包#1接收失败(或者说,该网络设备针对该数据包#1的接收状态为NACK或未检测到该数据包#1,则,该终端设备发送该数据包#1的重传数据包,或,保留缓存中的该数据包#1。
图4所示为本发明实施例的数据传输过程中的网络设备与终端设备之间的另一行为示 意图。
如图4所示,该终端设备在子帧#n发送与该第一HARQ进程号(即,HARQ进程号#H0)对应的数据包#3,且与该数据包#3对应的新数据指示信息#3的取值为“0”(即,图4中所示的NDI#3=0),该网络设备正确接收该数据包#3,且通过HARQ反馈信息指示该网络设备针对该数据包#3的接收状态为ACK,该终端设备在接收到该HARQ反馈信息后,在子帧#n+8(即,该时间单元#1)上通过GUL传输方式发送与该HARQ进程号#H0对应的该数据包#1,该数据包#1为与该数据包#3相异的初传数据包,且与该数据包#1对应的新数据指示信息#1的取值为“1”(即,图4中所示的NDI#1=1)。该网络设备针对该数据包#1接收成功,同时,该网络设备在子帧#n+12上通过该指示信息#1调度该终端设备使用该HARQ进程号#H0在子帧#n+16(即,该时间单元#2)上发送该数据包#2。
此种情况下,由于该网络设备针对该数据包#1接收成功,该网络设备会基于该数据包#1以及对应的该新数据指示信息#1来确定该新数据指示信息#2,即,该网络设备确定该数据包#2为与该数据包#1相异的初传数据包,从而确定该新数据指示信息#2的取值为“0”(即,图4所示的NDI#2=0),与该新数据指示信息#1的取值相异;对于终端设备来说,当该终端设备接收到该新数据指示信息#2后,通过将该新数据指示信息#2的取值与该新数据指示信息#1的取值进行对比,确定该新数据指示信息#2的取值与该新数据指示信息#1的取值相异,那么,该终端设备理解该网络设备针对该数据包#1接收成功(即,接收状态为ACK),则,该终端设备发送与该数据包#1相异的初传数据包。
相比于现有技术,该终端设备不会根据该新数据指示信息#1的取值与该新数据指示信息#2的取值之间的关系进行针对数据包的处理,而总是根据该指示信息#1的指示(而不考虑该新数据指示信息#2的取值)发送新的数据包,尤其在情况1中会从而造成该数据包#1的丢失。
因而,本发明实施例的数据传输的方法,终端设备在接收到用于指示该终端设备发送与第一HARQ进程号对应的第二数据包的第一指示信息后,通过根据与该第二数据包对应的第二新数据指示信息的取值和对应于该终端设备通过GUL传输方式发送的第一数据包的第一新数据指示信息取值,针对该第一数据包进行缓存处理,或确定该第二数据包的传输类型,从而发送该第二数据包,其中,第二数据包为该第一数据包的重传数据包,或,该第二数据包为与该第一数据包相异的初传数据包,尤其在该网络设备未检测到该第一数据包的情况下,且网络设备通过该第一指示信息指示该终端设备传输与该第一HARQ进程号对应的初传数据包时,该终端设备不再根据该第一指示信息进行该初传数据包的传输,而是发送该第一数据包的重传数据包,不再清除该缓存中的第一数据包,而是保留缓存中的该第一数据包,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性。
可选地,在该终端设备在第一时间单元上通过免调度许可上行GUL传输方式向网络设备发送第一数据包之前,该方法还包括:
该终端设备接收该网络设备发送的控制信息,该控制信息包括第四新数据指示信息,且在该控制信息用于激活或重激活该终端设备通过该GUL传输方式发送信息时,该第四新数据指示信息的取值为第一预设值;
该终端设备根据该控制信息确定与该GUL传输方式对应的半静态时域资源,其中, 该第一时间单元属于该半静态时域资源。
具体而言,该新数据指示信息#4(即,第四新数据指示信息的一例)的大小可以是1比特,该新数据指示信息#1的取值对应两种状态,即“0”和“1”,该第一预设值可以是“0”或“1”。例如,当该控制信息用于激活或重激活该终端设备通过GUL传输方式发送信息时,该第一预设值为“0”;再例如,当该控制信息用于激活或重激活该终端设备通过GUL传输方式发送信息时,该第一预设值“1”。具体地,该新数据指示信息#4为NDI信息。更具体地,该新数据指示信息#4为该控制信息中的NDI字段。
在本发明实施例中,该控制信息用于激活(Activate)或重激活(Reactivate)该终端设备通过该GUL传输方式发送信息,也可以这么理解,该控制信息用于配置与该GUL传输方式对应的半静态时域资源。也可以这么理解,该控制信息用于使能(enable)该终端设备在该半静态时域资源上以该GUL传输方式发送信息,也就是说,该终端设备接收到该控制信息后才能开始在该半静态时域资源上以GUL传输方式发送信息。因而,该终端设备可以根据该控制信息确定该半静态时域资源,从而,使用该半静态时域资源中的时间单元#1通过GUL传输方式发送该数据包#1。
其中,该半静态时域资源可以是持续性的时域资源。具体而言,该终端设备一旦接收到该控制信息,且根据该控制信息激活或重激活该终端设备通过GUL传输方式发送信息时,与该GUL传输方式对应的该半静态时域资源是持续性的,也就是说,即使该终端设备接收到该控制信息后过了较长的一段时间,仍然存在对应于该GUL传输方式的时域资源,直到再次接收到下一个重激活的控制信息配置新的半静态时域资源,或接收到一个去激活的控制信息通知该终端设备不再以GUL传输方式发送信息。相比而言,基于UL grant信息动态调度的仅针对有限个数的时间单元生效。
应理解,此处所述的半静态时域资源即为前文所述的可用GUL无线资源。
可选地,该半静态时域资源可以是周期性的时域资源。每个周期内可以包含一个时间单元,也可以包含至少两个时间单元,也可以包含该周期内的所有时间单元。例如,以4ms为周期,当该控制信息激活或重激活的半静态时域资源为每个周期内的前2ms时,该半静态时域资源其包括子帧{#1,#2},{#5,#6},{#9,#10},…{#4K+1,#4K+2},…等,K为正整数;当该控制信息激活或重激活的半静态时域资源为每个周期内的第一个1ms时,该半静态时域资源其包括子帧{#1},{#5},{#9},…{#4K+1}…等;以1ms为周期,当该控制信息激活或重激活的半静态时域资源为每个周期内的该1ms时,该半静态时域资源其包括子帧{#1},{#2},{#3},…{#K},…等。
可选地,该周期为网络设备通过高层信令配置的周期;该周期也可以是预定义的数值,例如1ms。
作为示例而非限定,该半静态时域资源也可以是满足持续性特征的非周期的时域资源。
应理解,当该终端设备之前并未被激活使用GUL传输方式发送信息时,该控制信息用于激活GUL,终端设备接收到该控制信息后,可以开始在该半静态时域资源中的任意至少一个时间单元上以GUL传输方式发送信息;当该终端设备之前已经被激活使用GUL传输方式发送信息时,该控制信息用于重激活GUL,此时该控制信息用于配置该终端设备使用更新的(与之前的GUL传输不同的)该半静态时域资源,终端设备可以开始在该 更新的半静态时域资源中的任意至少一个时间单元上以GUL传输方式发送信息。
可选地,激活或重激活是指激活或重激活该终端设备可以使用可用于GUL传输的所有HARQ进程号以GUL传输方式发送信息。具体地,该可用于GUL传输的所有HARQ进程号可以是预定义的,也可以是该网络设备通过高层信令配置的。
可选地,激活或重激活是指激活或重激活该终端设备可以使用特定的至少一个HARQ进程号以GUL传输方式发送信息。具体地,该特定的至少一个HARQ进程号为该控制信息指示的。
需要说明的是,该控制信息中不仅包括该新数据指示信息#4,也包括其他信息,例如用于指示该终端设备功率调整(Transmission Power Control,TPC)的字段、用于指示频域资源分配(Resource Allocation,RA)的字段中的至少一项。
对应地,在该控制信息用于激活或重激活该终端设备通过该GUL传输方式发送信息时,不仅该新数据指示信息#4的取值是预设的值,其他信息的值也可以是预设的,例如,TPC字段预设值为全“0”的状态,RA字段预设值为全“0”的状态。应理解,当包括该新数据指示#4在内的上述至少一个字段都为其对应的预设值时,该控制信息用于激活或重激活该终端设备通过该GUL传输方式发送信息。
还需要说明的是,该控制信息不仅用于激活或重激活与该GUL传输方式对应的半静态时域资源,也可以配置与该GUL传输方式对应的其他信息。
例如,与该GUL传输方式对应的其他信息包括使用该GUL传输方式发送的上行数据包对应的频域资源,生成格式,导频格式以及反馈格式中的至少一种。其中,上行数据包对应的生成格式包括:终端设备通过调制编码生成上行数据包的方式,例如,包括调制编码方式(MCS)和TBS中的至少一种;上行数据包对应的导频格式包括:终端设备发送的导频序列的方式,例如,上行数据包所在的PUSCH对应的DMRS的序列信息;上行数据包的反馈格式包括:终端设备发送反馈信息的方式,例如,包括是否反馈CSI信息、下行HARQ-ACK信息中的至少一种。
在本发明实施例中,该控制信息可以是半静态UL grant信息(为了便于区分与理解,记为半静态UL grant信息#1),同时,为了区别该控制信息(或者说,该半静态UL grant信息#1)和该指示信息#1(即,动态UL grant信息),分别为两种信息采用不同的加扰,即,该控制信息(或者说,该半静态UL grant信息#1)采用该RNTI#1(即,第一RNTI中的一例)加扰,该指示信息#1采用该RNTI#2(即,第二RNTI中的一例)加扰,且该RNTI#1与该RNTI#2不同。例如,该RNTI#1可以为半持续调度(Semi-Persistant Scheduling,SPS)C-RNTI或GUL C-RNTI或G-RNTI,该RNTI#2可以为C-RNTI。
可选地,在该终端设备在第一时间单元上通过免调度许可上行GUL传输方式向网络设备发送第一数据包之前,该方法还包括:
该终端设备接收该网络设备发送的控制信息,该控制信息包括第四新数据指示信息,且在该控制信息用于激活或重激活该终端设备通过该GUL传输方式发送信息时,该第四新数据指示信息的取值为第一预设值;
在该终端设备确定该第一新数据指示信息时,该终端设备忽略该第四新数据指示信息。
具体而言,该新数据指示信息#4的取值为该第一预设值时,也表示上行数据包(包 括该数据包#1)为初传数据包。对于该数据包#1来说,由于该新数据指示信息#1由该数据包#1与该数据包#3之间的传输关系以及该数据包#3对应的新数据指示信息#3确定得到(如后文所述),并不是一个预设值,因此该新数据指示信息#1所指示的数据包的初传或重传与该新数据指示信息#4所指示的数据包的初传或重传可能是不一致的,所以,当该终端设备确定该新数据指示信息#1时,忽略该新数据指示信息#4。也就是说,该终端设备并不根据该控制信息所携带的该新数据指示信息#4确定该新数据指示信息#1,但是,该终端设备根据该控制信息中携带的与该GUL传输方式对应的其他信息(上述的上行数据包的频域资源,生成格式、导频格式、反馈格式中的至少一种)发送该数据包#1。
