WO2016078082A1 - 传输信息的方法、装置和设备 - Google Patents

传输信息的方法、装置和设备 Download PDF

Info

Publication number
WO2016078082A1
WO2016078082A1 PCT/CN2014/091899 CN2014091899W WO2016078082A1 WO 2016078082 A1 WO2016078082 A1 WO 2016078082A1 CN 2014091899 W CN2014091899 W CN 2014091899W WO 2016078082 A1 WO2016078082 A1 WO 2016078082A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
parameter set
modulation
frame structure
time period
Prior art date
Application number
PCT/CN2014/091899
Other languages
English (en)
French (fr)
Inventor
张舜卿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/091899 priority Critical patent/WO2016078082A1/zh
Priority to EP14906216.8A priority patent/EP3223482B1/en
Priority to JP2017527575A priority patent/JP6426844B2/ja
Priority to KR1020177016961A priority patent/KR102048758B1/ko
Priority to CN201480083477.9A priority patent/CN106922213B/zh
Priority to RU2017121275A priority patent/RU2667501C1/ru
Publication of WO2016078082A1 publication Critical patent/WO2016078082A1/zh
Priority to US15/600,502 priority patent/US10439762B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/80Information retrieval; Database structures therefor; File system structures therefor of semi-structured data, e.g. markup language structured data such as SGML, XML or HTML
    • G06F16/84Mapping; Conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0018Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method, apparatus and apparatus for transmitting information.
  • a transmitting device can notify a receiving device of the state of the transmitting device (hereinafter, referred to as a transmission state for ease of understanding and description), for example, the transmitting device is in a transmitting state or does not transmit. a state, whereby the transmitting end device and the receiving end device can select a technology of air interface transmission corresponding to the transmission state, for example, an air interface transmission waveform, a frame structure, a retransmission technique, a code modulation technology, etc., thereby being able to flexibly utilize the above Various air interface transmission technologies improve communication quality and improve user experience.
  • the communication system is required to provide dedicated communication resources and signaling to transmit information indicating the above transmission status between the transmitting end device and the receiving end device, resulting in complicated interaction between the transmitting end device and the receiving end device. It increases the overhead of communication resources.
  • Embodiments of the present invention provide a method, an apparatus, and a device for transmitting information, which can simplify interaction between a transmitting end device and a receiving end device.
  • a method for determining a transmission state comprising: receiving, by a receiving device, a first symbol sequence sent by a transmitting device in a first time period; determining, according to the first symbol sequence, a first modulation parameter set
  • the first modulation parameter set is a modulation parameter set used by the transmitting end device to perform a modulation process for generating the first symbol sequence, the modulation parameter set includes at least one of: a constellation point set and a codebook;
  • the method further includes: Determining, by the preset second mapping relationship information, a second transmission parameter set corresponding to the first transmission state, where the second mapping relationship information is used to indicate one between the N transmission states and the N transmission parameter sets a mapping relationship, the second transmission parameter set belongs to the N transmission parameter sets, and each transmission parameter set includes at least one of the following transmission parameters: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the method further includes: receiving, by the second transmission parameter, the second symbol in the second time period according to the second transmission parameter set. sequence.
  • the second symbol sequence is a symbol generated by a modulation process based on a second modulation parameter set
  • the second modulation parameter set is
  • the second transmission state is a transmission state of the transmitting device during the third time period
  • the third time period is after the second time period.
  • the receiving end device receives the first symbol sequence sent by the sending end device in the first time period, including: when determining the sending end device Receiving, by the receiving end device, the transmitting end device according to the preset first transmission parameter set in the first time period when no information transmission occurs between the receiving end device and the first preset time length range before the first time period And sending the first symbol sequence, where the first transmission parameter set includes at least one of the following transmission parameters: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the determining, by the first symbol sequence, the first modulation parameter set includes: intercepting the sub-symbol sequence from the first symbol sequence
  • the sub-symbol sequence includes at least two symbols; according to the sub-symbol sequence, a first modulation parameter set is determined.
  • the sub-symbol sequence is the first K symbols in the first symbol sequence, and K is a preset value, K ⁇ 2; or
  • the sub-symbol sequence includes symbols received in the first symbol sequence when the channel quality between the receiving end device and the network device meets a preset condition.
  • the N transmission states include at least one of the following states: a packet transmission state, a normal transmission state, and a large throughput transmission state.
  • the N transmission states include a packet transmission state
  • a transmission parameter corresponding to the packet transmission state In the set, if the transmission parameter includes a frame structure, the frame structure is a frame structure with a frame length of less than 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is fast retransmission; if the transmission parameter includes code modulation
  • the coded modulation scheme is a multi-element low-density parity check code or a polarization code.
  • the N transmission states include a large throughput transmission state
  • the transmission parameter includes a frame structure
  • the frame structure is a frame structure with a frame length greater than 1 ms
  • the transmission parameter includes a retransmission policy
  • the retransmission policy is no rate transmission
  • the transmission parameter includes a coded modulation scheme, Then the coded modulation scheme is a low density parity check code.
  • the N transmission states include a normal transmission state
  • the transmission parameter set corresponding to the normal transmission state if the transmission The parameter includes a frame structure, and the frame structure is a frame structure with a frame length equal to 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is a standard retransmission; if the transmission parameter includes a coding modulation scheme, the coding modulation The scheme is a low density parity check code or a Turbo code.
  • a second aspect provides a method for transmitting information, the method comprising: determining a first transmission state, where the first transmission state is a transmission state of the transmitting device during a second time period; according to a preset first mapping relationship Determining, by the information, a first modulation parameter set corresponding to the first transmission state, where the first mapping relationship information is used to indicate a one-to-one mapping relationship between the N transmission states and the N modulation parameter sets, the first The modulation parameter set belongs to the N modulation parameter sets, the first transmission state belongs to the N transmission states, and the modulation parameter set includes at least one of: a constellation point set and a codebook, N ⁇ 2; according to the first modulation parameter set Performing a modulation process to generate a first symbol sequence and transmitting the first symbol sequence to the receiving device during the first time period, wherein the second time period is after the first time period.
  • the method further includes: determining, according to the preset second mapping relationship information, a second transmission parameter set corresponding to the first transmission state, where The second mapping relationship information is used to indicate a one-to-one mapping relationship between the N transmission states and the N transmission parameter sets, where the second transmission parameter set belongs to the N transmission parameter sets, and each transmission parameter set includes at least one of the following Transmission parameters: frame structure, retransmission strategy, code modulation scheme.
  • the method further includes: transmitting the second symbol to the receiving end device according to the second transmission parameter set in the second time period sequence.
  • the second symbol sequence is a symbol generated by a modulation process based on a second modulation parameter set
  • the second modulation parameter set is
  • the second transmission state is a transmission state of the transmitting device during the third time period
  • the third time period is after the second time period.
  • the transmitting, by the receiving device, the first symbol sequence in the first time period including: when determining the sending end device and receiving And transmitting, by the end device, the first symbol sequence to the receiving device according to the preset first transmission parameter set, when the information transmission does not occur within the first preset duration range before the first period, the first transmission
  • the parameter set includes at least one of the following transmission parameters: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the N transmission states include at least one of the following states: a packet transmission state, a normal transmission state, and a large throughput transmission state.
  • the N transmission states include a packet transmission state
  • the transmission parameter set corresponding to the packet transmission state if the transmission The parameter includes a frame structure, and the frame structure is a frame structure with a frame length of less than 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is fast retransmission; if the transmission parameter includes a coding modulation scheme, the coding modulation The scheme is a multi-element low-density parity check code or a polarization code.
  • the N transmission states include a large throughput transmission state
  • the transmission parameter includes a frame structure
  • the frame structure is a frame structure with a frame length greater than 1 ms
  • the transmission parameter includes a retransmission policy
  • the retransmission policy is no rate transmission
  • the transmission parameter includes a coded modulation scheme, Then the coded modulation scheme is a low density parity check code.
  • the N transmission states include a normal transmission state
  • the transmission parameter set corresponding to the normal transmission state if the transmission The parameter includes a frame structure, and the frame structure is a frame structure with a frame length equal to 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is a standard retransmission; if the transmission parameter includes a coding modulation scheme, the coding modulation The scheme is a low density parity check code or a Turbo code.
  • the third aspect provides an apparatus for determining a transmission status, where the apparatus includes: a receiving unit, configured to receive a first symbol sequence sent by a transmitting device in a first time period; and a determining unit, configured to use, according to the first symbol sequence Determining a first modulation parameter set, wherein the first modulation parameter set is The transmitting end device performs a modulation parameter set used for generating a modulation process of the first symbol sequence, where the modulation parameter set includes at least one of: a constellation point set and a codebook, and is configured to use the preset first mapping relationship information according to the preset Determining a first transmission state corresponding to the first modulation parameter set as a transmission state of the transmitting end device during a second time period, wherein the first mapping relationship information is used to indicate N transmission states and N modulations a one-to-one mapping relationship between the parameter sets, the first modulation parameter set belongs to the N modulation parameter sets, the first transmission state belongs to the N transmission states, and the second time period is after the first time
  • the determining unit is further configured to determine, according to the preset second mapping relationship information, a second transmission parameter set corresponding to the first transmission state, where The second mapping relationship information is used to indicate a one-to-one mapping relationship between the N transmission states and the N transmission parameter sets, where the second transmission parameter set belongs to the N transmission parameter sets, and each transmission parameter set includes at least the following A transmission parameter: frame structure, retransmission strategy, code modulation scheme.
  • the receiving unit is further configured to receive, according to the second transmission parameter set, the second transmission parameter set, in the second time period, Symbol sequence.
  • the second symbol sequence is a symbol generated by a modulation process based on a second modulation parameter set
  • the second modulation parameter set is
  • the second transmission state is a transmission state of the transmitting device during the third time period
  • the third time period is after the second time period.
  • the receiving unit is specifically configured to: when determining, between the sending end device and the receiving end device, before the first time period Receiving, by the receiving device, the first symbol sequence sent by the sending device according to the preset first transmission parameter set, where the first transmission parameter set includes the following at least A transmission parameter: frame structure, retransmission strategy, code modulation scheme.
  • the determining unit is specifically configured to intercept a sub-symbol sequence from the first symbol sequence, where the sub-symbol sequence includes at least two symbols; And for determining a first modulation parameter set according to the sub-symbol sequence.
  • the sub-symbol sequence is the first K symbols in the first symbol sequence, and K is a preset value, K ⁇ 2; or
  • the sub-symbol sequence includes symbols received in the first symbol sequence when the channel quality between the receiving end device and the network device satisfies a preset condition.
  • the N transmission states include at least one of the following states: a packet transmission state, a normal transmission state, and a large throughput transmission state.
  • the N transmission states include a packet transmission state
  • the transmission parameter set corresponding to the packet transmission state if the transmission The parameter includes a frame structure, and the frame structure is a frame structure with a frame length of less than 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is fast retransmission; if the transmission parameter includes a coding modulation scheme, the coding modulation The scheme is a multi-element low-density parity check code or a polarization code.
  • the N transmission states include a large throughput transmission state
  • the transmission parameter includes a frame structure
  • the frame structure is a frame structure with a frame length greater than 1 ms
  • the transmission parameter includes a retransmission policy
  • the retransmission policy is no rate transmission
  • the transmission parameter includes a coded modulation scheme, Then the coded modulation scheme is a low density parity check code.
  • the N transmission states include a normal transmission state
  • the transmission parameter set corresponding to the normal transmission state if the transmission The parameter includes a frame structure, and the frame structure is a frame structure with a frame length equal to 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is a standard retransmission; if the transmission parameter includes a coding modulation scheme, the coding modulation The scheme is a low density parity check code or a Turbo code.
  • an apparatus for transmitting information comprising: a determining unit, configured to determine a first transmission state, where the first transmission state is a transmission state of the transmitting device during a second time period, according to Determining, by the preset first mapping relationship information, a first modulation parameter set corresponding to the first transmission state, where the first mapping relationship information is used to indicate one between the N transmission states and the N modulation parameter sets a mapping relationship, the first modulation parameter set belongs to the N modulation parameter sets, the first transmission state belongs to the N transmission states, and the modulation parameter set includes at least one of the following: a constellation point set and a codebook, N ⁇ 2; a sending unit, configured to perform modulation processing according to the first modulation parameter set to generate a first symbol sequence, and transmit the first symbol sequence to the receiving end device in a first time period, where the second time period is in the first After the time period.
  • the determining unit is further configured to determine, according to the preset second mapping relationship information, a second transmission parameter corresponding to the first transmission state.
  • the second mapping relationship information is used to indicate a one-to-one mapping relationship between the N transmission states and the N transmission parameter sets, where the second transmission parameter set belongs to the N transmission parameter sets, and each transmission parameter set
  • the following at least one transmission parameter is included: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the sending unit is further configured to: in the second time period, transmit a second to the receiving end device according to the second transmission parameter set Symbol sequence.
  • the second symbol sequence is a symbol generated by a modulation process based on a second modulation parameter set
  • the second modulation parameter set is
  • the second transmission state is a transmission state of the transmitting device during the third time period
  • the third time period is after the second time period.
  • the sending unit is specifically configured to: when determining, between the sending end device and the receiving end device, before the first time period When the information transmission does not occur within a preset duration, the first symbol sequence is transmitted to the receiving device according to the preset first transmission parameter set, where the first transmission parameter set includes at least one of the following transmission parameters: frame structure, weight Transmission strategy, code modulation scheme.
  • the N transmission states include at least one of the following states: a packet transmission state, a normal transmission state, and a large throughput transmission state.
  • the N transmission states include a packet transmission state
  • the transmission parameter set corresponding to the packet transmission state if the transmission The parameter includes a frame structure, and the frame structure is a frame structure with a frame length of less than 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is fast retransmission; if the transmission parameter includes a coding modulation scheme, the coding modulation The scheme is a multi-element low-density parity check code or a polarization code.
  • a seventh implementation manner of the fourth aspect when the N transmission states include a large throughput transmission state, in a transmission parameter set corresponding to the large throughput transmission state If the transmission parameter includes a frame structure, the frame structure is a frame structure with a frame length greater than 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is no rate transmission; if the transmission parameter includes a coded modulation scheme, Then the coded modulation scheme is a low density parity check code.
  • the transmission parameters corresponding to the normal transmission state In the set, if the transmission parameter includes a frame structure, the frame structure is a frame structure with a frame length equal to 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is a standard retransmission; if the transmission parameter includes code modulation In the scheme, the coded modulation scheme is a low density parity check code or a Turbo code.
  • a fifth aspect provides a device for determining a transmission state, the device comprising: a bus; a processor coupled to the bus; a memory coupled to the bus; a receiver coupled to the bus; wherein the processor passes the a bus, calling a program stored in the memory, for controlling the receiver to receive the first symbol sequence sent by the transmitting device in the first time period; and determining, according to the first symbol sequence, the first modulation parameter set, where The first modulation parameter set is a modulation parameter set used by the transmitting end device to perform a modulation process for generating the first symbol sequence, and the modulation parameter set includes at least one of: a constellation point set and a codebook; And determining, by the preset first mapping relationship information, a first transmission state corresponding to the first modulation parameter set, as a transmission state of the transmitting end device during the second time period, where the first mapping relationship information is used to indicate a one-to-one mapping relationship between N transmission states and N modulation parameter sets, the first modulation parameter set belonging to the N modulation parameters
  • the processor is further configured to determine, according to the preset second mapping relationship information, a second transmission parameter set corresponding to the first transmission state, where The second mapping relationship information is used to indicate a one-to-one mapping relationship between the N transmission states and the N transmission parameter sets, where the second transmission parameter set belongs to the N transmission parameter sets, and each transmission parameter set includes at least the following A transmission parameter: frame structure, retransmission strategy, code modulation scheme.
  • the processor is further configured to, according to the second transmission parameter set, control the receiver to receive the transmitting end during the second time period.
  • the device transmits a second sequence of symbols.
  • the second symbol sequence is a symbol generated by a modulation process based on a second modulation parameter set
  • the second modulation parameter set is
  • the second transmission state is a transmission state of the transmitting device during the third time period
  • the third time period is after the second time period.
  • the processor is specifically configured to: when determining, between the sending end device and the receiving end device, before the first time period When no information transmission occurs within a preset duration, in the first period, according to the preset
  • the first transmission parameter set controls the receiver to receive the first symbol sequence sent by the sending end device, where the first transmission parameter set includes at least one of the following transmission parameters: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the processor is specifically configured to intercept a sub-symbol sequence from the first symbol sequence, where the sub-symbol sequence includes at least two symbols; And for determining a first modulation parameter set according to the sub-symbol sequence.
  • the sub-symbol sequence is the first K symbols in the first symbol sequence, and K is a preset value, K ⁇ 2; or
  • the sub-symbol sequence includes symbols received in the first symbol sequence when the channel quality between the receiving end device and the network device meets a preset condition.
  • the N transmission states include at least one of the following states: a packet transmission state, a normal transmission state, and a large throughput transmission state.
  • the N transmission states include a packet transmission state
  • the transmission parameter set corresponding to the packet transmission state if the transmission The parameter includes a frame structure, and the frame structure is a frame structure with a frame length of less than 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is fast retransmission; if the transmission parameter includes a coding modulation scheme, the coding modulation The scheme is a multi-element low-density parity check code or a polarization code.
  • the N transmission states include a large throughput transmission state
  • the transmission parameter includes a frame structure
  • the frame structure is a frame structure with a frame length greater than 1 ms
  • the transmission parameter includes a retransmission policy
  • the retransmission policy is no rate transmission
  • the transmission parameter includes a coded modulation scheme, Then the coded modulation scheme is a low density parity check code.
  • the N transmission states include a normal transmission state
  • the transmission parameter set corresponding to the normal transmission state if the transmission The parameter includes a frame structure, and the frame structure is a frame structure with a frame length equal to 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is a standard retransmission; if the transmission parameter includes a coding modulation scheme, the coding modulation The scheme is a low density parity check code or a Turbo code.
  • an apparatus for transmitting information comprising: a bus; a processor coupled to the bus; a memory coupled to the bus; a transmitter coupled to the bus; wherein the processor passes the bus Calling a program stored in the memory for determining the first transmission state,
  • the first transmission state is a transmission state of the transmitting device during the second time period, and is configured to determine, according to the preset first mapping relationship information, a first modulation parameter set corresponding to the first transmission state, where
  • the first mapping relationship information is used to indicate a one-to-one mapping relationship between the N transmission states and the N modulation parameter sets, where the first modulation parameter set belongs to the N modulation parameter sets, and the first transmission state belongs to the N transmissions a state
  • the modulation parameter set includes at least one of: a constellation point set and a codebook, N ⁇ 2; configured to perform modulation processing according to the first modulation parameter set to generate a first symbol sequence, and control the first time period
  • the transmitter transmits the first sequence of symbols to the receiving device, where
  • the processor is further configured to determine, according to the preset second mapping relationship information, a second transmission parameter set corresponding to the first transmission state, where The second mapping relationship information is used to indicate a one-to-one mapping relationship between the N transmission states and the N transmission parameter sets, where the second transmission parameter set belongs to the N transmission parameter sets, and each transmission parameter set includes at least the following A transmission parameter: frame structure, retransmission strategy, code modulation scheme.
  • the processor is further configured to, according to the second transmission parameter set, control the transmitter to the receiving end in the second time period
  • the device transmits a second sequence of symbols.
  • the second symbol sequence is a symbol generated by a modulation process based on a second modulation parameter set
  • the second modulation parameter set is
  • the second transmission state is a transmission state of the transmitting device during the third time period
  • the third time period is after the second time period.
  • the processor is specifically configured to determine, before determining, between the sending end device and the receiving end device, before the first time period
  • the transmitter is controlled to transmit the first symbol sequence to the receiving device according to the preset first transmission parameter set, where the first transmission parameter set includes at least one of the following transmission parameters: Frame structure, retransmission strategy, code modulation scheme.
  • the N transmission states include at least one of the following states: a packet transmission state, a normal transmission state, and a large throughput transmission state.
  • the N transmission states include a packet transmission state
  • a transmission parameter corresponding to the packet transmission state In the set, if the transmission parameter includes a frame structure, the frame structure is a frame structure with a frame length of less than 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is fast retransmission; if the transmission parameter includes code modulation
  • the coded modulation scheme is a multi-element low-density parity check code or a polarization code.
  • the N transmission states include a large throughput transmission state
  • the transmission parameter includes a frame structure
  • the frame structure is a frame structure with a frame length greater than 1 ms
  • the transmission parameter includes a retransmission policy
  • the retransmission policy is no rate transmission
  • the transmission parameter includes a coded modulation scheme, Then the coded modulation scheme is a low density parity check code.
  • the N transmission states include a normal transmission state
  • the transmission parameter set corresponding to the normal transmission state if the transmission The parameter includes a frame structure, and the frame structure is a frame structure with a frame length equal to 1 ms; if the transmission parameter includes a retransmission policy, the retransmission policy is a standard retransmission; if the transmission parameter includes a coding modulation scheme, the coding modulation The scheme is a low density parity check code or a Turbo code.
  • a transmitting end device may determine a modulation parameter set corresponding to a transmission state of the transmitting end device in a second time period, and first before the second time period a period of time, based on the modulation parameter set, modulating data to be sent to the receiving end device, and transmitting the generated symbol to the receiving end device, so that the receiving end device can determine the transmitting end device according to the received symbol.
  • the modulation parameter set used in turn, can determine the transmission state of the transmitting end device corresponding to the modulation parameter set in the second time period, and therefore, the transmitting end device and the receiving end device can select and correspond to the transmission state in the second time period.
  • the air interface transmission technology can reduce the interaction process and system resource overhead to complete the notification of the transmission status, thereby simplifying the interaction between the sender device and the receiver device, and reducing the communication resource overhead.
  • FIG. 1 is a schematic diagram of a communication system to which the method of transmitting information of the present invention is applied.
  • FIG. 2 is a schematic flow chart of a method of transmitting information according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a modulation parameter set in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method of transmitting information according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an apparatus for transmitting information according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for transmitting information according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an apparatus for transmitting information according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for transmitting information according to another embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the present invention describes various embodiments in connection with a terminal device.
