WO2018103020A1 - 传输上行数据的方法和装置 - Google Patents

传输上行数据的方法和装置 Download PDF

Info

Publication number
WO2018103020A1
WO2018103020A1 PCT/CN2016/108913 CN2016108913W WO2018103020A1 WO 2018103020 A1 WO2018103020 A1 WO 2018103020A1 CN 2016108913 W CN2016108913 W CN 2016108913W WO 2018103020 A1 WO2018103020 A1 WO 2018103020A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
time
data
time domain
terminal device
Prior art date
Application number
PCT/CN2016/108913
Other languages
English (en)
French (fr)
Inventor
吴作敏
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/108913 priority Critical patent/WO2018103020A1/zh
Publication of WO2018103020A1 publication Critical patent/WO2018103020A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • Embodiments of the present invention relate to the field of communications and, more particularly, to methods and apparatus for transmitting uplink data.
  • a scheduling-based uplink data transmission mechanism is known.
  • the terminal device needs to determine according to the indication information (for example, uplink scheduling information, etc.) sent by the network device before sending the uplink data to the network device.
  • the indication information for example, uplink scheduling information, etc.
  • a time domain resource used to carry upstream data, or a time resource is known.
  • the terminal device fails the channel competition on the time domain resource indicated by the indication information, thereby preventing the terminal device from transmitting the uplink data.
  • the time interval between the time domain resources indicated by the indication information and the current time is large and the transmission delay requirement of the current uplink data cannot be satisfied.
  • Embodiments of the present invention provide a method and apparatus for transmitting uplink data, which can improve performance and user experience of scheduling-based uplink data transmission.
  • a first aspect provides a method for transmitting uplink data, where the method includes: receiving, by a terminal device, transmission indication information sent by a network device, where the transmission indication information is used to indicate a first time domain resource, where the first time domain resource is used Transmitting a time domain resource of the uplink data to the terminal device; the terminal device determines a second time domain resource from the unscheduled resource, where the second time domain resource is different from the first time domain resource; the terminal device is in the second Send uplink data on the time domain resource.
  • the network device sends, to the terminal device, information indicating the time domain resource carrying the uplink data, for example, uplink scheduling information or feedback information (specifically, negative answer NACK information)
  • the terminal device may transmit the uplink data based on the unscheduled time domain resource, that is, the time domain resource (ie, the second time domain resource) of the uplink data actually used by the terminal device and the network device allocated for transmitting the uplink.
  • Time domain resources of data ie, The first time domain resource is different, so that the uplink transmission can be independent of the uplink scheduling information or the feedback information, the transmission delay of the uplink data can be reduced, and the performance and user experience of the scheduling-based uplink data transmission can be improved.
  • the frequency domain resource that is used by the first time domain resource to carry the uplink data belongs to an unlicensed frequency band.
  • the method before the determining, by the terminal device, the second time domain resource from the unscheduled resource, the method further includes: determining, by the terminal device, Resource competition on the first time domain resource failed.
  • the terminal device may not use the first time domain resource to transmit the uplink data because the terminal device does not compete with the frequency domain resource.
  • the method for transmitting uplink data provided by the embodiment of the present invention, the time domain resource (ie, the second time domain resource) for transmitting the uplink data actually used by the terminal device and the network device allocated for transmitting the uplink are used.
  • the time domain resources of the data that is, the first time domain resources
  • the transmission opportunity of the uplink data can be increased to ensure the transmission of the uplink data, thereby improving the reliability of the uplink transmission.
  • the second time domain resource is chronologically located before the first time domain resource.
  • the uplink transmission can be made independent of the uplink scheduling information or the feedback information, and the transmission delay of the uplink data can be reduced, and the performance and user experience of the scheduling-based uplink data transmission can be improved.
  • the transmission indication information includes uplink scheduling information.
  • the uplink data is initial data.
  • the uplink data is retransmitted data.
  • the transmission indication information includes negative acknowledgement NACK information for a previous transmission of the uplink data.
  • the first time domain resource is determined according to a third time domain resource used to carry the NACK information.
  • the method for transmitting uplink data can support the terminal device being located in the second, as the method for transmitting the uplink data provided by the embodiment of the present invention is configured to transmit on the time domain resource (for example, the second time domain resource).
  • the uplink data is transmitted on the time domain resource before the time domain resource (that is, an example of the first time domain resource), thereby reducing the transmission delay of the uplink data.
  • the second time domain resource belongs to the first time domain range, and the start time of the first time domain range is based on the uplink data.
  • the duration of the first time domain range is determined by the end time of the previous transmission.
  • the terminal device when the terminal device performs the retransmission process, it is required to use the feedback information (specifically, the NACK information) of the network device, and the network device cannot send the feedback information due to the channel quality problem or the resource usage problem.
  • the terminal device can only transmit the retransmission data after the specified duration after the initial transmission of the data (ie, outside the first time domain range), and is provided by the embodiment of the present invention.
  • the method for transmitting the uplink data can support the terminal device to transmit the retransmitted data in the first time domain, thereby reducing the transmission delay of the retransmitted data.
  • the second time domain resource is in front of the first time domain resource in the time domain.
  • the determining, by the terminal device, the second time domain resource from the unscheduled resource includes: determining, by the terminal device, that the first time domain is When the transmission indication information sent by the network device is not received in the range, after the first time domain range, the second time domain resource is determined from the unscheduled resource, and the start time of the first time domain range is according to the The duration of the first time domain range is determined by the end time of the previous transmission of the uplink data.
  • a second aspect provides a method for transmitting uplink data, where the method includes: the network device sends, to the terminal device, transmission indication information, where the transmission indication information is used to indicate a first time domain resource, where the first time domain resource is used for The terminal device sends the time domain resource of the uplink data; the network device receives the uplink data sent by the terminal device on the second time domain resource, where the second time domain resource is determined by the terminal device from the unscheduled resource, the first The second time domain resource is different from the first time domain resource.
  • the terminal device may transmit the uplink data based on the unscheduled time domain resource, that is, The time domain resource (ie, the second time domain resource) used by the terminal device to transmit the uplink data is different from the time domain resource (ie, the first time domain resource) allocated by the network device for transmitting the uplink data, thereby,
  • the uplink transmission can be independent of the uplink scheduling information or the feedback information, and the transmission delay of the uplink data can be reduced, and the performance and user experience of the scheduling-based uplink data transmission can be improved.
  • the frequency domain resource that is used by the first time domain resource to carry the uplink data belongs to an unlicensed frequency band.
  • the second time domain resource is that the terminal device is not scheduled after determining that the resource competition on the first time domain resource fails. Determined in the resource.
  • the terminal device may not use the first time domain resource to transmit the uplink data because the terminal device does not compete with the frequency domain resource.
  • the method for transmitting uplink data provided by the embodiment of the present invention, the time domain resource (ie, the second time domain resource) for transmitting the uplink data actually used by the terminal device and the network device allocated for transmitting the uplink are used.
  • the time domain resources of the data that is, the first time domain resources
  • the transmission opportunity of the uplink data can be increased to ensure the transmission of the uplink data, thereby improving the reliability of the uplink transmission.
  • the second time domain resource is chronologically located before the first time domain resource.
  • the uplink transmission can be made independent of the uplink scheduling information or the feedback information, and the transmission delay of the uplink data can be reduced, and the performance and user experience of the scheduling-based uplink data transmission can be improved.
  • the transmission indication information includes uplink scheduling information.
  • the uplink data is initial transmission uplink data.
  • the uplink data is retransmitted uplink data.
  • the transmission indication information includes negative acknowledgement NACK information for a previous transmission of the uplink data.
  • the first time domain resource is determined according to a third time domain resource used to carry the NACK information.
  • the transmission of the uplink data needs to be indicated by the NACK information fed back by the network device (specifically, it has a predetermined time interval with the time domain resource carrying the NACK.
  • the method for transmitting the uplink data provided by the embodiment of the present invention can support the terminal device before the second time domain resource is located, as described in the embodiment of the present invention.
  • the uplink data is transmitted on the domain resource (that is, an example of the first time domain resource), thereby reducing the transmission delay of the uplink data.
  • the second time domain resource belongs to the first time domain range, and the start time of the first time domain range is based on the uplink data.
  • the duration of the first time domain range is determined by the end time of the previous transmission.
  • the terminal device when the terminal device performs the retransmission process, it is required to use the feedback information (specifically, the NACK information) of the network device, and the network device cannot send the feedback information due to the channel quality problem or the resource usage problem.
  • the terminal device can only transmit the retransmission data after the specified duration after the initial transmission of the data (ie, outside the first time domain range), and is provided by the embodiment of the present invention.
  • the method for transmitting the uplink data can support the terminal device to transmit the retransmitted data in the first time domain, thereby reducing the transmission delay of the retransmitted data.
  • the second time domain resource is in front of the first time domain resource in the time domain.
  • the second time domain resource is that the terminal device is exempted after determining that the first time domain resource cannot be used for data transmission. Determined in the scheduling resource.
  • the second time domain resource is that the terminal device does not receive the network device sent in the first time domain.
  • the start time of the first time domain range is determined according to the end time of the previous transmission of the uplink data, the first The duration of a time domain range is a preset value.
  • a third aspect provides a method for transmitting uplink data, where the method includes: the terminal device sends first data to the network device on the first time resource, where the first data corresponds to the first hybrid automatic retransmission HARQ process; The device sends the second data to the network device on the second time resource, and receives the first indication information sent by the network device on the third time resource, where the second time resource belongs to For the non-scheduled resource, the first indication information is used to indicate a fifth time resource, where the fifth time resource is a time resource allocated by the network device for the terminal device to send the retransmission data of the first data, and the second The data is corresponding to the first HARQ process; the terminal device receives the second indication information sent by the network device on the fourth time resource, where the second indication information is used to indicate whether the data corresponding to the first HARQ process is successfully transmitted; When the terminal device determines, according to the second indication information, that the data transmission corresponding to the first HARQ process fails, the terminal device sends third data to the network device
  • the terminal device when the terminal device determines, according to the second indication information, that the data transmission corresponding to the first HARQ process fails, the terminal device is on the fifth time resource.
  • the third data corresponds to the first HARQ process, and the terminal device prohibits or stops the retransmission process based on the second indication information.
  • the terminal device may transmit the first data based on a scheduling mechanism or based on an unscheduled mechanism, and the terminal device may be in the unscheduled resource after transmitting the first data. Transmitting the second data, where the first data and the second data correspond to the same HARQ process, and the second data is the retransmitted data of the first data. Therefore, for example, the terminal device may receive the feedback information for the first data (ie, an example of the first indication information) after transmitting the second data, or the terminal device receives the second data before transmitting the second data.
  • the feedback information for the first data ie, an example of the first indication information
  • the terminal device may receive feedback information for the second data (ie, an example of the second indication information).
  • the first indication information indicates retransmission
  • the second indication information indicates that the second data transmission is successful, that is, the terminal device may determine that the HARQ process is successfully transmitted, but the terminal device also needs to perform based on the first Retransmission processing of the indication information for the HARQ process.
  • the terminal device needs to perform retransmission processing based on the first indication information and retransmission processing based on the second indication information, that is, the terminal device needs to perform two retransmissions.
  • the terminal device may not perform the The Retransmission processing of the HARQ process.
  • the terminal device may determine that the second data transmission fails. Because the second data and the first data correspond to the same HARQ process, the terminal device may be based on the first indication information (specifically The retransmission process of the HARQ process is performed on the time resource indicated by the first indication information (that is, the third data is transmitted, wherein the third data and the first data correspond to the same HARQ process). Thereby, the processing load of the terminal device can be reduced, and the overhead on the transmission resource can be reduced.
  • the first indication information includes negative acknowledgement NACK information, or the first indication information includes uplink scheduling information.
  • the first indication information includes negative acknowledgement NACK information for transmission of the first data, or the first indication information includes Uplink scheduling information for resources for retransmission of the first data.
  • the second indication information includes acknowledgement ACK information; or the second indication information includes NACK information, or the second indication information includes Upstream scheduling information.
  • the second indication information includes ACK information or NACK information for transmission of the first data, or the second indication information includes Indicates uplink scheduling information for resources for retransmission of the first data.
  • the second indication information includes ACK information or NACK information for transmission of the second data, or the second indication information includes Indicates uplink scheduling information for resources for retransmission of the second data.
  • the time interval between the second time domain resource and the third time domain resource is less than or equal to the first preset duration.
  • the first preset duration is based on that the terminal device sends the uplink data to the network device and the network device feeds back the uplink data. The longest time is determined.
  • the first preset duration is determined based on a minimum duration required by the terminal device from receiving the feedback information to parsing the feedback information.
  • the time interval between the first time resource and the second time resource is greater than or equal to a second preset duration.
  • the network device can only send the first indication information within the range of the second preset duration.
  • the method for transmitting the uplink data in the embodiment of the present invention even if the network device is in the second The first indication information is sent outside the preset duration, and the terminal device does not repeatedly send the retransmission data for the same data multiple times, thereby avoiding increasing the processing load of the terminal device and avoiding waste of communication resources.
  • the fourth aspect provides a method for transmitting uplink data, where the method includes: receiving, by the network device, first data that is sent by the terminal device on the first time resource, where the first data corresponds to the first hybrid automatic retransmission HARQ process; The network device receives the second data that is sent by the terminal device on the second time resource, and sends the first indication information that is sent to the terminal device on the third time resource, where the second time resource belongs to the unscheduled resource, and the first indication information is used by the network device.
  • the fifth time resource is a time resource allocated by the network device for the terminal device to send the retransmission data of the first data, where the second data corresponds to the first HARQ process;
  • the second time information is sent to the terminal device, where the second indication information is used to indicate whether the data corresponding to the first HARQ process is successfully transmitted; when the data transmission corresponding to the first HARQ process fails, the network Receiving, by the device, third data sent by the terminal device on the fifth time resource, where the third data corresponds to the first HARQ process; or when the first When the HARQ process corresponding to the data transfer is successful, the network device does not receive data for the fifth time resources.
  • the network device when the data transmission corresponding to the first HARQ process is successful, the network device re-allocates the fifth time resource.
  • the terminal device may transmit the first data based on a scheduling mechanism or based on an unscheduled mechanism, and the terminal device may be in the unscheduled resource after transmitting the first data. Transmitting the second data, where the first data and the second data correspond to the same HARQ process, and the second data is the retransmitted data of the first data. Therefore, for example, the terminal device may receive the feedback information for the first data (ie, an example of the first indication information) after transmitting the second data, or the terminal device receives the second data before transmitting the second data.
  • the feedback information for the first data ie, an example of the first indication information
  • the terminal device may receive feedback information for the second data (ie, an example of the second indication information).
  • the first indication information indicates retransmission
  • the second indication information indicates that the second data transmission is successful, that is, the terminal device can determine the HARQ.
  • the process is successfully transmitted, but the terminal device also needs to perform retransmission processing for the HARQ process based on the first indication information.
  • the terminal device needs to perform retransmission processing based on the first indication information and retransmission processing based on the second indication information, that is, the terminal device needs to perform two retransmissions.
  • the terminal device may not perform the The retransmission process of the HARQ process.
  • the terminal device may determine that the second data transmission fails. Because the second data and the first data correspond to the same HARQ process, the terminal device may be based on the first indication information (specifically The retransmission process of the HARQ process is performed on the time resource indicated by the first indication information (that is, the third data is transmitted, wherein the third data and the first data correspond to the same HARQ process). Thereby, the processing load of the terminal device can be reduced, and the overhead on the transmission resource can be reduced.
  • the first indication information includes negative acknowledgement NACK information, or the first indication information includes uplink scheduling information.
  • the first indication information includes negative acknowledgement NACK information for transmission of the first data, or the first indication information includes Uplink scheduling information for resources for retransmission of the first data.
  • the second indication information includes acknowledgement ACK information; or the second indication information includes NACK information, or the second indication information includes Upstream scheduling information.
  • the second indication information includes ACK information or NACK information for transmission of the first data, or the second indication information includes Indicates uplink scheduling information for resources for retransmission of the first data.
  • the second indication information includes ACK information or NACK information for transmission of the second data, or the second indication information includes Indicates uplink scheduling information for resources for retransmission of the second data.
  • the time interval between the second time domain resource and the third time domain resource is less than or equal to the first preset duration.
  • the first preset duration is based on the terminal device sending the uplink data to the network device and the network device, The minimum duration between the feedback of the upstream data is determined.
  • the first preset duration is determined based on a minimum duration required by the terminal device from receiving the feedback information to parsing the feedback information.
  • the time interval between the first time resource and the second time resource is greater than or equal to a second preset duration.
  • the network device can only send the first indication information within the range of the second preset duration.
  • the method for transmitting the uplink data in the embodiment of the present invention even if the network device is in the second The first indication information is sent outside the preset duration, and the terminal device does not repeatedly send the retransmission data for the same data multiple times, thereby avoiding increasing the processing load of the terminal device and avoiding waste of communication resources.
  • a fifth aspect an apparatus for transmitting uplink data, for performing the method of any of the first aspect and the first aspect, or for performing the second aspect and the second aspect A method in a possible implementation, or a method in any one of the possible implementations of the third and third aspects, or a method in any one of the possible implementations of the fourth and fourth aspects
  • the means for transmitting the uplink data may comprise means for performing the method of the first aspect and any one of the possible implementations of the first aspect, or for performing any of the second aspect and the second aspect A unit of a method in a possible implementation, or a unit for performing the method of any of the third and third possible implementations, or for performing any of the fourth and fourth aspects The unit of the method in the implementation.
  • a sixth aspect provides an apparatus for transmitting uplink data, including a memory and a processor, the memory being configured to store a computer program, the processor for calling and running the computer program from the memory, so that the device transmitting the uplink data performs the first
  • the method of any one of the possible implementations of the first aspect, or the method of any one of the possible implementations of the second aspect and the second aspect, or the implementation of any one of the third aspect and the third aspect A method in a possible implementation, or a method in any of the possible implementations of the fourth aspect and the fourth aspect.
  • a computer program product comprising: computer program code, a communication unit, a processing unit or a transceiver when the computer program code is communicated by a communication device (eg, a network device or a terminal device) When the processor is running, causing the communication device to execute The method of any of the possible implementations of the first to fourth aspects or the first to fourth aspects.
  • a computer readable storage medium storing a program causing a user equipment to perform any one of the first to fourth aspects or the first to fourth aspects The method in the implementation.
  • FIG. 1 is a schematic architectural diagram of a communication system of a method and apparatus for transmitting uplink data to which an embodiment of the present invention is applied.
  • FIG. 2 is a schematic interaction diagram of an example of a method for transmitting uplink data according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an example of a time domain resource used in a method for transmitting uplink data according to an embodiment of the present invention.
  • FIG. 4 is a schematic interaction diagram of another example of a method for transmitting uplink data according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing an example of time resources used in a method for transmitting uplink data according to an embodiment of the present invention.
  • Fig. 6 is a schematic block diagram showing an example of an apparatus for wireless communication according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of another example of an apparatus for wireless communication according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of still another example of an apparatus for wireless communication according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of still another example of an apparatus for wireless communication according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on data having one or more data packets (eg, from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Signals communicate via local and/or remote processes.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • a terminal device may also be referred to as a User Equipment ("UE"), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • Device user agent, or user device.
  • the terminal device may be a site (STAION, referred to as "ST") in a Wireless Local Area Networks (“WLAN”), and may be a cellular phone, a cordless phone, or a Session Initiation Protocol ("SIP").
  • STAION Wireless Local Area Networks
  • SIP Session Initiation Protocol
  • PDA Personal Digital Assistant
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld device with wireless communication function computing device or other connected to wireless modem Processing devices, in-vehicle devices, wearable devices, and next-generation communication systems, for example, terminal devices in a fifth-generation (5G) network or a public land mobile network (Public Land Mobile Network) Referred to as "PLMN" for short, etc. in the network.
  • 5G fifth-generation
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearables are more than just a hardware device, but also supported by software. Data interaction, cloud interaction to achieve powerful features.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the network device may be a network device or the like for communicating with the mobile device.
  • the network device may be an access point (ACCESS POINT, abbreviated as "AP") in the WLAN, or a base station in the GSM or CDMA (Base Transceiver Station, referred to as "BTS” ”), may also be a base station (NodeB, “NB” for short) in WCDMA, or an evolved base station (Evolutional Node B, “eNB” or “eNodeB”) in LTE, or a relay station or an access point.
  • ACCESS POINT abbreviated as "AP”
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • AP Access Point
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell
  • a transmission resource for example, a frequency domain resource, or a spectrum resource
  • the cell may be a network device.
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell, where the small cell may include: a metro cell, a micro cell, and a pico cell. (Pico cell), femto cell, etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • multiple carriers can work at the same frequency on the carrier in the LTE system.
  • the concept of the carrier and the cell in the LTE system can be considered to be equivalent.
  • CA carrier aggregation
  • the concept of the carrier and the cell can be considered to be equivalent, for example, the UE accessing one carrier and accessing one cell are equivalent.
  • the method and apparatus provided by the embodiments of the present invention may be applied to a terminal device or a network device, where the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (“CPU"), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system. Should The layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution body of the method for transmitting a signal is not particularly limited as long as the program of the code for recording the method of transmitting the signal of the embodiment of the present invention can be executed by
  • the method for transmitting a signal according to the embodiment of the present invention may be used for communication.
  • the execution body of the method for wireless communication according to the embodiment of the present invention may be a terminal device or a network device, or may be a terminal device or a network device capable of calling a program and The functional module that executes the program.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), an optical disk (eg, a compact disc (“CD”), a digital versatile disc (Digital Versatile Disc) , referred to as "DVD”), etc., smart cards and flash memory devices (for example, Erasable Programmable Read-Only Memory (“EPROM”), cards, sticks or key drivers, etc.).