可选地,在该控制信息用于调度第四数据包的重传数据包时,该第四新数据指示信息的取值为第二预设值,该第四数据包为该终端设备通过该GUL传输方式发送的数据包,所述第二预设值与所述第一预设值相异。
也就是说,该新数据指示信息#4的取值有两种,即前文所述的第一预设值以及此处的第二预设值,该新数指示信息#4的不同取值对应该控制信息的不同作用,即,在该新数据指示信息#4的取值为第一预设值时,该控制信息用于激活或重激活该终端设备通过该GUL传输方式发送信息,在该数据指示信息#4的取值为第二预设值时,该控制信息用于调度该数据包#4(即,第四数据包的一例)的重传数据包(或者说,该控制信息用于调度重传数据包,或者说,该控制信息用于指示该终端设备对该数据包#4进行重传),或者说,该控制信息用于调度该终端设备发送该数据包#4的重传数据包。具体而言,该新数据指示信息#1的取值对应两种状态,即“0”和“1”,当该第一预设值为“0”时,该第二预设值为“1”;当该第一预设值为“1”时,该第二预设值为“0”。
可选地,当该控制信息用于调度该终端设备发送该数据包#4的重传数据包时,除了新数据指示#4对应第二预设值,该控制信息中还包括其他对应预设值的字段。例如上述TPC字段、RA字段中的至少一项。用于调度重传时,该控制信息中的该其他字段对应的预设值可以与激活或重激活时相同,也可以不同。
由于该新数据指示信息#4的取值为第二预设值,对于终端设备来说,可以直接根据该该新数据指示信息#4的取值能够确定自己需要发送的是该数据包#4的重传数据包;但是,对于前文所述的新数据指示信息#2,由于该新数据指示信息#2的取值并不是预设的,而是与该网络设备针对该数据包#1的接收情况有关,且该新数据指示信息#2的取值是基于前一个数据包对应的新数据指示信息的取值(即,新数据指示信息#1的取值或新数据指示信息#3的取值)确定的,对于终端设备来说“该终端设备根据该新数据指示信息#1的取值与该新数据指示信息#2的取值,发送重传数据包或初传数据包”并不能仅仅根据新数据指示信息#2就能够确定自己是发送初传数据包或重传数据包。
在本发明实施例中,网络设备针对上行数据包的接收状态的指示,除了使用半静态UL grant信息和动态UL grant信息之外,还可以使用HARQ反馈信息。其中,该上行数据包可以是基于SUL传输方式发送的,也可以是基于GUL传输方式发送的。
基于HARQ反馈信息的指示方式,该HARQ反馈信息包含用于指示针对某个HARQ进程号对应的前一次上行传输(或者说该HARQ进程号对应的上一个数据包)是否被网络设备正确接收的指示信息但不包含网络设备调度终端设备使用该HARQ进程号进行初传或重传的调度信息。
可选地,该HARQ反馈信息中包含至少一个TTI中的HARQ进程对应的接收状态,该至少一个TTI与该HARQ反馈信息所在的TTI有预定义的时间关联或网络设备指示的时间关联。具体地,该HARQ反馈信息使用PHICH信道以及对应的HARQ反馈方式,例如TTI#n上的HARQ进程(或者说数据包)的接收状态在TTI#n+k(k>0)的HARQ反馈信息上指示。
可选地,该HARQ反馈信息中包含针对一个HARQ进程集合(包含至少一个HARQ进程,包含该第一HARQ进程号所对应的HARQ进程)中每个HARQ进程的接收状态,该HARQ进程集合可以是网络设备配置的,也可以是预定义的或者说固定的。具体来说,该HARQ反馈信息中以比特映射(bit map)的方式指示该HARQ进程集合中每个HARQ进程的接收状态,此时该HARQ反馈信息也称为免调度许可下行控制信息(Grantfree-Downlink Control Information,G-DCI)。
可选地,ACK通过二进制‘1’表示,NACK通过二进制‘0’表示。例如当该HARQ进程集合包含的HARQ进程(以HARQ进程号表示){#0,#1,#2,#3}时,若#0、#1为正确接收,#2、#3为错误接收,则G-DCI中包含的bit map为{1,1,0,0}。终端设备接收到G-DCI之后,可以通过GUL的方式进行初传或重传,例如G-DCI指示某个HARQ进程号对应的接收状态为ACK时,终端设备可以在下一次传输通过GUL传输方式进行数据传输时用该HARQ进程号传输新的数据包,G-DCI指示某个HARQ进程号对应的接收状态为NACK时,终端设备可以在下一次传输通过GUL传输方式进行数据传输时使用该HARQ进程号重传前一次上行传输所对应的数据包。
上述描述了本发明实施例的与GUL传输方式相关的内容(即,配置GUL传输方式的传输格式#1的半静态UL grant信息#1以及用于加扰该半静态UL grant信息的RNTI#1等),下面,针对上述情况A,该终端设备发送该数据包#1的重传数据包的具体情况进行描述。
在本发明实施例中,该终端设备发送该数据包#1的重传数据包的具体情况,同样有两种情况,即情况A-1和情况A-2。
情况A-1
可选地,在该第一新数据指示信息的取值与该第二新数据指示信息的取值相同的情况下,该终端设备发送该第二数据包,该第二数据包为该第一数据包的重传数据包,包括:
该终端设备根据该第一指示信息,在该第二时间单元上发送该第二数据包。
换句话说,该终端设备通过对比两个新数据指示信息,确定该新数据指示信息#2的取值与该新数据指示信息#1的取值相同,进而可以自己需要发送该数据包#1的重传数据包,那么,该终端设备可以直接根据该指示信息#1,在该时间单元#2上发送该数据包#1的重传数据包,或者说,该终端设备根据该指示信息#1,使用与该数据包#2对应的该传输格式#2发送该数据包#1的重传数据包。
因而,当该终端设备发送该第一数据包的重传数据包时,可以直接根据该第一指示信息的指示,在该第二时间单元上对该第一数据包进行重传,有效地利用了当前信令,减少了信令开销。
作为示例而非限定,该终端设备除了可以根据该指示信息#1进行该数据包#1的重传,也可以忽略该指示信息#1,从而根据其他信息或者以其他传输方式进行该数据包#1的重传。
例如,该终端设备可以通过新的GUL PUSCH进行该数据包#1的重传,具体地,可以在该时间单元#2之后一个可用于GUL传输的时间单元(包含在可用GUL时域资源中)上以GUL传输方式进行重传。此外,该用于重传该数据包#1的RV版本号与该数据包#1对应的RV版本号一致,例如为RV#0。
再例如,若是该终端设备后续又接收到其他动态UL grant信息来指示重传,则可以根据该其他动态UL grant信息进行重传。
情况A-2
可选地,该终端设备根据该第一新数据指示信息的取值与该第二新数据指示信息的取值,发送该第二数据包,包括:
在该第一新数据指示信息的取值与该第二新数据指示信息的取值相同,且该第一数据包对应的传输块大小TBS与该第二数据包对应的TBS相同的情况下,该终端设备根据该第一指示信息,在该第二时间单元上发送该第二数据包,该第二数据包为该第一数据包的重传数据包。
在该数据包#1对应的传输块大小TBS(为了便于区分与理解,记为TBS#1)与该数据包#2对应的TBS(为了便于区分与理解,记为TBS#2)相同的情况下,一般情况下,根据该指示信息#1发送该数据包#1的重传数据包,不会发生有效数据信息的丢失以及增加该终端设备的复杂度,这是因为,该指示信息#1中包括的传输格式#2与该网络设备调度该数据包#2时配置的TBS是相对应的。
在本发明实施例中,在该终端设备发送该数据包#1的重传数据包时,针对该TBS#1与该TBS#2之间的关系,可以对应上文中描述的该网络设备针对该数据包#1的接收情况中的第2种情况和第3种情况。具体如下:
在该网络设备检测到该数据包#1,且未成功接收该数据包#1的情况下,该TBS#1与该TBS#2必然是相同的。这是因为,在此种情况下,该网络设备知道该数据包#1的存在性,考虑到只有两个TBS相同的数据包才能进行重传合并,因此,该网络设备在调度该数据包#2时,该数据包#2对应的TBS#2一定是与TBS#1相同的。
在该网络设备未检测到该数据包#1,或者说,该网络设备未检测到该数据包#1的存在性,假设上文所述的该网络设备针对该数据包#3接收成功,那么,该网络设备会调度该终端设备使用第一HARQ进程号发送初传数据包。此种情况下,由于该网络设备并不知道该数据包#1的存在性,因此该TBS#1与该TBS#2可能相同,也可能不相同。
无论网络设备针对该数据包#1的接收情况如何,为了高效利用资源,该终端设备不需要区分该网络设备的意图(即上述的两种情况:该网络设备检测到该数据包#1但未成功接收;以及,该网络设备未检测到该数据包#1),在发送该数据包#1的重传数据包时,只要该TBS#1与该TBS#2相同,该终端设备都根据该指示信息#1,在该时间单元#2上发送该数据包#1的重传数据包。反之,当该TBS#1与该TBS#2相异时,对应该网络设备未检测到该数据包#1的情况,此时该网络设备调度的资源(或者说传输格式#2)匹配TBS#2而不匹配TBS#1,由于该终端设备无法在与TBS#1不匹配的资源上发送数据,该终端设备可以忽略该指示信息#1,不在该时间单元#2上发送信息。
下面,通过图5至图7以及结合该网络设备针对该数据包#1的接收情况,详细描述该终端设备根据该TBS#1与该TBS#2之间的关系发送该数据包#1的重传数据包的过程。
图5所示为根据本发明实施例的数据传输过程中终端设备与终设备之间的另一行为示意图。
如图5所示,该终端设备在子帧#n发送与该第一HARQ进程号(即,HARQ进程号#H0)对应的数据包#3,且与该数据包#3对应的新数据指示信息#3的取值为“0”(即,图5中所示的NDI#3=0),该网络设备正确接收该数据包#3,且通过HARQ反馈信息指示该网络设备针对该数据包#3的接收状态为ACK,该终端设备在接收到该HARQ反馈信息后,在子帧#n+8(即,该时间单元#1)上通过GUL传输方式发送与该HARQ进程号#H0对应的该数据包#1,该数据包#1为与该数据包#3相异的初传数据包,且与该数据包#1对应的新数据指示信息#1的取值为“1”(即,图5中所示的NDI#1=1),且与该数据包#1对应的TBS#1=1000bits。该网络设备检测到该数据包#1,但是解调译码失败,同时,该网络设备在子帧#n+12上通过该指示信息#1调度该终端设备使用该HARQ进程号#H0在子帧#n+16(即,该时间单元#2)上发送该数据包#2。
此种情况下,该网络设备会基于该新数据指示信息#1来确定该新数据指示信息#2,即,该网络设备确定该数据包#2为该数据包#1的重传数据包,从而确定该新数据指示信息#2的取值为“1”(即,图5所示的NDI#2=1),且,该网络设备调度的该数据包#2对应的TBS#2=1000bits=TBS#1。
对于终端设备来说,当该终端设备接收到该新数据指示信息#2后,通过将该新数据指示信息#2的取值与该新数据指示信息#1的取值进行对比,确定该新数据指示信息#2的取值与该新数据指示信息#1的取值相同,那么,该终端设备理解该网络设备针对该数据包#1接收失败,同时,由于TBS#2=1000bits=TBS#1,因此,该终端设备可以直接在#n+16上按照该指示信息#1发送该数据包#2。