  • the terminal device may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user.
  • Agent or user device may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the network device can be, for example, For a device such as a base station, the base station can be used to communicate with the mobile device, and the base station can be a GSM (Global System of Mobile communication) or a BTS (Base Transceiver Station) in CDMA (Code Division Multiple Access).
  • NB NodeB, base station
  • WCDMA Wideband Code Division Multiple Access
  • eNB or eNodeB Evolutional Node B
  • LTE Long Term Evolution
  • the present invention describes various embodiments in connection with a network device.
  • the network device can be, for example, a device such as a base station, the base station can be used to communicate with the mobile device, and the base station can be a GSM (Global System of Mobile communication) or a BTS (Base Transceiver Station) in CDMA (Code Division Multiple Access).
  • NB NodeB, base station
  • WCDMA Wideband Code Division Multiple Access
  • eNB or eNodeB Evolutional Node B
  • LTE Long
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the communication system 100 includes a base station 102 that can include multiple antenna groups.
  • Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Base station 102 can additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • a transmitter chain and a receiver chain can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • Base station 102 can communicate with a plurality of user equipments, such as user equipment 116 and user equipment 122. However, it will be appreciated that base station 102 can communicate with any number of user devices similar to user equipment 116 or 122.
  • User devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • user equipment 116 is in communication with antennas 112 and 114, with antennas 112 and 114 Information is transmitted to user equipment 116 over forward link 118 and received from user equipment 116 over reverse link 120.
  • user equipment 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to user equipment 122 over forward link 124 and information from user equipment 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of base station 102.
  • the antenna group can be designed to communicate with user equipment in sectors of the coverage area of base station 102.
  • the transmit antennas of base station 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the mobile device in the neighboring cell is transmitted when the base station 102 uses beamforming to transmit signals to the randomly dispersed user equipments 116 and 122 in the relevant coverage area, as compared to the manner in which the base station transmits signals to all of its user equipments through a single antenna. Will be less interfered.
  • base station 102, user equipment 116, or user equipment 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • multiple terminal devices may multiplex the same time-frequency resource with the base station for data transmission, and, as the same time-frequency resource,
  • the time-frequency resource may be a time-frequency resource block (also referred to as a time-frequency resource group) composed of multiple REs
  • the multiple REs may be the same in the time domain (ie, corresponding to the same symbol) and the locations in the frequency domain are different (ie, corresponding to different subcarriers), or the multiple REs may be in The positions on the time domain are different (ie, corresponding to different symbols) and the positions in the frequency domain are the same (ie, corresponding to the same subcarrier), and the present invention is not particularly limited.
  • An example of the communication system 100 is a sparse code division multiple access (SCMA) system in which a plurality of users multiplex the same time-frequency resource block for data transmission.
  • SCMA sparse code division multiple access
  • Each resource block is composed of a number of resource REs, where the REs may be subcarrier-symbol units in OFDM technology, or may be resource units in the time domain or frequency domain of other air interface technologies.
  • the available resources are divided into a number of orthogonal time-frequency resource blocks, each resource block containing L REs, wherein the L REs may be the same location in the time domain.
  • each codebook contains 2S different modulation symbol groups, corresponding to 2S possible data blocks.
  • SCMA system is only an example of a communication system for applying the method and apparatus for adjusting the modulation coding order of the present invention, and the present invention is not limited thereto, and any related to the transmitting end device and the receiving end device according to the transmission state. Communication systems for data transmission are all within the scope of the present invention.
  • the base station may perform data transmission with multiple user equipments at the same time, because the process of transmitting data by the base station and each user equipment is similar.
  • the flow of transmitting data by the base station and the UE #1 (that is, an example of the first user equipment) among the plurality of UEs will be described as an example.
  • the method 200 includes:
  • the receiving end device receives the first symbol sequence sent by the sending end device in the first time period.
  • S220 Determine, according to the first symbol sequence, a first modulation parameter set, where the first modulation parameter set is when the transmitting end device performs a modulation process for generating the first symbol sequence.
  • a set of modulation parameters the first transmission state belongs to the N transmission states, and the modulation parameter set includes at least one of: a constellation point set and a codebook;
  • the method 200 may be applied to uplink transmission, that is, the source device may be a terminal device, the receiver device may be a network device (for example, a base station), or the method 200 may be applied to downlink transmission, that is, The transmitting device may be a base station, and the receiving device may be a user device.
  • the present invention is not particularly limited.
  • the method 200 is applied to the process of uplink transmission as an example, and the method 200 is described in detail.
  • the UE #1 may determine to generate information bits that need to be transmitted to the base station, and the process may be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the UE #1 may perform modulation processing on the information bits to generate a modulation symbol (ie, a first symbol sequence) based on a pre-stored modulation parameter set.
  • a modulation symbol ie, a first symbol sequence
  • a plurality of (N) may be stored in advance.
  • the modulation parameter set is selected by UE#1.
  • the modulation parameter set may be a constellation point set or a codebook, and the present invention is not particularly limited, and may be selected according to a transmission mode adopted by the applied communication system.
  • a constellation point set when applied to a scene for single-user transmission, can be selected as a modulation parameter set.
  • a codebook when applied to a scenario of multi-user transmission (eg, applied to an SCMA system), can be selected as a set of modulation parameters.
  • the codeword is a mapping relationship of information bits to transmission symbols.
  • the codebook is a set of codewords, that is, a set of the above mapping relationships.
  • the modulation parameter set optionally includes a codebook, which is a set of codewords, and is used to indicate a mapping relationship between information bits and modulation symbols.
  • the codeword is a sparse code division multiple access SCMA codeword
  • the codebook is an SCMA codebook
  • the method and the process of performing the modulation processing based on the constellation point set or the codebook may be the same as the prior art, and a detailed description thereof is omitted herein to avoid redundancy.
  • FIG. 3 is a schematic diagram showing an alternative modulation parameter set in an embodiment of the present invention, as shown in FIG.
  • the N sets of modulation parameters may include a constellation point set S1, a constellation point S2, and a constellation point set S3, and the constellation point set may be obtained by, for example, a phase change (eg, phase rotation), or may be The manner of change is obtained by a method in which the phase and the amplitude are simultaneously changed, and the present invention is not particularly limited.
  • the N modulation parameter sets may have a one-to-one correspondence relationship with N transmission states (or may also be referred to as user states).
  • the transmission state includes at least one of the following states:
  • the packet transmission state means that the packet of the transmitted service is small (for example, the size is 1 kb or less), for example, a service for transmitting text information.
  • the normal transmission state means that the data packet of the transmitted service is within the normal range (for example, the size is between 1 kb and 1 Mb), for example, picture transmission, web browsing, and the like.
  • the large throughput transmission state means that the data packet of the transmitted service is large (for example, the size is above 1 Mb), for example, a video access service or an online game service.
  • Table 1 below shows an entry (i.e., an example of the first mapping relationship information) for indicating a correspondence relationship between the above-described N modulation parameter sets (taking a constellation point set as an example) and N transmission states.
  • the modulation parameter set corresponding to each transmission state enumerated above is only an exemplary description, and the present invention is not limited thereto, and the mapping relationship between the transmission state determined by the transmitting end and the receiving end and the modulation parameter set is consistent.
  • the modulation parameter set corresponding to each transmission state can be arbitrarily changed on the premise that one modulation parameter set uniquely corresponds to one transmission state.
  • the above-mentioned transmission state includes three transmission states, but the present invention is not limited thereto, and may include any number of states described above, and may also introduce other states, for example, an unconnected state (or , no transmission status), the non-access status means that the sender has no data or information needs to be transmitted.
  • an unconnected state or , no transmission status
  • the transmitting end does not transmit data to the receiving end, and thus does not involve modulation and demodulation using constellation points, so the unconnected state may not correspond to any modulation parameter set.
  • the base station can also obtain the first mapping relationship information by using a similar method and process.
  • the UE #1 may determine the transmission state of the second time period thereof.
  • the transmission state #A is recorded, for example, UE#1 may be based on the second
  • the service accessed during the time period determines the transmission status #A. For example, if the service accessed in the second time period is a service involving text transmission such as web browsing or chat, it may be determined that the transmission status #A is the packet transmission status. If the service accessed in the second period is an online game or a video download service, it can be determined that the transmission status #A is a large throughput transmission status.
  • the foregoing second time period refers to a future time period, that is, the time length of the start time of the second time period is greater than a preset threshold, and the threshold may be based on the device between the sending end device and the receiving end device.
  • the length of time required to complete a data transmission is determined to ensure that the receiving device can know the transmission status of the transmitting device during the second time period before the second time period.
  • the UE #1 may determine the modulation parameter set corresponding to the transmission state #A based on the first mapping relationship information (for example, the above Table 1). Hereinafter, for ease of understanding and explanation, the modulation is recorded as modulation. Parameter Set #A.
  • the UE#1 may perform the modulation processing on the information bits according to the modulation parameter set #A to generate the first symbol sequence, and the method and the flow of the foregoing modulation processing may be similar to the prior art.
  • the method and the flow of the foregoing modulation processing may be similar to the prior art.
  • the detailed description is omitted.
  • the UE #1 may transmit the first symbol sequence to the base station in a period before the second period (ie, the first period, for example, may include the current time T).
  • the UE#1 may determine whether the transmission performed in the first time period is continuous transmission, and according to the determination result, select a transmission parameter to send the first symbol sequence to the base station.
  • UE#1 may determine whether data transmission with the base station occurs before the first time period (within a prescribed time length range), and if so, the transmission parameters used in the previous transmission may be used, if not, then The default default transmission parameters (ie, an example of the first set of transmission parameters) are used.
  • transmitting the first symbol sequence to the receiving device in the first time period including:
  • the transmitting end device and the receiving end device are in the first Whether information transmission occurs in the first preset duration range before a period of time, the transmission parameters selected by the transmitting end device and the receiving end device can be made consistent, thereby further improving the reliability of the transmission.
  • the base station After the UE1 sends the first symbol sequence in the first time period, the base station can receive the first symbol sequence. It should be noted that the time when the base station receives the first symbol sequence is before the second time period.
  • the base station may determine whether the transmission performed in the first time period is continuous transmission, and according to the determination result, select a transmission parameter to receive the first symbol sequence sent by the UE#1.
  • the base station may determine whether data transmission with the UE #1 occurs before the first time period (within a predetermined duration), and if so, the transmission parameter used in the previous transmission may be used, if not,
  • the default default transmission parameters ie, an example of the first set of transmission parameters
  • the process of receiving the modulation symbol by using the transmission parameter may be similar to the prior art, and a detailed description thereof is omitted in order to avoid redundancy.
  • the base station may determine the modulation parameter set used by UE#1 when performing modulation processing for generating the first symbol sequence.
  • determining, according to the first symbol sequence, the first modulation parameter set including:
  • a first set of modulation parameters is determined based on the sequence of subsymbols.
  • the base station may intercept a sequence of sub-symbols (including at least two symbols) from the first sequence of symbols.
  • the sub-symbol sequence is the first K symbols in the first symbol sequence, and K is a preset value, K ⁇ 2; or
  • the sub-symbol sequence includes symbols received in the first symbol sequence when the channel quality between the receiving end device and the network device meets a preset condition.
  • the sub-symbol sequence may be a plurality of symbols received first, or may be a plurality of symbols received when the channel environment is good.
  • the base station may perform decoding on the N sets of modulation parameters (for example, including the foregoing S1, S2, and S3) by using an information transfer algorithm, and obtain a log likelihood ratio of each symbol in the sub-symbol sequence (LLR, Likelihood). Rate) value.
  • N sets of modulation parameters for example, including the foregoing S1, S2, and S3
  • LLR log likelihood ratio of each symbol in the sub-symbol sequence
  • Rate Likelihood
  • the LLRs of the respective symbols obtained based on the above N sets of modulation parameters can be respectively respectively
  • the value is obtained by first taking the absolute value and then summing, obtaining the sum of the LLR values corresponding to the N sets of modulation parameters, and confirming the modulation parameter set with the largest sum of the corresponding LLR values as UE#1 is being used to generate the first symbol sequence.
  • the modulation parameter set used in the modulation processing that is, the modulation parameter set #A.
  • the method and process of determining the modulation parameter set used by the transmitting end device in performing the modulation processing by the receiving end device are merely exemplary, and the present invention is not limited thereto.
  • the above-described determination process may be performed by using the entire sequence of the first symbol sequence as the above-described sub-symbol sequence.
  • the base station may determine, according to the first mapping relationship information, a transmission status corresponding to the modulation parameter set #A, that is, a transmission status #A, and confirm the transmission status #A as UE#1 in the second period. Transmission status.
  • the method further includes:
  • the second mapping relationship information is used to indicate between the N transmission states and the N transmission parameter sets A mapping relationship, the second transmission parameter set belongs to the N transmission parameter sets, and each transmission parameter set includes at least one of the following transmission parameters: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the transmitting device and the receiving device may adopt different transmission technologies, or transmit parameter sets.
  • the transmission parameter set may include the following parameters, for example, a frame structure, a retransmission policy, a coded modulation scheme, etc., so that the above various air interface transmission technologies can be flexibly utilized to improve communication quality and improve user experience.
  • the following transmission techniques may be employed for each transmission state.
  • the transmission state includes the packet transmission state
  • the transmission parameter set corresponding to the packet transmission state
  • the frame structure is a frame structure with a frame length of less than 1 ms;
  • the retransmission policy is fast retransmission
  • the coded modulation scheme is a multi-element low density parity check code or a polarization code.
  • the packet transmitted by the packet transmission state is small (less than 1 kb)
  • only a frame structure having a small frame length can satisfy the transmission requirement, thereby improving the transmission rate and reducing the transmission rate.
  • the power consumption of both the receiving device and the transmitting device reduces the overhead of system resources.
  • the transmission rate can be increased, and the power consumption of both the receiving device and the transmitting device can be reduced.
  • the transmission rate can be improved by using a modulation scheme such as a multi-element low-density parity check code or a polarization code optimized for the short packet length. , reduce the probability of error detection at the receiving end.
  • a modulation scheme such as a multi-element low-density parity check code or a polarization code optimized for the short packet length.
  • the transmission state includes the large throughput transmission state
  • a transmission parameter set corresponding to the large throughput transmission state
  • the frame structure is a frame structure with a frame length greater than 1 ms
  • the retransmission policy is a rateless transmission
  • the coded modulation scheme is a low density parity check code.
  • the proportion of resources occupied by the control signaling can be reduced, thereby increasing the transmission rate. Reduce the power consumption of both the receiving device and the transmitting device.
  • the number of system feedback can be significantly reduced, thereby increasing the transmission rate and reducing the system resources. Overhead.
  • the complexity and system error can be well balanced by using a modulation coding scheme suitable for long code block transmission such as a low density parity check code. Performance, which increases the transmission rate and reduces the power consumption of both the receiving device and the transmitting device.
  • transmission parameters corresponding to the above-mentioned large-throughput transmission state are merely illustrative, and the present invention is not limited thereto, and various transmission parameters that can exert effects in a large-throughput transmission state fall into the present invention. Within the scope of protection.
  • the transmission state includes the normal transmission state
  • the transmission parameter set corresponding to the normal transmission state in the transmission parameter set corresponding to the normal transmission state
  • the frame structure is a frame structure having a frame length equal to 1 ms;
  • the retransmission policy is a standard retransmission
  • the coded modulation scheme is a low density parity check code or a turbo code Turbo code.
  • the specific physical quantity included in the above-mentioned transmission parameter set is merely an exemplary description, and the present invention is not limited thereto, and may include, for example, a transmission waveform.
  • the transmission state includes a packet transmission state
  • the transmission parameter set corresponding to the packet transmission state if the transmission parameter includes a transmission waveform, the transmission waveform is a filter orthogonal frequency division multiplexing F-OFDM waveform or positive Frequency division multiplexing OFDM waveform;
  • the transmission state includes a large throughput transmission state
  • the transmission parameter set corresponding to the large throughput transmission state if the transmission parameter includes a transmission waveform, the transmission waveform is a carrier aggregation waveform;
  • the transmission state includes a normal transmission state
  • the transmission parameter set corresponding to the normal transmission state if the transmission parameter includes a transmission waveform, the transmission waveform is an OFDM waveform.
  • the packet transmission occupies less spectrum resources, so it is necessary to select a waveform with a small occupied bandwidth and a small spectrum sideband leakage, such as F-OFDM.
  • Table 2 shows an entry for indicating a correspondence relationship between the above N transmission states and N transmission parameter sets (that is, an example of the second mapping relationship information).
  • the number of transmission parameters included in the transmission parameter set may be arbitrary, and the present invention is not particularly limited.
  • the above-mentioned transmission state includes three transmission states, but the present invention is not limited thereto, and may include any number of states described above, and may also introduce other states, for example, an unconnected state (or , no transmission status), the non-access status means that the sender has no data or information needs to be transmitted.
  • an unconnected state or , no transmission status
  • the non-access status means that the sender has no data or information needs to be transmitted.
  • the unconnected state the transmitting end does not send data to the receiving end, and thus does not involve the use of the transmission parameter, so the unconnected state may not correspond to any transmission parameter set.
  • the base station can also obtain the second mapping relationship information by using a similar method and process.
  • the base station can determine the transmission parameter set corresponding to the transmission state #A according to the second mapping relationship information, and for convenience of understanding, the transmission parameter set #A is hereinafter described.
  • the method further includes:
  • UE#1 may perform modulation processing on data that needs to be transmitted to the base station to generate a second symbol sequence, and transmit parameter set #A through The second sequence of symbols is transmitted to the base station.
  • transmitting, according to the second transmission parameter set, the second symbol sequence to the receiving end device including:
  • the second symbol sequence is generated by a modulation process based on the second modulation parameter set. a symbol, the second modulation parameter set corresponding to a second transmission state, where the second transmission state is a transmission state of the transmitting end device during a third time period, the third time period being after the second time period.
  • the transmission state in the third period (after the second period) can be determined.
  • the transmission state #B is recorded.
  • determining a modulation parameter set corresponding to the transmission state #B according to the first mapping relationship information, and hereinafter, for the sake of easy understanding and explanation, the modulation parameter set #B is recorded.
  • the above-described modulation processing can be performed in accordance with the modulation parameter set #B to generate a second symbol sequence.
  • the base station may receive the second symbol sequence according to the input parameter set #A determined as described above, and may determine the modulation parameter used by the UE #1 when performing modulation processing for generating the second symbol sequence.
  • the set that is, the modulation parameter set #B, further determines the set of transmission parameters corresponding to the modulation parameter set #B.
  • the input parameter set #B is recorded.
  • UE#1 and the base station can transmit the parameter set #B to transmit information.
  • first mapping relationship information and the second mapping relationship information listed above are recorded in two entries is merely an exemplary description, and the present invention is not limited thereto, and may also be recorded and modulated in the same entry.
  • the mapping relationship between the parameter set, the transmission state, and the transmission parameter set is merely an exemplary description, and the present invention is not limited thereto, and may also be recorded and modulated in the same entry.
  • the transmission state may also be referred to as a user state, which is determined according to the state of the user equipment (for example, the service accessed by the user equipment, etc.), and therefore, according to the transmission state, communication can be adapted to the communication.
  • the needs of user equipment can improve the user experience and increase the flexibility of communication.
  • a transmitting end device may determine a modulation parameter set corresponding to a transmission state of the transmitting end device in a second time period, and based on the first time period before the second time period, The modulation parameter set modulates the data that needs to be sent to the receiving end device, and sends the generated symbol to the receiving end device, so that the receiving end device can determine the modulation parameter used by the transmitting end device according to the received symbol.
  • the set may determine the transmission state of the transmitting end device corresponding to the modulation parameter set in the second time period, and therefore, the transmitting end device and the receiving end device may select the air interface transmission corresponding to the transmission state in the second time period.
  • the technology can reduce the interaction process and system resource overhead to complete the notification of the transmission status, thereby simplifying the interaction between the sender device and the receiver device, and reducing the overhead of communication resources.
  • the method 300 includes:
  • S320 Determine, according to the preset first mapping relationship information, a first modulation parameter set corresponding to the first transmission state, where the first mapping relationship information is used to indicate N transmission states and N modulation parameter sets.
  • a first one-to-one mapping relationship the first modulation parameter set belongs to the N modulation parameter sets, the first transmission state belongs to the N transmission states, and the modulation parameter set includes at least one of: a constellation point set and a codebook, N ⁇ 2;
  • S330 Perform modulation processing according to the first modulation parameter set to generate a first symbol sequence, and transmit the first symbol sequence to the receiving end device in a first time period, where the second time period is after the first time period.
  • the method further includes:
  • the second mapping relationship information is used to indicate between the N transmission states and the N transmission parameter sets A mapping relationship, the second transmission parameter set belongs to the N transmission parameter sets, and each transmission parameter set includes at least one of the following transmission parameters: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the method further includes:
  • the second symbol sequence is transmitted to the receiving end device.
  • the second symbol sequence is a symbol generated by a modulation process based on a second modulation parameter set, where the second modulation parameter set corresponds to a second transmission state, where the second transmission state is a transmission state during a third time period, the third time period being after the second time period.
  • transmitting the first symbol sequence to the receiving device including:
  • the transmitting end device When it is determined that no information transmission occurs between the transmitting end device and the receiving end device within a first preset duration range before the first time period, transmitting the information to the receiving end device according to the preset first transmission parameter set.
  • the first set of transmission parameters comprising at least one of the following transmission parameters: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the N transmission states include at least one of the following states:
  • the N transmission states include a packet transmission state
  • a transmission parameter set corresponding to the packet transmission state in a transmission parameter set corresponding to the packet transmission state
  • the frame structure is a frame structure with a frame length of less than 1 ms;
  • the retransmission policy is fast retransmission
  • the coded modulation scheme is a multi-element low density parity check code or a polarization code.
  • the N transmission states include a large throughput transmission state
  • a transmission parameter set corresponding to the large throughput transmission state in a transmission parameter set corresponding to the large throughput transmission state
  • the frame structure is a frame structure with a frame length greater than 1 ms
  • the retransmission policy is a rateless transmission
  • the coded modulation scheme is a low density parity check code.
  • the N transmission states include a normal transmission state
  • a transmission parameter set corresponding to the normal transmission state in a transmission parameter set corresponding to the normal transmission state
  • the frame structure is a frame structure having a frame length equal to 1 ms;
  • the retransmission policy is a standard retransmission
  • the coded modulation scheme is a low density parity check code or a turbo code.
  • the modulation parameter set includes a codebook, where the codebook is a set of codewords, and the codeword is used to indicate a mapping relationship between information bits and modulation symbols.
