WO2021026917A1 - 信号发送方法、装置和系统 - Google Patents

信号发送方法、装置和系统 Download PDF

Info

Publication number
WO2021026917A1
WO2021026917A1 PCT/CN2019/100868 CN2019100868W WO2021026917A1 WO 2021026917 A1 WO2021026917 A1 WO 2021026917A1 CN 2019100868 W CN2019100868 W CN 2019100868W WO 2021026917 A1 WO2021026917 A1 WO 2021026917A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
sps pdsch
harq
feedback signal
pdsch reception
Prior art date
Application number
PCT/CN2019/100868
Other languages
English (en)
French (fr)
Inventor
陈哲
宋磊
张健
张磊
王昕�
Original Assignee
富士通株式会社
陈哲
宋磊
张健
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 陈哲, 宋磊, 张健, 张磊, 王昕� filed Critical 富士通株式会社
Priority to JP2022507757A priority Critical patent/JP7371761B2/ja
Priority to PCT/CN2019/100868 priority patent/WO2021026917A1/zh
Priority to EP19941696.7A priority patent/EP4017188B1/en
Priority to CN201980099069.5A priority patent/CN114208362A/zh
Priority to KR1020227004243A priority patent/KR20220031091A/ko
Publication of WO2021026917A1 publication Critical patent/WO2021026917A1/zh
Priority to US17/589,966 priority patent/US20220159691A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections

Definitions

  • This application relates to the field of communications.
  • the NR (New Radio) system supports at most one semi-persistent scheduling (SPS, Semi-persistent Scheduling) configuration on a BWP (Bandwidth Part) in a serving cell (serving cell).
  • SPS Semi-persistent Scheduling
  • the period of SPS is longer, and the minimum period is 10 ms.
  • the NR system needs to be able to activate multiple semi-persistent scheduling configurations simultaneously on one BWP of a serving cell.
  • the minimum transmission period of SPS also needs to be greatly shortened.
  • existing mechanisms cannot handle this situation. If there is no corresponding solution, the period and time domain position corresponding to the SPS configuration will be restricted; and because the HARQ-ACK information corresponding to multiple active SPS configurations cannot be sent at the same time, some SPS configurations may be caused
  • the corresponding HARQ-ACK information is delayed in sending, which leads to an increase in the time delay of the corresponding HARQ-ACK feedback, thereby affecting system performance.
  • embodiments of the present application provide a signal transmission method, device, and system, so that when at least two SPS configurations are activated simultaneously on the same cell and the same BWP, they The corresponding HARQ-ACK information can be fed back in the same time unit, which not only makes the network side more flexible to configure multiple SPSs (more flexible periods, starting positions, etc.) in the same BWP in the same cell, It can also reduce the time delay of HARQ-ACK information corresponding to the SPS configuration.
  • a signal sending method wherein the method includes:
  • the terminal device generates the first feedback signal at least according to the first set, the first set includes at least two SPS PDSCH receptions, and the SPS PDSCH receptions of the first set correspond to the same bandwidth part (BWP) or component carrier (Component Carrier). ) Or serving cell (serving cell) or the same BWP of the same serving cell;
  • BWP bandwidth part
  • Component Carrier Component Carrier
  • the terminal device sends the first feedback signal.
  • a signal receiving method wherein the method includes:
  • the network device sends SPS configuration information to the terminal device
  • the network device receives the second feedback signal sent by the terminal device at least according to a third set, and the third set includes at least two SPS PDSCH sending corresponding feedback information, and the SPS PDSCH sending corresponds to the same bandwidth part (BWP) Or a component carrier (Component Carrier) or a serving cell (serving cell) or the same BWP of the same serving cell, and the SPS PDSCH transmission corresponds to the SPS configuration information.
  • BWP bandwidth part
  • Component Carrier component carrier
  • serving cell serving cell
  • the SPS PDSCH transmission corresponds to the SPS configuration information.
  • a signal sending device configured in a terminal device, wherein the device includes:
  • a generating unit which generates a first feedback signal according to at least a first set, the first set includes at least two SPS PDSCH receptions, and the SPS PDSCH receptions of the first set correspond to the same bandwidth part (BWP) or carrier unit ( Component carrier) or serving cell (serving cell) or the same BWP of the same serving cell;
  • BWP bandwidth part
  • carrier unit Component carrier
  • serving cell serving cell
  • a sending unit that sends the first feedback signal.
  • a signal receiving device configured in a network device, wherein the device includes:
  • a sending unit which sends SPS configuration information to the terminal device
  • a receiving unit which receives at least a second feedback signal sent by a terminal device according to a third set.
  • the third set includes at least two SPS PDSCH transmissions corresponding to the feedback information, and the SPS PDSCH transmission corresponds to the same bandwidth part (BWP) Or a component carrier (Component Carrier) or a serving cell (serving cell) or the same BWP of the same serving cell, and the SPS PDSCH transmission corresponds to the SPS configuration information.
  • BWP bandwidth part
  • Component Carrier Component Carrier
  • serving cell serving cell
  • a terminal device wherein the terminal device includes the device described in the foregoing third aspect.
  • a network device wherein the network device includes the apparatus described in the foregoing fourth aspect.
  • a communication system including the terminal device described in the fifth aspect and the network device described in the sixth aspect.
  • a computer-readable program wherein when the program is executed in a terminal device, the program causes the computer to execute the method described in the first aspect in the terminal device .
  • a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in the foregoing first aspect in a terminal device.
  • a computer-readable program is provided, wherein when the program is executed in a network device, the program causes the computer to execute the method described in the foregoing second aspect in the network device .
  • a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in the foregoing second aspect in a network device.
  • the positions of the HARQ-ACK information bits corresponding to the PDSCH (Physical Downlink Shared Channel) of each SPS are determined, so that the network The device can determine the meaning of the HARQ-ACK information according to the order of the bits in the HARQ-ACK information, that is, the network device can determine whether the terminal device successfully receives the corresponding SPS PDSCH through the position of the ACK/NACK bit in the HARQ-ACK information .
  • an uplink signal (uplink resource) used to carry the HARQ-ACK information is selected, so that the HARQ-ACK information can be transmitted using an uplink signal (uplink resource) with an appropriate time-frequency size , To ensure the reliability of transmission, thereby improving the performance of the system.
  • Figure 1 is a schematic diagram of dynamic scheduling
  • Figure 2 is a schematic diagram of semi-persistent scheduling
  • Figure 3 is another schematic diagram of semi-persistent scheduling
  • Figure 4 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a signal sending method according to an embodiment of the first aspect of the present application.
  • FIG. 6 is a schematic diagram of a signal receiving method according to an embodiment of the second aspect of the present application.
  • FIG. 7 is a schematic diagram of a signal sending device according to an embodiment of the third aspect of the present application.
  • FIG. 8 is a schematic diagram of a signal receiving device according to an embodiment of the fourth aspect of the present application.
  • FIG. 9 is a schematic diagram of a terminal device according to an embodiment of the fifth aspect of the present application.