图6所示为根据本发明实施例的数据传输过程中网络设备与终端设备之间的另一行为示意图。
如图6所示,该终端设备在子帧#n发送与HARQ进程号#H0对应的数据包#3,且与该数据包#3对应的新数据指示信息#3的取值为“0”(即,图6中所示的NDI#3=0),该网络设备正确接收该数据包#3,且通过HARQ反馈信息指示该网络设备针对该数据包#3的接收状态为ACK,该终端设备在接收到该HARQ反馈信息后,在子帧#n+8(即,该时间单元#1)上通过GUL传输方式发送与该HARQ进程号#H0对应的该数据包#1,该数据包#1为与该数据包#3相异的初传数据包,且与该数据包#1对应的新数据指示信息#1的取值为“1”(即,图6中所示的NDI#1=1),且与该数据包#1对应的TBS#1=1000bits。该网络设备未能检测到该数据包#1,同时,该网络设备在子帧#n+12上通过该指示信息#1调度该终端设备使用该HARQ进程号#H0在子帧#n+16(即,该时间单元#2)上发送该数据包#2。
此种情况下,由于该网络设备未检测到该数据包#1,该网络设备会基于该数据包#3以及对应的该新数据指示信息#3来确定该新数据指示信息#2,即,该网络设备确定该数据包#2为该数据包#3的初传数据包,从而确定该新数据指示信息#2的取值为“1”(即,图6所示的NDI#2=1),且,该网络设备调度的该数据包#2对应的TBS#2=1000bits=TBS#1。
对于终端设备来说,当该终端设备接收到该新数据指示信息#2后,通过将该新数据指示信息#2的取值与该新数据指示信息#1的取值进行对比,确定该新数据指示信息#2的取值与该新数据指示信息#1的取值相同,那么,该终端设备理解该网络设备针对该数据包#1 接收失败,同时,由于TBS#2=1000bits=TBS#1,因此,该终端设备可以直接在#n+16上按照该指示信息#1发送该数据包#2作为该数据包#1的重传数据包。
图7所示为根据本发明实施例的数据传输过程中网络设备与终端设备之间的另一行为示意图。
如图7所示,该终端设备在子帧#n发送与HARQ进程号#H0对应的数据包#3,且与该数据包#3对应的新数据指示信息#3的取值为“0”(即,图7中所示的NDI#3=0),该网络设备正确接收该数据包#3,且通过HARQ反馈信息指示该网络设备针对该数据包#3的接收状态为ACK,该终端设备在接收到该HARQ反馈信息后,在子帧#n+8(即,该时间单元#1)上通过GUL传输方式发送与该HARQ进程号#H0对应的该数据包#1,该数据包#1为与该数据包#3相异的初传数据包,且与该数据包#1对应的新数据指示信息#1的取值为“1”(即,图7中所示的NDI#1=1),且与该数据包#1对应的TBS#1=1000bits。该网络设备未能检测到该数据包#1,同时,该网络设备在子帧#n+12上通过该指示信息#1调度该终端设备使用该HARQ进程号#H0在子帧#n+16(即,该时间单元#2)上发送该数据包#2。
此种情况下,由于该网络设备未检测到该数据包#1,该网络设备会基于该数据包#3以及对应的该新数据指示信息#3来确定该新数据指示信息#2,即,该网络设备确定该数据包#2为该数据包#3的初传数据包,从而确定该新数据指示信息#2的取值为“1”(即,图7所示的NDI#2=1),且,该网络设备调度的该数据包#2对应的TBS#2=500bits。
对于终端设备来说,当该终端设备接收到该新数据指示信息#2后,通过将该新数据指示信息#2的取值与该新数据指示信息#1的取值进行对比,确定该新数据指示信息#2的取值与该新数据指示信息#1的取值相同,那么,该终端设备理解该网络设备针对该数据包#1接收失败,同时,由于TBS#2与TBS#2相异,因此,该终端设备并不根据该指示信息#1发送该数据包#2,因此不占用子帧#n+16发送数据信息。
因而,在第一新数据指示信息的取值与第二新数据指示信息的取值相同,且第一数据包对应的传输块大小TBS与第二数据包对应的TBS相同的情况下,该终端设备根据第一指示信息,在该第二时间单元上发送该第一数据包的重传数据包,不仅可以有效地利用当前信令,减少信令开销,同时,也可以有效地提高该第一数据包的的传输效率,减少该终端设备的复杂度。
作为示例而非限定,在该TBS#1与该TBS#2相异的情况下,该终端设备也可以根据该指示信息#1在该时间单元#2上发送该数据包#1的重传数据包。
具体而言,当该TBS#1的大于该指示信息#1所指示的TBS#2时,可以将该数据包#1切分,按照该指示信息#1所指示的TBS#2进行传输。当该TBS#1小于该指示信息#1所指示的TBS#2时,可以将该数据包#1与高层传递下来的新的数据重组为一个新的数据包,使该新的数据包的TBS与该指示信息#1所指示的TBS#2相同,再对该新的数据包进行传输。进一步地,该重传的冗余版本(Redundancy Version,RV)的版本号与该数据包#1对应的RV版本号一致,例如为RV#0。
应理解,终端设备可以根据该指示信息#1确定该TBS#2。该指示信息#1指示该数据包#2对应的物理资源以及调制编码方式(MCS),该TBS#2可以由该物理资源和该MCS映射得到。
应理解,终端设备可以根据配置该数据包#1的配置信息(或者说,前文所述的控制 信息)确定该TBS#1。该配置信息(或者说,该控制信息)中包含用于指示该数据包#1对应的物理资源以及MCS信息,该TBS#1可以由该物理资源和该MCS映射得到。或者,终端设备可以自主确定该TBS#1,该终端设备可以将TBS#1,或者将用于映射该TBS的物理资源和或MCS上报给该网络设备。可选地,在该第一新数据指示信息的取值与该第二新数据指示信息的取值相同的情况下,该终端设备忽略该第一指示信息。
也就是说,该终端设备禁止或停止基于该指示信息#1发送该数据包#2,或者说,该终端设备不再根据该指示信息#1的指示进行数据包#2的组包,或者说,该终端设备不根据该指示信息#1的指示在该时间单元#1上发送该数据包#1。
在本发明实施例中,终端设备忽略该指示信息#1时,可以保留或者不清除与该第一HARQ进程号对应的HARQ缓存中的数据包#1。
应理解,当该终端设备忽略该指示信息#1时,可以根据其他信息或者以其他传输方式进行该数据包#1的重传,如前所述,不再赘述。
在本发明实施例中,在该终端设备忽略该指示信息#1时,也需要考虑该网络设备通过该指示信息#1调度该终端设备发送该数据包#2的两种情况,同样可以对应上文中描述的该网络设备针对该数据包#1的接收情况中的第2种情况和第3种情况。具体如下:
在第2种情况下,即该网络设备检测到该数据包#1,且针对该数据包#1接收失败的情况下,例如,该网络设备检测到该数据包#1,但是针对该数据包#1解调译码失败,此时,该网络设备调度该终端设备的发送的该数据包#2为该数据包#1的重传数据包,此种情况下,该网络设备可以有两种方式调度该终端设备发送该数据包#1的重传数据包。
方式1
该网络设备通过半静态UL grant信息(为了便于区分与理解,记为半静态UL grant信息#2)调度该终端设备发送该数据包#1的重传数据包。具体而言,该半静态UL grant信息#2中的新数据指示信息(为了便于区分与理解,记为新数据指示信息#5)的取值为该第二预设值(例如,该半静态UL grant信息#2中的NDI=1),该新数指示信息#5指示信息用于指示该终端设备发送该数据包#1的重传数据包。其中,该半静态UL grant#2的作用类似于用于调度该数据包#4的重传数据包的该半静态UL grant#1。该半静态UL grant#2使用RNTI#1加扰。
此种情况下,该网络设备调度该终端设备进行数据包#1的重传时并不是通过向该终端设备发送该指示信息#1以及该新数据指示信息#2,该终端设备也不会接收该指示信息#1和该新数据指示信息#2。
若该网络设备总是使用方式1调度重传数据包,通过上述针对该网络设备通过该指示信息#1调度该终端设备发送该数据包#2的分析,可以看出,当该网络设备检测到该数据包#1的存在性,该网络设备会通过该半静态UL grant信息#2调度该终端设备对数据包#1进行重传。因此当该终端设备接收该指示信息#1(以及该新数据指示信息#2)时,一定是由于第3种情况,即该网络设备未检测到该数据包#1的存在性而导致的(网络设备希望通过该指示信息#1以及该新数据指示信息#2调度的该数据包#2为初传数据包),也就是说可以确定该网络设备未检测到该数据包#1,此时考虑到该TBS#2与TBS#1相同的概率很小,为了实现方便,该终端设备可以直接忽略该指示信息#1。
图8所示为根据本发明实施例的数据传输过程中的网络设备与终端设备之间的另一行 为示意图。即,在上述第2种情况下该网络设备通过方式1调度该终端设备发送该数据包#1的重传数据包的过程中的该终设备与该网络设备之间的行为示意图。
在图8中,该终端设备在子帧#n发送与HARQ进程号#H0对应的数据包#3,且与该数据包#3对应的新数据指示信息#3的取值为“0”(即,图8中所示的NDI#3=0),该网络设备正确接收该数据包#3,且通过HARQ反馈信息指示该网络设备针对该数据包#3的接收状态为ACK,该终端设备在接收到该HARQ反馈信息后,在子帧#n+8(即,该时间单元#1)上通过GUL传输方式发送与该HARQ进程号#H0对应的该数据包#1,该数据包#1为与该数据包#3相异的初传数据包,且与该数据包#1对应的新数据指示信息#1的取值为“1”(即,图8中所示的NDI#1=1),且与该数据包#1对应的TBS#1=1000bits。同时,针对该第一HARQ进程号,该网络设备调度该终端设备对与该第一HARQ进程号对应的数据包的单次重传时仅使用该半静态UL grant信息#2。
该网络设备检测到该数据包#1,但是解调译码失败,同时,该网络设备在子帧#n+12上通过该半静态UL grant信息#2调度该终端设备使用该HARQ进程号#H0在子帧#n+16(即,该时间单元#2)上发送该数据包#1的重传数据包。此种情况下该网络设备确定该数据包#2为该数据包#1的重传数据包,且,该网络设备调度的该数据包#2对应的TBS#2=1000bits=TBS#1。
对于终端设备来说,该终端设备接收该半静态UL grant信息#2后正确理解该网络设备检测到该数据包#1但未成功接收该数据包#1。且由于TBS#2=1000bits=TBS#1,该终端设备在#n+16直接基于该半静态UL grant信息#2发送该数据包#1的重传数据包。
方式2
该网络设备通过该指示信息#1以及该新数据指示信息#2调度该终端设备进行数据包#1的重传。
由于该终端设备可以通过该新数据指示信息#2的取值以及该新数据指示信息#1的取值的相同或相异区分该数据包#1的接收情况(接收成功或接收失败),因此在第2种情况下,该网络设备也可以采用方式2调度该数据包#1的重传。