  • the codeword is a sparse code division multiple access SCMA codeword
  • the codebook is an SCMA codebook
  • the operation of the transmitting device is similar to the action of the UE #1 in the method 200, and the operation of the receiving device is similar to the operation of the base station in the method 200.
  • the operation of the transmitting device is similar to the action of the UE #1 in the method 200
  • the operation of the receiving device is similar to the operation of the base station in the method 200.
  • detailed description thereof is omitted.
  • the transmission state may also be referred to as a user state, which is determined according to the state of the user equipment (for example, the service accessed by the user equipment, etc.), and therefore, according to the transmission state, communication can be adapted to the communication.
  • the needs of user equipment can improve the user experience and increase the flexibility of communication.
  • a transmitting end device may determine a modulation parameter set corresponding to a transmission state of the transmitting end device in a second time period, and based on the first time period before the second time period, The modulation parameter set adjusts the data that needs to be sent to the receiving device Processing, and transmitting the generated symbol to the receiving device, so that the receiving device can determine the modulation parameter set used by the transmitting device according to the received symbol, and further determine the corresponding corresponding to the modulation parameter set.
  • the transmission state of the transmitting device in the second time period Therefore, the transmitting device and the receiving device can select the air interface transmission technology corresponding to the transmission state in the second time period, and reduce the interaction process and system resource overhead to complete the transmission. Notification of status, which can simplify the interaction between the sender device and the receiver device, and reduce the overhead of communication resources.
  • FIGS. 1 through 4 a method of transmitting information according to an embodiment of the present invention is described in detail with reference to FIGS. 1 through 4.
  • an apparatus for transmitting information according to an embodiment of the present invention will be described in detail with reference to FIGS. 5 through 6.
  • FIG. 5 shows a schematic block diagram of an apparatus 400 for transmitting information in accordance with an embodiment of the present invention.
  • the apparatus 400 includes:
  • the receiving unit 410 is configured to receive, in the first time period, a first symbol sequence sent by the sending end device;
  • a determining unit 420 configured to determine, according to the first symbol sequence, a first modulation parameter set, where the first modulation parameter set is a modulation parameter used by the transmitting end device to perform a modulation process for generating the first symbol sequence
  • the set, the modulation parameter set includes at least one of the following: a constellation point set and a codebook, and is configured to determine, according to the preset first mapping relationship information, a first transmission state corresponding to the first modulation parameter set, as the sending end a transmission state of the device during the second time period, wherein the first mapping relationship information is used to indicate a one-to-one mapping relationship between the N transmission states and the N modulation parameter sets, where the first modulation parameter set belongs to the N modulations a parameter set, the first transmission state belongs to the N transmission states, and the second time period is after the first time period, and N ⁇ 2.
  • the determining unit is further configured to determine, according to the preset second mapping relationship information, a second transmission parameter set corresponding to the first transmission state, where the second mapping relationship information is used to indicate N transmissions. a one-to-one mapping relationship between the state and the N sets of transmission parameters, the second set of transmission parameters belonging to the N sets of transmission parameters, each transmission parameter set comprising at least one of the following transmission parameters: frame structure, retransmission strategy, code modulation Program.
  • the receiving unit is further configured to receive, by the sending end device, the second symbol sequence according to the second transmission parameter set in the second time period.
  • the second symbol sequence is a symbol generated by a modulation process based on a second modulation parameter set, where the second modulation parameter set corresponds to a second transmission state, where the second transmission state is a transmission state during a third time period, the third time period being after the second time period.
  • the receiving unit is specifically configured to: when it is determined that the information transmission between the sending end device and the receiving end device does not occur within a first preset duration before the first time period, the receiving device is first And receiving, according to the preset first transmission parameter set, a first symbol sequence sent by the sending end device, where the first transmission parameter set includes at least one of the following transmission parameters: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the determining unit is specifically configured to intercept a sub-symbol sequence from the first symbol sequence, where the sub-symbol sequence includes at least two symbols;
  • the sub-symbol sequence is the first K symbols in the first symbol sequence, and K is a preset value, K ⁇ 2; or
  • the sub-symbol sequence includes symbols received in the first symbol sequence when the channel quality between the receiving end device and the network device meets a preset condition.
  • the N transmission states include at least one of the following states:
  • the N transmission states include a packet transmission state
  • a transmission parameter set corresponding to the packet transmission state in a transmission parameter set corresponding to the packet transmission state
  • the frame structure is a frame structure with a frame length of less than 1 ms;
  • the retransmission policy is fast retransmission
  • the coded modulation scheme is a multi-element low density parity check code or a polarization code.
  • the N transmission states include a large throughput transmission state
  • a transmission parameter set corresponding to the large throughput transmission state in a transmission parameter set corresponding to the large throughput transmission state
  • the frame structure is a frame structure with a frame length greater than 1 ms
  • the retransmission policy is a rateless transmission
  • the coded modulation scheme is a low density parity check code.
  • the N transmission states include a normal transmission state
  • a transmission parameter set corresponding to the normal transmission state in a transmission parameter set corresponding to the normal transmission state
  • the frame structure is a frame structure having a frame length equal to 1 ms;
  • the retransmission policy is a standard retransmission
  • the coded modulation scheme is a low density parity Code or Turbo code.
  • the modulation parameter set includes a codebook, where the codebook is a set of codewords, and the codeword is used to indicate a mapping relationship between information bits and modulation symbols.
  • the codeword is a sparse code division multiple access SCMA codeword
  • the codebook is an SCMA codebook
  • the device is a receiving end device, and the receiving end device is a network device.
  • the apparatus 400 for transmitting information may correspond to a receiving end device (for example, a base station) in the method of the embodiment of the present invention, and each unit in the apparatus 400 for transmitting information, that is, a module and the other operations described above and/or For the sake of brevity, the functions of the method 200 in FIG. 2 are not described here.
  • a receiving end device for example, a base station
  • each unit in the apparatus 400 for transmitting information that is, a module and the other operations described above and/or
  • the functions of the method 200 in FIG. 2 are not described here.
  • a transmitting end device may determine a modulation parameter set corresponding to a transmission state of the transmitting end device in a second time period, and based on the first time period before the second time period, The modulation parameter set modulates the data that needs to be sent to the receiving end device, and sends the generated symbol to the receiving end device, so that the receiving end device can determine the modulation parameter used by the transmitting end device according to the received symbol.
  • the set may determine the transmission state of the transmitting end device corresponding to the modulation parameter set in the second time period, and therefore, the transmitting end device and the receiving end device may select the air interface transmission corresponding to the transmission state in the second time period.
  • the technology can reduce the interaction process and system resource overhead to complete the notification of the transmission status, thereby simplifying the interaction between the sender device and the receiver device, and reducing the overhead of communication resources.
  • FIG. 6 shows a schematic block diagram of an apparatus 500 for transmitting information in accordance with an embodiment of the present invention.
  • the apparatus 500 includes:
  • the determining unit 510 is configured to determine a first transmission state, where the first transmission state is a transmission state of the sending end device during the second time period, and is configured to determine, according to the preset first mapping relationship information, the first transmission state Corresponding first modulation parameter set, wherein the first mapping relationship information is used to indicate a one-to-one mapping relationship between the N transmission states and the N modulation parameter sets, where the first modulation parameter set belongs to the N modulation parameters
  • the set, the first transmission state belongs to the N transmission states, and the modulation parameter set includes at least one of the following: a constellation point set and a codebook, N ⁇ 2;
  • the sending unit 520 is configured to perform modulation processing according to the first modulation parameter set to generate a first symbol sequence, and transmit the first symbol sequence to the receiving end device in a first time period, where the second time period is in the first After a period of time.
  • the determining unit is further configured to determine, according to the preset second mapping relationship information, a second transmission parameter set corresponding to the first transmission state, where the second mapping relationship information is used to refer to a one-to-one mapping relationship between the N transmission states and the N transmission parameter sets, the second transmission parameter set belongs to the N transmission parameter sets, and each transmission parameter set includes at least one of the following transmission parameters: frame structure, retransmission Strategy, code modulation scheme.
  • the sending unit is further configured to, according to the second transmission parameter set, transmit the second symbol sequence to the receiving end device during the second time period.
  • the second symbol sequence is a symbol generated by a modulation process based on a second modulation parameter set, where the second modulation parameter set corresponds to a second transmission state, where the second transmission state is a transmission state during a third time period, the third time period being after the second time period.
  • the sending unit is specifically configured to: when determining that no information transmission occurs between the sending end device and the receiving end device within a first preset duration range before the first time period, according to the preset first And transmitting, by the receiving device, the first symbol sequence, where the first transmission parameter set includes at least one of the following transmission parameters: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the N transmission states include at least one of the following states:
  • the N transmission states include a packet transmission state
  • a transmission parameter set corresponding to the packet transmission state in a transmission parameter set corresponding to the packet transmission state
  • the frame structure is a frame structure with a frame length of less than 1 ms;
  • the retransmission policy is fast retransmission
  • the coded modulation scheme is a multi-element low density parity check code or a polarization code.
  • the N transmission states include a large throughput transmission state
  • a transmission parameter set corresponding to the large throughput transmission state in a transmission parameter set corresponding to the large throughput transmission state
  • the frame structure is a frame structure with a frame length greater than 1 ms
  • the retransmission policy is a rateless transmission
  • the coded modulation scheme is a low density parity check code.
  • the N transmission states include a normal transmission state
  • a transmission parameter set corresponding to the normal transmission state in a transmission parameter set corresponding to the normal transmission state
  • the frame structure is a frame structure having a frame length equal to 1 ms;
  • the retransmission policy is a standard retransmission
  • the coded modulation scheme is a low density parity check code or a turbo code.
  • the modulation parameter set includes a codebook, where the codebook is a set of codewords, and the codeword is used to indicate a mapping relationship between information bits and modulation symbols.
  • the codeword is a sparse code division multiple access SCMA codeword
  • the codebook is an SCMA codebook
  • the device is a sender device, and the sender device is a terminal device.
  • the apparatus 500 for transmitting information may correspond to a transmitting end device (for example, UE #1) in the method of the embodiment of the present invention, and each unit in the apparatus 500 for transmitting information, that is, a module and the other operations described above For the sake of brevity, the detailed description of the method 300 in FIG. 4 is omitted.
  • a transmitting end device may determine a modulation parameter set corresponding to a transmission state of the transmitting end device in a second time period, and based on the first time period before the second time period, The modulation parameter set modulates the data that needs to be sent to the receiving end device, and sends the generated symbol to the receiving end device, so that the receiving end device can determine the modulation parameter used by the transmitting end device according to the received symbol.
  • the set may determine the transmission state of the transmitting end device corresponding to the modulation parameter set in the second time period, and therefore, the transmitting end device and the receiving end device may select the air interface transmission corresponding to the transmission state in the second time period.
  • the technology can reduce the interaction process and system resource overhead to complete the notification of the transmission status, thereby simplifying the interaction between the sender device and the receiver device, and reducing the overhead of communication resources.
  • FIG. 7 shows a schematic block diagram of an apparatus 600 for transmitting information in accordance with an embodiment of the present invention.
  • the device 600 includes:
  • processor 620 connected to the bus
  • the processor by using the bus, invoking a program stored in the memory, for controlling the receiver to receive the first symbol sequence sent by the sending end device in the first time period;
  • a first modulation parameter set where the first modulation parameter set is used when the transmitting end device performs a modulation process for generating the first symbol sequence.
  • a set of modulation parameters comprising at least one of: a constellation point set and a codebook;
  • the first mapping relationship information And determining, according to the preset first mapping relationship information, a first transmission state corresponding to the first modulation parameter set, as a transmission state of the sending end device during the second time period, where the first mapping relationship information And indicating a one-to-one mapping relationship between the N transmission states and the N modulation parameter sets, where the first modulation parameter set belongs to the N modulation parameter sets, and the first transmission state belongs to the N transmission states, and the second The time period is after the first time period, N ⁇ 2.
  • the processor is further configured to determine, according to the preset second mapping relationship information, a second transmission parameter set corresponding to the first transmission state, where the second mapping relationship information is used to indicate N transmissions. a one-to-one mapping relationship between the state and the N sets of transmission parameters, the second set of transmission parameters belonging to the N sets of transmission parameters, each transmission parameter set comprising at least one of the following transmission parameters: frame structure, retransmission strategy, code modulation Program.
  • the processor is further configured to, according to the second transmission parameter set, control the receiver to receive the second symbol sequence transmitted by the sending end device according to the second transmission parameter set.
  • the second symbol sequence is a symbol generated by a modulation process based on a second modulation parameter set, where the second modulation parameter set corresponds to a second transmission state, where the second transmission state is a transmission state during a third time period, the third time period being after the second time period.
  • the processor is specifically configured to: when determining that no information transmission occurs between the sending end device and the receiving end device within a first preset duration range before the first time period, in the first time period, according to The preset first transmission parameter set controls the receiver to receive the first symbol sequence sent by the sending end device, where the first transmission parameter set includes at least one of the following transmission parameters: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the processor is specifically configured to intercept a sub-symbol sequence from the first symbol sequence, where the sub-symbol sequence includes at least two symbols;
  • the sub-symbol sequence is the first K symbols in the first symbol sequence, and K is a preset value, K ⁇ 2; or
  • the sub-symbol sequence includes symbols received in the first symbol sequence when the channel quality between the receiving end device and the network device meets a preset condition.
  • the N transmission states include at least one of the following states:
  • the N transmission states include a packet transmission state
  • a transmission parameter set corresponding to the packet transmission state in a transmission parameter set corresponding to the packet transmission state
  • the frame structure is a frame structure with a frame length of less than 1 ms;
  • the retransmission policy is fast retransmission
  • the coded modulation scheme is a multi-element low density parity check code or a polarization code.
  • the N transmission states include a large throughput transmission state
  • a transmission parameter set corresponding to the large throughput transmission state in a transmission parameter set corresponding to the large throughput transmission state
  • the frame structure is a frame structure with a frame length greater than 1 ms
  • the retransmission policy is a rateless transmission
  • the coded modulation scheme is a low density parity check code.
  • the N transmission states include a normal transmission state
  • a transmission parameter set corresponding to the normal transmission state in a transmission parameter set corresponding to the normal transmission state
  • the frame structure is a frame structure having a frame length equal to 1 ms;
  • the retransmission policy is a standard retransmission
  • the coded modulation scheme is a low density parity check code or a turbo code.
  • Embodiments of the present invention are applicable to various communication devices.
  • the receiver of device 600 can include a receiving circuit, a power controller, a decoder, and an antenna, and device 600 can also include a transmitter, which can include a transmitting circuit, a power controller, an encoder, and an antenna.
  • the modulation parameter set includes a codebook, where the codebook is a set of codewords, and the codeword is used to indicate a mapping relationship between information bits and modulation symbols.
  • the codeword is a sparse code division multiple access SCMA codeword
  • the codebook is an SCMA codebook
  • the device is a receiving device, and the receiving device is a network device.
  • the processor can also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include non-volatile line random access memory (NVRAM).
  • the device 600 may be embedded or may itself be a wireless communication device such as a mobile phone or a network device such as a base station, and may also include a carrier that houses the transmitting circuit and the receiving circuit to allow the device 600 and the remote location to be performed. Data transmission And receiving.
  • the transmit and receive circuits can be coupled to the antenna.
  • the various components of device 600 are coupled together by a bus, wherein the bus includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are labeled as bus 610 in the figure.
  • the decoder in a specific different product may be integrated with the processing unit.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the processor 620 may be a central processing unit (“CPU"), and the processor 620 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 620 can include read only memory and random access memory and provides instructions and data to the processor 610. A portion of the memory 620 can also include a non-volatile random access memory. For example, the memory 620 can also store information of the device type.
  • the bus system 630 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 630 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 620, and the processor 610 reads the information in the memory 620 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the device 600 for transmitting information may correspond to a receiving end device (for example, a base station) in the method of the embodiment of the present invention, and each unit in the device 600 transmitting the information, that is, the module and the other operations described above and/or Or function to implement the corresponding process of the method 200 in FIG. 2, respectively.
  • a receiving end device for example, a base station
  • each unit in the device 600 transmitting the information that is, the module and the other operations described above and/or Or function to implement the corresponding process of the method 200 in FIG. 2, respectively.
  • a transmitting end device may determine a modulation parameter set corresponding to a transmission state of the transmitting end device in a second time period, and based on the first time period before the second time period, The modulation parameter set modulates the data that needs to be sent to the receiving end device, and sends the generated symbol to the receiving end device, so that the receiving end device can determine the modulation parameter used by the transmitting end device according to the received symbol.
  • the set may determine the transmission state of the transmitting end device corresponding to the modulation parameter set in the second time period, and therefore, the transmitting end device and the receiving end device may select the air interface transmission corresponding to the transmission state in the second time period.
  • the technology can reduce the interaction process and system resource overhead to complete the notification of the transmission status, thereby simplifying the interaction between the sender device and the receiver device, and reducing the overhead of communication resources.
  • FIG. 8 shows a schematic block diagram of an apparatus 700 for transmitting information in accordance with an embodiment of the present invention.
  • the device 700 includes:
  • processor 720 connected to the bus
  • the processor by using the bus, invoking a program stored in the memory, for determining a first transmission state, where the first transmission state is a transmission state of the transmitting device during a second time period;
  • the first mapping relationship information is used to indicate N transmission states and N modulation parameter sets.
  • a first one-to-one mapping relationship the first modulation parameter set belongs to the N modulation parameter sets, the first transmission state belongs to the N transmission states, and the modulation parameter set includes at least one of: a constellation point set and a codebook, N ⁇ 2;
  • the processor is further configured to determine, according to the preset second mapping relationship information, a second transmission parameter set corresponding to the first transmission state, where the second mapping relationship information is used to indicate N transmissions. a one-to-one mapping relationship between the state and the N sets of transmission parameters, the second transmission parameter set belongs to the N transmission parameter sets, and each transmission parameter set includes at least one of the following transmission parameters Number: frame structure, retransmission strategy, code modulation scheme.
  • the processor is further configured to, according to the second transmission parameter set, control the transmitter to transmit the second symbol sequence to the receiving end device according to the second transmission parameter set.
  • the second symbol sequence is a symbol generated by a modulation process based on a second modulation parameter set, where the second modulation parameter set corresponds to a second transmission state, where the second transmission state is a transmission state during a third time period, the third time period being after the second time period.
  • the processor is specifically configured to: when it is determined that the information transmission between the sending end device and the receiving end device does not occur within a first preset duration before the first time period, according to the preset first Transmitting a parameter set, and controlling the transmitter to transmit the first symbol sequence to the receiving end device, where the first transmission parameter set includes at least one of the following transmission parameters: a frame structure, a retransmission policy, and a coded modulation scheme.
  • the N transmission states include at least one of the following states:
  • the N transmission states include a packet transmission state
  • a transmission parameter set corresponding to the packet transmission state in a transmission parameter set corresponding to the packet transmission state
  • the frame structure is a frame structure with a frame length of less than 1 ms;
  • the retransmission policy is fast retransmission
  • the coded modulation scheme is a multi-element low density parity check code or a polarization code.
  • the N transmission states include a large throughput transmission state
  • a transmission parameter set corresponding to the large throughput transmission state in a transmission parameter set corresponding to the large throughput transmission state
  • the frame structure is a frame structure with a frame length greater than 1 ms
  • the retransmission policy is a rateless transmission
  • the coded modulation scheme is a low density parity check code.
  • the N transmission states include a normal transmission state
  • a transmission parameter set corresponding to the normal transmission state in a transmission parameter set corresponding to the normal transmission state
  • the frame structure is a frame structure having a frame length equal to 1 ms;
  • the retransmission policy is a standard retransmission
  • the coded modulation scheme is a low density parity Code or Turbo code.
  • the modulation parameter set includes a codebook, where the codebook is a set of codewords, and the codeword is used to indicate a mapping relationship between information bits and modulation symbols.
  • the codeword is a sparse code division multiple access SCMA codeword
  • the codebook is an SCMA codebook
  • the device is a sender device, and the sender device is a terminal device.
  • the transmitter of device 700 can include a transmit circuit, a power controller, an encoder, and an antenna.
  • Apparatus 700 can also include a receiver, which can include a receiving circuit, a power controller, a decoder, and an antenna.
  • the processor can also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • the device 700 may embed or itself be a wireless communication device such as a mobile phone or a network device such as a base station, and may also include a carrier that houses the transmitting circuit and the receiving circuit to allow the device 700 and the remote location to be performed. Data transmission and reception.
  • the transmit and receive circuits can be coupled to the antenna.
  • the various components of device 700 are coupled together by a bus, wherein the bus includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus 710 in the figure.
  • the decoder in a specific different product may be integrated with the processing unit.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the processor 720 may be a central processing unit (“CPU"), and the processor 720 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 720 can include read only memory and random access memory and provides instructions and data to the processor 710. A portion of the memory 720 can also include a non-volatile random access memory. For example, the memory 720 can also store information of the device type.
  • the bus system 730 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 730 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 710 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 720, and processor 710 reads the information in memory 720 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 700 for transmitting information may correspond to a transmitting device (for example, UE #1) in the method of the embodiment of the present invention, and each unit in the device 700 transmitting information and the other operations described above
  • a transmitting device for example, UE #1
  • each unit in the device 700 transmitting information and the other operations described above
  • the detailed description of the method 300 in FIG. 4 is omitted.
  • a transmitting end device may determine a modulation parameter set corresponding to a transmission state of the transmitting end device in a second time period, and based on the first time period before the second time period, The modulation parameter set modulates the data that needs to be sent to the receiving end device, and sends the generated symbol to the receiving end device, so that the receiving end device can determine the modulation parameter used by the transmitting end device according to the received symbol.
  • the set may determine the transmission state of the transmitting end device corresponding to the modulation parameter set in the second time period, and therefore, the transmitting end device and the receiving end device may select the air interface transmission corresponding to the transmission state in the second time period.
  • Technology which reduces the interaction process and system resource overhead, can complete the notification of the transmission status, thereby simplifying the interaction between the sender device and the receiver device, and reducing the overhead of communication resources.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)
  • Communication Control (AREA)