  • EPROM Erasable Programmable Read-Only Memory
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the communication system 100 includes a network device 102, which may include one antenna or multiple antennas such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • a network device 102 may include one antenna or multiple antennas such as antennas 104, 106, 108, 110, 112, and 114.
  • network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or terminal device 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over a forward link (also referred to as downlink) 118 and through the reverse link (also Information referred to as uplink 120 receives information from terminal device 116.
  • the terminal equipment 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can use a different frequency band than the reverse link 120, and the forward link 124 can be used with the reverse link. 126 uses a different frequency band.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 A common frequency band can be used with the reverse link 126.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the network device can transmit signals to all of the terminal devices in its corresponding sector through a single antenna or multiple antenna transmit diversity.
  • the transmit antenna of network device 102 may also utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 utilizes beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the associated coverage area, as compared to the manner in which the network device transmits signals to all of its terminal devices through single antenna or multi-antenna transmit diversity, Mobile devices in neighboring cells are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 can be a PLMN network or a D2D network or an M2M network or other network.
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG.
  • the resources used by the communication system 100 may include scheduling resources, and may also include unscheduled resources, or, in the embodiment of the present invention, each communication device (for example, a network device) in the communication system 100.
  • the terminal device may use the resource to perform communication based on the unscheduled transmission scheme, and may also use the resource to perform communication based on the scheduling manner, which is not specifically limited in the embodiment of the present invention.
  • the scheduling transmission may be that the resources used by the terminal device to transmit uplink data need to be allocated by the network device and notified to the terminal device.
  • the data transmission may be based on the base station scheduling, and the basic time unit of the scheduling is one or more TTIs, where the TTI length may be 1 ms or less than 1 ms, for example, a short TTI (short) Transmission Time Interval, sTTI).
  • the specific scheduling procedure is that the base station sends a control channel, for example, a Physical Downlink Control Channel ("PDCCH") or an Enhanced Physical Downlink Control Channel (“EPDCCH”) or used to schedule the sTTI.
  • the sTTI Physical Downlink Control Channel (sPDCCH) is used to transmit a physical downlink shared channel (Downlink Control Information, referred to as "DCI") format.
  • DCI Downlink Control Information
  • the scheduling information of the Physical Downlink Shared Channel (PDSCH) or the Physical Uplink Shared Channel (PUSCH) includes control information such as resource allocation information and modulation and coding mode.
  • the terminal device detects the control channel in the subframe, and performs downlink data channel reception or uplink data channel transmission according to the detected scheduling information carried in the control channel.
  • the scheduling information carried in the control channel may indicate downlink data channel reception or uplink data channel transmission with a TTI length of 1 ms or a TTI length of less than 1 ms.
  • Grant Free refers to a method for realizing uplink transmission of user data without dynamic scheduling of network devices.
  • the unscheduled transmission can be understood as any meaning of the following meanings, or multiple meanings, or a combination of some technical features in multiple meanings or other similar meanings:
  • the unscheduled transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources; when the terminal device has an uplink data transmission requirement, select at least one transmission resource from the plurality of transmission resources pre-allocated by the network device, and use the selected transmission.
  • the resource sends uplink data; the network device detects uplink data sent by the terminal device on one or more of the pre-assigned multiple transmission resources.
  • the detection may be blind detection, or may be performed according to one of the control domains in the uplink data, or may be detected in other manners.
  • the unscheduled transmission may refer to: a plurality of transmission resources pre-allocated from the network device when the network device pre-allocates and informs the terminal device of multiple transmission resources, so that the terminal device has an uplink data transmission requirement. At least one transmission resource is selected, and the uplink data is sent using the selected transmission resource.
  • the unscheduled transmission may be: acquiring information of a plurality of pre-assigned transmission resources, selecting at least one transmission resource from the plurality of transmission resources when the uplink data transmission request is required, and transmitting the uplink data by using the selected transmission resource.
  • the method of obtaining can be obtained from a network device.
  • the unscheduled transmission may refer to a method for implementing uplink data transmission of the terminal device without dynamic scheduling of the network device, where the dynamic scheduling may refer to that the network device indicates the transmission resource by signaling for each uplink data transmission of the terminal device.
  • implementing uplink data transmission of the terminal device may be understood as allowing data of two or more terminal devices to perform uplink data transmission on the same time-frequency resource.
  • the transmission resource may be a transmission resource of one or more transmission time units after the moment when the terminal device receives the signaling.
  • a transmission time unit can refer to a minimum time unit for one transmission, such as a transmission time interval (English:: Transmission Time Interval, English abbreviation: TTI), the value can be 1ms, or 0.5ms, or 2 symbols, or can It is another preset transmission time unit.
  • TTI Transmission Time Interval
  • the value can be 1ms, or 0.5ms, or 2 symbols, or can It is another preset transmission time unit.
  • the unscheduled transmission may refer to: the terminal device performs uplink data transmission without requiring network device authorization.
  • the authorization may be performed by the terminal device sending an uplink scheduling request to the network device.
  • the network device After receiving the scheduling request, the network device sends an uplink grant to the terminal device, where the uplink grant indicates the uplink transmission resource allocated to the terminal device.
  • the unscheduled transmission may be referred to as a contention transmission mode.
  • multiple terminals may simultaneously perform uplink data transmission on the same time-frequency resources allocated in advance, without requiring the base station to perform authorization.
  • the data may be included in service data or signaling data.
  • the blind detection can be understood as the detection of data that may arrive without predicting whether or not data has arrived.
  • the blind detection can also be understood as detection without explicit signaling indication.
  • the transmission resource may include, but is not limited to, a combination of one or more of the following resources:
  • Alpha-time domain resources also referred to as time resources, such as radio frames, subframes, symbols, etc.;
  • ⁇ -frequency domain resources also referred to as spectrum resources, such as subcarriers, resource blocks, etc.
  • ⁇ -space resources such as transmit antennas, beams, etc.
  • ⁇ -code domain resources such as sparse code multiple access (English full name: Sparse Code Multiple Access, English abbreviation: SCMA) codebook, low-density signature (English full name: Low Density Signature, English abbreviation: LDS) Sequence, CDMA code, etc.;
  • the above transmission resources may be transmitted according to a control mechanism including, but not limited to, the following:
  • A-uplink power control such as uplink transmit power upper limit control, etc.
  • B-modulation coding mode setting such as transmission block size, code rate, modulation order setting, etc.
  • C-retransmission mechanism such as HARQ mechanism.
  • each terminal device may independently selects an unscheduled transmission resource to send uplink data to the network device according to the Grant Free scheme.
  • each pilot resource and each transmission resource may have a one-to-one correspondence.
  • the network device may learn the transmission resource selected by each terminal device according to the pilot selected by each terminal device.
  • the network device can provide one or more unscheduled cells (or may also be referred to as unscheduled carriers), and one or more scheduling cells (or may also be called For scheduling carriers).
  • the network device is also capable of providing a scheduling-based transmission scheme and a scheduling-free transmission scheme for one or more cells.
  • the frequency domain resource (or the spectrum resource) in the resource (transmission resource or time-frequency resource) used by the communication system 100 may be a licensed resource, or a resource used by the communication system 100.
  • the frequency domain resources can belong to the licensed band.
  • the frequency domain resource (or the spectrum resource) in the resource (transmission resource or time-frequency resource) used by the communication system 100 may be an unlicensed resource (or an unlicensed band).
  • the frequency domain resources in the resources used by the communication system 100 may belong to an unlicensed band (or an unlicensed resource).
  • An unlicensed resource may refer to a resource that each communication device can share.
  • Resource sharing on the unlicensed band means that the use of a specific spectrum only specifies the limits of the transmit power and out-of-band leakage to ensure that the basic coexistence requirements are met between multiple devices sharing the band.
  • the licensed band resources can achieve the purpose of network capacity shunting, but need to comply with the regulatory requirements of the unlicensed band resources in different geographies and different spectrums. These requirements are usually designed to protect public systems such as radar, as well as to ensure that multiple systems do not cause harmful effects and fair coexistence with each other, including emission power limits, out-of-band leak indicators, indoor and outdoor use restrictions, and areas. There are also some additional coexistence strategies and so on.
  • each communication device can adopt a competition mode or a monitoring mode, for example, Listen Before Talk ("LBT”) Time-frequency resources used in the prescribed manner.
  • LBT Listen Before Talk
  • the license-free resource (specifically, the unlicensed spectrum resource) may include a frequency band near 5 GHz, a frequency band near 2.4 GHz, a frequency band near 3.5 GHz, and a frequency band near 60 GHz. Frequency band.
  • the communication system 100 may employ a Licensed-Assisted Access Using LTE (LAA-LTE) technology on an unlicensed frequency domain resource (eg, an unlicensed carrier).
  • LAA-LTE Licensed-Assisted Access Using LTE
  • a technology that supports the communication system to be independently deployed in an unlicensed band such as Standalone LTE over unlicensed spectrum, or MuLTEFire, or LTE-U (LTE-U, LTE Advanced in Unlicensed Spectrums) technology, that is, the communication system 100
  • LTE-U LTE-U, LTE Advanced in Unlicensed Spectrums
  • the LTE system can be deployed independently to the unlicensed band, and then the communication is completed using the LTE air interface protocol on the unlicensed band, which does not include the licensed band.
  • the LTE system deployed in the unlicensed band can utilize technologies such as centralized scheduling, interference coordination, and hybrid request repeat retransmission (HARQ). Compared with access technologies such as Wi-Fi, the technology is better. Robustness for higher spectral efficiency, greater coverage and a better user experience.
  • technologies such as centralized scheduling, interference coordination, and hybrid request repeat retransmission (HARQ).
  • HARQ hybrid request repeat retransmission
  • the communication system 100 may employ, for example, Licensed-Assisted Access (LAA), Dual Connectivity (“DC”), Unauthorized assisted access (Standalone) technology.
  • LAA includes the configuration and structure of carrier aggregation (Carrier Aggregation (CA)) in the existing LTE system, and configures multiple license-free groups based on the carrier (authorized carrier) on the carrier-licensed band.
  • CA Carrier Aggregation
  • the carrier on the frequency band (the unlicensed carrier) and the authorized carrier are used to communicate using the unlicensed carrier.
  • the LTE device can use the authorized carrier as the primary component carrier (Primary Component Carrier (PCC) or the primary cell (PCell), and the unlicensed carrier is used as the secondary component carrier.
  • PCC Primary Component Carrier
  • PCell primary cell
  • the dual-connected DC technology includes a technology in which an authorized carrier and an unlicensed carrier are jointly used in a non-CA (or non-ideal backhaul) manner, or a technique in which a plurality of unlicensed carriers are jointly used in a non-CA manner.
  • LTE devices can also be deployed directly on unlicensed carriers through independent deployment.
  • each communication device in the communication system 100 can also use the licensed spectrum resource for wireless communication, that is, the communication system 100 of the embodiment of the present invention can be used.
  • the communication system of the right frequency band is, the communication system 100 of the embodiment of the present invention can be used.
  • Authorized time-frequency resources generally require time-frequency resources that can be used by national or local wireless committees for approval. Different systems, such as LTE systems and WiFi systems, or systems included by different operators may not share authorized time-frequency resources.
  • the manner in which the network device and the terminal device use the transmission resource may include the following manners:
  • the “time-frequency resource” may include resources in the time domain, and may also include resources in the frequency domain.
  • the method mainly uses resources in the time domain, and therefore,
  • the use of the "time-frequency resource" in the process of the method for transmitting uplink data in the embodiment of the present invention described below mainly refers to the use of resources in the time domain, and the use of resources in the frequency domain may be compared with the prior art. The same or similar, here, in order to avoid redundancy, a detailed description thereof will be omitted.
  • FIG. 2 is a schematic interaction diagram of an example of a method 200 of transmitting uplink data #A between network device #A and terminal device #A according to an embodiment of the present invention.
  • the network device #A (that is, an example of the network device) can transmit the instruction information #A (that is, an example of the transmission instruction information) to the terminal device #A (that is, an example of the terminal device).
  • the indication information #A is used to indicate time-frequency resource #A (that is, an example of the first time domain resource), which is allocated by the network device #A for the terminal device #A for uplink transmission. Time-frequency resources. That is, the time-frequency resource #A can be used to carry the uplink data #A.
  • the uplink data #A may be initial data, that is, the uplink data #A may be sent by the terminal device #A to the network device for the first time in a service access. A's data.
  • the indication information #A may be an Uplink Grant ("UL Grant") information (ie, another example of the transmission indication information) for indicating the time-frequency resource #A.
  • UL Grant Uplink Grant
  • the method and the process for the network device #A to generate and transmit the uplink resource scheduling information to the terminal device #A can be similar to the prior art.
  • a detailed description thereof will be omitted.
  • the uplink data #A may be retransmission data.
  • the uplink data #A is retransmission data of the uplink data #X.
  • the uplink data #X may be the initial data or the retransmission data, which is not limited in the embodiment of the present invention.
  • the indication information #A may be an Up Link Grant ("UL Grant”) information indicating the time-frequency resource #A.
  • UL Grant Up Link Grant
  • the indication information #A may be feedback information for the uplink data #X, specifically, Negative Acknowledgment ("NACK") information.
  • NACK Negative Acknowledgment
  • the time-frequency resource #A and the time-frequency resource (that is, an example of the third time-domain resource) carried by the NACK information (that is, another example of the transmission indication information) are hereinafter, for ease of understanding and explanation.
  • the time-frequency resource #Y may have a preset correspondence in the time domain.
  • the time-frequency resource #A and the time-frequency resource #Y have a prescribed time interval in the time domain, thereby, the terminal device# A can determine the time-frequency resource #A (specifically, the time domain location of the time-frequency resource #A) based on the time-frequency resource #Y and the time interval.
  • the time interval may be specified by the communication system or the communication protocol, or may be determined by the network device #A and delivered to the terminal device #A, as long as the time interval determined by the network device #A and the terminal device #A is the same.
  • the embodiment of the invention is not particularly limited.
  • the time-frequency resource #A may be an authorized resource (for example, a resource on a licensed frequency band), or the time-frequency resource #A may also be an unauthorized resource (for example, a resource on an unlicensed band). ). And, the time-frequency resource #A may be a resource used by the network device #A and the terminal device #A based on the scheduled transmission mode.
  • the terminal device #A needs to determine whether the time-frequency resource #A can be used based on, for example, LBT, for example, the time-frequency resource #A.
  • LBT long term evolution
  • the terminal device #A cannot use the time-frequency resource #A.
  • the terminal device #A determines an unscheduled resource #M that can be used for transmission with the network device #A, wherein the unscheduled resource #M can be an authorized resource (eg, a resource on a licensed band), or
  • the schedule-free resource #M may also be an unlicensed resource (eg, a resource on an unlicensed band).
  • the schedule-free resource #M may be a resource used by the network device #A and the terminal device #A based on the unscheduled transmission mode.
  • the terminal device #A can determine the time-frequency resource #B (an example of the second time domain resource) from the schedule-free resource #M, and the time-frequency resource #B can be used to transmit the uplink data #A.
  • the time-frequency resource #B an example of the second time domain resource
  • the terminal device #A may determine the time-frequency resource #B based on the pilot selected by the terminal device #A.
  • the terminal device #A can determine the time-frequency resource #B based on the LBT or the like.
  • the method for determining the time-frequency resource #B from the unscheduled resource #M listed above is merely exemplary, and the present invention is not limited thereto, as long as it can be determined that the terminal device #A can be used.
  • the time-frequency resource #B can be uplinked.
  • S220 may be before S210, or S220 may be after S210.
  • the terminal device #A transmits the uplink data #A to the network device #A on the time-frequency resource #B.
  • the uplink data #A is the retransmission data of the uplink data #X
  • the network device #A sends the uplink data to the terminal device #A based on the feedback mechanism.
  • the feedback information of #X and thus, the terminal device #A can perform retransmission processing for the uplink data #X based on the feedback information. For example, after receiving the NACK information, the terminal device #A can transmit the uplink data #A.
  • the terminal device cannot receive the feedback information, for example, the network device cannot receive the uplink data #X and cannot send the feedback information; or the resource used to carry the feedback information.
  • the network device In order to avoid unauthorized resources, the network device cannot deliver feedback due to failure to compete for the unauthorized resource.
  • the timer #A may be started, wherein the time counted by the timer #A may be referred to as time window #A (ie, the first An example of the time range).
  • time window #A ie, the first An example of the time range.
  • the terminal device #A can autonomously perform the uplink data #X
  • the retransmission process that is, the uplink data #A is transmitted. That is, in the prior art, the time at which the terminal device #A transmits the uplink data #A based on the scheduling-free transmission scheme requires the terminal device to complete the time window #A after the transmission of the uplink data #X.
  • the terminal device #A can determine the time-frequency resource #B in the time window #A, that is, the time-frequency resource #B can be located within the time window #A, thereby
  • the time at which the terminal device #A transmits the uplink data #A based on the unscheduled transmission scheme may be located within the time window #A after the terminal device completes the transmission of the uplink data #X.
  • the terminal device #A may immediately execute S220 and S230 after completing the transmission of the uplink data #X.
  • the terminal device #A may start the timer #B after completing the transmission of the uplink data #X, where The time counted by the timer #B can be referred to as time window #B. And after the timer #B expires (ie, outside the time window #B), S220 and S230 are executed.
  • the duration of the time window #B may be less than the duration of the time window #A, or in the embodiment of the present invention, the time window #B may be located within the time window #A.
  • the time-frequency resource #A (that is, an example of the first time domain resource) is different from the time-frequency resource #B (that is, an example of the second time domain resource), and may mean:
  • the time-frequency resource #A may be located before the time-frequency resource #B in the time domain, or the time-frequency resource #A may be located after the time-frequency resource #B in the time domain, which is not specifically limited in the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an example of time domain resources used in the method 200 for transmitting uplink data according to an embodiment of the present invention.
  • the terminal device #A can transmit the uplink data #X to the network device #A on the time-frequency resource #X.
  • the time-frequency resource #X may be a scheduling resource or a non-scheduled resource, and the time-frequency resource #X may be a resource on the licensed frequency band or a resource on the unlicensed frequency band, which is not in the embodiment of the present invention. Specially limited.
  • the network device #A may transmit transmission indication information (for example, UL Grant information, or NACK information) to the terminal device #A.
  • the transmission indication information can indicate that the network device #A is the time-frequency resource #A allocated for the terminal device #A for transmitting the uplink data #A.
  • the terminal device #A may determine the time-frequency resource #B from the unscheduled resource, And on the time-frequency resource #B, the uplink data #A is sent.
  • the uplink data #A may be the same as the uplink data #X, or the uplink data #A may be different from the uplink data #X, and is not particularly limited in the embodiment of the present invention.
  • the UE after receiving the UL grant scheduled by the eNB, the UE receives the UL grant.
  • the uplink transmission may be performed according to the indication of the UL grant, or may be performed on the grant free resource indicated by the non-UL grant. If the LBT fails on the resource indicated by the UL grant, the UE may transmit the data packet on the subsequent grant free resource.
  • grant free retransmission may be performed after the time window #A, for example, the UE retransmits the data packet.
  • the Redundancy version ("RV") 0 is still used.
  • the UE After receiving the grant free transmission, the UE receives the retransmission indication sent by the eNB (for example, indicated by the UL grant or the NACK information), and then the UE may use the RV0 when retransmitting the data packet, or may use other RV versions.
  • the retransmission indication sent by the eNB for example, indicated by the UL grant or the NACK information
  • the UE performs a grant free retransmission after receiving the retransmission indication, and the grant free retransmission may occur.
  • the physical hybrid automatic repeat indicator channel Physical Hybrid ARQ Indicator Channel, PHICH for short
  • the UE may perform packet retransmission on the resource indicated by the UL grant after receiving the UL grant, or may perform retransmission on the grant free resource indicated by the non-UL grant.
  • the UE may retransmit the data packet on the subsequent grant free resource.
  • the UE may perform retransmission on the grant free resource before the resource indicated by the UL grant to reduce the transmission delay.
  • a method of transmitting uplink data according to an embodiment of the present invention.
  • the network device sends information indicating the time domain resource carrying the uplink data to the terminal device, for example, uplink scheduling information or feedback information (specifically, whether the NACK information is acknowledged), the terminal device may be based on the unscheduled time.
  • the domain resource transmits the uplink data, that is, the time domain resource (ie, the second time domain resource) used by the terminal device to transmit the uplink data and the time domain resource allocated by the network device for transmitting the uplink data (ie, the first time)
  • the domain resources are different, so that the uplink transmission can be independent of the uplink scheduling information or the feedback information, and the transmission opportunity of the uplink data can be increased, or the transmission delay of the uplink data can be reduced, and the performance of the scheduling-based uplink data transmission can be improved. And user experience.
  • FIG. 4 is a schematic interaction diagram of an example of a method 300 of transmitting uplink data between a network device #B and a terminal device #B according to an embodiment of the present invention.
  • the terminal device #B may pass through the time-frequency resource #1 (ie, an example of the first time resource) to the network device #B (ie, one of the network devices).
  • the time-frequency resource #1 ie, an example of the first time resource
  • the network device #B ie, one of the network devices.
  • data #1 can be transmitted (ie, an example of the first data).
  • the data #1 may be the data of the cell #0 corresponding to the terminal device #B (for example, the cell #0 may correspond to one original data packet, and the original data packet may be a bit sequence of any length), for example,
  • the data #1 may be data generated by encoding the cell #0 or the like.
  • the data #1 may be a network device #B and a terminal device #B using a corresponding Hybrid Automatic Repeat reQuest (HARQ) process (hereinafter, for ease of understanding and differentiation, it is recorded as: HARQ process) #0, that is, an example of the first HARQ process) data to be processed.
  • HARQ process Hybrid Automatic Repeat reQuest
  • the HARQ process #0 may prohibit the data corresponding to the cell other than the cell #0 (ie, the original data packet corresponding to the cell other than the cell #0) before the cell #0 transmission succeeds.
  • the time-frequency resource #1 may be an unlicensed resource.
  • the time-frequency resource #1 may belong to a resource on the unlicensed band in the frequency domain.
  • the time-frequency resource #1 may be an authorized resource.
  • the time-frequency resource #1 may belong to the resource in the licensed frequency band in the frequency domain, which is not specifically limited in the embodiment of the present invention.
  • the time-frequency resource #1 may be an unscheduled resource or a scheduling resource, or the time-frequency resource #1 may be a resource used based on the unscheduled transmission mode, or may be a resource used based on the scheduling mode, and the present invention
  • the embodiment is not particularly limited.
  • the data #1 may be initial transmission data or retransmission data, and the present invention is not particularly limited.
  • the network device #B can transmit the indication information #1 (that is, an example of the first indication information) to the terminal device #B by the time-frequency resource #3 (that is, an example of the third time resource).
  • the indication information #1 is used to indicate the time-frequency resource #5 (ie, an example of the fifth time resource), and the time-frequency resource #5 is the network device #B allocated for the terminal device #B for the HARQ process #0.
  • the indication information #1 may be an Up Link Grant ("UL Grant”) information for indicating the time-frequency resource #5.
  • UL Grant Up Link Grant
  • the indication information #1 may be feedback information for the uplink data #1, specifically, Negative Acknowledgment ("NACK") information.
  • NACK Negative Acknowledgment
  • the time-frequency resource (5) and the time-frequency resource (ie, time-frequency resource #3) carried by the time-frequency resource #5 and the NACK information (that is, another example of the first indication information) may have a preset correspondence relationship in the time domain.
  • the time-frequency resource #5 and the time-frequency resource #3 have a predetermined time interval in the time domain, so that the terminal device #B can determine the time-frequency resource #5 according to the time-frequency resource #3 and the time interval (specifically, Said, is the time domain location of time-frequency resource #5).
  • the time interval may be specified by the communication system or the communication protocol, or may be determined by the network device #B and delivered to the terminal device #B, as long as the time interval determined by the network device #B and the terminal device #B is the same.
  • the embodiment of the invention is not particularly limited.
  • the time-frequency resource #5 may be an authorized resource (for example, a resource on a licensed frequency band), or the time-frequency resource #5 may also be an unauthorized resource (for example, a resource on an unlicensed band). Moreover, the time-frequency resource #5 may be a resource used by the network device #B and the terminal device #B based on the scheduled transmission mode.
  • the terminal device #B needs to determine whether the time-frequency resource #5 can be used based on, for example, LBT, for example, the time-frequency resource #5.
  • LBT long term evolution
  • the terminal device #B cannot use the time-frequency resource #5.
  • the terminal device #B can transmit the data #2 (that is, an example of the second data) to the network device #B by the time-frequency resource #2 (that is, an example of the second time resource).
  • the data #2 is the retransmission data of the terminal device #B corresponding to the HARQ process #0 (the data #2 and the data #1 both correspond to the cell #0, that is, the data #2 and the data #1 both correspond to the same original data packet. ).