若该网络设备总是使用方式2调度重传数据包,在第2种情况下,由于该网络设备检测到该数据包#1的存在性(但未接收成功),因此该网络设备可以获取到该TBS#1,因此该网络设备发送的该指示信息#1调度的该数据包#2所对应的TBS#2一定与TBS#1相同。
在第3种情况下,即该网络设备未检测到该数据包#1,且针对该数据包#3接收成功,该网络设备发送该指示信息#1以及该新数据指示信息#2,且会希望调度该终端设备使用第一HARQ进程号发送与该数据包#3相异的初传数据包。此种情况下,由于该网络设备并不知道该数据包#1的存在,该指示信息#1中所包括的TBS#2与针对该数据包#1的TBS#1可能相同,也可能不同。当该TBS#1与该TBS#2不同时,该终端设备可以确定该网络设备未检测到该数据包#1。
图9和图10所示分别为根据本发明实施例的数据传输过程中的网络设备与终端设备之间的另一行为示意图。即,该网络设备通过方式1和方式2调度该终端设备发送该数据包#1的重传数据包的过程中的该终端设备与该网络设备之间的行为示意图。
在图9和图10中,该终端设备在子帧#n发送与HARQ进程号#H0对应的数据包#3,且与该数据包#3对应的新数据指示信息#3的取值为“0”(即,图9和图10中所示的NDI#3=0), 该网络设备正确接收该数据包#3,且通过HARQ反馈信息指示该网络设备针对该数据包#3的接收状态为ACK,该终端设备在接收到该HARQ反馈信息后,在子帧#n+8(即,该时间单元#1)上通过GUL传输方式发送与该HARQ进程号#H0对应的该数据包#1,该数据包#1为与该数据包#3相异的初传数据包,且与该数据包#1对应的新数据指示信息#1的取值为“1”(即,图9和图10中所示的NDI#1=1),且与该数据包#1对应的TBS#1=1000bits。同时,针对该第一HARQ进程号,该网络设备调度该终端设备对与该第一HARQ进程号对应的数据包的单次重传时仅使用该半静态UL grant信息#2。
此种情况下,由于该网络设备未检测到该数据包#1,同时,该网络设备在子帧#n+12上通过该指示信息#1调度该终端设备使用该HARQ进程号#H0在子帧#n+16(即,该时间单元#2)上发送该数据包#1的重传数据包。该网络设备会基于该数据包#3以及对应的该新数据指示信息#3来确定该新数据指示信息#2,即,该网络设备确定该数据包#2为该数据包#3的初传数据包,从而确定该新数据指示信息#2的取值为“1”(即,图9和图10中所示的NDI#2=1),在图9中,该网络设备调度的该数据包#2对应的TBS#2=1000bits=TBS#1,在图10中,该网络设备调度的该数据包#2对应的TBS#2=500bits。
对于终端设备来说,当该终端设备接收到该新数据指示信息#2后,通过将该新数据指示信息#2的取值与该新数据指示信息#1的取值进行对比,确定该新数据指示信息#2的取值与该新数据指示信息#1的取值相同,那么,该终端设备理解该网络设备针对该数据包#1接收失败。此时,无论该指示信息#1中所指示的TBS#2是多少,考虑到该网络设备仅使用该半静态UL grant信息#2进行该第一HARQ进程号的重传调度,因此该终端设备可以理解该网络设备通过该指示信息#1进行的调度是发生某种错误情况,因此也并不根据该指示信息#1在子帧#n+16上发送该数据包#1的重传数据包,或者说,该终端设备忽略该指示信息#1。
此种情况下,由于该网络设备未检测到该数据包#1,同时,该网络设备在子帧#n+12上通过该该指示信息#1调度该终端设备使用该HARQ进程号#H0在子帧#n+16(即,该时间单元#2)上发送该数据包#1的重传数据包。该网络设备会基于该数据包#3以及对应的该新数据指示信息#3来确定该新数据指示信息#2,即,该网络设备确定该数据包#2为该数据包#3的初传数据包,从而确定该新数据指示信息#2的取值为“1”(即,图9和图10中所示的NDI#2=1),在图9中,该网络设备调度的该数据包#2对应的TBS#2=1000bits=TBS#1,在图10中,该网络设备调度的该数据包#2对应的TBS#2=500bits。
对于终端设备来说,当该终端设备接收到该新数据指示信息#2后,通过将该新数据指示信息#2的取值与该新数据指示信息#1的取值进行对比,确定该新数据指示信息#2的取值与该新数据指示信息#1的取值相同,那么,该终端设备理解该网络设备针对该数据包#1接收失败。此时,无论该指示信息#1中所指示的TBS#2是多少,考虑到该网络设备仅使用该半静态UL grant信息#2进行该第一HARQ进程号的重传调度,因此该终端设备可以理解该网络设备通过该指示信息#1进行的调度是发生某种错误情况,因此也并不根据该指示信息#1在子帧#n+16上发送该数据包#1的重传数据包,或者说,该终端设备忽略该指示信息#1。
可选地,在该第一新数据指示信息的取值与该第二新数据指示信息的取值相同,且该第一数据包对应的传输块大小TBS与该第二数据包对应的TBS相异的情况下,该终端设 备忽略该第一指示信息。
换句话说,在该终端设备确定发送该数据包#1的重传数据包时,只有在该TBS#2与该TBS#1相异时,才会忽略该指示信息#1。
应理解,考虑到在第2种情况下,即该网络设备检测到该数据包#1,且针对该数据包#1接收失败的情况下,该网络设备也可以通过方式2,即该指示信息#1以及该新数据指示信息#2调度该终端设备进行数据包#1的重传,此时该TBS#2与该TBS#1一定相同。另外,该网络设备也可以通过方式1调度该终端设备发送检测到的该数据包#1的重传数据包,而当该网络设备未检测到该数据包#1时,则会通过该指示信息#1(以及该新数据指示信息#2)调度重传,此时该TBS#2与该TBS#1可能相同也可能不同。无论对于上述两种方式中的哪一种,当该终端设备接收到该指示信息#1(以及该新数据指示信息#2)时,可能是对应于该网络设备的第2种情况(该网络设备真正希望调度重传),也可能对应于该网络设备的第3种情况(该网络设备未检测到该数据包#1而希望调度初传),此时为了高效利用资源,该终端设备不需要区分该网络设备的用意,可以限定当在该TBS#2与该TBS#1相同时,该终端设备根据该指示信息#1,在时间单元#2上发送该数据包#2作为该数据包#1的重传数据包,即,如上文对于如图5和图6的描述,该数据包#1对应的TBS#1=1000bits,该数据包#2对应的TBS#2=1000bits,由于TBS#2与TBS#2相同,因此,该终端设备可以根据该指示信息#1,直接在子帧#n+16(即,该时间单元#2)上发送该数据包#2;而当该TBS#2与该TBS#1相异时,此时该网络设备调度的资源匹配TBS#2而不匹配TBS#1,由于该指示信息#1所指示的资源(或者说传输格式#2)无法匹配地承载该TBS#1,因此这种情况下才会忽略该指示信息#1,即,如上文对于如图7的描述,该数据包#1对应的TBS#1=1000bits,该数据包#2对应的TBS#2=500bits,由于TBS#2与TBS#2相异,因此,该终端设备忽略该指示信息#1,即并不根据该指示信息#1发送该数据包#2。
可选地,当该第一新数据指示信息的取值与该第二新数据指示信息的取值相同时,该终端设备将与该第一HARQ进程号对应的HARQ缓存中的该第一数据包返回高层。
也就说,该终端设备清除该HARQ缓存中的原始数据(即,该数据包#1)。具体而言,该终端设备可以重新进行MAC层组包并进行新的数据传输,即该终端设备将新的数据包(为了便于区分与理解,记为数据包#5)存储至该HARQ缓存中,并进行该数据包#5的初传。
可选地,当该第一新数据指示信息的取值与该第二新数据指示信息的取值相同且该TBS#1与该TBS#2相异时,该终端设备将与该第一HARQ进程号对应的HARQ缓存中的该第一数据包返回高层。
当该终端设备进行该第一HARQ进程号对应的该新数据包#5的初传时,该终端设备可以根据该指示信息#1,在该时间单元#2上进行该第一HARQ进程号对应的数据包#5的初传。
此外,该终端设备也可以通过该指示信息#1以外的其他传输方式,包括其他动态UL grant信息或者新的GUL PUSCH,对该HARQ缓存中的数据包#4进行初传。
可选地,该方法还包括:
该终端设备根据第三数据包与该第一数据包之间的传输关系和对应于该第三数据包的第三新数据指示信息的取值,确定该第一新数据指示信息的取值,其中,该传输关系包 括:该第三数据包为与该第一数据包相异的初传数据包,或,该第三数据包为该第一数据包的重传数据包,该第三新数据指示信息用于指示该第三数据包为初传数据包或重传数据包,该第三数据包为该网络设备调度该终端设备在第三时间单元上发送的数据包,该第三数据包对应该第一HARQ进程号,该第三时间单元在时间上位于该第一时间单元之前。
可选地,该终端设备根据该第三数据包与该第一数据包之间的传输关系和对应于该第三数据包的第三新数据指示信息的取值,确定该第一新数据指示信息的取值,其中,该第三数据包为该终端设备在第三时间单元上发送的数据包。
也就是说,该新数据指示信息#1是由该终端设备确定且发送给该网络设备的,那么,该终端设备在确定该新数据指示信息#1的取值时,需要根据在该时间单元#2之前由该终端设备发送的或由该网络设备调度的数据包(即,第三数据包,记为数据包#3)与该数据包#1之间的传输关系以及对应该数据包#3的新数据指示信息#3(即,该第三新数据指示信息的一例)来确定该新数据指示信息#1的取值。需要说明的是,此处的数据包#3与前文所述的数据包#3是同一个数据包,同理,此处的新数据指示信息#3与前文所述的新数据指示信息#3也是同一个数据包。
在本发明实施例中,该终端设备在确定该新数据指示信息#1的取值之前,需要确定该数据包#3与该数据包#1之间的传输关系,具体方式可以如下所述:
例如,该终端设备可以根据该网络设备反馈的针对该数据包#3的HARQ接收状态的指示信息该传输关系,即,该第三数据包为与该第一数据包相异的初传数据包,或,该第三数据包为该第一数据包的重传数据包,或者说,根据该网络设备反馈的针对该数据包#3的HARQ接收状态的信息确定该网络设备针对该数据包#3的接收状态。
再例如,该终端设备可以根据网络设备发送的UL grant信息该传输关系,或者说,该终端设备可以根据网络设备发送的UL grant信息确定该网络设备针对该数据包#3的HARQ接收状态(即,该网络设备是否成功接收该数据包#3)。具体而言,当该UL grant信息调度该终端设备针对该数据包#3进行重传,则该数据包#1为该数据包#3的重传数据包;当该UL grant信息调度该终端设备针对该数据包#3进行初传,则该数据包#1为该数据包#3的初传数据包。
再例如,该终端设备可以根据网络设备发送的HARQ反馈信息确定该传输关系,其中,针对HARQ反馈信息的描述如前所述,不再赘述。具体而言,当该网络设备发送的该HARQ反馈信息中对应该数据包#3(或者说第一HARQ进程)的HARQ接收状态为ACK时,该数据包#1是与该数据包#3不同的初传数据包;当该网络设备发送的该HARQ反馈信息中对应该数据包#3(或者说第一HARQ进程)的HARQ接收状态为NACK时,该数据包#1是针对该数据包#3的重传数据包。