Abstract

本发明实施例提供了一种确定传输状态的方法,该方法包括:接收端设备在第一时段,接收发送端设备发送的第一符号序列;根据该第一符号序列,确定第一调制参量集合,其中,该第一调制参量集合是该发送端设备进行用于生成该第一符号序列的调制处理时使用的调制参量集合,该调制参量集合包括以下至少一个:星座点集合和码本;根据预设的第一映射关系信息,确定与该第一调制参量集合相对应的第一传输状态,作为该发送端设备在第二时段期间的传输状态,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第二时段处于该第一时段之后。

Description

传输信息的方法、装置和设备 技术领域
本发明涉及通信领域,并且更具体地,涉及传输信息的方法、装置和设备。
背景技术
目前已知一种信息传输技术,发送端设备可以通知接收端设备该发送端设备的状态(以下,为了便于理解和说明,称为传输状态),例如,该发送端设备处于发射状态或者不发射状态,从而,发送端设备和接收端设备可以选择与该传输状态相对应的空口传输的技术,例如,空口的发射波形、帧结构、重传技术和编码调制技术等等,从而能够灵活利用上述各种空口传输的技术,提高通信质量,改善用户体验。
但是,在该技术中需要通信系统提供专用的通信资源和信令,以在发送端设备和接收端设备之间传输指示上述传输状态的信息,导致发送端设备和接收端设备之间的交互复杂化,增加了通信资源的开销。
发明内容
本发明实施例提供一种传输信息的方法、装置和设备,能够简化发送端设备和接收端设备之间的交互。
第一方面,提供了一种确定传输状态的方法,该方法包括:接收端设备在第一时段,接收发送端设备发送的第一符号序列;根据该第一符号序列,确定第一调制参量集合,其中,该第一调制参量集合是该发送端设备进行用于生成该第一符号序列的调制处理时使用的调制参量集合,该调制参量集合包括以下至少一个:星座点集合和码本;根据预设的第一映射关系信息,确定与该第一调制参量集合相对应的第一传输状态,作为该发送端设备在第二时段期间的传输状态,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第一传输状态属于该N个传输状态,该第二时段处于该第一时段之后,N≥2。
结合第一方面,在第一方面的第一种实现方式中,该方法还包括:根据 预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数集合,其中,该第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,该方法还包括:在该第二时段,根据该第二传输参数集合,接收该发送端设备传输第二符号序列。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,该接收端设备在第一时段,接收发送端设备发送的第一符号序列,包括:当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,接收端设备在第一时段,根据预设的第一传输参数集合,接收发送端设备发送的第一符号序列,该第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,该根据该第一符号序列,确定第一调制参量集合,包括:从该第一符号序列中截取子符号序列,该子符号序列包括至少两个符号;根据该子符号序列,确定第一调制参量集合。
结合第一方面及其上述实现方式,在第一方面的第六种实现方式中,该子符号序列是该第一符号序列中的前K个符号,K为预设值,K≥2;或该子符号序列包括该第一符号序列中在该接收端设备与该网络设备之间的信道质量满足预设条件时接收到的符号。
结合第一方面及其上述实现方式,在第一方面的第七种实现方式中,该N个传输状态包括以下状态中的至少一个状态:小包传输状态、普通传输状态及大吞吐量传输状态。
结合第一方面及其上述实现方式,在第一方面的第八种实现方式中,当该N个传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数 集合中,如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为快速重传;如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
结合第一方面及其上述实现方式,在第一方面的第九种实现方式中,当该N个传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为无速率传输;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
结合第一方面及其上述实现方式,在第一方面的第十种实现方式中,当该N个传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为标准重传;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码或Turbo码。
第二方面,提供了一种传输信息的方法,该方法包括:确定第一传输状态,该第一传输状态是该发送端设备在第二时段期间的传输状态;根据预设的第一映射关系信息,确定与该第一传输状态相对应的第一调制参量集合,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第一传输状态属于该N个传输状态,该调制参量集合包括以下至少一个:星座点集合和码本,N≥2;根据该第一调制参量集合进行调制处理,以生成第一符号序列,并在第一时段,向接收端设备传输该第一符号序列,其中,该第二时段处于该第一时段之后。
结合第二方面,在第二方面的第一种实现方式中,该方法还包括:根据预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数集合,其中,该第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,该方法还包括:在该第二时段,根据该第二传输参数集合,向该接收端设备传输第二符号序列。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
结合第二方面及其上述实现方式,在第二方面的第四种实现方式中,该在第一时段,向接收端设备传输该第一符号序列,包括:当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,根据预设的第一传输参数集合,向接收端设备传输该第一符号序列,该第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第二方面及其上述实现方式,在第二方面的第五种实现方式中,该N个传输状态包括以下状态中的至少一个状态:小包传输状态、普通传输状态及大吞吐量传输状态。
结合第二方面及其上述实现方式,在第二方面的第六种实现方式中,当该N个传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为快速重传;如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
结合第二方面及其上述实现方式,在第二方面的第七种实现方式中,当该N个传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为无速率传输;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
结合第二方面及其上述实现方式,在第二方面的第八种实现方式中,当该N个传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为标准重传;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码或Turbo码。
第三方面,提供了一种确定传输状态的装置,该装置包括:接收单元,用于在第一时段,接收发送端设备发送的第一符号序列;确定单元,用于根据该第一符号序列,确定第一调制参量集合,其中,该第一调制参量集合是 该发送端设备进行用于生成该第一符号序列的调制处理时使用的调制参量集合,该调制参量集合包括以下至少一个:星座点集合和码本,并用于根据预设的第一映射关系信息,确定与该第一调制参量集合相对应的第一传输状态,作为该发送端设备在第二时段期间的传输状态,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第一传输状态属于该N个传输状态,该第二时段处于该第一时段之后,N≥2。
结合第三方面,在第三方面的第一种实现方式中,该确定单元还用于根据预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数集合,其中,该第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,该接收单元还用于在该第二时段,根据该第二传输参数集合,接收该发送端设备传输第二符号序列。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
结合第三方面及其上述实现方式,在第三方面的第四种实现方式中,该接收单元具体用于当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,接收端设备在第一时段,根据预设的第一传输参数集合,接收发送端设备发送的第一符号序列,该第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第三方面及其上述实现方式,在第三方面的第五种实现方式中,该确定单元具体用于从该第一符号序列中截取子符号序列,该子符号序列包括至少两个符号;用于根据该子符号序列,确定第一调制参量集合。
结合第三方面及其上述实现方式,在第三方面的第六种实现方式中,该子符号序列是该第一符号序列中的前K个符号,K为预设值,K≥2;或该 子符号序列包括该第一符号序列中在该接收端设备与该网络设备之间的信道质量满足预设条件时接收到的符号。
结合第三方面及其上述实现方式,在第三方面的第七种实现方式中,该N个传输状态包括以下状态中的至少一个状态:小包传输状态、普通传输状态及大吞吐量传输状态。
结合第三方面及其上述实现方式,在第三方面的第八种实现方式中,当该N个传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为快速重传;如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
结合第三方面及其上述实现方式,在第三方面的第九种实现方式中,当该N个传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为无速率传输;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
结合第三方面及其上述实现方式,在第三方面的第十种实现方式中,当该N个传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为标准重传;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码或Turbo码。
第四方面,提供了一种传输信息的装置,该装置包括:确定单元,用于确定第一传输状态,该第一传输状态是该发送端设备在第二时段期间的传输状态,用于根据预设的第一映射关系信息,确定与该第一传输状态相对应的第一调制参量集合,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第一传输状态属于该N个传输状态,该调制参量集合包括以下至少一个:星座点集合和码本,N≥2;发送单元,用于根据该第一调制参量集合进行调制处理,以生成第一符号序列,并在第一时段,向接收端设备传输该第一符号序列,其中,该第二时段处于该第一时段之后。
结合第四方面,在第四方面的第一种实现方式中,该确定单元还用于根据预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数 集合,其中,该第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,该发送单元还用于在该第二时段,根据该第二传输参数集合,向该接收端设备传输第二符号序列。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
结合第四方面及其上述实现方式,在第四方面的第四种实现方式中,该发送单元具体用于当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,根据预设的第一传输参数集合,向接收端设备传输该第一符号序列,该第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第四方面及其上述实现方式,在第四方面的第五种实现方式中,该N个传输状态包括以下状态中的至少一个状态:小包传输状态、普通传输状态及大吞吐量传输状态。
结合第四方面及其上述实现方式,在第四方面的第六种实现方式中,当该N个传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为快速重传;如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
结合第四方面及其上述实现方式,在第四方面的第七种实现方式中,当该N个传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为无速率传输;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
结合第四方面及其上述实现方式,在第四方面的第八种实现方式中,当该N个传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数 集合中,如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为标准重传;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码或Turbo码。
第五方面,提供了一种确定传输状态的设备,该设备包括:总线;与该总线相连的处理器;与该总线相连的存储器;与该总线相连的接收机;其中,该处理器通过该总线,调用该存储器中存储的程序,以用于在第一时段,控制该接收机接收发送端设备发送的第一符号序列;用于根据该第一符号序列,确定第一调制参量集合,其中,该第一调制参量集合是该发送端设备进行用于生成该第一符号序列的调制处理时使用的调制参量集合,该调制参量集合包括以下至少一个:星座点集合和码本;用于根据预设的第一映射关系信息,确定与该第一调制参量集合相对应的第一传输状态,作为该发送端设备在第二时段期间的传输状态,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第一传输状态属于该N个传输状态,该第二时段处于该第一时段之后,N≥2。
结合第五方面,在第五方面的第一种实现方式中,该处理器还用于根据预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数集合,其中,该第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第五方面及其上述实现方式,在第五方面的第二种实现方式中,该处理器还用于在该第二时段,根据该第二传输参数集合,控制该接收机接收该发送端设备传输第二符号序列。
结合第五方面及其上述实现方式,在第五方面的第三种实现方式中,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
结合第五方面及其上述实现方式,在第五方面的第四种实现方式中,该处理器具体用于当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,在第一时段,根据预设的 第一传输参数集合,控制该接收机接收发送端设备发送的第一符号序列,该第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第五方面及其上述实现方式,在第五方面的第五种实现方式中,该处理器具体用于从该第一符号序列中截取子符号序列,该子符号序列包括至少两个符号;用于根据该子符号序列,确定第一调制参量集合。
结合第五方面及其上述实现方式,在第五方面的第六种实现方式中,该子符号序列是该第一符号序列中的前K个符号,K为预设值,K≥2;或该子符号序列包括该第一符号序列中在该接收端设备与该网络设备之间的信道质量满足预设条件时接收到的符号。
结合第五方面及其上述实现方式,在第五方面的第七种实现方式中,该N个传输状态包括以下状态中的至少一个状态:小包传输状态、普通传输状态及大吞吐量传输状态。
结合第五方面及其上述实现方式,在第五方面的第八种实现方式中,当该N个传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为快速重传;如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
结合第五方面及其上述实现方式,在第五方面的第九种实现方式中,当该N个传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为无速率传输;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
结合第五方面及其上述实现方式,在第五方面的第十种实现方式中,当该N个传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为标准重传;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码或Turbo码。
第六方面,提供了一种传输信息的设备,该设备包括:总线;与该总线相连的处理器;与该总线相连的存储器;与该总线相连的发射机;其中,该处理器通过该总线,调用该存储器中存储的程序,以用于确定第一传输状态, 该第一传输状态是该发送端设备在第二时段期间的传输状态;用于根据预设的第一映射关系信息,确定与该第一传输状态相对应的第一调制参量集合,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第一传输状态属于该N个传输状态,该调制参量集合包括以下至少一个:星座点集合和码本,N≥2;用于根据该第一调制参量集合进行调制处理,以生成第一符号序列,并在第一时段,控制该发射机向接收端设备传输该第一符号序列,其中,该第二时段处于该第一时段之后。
结合第六方面,在第六方面的第一种实现方式中,该处理器还用于根据预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数集合,其中,该第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第六方面及其上述实现方式,在第六方面的第二种实现方式中,该处理器还用于在该第二时段,根据该第二传输参数集合,控制该发射机向该接收端设备传输第二符号序列。
结合第六方面及其上述实现方式,在第六方面的第三种实现方式中,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
结合第六方面及其上述实现方式,在第六方面的第四种实现方式中,该处理器具体用于当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,根据预设的第一传输参数集合,控制该发射机向接收端设备传输该第一符号序列,该第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
结合第六方面及其上述实现方式,在第六方面的第五种实现方式中,该N个传输状态包括以下状态中的至少一个状态:小包传输状态、普通传输状态及大吞吐量传输状态。
结合第六方面及其上述实现方式,在第六方面的第六种实现方式中,当该N个传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数 集合中,如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为快速重传;如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
结合第六方面及其上述实现方式,在第六方面的第七种实现方式中,当该N个传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为无速率传输;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
结合第六方面及其上述实现方式,在第六方面的第八种实现方式中,当该N个传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数集合中,如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;如果该传输参数包括重传策略,则该重传策略为标准重传;如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码或Turbo码。
根据本发明实施例的传输信息的方法、装置和设备,发送端设备可以确定与该发送端设备在第二时段的传输状态相对应的调制参量集合,并在处于该第二时段之前的第一时段,基于该调制参量集合对需要发送给接收端设备的数据进行调制处理,并将所生成的符号发送给接收端设备,从而,接收端设备可以根据所接收到的符号,确定发送端设备所使用的调制参量集合,进而可以确定与该调制参量集合相对应的该发送端设备在第二时段的传输状态,因此,发送端设备和接收端设备可以在第二时段选择与该传输状态相对应的空口传输的技术,减少交互流程和系统资源开销便能够完成传输状态的通知,从而能够简化发送端设备和接收端设备之间的交互,降低通信资源的开销。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是适用本发明的传输信息的方法的通信系统的示意图。
图2是根据本发明一实施例的传输信息的方法的示意性流程图。
图3是根据本发明一实施例的调制参量集合的示意图。
图4是根据本发明另一实施例的传输信息的方法的示意性流程图。
图5是根据本发明一实施例的传输信息的装置的示意性结构图。
图6是根据本发明另一实施例的传输信息的装置的示意性结构图。
图7是根据本发明一实施例的传输信息的设备的示意性结构图。
图8是根据本发明另一实施例的传输信息的设备的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本发明结合终端设备描述了各个实施例。终端设备也可以称为用户设备(UE,User Equipment)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
此外,本发明结合网络设备描述了各个实施例。该网络设备可以是例如, 基站等设备,基站可用于与移动设备通信,基站可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的基站设备。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是使用本发明的传输信息的方法的通信系统的示意图。如图1所示,该通信系统100包括基站102,基站102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。基站102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