  • the data #2 may be the same as the RV version corresponding to the data #1, or the data #2 may be different from the RV version corresponding to the data #1.
  • the RV version corresponding to the data #2 is RV0.
  • the time-frequency resource #2 may be an unlicensed resource.
  • the time-frequency resource #2 may belong to a resource on the unlicensed band in the frequency domain.
  • the time-frequency resource #2 may be an authorized resource.
  • the time-frequency resource #2 may belong to the resource in the licensed frequency band in the frequency domain, which is not specifically limited in the embodiment of the present invention.
  • time-frequency resource #2 is an unscheduled resource, or the time-frequency resource #2 may be a resource used based on the unscheduled transmission mode.
  • the terminal device #B can determine the unscheduled resource #0 that can be used for transmission with the network device #B, wherein the unscheduled resource #0 can be an authorized resource (eg, a resource on a licensed band) Or, the unscheduled resource #0 can also be an unlicensed resource (for example, an unlicensed frequency) Resources on the segment). Moreover, in the embodiment of the present invention, the unscheduled resource #0 may be a resource used by the network device #B and the terminal device #B based on the unscheduled transmission mode.
  • the unscheduled resource #0 may be a resource used by the network device #B and the terminal device #B based on the unscheduled transmission mode.
  • the terminal device #B can determine the time-frequency resource #2 from the unscheduled resource #0, and the time-frequency resource #2 can be used to transmit the data #2.
  • the terminal device #B may determine the time-frequency resource #2 based on the pilot selected by the terminal device #B.
  • the terminal device #B can determine the time-frequency resource #2 based on the LBT or the like.
  • the method of determining the time-frequency resource #2 from the unscheduled resource #0 of the above-mentioned terminal device #B is merely exemplary, and the present invention is not limited thereto, as long as it can be determined that the terminal device #B can be used.
  • the time-frequency resource #2 can be uplinked.
  • S320 may be before S330, or S320 may be after S330.
  • the indication information #1 when the indication information #1 is used to indicate that the data transmission corresponding to the HARQ process #0 is successful, for example, the UL grant information or the feedback information indicates an acknowledgement (Acknowledgment, referred to as "ACK").
  • Terminal device #B should stop the retransmission process for HARQ process #0.
  • a blur period may occur, and the terminal device #B may receive the indication information #1 for the data #1 after transmitting the data #2, or the terminal device #B may receive the data #2 before transmitting the data #2.
  • the instruction information #1 is parsed after the data #2 is transmitted, that is, the indication information #1 for the data #1 issued by the network device #B occurs in the transmission data #2 of the terminal device #B. Blurring period. In this case, even if the indication information #1 transmitted by the network device #B to the terminal device #B is used to indicate that the data transmission corresponding to the HARQ process #0 is successful, the terminal device #B still performs the transmission of the data #2.
  • the network device #B receives the data #1 transmitted by the terminal device #B, and the network device #B transmits the indication information for the data #1 to the terminal device #B #1 before receiving the data #2 transmitted by the terminal device #B, then the network device #B cancels the transmission of the indication information #1 for the data #1 to the terminal device #B, and the network device #B transmits to the terminal device #B Indication information #2 for data #2.
  • the terminal device #B receives the indication information on the time resource before the blur period, and can determine that the indication information is the indication information #1 for the data #1; the terminal device #B receives the time resource after the blur period
  • the indication information may be determined to be the indication information #2 for the data #2.
  • the blur period may correspond to a time window, and the time window transmits the time domain resource of the uplink data by using the terminal device (for example, the terminal device #B) (for example, the time-frequency resource #2
  • the length in the chronological order includes the time interval required for the terminal device (for example, the terminal device #B) to receive the downlink signal to parse the information from the downlink signal
  • the length in the chronological order includes The minimum time interval between the transmission of uplink data from the terminal device (e.g., terminal device #B) to the network device (e.g., network device #B) to the feedback of the network device for the upstream data.
  • the network device #B can transmit the indication information #2 (that is, an example of the second indication information) to the terminal device #B by the time-frequency resource #4 (that is, an example of the fourth time resource).
  • the indication information #2 is used to indicate whether the data corresponding to the HARQ process #0 is successfully transmitted.
  • the indication information #2 may be UL Grant information (that is, an example of the second indication information); or the indication information #2 may be feedback information for the uplink data #2 (ie, the second Another example of the indication information).
  • the terminal device #B stops the retransmission process for HARQ process #0.
  • the UL grant information may be used to indicate the time-frequency resource #6 (ie, An example of the sixth time resource, the time-frequency resource #6 is a time-frequency resource allocated by the network device #B for the uplink transmission of the HARQ process #0 to the terminal device #B. That is, the time-frequency resource #6 can be used to carry the retransmission data corresponding to the cell #0 (hereinafter, for ease of understanding, it is recorded as: data #4), wherein the data #4 can correspond to the RV of the data #2. The version is the same, or the data #4 may be different from the RV version corresponding to the data #2.
  • the NACK information may be used to indicate time-frequency resource #6 (ie, another example of a sixth time resource), which is a network device.
  • #B is the time-frequency resource allocated for the uplink transmission of the HARQ process #0 allocated by the terminal device #B.
  • the time-frequency resource #6 and the time-frequency resource (that is, the time-frequency resource #4) carried by the NACK information may have a preset correspondence in the time domain, for example, the time-frequency resource #6 and the time-frequency resource. #4 has a predetermined time interval in the time domain, so that the terminal device #B can determine the time-frequency resource #6 according to the time-frequency resource #4 and the time interval (specifically, the time domain of the time-frequency resource #6 position).
  • the time interval may be specified by the communication system or the communication protocol, or may be determined by the network device #B and delivered to the terminal device #B, as long as the time interval determined by the network device #B and the terminal device #B is the same.
  • the embodiment of the invention is not particularly limited.
  • the time-frequency resource #6 may be an authorized resource (for example, a resource on a licensed frequency band), or the time-frequency resource #6 may also be an unauthorized resource (for example, a resource on an unlicensed band). ). And, the time-frequency resource #6 may be a resource used by the network device #B and the terminal device #B based on the scheduled transmission mode.
  • the terminal device #B needs to determine whether the time-frequency resource #6 can be used, for example, the current frequency resource #6, based on, for example, LBT or the like.
  • the terminal device #B cannot use the time-frequency resource #6.
  • the network device #B sends the feedback information of the data #1 to the terminal device #B based on the feedback mechanism (ie, the first indication information).
  • the terminal device #B can perform retransmission processing for the uplink data #1 based on the feedback information.
  • the terminal device #B can transmit the data #3 after receiving the NACK information.
  • the data #3 is the retransmission data of the terminal device #B corresponding to the HARQ process #0 (the data #3 and the data #1 both correspond to the cell #0, that is, the data #3 and the data #1 both correspond to the same original data packet. ).
  • the RV version corresponding to data #3 is determined by the indication information #1.
  • the terminal device may not receive the feedback information.
  • the network device cannot send the indication information #1 because the uplink data #1 is not received; or
  • the resource indicating the information #1 is an unauthorized resource, and the network device cannot deliver the indication information #1 because it fails to compete for the unauthorized resource.
  • the timer #1 may be started, wherein the time counted by the timer #1 may be referred to as time window #1 (ie, the second An example of a preset duration).
  • time window #1 ie, the second An example of a preset duration
  • the terminal device #B may be after the time window #1
  • the time period autonomously performs retransmission processing for data #1, that is, transmits the data #2. That is, in the embodiment of the present invention, the time at which the terminal device #B transmits the data #2 may be other than the time window #1 after the terminal device #B completes the transmission of the data #1.
  • the network device #B may also be in the time window #2.
  • the indication information #1 for the data #1 is transmitted.
  • both the time-frequency resource #2 and the time-frequency resource #3 may be located in the time window #2 after the time window #1.
  • the time interval between the time-frequency resource #2 and the time-frequency resource #3 in the time domain may be small, for example, less than a certain time threshold ⁇ t (ie, an example of the first preset duration) ).
  • the time threshold ⁇ t may be a time interval required for the terminal device #B to parse the information from the received signal, and/or send uplink data from the terminal device to The minimum time interval between the network device and the network device feeding back the uplink data is determined.
  • time-frequency resource #3 appears in the ambiguity period of time-frequency resource #2.
  • the time-frequency resource #3 is temporally located before the time-frequency resource #2, and the time interval of the time-frequency resource #2 and the time-frequency resource #3 in the time domain is less than the time threshold ⁇ t, where In this case, the terminal device #B has not yet parsed the indication information #1 carried on the time-frequency resource #3, so that the terminal device transmits the data retransmission for the HARQ process #0 to the network device on the time-frequency resource #2.
  • the time-frequency resource #3 is located chronologically after the time-frequency resource #2, and the time interval of the time-frequency resource #2 and the time-frequency resource #3 in the time domain is less than the time threshold ⁇ t,
  • the terminal device #B may mistakenly think that the indication information #1 is feedback information for the data #2 instead of the feedback information for the data #1, and thus, the terminal device The understanding of the indication information #1 is inconsistent with the network device.
  • the magnitude of the time threshold ⁇ t may be defined.
  • the time threshold ⁇ t may be specified by the communication system or the communication protocol, or may be determined by the network device #B and delivered to the terminal device #B. It is not particularly limited.
  • the time threshold ⁇ t may not be defined, but the above two cases may still occur.
  • the network device #B may also send the indication information for the data #2 in the period after the time-frequency resource #2 and the time-frequency resource #3. #2.
  • the terminal device #B may ignore the indication.
  • the message #1 that is, the retransmission process based on the instruction information #1 is prohibited or stopped.
  • the terminal device #B may determine that the data #2 is accurately transmitted, since the data #2 is The retransmission data of the data #1, therefore, the terminal device #B can determine that the data that the network device needs to retransmit by the terminal device #B indicated by the indication information #1 has been accurately transmitted, and thus, the terminal device #B may not perform the indication based information. #1 retransmission processing.
  • the network device #B can determine that the terminal device #B does not need to perform the retransmission process based on the indication information #1, and therefore, the network device #B can refer to the instruction information #1.
  • the indicated time-frequency resource ie, time-frequency resource #5 is redistributed, for example, time-frequency resource #5 is allocated to terminal device #B for new transmission of the next data packet, or time-frequency resource# 5 is allocated to other terminal devices than the terminal device #B, thereby improving the efficiency of resource use.
  • the terminal device #B may determine that the data #2 is not accurately transmitted, that is, the data transmission corresponding to the HARQ process #0. failure.
  • the terminal device #B may determine that the data #2 is not accurately transmitted. That is, the data transmission corresponding to the HARQ process #0 fails.
  • the terminal device #B can determine that the indication information #1 and the indication information #2 transmitted by the network device are both corresponding to the HARQ process #0. Instructions.
  • the terminal device #B Since the time domain resource #4 for carrying the indication information #2 is located chronologically after the time domain resource #3 for carrying the indication information #1, when the terminal device #B receives the indication information #1 and the indication information #2 Thereafter, if the indication information #2 indicates that the data transmission of the corresponding HARQ process #0 is successful, the terminal device #B does not perform the retransmission process based on the indication information #1; if the indication information #2 indicates that the data transmission of the corresponding HARQ process #0 fails Then, the terminal device #B may perform a retransmission process based on the instruction information #1 or a retransmission process based on the instruction information #2, which is not limited in the present invention.
  • the terminal device #B performs the instruction based information #1.
  • the time-frequency resource used for the retransmission process may be the time-frequency resource indicated by the indication information #1 (ie, time-frequency resource #5).
  • the time-frequency resource used by the terminal device #B to perform the retransmission process based on the instruction information #2 may be the time-frequency resource indicated by the instruction information #2 (that is, the time-frequency resource #6).
  • the time-frequency resource indicated by the indication information #1 (ie, the time-frequency resource #5) is in the time domain indicated by the indication information #2.
  • the time-frequency resource (ie, time-frequency resource #6) is more likely to be preceded. Therefore, preferably, the terminal device #B performs a retransmission process based on the indication information #1, that is, transmits the HARQ process by the time-frequency resource #5#
  • the retransmission data of 0 can reduce the transmission delay of the uplink data.
  • FIG. 5 is a schematic diagram of an example of time domain resources used in the method 300 for transmitting uplink data according to an embodiment of the present invention.
  • the terminal device #B can transmit the data #1 to the network device #B on the time-frequency resource #1.
  • the time-frequency resource #1 may be a scheduling resource or a non-scheduled resource, and the time-frequency resource #1 may be a resource on the licensed frequency band or a resource in the unlicensed frequency band. Specially limited.
  • the elapsed time length t1 (the duration t1 may be specified by a communication system or a communication protocol, and the duration t1 may be determined according to a minimum time interval between when the uplink data is transmitted from the terminal device to the network device and the network device feeds back the uplink data)
  • the network device #A may be after the time window #1 (where the frequency domain resource corresponding to the time window #1 may be an unlicensed resource)
  • the time period ie, within time window #2
  • the time-frequency resource #3 (which may be a licensed resource or an unlicensed resource) (for example, UL Grant) Information, or NACK information).
  • the indication information #1 can indicate that the network device #B is the time-frequency resource #5 allocated for the retransmission data of the data #1 allocated to the terminal device #B.
  • the terminal device #B may pass the time-frequency resource #2 in the time window #2 (the time-frequency resource #2 may be a licensed resource or an unlicensed resource, and the time-frequency resource #2 may be an unscheduled resource) Sending data #2 to the network device (the data #2 and the data #1 correspond to the same HARQ process #0, which is the retransmission data corresponding to the HARQ process #0).
  • the network device #B can determine whether the data #2 is correctly received, and according to the determination result, the indication information #2 is transmitted to the terminal device #B through the time-frequency resource #4 (for example, feedback information for the data #2, or UL Grant).
  • the indication information #2 may indicate time-frequency resource #6.
  • the terminal device #B After receiving the instruction information #2, the terminal device #B can determine the data based on the instruction information #2. #2 Whether the transmission was successful.
  • the terminal device #B may prohibit or stop the retransmission process based on the instruction information #1.
  • the terminal device #B determines that the data #2 transmission fails, the terminal device #B transmits the retransmission data of the data #2 through the time-frequency resource #5 or the time-frequency resource #6.
  • the network device #B may redistribute the time-frequency resource #5.
  • the UE receives a negative indication in the interval of two data transmissions of the Hybrid Automatic Repeat ReQuest (HARQ) process.
  • the indication information of the response is followed by an indication message indicating an affirmative response, and the UE corrects the indication information indicating the positive response received later, thereby stopping the processing of the indication information indicating the previous negative response.
  • HARQ Hybrid Automatic Repeat ReQuest
  • the grant K+1 transmission may be performed after the time (ie, the first The retransmission of K transmissions), while the UE continues to detect whether the eNB feeds back ACK/NACK.
  • K ⁇ 0 and K are integers, the Kth transmission and the K+1th transmission correspond to the same HARQ process.
  • a ambiguity period may occur, that is, the UE receives the feedback of the eNB for the Kth transmission and the K+1th transmission performed by the UE, and the eNB transmits for the Kth transmission.
  • the time interval between the feedback and the K+1th transmission performed by the UE is small.
  • the UE may determine that the HARQ process is correctly transmitted.
  • the UE may determine The HARQ process is transmitted correctly. Accordingly, the UE may discard the K+2th transmission of the HARQ process on the resource indicated according to the UL grant or NACK information.
  • the UE subsequently receives the information indicating the failure of the Kth data transmission and the UE does not receive the feedback for the K+1th transmission, or the UE receives the information indicating the failure of the K+1th data transmission, where
  • the information indicating that the transmission fails may be UL grant or NACK information, and the UE prepares the K+2th transmission according to the resource indicated by the UL grant or the NACK. Need to explain If the UE does not receive the feedback for the K+1th transmission, the eNB may not deliver the feedback corresponding to the K+1th transmission, or the feedback of the K+1th transmission sent by the eNB occurs in the UE. The ambiguity period of K+2 transmissions.
  • the terminal device may transmit the first data based on a scheduling mechanism or based on an unscheduled mechanism, and the terminal device may be in the unscheduled resource after transmitting the first data. Transmitting the second data, where the first data and the second data correspond to the same HARQ process, and the second data is the retransmitted data of the first data. Therefore, for example, the terminal device may receive the feedback information for the first data (ie, an example of the first indication information) after transmitting the second data, or the terminal device receives the second data before transmitting the second data.
  • the feedback information for the first data ie, an example of the first indication information
  • the terminal device may receive feedback information for the second data (ie, an example of the second indication information).
  • the first indication information indicates retransmission
  • the second indication information indicates that the second data transmission is successful, that is, the terminal device may determine that the HARQ process is successfully transmitted, but the terminal device also needs to perform based on the first Retransmission processing of the indication information for the HARQ process.
  • the terminal device needs to perform retransmission processing based on the first indication information and retransmission processing based on the second indication information, that is, the terminal device needs to perform two retransmissions.
  • the terminal device may not perform (for example, prohibit or stop). Retransmission processing for the HARQ process based on the first indication information. For example, when the second indication information indicates retransmission, the terminal device may determine that the second data transmission fails. Because the second data and the first data correspond to the same HARQ process, the terminal device may be based on the first indication information (specifically The retransmission process of the HARQ process is performed on the time resource indicated by the first indication information (that is, the third data is transmitted, wherein the third data and the first data correspond to the same HARQ process). Thereby, the processing load of the terminal device can be reduced, and the overhead on the transmission resource can be reduced.
  • FIG. 6 is a schematic block diagram of an apparatus 400 for transmitting uplink data according to an embodiment of the present invention.
  • the apparatus 400 for transmitting uplink data may correspond to (for example, may be configured or itself) a terminal device described in the foregoing method 200 ( For example, terminal device #A), and each module or unit in the device 400 for transmitting uplink data is used to perform each action or process performed by the terminal device (for example, terminal device #A) in the above method 200, where In order to avoid redundancy, a detailed description thereof will be omitted.
  • the apparatus 400 may include a processor and a transceiver, and the processor and the transceiver are in communication connection.
  • the device further includes a memory, and the memory is communicatively coupled to the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the determining unit in the apparatus 400 shown in FIG. 6 can correspond to the processor, and the communication unit in the apparatus 400 shown in FIG. 6 can correspond to the transceiver.
  • FIG. 7 is a schematic block diagram of an apparatus 500 for transmitting uplink data according to an embodiment of the present invention.
  • the apparatus 500 for transmitting uplink data may correspond to (for example, may be configured or itself) a network device described in the foregoing method 200 ( For example, network device #A), and each module or unit in the device 500 for transmitting uplink data is used to perform various actions or processes performed by the network device (for example, network device #A) in the above method 200, where In order to avoid redundancy, a detailed description thereof will be omitted.
  • the apparatus 500 may include a processor and a transceiver, and the processor and the transceiver are communicatively coupled.
  • the device further includes a memory, the memory is communicatively coupled to the processor, optionally, the processor The memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing instructions stored by the memory to control the transceiver to transmit information or signals.
  • the receiving unit and the transmitting unit in the apparatus 500 shown in FIG. 7 may correspond to the transceiver.
  • FIG. 8 is a schematic block diagram of an apparatus 600 for transmitting uplink data according to an embodiment of the present invention.
  • the apparatus 600 for transmitting uplink data may correspond to (for example, may be configured or itself) the terminal device described in the foregoing method 300 ( For example, the terminal device #B), and each module or unit in the device 600 for transmitting uplink data is used to perform each action or process performed by the terminal device (for example, the terminal device #B) in the above method 300, where In order to avoid redundancy, a detailed description thereof will be omitted.
  • the apparatus 600 may include: a processor and a transceiver, the processor and the transceiver are in communication connection, optionally, the device further includes a memory, the memory is communicatively coupled to the processor, optionally, the processor The memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing instructions stored by the memory to control the transceiver to transmit information or signals.
  • processing unit in the device 600 shown in FIG. 8 can correspond to the processor, and the communication unit in the device 600 shown in FIG. 8 can correspond to the transceiver.
  • FIG. 9 is a schematic block diagram of an apparatus 700 for transmitting uplink data according to an embodiment of the present invention, where the apparatus 700 for transmitting uplink data may correspond to (for example, may be configured or itself)
  • the network device e.g., network device #B
  • each module or unit in the device 700 for transmitting uplink data is used to perform the network device (e.g., network device #B) in the method 300 described above.
  • network device #B e.g., network device #B
  • the apparatus 700 may include a processor and a transceiver, and the processor and the transceiver are communicatively coupled.
  • the device further includes a memory, and the memory is communicatively coupled to the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • processing unit in the apparatus 700 shown in FIG. 9 can correspond to the processor, and the communication unit in the apparatus 700 shown in FIG. 9 can correspond to the transceiver.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DR Direct Memory Bus Random Access Memory
  • the network device #A and the network device #B may be the same network device or different network devices, and the present invention is not particularly limited.
  • the network device #A may perform the action of the network device in the method 200, and may also perform the action of the network device in the method 300.
  • the network device #B may perform the action of the network device in the method 200.
  • the action of the network device in method 300 can also be performed.
  • the terminal device #A and the terminal device #B may be the same terminal device or different terminal devices, and the present invention is not particularly limited.
  • the terminal device #A may perform the action of the terminal device in the method 200, and may also perform the action of the terminal device in the method 300.
  • the terminal device #B may perform the action of the terminal device in the method 200.
  • the action of the terminal device in method 300 can also be performed.
  • the terminal device can simultaneously perform the actions performed by the terminal device in the method 200 and the method 300.
  • the network device can perform the actions performed by the network device in the method 200 and the method 300 at the same time.
  • the data involved in the method 200 and the method 300 may include the same data, or the time-frequency resources involved in the method 200 and the method 300 may include the same time-frequency resource, or the method 200 and the method 300
  • the indication information involved may include the same indication information.
  • the uplink data X and the data #1 may be the same data.
  • the indication information #A and the indication information #1 may be the same indication information
  • the time-frequency resource #A and the time-frequency resource #5 may be the same time-frequency resource.
  • time-frequency resource #B and time-frequency resource #2 may be the same time-frequency resource.
  • the foregoing method 200 and method 300 may be used alone or in combination.
  • the network device sends a notification to the terminal device for indicating
  • the terminal device may transmit the second data based on the unscheduled time domain resource, that is, The time domain resource (ie, the second time domain resource) used by the terminal device to transmit the second data is different from the time domain resource (ie, the first time domain resource) allocated by the network device for transmitting the second data. Therefore, the uplink transmission can be made independent of the uplink scheduling information or the feedback information, and the transmission delay of the uplink data can be reduced, and the performance and user experience of the scheduling-based uplink data transmission can be improved.
  • the terminal device receives the data for the first data.
  • the terminal device may receive feedback information for the second data (ie, an example of the second indication information).
  • the terminal device may determine that the HARQ process is successfully transmitted, but the terminal device also needs to perform based on the first Retransmission processing of the indication information for the HARQ process. If the first indication information and the second indication information both indicate retransmission, the terminal device needs to perform retransmission processing based on the first indication information and retransmission processing based on the second indication information, that is, the terminal device needs to perform two retransmissions. deal with.
  • the terminal device may not perform the The retransmission process of the HARQ process.
  • the terminal device may determine that the second data transmission fails. Because the second data and the first data correspond to the same HARQ process, the terminal device may be based on the first indication information (specifically The retransmission process of the HARQ process is performed on the time resource indicated by the first indication information (that is, the third data is transmitted, wherein the third data and the first data correspond to the same HARQ process).
  • the processing load of the terminal device can be reduced, and the overhead on the transmission resource can be reduced.
  • sequence numbers of the foregoing processes are The order of execution of the processes is not necessarily limited by the function and the intrinsic logic, and should not be construed as limiting the implementation of the embodiments of the present invention.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the embodiments of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, and a read only memory (ROM, Read-Only Memory), random access memory (RAM), disk or optical disk, and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种传输上行数据的方法和装置,该方法包括:终端设备接收网络设备发送的传输指示信息,该传输指示信息用于指示第一时域资源,该第一时域资源是用于该终端设备发送上行数据的时域资源;该终端设备从免调度资源中确定第二时域资源,该第二时域资源与该第一时域资源相异;该终端设备在该第二时域资源上发送该上行数据,从而,能够改善基于调度的上行数据传输的性能和用户体验。