可选地,该终端设备根据该数据包#3与该数据包#1之间的传输关系和该新数据指示信息#3的取值,确定该新数据指示信息#1的取值的过程如下:
在该第一数据包为该第三数据包的重传数据包的情况下,该终端设备确定该第一新数据指示信息的取值与该第三新数据指示信息的取值相同;或,
在该第一数据包为与该第三数据包相异的初传数据包的情况下,该终端设备确定该第一新数据指示信息的取值与该第三新数据指示信息的取值相异。
从该数据包#3的性质来说,该数据包#3可以是该网络设备调度的数据包,即该数据 包#3为该网络设备调度该终端设备在时间单元#3(即,该第三时间单元的一例)上发送的数据包,对于终端设备来说,会基于实际情况或者某些特殊考虑,可能会发送该数据包#3,也可能不会发送该数据包#3(例如,该终端设备在进行LBT失败未抢占到信道而导致的未成功发送该数据包#3)。无论何种情况,该终端设备都可以基于该数据包#3和该新数据指示信息#3的取值确定该新数据指示信息#1。
需要指出的是,当该数据包#3是该网络设备调度的数据包,但是该终端设备并没有发送该数据包#3,直接在该时间单元#1上发送该数据包#1时,该数据包#3与该数据包#1是同一个数据包,或者说该数据包#3与该数据包#1对应相同的编码前传输块。
从该终端设备发送该数据包#3来说,该数据包#3是该终端设备在该时间单元#3上发送的数据包,该终端设备可以通过两种方式发送该数据包#3,即方式A和方式B。
方式A
该数据包#3是该终端设备通过GUL传输方式发送该网络设备的,且该新数据指示信息#3是该终端设备发送该网络设备的。
这里,该数据包#3的传输方式与该该数据包#1的传输方式相同,此处不再赘述。
此种情况下,该终端设备可以仅仅根据基于GUL传输方式发送的数据包#3与该数据包#1之间的传输关系和对应的新数据指示信息#3的取值确定该新数指示信息#1的取值。也就是说,若是该数据包#3是该终端设备基于其他传输方式发送给该网络设备的,该终端设备并不根据基于其他传输方式发送的数据包#3和对应的新数据指示信息#3的取值确定该新数据指示信息#2的取值。
方式B
该数据包#3为该终端设备基于该网络设备的调度该终端设备发送给该网络设备的,且该新数据指示信息#3是该网络设备发送给该终端设备的。
基于网络设备调度的传输方式,也可以称为SUL传输,该SUL传输包括两种方式:一种是该网络设备通过动态UL grant信息调度的方式,一种是该网络设备通过半静态UL grant信息调度的方式,该半静态UL grant信息使用RNTI#1加扰,类似于半静态UL grant信息#1、半静态UL grant信息#2调度重传的方式。
此种情况下,该终端设备可以仅仅根据基于SUL传输的数据包#3与该数据包#1之间的传输关系和对应的新数据指示信息#3的取值确定该新数指示信息#1的取值。也就是说,若是该数据包#3是该终端设备基于其他传输方式发送给该网络设备的,该终端设备并不根据基于其他传输方式发送的数据包#3和对应的新数据指示信息#3的取值确定该新数据指示信息#2的取值。应理解,该基于SUL传输的数据包#3可以仅限于该终端设备实际发送了的数据包,也可以不限定该终端设备是否实际发送,例如也可以包含该网络设备调度了该终端设备发送,但是该终端设备实际并未发送的数据包。
可选地,该数据包#3为在该时间单元#1之前该网络设备调度该终端设备发送的对应该第一HARQ进程号的前一个数据包。
可选地,该数据包#3为在该时间单元#1之前该终端设备发送的对应该第一HARQ进程号的前一个数据包。
可选地,该数据包#3为在该时间单元#1之前对应该第一HARQ进程号的最近的一个数据包。或者说,该数据包#1为该终端设备在该时间单元#3之后发送的且对应该第一 HARQ进程号的最近的一个数据包。
换句话说,该时间单元#3为对应该第一HARQ进程号且在时间上位于该时间单元#1之前的最近的一个时间单元。
这样,对于该数据包#3来说,无论该数据包#3是该终端设备通过GUL传输方式发送的还是由网络设备调度该终端设备发送的,该终端设备都根据该最近的一个数据包(后续为了描述方便,简记为该数据包#1的前一个数据包)以及对应的新数据指示信息确定该新数据指示信息#2的取值。
也可以这么理解,该终端设备也可以根据该数据包#1的前一个数据包与该数据包#1之间的传输关系以及对应的新数据指示信息确定该新数据指示信息#2,即,该前一个数据包为不限定传输方式的数据包。
例如,当该数据包#1的前一个数据包是基于GUL传输方式(即,方式A)发送的对应该第一HARQ进程号的数据包,该终端设备就根据该基于GUL传输方式发送的前一个数据包与该数据包#1的传输关系以及该前一个数据包对应的新数据指示信息的取值确定该新数据指示信息#2的取值。
再例如,当该数据包#1的前一个数据包是基于网络设备调度的对应该第一HARQ进程的数据包,该终端设备就根据基于该网络设备调度的该前一个数据包与该数据包#1的传输关系以及该前一个数据包对应的新数据指示信息的取值确定该新数据指示信息#2的取值。可选地,该前一个数据包仅限于该终端设备实际发送了的数据包,也就是说,当该数据包#1的前一个数据包是基于网络设备调度且该终端设备实际发送的对应该第一HARQ进程的数据包时,该终端设备根据基于该网络设备调度且该终端设备实际发送的该前一个数据包与该数据包#1的传输关系以及该前一个数据包对应的新数据指示信息的取值确定该新数据指示信息#2的取值。可选地,该前一个数据包不限定该终端设备是否实际发送,例如该前一个数据包也可以是该网络设备调度了该终端设备发送,但是该终端设备实际并未发送的数据包。
下面,结合图11和图12来详细描述本发明实施中该终端设备根据该数据包#3与该数据包#1之间的传输关系和该新数据指示信息#3的取值,确定该新数据指示信息#1的取值的过程。
图11所示为根据本发明实施例的数据传输过程中的网络设备与终端设备之间的另一行为示意图。
该终端设备在子帧#n通过GUL传输方式发送与该第一HARQ进程号(即,HARQ进程号#H0)对应的数据包#3,且与该数据包#3对应的新数据指示信息#3的取值为“0”(即,图11中所示的NDI#3=0),该网络设备正确接收该数据包#3,且通过与该数据包#3对应的HARQ反馈信息指示该网络设备针对该数据包#3的接收状态为ACK。对于该终端设备来说,该终端设备在接收到该HARQ反馈信息后,确定在子帧#n+8(即,该时间单元#1)上发送的数据包#1与该数据包#3的传输关系为:该数据包#1为与该数据包#3相异的初传数据包,且确定与该数据包#1对应的新数据指示信息#1的取值与该新数据指示信息#3相异,即该新数据指示信息#1的取值为“1”(即,图11中所示的NDI#1=1),同时,在子帧#n+8上通过GUL传输方式发送与该HARQ进程号#H0对应的该数据包#1。
图12所示为根据本发明实施例的数据传输过程中的网络设备与终端设备之间的再一 行为示意图。
该终端设备在子帧#n通过SUL传输方式(即,基于该网络设备的调度)发送与该第一HARQ进程号(即,HARQ进程号#H0)对应的数据包#3,且与该数据包#3对应的新数据指示信息#3的取值为“0”(即,图12中所示的NDI#3=0),该网络设备正确接收该数据包#3,且通过与该数据包#3对应的HARQ反馈信息指示该网络设备针对该数据包#3的接收状态为ACK。对于该终端设备来说,该终端设备在接收到该HARQ反馈信息后,确定在子帧#n+8(即,该时间单元#1)上发送的数据包#1与该数据包#3的传输关系为:该数据包#1为与该数据包#3相异的初传数据包,且确定与该数据包#1对应的新数据指示信息#1的取值与该新数据指示信息#3相异,即该新数据指示信息#1的取值为“1”(即,图12中所示的NDI#1=1),同时,在子帧#n+8上通过GUL传输方式发送与该HARQ进程号#H0对应的该数据包#1。
综上所述,通过图11和图12的描述可以进一步看出,该终端设备可以根据该数据包#1的前一个数据包以及对应的新数据指示信息确定该新数据指示信息#2,即,该前一个数据包为不限定传输方式的数据包。
因而,本发明实施例提供的数据传输的方法,一方面,终端设备在接收到用于指示该终端设备发送与第一HARQ进程号对应的第二数据包的第一指示信息后,通过根据与该第二数据包对应的第二新数据指示信息的取值和对应于该终端设备通过GUL传输发送的第一数据包的第一新数据指示信息取值,针对该第一数据包进行缓存处理,或确定该第二数据包的传输类型,从而发送该第二数据包,其中,第二数据包为该第一数据包的重传数据包,或,该第二数据包为与该第一数据包相异的初传数据包,尤其在该网络设备未检测到该第一数据包的情况下,且网络设备通过该第一指示信息指示该终端设备传输与该第一HARQ进程号对应的初传数据包时,该终端设备不再根据该第一指示信息进行该初传数据包的传输,而是发送该第一数据包的重传数据包,不再清除该缓存中的第一数据包,而是保留缓存中的该第一数据包,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性;
另一方面,当该终端设备发送该第一数据包的重传数据包时,可以直接根据该第一指示信息的指示,在该第二时间单元上对该第一数据包进行重传,有效地利用了当前信令,减少了信令开销;
再一方面,在第一新数据指示信息的取值与第二新数据指示信息的取值相同,且第一数据包对应的传输块大小TBS与第二数据包对应的TBS相同的情况下,该终端设备根据第一指示信息,在该第二时间单元上发送该第一数据包的重传数据包,不仅可以有效地利用当前信令,减少信令开销,同时,也可以有效地提高该第一数据包的的传输效率,减少该终端设备的复杂度。
以上,结合图1至图12详细描述了根据本发明实施例的数据传输的方法,下面,结合图13至图14描述根据本发明实施例的数据传输的装置,方法实施例所描述的技术特征同样适用于以下装置实施例。
图13示出了根据本发明实施例的数据传输的装置300的示意性框图。如图13所示,该装置300包括:
发送单元310,用于在第一时间单元上通过免调度许可上行GUL传输方式向网络设备发送第一数据包,该第一数据包对应第一混合自动重传请求HARQ进程号,该第一数 据包对应第一新数据指示信息,该第一新数据指示信息用于指示该第一数据包是初传数据包或重传数据包;
接收单元320,用于接收该网络设备发送的第一指示信息,该第一指示信息用于指示该装置在第二时间单元上发送第二数据包,该第二数据包对应该第一HARQ进程号,该第二时间单元在时间上位于该第一时间单元之后,其中,该第二数据包对应该网络设备发送的第二新数据指示信息,该第二新数据指示信息用于指示该第二数据包是初传数据包或重传数据包;
该发送单元310还用于,根据该第一新数据指示信息的取值和该第二新数据指示信息的取值,针对该第一数据包进行缓存处理,或,发送该第二数据包,其中,该第二数据包为该第一数据包的重传数据包,或,该第二数据包为与该第一数据包相异的初传数据包。