基站102可以与多个用户设备(例如用户设备116和用户设备122)通信。然而,可以理解,基站102可以与类似于用户设备116或122的任意数目的用户设备通信。用户设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,用户设备116与天线112和114通信,其中天线112和114 通过前向链路118向用户设备116发送信息,并通过反向链路120从用户设备116接收信息。此外,用户设备122与天线104和106通信,其中天线104和106通过前向链路124向用户设备122发送信息,并通过反向链路126从用户设备122接收信息。
例如,在频分双工(FDD,Frequency Division Duplex)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(TDD,Time Division Duplex)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为基站102的扇区。例如,可将天线组设计为与基站102覆盖区域的扇区中的用户设备通信。在基站102通过前向链路118和124分别与用户设备116和122进行通信的过程中,基站102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与基站通过单个天线向它所有的用户设备发送信号的方式相比,在基站102利用波束成形向相关覆盖区域中随机分散的用户设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,基站102、用户设备116或用户设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
需要说明的是,在使用本发明实施例的传输信息的方法和装置的通信系统100中,多个终端设备可以复用同一时频资源与基站进行数据传输,并且,作为上述同一时频资源,例如,在以资源单元(RE,Resource Element)为单位的时频资源划分方式下,上述时频资源可以是由多个RE组成的时频资源块(也可以称为时频资源组),并且,该多个RE可以是在时域上的位置相同(即,对应相同的符号)且在频域上的位置相异(即,对应不同子的载波),或者,该多个RE可以是在时域上的位置相异(即,对应不同的符号)且在频域上的位置相同(即,对应相同的子载波),本发明并未特别限定。
作为上述通信系统100的一例,可以列举稀疏码分多址(SCMA,Sparse Code Multiple Access)系统,在该系统中,多个用户复用同一个时频资源块进行数据传输。每个资源块由若干资源RE组成,这里的RE可以是OFDM技术中的子载波-符号单元,也可以是其它空口技术中时域或频域的资源单元。例如,在一个包含K个UE的SCMA系统中,可用资源分成若干正交的时频资源块,每个资源块含有L个RE,其中,该L个RE可以是在时域上的位置相同。当UE#k发送数据时,首先将待发送数据分成S比特大小的数据块,通过查找码本(由基站确定并下发给该UE)将每个数据块映射成一组调制符号X#k={X#k1,X#k2,…,X#kL},每个调制符号对应资源块中一个RE,然后根据调制符号生成信号波形。对于S比特大小的数据块,每个码本含有2S个不同的调制符号组,对应2S种可能的数据块。
另外,在SCMA中,每个终端设备所对应的组调制符号X#k={X#k1,X#k2,…,X#kL}中,至少一个符号为零符号,并且,至少一个符号为非零符号。即,针对一个终端设备的数据,在L个RE中,只有部分RE(至少一个RE)承载有该终端设备的数据。
应理解,以上列举的SCMA系统仅为适用本发明的调整调制编码阶数的方法和装置的通信系统的一例,本发明并不限定于此,任何涉及发送端设备与接收端设备根据传输状态进行数据传输的通信系统均落入本发明的保护范围内。
为了便于理解和说明,在以下实施例中,在未特别说明的情况下,以在该SCMA系统中的应用为例,对本发明实施例的传输信息的方法进行说明。
并且,由于在SCMA系统中,多个用户设备复用同一时频资源与基站进行传输,因此,基站在同一时刻可能与多个用户设备进行数据传输,由于基站与各用户设备传输数据的过程类似,为了便于理解和说明,以下,以基站与多个UE中的UE#1(即,第一用户设备的一例)传输数据的流程为例进行说明。
图2示出了从接收端设备描述的根据本发明一实施例的传输信息的方法200的示意性流程图。如图2所示,该方法200包括:
S210,接收端设备在第一时段,接收发送端设备发送的第一符号序列;
S220,根据该第一符号序列,确定第一调制参量集合,其中,该第一调制参量集合是该发送端设备进行用于生成该第一符号序列的调制处理时使 用的调制参量集合,该第一传输状态属于该N个传输状态,该调制参量集合包括以下至少一个:星座点集合和码本;
S230,根据预设的第一映射关系信息,确定与该第一调制参量集合相对应的第一传输状态,作为该发送端设备在第二时段期间的传输状态,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第二时段处于该第一时段之后,N≥2。
在本发明实施例中,该方法200可以应用于上行传输,即,发送端设备可以是终端设备,接收端设备可以是网络设备(例如,基站),或者,方法200可以应用于下行传输,即,发送端设备可以是基站,接收端设备可以是用户设备,本发明并未特别限定,以下,为了便于理解和说明,以应用于上行传输时的过程为例,对该方法200进行详细说明。
具体地说,UE#1可以确定生成需要发送至基站的信息比特,该过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
并且,UE#1可以基于预先存储的调制参量集合,对上述信息比特进行调制处理,以生成调制符号(即,第一符号序列),在本发明实施例中,可以预先存储多个(N个)调制参量集合供UE#1选择。
在本发明实施例中,该调制参量集合可以为星座点集合也可以为码本,本发明并未特别限定,可以根据所应用的通信系统所采用的传输方式进行选择。
例如,在应用于单用户传输的场景时,可以选择星座点集合作为调制参量集合。
再例如,在应用于多用户传输的场景(例如,应用于SCMA系统)时,可以选择码本作为调制参量集合。其中,码字是一种信息比特到传输符号的映射关系。码本是码字集合,即,上述映射关系的集合。
即,可选地,该调制参量集合包括码本,该码本为码字的集合,该码字用于指示信息比特与调制符号之间的映射关系。
可选地,该码字为稀疏码分多址SCMA码字,该码本为SCMA码本。
并且,基于星座点集合或码本进行调制处理的方法和过程可以与现有技术相同,这里为了避免赘述省略其详细说明
图3示出了本发明实施例中可供选择的调制参量集合的示意图,如图3 所示,该N个调制参量集合可以包括星座点集合S1、星座点S2和星座点集合S3,并且,上述星座点集合可以通过例如相位变化(例如,相位旋转)的方式获得,也可以通过幅度变化的方式获得,也可以通过相位和幅度同时变化的方式获得,本发明并未特别限定。
并且,在本发明实施例中,该N个调制参量集合可以N个传输状态(或者,也可以称为用户状态)可以具有一一对应关系。
可选地,该传输状态包括以下状态中的至少一个状态:
小包传输状态、普通传输状态及大吞吐量传输状态。
具体地说,小包传输状态是指所发送业务的数据包较小(例如,大小在1kb以下),例如,传输文字信息的业务等。
普通传输状态是指所发送的业务的数据包在正常范围之内(例如,大小在1kb至1Mb之间),例如,图片传输、网页浏览等。
大吞吐量传输状态是指所发送业务的数据包较大(例如,大小在1Mb以上),例如,视频访问业务或在线游戏业务等。
以下表1示出了用于指示上述N个调制参量集合(以星座点集合为例)与N个传输状态之间的对应关系的表项(即,第一映射关系信息的一例)。
表1
传输状态 星座点集合
小包传输状态 S1
普通传输状态 S2
大吞吐量传输状态 S3
应理解,以上列举的各传输状态所对应的调制参量集合仅为示例性说明,本发明并未限定于此,在发送端与接收端所确定的传输状态与调制参量集合之间的映射关系一致的情况下,并且,在一个调制参量集合唯一地对应一个传输状态的前提下,可以任意变更各传输状态所对应的调制参量集合。
并且,以上列举的传输状态包括三个传输状态的情况,但本发明并未限定于此,也可以包括上述任意数量的状态,并且,还可以引入其他状态,例如,未接入状态(或者说,不发射状态),未接入状态是指发送端没有数据或信息需要传输。并且,在未接入状态下,发送端不会向接收端发送数据,因此不涉及使用星座点进行调制和解调,因此未接入状态可以不与任何调制参量集合相对应。
类似的,基站也可以通过相似的方法和流程获取第一映射关系信息。
在如上所述获取第一映射关系信息之后,UE#1可以判定其第二时段的传输状态,以下,为了便于理解和说明,记做传输状态#A,例如,UE#1可以根据在第二时段所访问的业务,确定传输状态#A,例如,如果在第二时段所访问的业务为网页浏览或聊天等涉及文字传输的业务,则可以确定传输状态#A为小包传输状态,如果在第二时段所访问的业务为在线游戏或视频下载业务,则可以确定传输状态#A为大吞吐量传输状态。
需要说明的是,上述第二时段是指将来的一个时段,即,该第二时段的起点距当前时刻的时长大于预设的阈值,并且,该阈值可以根据发送端设备与接收端设备之间完成一次数据传输所需要的时长确定,以确保接收端设备能够在第二时段之前获知发送端设备在第二时段的传输状态。
在确定传输状态#A之后,UE#1可以基于上述第一映射关系信息(例如,上述表1)确定与该传输状态#A对应的调制参量集合,以下,为了便于理解和说明,记做调制参量集合#A。
从而,UE#1可以根据该调制参量集合#A对上述信息比特进行调制处理,以生成第一符号序列,并且,上述调制处理的方法和流程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
其后,UE#1可以在上述第二时段之前的时段(即,第一时段,例如,可以包含当前时刻T),向基站发送上述第一符号序列。
在本发明实施例中,UE#1可以判定在第一时段进行的传输是否为连续传输,并根据判定结果,选择传输参数,以向基站发送上述第一符号序列。
作为上述判定的方法,例如,UE#1可以判定在第一时段之前(处于规定时长范围内)是否与基站发生数据传输,如果是,则可以沿用之前传输时使用的传输参数,如果否,则使用预设的默认传输参数(即,第一传输参数集合的一例)。
即,可选地,该在第一时段,向接收端设备传输该第一符号序列,包括:
当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,根据预设的第一传输参数集合,向接收端设备传输该第一符号序列。
根据本发明实施例的传输信息的方法,通过在第一时段向接收端设备传输该第一符号序列之前,确定该发送端设备与所接收端设备之间在处于该第 一时段之前的第一预设时长范围是否发生信息传输,能够使发送端设备与接收端设备所选择的传输参数一致,进一步提高传输的可靠性。
在UE#1在第一时段发送该第一符号序列之后,相应的,基站可以接收该第一符号序列,需要说明的是,基站接收该第一符号序列的时刻处于第二时段之前。
同样,基站可以判定在第一时段进行的传输是否为连续传输,并根据判定结果,选择传输参数,以接收UE#1发送的上述第一符号序列。
作为上述判定的方法,例如,基站可以判定在第一时段之前(处于规定时长范围内)是否与UE#1发生数据传输,如果是,则可以沿用之前传输时使用的传输参数,如果否,则使用预设的默认传输参数(即,第一传输参数集合的一例)。并且,在本发明实施例中,使用传输参数接收调制符号的过程可以与现有技术相似,为了避免赘述,省略其详细说明。
在接收到上述第一符号序列之后,基站可以判定UE#1在进行用于生成该第一符号序列的调制处理时所使用的调制参量集合。
作为判定方法,可以列举以下过程:
可选地,该根据该第一符号序列,确定第一调制参量集合,包括:
从该第一符号序列中截取子符号序列,该子符号序列包括至少两个符号;
根据该子符号序列,确定第一调制参量集合。
具体地说,首先,基站可以从第一符号序列中截取一段子符号序列(包括至少两个符号)。
可选地,该子符号序列是该第一符号序列中的前K个符号,K为预设值,K≥2;或
该子符号序列包括该第一符号序列中在该接收端设备与该网络设备之间的信道质量满足预设条件时接收到的符号。
具体地说,该子符号序列可以是最先接收到的多个符号,也可以是在信道环境较好时接收到的多个符号。
之后,基站可以针对上述N个调制参量集合(例如,包括上述S1、S2、S3),分别采用信息传递算法进行解码,并获得上述子符号序列中各个符号的对数似然比(LLR,Likelihood Rate)值。
最后,可以分别对基于上述N个调制参量集合所获得的各个符号的LLR 值采用先取绝对值再求和,得到N个调制参量集合所对应的LLR值总和,并将所对应的LLR值总和最大的调制参量集合确认为UE#1在进行用于生成该第一符号序列的调制处理时所使用的调制参量集合,即,调制参量集合#A。
应理解,以上列举的接收端设备确定发送端设备在进行调制处理时所使用的调制参量集合的方法和过程仅为示例性说明,本发明并未限定于此。例如,也可以将第一符号序列的整个序列作为上述子符号序列执行上述判定过程。
其后,基站可以根据上述第一映射关系信息,确定与该调制参量集合#A相对应的传输状态,即,传输状态#A,并将该传输状态#A确认为UE#1在第二时段的传输状态。
可选地,该方法还包括:
根据预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数集合,其中,该第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
具体地说,在本发明实施例中,对于不同的传输状态,发送端设备和接收端设备可以采用不同的传输技术,或者说,传输参数集合。该传输参数集合可以包括以下参数,例如,帧结构、重传策略、编码调制方案等,从而能够灵活利用上述各种空口传输的技术,提高通信质量,改善用户体验。
作为示例而非限定,在本发明实施例中,针对各传输状态,可以采用以下传输技术。
A.针对小包传输状态
当该传输状态包括该小包传输状态时,在该小包传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为快速重传;
如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
具体地说,由于小包传输状态所传输的数据包较小(小于1kb),因此,仅需帧长较小的帧结构便能够满足传输要求,从而能够提高传输速率,降低 接收端设备和发送端设备双方的功耗,减少对系统资源的开销。
由于小包传输状态所传输的数据包较小(小于1kb),因此,通过将重传策略设定为快速重传,能够提高传输速率,降低接收端设备和发送端设备双方的功耗,减少对系统资源的开销。
由于小包传输状态所传输的数据包较小(小于1kb),因此,通过采用多元低密度奇偶校验码或极化码等这类专门针对短包长进行优化的调制编码方式,能够提高传输速率,降低接收端检测的误码概率。
应理解,以上列举的小包传输状态所对应的传输参数仅为示例性说明,本发明并不限定于此,在小包传输状态下能够发挥效果的各种传输参数均落入本发明的保护范围内。
B.针对大吞吐量传输状态
当该传输状态包括该大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为无速率传输;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
具体地说,由于大吞吐量传输状态所传输的数据包较大(大于1Mb),因此,通过使用帧长较长的帧结构,能够减少控制信令所占用的资源比例,从而提高传输速率,降低接收端设备和发送端设备双方的功耗。
由于大吞吐量传输状态所传输的数据包较大(大于1Mb),因此,通过将重传策略设定为无速率传输,能够显著降低系统反馈的数量,从而提高传输速率,减少对系统资源的开销。
由于大吞吐量传输状态所传输的数据包较大(大于1Mb),因此,通过使用低密度奇偶校验码等适合长码块传输的调制编码方式,能够很好的平衡复杂度和系统误码性能,从而提高传输速率,降低接收端设备和发送端设备双方的功耗。
应理解,以上列举的大吞吐量传输状态所对应的传输参数仅为示例性说明,本发明并不限定于此,在大吞吐量传输状态下能够发挥效果的各种传输参数均落入本发明的保护范围内。
C.针对普通传输状态
当该传输状态包括该普通传输状态时,在该普通传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为标准重传;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码或涡轮码Turbo码。
应理解,以上列举的普通传输状态所对应的传输参数仅为示例性说明,本发明并不限定于此,在普通传输状态下能够发挥效果的各种传输参数均落入本发明的保护范围内。
并且,以上列举的传输参数集合所包括的具体物理量仅为示例性说明,本发明并未限定于此,例如,还可以包括发射波形。
当该传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数集合中,如果该传输参数包括发射波形,则该发射波形为滤波器正交频分复用F-OFDM波形或正交频分复用OFDM波形;
当该传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,如果该传输参数包括发射波形,则该发射波形为载波聚合波形;
当该传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数集合中,如果该传输参数包括发射波形,则该发射波形为OFDM波形。
具体地说,小包传输占用的频谱资源较少,所以需要选用占用带宽小,频谱边带泄漏小的波形,例如F-OFDM。
大吞吐量传输则需要集中大量的频谱资源同时传输,所以需要考虑采用频谱聚合的波形,将多个频段集中起来。
以下表2示出了用于指示上述N个传输状态与N个传输参数集合之间的对应关系的表项(即,第二映射关系信息的一例)。
表2
Figure PCTCN2014091899-appb-000001
Figure PCTCN2014091899-appb-000002
应理解,在本发明实施例中,传输参数集合所包括的传输参数的数量可以是任意的,本发明并未特别限定。
并且,以上列举的传输状态包括三个传输状态的情况,但本发明并未限定于此,也可以包括上述任意数量的状态,并且,还可以引入其他状态,例如,未接入状态(或者说,不发射状态),未接入状态是指发送端没有数据或信息需要传输。并且,在未接入状态下,发送端不会向接收端发送数据,因此不涉及使用传输参数的使用,因此未接入状态可以不与任何传输参数集合相对应。
类似的,基站也可以通过相似的方法和流程获取第二映射关系信息。
从而,基站可以根据上述第二映射关系信息,确定与该传输状态#A相对应的传输参数集合,为了便于理解,以下,记做传输参数集合#A。
可选地,该方法还包括:
在该第二时段,根据该第二传输参数集合,接收该发送端设备传输第二符号序列。
具体地说,返回UE#1的处理,UE#1判定已进入第二时段后,UE#1可以对需要发送给基站的数据进行调制处理以生成第二符号序列,并通过传输参数集合#A向基站发送该第二符号序列。
可选地,该在第二时段,根据该第二传输参数集合,向该接收端设备传输第二符号序列,包括:
确定第二传输状态,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后;
根据该第一映射关系信息,从该N个调制参量集合中,确定与该第二传输状态相对应的第二调制参量集合;
根据该第二调制参量集合进行调制处理以生成第二符号序列;
在第二时段,根据该第二传输参数集合,向该接收端设备传输该第二符号序列。
即,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的 符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
具体地说,在UE#1进行调制处理以生成第二符号序列时,可以确定在第三时段(处于第二时段之后)的传输状态,以下,为了便于理解和说明,记做传输状态#B,并根据上述第一映射关系信息确定与该传输状态#B相对应的调制参量集合,以下,为了便于理解和说明,记做调制参量集合#B。
从而,可以根据调制参量集合#B进行上述调制处理以生成第二符号序列。
相对应地,基站可以根据如上所述确定的输参数集合#A,接收上述第二符号序列,并且,可以确定UE#1在进行用于生成该第二符号序列的调制处理时使用的调制参量集合,即调制参量集合#B,进而确定与该调制参量集合#B相对应的传输参数集合,以下,为了便于理解和说明,记做输参数集合#B。
从而,在第三时段,UE#1和基站可以输参数集合#B传输信息。
应理解,以上列举的第一映射关系信息和第二映射关系信息记录于两个表项的情况仅为示例性说明,本发明并未限定于此,也可以在同一个表项中,记录调制参量集合、传输状态和传输参数集合三者之间的映射关系。
在本发明实施例中,传输状态也可以称为用户状态,是根据用户设备的状态(例如,用户设备所访问的业务等)确定的,因此,根据该传输状态进行通信,能够使通信适应于用户设备的需求,从而能够改善用户体验,提高通信的灵活性。
根据本发明实施例的传输信息的方法,发送端设备可以确定与该发送端设备在第二时段的传输状态相对应的调制参量集合,并在处于该第二时段之前的第一时段,基于该调制参量集合对需要发送给接收端设备的数据进行调制处理,并将所生成的符号发送给接收端设备,从而,接收端设备可以根据所接收到的符号,确定发送端设备所使用的调制参量集合,进而可以确定与该调制参量集合相对应的该发送端设备在第二时段的传输状态,因此,发送端设备和接收端设备可以在第二时段选择与该传输状态相对应的空口传输的技术,减少交互流程和系统资源开销便能够完成传输状态的通知,从而能够简化发送端设备和接收端设备之间的交互,降低通信资源的开销。
图4示出了从发送端设备描述的根据本发明一实施例的传输信息的方法 300的示意性流程图。如图4所示,该方法300包括:
S310,确定第一传输状态,该第一传输状态是该发送端设备在第二时段期间的传输状态;
S320,根据预设的第一映射关系信息,确定与该第一传输状态相对应的第一调制参量集合,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第一传输状态属于该N个传输状态,该调制参量集合包括以下至少一个:星座点集合和码本,N≥2;
S330,根据该第一调制参量集合进行调制处理,以生成第一符号序列,并在第一时段,向接收端设备传输该第一符号序列,其中,该第二时段处于该第一时段之后。
可选地,该方法还包括:
根据预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数集合,其中,该第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
可选地,该方法还包括:
在该第二时段,根据该第二传输参数集合,向该接收端设备传输第二符号序列。
可选地,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
可选地,该在第一时段,向接收端设备传输该第一符号序列,包括:
当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,根据预设的第一传输参数集合,向接收端设备传输该第一符号序列,该第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
可选地,该N个传输状态包括以下状态中的至少一个状态:
小包传输状态、普通传输状态及大吞吐量传输状态。
可选地,当该N个传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为快速重传;
如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