Description

传输上行数据的方法和装置 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及传输上行数据的方法和装置。
背景技术
目前已知一种基于调度的上行数据传输机制,在该现有技术中,终端设备在向网络设备发送上行数据之前,需要根据网络设备下发的指示信息(例如,上行调度信息等),确定用于承载上行数据的时域资源,或者说,时间资源。
在该现有技术中,例如,存在终端设备在该指示信息所指示的时域资源上信道竞争失败,进而使终端设备无法发送上行数据的情况。再例如,存在该指示信息所指示的时域资源距离当前时刻之间的时间间隔较大而无法满足当前上行数据的传输时延要求的情况。
因此,亟需提供一种技术,能够改善基于调度的上行数据传输的性能和用户体验。
发明内容
本发明实施例提供一种传输上行数据的方法和装置,能够改善基于调度的上行数据传输的性能和用户体验。
第一方面,提供了一种传输上行数据的方法,该方法包括:终端设备接收网络设备发送的传输指示信息,该传输指示信息用于指示第一时域资源,该第一时域资源是用于该终端设备发送上行数据的时域资源;该终端设备从免调度资源中确定第二时域资源,该第二时域资源与该第一时域资源相异;该终端设备在该第二时域资源上发送上行数据。
根据本发明实施例的传输上行数据的方法,网络设备向终端设备发送用于指示承载上行数据的时域资源的信息,例如,上行调度信息或反馈信息(具体地说,是否定应答NACK信息)的情况下,终端设备可以基于免调度时域资源传输该上行数据,即,终端设备实际使用的传输上行数据的时域资源(即,第二时域资源)与网络设备分配的用于传输上行数据的时域资源(即, 第一时域资源)相异,从而,能够使上行传输不依赖于上行调度信息或反馈信息,能够减小上行数据的传输时延,改善基于调度的上行数据传输的性能和用户体验。
结合第一方面,在第一方面的第一种实现方式中,该第一时域资源对应的用于承载该上行数据的频域资源属于免许可频段。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,在该终端设备从免调度资源中确定第二时域资源前,该方法还包括:该终端设备确定在该第一时域资源上的资源竞争失败。
当该第一时域资源对应的用于承载该上行数据的频域资源属于免许可频段时,可能存在终端设备由于竞争不到该频域资源而无法使用该第一时域资源传输上行数据的情况,此情况下,使用本发明实施例提供的传输上行数据的方法,由于终端设备实际使用的传输上行数据的时域资源(即,第二时域资源)与网络设备分配的用于传输上行数据的时域资源(即,第一时域资源)相异,能够增加上行数据的发送机会,确保该上行数据的传输,从而能够提高上行传输的可靠性。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,该第二时域资源在时间顺序上位于该第一时域资源前。
从而,能够使上行传输不依赖于上行调度信息或反馈信息,能够减小上行数据的传输时延,改善基于调度的上行数据传输的性能和用户体验。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,该传输指示信息包括上行调度信息。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,该上行数据为初传数据。
结合第一方面及其上述实现方式,在第一方面的第六种实现方式中,该上行数据为重传数据。
结合第一方面及其上述实现方式,在第一方面的第七种实现方式中,该传输指示信息包括针对该上行数据的前一次传输的否定应答NACK信息。
结合第一方面及其上述实现方式,在第一方面的第八种实现方式中,该第一时域资源是根据用于承载该NACK信息的第三时域资源确定的。
当该上行数据为重传数据时,在现有技术中,该上行数据的传输需要在网络设备反馈的NACK信息所指示的(具体地说,是与承载NACK的时域 资源具有规定时间间隔的)时域资源(即,第二时域资源的一例)上进行传输,与此相对,基于本发明实施例提供的传输上行数据的方法,能够支持终端设备在位于第二时域资源之前的时域资源(即,第一时域资源的一例)上传输该上行数据,从而降低了该上行数据的传输时延。
结合第一方面及其上述实现方式,在第一方面的第九种实现方式中,该第二时域资源属于第一时域范围,该第一时域范围的起始时刻是根据该上行数据的前一次传输的结束时刻确定的,该第一时域范围的时长为预设值。
在现有技术中,终端设备进行重传处理时需要基于网络设备的反馈信息(具体地说是,NACK信息),存在因信道质量问题或资源使用问题而导致网络设备无法发送反馈信息的情况,对此,在该现有技术中,终端设备只能在发送初传数据后的规定时长之后(即,第一时域范围以外)发送重传数据,与此相对,基于本发明实施例提供的传输上行数据的方法,能够支持终端设备在第一时域范围内传输重传数据,从而降低了该重传数据的传输时延。
结合第一方面及其上述实现方式,在第一方面的第十种实现方式中,该第二时域资源在时域上处于第一时域资源之前。
结合第一方面及其上述实现方式,在第一方面的第十一种实现方式中,该终端设备从免调度资源中确定第二时域资源,包括:所述终端设备在确定不能使用该第一时域资源进行数据传输之后,从免调度资源中确定第二时域资源。
结合第一方面及其上述实现方式,在第一方面的第十二种实现方式中,该终端设备从免调度资源中确定第二时域资源,包括:该终端设备在确定在第一时域范围内未接收到该网络设备发送的该传输指示信息时,在该第一时域范围之后,从免调度资源中确定第二时域资源,该第一时域范围的起始时刻是根据该上行数据的前一次传输的结束时刻确定的,该第一时域范围的时长为预设值。
第二方面,提供了一种传输上行数据的方法,该方法包括:网络设备向终端设备发送传输指示信息,该传输指示信息用于指示第一时域资源,该第一时域资源是用于该终端设备发送上行数据的时域资源;该网络设备接收该终端设备在第二时域资源上发送的上行数据,该第二时域资源是该终端设备从免调度资源中确定的,该第二时域资源与该第一时域资源相异。
根据本发明实施例的传输上行数据的方法,网络设备向终端设备发送用 于指示承载上行数据的时域资源的信息,例如,上行调度信息或反馈信息(具体地说,是否定应答NACK信息)的情况下,终端设备可以基于免调度时域资源传输该上行数据,即,终端设备实际使用的传输上行数据的时域资源(即,第二时域资源)与网络设备分配的用于传输上行数据的时域资源(即,第一时域资源)相异,从而,能够使上行传输不依赖于上行调度信息或反馈信息,能够减小上行数据的传输时延,改善基于调度的上行数据传输的性能和用户体验。
结合第二方面,在第二方面的第一种实现方式中,该第一时域资源对应的用于承载该上行数据的频域资源属于免许可频段。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,该第二时域资源是该终端设备在确定在该第一时域资源上的资源竞争失败后从免调度资源中确定的。
当该第一时域资源对应的用于承载该上行数据的频域资源属于免许可频段时,可能存在终端设备由于竞争不到该频域资源而无法使用该第一时域资源传输上行数据的情况,此情况下,使用本发明实施例提供的传输上行数据的方法,由于终端设备实际使用的传输上行数据的时域资源(即,第二时域资源)与网络设备分配的用于传输上行数据的时域资源(即,第一时域资源)相异,能够增加上行数据的发送机会,确保该上行数据的传输,从而能够提高上行传输的可靠性。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,该第二时域资源在时间顺序上位于该第一时域资源前。
从而,能够使上行传输不依赖于上行调度信息或反馈信息,能够减小上行数据的传输时延,改善基于调度的上行数据传输的性能和用户体验。
结合第二方面及其上述实现方式,在第二方面的第四种实现方式中,该传输指示信息包括上行调度信息。
结合第二方面及其上述实现方式,在第二方面的第五种实现方式中,该上行数据为初传上行数据。
结合第二方面及其上述实现方式,在第二方面的第六种实现方式中,该上行数据为重传上行数据。
结合第二方面及其上述实现方式,在第二方面的第七种实现方式中,该传输指示信息包括针对该上行数据的前一次传输的否定应答NACK信息。
结合第二方面及其上述实现方式,在第二方面的第八种实现方式中,该第一时域资源是根据用于承载该NACK信息的第三时域资源确定的。
当该上行数据为重传数据时,在现有技术中,该上行数据的传输需要在网络设备反馈的NACK信息所指示的(具体地说,是与承载NACK的时域资源具有规定时间间隔的)时域资源(即,第二时域资源的一例)上进行传输,与此相对,基于本发明实施例提供的传输上行数据的方法,能够支持终端设备在位于第二时域资源之前的时域资源(即,第一时域资源的一例)上传输该上行数据,从而降低了该上行数据的传输时延。
结合第二方面及其上述实现方式,在第二方面的第九种实现方式中,该第二时域资源属于第一时域范围,该第一时域范围的起始时刻是根据该上行数据的前一次传输的结束时刻确定的,该第一时域范围的时长为预设值。
在现有技术中,终端设备进行重传处理时需要基于网络设备的反馈信息(具体地说是,NACK信息),存在因信道质量问题或资源使用问题而导致网络设备无法发送反馈信息的情况,对此,在该现有技术中,终端设备只能在发送初传数据后的规定时长之后(即,第一时域范围以外)发送重传数据,与此相对,基于本发明实施例提供的传输上行数据的方法,能够支持终端设备在第一时域范围内传输重传数据,从而降低了该重传数据的传输时延。
结合第二方面及其上述实现方式,在第二方面的第十种实现方式中,该第二时域资源在时域上处于第一时域资源之前。
结合第二方面及其上述实现方式,在第二方面的第十一种实现方式中,该第二时域资源是所述终端设备在确定不能使用该第一时域资源进行数据传输之后从免调度资源中确定的。
结合第二方面及其上述实现方式,在第二方面的第十二种实现方式中,该第二时域资源是该终端设备在确定在第一时域范围内未接收到该网络设备发送的该传输指示信息时,在该第一时域范围之后,从免调度资源中确定的,该第一时域范围的起始时刻是根据该上行数据的前一次传输的结束时刻确定的,该第一时域范围的时长为预设值。
第三方面,提供了一种传输上行数据的方法,该方法包括:终端设备在第一时间资源上向网络设备发送第一数据,该第一数据对应第一混合自动重传HARQ进程;该终端设备在第二时间资源上向该网络设备发送第二数据,在第三时间资源上接收该网络设备发送的第一指示信息,该第二时间资源属 于免调度资源,该第一指示信息用于指示第五时间资源,该第五时间资源是该网络设备分配的用于该终端设备发送该第一数据的重传数据的时间资源,该第二数据对应该第一HARQ进程;该终端设备在第四时间资源上接收该网络设备发送的第二指示信息,该第二指示信息用于指示该第一HARQ进程对应的数据是否传输成功;当该终端设备根据该第二指示信息确定该第一HARQ进程对应的数据传输失败时,该终端设备在该第五时间资源上向该网络设备发送第三数据,该第三数据对应该第一HARQ进程;或当该终端设备根据该第二指示信息确定该第一HARQ进程对应的数据传输成功时,该终端设备禁止或停止进行基于该第一指示信息的重传处理。
结合第三方面,在第三方面的第一种实现方式中,当该终端设备根据该第二指示信息确定该第一HARQ进程对应的数据传输失败时,该终端设备在该第五时间资源上向该网络设备发送第三数据:当该终端设备根据该第二指示信息确定该第一HARQ进程对应的数据传输失败时,该终端设备在该第五时间资源上向该网络设备发送第三数据,该第三数据对应该第一HARQ进程,该终端设备禁止或停止进行基于第二指示信息的重传处理。
根据本发明实施例的传输上行数据方法,在传输上行数据的通信系统中,终端设备可以基于调度机制或基于免调度机制传输第一数据,并且终端设备可以在传输第一数据后在免调度资源上传输第二数据,其中,第一数据和第二数据对应同一个HARQ进程,第二数据为第一数据的重传数据。从而,可能出现例如,终端设备发送该第二数据之后才接收到针对第一数据的反馈信息(即,第一指示信息的一例)的情况,或者,终端设备在发送该第二数据之前接收第一指示信息,但是在发送该第二数据之后才解析出该第一指示信息的情况,并且终端设备可能接收到针对第二数据的反馈信息(即,第二指示信息的一例)。此情况下,根据现有技术,如果第一指示信息指示重传,第二指示信息指示第二数据传输成功,即终端设备可以确定该HARQ进程传输成功,但终端设备还需要进行基于该第一指示信息的针对该HARQ进程的重传处理。如果第一指示信息和第二指示信息都指示重传,终端设备需要进行基于该第一指示信息的重传处理以及基于该第二指示信息的重传处理,即终端设备需要进行两次重传处理。与此相对,在本发明实施例中,例如,当第二指示信息指示第二数据传输成功,即终端设备可以确定该HARQ进程传输成功时,终端设备可以不再进行基于该第一指示信息针对该 HARQ进程的重传处理。再例如,当第二指示信息指示重传时,终端设备可以确定第二数据传输失败,由于第二数据和第一数据对应同一个HARQ进程,因此终端设备可以基于第一指示信息(具体地说,是在该第一指示信息所指示的时间资源上),进行该HARQ进程的重传处理(即传输第三数据,其中,第三数据和第一数据对应同一个HARQ进程)。从而,能够降低终端设备的处理负担,减少对传输资源的开销。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,该第一指示信息包括否定应答NACK信息,或该第一指示信息包括上行调度信息。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,该第一指示信息包括针对第一数据的传输的否定应答NACK信息,或该第一指示信息包括用于指示用于第一数据的重传的资源的上行调度信息。
结合第三方面及其上述实现方式,在第三方面的第四种实现方式中,该第二指示信息包括肯定应答ACK信息;或该第二指示信息包括NACK信息,或该第二指示信息包括上行调度信息。
结合第三方面及其上述实现方式,在第三方面的第五种实现方式中,该第二指示信息包括针对第一数据的传输的ACK信息或NACK信息,或该第二指示信息包括用于指示用于第一数据的重传的资源的上行调度信息。
结合第三方面及其上述实现方式,在第三方面的第六种实现方式中,该第二指示信息包括针对第二数据的传输的ACK信息或NACK信息,或该第二指示信息包括用于指示用于第二数据的重传的资源的上行调度信息。
结合第三方面及其上述实现方式,在第三方面的第七种实现方式中,该第二时域资源与该第三时域资源之间的时间间隔小于或等于第一预设时长。
结合第三方面及其上述实现方式,在第三方面的第八种实现方式中,该第一预设时长是基于终端设备发送上行数据到网络设备与网络设备针对该上行数据进行反馈之间的最小时长确定的。
结合第三方面及其上述实现方式,在第三方面的第九种实现方式中,该第一预设时长是基于终端设备从接收到反馈信息至解析出反馈信息所需要的最小时长确定的。
结合第三方面及其上述实现方式,在第三方面的第十种实现方式中,该第一时间资源与该第二时间资源之间的时间间隔大于或等于第二预设时长。
在现有技术中,终端设备在发送第一数据后的规定时长(第二预设时长)之后,如果仍然未能接收到针对该第一数据的反馈信息(即,第一指示信息的一例),则自主发送重传数据。即,在现有技术中,网络设备只能在第二预设时长的范围内发送第一指示信息,与此相对,通过采用本发明实施例的传输上行数据的方法,即使网络设备在第二预设时长以外发送第一指示信息,也不会造成终端设备多次重复发送针对同一数据的重传数据,进而能够避免增加终端设备的处理负担,避免对通信资源造成浪费。
第四方面,提供了一种传输上行数据的方法,该方法包括:网络设备接收终端设备在第一时间资源上发送的第一数据,该第一数据对应第一混合自动重传HARQ进程;该网络设备接收终端设备在第二时间资源上发送的第二数据,在第三时间资源上向该终端设备发送的第一指示信息,该第二时间资源属于免调度资源,该第一指示信息用于指示第五时间资源,该第五时间资源是该网络设备分配的用于该终端设备发送该第一数据的重传数据的时间资源,该第二数据对应第一HARQ进程;该网络设备在第四时间资源上向该终端设备发送第二指示信息,该第二指示信息用于指示该第一HARQ进程对应的数据是否传输成功;当该第一HARQ进程对应的数据传输失败时,该网络设备接收该终端设备在该第五时间资源上发送的第三数据,该第三数据对应该第一HARQ进程;或当该第一HARQ进程对应的数据传输成功时,该网络设备在该第五时间资源上不进行数据接收。
结合第四方面,在第四方面的第一种实现方式中,当该第一HARQ进程对应的数据传输成功时,该网络设备对该第五时间资源进行重分配。
根据本发明实施例的传输上行数据方法,在传输上行数据的通信系统中,终端设备可以基于调度机制或基于免调度机制传输第一数据,并且终端设备可以在传输第一数据后在免调度资源上传输第二数据,其中,第一数据和第二数据对应同一个HARQ进程,第二数据为第一数据的重传数据。从而,可能出现例如,终端设备发送该第二数据之后才接收到针对第一数据的反馈信息(即,第一指示信息的一例)的情况,或者,终端设备在发送该第二数据之前接收第一指示信息,但是在发送该第二数据之后才解析出该第一指示信息的情况,并且终端设备可能接收到针对第二数据的反馈信息(即,第二指示信息的一例)。此情况下,根据现有技术,如果第一指示信息指示重传,第二指示信息指示第二数据传输成功,即终端设备可以确定该HARQ 进程传输成功,但终端设备还需要进行基于该第一指示信息的针对该HARQ进程的重传处理。如果第一指示信息和第二指示信息都指示重传,终端设备需要进行基于该第一指示信息的重传处理以及基于该第二指示信息的重传处理,即终端设备需要进行两次重传处理。与此相对,在本发明实施例中,例如,当第二指示信息指示第二数据传输成功,即终端设备可以确定该HARQ进程传输成功时,终端设备可以不再进行基于该第一指示信息针对该HARQ进程的重传处理。再例如,当第二指示信息指示重传时,终端设备可以确定第二数据传输失败,由于第二数据和第一数据对应同一个HARQ进程,因此终端设备可以基于第一指示信息(具体地说,是在该第一指示信息所指示的时间资源上),进行该HARQ进程的重传处理(即传输第三数据,其中,第三数据和第一数据对应同一个HARQ进程)。从而,能够降低终端设备的处理负担,减少对传输资源的开销。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,该第一指示信息包括否定应答NACK信息,或该第一指示信息包括上行调度信息。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,该第一指示信息包括针对第一数据的传输的否定应答NACK信息,或该第一指示信息包括用于指示用于第一数据的重传的资源的上行调度信息。
结合第四方面及其上述实现方式,在第四方面的第四种实现方式中,该第二指示信息包括肯定应答ACK信息;或该第二指示信息包括NACK信息,或该第二指示信息包括上行调度信息。
结合第四方面及其上述实现方式,在第四方面的第五种实现方式中,该第二指示信息包括针对第一数据的传输的ACK信息或NACK信息,或该第二指示信息包括用于指示用于第一数据的重传的资源的上行调度信息。
结合第四方面及其上述实现方式,在第四方面的第六种实现方式中,该第二指示信息包括针对第二数据的传输的ACK信息或NACK信息,或该第二指示信息包括用于指示用于第二数据的重传的资源的上行调度信息。
结合第四方面及其上述实现方式,在第四方面的第七种实现方式中,该第二时域资源与该第三时域资源之间的时间间隔小于或等于第一预设时长。
结合第四方面及其上述实现方式,在第四方面的第八种实现方式中,该第一预设时长是基于终端设备发送上行数据到网络设备与网络设备针对该 上行数据进行反馈之间的最小时长确定的。
结合第四方面及其上述实现方式,在第四方面的第九种实现方式中,该第一预设时长是基于终端设备从接收到反馈信息至解析出反馈信息所需要的最小时长确定的。