因而,本发明实施例提供的数据传输的装置,该装置在接收到用于指示该装置发送与第一HARQ进程号对应的第二数据包的第一指示信息后,通过根据与该第二数据包对应的第二新数据指示信息的取值和对应于该装置通过GUL传输发送的第一数据包的第一新数据指示信息取值,针对该第一数据包进行缓存处理,或确定该第二数据包的传输类型,从而发送该第二数据包,其中,第二数据包为该第一数据包的重传数据包,或,该第二数据包为与该第一数据包相异的初传数据包,尤其在该网络设备未检测到该第一数据包的情况下,且网络设备通过该第一指示信息指示该装置传输与该第一HARQ进程号对应的初传数据包时,该装置不再根据该第一指示信息进行该初传数据包的传输,而是发送该第一数据包的重传数据包,不再清除该缓存中的第一数据包,而是保留缓存中的该第一数据包,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性。
可选地,该发送单元310具体用于:
在该第一新数据指示信息的取值与该第二新数据指示信息的取值相同的情况下,保留缓存中的该第一数据包,或发送该第二数据包,该第二数据包为该第一数据包的重传数据包。
可选地,该发送单元310具体用于:
根据该第一指示信息,在该第二时间单元上发送该第二数据包。
因而,当该装置发送该第一数据包的重传数据包时,可以直接根据该第一指示信息的指示,在该第二时间单元上对该第一数据包进行重传,有效地利用了当前信令,减少了信令开销。
可选地,该发送单元310具体用于:
在该第一新数据指示信息的取值与该第二新数据指示信息的取值相同,且该第一数据包对应的传输块大小TBS与该第二数据包对应的TBS相同的情况下,根据该第一指示信息,在该第二时间单元上发送该第二数据包,该第二数据包为该第一数据包的重传数据包。
因而,在第一新数据指示信息的取值与第二新数据指示信息的取值相同,且第一数据包对应的传输块大小TBS与第二数据包对应的TBS相同的情况下,该装置根据第一指示信息,在该第二时间单元上发送该第一数据包的重传数据包,不仅可以有效地利用当前信令,减少信令开销,同时,也可以有效地提高该第一数据包的的传输效率,减少该装置的复杂度。
可选地,该装置还包括:
处理单元330,用于在该第一新数据指示信息的取值与该第二新数据指示信息的取值相同的情况下,忽略该第一指示信息。
可选地,该装置还包括:
处理单元330,用于在该第一新数据指示信息的取值与该第二新数据指示信息的取值相同,且该第一数据包对应的传输块大小TBS与该第二数据包对应的TBS相异的情况下,忽略该第一指示信息。
可选地,该发送单元310具体用于:
在该第一新数据指示信息的取值与该第二新数据指示信息相异的情况下,根据该第一指示信息,在该第二时间单元上发送该第二数据包,该第二数据包为与该第一数据包相异的初传数据包。
可选地,该装置还包括:
处理单元330,用于根据第三数据包与该第一数据包之间的传输关系和对应于该第三数据包的第三新数据指示信息的取值,确定该第一新数据指示信息的取值,其中,该传输关系包括:该第三数据包为与该第一数据包相异的初传数据包,或,该第三数据包为该第一数据包的重传数据包,该第三新数据指示信息用于指示该第三数据包为初传数据包或重传数据包,该第三数据包为该网络设备调度该装置在第三时间单元上发送的数据包,该第三数据包对应该第一HARQ进程号,该第三时间单元在时间上位于该第一时间单元之前。
可选地,该处理单元330具体用于:
在该第一数据包为该第三数据包的重传数据包的情况下,确定该第一新数据指示信息的取值与该第三新数据指示信息的取值相同;或,
在该第一数据包为与该第三数据包相异的初传数据包的情况下,确定该第一新数据指示信息的取值与该第三新数据指示信息的取值相异。
可选地,该接收单元320还用于:
接收该网络设备发送的控制信息,该控制信息包括第四新数据指示信息,且在该控制信息用于激活或重激活该装置通过该GUL传输方式发送信息时,该第四新数据指示信息的取值为第一预设值;以及,该装置还包括:
处理单元330,用于根据该控制信息确定与该GUL传输方式对应的半静态时域资源,其中,该第一时间单元属于该半静态时域资源。
可选地,在该控制信息用于调度第四数据包的重传数据包时,该第四新数据指示信息的取值为第二预设值,该第四数据包为该装置通过该GUL传输方式发送的数据包,该第二预设值与该第一预设值相异。
可选地,该发送单元310还用于:
向该网络设备发送该第一新数据指示信息。
该数据传输的装置300可以对应(例如,可以配置于或本身即为)上述方法200中描述的终端设备,并且,该数据传输的装置300中各模块或单元分别用于执行上述方法200中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本发明实施例中,该装置300可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器 用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
其中,图13所示的装置300中的发送单元310可以对应该发送器,图13所示的装置300中的接收单元320可以对应该接收器,图13所示的装置300中的处理单元330也可以对应该处理器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
应注意,本发明实施例上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图14示出了根据本发明实施例的数据传输的装置400的示意性框图。如图14所示,该装置400包括:
发送单元410,用于向终端设备发送第一指示信息,该第一指示信息用于指示该终端设备在第二时间单元上发送第二数据包,该第二数据包对应该第一HARQ进程号,且该第二数据包对应该装置发送的第二新数据指示信息,该第二新数据指示信息用于指示该第二数据包是初传数据包或重传数据包,其中,该第一HARQ进程号还对应第一数据包,该第一数据包由该终端设备在第一时间单元上通过GUL传输发送向该装置发送,该第一数据包对应第一新数据指示信息,该第一新数据指示信息用于指示该第一数据包是初传数据包或重传数据包,该第二时间单元在时间上位于该第一时间单元之后;
接收单元420,用于接收该终端设备发送的第二数据包,其中,该第二数据包为该第一数据包的重传数据包,或,该第二数据包为与该第一数据包相异的初传数据包。
因而,本发明实施例的数据传输的装置,该装置在向终端设备发送用于指示该终端设备发送与第一HARQ进程号对应的第二数据包的第一指示信息后,可以使得该终端设备根据与该第二数据包对应的第二新数据指示信息的取值和对应于该终端设备通过GUL传输发送的第一数据包的第一新数据指示信息取值,针对该第一数据包进行缓存处理,或确定该第二数据包的类型,从而发送该第二数据包,其中,第二数据包为该第一数据包的重传数据包,或,该第二数据包为与该第一数据包相异的初传数据包,尤其在该装置未检测到该第一数据包的情况下,且装置通过该第一指示信息指示该终端设备传输与该第一HARQ进程号对应的初传数据包时,可以使得该终端设备不再根据该第一指示信息进行该初传数据包的传输,而是发送该第一数据包的重传数据包,不再清除该缓存中的第一数据包,而是保留缓存中的该第一数据包,减少了该第一数据包的丢失,提高了数据传输的可靠性,同时,也提高了系统的灵活性。
可选地,在该第一新数据指示信息的取值与该第二新数据指示信息的取值相同的情况下,该第二数据包为该第一数据包的重传数据包。
可选地,该第二数据包为该终端设备在该第二时间单元上发送的数据包。
可选地,在该第一新数据指示信息的取值与该第二新数据指示信息的取值相同,且该第一数据包对应的传输块大小TBS与该第二数据包对应的TBS相同的情况下,该第二数据包为该终端设备在该第二时间单元上发送的数据包。
可选地,在该第一新数据指示信息的取值与该第二新数据指示信息的取值相异的情况下,该第二数据包为与该第一数据包相异的初传数据包。
可选地,在该第一数据包为第三数据包的重传数据包的情况下,该第一新数据指示信息的取值与对应于该第三数据包的第三新数据指示信息的取值相同,其中,该第三新数据指示信息用于指示该第三数据包为初传数据包或重传数据包,该第三数据包为该装置调度该终端设备在第三时间单元上发送的数据包,该第三数据包对应该第一HARQ进程号,该第三时间单元在时间上位于该第一时间单元之前;或,
在该第一数据包为与第三数据包相异的初传数据包的情况下,该第一新数据指示信息的取值与对应于该第三数据包的第三新数据指示信息的取值相异,其中,该第三新数据指示信息用于指示该第三数据包为初传数据包或重传数据包,该第三数据包为该装置调度该终端设备在第三时间单元上发送的数据包,该第三数据包对应该第一HARQ进程号,该第三时间单元在时间上位于该第一时间单元之前。
可选地,该装置还包括:
处理单元430,用于在该装置检测到该第一数据包的情况下,根据该第一数据包的接收情况和该第一新数据指示信息确定该第二新数据指示信息。
可选地,该发送单元410还用于:
向该终端设备发送控制信息,该控制信息包括第四新数据指示信息,且在该控制信息用于激活或重激活该终端设备通过该GUL传输方式发送信息时,该第四新数据指示信息的取值为第一预设值,其中,该第一时间单元属于与该GUL传输方式对应的半静态时域资源。
可选地,在该控制信息用于调度第四数据包的重传数据包时,该第四新数据指示信息的取值为第二预设值,该第四数据包为该终端设备通过该GUL传输方式发送的数据包, 该第二预设值与该第一预设值相异。
可选地,该接收单元410还用于:
接收该终端设备发送的该第一新数据指示信息。
该数据传输的装置400可以对应(例如,可以配置于或本身即为)上述方法200中描述的网络设备,并且,该数据传输的装置400中各模块或单元分别用于执行上述方法200中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本发明实施例中,该装置400可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
其中,图14所示的装置400中的发送单元410可以对应该发送器,图14所示的装置400中的接收单元420可以对应该接收器,图14所示的装置400中的处理单元430也可以对应该处理器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
应注意,本发明实施例上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本发明实施例的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实 施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发送实施例中所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (44)