可选地,当该N个传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为无速率传输;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
可选地,当该N个传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为标准重传;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码或Turbo码。
可选地,该调制参量集合包括码本,该码本为码字的集合,该码字用于指示信息比特与调制符号之间的映射关系。
可选地,该码字为稀疏码分多址SCMA码字,该码本为SCMA码本。
在方法300中,发送端设备的动作与上述方法200中UE#1的动作相似,接收端设备的动作与上述方法200中基站的动作相似,这里,为了避免赘述,省略其详细说明。
在本发明实施例中,传输状态也可以称为用户状态,是根据用户设备的状态(例如,用户设备所访问的业务等)确定的,因此,根据该传输状态进行通信,能够使通信适应于用户设备的需求,从而能够改善用户体验,提高通信的灵活性。
根据本发明实施例的传输信息的方法,发送端设备可以确定与该发送端设备在第二时段的传输状态相对应的调制参量集合,并在处于该第二时段之前的第一时段,基于该调制参量集合对需要发送给接收端设备的数据进行调 制处理,并将所生成的符号发送给接收端设备,从而,接收端设备可以根据所接收到的符号,确定发送端设备所使用的调制参量集合,进而可以确定与该调制参量集合相对应的该发送端设备在第二时段的传输状态,因此,发送端设备和接收端设备可以在第二时段选择与该传输状态相对应的空口传输的技术,减少交互流程和系统资源开销便能够完成传输状态的通知,从而能够简化发送端设备和接收端设备之间的交互,降低通信资源的开销。
以上,结合图1至图4详细说明了根据本发明实施例的传输信息的方法,下面,结合图5至图6详细说明根据本发明实施例的传输信息的装置。
图5示出了根据本发明实施例的传输信息的装置400的示意性框图。如图5所示,该装置400包括:
接收单元410,用于在第一时段,接收发送端设备发送的第一符号序列;
确定单元420,用于根据该第一符号序列,确定第一调制参量集合,其中,该第一调制参量集合是该发送端设备进行用于生成该第一符号序列的调制处理时使用的调制参量集合,该调制参量集合包括以下至少一个:星座点集合和码本,并用于根据预设的第一映射关系信息,确定与该第一调制参量集合相对应的第一传输状态,作为该发送端设备在第二时段期间的传输状态,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第一传输状态属于该N个传输状态,该第二时段处于该第一时段之后,N≥2。
可选地,该确定单元还用于根据预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数集合,其中,该第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
可选地,该接收单元还用于在该第二时段,根据该第二传输参数集合,接收该发送端设备传输第二符号序列。
可选地,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
可选地,该接收单元具体用于当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,接收端设备在第一时段,根据预设的第一传输参数集合,接收发送端设备发送的第一符号序列,该第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
可选地,该确定单元具体用于从该第一符号序列中截取子符号序列,该子符号序列包括至少两个符号;
用于根据该子符号序列,确定第一调制参量集合。
可选地,该子符号序列是该第一符号序列中的前K个符号,K为预设值,K≥2;或
该子符号序列包括该第一符号序列中在该接收端设备与该网络设备之间的信道质量满足预设条件时接收到的符号。
可选地,该N个传输状态包括以下状态中的至少一个状态:
小包传输状态、普通传输状态及大吞吐量传输状态。
可选地,当该N个传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为快速重传;
如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
可选地,当该N个传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为无速率传输;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
可选地,当该N个传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为标准重传;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校 验码或Turbo码。
可选地,该调制参量集合包括码本,该码本为码字的集合,该码字用于指示信息比特与调制符号之间的映射关系。
可选地,该码字为稀疏码分多址SCMA码字,该码本为SCMA码本。
可选地,该装置为接收端设备,该接收端设备为网络设备。
根据本发明实施例的传输信息的装置400可对应于本发明实施例的方法中的接收端设备(例如,基站),并且,传输信息的装置400中的各单元即模块和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的传输信息的装置,发送端设备可以确定与该发送端设备在第二时段的传输状态相对应的调制参量集合,并在处于该第二时段之前的第一时段,基于该调制参量集合对需要发送给接收端设备的数据进行调制处理,并将所生成的符号发送给接收端设备,从而,接收端设备可以根据所接收到的符号,确定发送端设备所使用的调制参量集合,进而可以确定与该调制参量集合相对应的该发送端设备在第二时段的传输状态,因此,发送端设备和接收端设备可以在第二时段选择与该传输状态相对应的空口传输的技术,减少交互流程和系统资源开销便能够完成传输状态的通知,从而能够简化发送端设备和接收端设备之间的交互,降低通信资源的开销。
图6示出了根据本发明实施例的传输信息的装置500的示意性框图。如图6所示,该装置500包括:
确定单元510,用于确定第一传输状态,该第一传输状态是该发送端设备在第二时段期间的传输状态,用于根据预设的第一映射关系信息,确定与该第一传输状态相对应的第一调制参量集合,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第一传输状态属于该N个传输状态,该调制参量集合包括以下至少一个:星座点集合和码本,N≥2;
发送单元520,用于根据该第一调制参量集合进行调制处理,以生成第一符号序列,并在第一时段,向接收端设备传输该第一符号序列,其中,该第二时段处于该第一时段之后。
可选地,该确定单元还用于根据预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数集合,其中,该第二映射关系信息用于指 示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
可选地,该发送单元还用于在该第二时段,根据该第二传输参数集合,向该接收端设备传输第二符号序列。
可选地,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
可选地,该发送单元具体用于当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,根据预设的第一传输参数集合,向接收端设备传输该第一符号序列,该第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
可选地,该N个传输状态包括以下状态中的至少一个状态:
小包传输状态、普通传输状态及大吞吐量传输状态。
可选地,当该N个传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为快速重传;
如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
可选地,当该N个传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为无速率传输;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
可选地,当该N个传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为标准重传;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码或Turbo码。
可选地,该调制参量集合包括码本,该码本为码字的集合,该码字用于指示信息比特与调制符号之间的映射关系。
可选地,该码字为稀疏码分多址SCMA码字,该码本为SCMA码本。
可选地,该装置为发送端设备,该发送端设备为终端设备。
根据本发明实施例的传输信息的装置500可对应于本发明实施例的方法中的发送端设备(例如,UE#1),并且,传输信息的装置500中的各单元即模块和上述其他操作和/或功能分别为了实现图4中的方法300的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的传输信息的装置,发送端设备可以确定与该发送端设备在第二时段的传输状态相对应的调制参量集合,并在处于该第二时段之前的第一时段,基于该调制参量集合对需要发送给接收端设备的数据进行调制处理,并将所生成的符号发送给接收端设备,从而,接收端设备可以根据所接收到的符号,确定发送端设备所使用的调制参量集合,进而可以确定与该调制参量集合相对应的该发送端设备在第二时段的传输状态,因此,发送端设备和接收端设备可以在第二时段选择与该传输状态相对应的空口传输的技术,减少交互流程和系统资源开销便能够完成传输状态的通知,从而能够简化发送端设备和接收端设备之间的交互,降低通信资源的开销。
以上,结合图1至图4详细说明了根据本发明实施例的传输信息的方法,下面,结合图7至图8详细说明根据本发明实施例的传输信息的设备。
图7示出了根据本发明实施例的传输信息的设备600的示意性框图。如图7所示,该设备600包括:
总线610;
与该总线相连的处理器620;
与该总线相连的存储器630;
与该总线相连的接收机640;
其中,该处理器通过该总线,调用该存储器中存储的程序,以用于在第一时段,控制该接收机接收发送端设备发送的第一符号序列;
用于根据该第一符号序列,确定第一调制参量集合,其中,该第一调制参量集合是该发送端设备进行用于生成该第一符号序列的调制处理时使用 的调制参量集合,该调制参量集合包括以下至少一个:星座点集合和码本;
用于根据预设的第一映射关系信息,确定与该第一调制参量集合相对应的第一传输状态,作为该发送端设备在第二时段期间的传输状态,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第一传输状态属于该N个传输状态,该第二时段处于该第一时段之后,N≥2。
可选地,该处理器还用于根据预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数集合,其中,该第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
可选地,该处理器还用于在该第二时段,根据该第二传输参数集合,控制该接收机接收该发送端设备传输第二符号序列。
可选地,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
可选地,该处理器具体用于当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,在第一时段,根据预设的第一传输参数集合,控制该接收机接收发送端设备发送的第一符号序列,该第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
可选地,该处理器具体用于从该第一符号序列中截取子符号序列,该子符号序列包括至少两个符号;
用于根据该子符号序列,确定第一调制参量集合。
可选地,该子符号序列是该第一符号序列中的前K个符号,K为预设值,K≥2;或
该子符号序列包括该第一符号序列中在该接收端设备与该网络设备之间的信道质量满足预设条件时接收到的符号。
可选地,该N个传输状态包括以下状态中的至少一个状态:
小包传输状态、普通传输状态及大吞吐量传输状态。
可选地,当该N个传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为快速重传;
如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
可选地,当该N个传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为无速率传输;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
可选地,当该N个传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为标准重传;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码或Turbo码。
本发明实施例可应用于各种通信设备。
设备600的接收机可以包括接收电路、功率控制器、解码器及天线,并且,设备600还可以包括发射机,接收机可以包括发射电路、功率控制器、编码器及天线。
可选地,该调制参量集合包括码本,该码本为码字的集合,该码字用于指示信息比特与调制符号之间的映射关系。
可选地,该码字为稀疏码分多址SCMA码字,该码本为SCMA码本。
可选地,该设备为接收端设备,该接收端设备为网络设备。
处理器还可以称为CPU。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,设备600可以嵌入或者本身可以就是例如移动电话之类的无线通信设备或者基站等网络设备,还可以包括容纳发射电路和接收电路的载体,以允许设备600和远程位置之间进行数据发射 和接收。发射电路和接收电路可以耦合到天线。设备600的各个组件通过总线耦合在一起,其中,总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚明起见,在图中将各种总线都标为总线610。具体的不同产品中解码器可能与处理单元集成为一体。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,解码器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用解码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
应理解,在本发明实施例中,该处理器620可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器620还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器620可以包括只读存储器和随机存取存储器,并向处理器610提供指令和数据。存储器620的一部分还可以包括非易失性随机存取存储器。例如,存储器620还可以存储设备类型的信息。
该总线系统630除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统630。
在实现过程中,上述方法的各步骤可以通过处理器610中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器620,处理器610读取存储器620中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的传输信息的设备600可对应于本发明实施例的方法中的接收端设备(例如,基站),并且,传输信息的设备600中的各单元即模块和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程, 为了简洁,在此不再赘述。
根据本发明实施例的传输信息的设备,发送端设备可以确定与该发送端设备在第二时段的传输状态相对应的调制参量集合,并在处于该第二时段之前的第一时段,基于该调制参量集合对需要发送给接收端设备的数据进行调制处理,并将所生成的符号发送给接收端设备,从而,接收端设备可以根据所接收到的符号,确定发送端设备所使用的调制参量集合,进而可以确定与该调制参量集合相对应的该发送端设备在第二时段的传输状态,因此,发送端设备和接收端设备可以在第二时段选择与该传输状态相对应的空口传输的技术,减少交互流程和系统资源开销便能够完成传输状态的通知,从而能够简化发送端设备和接收端设备之间的交互,降低通信资源的开销。
图8示出了根据本发明实施例的传输信息的设备700的示意性框图。如图8所示,该设备700包括:
总线710;
与该总线相连的处理器720;
与该总线相连的存储器730;
与该总线相连的发射机740;
其中,该处理器通过该总线,调用该存储器中存储的程序,以用于确定第一传输状态,该第一传输状态是该发送端设备在第二时段期间的传输状态;
用于根据预设的第一映射关系信息,确定与该第一传输状态相对应的第一调制参量集合,其中,该第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,该第一调制参量集合属于该N个调制参量集合,该第一传输状态属于该N个传输状态,该调制参量集合包括以下至少一个:星座点集合和码本,N≥2;
用于根据该第一调制参量集合进行调制处理,以生成第一符号序列,并在第一时段,控制该发射机向接收端设备传输该第一符号序列,其中,该第二时段处于该第一时段之后。
可选地,该处理器还用于根据预设的第二映射关系信息,确定与该第一传输状态相对应的第二传输参数集合,其中,该第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,该第二传输参数集合属于该N个传输参数集合,每个传输参数集合包括以下至少一个传输参 数:帧结构、重传策略、编码调制方案。
可选地,该处理器还用于在该第二时段,根据该第二传输参数集合,控制该发射机向该接收端设备传输第二符号序列。
可选地,该第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,该第二调制参量集合与第二传输状态相对应,该第二传输状态是该发送端设备在第三时段期间的传输状态,该第三时段处于该第二时段之后。
可选地,该处理器具体用于当确定该发送端设备与所接收端设备之间在处于该第一时段之前的第一预设时长范围内未发生信息传输时,根据预设的第一传输参数集合,控制该发射机向接收端设备传输该第一符号序列,该第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
可选地,该N个传输状态包括以下状态中的至少一个状态:
小包传输状态、普通传输状态及大吞吐量传输状态。
可选地,当该N个传输状态包括小包传输状态时,在该小包传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长小于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为快速重传;
如果该传输参数包括编码调制方案,则该编码调制方案为多元低密度奇偶校验码或极化码。
可选地,当该N个传输状态包括大吞吐量传输状态时,在该大吞吐量传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长大于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为无速率传输;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校验码。
可选地,当该N个传输状态包括普通传输状态时,在该普通传输状态所对应的传输参数集合中,
如果该传输参数包括帧结构,则该帧结构为帧长等于1ms的帧结构;
如果该传输参数包括重传策略,则该重传策略为标准重传;
如果该传输参数包括编码调制方案,则该编码调制方案为低密度奇偶校 验码或Turbo码。
可选地,该调制参量集合包括码本,该码本为码字的集合,该码字用于指示信息比特与调制符号之间的映射关系。
可选地,该码字为稀疏码分多址SCMA码字,该码本为SCMA码本。
可选地,该设备为发送端设备,该发送端设备为终端设备。
设备700的发射机可以包括发射电路、功率控制器、编码器及天线。设备700还可以包括接收机,接收机可以包括接收电路、功率控制器、解码器及天线。
处理器还可以称为CPU。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,设备700可以嵌入或者本身可以就是例如移动电话之类的无线通信设备或者基站等网络设备,还可以包括容纳发射电路和接收电路的载体,以允许设备700和远程位置之间进行数据发射和接收。发射电路和接收电路可以耦合到天线。设备700的各个组件通过总线耦合在一起,其中,总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚明起见,在图中将各种总线都标为总线710。具体的不同产品中解码器可能与处理单元集成为一体。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,解码器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用解码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
应理解,在本发明实施例中,该处理器720可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器720还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器720可以包括只读存储器和随机存取存储器,并向处理器710提供指令和数据。存储器720的一部分还可以包括非易失性随机存取存储器。例如,存储器720还可以存储设备类型的信息。
该总线系统730除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统730。
在实现过程中,上述方法的各步骤可以通过处理器710中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器720,处理器710读取存储器720中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的传输信息的设备700可对应于本发明实施例的方法中的发送端设备(例如,UE#1),并且,传输信息的设备700中的各单元即模块和上述其他操作和/或功能分别为了实现图4中的方法300的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的传输信息的设备,发送端设备可以确定与该发送端设备在第二时段的传输状态相对应的调制参量集合,并在处于该第二时段之前的第一时段,基于该调制参量集合对需要发送给接收端设备的数据进行调制处理,并将所生成的符号发送给接收端设备,从而,接收端设备可以根据所接收到的符号,确定发送端设备所使用的调制参量集合,进而可以确定与该调制参量集合相对应的该发送端设备在第二时段的传输状态,因此,发送端设备和接收端设备可以在第二时段选择与该传输状态相对应的空口传输的技术,减少交互流程和系统资源开销便能够完成传输状态的通知,从而能够简化发送端设备和接收端设备之间的交互,降低通信资源的开销
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (76)