结合第四方面及其上述实现方式,在第四方面的第十种实现方式中,该第一时间资源与该第二时间资源之间的时间间隔大于或等于第二预设时长。
在现有技术中,终端设备在发送第一数据后的规定时长(第二预设时长)之后,如果仍然未能接收到针对该第一数据的反馈信息(即,第一指示信息的一例),则自主发送重传数据。即,在现有技术中,网络设备只能在第二预设时长的范围内发送第一指示信息,与此相对,通过采用本发明实施例的传输上行数据的方法,即使网络设备在第二预设时长以外发送第一指示信息,也不会造成终端设备多次重复发送针对同一数据的重传数据,进而能够避免增加终端设备的处理负担,避免对通信资源造成浪费。
第五方面,提供了一种传输上行数据的装置,用于执行第一方面及第一方面的任一种可能实现方式中的方法,或用于执行第二方面及第二方面的任一种可能实现方式中的方法,或用于执行第三方面及第三方面的任一种可能实现方式中的方法,或用于执行第四方面及第四方面的任一种可能实现方式中的方法,具体地,该传输上行数据的装置可以包括用于执行第一方面及第一方面的任一种可能的实现方式中的方法的单元,或用于执行第二方面及第二方面的任一种可能实现方式中的方法的单元,或用于执行第三方面及第三方面的任一种可能实现方式中的方法的单元,或用于执行第四方面及第四方面的任一种可能实现方式中的方法的单元。
第六方面,提供了一种传输上行数据的设备,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得传输上行数据的设备执行第一方面及第一方面的任一种可能实现方式中的方法,或执行第二方面及第二方面的任一种可能实现方式中的方法,或执行第三方面及第三方面的任一种可能实现方式中的方法,或执行第四方面及第四方面的任一种可能实现方式中的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被通信设备(例如,网络设备或终端设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行 第一至第四方面或第一至第四方面的任一种可能的实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得用户设备执行第一至第四方面或第一至第四方面的任一种可能的实现方式中的方法。
附图说明
图1是适用本发明实施例的传输上行数据的方法和装置的通信系统的示意性架构图。
图2是本发明实施例传输上行数据的方法的一例的示意性交互图。
图3是本发明实施例传输上行数据的方法中所使用的时域资源的一例的示意图。
图4是本发明实施例传输上行数据的方法的另一例的示意性交互图。
图5是本发明实施例传输上行数据的方法中所使用时间资源的一例示意图。
图6是本发明实施例无线通信的装置的一例的示意性框图。
图7是本发明实施例无线通信的装置的另一例的示意性框图。
图8是本发明实施例无线通信的装置的再一例的示意性框图。
图9是本发明实施例无线通信的装置的再一例的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的 信号通过本地和/或远程进程来通信。
应理解,本发明实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称“GSM”)系统、码分多址(Code Division Multiple Access,简称“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称“GPRS”)、长期演进(Long Term Evolution,简称“LTE”)系统、先进的长期演进(Advanced long term evolution,简称“LTE-A”)系统、通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)或下一代通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,简称“D2D”)通信,机器到机器(Machine to Machine,简称“M2M”)通信,机器类型通信(Machine Type Communication,简称“MTC”),以及车辆间(Vehicle to Vehicle,简称“V2V”)通信。
本发明实施例结合终端设备描述了各个实施例。终端设备也可以称为用户设备(User Equipment,简称“UE”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,简称“WLAN”)中的站点(STAION,简称“ST”),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、无线本地环路(Wireless Local Loop,简称“WLL”)站、个人数字处理(Personal Digital Assistant,简称“PDA”)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(fifth-generation,简称“5G”)网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称“PLMN”)网络中的终端设备等。
作为示例而非限定,在本发明实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及 数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,本发明实施例结合网络设备描述了各个实施例。网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(ACCESS POINT,简称“AP”),GSM或CDMA中的基站(Base Transceiver Station,简称“BTS”),也可以是WCDMA中的基站(NodeB,简称“NB”),还可以是LTE中的演进型基站(Evolutional Node B,简称“eNB”或“eNodeB”),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
另外,在本发明实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为LTE系统中的载波与小区的概念等同。例如在载波聚合(CA,Carrier Aggregation)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
本发明实施例提供的方法和装置,可以应用于终端设备或网络设备,该终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,简称“CPU”)、内存管理单元(Memory Management Unit,简称“MMU”)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应 用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,在本发明实施例中,传输信号的方法的执行主体的具体结构,本发明实施例并未特别限定,只要能够通过运行记录有本发明实施例的传输信号的方法的代码的程序,以根据本发明实施例的传输信号的方法进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本发明实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,简称“CD”)、数字通用盘(Digital Versatile Disc,简称“DVD”)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,简称“EPROM”)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本发明实施例的无线通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括1个天线或多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路)120从终端设备116接收信息。此外,终端设备 122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,简称“FDD”)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(Time Division Duplex,简称“TDD”)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。网络设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
在本发明实施例中,该通信系统100所使用的资源可以包括调度资源,也可以包括免调度资源,或者说,在本发明实施例中,通信系统100中的各通信设备(例如,网络设备或终端设备)可以基于免调度传输方案使用资源进行通信,也可以基于调度方式使用资源进行通信,本发明实施例并未特别限定。
其中,调度传输可以是指:终端设备传输上行数据所使用资源需要由网络设备分配并通知给该终端设备。
即,在本发明实施例中,数据的传输可以是基于基站调度的,调度的基本时间单位是一个或多个TTI,其中,TTI长度可以为1ms,也可以小于1ms,例如,短TTI(short Transmission Time Interval,sTTI)。具体的调度流程是基站发送控制信道,例如,物理下行控制信道(Physical Downlink Control Channel,简称“PDCCH”)或增强物理下行控制信道(Enhanced Physical Downlink Control Channel,简称“EPDCCH”)或用于调度sTTI传输的物理下行控制信道(sTTI Physical Downlink Control Channel,简称“sPDCCH”),该控制信道可以承载使用不同的下行控制信息(Downlink Control Information,简称“DCI”)格式的用于调度物理下行共享信道(Physical Downlink Shared Channel,简称“PDSCH”)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的调度信息,该调度信息包括比如资源分配信息,调制编码方式等控制信息。终端设备在子帧中检测控制信道,并根据检测出的控制信道中承载的调度信息来进行下行数据信道的接收或上行数据信道的发送。当引入sTTI技术后,控制信道中承载的调度信息可以指示TTI长度为1ms或TTI长度小于1ms的下行数据信道接收或上行数据信道发送。
另外,近年来,研究人员针对海量用户接入引发的一系列问题提出了上行免调度(Grant-free)传输方案,所谓Grant Free是指不需要网络设备动态调度即可实现用户数据上行传输的方法。
在本发明实施例中,免调度传输可以理解为如下含义的任意一种含义,或,多种含义,或者多种含义中的部分技术特征的组合或其他类似含义:
免调度传输可以指:网络设备预先分配并告知终端设备多个传输资源;终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据;网络设备在所述预先分配的多个传输资源中的一个或多个传输资源上检测终端设备发送的上行数据。所述检测可以是盲检测,也可能根据所述上行数据中某一个控制域进行检测,或者是其他方式进行检测。
免调度传输可以指:网络设备预先分配并告知终端设备多个传输资源,以使终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源 中选择至少一个传输资源,使用所选择的传输资源发送上行数据。
免调度传输可以指:获取预先分配的多个传输资源的信息,在有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。获取的方式可以从网络设备获取。
免调度传输可以指:不需要网络设备动态调度即可实现终端设备的上行数据传输的方法,所述动态调度可以是指网络设备为终端设备的每次上行数据传输通过信令来指示传输资源的一种调度方式。可选地,实现终端设备的上行数据传输可以理解为允许两个或两个以上终端设备的数据在相同的时频资源上进行上行数据传输。可选地,所述传输资源可以是终端设备接收所述信令的时刻以后的一个或多个传输时间单位的传输资源。一个传输时间单位可以是指一次传输的最小时间单元,比如传输时间间隔(英文全称为:,Transmission Time Interval,英文简称为:TTI),数值可以为1ms,或者0.5ms,或者2符号,或者可以是其他预先设定的传输时间单元。
免调度传输可以指:终端设备在不需要网络设备授权的情况下进行上行数据传输。所述授权可以指终端设备发送上行调度请求给网络设备,网络设备接收调度请求后,向终端设备发送上行授权,其中所述上行授权指示分配给终端设备的上行传输资源。
免调度传输可以指:一种竞争传输方式,具体地可以指多个终端在预先分配的相同的时频资源上同时进行上行数据传输,而无需基站进行授权。
所述的数据可以为包括业务数据或者信令数据。
所述盲检测可以理解为在不预知是否有数据到达的情况下,对可能到达的数据进行的检测。所述盲检测也可以理解为没有显式的信令指示下的检测。
在本发明实施例中,传输资源可以包括但不限于如下资源的一种或多种的组合:
α-时域资源(也可以称为时间资源),如无线帧、子帧、符号等;
β-频域资源(也可以称为频谱资源),如子载波、资源块等;
γ-空域资源,如发送天线、波束等;
θ-码域资源,如稀疏码多址接入(英文全称为:Sparse Code Multiple Access,英文简称为:SCMA)码本、低密度签名(英文全称为:Low Density Signature,英文简称为:LDS)序列、CDMA码等;
δ-上行导频资源。
如上的传输资源可以根据包括但不限于如下的控制机制进行的传输:
a-上行功率控制,如上行发送功率上限控制等
b-调制编码方式设置,如传输块大小、码率、调制阶数设置等;
c-重传机制,如HARQ机制等。
在本发明实施例的某些实施例中,可以具有多个(两个或两个以上)终端设备,各终端设备根据Grant Free方案,自主选择免调度传输资源向网络设备发送上行数据。并且,各导频和各传输资源(或者说,免调度资源)可以具有一一对应关系,网络设备可以根据各终端设备所选择的导频,获知各终端设备所选用的传输资源。
另外,在本发明实施例的某些实施例中,网络设备能够提供一个或多个免调度小区(或者,也可以称为免调度载波),以及一个或多个调度小区(或者,也可以称为调度载波)。在本发明实施例的某些实施例中,网络设备也能够为一个或多个小区提供基于调度方式的传输方案和基于免调度的传输方案。
在本发明实施例中,通信系统100所使用的资源(传输资源或者时频资源)中的频域资源(或者说,频谱资源)可以是许可资源,或者说,通信系统100所使用的资源中的频域资源可以属于许可频段。
或者,在本发明实施例中,通信系统100所使用的资源(传输资源或者时频资源)中的频域资源(或者说,频谱资源)可以是免许可资源(或者说,免许可频段),或者说,通信系统100所使用的资源中的频域资源可以属于免授权频段(或者说,免授权资源)。
免许可资源可以是指:各个通信设备可以共享使用的资源。
免许可频段上的资源共享是指对特定频谱的使用只规定发射功率、带外泄露等指标上的限制,以保证共同使用该频段的多个设备之间满足基本的共存要求,运营商利用免许可频段资源可以达到网络容量分流的目的,但是需要遵从不同的地域和不同的频谱对免许可频段资源的法规要求。这些要求通常是为保护雷达等公共系统,以及保证多系统尽可能互相之间不造成有害影响、公平共存而制定的,包括发射功率限制、带外泄露指标、室内外使用限制,以及有的地域还有一些附加的共存策略等。例如,各通信设备能够采用竞争方式或者监听方式,例如,先听后说(Listen Before Talk,简称“LBT”) 规定的方式使用的时频资源。
作为示例而非限定,在本发明实施例中,该免许可资源(具体地说是,免许可频谱资源)可以包括5GHz附近的频段,2.4GHz附近的频段,3.5GHz附近的频段,60GHz附近的频段。
作为示例而非限定,例如,该通信系统100可以采用免许可频域资源(例如,免许可载波)上的长期演进系统(Licensed-Assisted Access Using LTE,简称“LAA-LTE”)技术,也可以采用支持该通信系统在免许可频段独立部署的技术例如Standalone LTE over unlicensed spectrum,或者,MuLTEFire,或者,也可以采用LTE-U(LTE-U,LTE Advanced in Unlicensed Spectrums)技术,即,通信系统100可以将LTE系统独立部署到免许可频段,进而在免许可频段上采用LTE空口协议完成通信,该系统不包括授权频段。部署在免许可频段的LTE系统可以利用集中调度、干扰协调、自适应请求重传(Hybrid Automatic Repeat reQuest,简称“HARQ”)等技术,相比Wi-Fi等接入技术,该技术具有更好的鲁棒性,可以获得更高的频谱效率,提供更大的覆盖范围以及更好的用户体验。
并且,作为示例而非限定,在本发明实施例中,通信系统100可以采用例如,授权辅助接入(Licensed-Assisted Access,简称“LAA”)、双连接(Dual Connectivity,简称“DC”)、免授权辅助接入(Standalone)技术等。其中,LAA包括利用现有LTE系统中的载波聚合(Carrier Aggregation,简称“CA”)的配置和结构,以配置运营商授权频段上的载波(授权载波)进行通信为基础,配置多个免许可频段上的载波(免授权载波)并以授权载波为辅助利用免授权载波进行通信。也就是说,LTE设备可以通过CA的方式,将授权载波作为主成员载波(Primary Component Carrier,简称“PCC”)或主小区(Primary Cell,简称“PCell”),将免授权载波作为辅成员载波(Secondary Component Carrier,简称“SCC”)或辅小区(Secondary Cell,简称“SCell”)。双连接DC技术包括将授权载波和免授权载波通过非CA(或者,非理想回程backhaul)的方式联合使用的技术,或者,也包括将多个免授权载波通过非CA的方式联合使用的技术。LTE设备还可以通过独立部署的方式,直接部署在免授权载波上。
此外,在本发明实施例中,通信系统100中的各通信设备还可以使用授权频谱资源进行无线通信,即,本发明实施例的通信系统100是能够使用授 权频段的通信系统。
授权时频资源一般需要国家或者地方无线委员会审批才可以使用的时频资源,不同系统例如LTE系统与WiFi系统,或者,不同运营商包括的系统不可以共享使用授权时频资源。
综上所述,作为示例而非限定,在本发明实施例中,网络设备和终端设备使用传输资源的方式可以包括以下方式:
1.采用调度方式使用授权资源(例如,授权频段上的资源);
2.采用免调度方式使用授权资源;
3.采用调度方式使用免授权资源(例如,免许可频段上的资源);
4.采用免调度方式使用免授权资源。
下面,结合图2至图5对本发明实施例的传输上行数据方法的进行说明。需要说明的是,以下描述中“时频资源”可以包括时域上的资源,也可以包括频域上的资源,在本发明实施例中,主要涉及时域上的资源的使用方式,因此,以下描述的本发明实施例的传输上行数据的方法的过程中对“时频资源”的使用方式主要是指对时域上的资源的使用,频域上的资源的使用方式可以与现有技术相同或相似,这里,为了避免赘述,省略其详细说明。