  1. 一种数据传输的方法,其特征在于,所述方法包括:
    终端设备在第一时间单元上通过免调度许可上行GUL传输方式向网络设备发送第一数据包,所述第一数据包对应第一混合自动重传请求HARQ进程号,所述第一数据包对应第一新数据指示信息,所述第一新数据指示信息用于指示所述第一数据包是初传数据包或重传数据包;
    所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,所述第二数据包对应所述第一HARQ进程号,所述第二时间单元在时间上位于所述第一时间单元之后,其中,所述第二数据包对应所述网络设备发送的第二新数据指示信息,所述第二新数据指示信息用于指示所述第二数据包是初传数据包或重传数据包;
    所述终端设备根据所述第一新数据指示信息的取值与所述第二新数据指示信息的取值,针对所述第一数据包进行缓存处理,或,发送所述第二数据包,其中,所述第二数据包为所述第一数据包的重传数据包,或,所述第二数据包为与所述第一数据包相异的初传数据包。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一新数据指示信息的取值与所述第二新数据指示信息的取值,针对所述第一数据包进行缓存处理,或,发送所述第二数据包,包括:
    在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同的情况下,所述终端设备保留缓存中的所述第一数据包,或,发送所述第二数据包,所述第二数据包为所述第一数据包的重传数据包。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备发送所述第二数据包,所述第二数据包为所述第一数据包的重传数据包,包括:
    所述终端设备根据所述第一指示信息,在所述第二时间单元上发送所述第二数据包。
  4. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一新数据指示信息的取值与所述第二新数据指示信息的取值,发送所述第二数据包,包括:
    在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同,且所述第一数据包对应的传输块大小TBS与所述第二数据包对应的TBS相同的情况下,所述终端设备根据所述第一指示信息,在所述第二时间单元上发送所述第二数据包,所述第二数据包为所述第一数据包的重传数据包。
  5. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同的情况下,所述终端设备忽略所述第一指示信息。
  6. 根据权利要求1、2或4中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同,且所述第一数据包对应的传输块大小TBS与所述第二数据包对应的TBS相异的情况下,所述终端设备忽略所述第一指示信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述终端设备根据所述第一新数据指示信息的取值与所述第二新数据指示信息的取值,发送所述第二数据包,包括:
    在所述第一新数据指示信息的取值与所述第二新数据指示信息相异的情况下,所述终端设备根据所述第一指示信息,在所述第二时间单元上发送所述第二数据包,所述第二数据包为与所述第一数据包相异的初传数据包。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第三数据包与所述第一数据包之间的传输关系和对应于所述第三数据包的第三新数据指示信息的取值,确定所述第一新数据指示信息的取值,其中,所述传输关系包括:所述第三数据包为与所述第一数据包相异的初传数据包,或,所述第三数据包为所述第一数据包的重传数据包,所述第三新数据指示信息用于指示所述第三数据包为初传数据包或重传数据包,所述第三数据包为所述网络设备调度所述终端设备在第三时间单元上发送的数据包,所述第三数据包对应所述第一HARQ进程号,所述第三时间单元在时间上位于所述第一时间单元之前。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备根据第三数据包与所述第一数据包之间的传输关系和对应于所述第三数据包的第三新数据指示信息的取值,确定所述第一新数据指示信息的取值,包括:
    在所述第一数据包为所述第三数据包的重传数据包的情况下,所述终端设备确定所述第一新数据指示信息的取值与所述第三新数据指示信息的取值相同;或,
    在所述第一数据包为与所述第三数据包相异的初传数据包的情况下,所述终端设备确定所述第一新数据指示信息的取值与所述第三新数据指示信息的取值相异。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,在所述终端设备在第一时间单元上通过免调度许可上行GUL传输方式向网络设备发送第一数据包之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的控制信息,所述控制信息包括第四新数据指示信息,且在所述控制信息用于激活或重激活所述终端设备通过所述GUL传输方式发送信息时,所述第四新数据指示信息的取值为第一预设值;
    所述终端设备根据所述控制信息确定与所述GUL传输方式对应的半静态时域资源,其中,所述第一时间单元属于所述半静态时域资源。
  11. 根据权利要求10所述的方法,其特征在于,在所述控制信息用于调度第四数据包的重传数据包时,所述第四新数据指示信息的取值为第二预设值,所述第四数据包为所述终端设备通过所述GUL传输方式发送的数据包,所述第二预设值与所述第一预设值相异。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送所述第一新数据指示信息。
  13. 一种数据传输的方法,其特征在于,所述方法包括:
    网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,所述第二数据包对应所述第一HARQ进程号,且所述第二数据包对应所述网络设备发送的第二新数据指示信息,所述第二新数据指示信息用于 指示所述第二数据包是初传数据包或重传数据包,其中,所述第一HARQ进程号还对应第一数据包,所述第一数据包由所述终端设备在第一时间单元上通过GUL传输方式向所述网络设备发送,所述第一数据包对应第一新数据指示信息,所述第一新数据指示信息用于指示所述第一数据包是初传数据包或重传数据包,所述第二时间单元在时间上位于所述第一时间单元之后;
    所述网络设备接收所述终端设备发送的第二数据包,其中,所述第二数据包为所述第一数据包的重传数据包,或,所述第二数据包为与所述第一数据包相异的初传数据包。
  14. 根据权利要求13所述的方法,其特征在于,在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同的情况下,所述第二数据包为所述第一数据包的重传数据包。
  15. 根据权利要求14所述的方法,其特征在于,所述第二数据包为所述终端设备在所述第二时间单元上发送的数据包。
  16. 根据权利要求13或14所述的方法,其特征在于,在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同,且所述第一数据包对应的传输块大小TBS与所述第二数据包对应的TBS相同的情况下,所述第二数据包为所述终端设备在所述第二时间单元上发送的数据包。
  17. 根据权利要求13至16中任一项所述的方法,在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相异的情况下,所述第二数据包为与所述第一数据包相异的初传数据包。
  18. 根据权利要求13至17中任一项所述的方法,其特征在于,在所述第一数据包为第三数据包的重传数据包的情况下,所述第一新数据指示信息的取值与对应于所述第三数据包的第三新数据指示信息的取值相同,其中,所述第三新数据指示信息用于指示所述第三数据包为初传数据包或重传数据包,所述第三数据包为所述网络设备调度所述终端设备在第三时间单元上发送的数据包,所述第三数据包对应所述第一HARQ进程号,所述第三时间单元在时间上位于所述第一时间单元之前;或,
    在所述第一数据包为与第三数据包相异的初传数据包的情况下,所述第一新数据指示信息的取值与对应于所述第三数据包的第三新数据指示信息的取值相异,其中,所述第三新数据指示信息用于指示所述第三数据包为初传数据包或重传数据包,所述第三数据包为所述网络设备调度所述终端设备在第三时间单元上发送的数据包,所述第三数据包对应所述第一HARQ进程号,所述第三时间单元在时间上位于所述第一时间单元之前。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,在所述网络设备检测到所述第一数据包的情况下,所述网络设备根据所述第一数据包的接收情况和所述第一新数据指示信息确定所述第二新数据指示信息。
  20. 根据权利要求13至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送控制信息,所述控制信息包括第四新数据指示信息,且在所述控制信息用于激活或重激活所述终端设备通过所述GUL传输方式发送信息时,所述第四新数据指示信息的取值为第一预设值,其中,所述第一时间单元属于与所述GUL传输方式对应的半静态时域资源。
  21. 根据权利要求20所述的方法,其特征在于,在所述控制信息用于调度第四数据 包的重传数据包时,所述第四新数据指示信息的取值为第二预设值,所述第四数据包为所述终端设备通过所述GUL传输方式发送的数据包,所述第二预设值与所述第一预设值相异。
  22. 根据权利要求13至21中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的所述第一新数据指示信息。
  23. 一种数据传输的装置,其特征在于,所述装置包括:
    发送单元,用于在第一时间单元上通过免调度许可上行GUL传输方式向网络设备发送第一数据包,所述第一数据包对应第一混合自动重传请求HARQ进程号,所述第一数据包对应第一新数据指示信息,所述第一新数据指示信息用于指示所述第一数据包是初传数据包或重传数据包;
    接收单元,用于接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述装置在第二时间单元上发送第二数据包,所述第二数据包对应所述第一HARQ进程号,所述第二时间单元在时间上位于所述第一时间单元之后,其中,所述第二数据包对应所述网络设备发送的第二新数据指示信息,所述第二新数据指示信息用于指示所述第二数据包是初传数据包或重传数据包;
    所述发送单元还用于,根据所述第一新数据指示信息的取值和所述第二新数据指示信息的取值,针对所述第一数据包进行缓存处理,或,发送所述第二数据包,其中,所述第二数据包为所述第一数据包的重传数据包,或,所述第二数据包为与所述第一数据包相异的初传数据包。
  24. 根据权利要求23所述的装置,其特征在于,所述发送单元具体用于:
    在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同的情况下,保留缓存中的所述第一数据包,或发送所述第二数据包,所述第二数据包为所述第一数据包的重传数据包。
  25. 根据权利要求24所述的装置,其特征在于,所述发送单元具体用于:
    根据所述第一指示信息,在所述第二时间单元上发送所述第二数据包。
  26. 根据权利要求23或24所述的装置,其特征在于,所述发送单元具体用于:
    在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同,且所述第一数据包对应的传输块大小TBS与所述第二数据包对应的TBS相同的情况下,根据所述第一指示信息,在所述第二时间单元上发送所述第二数据包,所述第二数据包为所述第一数据包的重传数据包。
  27. 根据权利要求23或24所述的装置,其特征在于,所述装置还包括:
    处理单元,用于在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同的情况下,忽略所述第一指示信息。
  28. 根据权利要求23、24或26中任一项所述的装置,其特征在于,所述装置还包括:
    处理单元,用于在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同,且所述第一数据包对应的传输块大小TBS与所述第二数据包对应的TBS相异的情况下,忽略所述第一指示信息。
  29. 根据权利要求23至28中任一项所述的装置,其特征在于,所述发送单元具体用 于:
    在所述第一新数据指示信息的取值与所述第二新数据指示信息相异的情况下,根据所述第一指示信息,在所述第二时间单元上发送所述第二数据包,所述第二数据包为与所述第一数据包相异的初传数据包。
  30. 根据权利要求23至29中任一项所述的装置,其特征在于,所述装置还包括:
    处理单元,用于根据第三数据包与所述第一数据包之间的传输关系和对应于所述第三数据包的第三新数据指示信息的取值,确定所述第一新数据指示信息的取值,其中,所述传输关系包括:所述第三数据包为与所述第一数据包相异的初传数据包,或,所述第三数据包为所述第一数据包的重传数据包,所述第三新数据指示信息用于指示所述第三数据包为初传数据包或重传数据包,所述第三数据包为所述网络设备调度所述装置在第三时间单元上发送的数据包,所述第三数据包对应所述第一HARQ进程号,所述第三时间单元在时间上位于所述第一时间单元之前。
  31. 根据权利要求30所述的装置,其特征在于,所述处理单元具体用于:
    在所述第一数据包为所述第三数据包的重传数据包的情况下,确定所述第一新数据指示信息的取值与所述第三新数据指示信息的取值相同;或,
    在所述第一数据包为与所述第三数据包相异的初传数据包的情况下,确定所述第一新数据指示信息的取值与所述第三新数据指示信息的取值相异。
  32. 根据权利要求23至31中任一项所述的装置,其特征在于,所述接收单元还用于:
    接收所述网络设备发送的控制信息,所述控制信息包括第四新数据指示信息,且在所述控制信息用于激活或重激活所述装置通过所述GUL传输方式发送信息时,所述第四新数据指示信息的取值为第一预设值;以及,所述装置还包括:
    处理单元,用于根据所述控制信息确定与所述GUL传输方式对应的半静态时域资源,其中,所述第一时间单元属于所述半静态时域资源。
  33. 根据权利要求32所述的装置,其特征在于,在所述控制信息用于调度第四数据包的重传数据包时,所述第四新数据指示信息的取值为第二预设值,所述第四数据包为所述装置通过所述GUL传输方式发送的数据包,所述第二预设值与所述第一预设值相异。
  34. 根据权利要求23至33中任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述网络设备发送所述第一新数据指示信息。
  35. 一种数据传输的装置,其特征在于,所述装置包括:
    发送单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在第二时间单元上发送第二数据包,所述第二数据包对应所述第一HARQ进程号,且所述第二数据包对应所述装置发送的第二新数据指示信息,所述第二新数据指示信息用于指示所述第二数据包是初传数据包或重传数据包,其中,所述第一HARQ进程号还对应第一数据包,所述第一数据包由所述终端设备在第一时间单元上通过GUL传输发送向所述装置发送,所述第一数据包对应第一新数据指示信息,所述第一新数据指示信息用于指示所述第一数据包是初传数据包或重传数据包,所述第二时间单元在时间上位于所述第一时间单元之后;
    接收单元,用于接收所述终端设备发送的第二数据包,其中,所述第二数据包为所述第一数据包的重传数据包,或,所述第二数据包为与所述第一数据包相异的初传数据包。
  36. 根据权利要求35所述的装置,其特征在于,在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同的情况下,所述第二数据包为所述第一数据包的重传数据包。
  37. 根据权利要求36所述的装置,其特征在于,所述第二数据包为所述终端设备在所述第二时间单元上发送的数据包。
  38. 根据权利要求35或36所述的装置,其特征在于,在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相同,且所述第一数据包对应的传输块大小TBS与所述第二数据包对应的TBS相同的情况下,所述第二数据包为所述终端设备在所述第二时间单元上发送的数据包。
  39. 根据权利要求35至38中任一项所述的装置,其特征在于,在所述第一新数据指示信息的取值与所述第二新数据指示信息的取值相异的情况下,所述第二数据包为与所述第一数据包相异的初传数据包。
  40. 根据权利要求35至39中任一项所述的装置,其特征在于,在所述第一数据包为第三数据包的重传数据包的情况下,所述第一新数据指示信息的取值与对应于所述第三数据包的第三新数据指示信息的取值相同,其中,所述第三新数据指示信息用于指示所述第三数据包为初传数据包或重传数据包,所述第三数据包为所述装置调度所述终端设备在第三时间单元上发送的数据包,所述第三数据包对应所述第一HARQ进程号,所述第三时间单元在时间上位于所述第一时间单元之前;或,
    在所述第一数据包为与第三数据包相异的初传数据包的情况下,所述第一新数据指示信息的取值与对应于所述第三数据包的第三新数据指示信息的取值相异,其中,所述第三新数据指示信息用于指示所述第三数据包为初传数据包或重传数据包,所述第三数据包为所述装置调度所述终端设备在第三时间单元上发送的数据包,所述第三数据包对应所述第一HARQ进程号,所述第三时间单元在时间上位于所述第一时间单元之前。
  41. 根据权利要求35至40中任一项所述的装置,其特征在于,所述装置还包括:
    处理单元,用于在所述装置检测到所述第一数据包的情况下,根据所述第一数据包的接收情况和所述第一新数据指示信息确定所述第二新数据指示信息。
  42. 根据权利要求41所述的装置,其特征在于,所述发送单元还用于:
    向所述终端设备发送控制信息,所述控制信息包括第四新数据指示信息,且在所述控制信息用于激活或重激活所述终端设备通过所述GUL传输方式发送信息时,所述第四新数据指示信息的取值为第一预设值,其中,所述第一时间单元属于与所述GUL传输方式对应的半静态时域资源。
  43. 根据权利要求42所述的装置,其特征在于,在所述控制信息用于调度第四数据包的重传数据包时,所述第四新数据指示信息的取值为第二预设值,所述第四数据包为所述终端设备通过所述GUL传输方式发送的数据包,所述第二预设值与所述第一预设值相异。
  44. 根据权利要求35至43中任一项所述的装置,其特征在于,所述接收单元还用于:
    接收所述终端设备发送的所述第一新数据指示信息。
PCT/CN2018/089637 2017-06-02 2018-06-01 一种数据传输的方法和装置 WO2018219353A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18809250.6A EP3624498B1 (en) 2017-06-02 2018-06-01 Method and device for data transmission
KR1020197038337A KR20200011489A (ko) 2017-06-02 2018-06-01 데이터 전송 방법 및 장치
JP2019565816A JP2020522183A (ja) 2017-06-02 2018-06-01 データ伝送方法及び装置
BR112019025281-9A BR112019025281A2 (pt) 2017-06-02 2018-06-01 Método de transmissão de dados, aparelho e meio de armazenamento legível por computador
AU2018278063A AU2018278063B2 (en) 2017-06-02 2018-06-01 Data transmission method and apparatus
US16/698,190 US11368256B2 (en) 2017-06-02 2019-11-27 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710409942.9 2017-06-02
CN201710409942.9A CN108988995B (zh) 2017-06-02 2017-06-02 一种数据传输的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/698,190 Continuation US11368256B2 (en) 2017-06-02 2019-11-27 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018219353A1 true WO2018219353A1 (zh) 2018-12-06