  1. 一种确定传输状态的方法,其特征在于,所述方法包括:
    接收端设备在第一时段,接收发送端设备发送的第一符号序列;
    根据所述第一符号序列,确定第一调制参量集合,其中,所述第一调制参量集合是所述发送端设备进行用于生成所述第一符号序列的调制处理时使用的调制参量集合,所述调制参量集合包括以下至少一个:星座点集合和码本;
    根据预设的第一映射关系信息,确定与所述第一调制参量集合相对应的第一传输状态,作为所述发送端设备在第二时段期间的传输状态,其中,所述第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,所述第一调制参量集合属于所述N个调制参量集合,所述第一传输状态属于所述N个传输状态,所述第二时段处于所述第一时段之后,N≥2。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据预设的第二映射关系信息,确定与所述第一传输状态相对应的第二传输参数集合,其中,所述第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,所述第二传输参数集合属于所述N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述第二时段,根据所述第二传输参数集合,接收所述发送端设备传输第二符号序列。
  4. 根据权利要求3所述的方法,其特征在于,所述第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,所述第二调制参量集合与第二传输状态相对应,所述第二传输状态是所述发送端设备在第三时段期间的传输状态,所述第三时段处于所述第二时段之后。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述接收端设备在第一时段,接收发送端设备发送的第一符号序列,包括:
    当确定所述发送端设备与所接收端设备之间在处于所述第一时段之前的第一预设时长范围内未发生信息传输时,接收端设备在第一时段,根据预设的第一传输参数集合,接收发送端设备发送的第一符号序列,所述第一传 输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述根据所述第一符号序列,确定第一调制参量集合,包括:
    从所述第一符号序列中截取子符号序列,所述子符号序列包括至少两个符号;
    根据所述子符号序列,确定第一调制参量集合。
  7. 根据权利要求6所述的方法,其特征在于,所述子符号序列是所述第一符号序列中的前K个符号,K为预设值,K≥2;或
    所述子符号序列包括所述第一符号序列中在所述接收端设备与所述网络设备之间的信道质量满足预设条件时接收到的符号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述N个传输状态包括以下状态中的至少一个状态:
    小包传输状态、普通传输状态及大吞吐量传输状态。
  9. 根据权利要求2至8中任一项所述的方法,其特征在于,当所述N个传输状态包括小包传输状态时,在所述小包传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长小于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为快速重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为多元低密度奇偶校验码或极化码。
  10. 根据权利要求2至9中任一项所述的方法,其特征在于,当所述N个传输状态包括大吞吐量传输状态时,在所述大吞吐量传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长大于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为无速率传输;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码。
  11. 根据权利要求2至10中任一项所述的方法,其特征在于,当所述N个传输状态包括普通传输状态时,在所述普通传输状态所对应的传输参数 集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长等于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为标准重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码或Turbo码。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述调制参量集合包括码本,所述码本为码字的集合,所述码字用于指示信息比特与调制符号之间的映射关系。
  13. 根据权利要求12所述的方法,其特征在于,所述码字为稀疏码分多址SCMA码字,所述码本为SCMA码本。
  14. 一种传输信息的方法,其特征在于,所述方法包括:
    确定第一传输状态,所述第一传输状态是所述发送端设备在第二时段期间的传输状态;
    根据预设的第一映射关系信息,确定与所述第一传输状态相对应的第一调制参量集合,其中,所述第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,所述第一调制参量集合属于所述N个调制参量集合,所述第一传输状态属于所述N个传输状态,N≥2,所述调制参量集合包括以下至少一个:星座点集合和码本;
    根据所述第一调制参量集合进行调制处理,以生成第一符号序列,并在第一时段,向接收端设备传输所述第一符号序列,其中,所述第二时段处于所述第一时段之后。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    根据预设的第二映射关系信息,确定与所述第一传输状态相对应的第二传输参数集合,其中,所述第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,所述第二传输参数集合属于所述N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在所述第二时段,根据所述第二传输参数集合,向所述接收端设备传输第二符号序列。
  17. 根据权利要求16所述的方法,其特征在于,所述第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,所述第二调制参量集合与第二传输状态相对应,所述第二传输状态是所述发送端设备在第三时段期间的传输状态,所述第三时段处于所述第二时段之后。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述在第一时段,向接收端设备传输所述第一符号序列,包括:
    当确定所述发送端设备与所接收端设备之间在处于所述第一时段之前的第一预设时长范围内未发生信息传输时,根据预设的第一传输参数集合,向接收端设备传输所述第一符号序列,所述第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述N个传输状态包括以下状态中的至少一个状态:
    小包传输状态、普通传输状态及大吞吐量传输状态。
  20. 根据权利要求15至19中任一项所述的方法,其特征在于,当所述N个传输状态包括小包传输状态时,在所述小包传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长小于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为快速重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为多元低密度奇偶校验码或极化码。
  21. 根据权利要求15至20中任一项所述的方法,其特征在于,当所述N个传输状态包括大吞吐量传输状态时,在所述大吞吐量传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长大于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为无速率传输;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码。
  22. 根据权利要求15至21中任一项所述的方法,其特征在于,当所述N个传输状态包括普通传输状态时,在所述普通传输状态所对应的传输参数 集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长等于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为标准重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码或Turbo码。
  23. 根据权利要求14至22中任一项所述的方法,其特征在于,所述调制参量集合包括码本,所述码本为码字的集合,所述码字用于指示信息比特与调制符号之间的映射关系。
  24. 根据权利要求23所述的方法,其特征在于,所述码字为稀疏码分多址SCMA码字,所述码本为SCMA码本。
  25. 一种确定传输状态的装置,其特征在于,所述装置包括:
    接收单元,用于在第一时段,接收发送端设备发送的第一符号序列;
    确定单元,用于根据所述第一符号序列,确定第一调制参量集合,其中,所述第一调制参量集合是所述发送端设备进行用于生成所述第一符号序列的调制处理时使用的调制参量集合,所述调制参量集合包括以下至少一个:星座点集合和码本,并用于根据预设的第一映射关系信息,确定与所述第一调制参量集合相对应的第一传输状态,作为所述发送端设备在第二时段期间的传输状态,其中,所述第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,所述第一调制参量集合属于所述N个调制参量集合,所述第一传输状态属于所述N个传输状态,所述第二时段处于所述第一时段之后,N≥2。
  26. 根据权利要求25所述的装置,其特征在于,所述确定单元还用于根据预设的第二映射关系信息,确定与所述第一传输状态相对应的第二传输参数集合,其中,所述第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,所述第二传输参数集合属于所述N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  27. 根据权利要求26所述的装置,其特征在于,所述接收单元还用于在所述第二时段,根据所述第二传输参数集合,接收所述发送端设备传输第二符号序列。
  28. 根据权利要求27所述的装置,其特征在于,所述第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,所述第二调制参量集合与第二传输状态相对应,所述第二传输状态是所述发送端设备在第三时段期间的传输状态,所述第三时段处于所述第二时段之后。
  29. 根据权利要求25至28中任一项所述的装置,其特征在于,所述接收单元具体用于当确定所述发送端设备与所接收端设备之间在处于所述第一时段之前的第一预设时长范围内未发生信息传输时,接收端设备在第一时段,根据预设的第一传输参数集合,接收发送端设备发送的第一符号序列,所述第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  30. 根据权利要求25至29中任一项所述的装置,其特征在于,所述确定单元具体用于从所述第一符号序列中截取子符号序列,所述子符号序列包括至少两个符号;
    用于根据所述子符号序列,确定第一调制参量集合。
  31. 根据权利要求30所述的装置,其特征在于,所述子符号序列是所述第一符号序列中的前K个符号,K为预设值,K≥2;或
    所述子符号序列包括所述第一符号序列中在所述接收端设备与所述网络设备之间的信道质量满足预设条件时接收到的符号。
  32. 根据权利要求25至31中任一项所述的装置,其特征在于,所述N个传输状态包括以下状态中的至少一个状态:
    小包传输状态、普通传输状态及大吞吐量传输状态。
  33. 根据权利要求26至32中任一项所述的装置,其特征在于,当所述N个传输状态包括小包传输状态时,在所述小包传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长小于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为快速重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为多元低密度奇偶校验码或极化码。
  34. 根据权利要求26至33中任一项所述的装置,其特征在于,当所述N个传输状态包括大吞吐量传输状态时,在所述大吞吐量传输状态所对应的 传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长大于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为无速率传输;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码。
  35. 根据权利要求26至34中任一项所述的装置,其特征在于,当所述N个传输状态包括普通传输状态时,在所述普通传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长等于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为标准重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码或Turbo码。
  36. 根据权利要求25至35中任一项所述的装置,其特征在于,所述调制参量集合包括码本,所述码本为码字的集合,所述码字用于指示信息比特与调制符号之间的映射关系。
  37. 根据权利要求36所述的装置,其特征在于,所述码字为稀疏码分多址SCMA码字,所述码本为SCMA码本。
  38. 根据权利要求25至37中任一项所述的装置,其特征在于,所述装置为接收端设备,所述接收端设备为网络设备。
  39. 一种传输信息的装置,其特征在于,所述装置包括:
    确定单元,用于确定第一传输状态,所述第一传输状态是所述发送端设备在第二时段期间的传输状态,用于根据预设的第一映射关系信息,确定与所述第一传输状态相对应的第一调制参量集合,其中,所述第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,所述第一调制参量集合属于所述N个调制参量集合,所述第一传输状态属于所述N个传输状态,N≥2,所述调制参量集合包括以下至少一个:星座点集合和码本;
    发送单元,用于根据所述第一调制参量集合进行调制处理,以生成第一符号序列,并在第一时段,向接收端设备传输所述第一符号序列,其中,所 述第二时段处于所述第一时段之后。
  40. 根据权利要求39所述的装置,其特征在于,所述确定单元还用于根据预设的第二映射关系信息,确定与所述第一传输状态相对应的第二传输参数集合,其中,所述第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,所述第二传输参数集合属于所述N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  41. 根据权利要求40所述的装置,其特征在于,所述发送单元还用于在所述第二时段,根据所述第二传输参数集合,向所述接收端设备传输第二符号序列。
  42. 根据权利要求41所述的装置,其特征在于,所述第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,所述第二调制参量集合与第二传输状态相对应,所述第二传输状态是所述发送端设备在第三时段期间的传输状态,所述第三时段处于所述第二时段之后。
  43. 根据权利要求39至42中任一项所述的装置,其特征在于,所述发送单元具体用于当确定所述发送端设备与所接收端设备之间在处于所述第一时段之前的第一预设时长范围内未发生信息传输时,根据预设的第一传输参数集合,向接收端设备传输所述第一符号序列,所述第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  44. 根据权利要求39至43中任一项所述的装置,其特征在于,所述N个传输状态包括以下状态中的至少一个状态:
    小包传输状态、普通传输状态及大吞吐量传输状态。
  45. 根据权利要求40至44中任一项所述的装置,其特征在于,当所述N个传输状态包括小包传输状态时,在所述小包传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长小于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为快速重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为多元低密度奇偶校验码或极化码。
  46. 根据权利要求40至45中任一项所述的装置,其特征在于,当所述 N个传输状态包括大吞吐量传输状态时,在所述大吞吐量传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长大于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为无速率传输;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码。
  47. 根据权利要求40至46中任一项所述的装置,其特征在于,当所述N个传输状态包括普通传输状态时,在所述普通传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长等于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为标准重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码或Turbo码。
  48. 根据权利要求25至47中任一项所述的装置,其特征在于,所述调制参量集合包括码本,所述码本为码字的集合,所述码字用于指示信息比特与调制符号之间的映射关系。
  49. 根据权利要求48所述的装置,其特征在于,所述码字为稀疏码分多址SCMA码字,所述码本为SCMA码本。
  50. 根据权利要求25至49中任一项所述的装置,其特征在于,所述装置为发送端设备,所述发送端设备为终端设备。
  51. 一种确定传输状态的设备,其特征在于,所述设备包括:
    总线;
    与所述总线相连的处理器;
    与所述总线相连的存储器;
    与所述总线相连的接收机;
    其中,所述处理器通过所述总线,调用所述存储器中存储的程序,以用于在第一时段,控制所述接收机接收发送端设备发送的第一符号序列;
    用于根据所述第一符号序列,确定第一调制参量集合,其中,所述第一调制参量集合是所述发送端设备进行用于生成所述第一符号序列的调制处 理时使用的调制参量集合,所述调制参量集合包括以下至少一个:星座点集合和码本;
    用于根据预设的第一映射关系信息,确定与所述第一调制参量集合相对应的第一传输状态,作为所述发送端设备在第二时段期间的传输状态,其中,所述第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,所述第一调制参量集合属于所述N个调制参量集合,所述第一传输状态属于所述N个传输状态,所述第二时段处于所述第一时段之后,N≥2。
  52. 根据权利要求51所述的设备,其特征在于,所述处理器还用于根据预设的第二映射关系信息,确定与所述第一传输状态相对应的第二传输参数集合,其中,所述第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,所述第二传输参数集合属于所述N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  53. 根据权利要求52所述的设备,其特征在于,所述处理器还用于在所述第二时段,根据所述第二传输参数集合,控制所述接收机接收所述发送端设备传输第二符号序列。
  54. 根据权利要求53所述的设备,其特征在于,所述第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,所述第二调制参量集合与第二传输状态相对应,所述第二传输状态是所述发送端设备在第三时段期间的传输状态,所述第三时段处于所述第二时段之后。
  55. 根据权利要求51至54中任一项所述的设备,其特征在于,所述处理器具体用于当确定所述发送端设备与所接收端设备之间在处于所述第一时段之前的第一预设时长范围内未发生信息传输时,在第一时段,根据预设的第一传输参数集合,控制所述接收机接收发送端设备发送的第一符号序列,所述第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  56. 根据权利要求51至55中任一项所述的设备,其特征在于,所述处理器具体用于从所述第一符号序列中截取子符号序列,所述子符号序列包括至少两个符号;
    用于根据所述子符号序列,确定第一调制参量集合。
  57. 根据权利要求56所述的设备,其特征在于,所述子符号序列是所述第一符号序列中的前K个符号,K为预设值,K≥2;或
    所述子符号序列包括所述第一符号序列中在所述接收端设备与所述网络设备之间的信道质量满足预设条件时接收到的符号。
  58. 根据权利要求51至57中任一项所述的设备,其特征在于,所述N个传输状态包括以下状态中的至少一个状态:
    小包传输状态、普通传输状态及大吞吐量传输状态。
  59. 根据权利要求52至58中任一项所述的设备,其特征在于,当所述N个传输状态包括小包传输状态时,在所述小包传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长小于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为快速重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为多元低密度奇偶校验码或极化码。
  60. 根据权利要求52至59中任一项所述的设备,其特征在于,当所述N个传输状态包括大吞吐量传输状态时,在所述大吞吐量传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长大于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为无速率传输;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码。
  61. 根据权利要求52至60中任一项所述的设备,其特征在于,当所述N个传输状态包括普通传输状态时,在所述普通传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长等于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为标准重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码或Turbo码。
  62. 根据权利要求51至61中任一项所述的设备,其特征在于,所述调制参量集合包括码本,所述码本为码字的集合,所述码字用于指示信息比特与调制符号之间的映射关系。
  63. 根据权利要求62所述的设备,其特征在于,所述码字为稀疏码分多址SCMA码字,所述码本为SCMA码本。
  64. 根据权利要求51至63中任一项所述的设备,其特征在于,所述设备为接收端设备,所述接收端设备为网络设备。
  65. 一种传输信息的设备,其特征在于,所述设备包括:
    总线;
    与所述总线相连的处理器;
    与所述总线相连的存储器;
    与所述总线相连的发射机;
    其中,所述处理器通过所述总线,调用所述存储器中存储的程序,以用于确定第一传输状态,所述第一传输状态是所述发送端设备在第二时段期间的传输状态;
    用于根据预设的第一映射关系信息,确定与所述第一传输状态相对应的第一调制参量集合,其中,所述第一映射关系信息用于指示N个传输状态与N个调制参量集合之间的一一映射关系,所述第一调制参量集合属于所述N个调制参量集合,所述第一传输状态属于所述N个传输状态,所述调制参量集合包括以下至少一个:星座点集合和码本,N≥2;
    用于根据所述第一调制参量集合进行调制处理,以生成第一符号序列,并在第一时段,控制所述发射机向接收端设备传输所述第一符号序列,其中,所述第二时段处于所述第一时段之后。
  66. 根据权利要求65所述的设备,其特征在于,所述处理器还用于根据预设的第二映射关系信息,确定与所述第一传输状态相对应的第二传输参数集合,其中,所述第二映射关系信息用于指示N个传输状态与N个传输参数集合之间的一一映射关系,所述第二传输参数集合属于所述N个传输参数集合,每个传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  67. 根据权利要求66所述的设备,其特征在于,所述处理器还用于在所述第二时段,根据所述第二传输参数集合,控制所述发射机向所述接收端 设备传输第二符号序列。
  68. 根据权利要求67所述的设备,其特征在于,所述第二符号序列是经过基于第二调制参量集合的调制处理而生成的符号,所述第二调制参量集合与第二传输状态相对应,所述第二传输状态是所述发送端设备在第三时段期间的传输状态,所述第三时段处于所述第二时段之后。
  69. 根据权利要求65至68中任一项所述的设备,其特征在于,所述处理器具体用于当确定所述发送端设备与所接收端设备之间在处于所述第一时段之前的第一预设时长范围内未发生信息传输时,根据预设的第一传输参数集合,控制所述发射机向接收端设备传输所述第一符号序列,所述第一传输参数集合包括以下至少一个传输参数:帧结构、重传策略、编码调制方案。
  70. 根据权利要求65至69中任一项所述的设备,其特征在于,所述N个传输状态包括以下状态中的至少一个状态:
    小包传输状态、普通传输状态及大吞吐量传输状态。
  71. 根据权利要求66至70中任一项所述的设备,其特征在于,当所述N个传输状态包括小包传输状态时,在所述小包传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长小于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为快速重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为多元低密度奇偶校验码或极化码。
  72. 根据权利要求66至71中任一项所述的设备,其特征在于,当所述N个传输状态包括大吞吐量传输状态时,在所述大吞吐量传输状态所对应的传输参数集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长大于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为无速率传输;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码。
  73. 根据权利要求66至72中任一项所述的设备,其特征在于,当所述N个传输状态包括普通传输状态时,在所述普通传输状态所对应的传输参数 集合中,
    如果所述传输参数包括帧结构,则所述帧结构为帧长等于1ms的帧结构;
    如果所述传输参数包括重传策略,则所述重传策略为标准重传;
    如果所述传输参数包括编码调制方案,则所述编码调制方案为低密度奇偶校验码或Turbo码。
  74. 根据权利要求65至73中任一项所述的设备,其特征在于,所述调制参量集合包括码本,所述码本为码字的集合,所述码字用于指示信息比特与调制符号之间的映射关系。
  75. 根据权利要求74所述的设备,其特征在于,所述码字为稀疏码分多址SCMA码字,所述码本为SCMA码本。
  76. 根据权利要求51至75中任一项所述的设备,其特征在于,所述设备为发送端设备,所述发送端设备为终端设备。
PCT/CN2014/091899 2014-11-21 2014-11-21 传输信息的方法、装置和设备 WO2016078082A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2014/091899 WO2016078082A1 (zh) 2014-11-21 2014-11-21 传输信息的方法、装置和设备
EP14906216.8A EP3223482B1 (en) 2014-11-21 2014-11-21 Information transmission method and apparatus
JP2017527575A JP6426844B2 (ja) 2014-11-21 2014-11-21 情報伝送方法、装置、及びデバイス
KR1020177016961A KR102048758B1 (ko) 2014-11-21 2014-11-21 정보 송신 방법, 장치 및 기기
CN201480083477.9A CN106922213B (zh) 2014-11-21 2014-11-21 传输信息的方法、装置和设备
RU2017121275A RU2667501C1 (ru) 2014-11-21 2014-11-21 Способ, оборудование и устройство передачи информации
US15/600,502 US10439762B2 (en) 2014-11-21 2017-05-19 Information transmission method, apparatus, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/091899 WO2016078082A1 (zh) 2014-11-21 2014-11-21 传输信息的方法、装置和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/600,502 Continuation US10439762B2 (en) 2014-11-21 2017-05-19 Information transmission method, apparatus, and device