图2是本发明实施例的网络设备#A与终端设备#A之间传输上行数据#A的方法200的一例的示意性交互图。
如图2所示,在S210,网络设备#A(即,网络设备的一例)可以向终端设备#A(即,终端设备的一例)发送指示信息#A(即,传输指示信息的一例)。
其中,该指示信息#A用于指示时频资源#A(即,第一时域资源的一例),该时频资源#A是网络设备#A为终端设备#A分配的用于上行传输的时频资源。即,该时频资源#A可以用于承载上行数据#A。
作为示例而非限定,例如,在本发明实施例中,该上行数据#A可以是初传数据,即,该上行数据#A可以是终端设备#A在一次业务访问中首次发送给网络设备#A的数据。
此情况下,该指示信息#A可以是用于指示时频资源#A的上行资源调度(Up Link Grant,简称“UL Grant”)信息(即,传输指示信息的另一例)。这里,网络设备#A生成并向终端设备#A发送上行资源调度信息的方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
再例如,在本发明实施例中,该上行数据#A可以是重传数据,为了便于理解和说明,设上行数据#A是上行数据#X的重传数据。其中,该上行数据#X可以是初传数据,也可以是重传数据,本发明实施例并未特别限定。
此情况下,该指示信息#A可以是用于指示时频资源#A的上行资源调度(Up Link Grant,简称“UL Grant”)信息。
或者,该指示信息#A可以是针对上行数据#X的反馈信息,具体地说,是否定应答(Negative Acknowledgment,简称“NACK”)信息。此情况下,该时频资源#A与该NACK信息(即,传输指示信息的再一例)所承载于的时频资源(即,第三时域资源的一例,以下,为了便于理解和说明,记做:时频资源#Y),在时域上可以具有预设的对应关系,例如,时频资源#A与时频资源#Y在时域上具有规定的时间间隔,从而,终端设备#A能够根据时频资源#Y和该时间间隔,确定时频资源#A(具体地说,是时频资源#A的时域位置)。
其中,该时间间隔可以是通信系统或通信协议规定的,也可以是网络设备#A确定并下发至终端设备#A的,只要使网络设备#A和终端设备#A所确定的时间间隔一致即可,本发明实施例并未特别限定。
在本发明实施例中,该时频资源#A可以是授权资源(例如,授权频段上的资源),或者,该时频资源#A也可以是免授权资源(例如,免许可频段上的资源)。并且,该时频资源#A可以是网络设备#A和终端设备#A基于调度传输方式使用的资源。
需要说明的是,当该时频资源#A可以是免授权资源时,终端设备#A需要在基于例如,LBT等方式,确定是否能够使用该时频资源#A,例如,当时频资源#A被其他通信设备占用时,即使该时频资源#A是网络设备#A分配给该终端设备#A的,该终端设备#A仍然不能使用该时频资源#A。
在S220,终端设备#A确定能够用于与网络设备#A之间进行传输的免调度资源#M,其中,该免调度资源#M可以是授权资源(例如,授权频段上的资源),或者,该免调度资源#M也可以是免授权资源(例如,免许可频段上的资源)。并且,在本发明实施例中,该免调度资源#M可以是网络设备#A和终端设备#A基于免调度传输方式使用的资源。
并且,终端设备#A可以从该免调度资源#M中,确定时频资源#B(第二时域资源的一例),时频资源#B可以用于传输上行数据#A。
作为示例而非限定,当该免调度资源#M可以是授权资源时,例如,终端设备#A可以基于终端设备#A所选择的导频,确定时频资源#B。
当该免调度资源#M可以是免授权资源时,例如,终端设备#A可以基于LBT等方式,确定时频资源#B。
应理解,以上列举的终端设备#A从免调度资源#M中确定时频资源#B的方法仅为示例性说明,本发明并未限定于此,只要能够确保终端设备#A能够使用所确定的时频资源#B进行上行传输即可。
需要说明的是,在本发明实施例中,上述S210和S220的先后顺序并未特别限定,例如,S220可以在S210之前,或者,S220也可以在S210之后。
在S230,终端设备#A在该时频资源#B上向网络设备#A发送该上行数据#A。
在现有技术中,当该上行数据#A为上行数据#X的重传数据时,在终端设备发送上行数据#X之后,网络设备#A会基于反馈机制,向终端设备#A发送上行数据#X的反馈信息,从而,终端设备#A可以基于反馈信息,进行针对该上行数据#X的重传处理,例如,终端设备#A在接收到NACK信息后,可以发送上行数据#A。
在该现有技术中,可能出现以下情况而导致终端设备无法接收到反馈信息,例如,由于网络设备未接收到上行数据#X而无法下发反馈信息;或者,用于承载该反馈信息的资源为免授权资源,网络设备因未能竞争到该免授权资源而无法下发反馈信息。
从而,在现有技术中,在终端设备#A发送上行数据#X之后,可以启动计时器#A,其中,该计时器#A所计时的时间可以称为时间窗#A(即,第一时间范围的一例)。在计时器#A到时之后,或者说,在该时间窗#A内,如果终端设备#A未接收到针对上行数据#X的反馈信息,则终端设备#A可以自主进行针对上行数据#X的重传处理,即,发送该上行数据#A。即,在现有技术中,终端设备#A基于免调度的传输方案发送上行数据#A的时刻需要该终端设备完成上行数据#X的发送之后的时间窗#A以外。
与此相对,在本发明实施例中,终端设备#A可以在该时间窗#A内确定时频资源#B,即,该时频资源#B可以位于时间窗#A以内,从而,在本发明实施例中,终端设备#A基于免调度的传输方案发送上行数据#A的时刻可以位于该终端设备完成上行数据#X的发送之后的时间窗#A以内。从而,较现 有技术相比,能够减小上行数据的传输时延。
另外,在本发明实施例中,当该上行数据#A为上行数据#X的重传数据时,终端设备#A可以在完成上行数据#X的发送之后,立即执行S220和S230。
或者,在本发明实施例中,当该上行数据#A为上行数据#X的重传数据时,终端设备#A可以在完成上行数据#X的发送之后,启动计时器#B,其中,该计时器#B所计时的时间可以称为时间窗#B。并在计时器#B到时之后(即,时间窗#B以外),执行S220和S230。
需要说明的是,在本发明实施例中,时间窗#B的时长可以小于上述时间窗#A的时长,或者说,在本发明实施例中,时间窗#B可以位于时间窗#A以内。
另外,在本发明实施例中,时频资源#A(即,第一时域资源的一例)与时频资源#B(即,第二时域资源的一例)相异,可以是指:该时频资源#A在时域上可以位于时频资源#B之前,或者,该时频资源#A在时域上可以位于时频资源#B之后,本发明实施例并未特别限定。
图3是本发明实施例传输上行数据的方法200中所使用的时域资源的一例的示意图。如图3所示,终端设备#A可以在时频资源#X上向网络设备#A发送上行数据#X。其中,该时频资源#X可以是调度资源也可以是免调度资源,并且,该时频资源#X可以是授权频段上的资源也可以是免授权频段上的资源,本发明实施例并未特别限定。
在经历时长t1(该时长t1可以由通信系统或通信协议规定,并且,该时长t1可以根据终端设备发送上行数据到网络设备与网络设备针对该上行数据进行反馈之间的最小时间间隔确定)之后,即,网络设备#A确定未能正确接收到上行数据#X之后,网络设备#A可以向终端设备#A发送传输指示信息(例如,UL Grant信息,或NACK信息)。该传输指示信息能够指示网络设备#A为终端设备#A分配的用于传输上行数据#A的时频资源#A。
并且,在时间窗#B(例如,该时间窗#B的时长可以为上述时长t1)以外,且在时间窗#A内,终端设备#A可以从免调度资源中确定时频资源#B,并在时频资源#B上,发送上行数据#A。
需要说明的是,上述上行数据#A可以与上述上行数据#X相同,或者,上述上行数据#A可以与上述上行数据#X相异,本发明实施例并未特别限定。
综上所述,在本发明实施例中,UE在接收到eNB调度的UL grant后, 可以根据UL grant的指示进行上行传输,也可以在非UL grant指示的grant free的资源上进行上行传输。如果在上述UL grant指示的资源上LBT失败,则UE可以在后续的grant free的资源上针对该数据包进行传输。
UE在进行grant free传输后,如果在一段时间(例如,时间窗#A)内没有收到eNB的反馈,可在该时间窗#A之后进行grant free重传,例如,UE重传该数据包时仍然使用冗余版本(Redundancy version,简称“RV”)0。
UE在进行grant free传输后,接收到eNB发送的重传指示(例如,通过UL grant或NACK信息指示),那么UE重传该数据包时可以使用RV0,也可以使用其他的RV版本。
其中,如果重传指示通过物理混合自动重传指示信道(Physical Hybrid ARQ Indicator Channel,简称“PHICH”)反馈,则UE在收到重传指示后进行grant free重传,该grant free重传可发生在时间窗#A内。
如果重传指示通过UL grant反馈,UE在收到UL grant后可以在UL grant指示的资源上进行数据包重传,也可以在非UL grant指示的grant free的资源上进行重传。
例如,如果在上述UL grant指示的资源上LBT失败,则UE可以在后续的grant free的资源上针对该数据包进行重传。
又例如,UE还可以在上述UL grant指示的资源前的grant free的资源上进行重传,减少传输时延。
根据本发明实施例的传输上行数据的方法。在网络设备向终端设备发送用于指示承载上行数据的时域资源的信息,例如,上行调度信息或反馈信息(具体地说,是否定应答NACK信息)的情况下,终端设备可以基于免调度时域资源传输该上行数据,即,终端设备实际使用的传输上行数据的时域资源(即,第二时域资源)与网络设备分配的用于传输上行数据的时域资源(即,第一时域资源)相异,从而,能够使上行传输不依赖于上行调度信息或反馈信息,能够增加上行数据的传输机会,或能够减小上行数据的传输时延,改善基于调度的上行数据传输的性能和用户体验。
图4是本发明实施例的网络设备#B与终端设备#B之间传输上行数据的方法300的一例的示意性交互图。
如图4所示,在S310,终端设备#B(即,终端设备的一例)可以通过时频资源#1(即,第一时间资源的一例)向网络设备#B(即,网络设备的一 例)可以向发送数据#1(即,第一数据的一例)。
其中,数据#1可以是对应终端设备#B的信元#0(例如,该信元#0可以对应一个原始数据包,该原始数据包可以是任意长度的比特序列)的数据,例如,该数据#1可以是对信元#0进行编码等处理后生成的数据。并且,该数据#1可以是网络设备#B和终端设备#B使用相应的混合自动重传(Hybrid Automatic Repeat reQuest,简称“HARQ”)进程(以下,为了便于理解和区分,记做:HARQ进程#0,即,第一HARQ进程的一例)进行处理的数据。
需要说明的是,在信元#0传输成功之前HARQ进程#0可以禁止传输信元#0以外的信元(即信元#0以外的信元对应的原始数据包)对应的数据。
其中,该时频资源#1可以是免授权资源,例如,该时频资源#1在频域上可以属于免许可频段上的资源。或者,该时频资源#1可以是授权资源,例如,该时频资源#1在频域上可以属于许可频段上的资源,本发明实施例并未特别限定。
并且,时频资源#1可以是免调度资源,也可以是调度资源,或者说,时频资源#1可以是基于免调度传输方式使用的资源,也可以是基于调度方式使用的资源,本发明实施例并未特别限定。
并且,该数据#1可以是初传数据也可以是重传数据,本发明并未特别限定。
在S320,网络设备#B可以通过时频资源#3(即,第三时间资源的一例)向终端设备#B发送指示信息#1(即,第一指示信息的一例)。
其中,该指示信息#1用于指示时频资源#5(即,第五时间资源的一例),该时频资源#5是网络设备#B为终端设备#B分配的用于HARQ进程#0的上行传输的时频资源。即,该时频资源#5可以用于承载对应信元#0的重传数据(以下,为了便于理解,记做:数据#3,数据#3和数据#1均对应信元#0,即,数据#3和数据#1均对应同一个原始数据包),其中,该数据#3可以与数据#1对应的RV版本相同,或者,该数据#3可以与数据#1对应的RV版本不同。
在本发明实施例中,该指示信息#1可以是用于指示时频资源#5的上行资源调度(Up Link Grant,简称“UL Grant”)信息。
或者,该指示信息#1可以是针对上行数据#1的反馈信息,具体地说,是否定应答(Negative Acknowledgment,简称“NACK”)信息。此情况下, 该时频资源#5与该NACK信息(即,第一指示信息的另一例)所承载于的时频资源(即,时频资源#3),在时域上可以具有预设的对应关系,例如,时频资源#5与时频资源#3在时域上具有规定的时间间隔,从而,终端设备#B能够根据时频资源#3和该时间间隔,确定时频资源#5(具体地说,是时频资源#5的时域位置)。
其中,该时间间隔可以是通信系统或通信协议规定的,也可以是网络设备#B确定并下发至终端设备#B的,只要使网络设备#B和终端设备#B所确定的时间间隔一致即可,本发明实施例并未特别限定。
在本发明实施例中,该时频资源#5可以是授权资源(例如,授权频段上的资源),或者,该时频资源#5也可以是免授权资源(例如,免许可频段上的资源)。并且,该时频资源#5可以是网络设备#B和终端设备#B基于调度传输方式使用的资源。
需要说明的是,当该时频资源#5可以是免授权资源时,终端设备#B需要在基于例如,LBT等方式,确定是否能够使用该时频资源#5,例如,当时频资源#5被其他通信设备占用时,即使该时频资源#B是网络设备#B分配给该终端设备#B的,该终端设备#B仍然不能使用该时频资源#5。
在S330,终端设备#B可以通过时频资源#2(即,第二时间资源的一例)向网络设备#B可以向发送数据#2(即,第二数据的一例)。
其中,数据#2是终端设备#B对应HARQ进程#0的重传数据(数据#2和数据#1均对应信元#0,即,数据#2和数据#1均对应同一个原始数据包)。其中,该数据#2可以与数据#1对应的RV版本相同,或者,该数据#2可以与数据#1对应的RV版本不同。优选地,该数据#2对应的RV版本为RV0。
其中,该时频资源#2可以是免授权资源,例如,该时频资源#2在频域上可以属于免许可频段上的资源。
或者,该时频资源#2可以是授权资源,例如,该时频资源#2在频域上可以属于许可频段上的资源,本发明实施例并未特别限定。
并且,时频资源#2是免调度资源,或者说,时频资源#2可以是基于免调度传输方式使用的资源。
具体地说,终端设备#B可以确定能够用于与网络设备#B之间进行传输的免调度资源#0,其中,该免调度资源#0可以是授权资源(例如,授权频段上的资源),或者,该免调度资源#0也可以是免授权资源(例如,免许可频 段上的资源)。并且,在本发明实施例中,该免调度资源#0可以是网络设备#B和终端设备#B基于免调度传输方式使用的资源。
并且,终端设备#B可以从该免调度资源#0中,确定时频资源#2,时频资源#2可以用于传输数据#2。
作为示例而非限定,当该免调度资源#0可以是授权资源时,例如,终端设备#B可以基于终端设备#B所选择的导频,确定时频资源#2。
当该免调度资源#0可以是免授权资源时,例如,终端设备#B可以基于LBT等方式,确定时频资源#2。
应理解,以上列举的终端设备#B从免调度资源#0中确定时频资源#2的方法仅为示例性说明,本发明并未限定于此,只要能够确保终端设备#B能够使用所确定的时频资源#2进行上行传输即可。
需要说明的是,在本发明实施例中,上述S320和S330的先后顺序并未特别限定,例如,S320可以在S330之前,或者,S320也可以在S330之后。
需要说明的是,一般情况下,当该指示信息#1用于指示HARQ进程#0对应的数据传输成功,例如,该UL grant信息或该反馈信息表示肯定应答(Acknowledgment,简称“ACK”)时,终端设备#B应停止针对HARQ进程#0的重传处理。在本发明实施例中,可能会出现模糊期,终端设备#B可能在发送数据#2之后才接收到针对数据#1的指示信息#1,或者,终端设备#B在发送数据#2之前接收指示信息#1,但是在发送数据#2之后才解析出该指示信息#1,即网络设备#B下发的针对数据#1的指示信息#1发生在终端设备#B的发送数据#2的模糊期内。在这种情况下,即使网络设备#B给终端设备#B发送的指示信息#1用于指示HARQ进程#0对应的数据传输成功,终端设备#B仍然进行数据#2的发送。
作为示例而非限定,在本发明实施例中,如果网络设备#B接收到终端设备#B发送的数据#1,并且,网络设备#B在向终端设备#B发送针对数据#1的指示信息#1前接收到终端设备#B发送的数据#2,那么,网络设备#B取消向终端设备#B发送针对数据#1的指示信息#1,并且,网络设备#B向终端设备#B发送针对数据#2的指示信息#2。相应地,终端设备#B在模糊期之前的时间资源上收到指示信息,可以确定该指示信息是针对数据#1的指示信息#1;终端设备#B在模糊期之后的时间资源上收到指示信息,可以确定该指示信息是针对数据#2的指示信息#2。
作为示例而非限定,在本发明实施例中,模糊期可以对应一个时间窗,该时间窗以终端设备(例如,终端设备#B)发送上行数据的时域资源(例如,时频资源#2)为基准,在时间顺序上往前的长度包括终端设备(例如,终端设备#B)从接收下行信号到从下行信号中解析出信息所需要的时间间隔,在时间顺序上往后的长度包括从终端设备(例如,终端设备#B)发送上行数据给网络设备(例如,网络设备#B)到该网络设备针对该上行数据进行反馈之间的最小时间间隔。
在S340,网络设备#B可以通过时频资源#4(即,第四时间资源的一例)向终端设备#B发送指示信息#2(即,第二指示信息的一例)。
其中,该指示信息#2用于指示HARQ进程#0对应的数据是否传输成功。
在本发明实施例中,该指示信息#2可以是UL Grant信息(即,第二指示信息的一例);或者,该指示信息#2可以是针对上行数据#2的反馈信息(即,第二指示信息的另一例)。
作为示例而非限定,当该指示信息#2用于指示HARQ进程#0对应的数据传输成功,例如,该UL grant信息或该反馈信息表示肯定应答(Acknowledgment,简称“ACK”)时,终端设备#B停止进行针对HARQ进程#0的重传处理。
作为示例而非限定,当该指示信息#2是UL Grant信息,该UL grant信息用于指示HARQ进程#0对应的数据传输失败时,该UL grant信息可以用于指示时频资源#6(即,第六时间资源的一例),该时频资源#6是网络设备#B为终端设备#B分配的用于HARQ进程#0的上行传输的时频资源。即,该时频资源#6可以用于承载对应信元#0的重传数据(以下,为了便于理解,记做:数据#4),其中,该数据#4可以与数据#2对应的RV版本相同,或者,该数据#4可以与数据#2对应的RV版本不同。
作为示例而非限定,当该指示信息#2是NACK信息时,该NACK信息可以用于指示时频资源#6(即,第六时间资源的另一例),该时频资源#6是网络设备#B为终端设备#B分配的用于HARQ进程#0的上行传输的时频资源。该时频资源#6与该NACK信息所承载于的时频资源(即,时频资源#4),在时域上可以具有预设的对应关系,例如,时频资源#6与时频资源#4在时域上具有规定的时间间隔,从而,终端设备#B能够根据时频资源#4和该时间间隔,确定时频资源#6(具体地说,是时频资源#6的时域位置)。
其中,该时间间隔可以是通信系统或通信协议规定的,也可以是网络设备#B确定并下发至终端设备#B的,只要使网络设备#B和终端设备#B所确定的时间间隔一致即可,本发明实施例并未特别限定。
在本发明实施例中,该时频资源#6可以是授权资源(例如,授权频段上的资源),或者,该时频资源#6也可以是免授权资源(例如,免许可频段上的资源)。并且,该时频资源#6可以是网络设备#B和终端设备#B基于调度传输方式使用的资源。
需要说明的是,当该时频资源#6可以是免授权资源时,终端设备#B需要在基于例如,LBT等方式,确定是否能够使用该时频资源#6,例如,当时频资源#6被其他通信设备占用时,即使该时频资源#B是网络设备#B分配给该终端设备#B的,该终端设备#B仍然不能使用该时频资源#6。