Family

ID=64454437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089637 WO2018219353A1 (zh) 2017-06-02 2018-06-01 一种数据传输的方法和装置

Country Status (8)

Country Link
US (1) US11368256B2 (zh)
EP (1) EP3624498B1 (zh)
JP (1) JP2020522183A (zh)
KR (1) KR20200011489A (zh)
CN (1) CN108988995B (zh)
AU (1) AU2018278063B2 (zh)
BR (1) BR112019025281A2 (zh)
WO (1) WO2018219353A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11902965B2 (en) 2018-12-20 2024-02-13 Beijing Xiaomi Mobile Software Co., Ltd. Uplink transmission method and apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988995B (zh) * 2017-06-02 2020-07-24 华为技术有限公司 一种数据传输的方法和装置
CN109257810B (zh) * 2017-07-12 2022-05-10 华为技术有限公司 一种功率控制方法和终端设备
US11140705B2 (en) * 2017-07-14 2021-10-05 Apple Inc. Configuration of grant-less uplink transmissions for a user equipment
CN109391374B (zh) * 2017-08-03 2020-08-28 维沃移动通信有限公司 一种数据传输方法、数据检测方法及装置
CN110474754A (zh) * 2018-05-10 2019-11-19 北京三星通信技术研究有限公司 一种用于发送信号的方法与设备
CN111586863B (zh) * 2019-02-15 2023-02-03 华为技术有限公司 随机接入过程中的传输方法和装置
CN111757479B (zh) * 2019-03-29 2022-10-11 华为技术有限公司 通信的方法及装置
CN111867085A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种上行传输方法及通信装置
CN113708900A (zh) * 2020-05-21 2021-11-26 华为技术有限公司 一种数据调度方法及装置
CN113872735B (zh) * 2020-06-30 2023-10-24 京东方科技集团股份有限公司 数据传输方法、装置及设备
CN116506090A (zh) * 2020-08-10 2023-07-28 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115348679A (zh) * 2021-05-14 2022-11-15 华为技术有限公司 一种信息反馈的方法以及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079814A (zh) * 2006-05-25 2007-11-28 创新音速有限公司 无线通讯系统处理封包数据的方法及其相关装置
CN101990242A (zh) * 2009-07-31 2011-03-23 夏普株式会社 频谱聚合系统中的自适应重传方法和用户设备
CN102893679A (zh) * 2010-02-12 2013-01-23 松下电器产业株式会社 用于未调度的上行链路分量载波的功率余量报告
CN103401667A (zh) * 2003-08-14 2013-11-20 松下电器产业株式会社 在数据重传模式中接收数据的方法以及节点b

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979514B2 (en) * 2008-08-27 2018-05-22 Innovative Sonic Limited Method and apparatus for handling HARQ process of semi-persistent scheduling
US8503316B2 (en) * 2009-03-17 2013-08-06 Qualcomm Incorporated Method and apparatus for handling inconsistent control information in a wireless communication system
CN103460775A (zh) * 2011-02-14 2013-12-18 瑞典爱立信有限公司 在中继节点重新配置时的harq处理
CN104734821B (zh) * 2013-12-19 2019-04-05 电信科学技术研究院 数据传输方法和装置
EP3110195A4 (en) 2014-02-23 2017-11-01 Shanghai Langbo Communication Technology Company Limited Base station and method and device for scheduling on unlicensed spectrum in ue
PL2922360T3 (pl) * 2014-03-21 2019-06-28 Sun Patent Trust Procedura żądania planowania dla łączności D2D
CN105792359B (zh) * 2014-12-22 2019-04-26 华为技术有限公司 资源分配方法、数据映射方法及装置
BR112019010782A2 (pt) * 2016-12-07 2019-10-01 Qualcomm Inc configuração de canal de controle e temporização para uplink autônomo
US20200014495A1 (en) * 2017-03-09 2020-01-09 Intel IP Corporation Method and apparatus for cross retransmission between gul and sul
CN108574987B (zh) * 2017-03-13 2020-02-21 华为技术有限公司 传输信息的方法和装置
EP3598680B1 (en) * 2017-03-17 2021-11-24 LG Electronics Inc. Method and device by which terminal receives data in wireless communication system
JP2020080443A (ja) * 2017-03-22 2020-05-28 シャープ株式会社 端末装置、基地局装置、および、通信方法
WO2018191870A1 (zh) * 2017-04-18 2018-10-25 华为技术有限公司 一种数据传输的方法和装置
WO2018213802A1 (en) * 2017-05-18 2018-11-22 Intel IP Corporation Grantless uplink (gul) configuration
CN108988995B (zh) * 2017-06-02 2020-07-24 华为技术有限公司 一种数据传输的方法和装置
US11140705B2 (en) * 2017-07-14 2021-10-05 Apple Inc. Configuration of grant-less uplink transmissions for a user equipment
CN109392099B (zh) * 2017-08-03 2019-11-05 维沃移动通信有限公司 Urllc中上行免授权传输的方法、用户侧设备和网络侧设备
KR102491384B1 (ko) * 2017-11-17 2023-01-20 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 전송 방법, 단말 장치 및 네트워크 장치
CN110034864B (zh) * 2018-01-12 2021-01-15 华为技术有限公司 一种信息发送方法、接收方法和装置
CN110351867B (zh) * 2018-04-04 2022-01-14 华为技术有限公司 通信方法和通信装置
KR102592463B1 (ko) * 2018-08-01 2023-10-23 삼성전자 주식회사 카메라 모듈을 통해 획득한 영상에 기반하여 정보를 저장하는 방법 및 이를 사용하는 전자 장치
EP3694280A1 (en) * 2019-02-07 2020-08-12 Comcast Cable Communications, LLC Pre-emption of signal transmission
CA3071984A1 (en) * 2019-02-11 2020-08-11 Comcast Cable Communications, Llc Power control and retransmission
US11546090B2 (en) * 2019-05-02 2023-01-03 Ofinno, Llc Hybrid automatic repeat request process
CA3087686A1 (en) * 2019-07-22 2021-01-22 Comcast Cable Communications, Llc Communication and data processing in wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401667A (zh) * 2003-08-14 2013-11-20 松下电器产业株式会社 在数据重传模式中接收数据的方法以及节点b
CN101079814A (zh) * 2006-05-25 2007-11-28 创新音速有限公司 无线通讯系统处理封包数据的方法及其相关装置
CN101990242A (zh) * 2009-07-31 2011-03-23 夏普株式会社 频谱聚合系统中的自适应重传方法和用户设备
CN102893679A (zh) * 2010-02-12 2013-01-23 松下电器产业株式会社 用于未调度的上行链路分量载波的功率余量报告

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3624498A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11902965B2 (en) 2018-12-20 2024-02-13 Beijing Xiaomi Mobile Software Co., Ltd. Uplink transmission method and apparatus

Also Published As

Publication number Publication date
EP3624498A1 (en) 2020-03-18
US11368256B2 (en) 2022-06-21
JP2020522183A (ja) 2020-07-27
EP3624498A4 (en) 2020-04-29
KR20200011489A (ko) 2020-02-03
BR112019025281A2 (pt) 2020-06-23
CN108988995A (zh) 2018-12-11
US20200099478A1 (en) 2020-03-26
AU2018278063A1 (en) 2020-01-16
AU2018278063B2 (en) 2021-03-04
EP3624498B1 (en) 2024-03-27
CN108988995B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
US11368256B2 (en) Data transmission method and apparatus
ES2927975T3 (es) Canal de control del enlace descendente para comunicaciones ultra confiables y de baja latencia del enlace ascendente
EP3488653B1 (en) User equipment and base stations that transceive ultra reliable low latency messages amidst delay tolerant transceptions
WO2018166447A1 (zh) 传输信息的方法和装置
US10595166B2 (en) Systems and methods for processing time reduction signaling
US10306630B2 (en) Systems and methods for determining frame structure and association timing
US10873437B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
WO2018201942A1 (zh) 传输上行信道的方法和装置及传输下行信道的方法和装置
WO2018175397A1 (en) Downlink and uplink transmissions for high reliability low latency communications systems
WO2020067515A1 (en) User equipment and base stations that achieve ultra reliable and low latency communications
WO2018191870A1 (zh) 一种数据传输的方法和装置
WO2019099738A1 (en) User equipments, base stations and methods
WO2018103020A1 (zh) 传输上行数据的方法和装置
EP3711413A1 (en) Codebook determination of harq-ack multiplexing with fallback downlink control information (dci) and code block group (cbg) configurations
US11419139B2 (en) Uplink multiplexing in cellular wireless communication networks
WO2018209803A1 (zh) 一种传输信息的方法和装置
WO2018141291A1 (zh) 一种数据传输的方法和装置
US20240015749A1 (en) Signaling and configurations of enhanced subslot-based pucch repetition
US20220353024A1 (en) Urllc physical uplink control channel (pucch) with repetitions
CA3037910A1 (en) Systems and methods for determining frame structure and association timing
WO2023048015A1 (en) Methods of collision resolution between multiple high priority harq-acks and a high priority pusch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565816

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019025281

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018809250

Country of ref document: EP

Effective date: 20191211

ENP Entry into the national phase

Ref document number: 20197038337

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018278063

Country of ref document: AU

Date of ref document: 20180601

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019025281

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191129