Publications (1)

Publication Number Publication Date
WO2016078082A1 true WO2016078082A1 (zh) 2016-05-26

Family

ID=56013098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091899 WO2016078082A1 (zh) 2014-11-21 2014-11-21 传输信息的方法、装置和设备

Country Status (7)

Country Link
US (1) US10439762B2 (zh)
EP (1) EP3223482B1 (zh)
JP (1) JP6426844B2 (zh)
KR (1) KR102048758B1 (zh)
CN (1) CN106922213B (zh)
RU (1) RU2667501C1 (zh)
WO (1) WO2016078082A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603792A (zh) * 2017-05-23 2019-12-20 华为技术有限公司 一种数据传输方法、设备及系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644924B2 (en) 2016-09-29 2020-05-05 At&T Intellectual Property I, L.P. Facilitating a two-stage downlink control channel in a wireless communication system
US10158555B2 (en) 2016-09-29 2018-12-18 At&T Intellectual Property I, L.P. Facilitation of route optimization for a 5G network or other next generation network
US10602507B2 (en) * 2016-09-29 2020-03-24 At&T Intellectual Property I, L.P. Facilitating uplink communication waveform selection
US10171214B2 (en) 2016-09-29 2019-01-01 At&T Intellectual Property I, L.P. Channel state information framework design for 5G multiple input multiple output transmissions
US10206232B2 (en) 2016-09-29 2019-02-12 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks
US10355813B2 (en) 2017-02-14 2019-07-16 At&T Intellectual Property I, L.P. Link adaptation on downlink control channel in a wireless communications system
CN109274626B (zh) * 2018-11-21 2020-11-13 电子科技大学 一种基于星座图正交扫描特征的调制识别方法
WO2020242898A1 (en) 2019-05-26 2020-12-03 Genghiscomm Holdings, LLC Non-orthogonal multiple access

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1903737A1 (en) * 2006-09-07 2008-03-26 Fujitsu Ltd. Modulation scheme adaptation in single carrier wireless communication systems
CN103220254A (zh) * 2012-01-20 2013-07-24 电信科学技术研究院 一种指示和确定传输格式组合的方法、设备及系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310909B1 (en) * 1998-12-23 2001-10-30 Broadcom Corporation DSL rate adaptation
JP3779092B2 (ja) * 1999-05-12 2006-05-24 松下電器産業株式会社 送受信装置
US6532267B1 (en) * 1999-05-21 2003-03-11 Alantro Communications, Inc. Variable rate constellation precoding
US7242726B2 (en) * 2000-09-12 2007-07-10 Broadcom Corporation Parallel concatenated code with soft-in soft-out interactive turbo decoder
JP3555943B2 (ja) * 2002-02-27 2004-08-18 松下電器産業株式会社 無線受信装置、変調方式判定方法および符号化方式判定方法
JP4291659B2 (ja) * 2003-09-30 2009-07-08 パナソニック株式会社 送信装置及び送信方法
ES2493694T3 (es) * 2004-01-08 2014-09-12 Sony Corporation Configuración de paquete que permite la coexistencia de estaciones en una red de área local inalámbrica multi-estándar
US8023589B2 (en) * 2004-08-09 2011-09-20 Texas Instruments Incorporated Wireless MIMO transmitter with antenna and tone precoding blocks
JP4434034B2 (ja) * 2005-02-18 2010-03-17 株式会社日立製作所 適応変調方式に適したベースバンド復調アーキテクチャ
US8150329B2 (en) 2006-06-23 2012-04-03 Nec Corporation Wireless communication device and method for switching modulation system thereof
US8261308B2 (en) * 2008-01-21 2012-09-04 Nokia Corporation Mapping of network information between data link and physical layer
CN102165744B (zh) * 2008-09-30 2014-04-30 富士通株式会社 无线发送装置及调制方法
WO2010071546A1 (en) * 2008-12-17 2010-06-24 Telefonaktiebolaget L M Ericsson (Publ) Handling discontinuous transmission indication bits
US8249005B2 (en) 2009-02-11 2012-08-21 Qualcomm Incorporated Systems and methods for reducing power consumption using a variable constraint length convolutional encoder
CN102239648B (zh) * 2009-04-27 2015-12-02 华为技术有限公司 基于码本的上行发射方法及设备
US9264097B2 (en) * 2009-06-04 2016-02-16 Qualcomm Incorporated Interference mitigation for downlink in a wireless communication system
CN102804609B (zh) * 2009-06-17 2015-04-01 相干逻辑公司 基于格式结构方法的并行执行
CN102447667B (zh) * 2010-09-30 2015-04-29 华为技术有限公司 基于网络编码的数据处理方法和系统
WO2012112872A1 (en) * 2011-02-17 2012-08-23 Massachusetts Institute Of Technology Rateless and rated coding using spinal codes
US10616827B2 (en) 2012-07-10 2020-04-07 Huawei Technologies Co., Ltd. System and method for dynamically configurable air interfaces
US10568121B2 (en) * 2013-03-08 2020-02-18 Huawei Technologies Co., Ltd. System and method for reduced signaling transmissions in a communications system
US9270412B2 (en) * 2013-06-26 2016-02-23 Massachusetts Institute Of Technology Permute codes, iterative ensembles, graphical hash codes, and puncturing optimization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1903737A1 (en) * 2006-09-07 2008-03-26 Fujitsu Ltd. Modulation scheme adaptation in single carrier wireless communication systems
CN103220254A (zh) * 2012-01-20 2013-07-24 电信科学技术研究院 一种指示和确定传输格式组合的方法、设备及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603792A (zh) * 2017-05-23 2019-12-20 华为技术有限公司 一种数据传输方法、设备及系统

Also Published As

Publication number Publication date
EP3223482B1 (en) 2019-07-31
US10439762B2 (en) 2019-10-08
RU2667501C1 (ru) 2018-09-21
KR20170101914A (ko) 2017-09-06
JP2018503291A (ja) 2018-02-01
CN106922213A (zh) 2017-07-04
EP3223482A4 (en) 2017-12-20
CN106922213B (zh) 2020-06-16
KR102048758B1 (ko) 2019-11-26
JP6426844B2 (ja) 2018-11-21
EP3223482A1 (en) 2017-09-27
US20170272210A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
CN110249563B (zh) 用于极化译码的两级下行链路控制信息的方法及设备
WO2016078082A1 (zh) 传输信息的方法、装置和设备
US11082964B2 (en) Data and control multiplexing for uplink data transmission method and device
CN107835063B (zh) 信息传输的方法、发送端设备和接收端设备
KR102287950B1 (ko) 커버리지 개선 동작 모드에서의 신호 송신 또는 수신 타이밍 결정
US20220345242A1 (en) Methods and procedures for polar coded modulation
TWI769186B (zh) 傳輸上行資料的方法、終端設備和網路設備
WO2016101107A1 (zh) 传输指示信息的方法和装置
WO2019051874A1 (zh) 传输数据的方法、终端设备和网络设备
WO2018141291A1 (zh) 一种数据传输的方法和装置
WO2017193936A1 (en) Decoding procedures in systems with codeblock segmentation
JP2024056889A (ja) 方法、端末機器、及びネットワーク機器
CN106922206B (zh) 确定调制编码阶数的方法、装置和设备
WO2016101108A1 (zh) 传输指示信息的方法和装置
WO2018171742A1 (zh) 无线通信的方法和装置
WO2016138668A1 (zh) 传输数据的方法、发送端设备、接收端设备和中继设备
US11184885B2 (en) Information transmission method, terminal device, and network device
CN109803311B (zh) 用于上行功率控制的用户设备、基站中的方法和装置
CN109600197B (zh) 极性码的编码方法和编码装置
CN109644066B (zh) 一种被用于无线通信的用户、基站中的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177016961

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017121275

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014906216

Country of ref document: EP