如上所述,在本发明实施例中,在终端设备#B发送数据#1之后,网络设备#B会基于反馈机制,向终端设备#B发送数据#1的反馈信息(即,第一指示信息的一例),从而,终端设备#B可以基于反馈信息,进行针对该上行数据#1的重传处理,例如,终端设备#B在接收到NACK信息后,可以发送数据#3。
其中,数据#3是终端设备#B对应HARQ进程#0的重传数据(数据#3和数据#1均对应信元#0,即,数据#3和数据#1均对应同一个原始数据包)。作为示例而非限定,数据#3对应的RV版本是通过指示信息#1确定的。
并且,在本发明实施例中,可能出现以下情况而导致终端设备无法接收到反馈信息,例如,由于网络设备未接收到上行数据#1而无法下发指示信息#1;或者,用于承载该指示信息#1的资源为免授权资源,网络设备因未能竞争到该免授权资源而无法下发指示信息#1。
从而,在本发明实施例中,在终端设备#B发送数据#1之后,可以启动计时器#1,其中,该计时器#1所计时的时间可以称为时间窗#1(即,第二预设时长的一例)。在计时器#1到时之后,或者说,在该时间窗#1内,如果终端设备#B未接收到针对上行数据#1的反馈信息,则终端设备#B可以在该时间窗#1之后的时段(以下,为了便于理解和区分,记做“时间窗#2”)自主进行针对数据#1的重传处理,即,发送该数据#2。即,在本发明实施例中,终端设备#B发送数据#2的时刻可以是在该终端设备#B完成数据#1的发送之后的时间窗#1以外。
另外,在本发明实施例中,在时间窗#1以外的时段(即,时间窗#2),如果网络设备#B竞争到传输资源,则网络设备#B也可以在该时间窗#2内发送针对数据#1的指示信息#1。
即,在本发明实施例中,时频资源#2与时频资源#3可能均处于位于时间窗#1之后的时间窗#2内。
因此,在本发明实施例中,可能出现时频资源#2与时频资源#3在时域上的时间间隔较小,例如,小于某一时间阈值Δt(即,第一预设时长的一例)。作为示例而非限定,在本发明实施例中,该时间阈值Δt可以是基于终端设备#B从接收到的信号中解析出信息所需要的时间间隔,和/或,从终端设备发送上行数据给网络设备到网络设备针对该上行数据进行反馈之间的最小时间间隔确定的。
作为示例而非限定,在本发明实施例中,时频资源#3出现在时频资源#2的模糊期内。
一种情况中,时频资源#3在时间顺序上位于时频资源#2之前,并且,时频资源#2与时频资源#3在时域上的时间间隔小于该时间阈值Δt,在这种情况下,终端设备#B还没有解析出时频资源#3上携带的指示信息#1,从而,终端设备在时频资源#2上向网络设备发送针对HARQ进程#0的数据重传。
另一种情况中,时频资源#3在时间顺序上位于时频资源#2之后,并且,时频资源#2与时频资源#3在时域上的时间间隔小于该时间阈值Δt,在这种情况下,如果不定义时间阈值Δt的大小,终端设备#B可能会误认为该指示信息#1是针对数据#2的反馈信息而不是针对数据#1的反馈信息,从而,终端设备对于指示信息#1的理解和网络设备不一致。因此,作为示例而非限定,在本发明实施例中,可以定义时间阈值Δt的大小。
作为示例而非限定,在本发明实施例中,该时间阈值Δt可以是通信系统或通信协议规定的,也可以是网络设备#B确定并下发至终端设备#B的,本发明实施例并未特别限定。
作为示例而非限定,在本发明实施例中,可以不定义该时间阈值Δt,但上述两种情况仍然可能出现。
另外,在本发明实施例中,如果网络设备#B接收到数据#2,则网络设备#B也可以在时频资源#2和时频资源#3之后的时段发送针对数据#2的指示信息#2。
作为示例而非限定,在本发明实施例中,如果指示信息#2用于指示数据#2传输成功,即,用于指示HARQ进程#0对应的数据传输成功,终端设备#B可以忽略该指示信息#1,即,禁止或停止进行基于指示信息#1的重传处理。
例如,当指示信息#2是针对数据#2的UL grant信息或反馈信息,且该UL grant信息或该反馈信息表示ACK时,终端设备#B可以确定数据#2准确传输,由于数据#2是数据#1的重传数据,因此,终端设备#B可以确定网络设备通过指示信息#1指示的终端设备#B需要重传的数据已经准确传输,从而,终端设备#B可以不进行基于指示信息#1的重传处理。
作为示例而非限定,由于数据#2准确传输,因此,网络设备#B可以确定终端设备#B无需进行基于指示信息#1的重传处理,因此,网络设备#B可以对该指示信息#1所指示的时频资源(即,时频资源#5)进行重分配,例如,将时频资源#5分配给终端设备#B用于下一个数据包的新传,或者,将时频资源#5分配给除终端设备#B以外的其他终端设备,从而,能够提高资源的使用效率。
再例如,当指示信息#2是针对数据#2的反馈信息,且该反馈信息为NACK信息时,终端设备#B可以确定数据#2未能准确传输,即,HARQ进程#0对应的数据传输失败。
再例如,当指示信息#2是针对数据#2的UL Grant时,且该UL Grant信息用于指示数据#2对应的重传资源时,终端设备#B可以确定数据#2未能准确传输,即,HARQ进程#0对应的数据传输失败。
由于数据#1和数据#2对应同一个HARQ进程,即,HARQ进程#0,因此,终端设备#B可以确定网络设备发送的指示信息#1和指示信息#2都是对应HARQ进程#0的指示信息。由于用于承载指示信息#2的时域资源#4在时间顺序上位于用于承载指示信息#1的时域资源#3之后,当终端设备#B收到指示信息#1和指示信息#2后,如果指示信息#2指示对应HARQ进程#0的数据传输成功,那么终端设备#B不进行基于指示信息#1的重传处理;如果指示信息#2指示对应HARQ进程#0的数据传输失败,那么终端设备#B可以进行基于指示信息#1的重传处理,或者进行基于指示信息#2的重传处理,本发明对此并不限定。
需要说明的是,在本发明实施例中,终端设备#B进行基于指示信息#1 的重传处理所使用的时频资源可以是该指示信息#1所指示的时频资源(即,时频资源#5)。终端设备#B进行基于指示信息#2的重传处理所使用的时频资源可以是该指示信息#2所指示的时频资源(即,时频资源#6)。
由于指示信息#1先于指示信息#2到达终端设备#B,因此,指示信息#1所指示的时频资源(即,时频资源#5)在时域上处于指示信息#2所指示的时频资源(即,时频资源#6)之前的可能性较大,因此,优选地,终端设备#B进行基于指示信息#1的重传处理,即通过时频资源#5传输HARQ进程#0的重传数据,能够减小上行数据的传输时延。
图5是本发明实施例传输上行数据的方法300中所使用的时域资源的一例的示意图。如图5所示,终端设备#B可以在时频资源#1上向网络设备#B发送数据#1。其中,该时频资源#1可以是调度资源也可以是免调度资源,并且,该时频资源#1可以是授权频段上的资源也可以是免授权频段上的资源,本发明实施例并未特别限定。
在经历时长t1(该时长t1可以由通信系统或通信协议规定,并且,该时长t1可以根据从终端设备发送上行数据给网络设备到网络设备针对该上行数据进行反馈之间的最小时间间隔确定)之后,即,网络设备#B确定未能正确接收到数据#1之后,网络设备#A可以在时间窗#1(其中,该时间窗#1对应的频域资源可以是免许可资源)之后的时段(即,时间窗#2内)通过时频资源#3(该时频资源#3可以是许可资源也可以是免许可资源)向终端设备#B发送传输指示信息#1(例如,UL Grant信息,或NACK信息)。该指示信息#1能够指示网络设备#B为终端设备#B分配的用于传输数据#1的重传数据的时频资源#5。
终端设备#B可以在时间窗#2内,通过时频资源#2(该时频资源#2可以是许可资源也可以是免许可资源,并且,该时频资源#2可以是免调度资源),向网络设备发送数据#2(该数据#2和数据#1对应同一个HARQ进程#0,该数据#2是对应HARQ进程#0的重传数据)。
网络设备#B可以判定是否正确接收到数据#2,并根据判定结果,通过时频资源#4向终端设备#B发送指示信息#2(例如,针对数据#2的反馈信息,或UL Grant),其中,作为示例而非限定,该指示信息#2可以指示时频资源#6。
终端设备#B在接收到指示信息#2后,能够根据该指示信息#2判定数据 #2是否传输成功。
如果终端设备#B判定数据#2传输成功,则终端设备#B可以禁止或停止进行基于指示信息#1的重传处理。
如果终端设备#B判定数据#2传输失败,则终端设备#B通过时频资源#5或时频资源#6传输数据#2的重传数据。
需要说明的是,作为示例而非限定,当网络设备#B判定为正确接收到数据#2时,网络设备#B可以对时频资源#5进行重分配。
综上所述,在本发明实施例中,UE在针对同一个混合自动重传请求(Hybrid Automatic Repeat reQuest,简称“HARQ”)进程的两次数据传输的间隔中,如果先收到一个表示否定应答的指示信息,后收到一个表示肯定应答的指示信息,UE将以后收到的表示肯定应答的指示信息为准,从而停止针对前一个表示否定应答的指示信息的处理。
UE在进行基于grant free的第K次上行传输后,如果在一段时间(时间窗#1)内没有收到eNB的反馈,可在该时间后进行grant free第K+1次传输(即,第K次传输的重传),同时UE继续检测eNB是否反馈ACK/NACK。其中,K≥0且K为整数,第K次传输和第K+1次传输对应同一个HARQ进程。
此情况下,可能会出现模糊期,即,UE接收到eNB针对第K次传输的反馈和UE所进行的第K+1次传输均在该模糊期内发送,且eNB针对第K次传输的反馈和UE所进行的第K+1次传输之间的时间间隔较小。
如果UE后续收到用于指示第K次数据传输正确的信息,例如ACK信息,可判断该HARQ进程正确传输。
如果UE后续收到用于指示第K次数据传输失败的信息,例如UL grant或NACK信息,且UE收到用于指示第K+1次数据传输成功的信息,例如ACK信息,那么UE可判断该HARQ进程正确传输。相应地,UE可以放弃在根据该UL grant或NACK信息指示的资源上进行对该HARQ进程的第K+2次传输。
如果UE后续收到用于指示第K次数据传输失败的信息且UE没有收到针对第K+1次传输的反馈,或UE收到用于指示第K+1次数据传输失败的信息,其中,用于指示传输失败的信息可以为UL grant或NACK信息,则UE会根据该UL grant或NACK指示的资源准备第K+2次传输。需要说明的 是,UE没有收到针对第K+1次传输的反馈,可能是eNB没有下发对应第K+1次传输的反馈,或者eNB下发的第K+1次传输的反馈发生在UE的第K+2次传输的模糊期内。
根据本发明实施例的传输上行数据方法,在传输上行数据的通信系统中,终端设备可以基于调度机制或基于免调度机制传输第一数据,并且终端设备可以在传输第一数据后在免调度资源上传输第二数据,其中,第一数据和第二数据对应同一个HARQ进程,第二数据为第一数据的重传数据。从而,可能出现例如,终端设备发送该第二数据之后才接收到针对第一数据的反馈信息(即,第一指示信息的一例)的情况,或者,终端设备在发送该第二数据之前接收第一指示信息,但是在发送该第二数据之后才解析出该第一指示信息的情况,并且终端设备可能接收到针对第二数据的反馈信息(即,第二指示信息的一例)。此情况下,根据现有技术,如果第一指示信息指示重传,第二指示信息指示第二数据传输成功,即终端设备可以确定该HARQ进程传输成功,但终端设备还需要进行基于该第一指示信息的针对该HARQ进程的重传处理。如果第一指示信息和第二指示信息都指示重传,终端设备需要进行基于该第一指示信息的重传处理以及基于该第二指示信息的重传处理,即终端设备需要进行两次重传处理。与此相对,在本发明实施例中,例如,当第二指示信息指示第二数据传输成功,即终端设备可以确定该HARQ进程传输成功时,终端设备可以不再进行(例如,禁止或停止)基于该第一指示信息针对该HARQ进程的重传处理。再例如,当第二指示信息指示重传时,终端设备可以确定第二数据传输失败,由于第二数据和第一数据对应同一个HARQ进程,因此终端设备可以基于第一指示信息(具体地说,是在该第一指示信息所指示的时间资源上),进行该HARQ进程的重传处理(即传输第三数据,其中,第三数据和第一数据对应同一个HARQ进程)。从而,能够降低终端设备的处理负担,减少对传输资源的开销。
图6示出了本发明实施例的传输上行数据的装置400的示意性框图,该传输上行数据的装置400可以对应(例如,可以配置于或本身即为)上述方法200中描述的终端设备(例如,终端设备#A),并且,该传输上行数据的装置400中各模块或单元分别用于执行上述方法200中终端设备(例如,终端设备#A)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本发明实施例中,该装置400可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该设备还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
其中,图6所示的装置400中的确定单元可以对应该处理器,图6所示的装置400中的通信单元可以对应该收发器。
图7示出了本发明实施例的传输上行数据的装置500的示意性框图,该传输上行数据的装置500可以对应(例如,可以配置于或本身即为)上述方法200中描述的网络设备(例如,网络设备#A),并且,该传输上行数据的装置500中各模块或单元分别用于执行上述方法200中网络设备(例如,网络设备#A)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本发明实施例中,该装置500可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该设备还包括存储器,存储器与处理器通信连接,可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
其中,图7所示的装置500中的接收单元和发送单元可以对应该收发器。
图8示出了本发明实施例的传输上行数据的装置600的示意性框图,该传输上行数据的装置600可以对应(例如,可以配置于或本身即为)上述方法300中描述的终端设备(例如,终端设备#B),并且,该传输上行数据的装置600中各模块或单元分别用于执行上述方法300中终端设备(例如,终端设备#B)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本发明实施例中,该装置600可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该设备还包括存储器,存储器与处理器通信连接,可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
其中,图8所示的装置600中的处理单元可以对应该处理器,图8所示的装置600中的通信单元可以对应该收发器。
图9示出了本发明实施例的传输上行数据的装置700的示意性框图,该传输上行数据的装置700可以对应(例如,可以配置于或本身即为)上述方 法300中描述的网络设备(例如,网络设备#B),并且,该传输上行数据的装置700中各模块或单元分别用于执行上述方法300中网络设备(例如,网络设备#B)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本发明实施例中,该装置700可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该设备还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
其中,图9所示的装置700中的处理单元可以对应该处理器,图9所示的装置700中的通信单元可以对应该收发器。
应注意,上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例 如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
需要说明的是,在本发明实施例中,网络设备#A与网络设备#B可以是同一网络设备也可以是不同的网络设备,本发明并未特别限定。
例如,在本发明实施例中,网络设备#A可以执行方法200中网络设备的动作,也可以执行方法300中网络设备的动作,类似地,网络设备#B可以执行方法200中网络设备的动作,也可以执行方法300中网络设备的动作。
并且,在本发明实施例中,终端设备#A与终端设备#B可以是同一终端设备也可以是不同的终端设备,本发明并未特别限定。
例如,在本发明实施例中,终端设备#A可以执行方法200中终端设备的动作,也可以执行方法300中终端设备的动作,类似地,终端设备#B可以执行方法200中终端设备的动作,也可以执行方法300中终端设备的动作。
并且,在本发明实施例中,终端设备可以同时进行方法200和方法300中终端设备执行的动作,类似地,网络设备可以同时进行方法200和方法300中网络设备执行的动作。
即,在本发明实施例中,方法200和方法300涉及的数据可以包括相同的数据,或者,方法200和方法300涉及的时频资源可以包括相同的时频资源,或者,方法200和方法300涉及的指示信息可以包括相同的指示信息。例如,在本发明实施例中,上行数据X和数据#1可以为同一数据。此情况下,例如,指示信息#A和指示信息#1可以为同一指示信息,时频资源#A和时频资源#5可以为同一时频资源。再例如,时频资源#B和时频资源#2可以为同一时频资源。
即,在本发明实施例中,上述方法200和方法300可以单独使用也可以结合使用。
当方法200与方法300结合使用时,网络设备向终端设备发送用于指示 承载第二数据的时域资源的信息,例如,上行调度信息或反馈信息(具体地说,是否定应答NACK信息)的情况下,终端设备可以基于免调度时域资源传输该第二数据,即,终端设备实际使用的传输第二数据的时域资源(即,第二时域资源)与网络设备分配的用于传输第二数据的时域资源(即,第一时域资源)相异,从而,能够使上行传输不依赖于上行调度信息或反馈信息,能够减小上行数据的传输时延,改善基于调度的上行数据传输的性能和用户体验。
其中,当第二数据为第一数据重传数据(即第一数据和第二数据对应同一个HARQ进程)时,可能出现例如,终端设备发送该第二数据之后才接收到针对第一数据的反馈信息(即,第一指示信息的一例)的情况,或者,终端设备在发送该第二数据之前接收第一指示信息,但是在发送该第二数据之后才解析出该第一指示信息的情况,并且终端设备可能接收到针对第二数据的反馈信息(即,第二指示信息的一例)。此情况下,根据现有技术,如果第一指示信息指示重传,第二指示信息指示第二数据传输成功,即终端设备可以确定该HARQ进程传输成功,但终端设备还需要进行基于该第一指示信息的针对该HARQ进程的重传处理。如果第一指示信息和第二指示信息都指示重传,终端设备需要进行基于该第一指示信息的重传处理以及基于该第二指示信息的重传处理,即终端设备需要进行两次重传处理。与此相对,在本发明实施例中,例如,当第二指示信息指示第二数据传输成功,即终端设备可以确定该HARQ进程传输成功时,终端设备可以不再进行基于该第一指示信息针对该HARQ进程的重传处理。再例如,当第二指示信息指示重传时,终端设备可以确定第二数据传输失败,由于第二数据和第一数据对应同一个HARQ进程,因此终端设备可以基于第一指示信息(具体地说,是在该第一指示信息所指示的时间资源上),进行该HARQ进程的重传处理(即传输第三数据,其中,第三数据和第一数据对应同一个HARQ进程)。从而,能够降低终端设备的处理负担,减少对传输资源的开销。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例的各种实施例中,上述各过程的序号的大小并 不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM, Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。

Claims (40)

  1. 一种传输上行数据的方法,其特征在于,所述方法包括:
    终端设备接收网络设备发送的传输指示信息,所述传输指示信息用于指示第一时域资源,所述第一时域资源是用于所述终端设备发送上行数据的时域资源;
    所述终端设备从免调度资源中确定第二时域资源,所述第二时域资源与所述第一时域资源相异;
    所述终端设备在所述第二时域资源上发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端设备从免调度资源中确定第二时域资源前,所述方法还包括:
    所述终端设备确定在所述第一时域资源上的资源竞争失败。
  3. 根据权利要求1所述的方法,其特征在于,所述第二时域资源在时间顺序上位于所述第一时域资源前。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述传输指示信息包括上行调度信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述上行数据为重传数据。
  6. 根据权利要求5所述的方法,其特征在于,所述传输指示信息包括针对所述上行数据的前一次传输的否定应答NACK信息。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第二时域资源属于第一时域范围,所述第一时域范围的起始时刻是根据所述上行数据的前一次传输的结束时刻确定的,所述第一时域范围的时长为预设值。
  8. 根据权利要求5或6所述的方法,其特征在于,所述终端设备从免调度资源中确定第二时域资源,包括:
    所述终端设备在确定在第一时域范围内未接收到所述网络设备发送的所述传输指示信息时,在所述第一时域范围之后,从免调度资源中确定第二时域资源,所述第一时域范围的起始时刻是根据所述上行数据的前一次传输的结束时刻确定的,所述第一时域范围的时长为预设值。
  9. 一种传输上行数据的方法,其特征在于,所述方法包括:
    网络设备向终端设备发送传输指示信息,所述传输指示信息用于指示第一时域资源,所述第一时域资源是用于所述终端设备发送上行数据的时域资 源;
    所述网络设备接收所述终端设备在第二时域资源上发送的上行数据,所述第二时域资源是所述终端设备从免调度资源中确定的,所述第二时域资源与所述第一时域资源相异。
  10. 根据权利要求9所述的方法,其特征在于,所述第二时域资源是所述终端设备在确定在所述第一时域资源上的资源竞争失败后从免调度资源中确定的。
  11. 根据权利要求9所述的方法,其特征在于,所述第二时域资源在时间顺序上位于所述第一时域资源前。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述传输指示信息包括上行调度信息。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述上行数据为重传数据。
  14. 根据权利要求13所述的方法,其特征在于,所述传输指示信息包括针对所述上行数据的前一次传输的否定应答NACK信息。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第二时域资源属于第一时域范围,所述第一时域范围的起始时刻是根据所述上行数据的前一次传输的结束时刻确定的,所述第一时域范围的时长为预设值。
  16. 根据权利要求13或14所述的方法,其特征在于,所述第二时域资源是所述终端设备在确定在第一时域范围内未接收到所述网络设备发送的所述传输指示信息时,在所述第一时域范围之后,从免调度资源中确定的,所述第一时域范围的起始时刻是根据所述上行数据的前一次传输的结束时刻确定的,所述第一时域范围的时长为预设值。
  17. 一种传输上行数据的方法,其特征在于,所述方法包括:
    终端设备在第一时间资源上向网络设备发送第一数据,所述第一数据对应第一混合自动重传HARQ进程;
    所述终端设备在第二时间资源上向所述网络设备发送第二数据,在第三时间资源上接收所述网络设备发送的第一指示信息,所述第二时间资源属于免调度资源,所述第一指示信息用于指示第五时间资源,所述第五时间资源是所述网络设备分配的用于所述终端设备发送所述第一数据的重传数据的时间资源,所述第二数据对应所述第一HARQ进程;
    所述终端设备在第四时间资源上接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一HARQ进程对应的数据是否传输成功;
    当所述终端设备根据所述第二指示信息确定所述第一HARQ进程对应的数据传输失败时,所述终端设备在所述第五时间资源上向所述网络设备发送第三数据,所述第三数据对应所述第一HARQ进程;或
    当所述终端设备根据所述第二指示信息确定所述第一HARQ进程对应的数据传输成功时,所述终端设备禁止或停止进行基于所述第一指示信息的重传处理。
  18. 根据权利要求17所述的方法,其特征在于,所述第一指示信息包括否定应答NACK信息,或
    所述第一指示信息包括上行调度信息。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第二指示信息包括肯定应答ACK信息;或
    所述第二指示信息包括NACK信息,或
    所述第二指示信息包括上行调度信息。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述第二时域资源与所述第三时域资源之间的时间间隔小于或等于第一预设时长;和/或
    所述第一时间资源与所述第二时间资源之间的时间间隔大于或等于第二预设时长。
  21. 一种传输上行数据的方法,其特征在于,所述方法包括:
    网络设备接收终端设备在第一时间资源上发送的第一数据,所述第一数据对应第一混合自动重传HARQ进程;
    所述网络设备接收终端设备在第二时间资源上发送的第二数据,在第三时间资源上向所述终端设备发送的第一指示信息,所述第二时间资源属于免调度资源,所述第一指示信息用于指示第五时间资源,所述第五时间资源是所述网络设备分配的用于所述终端设备发送所述第一数据的重传数据的时间资源,所述第二数据对应所述第一HARQ进程;
    所述网络设备在第四时间资源上向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一HARQ进程对应的数据是否传输成功;
    当所述第一HARQ进程对应的数据传输失败时,所述网络设备接收所述终端设备在所述第五时间资源上发送的第三数据,所述第三数据对应所述第一HARQ进程;或
    当所述第一HARQ进程对应的数据传输成功时,所述网络设备对所述第五时间资源进行重分配。
  22. 根据权利要求21所述的方法,其特征在于,所述第一指示信息包括否定应答NACK信息,或
    所述第一指示信息包括上行调度信息。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第二指示信息包括肯定应答ACK信息;或
    所述第二指示信息包括NACK信息,或
    所述第二指示信息包括上行调度信息。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述第二时域资源与所述第三时域资源之间的时间间隔小于或等于第一预设时长;和/或
    所述第一时间资源与所述第二时间资源之间的时间间隔大于或等于第二预设时长。
  25. 一种传输上行数据的装置,其特征在于,所述装置包括:
    通信单元,用于接收网络设备发送的传输指示信息,所述传输指示信息用于指示第一时域资源,所述第一时域资源是用于所述装置发送上行数据的时域资源;
    确定单元,用于从免调度资源中确定第二时域资源,所述第二时域资源与所述第一时域资源相异;
    所述通信单元还用于在所述第二时域资源上发送上行数据。
  26. 根据权利要求25所述的装置,其特征在于,所述确定单元还用于确定在所述第一时域资源上的资源竞争失败。
  27. 根据权利要求25所述的装置,其特征在于,所述第二时域资源在时间顺序上位于所述第一时域资源前。
  28. 根据权利要求25至27中任一项所述的装置,其特征在于,所述上行数据为重传数据。
  29. 根据权利要求28所述的装置,其特征在于,所述第二时域资源属 于第一时域范围,所述第一时域范围的起始时刻是根据所述上行数据的前一次传输的结束时刻确定的,所述第一时域范围的时长为预设值。
  30. 根据权利要求28所述的装置,其特征在于,所述确定单元从免调度资源中确定第二时域资源,包括:
    所述确定单元在确定在第一时域范围内未接收到所述网络设备发送的所述传输指示信息时,在所述第一时域范围之后,从免调度资源中确定第二时域资源,所述第一时域范围的起始时刻是根据所述上行数据的前一次传输的结束时刻确定的,所述第一时域范围的时长为预设值。
  31. 一种传输上行数据的装置,其特征在于,所述装置包括:
    发送单元,用于向终端设备发送传输指示信息,所述传输指示信息用于指示第一时域资源,所述第一时域资源是用于所述终端设备发送上行数据的时域资源;
    接收单元,用于接收所述终端设备在第二时域资源上发送的上行数据,所述第二时域资源是所述终端设备从免调度资源中确定的,所述第二时域资源与所述第一时域资源相异。
  32. 根据权利要求31所述的装置,其特征在于,所述第二时域资源是所述终端设备在确定在所述第一时域资源上的资源竞争失败后从免调度资源中确定的。
  33. 根据权利要求31所述的装置,其特征在于,所述第二时域资源在时间顺序上位于所述第一时域资源前。
  34. 根据权利要求31至33中任一项所述的装置,其特征在于,所述上行数据为重传数据。
  35. 根据权利要求34所述的装置,其特征在于,所述第二时域资源属于第一时域范围,所述第一时域范围的起始时刻是根据所述上行数据的前一次传输的结束时刻确定的,所述第一时域范围的时长为预设值。
  36. 根据权利要求34所述的装置,其特征在于,所述第二时域资源是所述终端设备在确定在第一时域范围内未接收到所述装置发送的所述传输指示信息时,在所述第一时域范围之后,从免调度资源中确定的,所述第一时域范围的起始时刻是根据所述上行数据的前一次传输的结束时刻确定的,所述第一时域范围的时长为预设值。
  37. 一种传输上行数据的装置,其特征在于,所述装置包括:
    通信单元,用于在第一时间资源上向网络设备发送第一数据,所述第一数据对应第一混合自动重传HARQ进程,用于在第二时间资源上向所述网络设备发送第二数据,在第三时间资源上接收所述网络设备发送的第一指示信息,所述第二时间资源属于免调度资源,所述第一指示信息用于指示第五时间资源,所述第五时间资源是所述网络设备分配的用于所述装置发送所述第一数据的重传数据的时间资源,所述第二数据对应所述第一HARQ进程,用于在第四时间资源上接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一HARQ进程对应的数据是否传输成功;
    处理单元,用于根据所述第二指示信息确定所述第一HARQ进程对应的数据是否传输成功;
    当所述第一HARQ进程对应的数据传输失败时,所述通信单元还用于在所述第五时间资源上向所述网络设备发送第三数据,所述第三数据对应所述第一HARQ进程;或
    当所述第一HARQ进程对应的数据传输成功时,所述处理单元还用于禁止或停止进行基于所述第一指示信息的重传处理。
  38. 根据权利要求37所述的装置,其特征在于,所述第二时域资源与所述第三时域资源之间的时间间隔小于或等于第一预设时长;和/或
    所述第一时间资源与所述第二时间资源之间的时间间隔大于或等于第二预设时长。
  39. 一种传输上行数据的装置,其特征在于,所述装置包括:
    通信单元,用于接收终端设备在第一时间资源上发送的第一数据,所述第一数据对应第一混合自动重传HARQ进程,用于接收终端设备在第二时间资源上发送的第二数据,在第三时间资源上向所述终端设备发送的第一指示信息,所述第二时间资源属于免调度资源,所述第一指示信息用于指示第五时间资源,所述第五时间资源是所述装置分配的用于所述终端设备发送所述第一数据的重传数据的时间资源,所述第二数据对应所述第一HARQ进程;
    处理单元,用于确定所述第一HARQ进程对应的数据是否传输成功;
    所述通信单元还用于在第四时间资源上向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一HARQ进程对应的数据是否传输成功;
    当所述第一HARQ进程对应的数据传输失败时,所述通信单元还用于接收所述终端设备在所述第五时间资源上发送的第三数据,所述第三数据对应所述第一HARQ进程;或
    当所述第一HARQ进程对应的数据传输成功时,所述处理单元还用于对所述第五时间资源进行重分配。
  40. 根据权利要求39所述的装置,其特征在于,所述第二时域资源与所述第三时域资源之间的时间间隔小于或等于第一预设时长;和/或
    所述第一时间资源与所述第二时间资源之间的时间间隔大于或等于第二预设时长。
PCT/CN2016/108913 2016-12-07 2016-12-07 传输上行数据的方法和装置 WO2018103020A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108913 WO2018103020A1 (zh) 2016-12-07 2016-12-07 传输上行数据的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108913 WO2018103020A1 (zh) 2016-12-07 2016-12-07 传输上行数据的方法和装置

Publications (1)

Publication Number Publication Date
WO2018103020A1 true WO2018103020A1 (zh) 2018-06-14

Family

ID=62491700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108913 WO2018103020A1 (zh) 2016-12-07 2016-12-07 传输上行数据的方法和装置

Country Status (1)

Country Link
WO (1) WO2018103020A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923890A (zh) * 2018-07-17 2018-11-30 北京北方烽火科技有限公司 一种数据传输方法、用户设备、基站及系统
CN110611558A (zh) * 2019-10-16 2019-12-24 深圳前海中电慧安科技有限公司 采集移动终端信息的方法、装置、采集设备和存储介质
CN111698062A (zh) * 2018-08-29 2020-09-22 Oppo广东移动通信有限公司 无线通信方法和通信设备
CN112333691A (zh) * 2018-08-16 2021-02-05 Oppo广东移动通信有限公司 传输信息的方法、终端设备和网络设备
CN112567865A (zh) * 2018-08-17 2021-03-26 华为技术有限公司 一种资源指示方法以及装置
CN114158067A (zh) * 2021-11-26 2022-03-08 中国联合网络通信集团有限公司 专网中数据传输的方法和装置
WO2023000141A1 (zh) * 2021-07-19 2023-01-26 Oppo广东移动通信有限公司 一种跨载波重传的方法及装置、终端设备、网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037109A1 (en) * 2011-09-14 2013-03-21 St-Ericsson Sa Method for user equipment to select resource, and corresponding user equipment, computer program and storage medium
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
WO2016127657A1 (zh) * 2015-02-12 2016-08-18 中兴通讯股份有限公司 非授权载波的激活方法及装置
WO2016177155A1 (zh) * 2015-07-27 2016-11-10 中兴通讯股份有限公司 一种数据传输方法及系统
CN106162909A (zh) * 2015-04-13 2016-11-23 中国移动通信集团公司 一种非授权频段下的上行数据传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037109A1 (en) * 2011-09-14 2013-03-21 St-Ericsson Sa Method for user equipment to select resource, and corresponding user equipment, computer program and storage medium
WO2016127657A1 (zh) * 2015-02-12 2016-08-18 中兴通讯股份有限公司 非授权载波的激活方法及装置
CN106162909A (zh) * 2015-04-13 2016-11-23 中国移动通信集团公司 一种非授权频段下的上行数据传输方法及装置
WO2016177155A1 (zh) * 2015-07-27 2016-11-10 中兴通讯股份有限公司 一种数据传输方法及系统
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"UMTS; Enhanced uplink; Overall description; Stage 2", 3GPP ETSI TS 125 319, 28 February 2010 (2010-02-28), XP055605438 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923890A (zh) * 2018-07-17 2018-11-30 北京北方烽火科技有限公司 一种数据传输方法、用户设备、基站及系统
CN108923890B (zh) * 2018-07-17 2021-06-29 武汉虹信科技发展有限责任公司 一种数据传输方法、用户设备、基站及系统
US11758541B2 (en) 2018-08-16 2023-09-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method, terminal device and network device
CN112333691A (zh) * 2018-08-16 2021-02-05 Oppo广东移动通信有限公司 传输信息的方法、终端设备和网络设备
CN112567865B (zh) * 2018-08-17 2023-10-20 华为技术有限公司 一种资源指示方法以及装置
CN112567865A (zh) * 2018-08-17 2021-03-26 华为技术有限公司 一种资源指示方法以及装置
CN111698062B (zh) * 2018-08-29 2023-08-22 Oppo广东移动通信有限公司 无线通信方法和通信设备
US11664950B2 (en) 2018-08-29 2023-05-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communications method and communications device
CN111698062A (zh) * 2018-08-29 2020-09-22 Oppo广东移动通信有限公司 无线通信方法和通信设备
CN110611558A (zh) * 2019-10-16 2019-12-24 深圳前海中电慧安科技有限公司 采集移动终端信息的方法、装置、采集设备和存储介质
WO2023000141A1 (zh) * 2021-07-19 2023-01-26 Oppo广东移动通信有限公司 一种跨载波重传的方法及装置、终端设备、网络设备
CN114158067A (zh) * 2021-11-26 2022-03-08 中国联合网络通信集团有限公司 专网中数据传输的方法和装置
CN114158067B (zh) * 2021-11-26 2023-11-14 中国联合网络通信集团有限公司 专网中数据传输的方法和装置

Similar Documents

Publication Publication Date Title
KR102258359B1 (ko) 업링크 송신 방법, 단말 디바이스, 및 네트워크 디바이스
US11368256B2 (en) Data transmission method and apparatus
WO2018201942A1 (zh) 传输上行信道的方法和装置及传输下行信道的方法和装置
WO2018103020A1 (zh) 传输上行数据的方法和装置
KR102196857B1 (ko) 상향링크 정보 송신 방법 및 장치와, 상향링크 정보 수신 방법 및 장치
EP3553986B1 (en) Transmission method, network equipment, and terminal equipment
KR102238228B1 (ko) 제어 정보 송신 방법 및 장치, 및 제어 정보 수신 방법 및 장치
EP3751914B1 (en) Communication method, communication apparatus and readable storage medium
WO2018103607A1 (zh) 接收上行参考信号的方法和装置
EP3603256B1 (en) Network node and method in a wireless communications network
WO2020248259A1 (zh) 随机接入方法、终端设备和网络设备
EP3386254B1 (en) Cross-carrier scheduling methods, and apparatuses
WO2018082677A1 (zh) 无线通信的方法和装置
US20210167901A1 (en) Method for transmitting harq information, network device and terminal device
WO2017132986A1 (zh) 传输控制数据的方法和装置
AU2016362088B2 (en) Method and apparatus for decoupling uplink latency using common uplink burst in TDD subframe structure
US20220052796A1 (en) Harq information feedback method and device
WO2018103100A1 (zh) 传输上行数据的方法和装置
WO2019192500A1 (zh) 通信方法和通信装置
WO2021017848A1 (zh) 用于链路失败恢复的方法和装置
EP3306848B1 (en) Data transmitting method, terminal and base station
EP4290794A1 (en) Survival time processing method, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923322

Country of ref document: EP

Kind code of ref document: A1