  • Fig. 10 is a schematic diagram of a network device according to an embodiment of the sixth aspect of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the terms, but they do not indicate the spatial arrangement or temporal order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that meets any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other currently known or future communication protocols.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power node (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be referred to as "Terminal Equipment” (TE, Terminal Equipment).
  • the terminal equipment can be fixed or mobile, and can also be called a mobile station (MS, Mobile Station), terminal, user, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc. Wait.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, Vehicle-mounted communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • the physical layer downlink data transmission introduces a data signal reception feedback mechanism.
  • the UE will receive the PDSCH at the designated time-frequency position according to the instruction of the base station (PDCCH, physical downlink control channel), and at the same time, the UE needs to make corresponding HARQ feedback on the reception of the PDSCH.
  • the UE successfully decodes the PDSCH at the time-frequency position the UE needs to feed back ACK to the base station; when the UE fails to decode the PDSCH at the time-frequency position, the UE needs to feed back NACK to the base station.
  • the base station can determine which downlink data needs to be retransmitted accordingly, and can also determine the quality of the downlink channel according to the ratio of ACK and NACK in the HARQ feedback, thereby adjusting the modulation and coding scheme of the downlink transmission accordingly.
  • the scheduling of downlink data is mainly divided into two methods: dynamic scheduling (dynamic scheduling) and semi-persistent scheduling (Semi-persistent Scheduling, SPS).
  • dynamic scheduling one PDCCH schedules one corresponding PDSCH.
  • Semi-persistent scheduling means that a PDCCH can activate a series of PDSCH transmissions, and a series of PDSCHs are repeatedly transmitted with a P as a period.
  • the UE receives the activation signaling for semi-persistent scheduling, the UE obtains the time-frequency position of the first PDSCH according to the indication in the PDCCH and the pre-configured indication. After that, the UE continues to operate according to the previously stored PDCCH indication and related configuration information.
  • the PDSCH is received or monitored periodically in the time domain.
  • the UE receives the deactivation signaling of the semi-persistent scheduling, the UE stops receiving or monitoring the corresponding PDSCH.
  • the UE Whether it is dynamic scheduling or semi-persistent scheduling, corresponding to each PDSCH, the UE generally feeds back ACK or NACK information, that is, performs HARQ feedback.
  • the downlink control information (DCI) indicating the corresponding PDSCH includes the PDSCH-to-HARQ_feedback timing indicator field, which is used to indicate the PDSCH and the PUCCH carrying the corresponding HARQ-ACK information bit (referred to as HARQ bit)
  • HARQ bit the PUCCH carrying the corresponding HARQ-ACK information bit
  • the offset k between resources is shown in Figure 1. That is, when the PDSCH is in slot n, its corresponding ACK or NACK feedback is sent in slot n+k.
  • the DCI also includes a PUCCH resource indicator field, which is used to indicate the PUCCH resource that carries the corresponding HARQ-ACK information bit.
  • the DCI used to activate SPS contains the PDSCH-to-HARQ_feedback timing indicator field, which is used to indicate the offset between each PDSCH and the PUCCH resource carrying the corresponding HARQ-ACK information bit k, as shown in Figure 2.
  • the UE determines the corresponding HARQ according to the IE n1PUCCH-AN in the SPS configuration -PUCCH resources for ACK information bits.
  • the UE when the HARQ-ACK information corresponding to different PDSCHs is sent in the same time slot, the UE will determine the sequence of the corresponding HARQ-ACK information bits according to a predefined rule, thereby generating the corresponding HARQ-ACK codebook. After the codebook is generated, the UE will send an uplink signal (PUCCH/PUSCH) for carrying the codebook.
  • PUCCH/PUSCH uplink signal
  • HARQ-ACK information may include either ACK information bits or NACK information bits.
  • the time slot is used as the time unit, but this application is not limited to this.
  • the time unit involved in this application can also be a symbol or sub-slot or frame. (frame) or sub-frame (sub-frame), etc.
  • Fig. 4 is a schematic diagram of an application scenario of an embodiment of the present application.
  • SPS PDSCH#1, SPS PDSCH#2, ..., SPS PDSCH#M correspond to the same BWP or CC or serving cell or the same BWP of the same serving cell.
  • the terminal device is arranged in a slot nK m SPS PDSCH # m received, and SPS PDSCH # m are activated, i.e., SPS PDSCH # m corresponding to the SPS configuration In the time slot nK m is active.
  • n refers to the time slot for sending feedback information corresponding to SPS PDSCH#m
  • K m refers to the time domain offset between the PDSCH of SPS PDSCH#m and the corresponding HARQ feedback (PDSCH-to-HARQ-ACK -feedback timing value), that is, the time slot interval between the time slot where the SPS PDSCH#m is received and the time slot where the corresponding HARQ-ACK information is located.
  • the transmission time of HARQ-ACK information corresponding to all SPS PDSCHs in the first set is in the same time slot (that is, time slot n).
  • the terminal device is arranged in a time slot n m SPS PDSCH # m received, and SPS PDSCH # m are activated, i.e., SPS PDSCH # m corresponds configuration is active in the time slot n m.
  • SPS PDSCH # m corresponding to (uplink) time slot sub-n'-K 'm, i.e. SPS PDSCH # m corresponds to the end of the PDSCH symbol subslot n'-K' m.
  • n ' refers to a sub-slot for sending feedback information corresponding to the SPS PDSCH # m, i.e., the feedback information corresponding to the start symbol of the uplink signal in the sub-slots n';
  • K 'm refers to SPS PDSCH
  • the sub-slot interval between the sub-slot corresponding to the end symbol of the PDSCH corresponding to #m and the sub-slot corresponding to the end symbol of the HARQ feedback corresponding to SPS PDSCH#m (PDSCH-to-HARQ-ACK-feedback timing value). It should be noted that the transmission time of the HARQ-ACK information corresponding to all SPS PDSCH receptions in the first set is in the same sub-slot (that is, sub-slot n').
  • time slots and subslots as examples.
  • the time unit in the above description may also be subframes or symbols or frames.
  • FIG. 5 is a schematic diagram of a signal sending method according to an embodiment of the first aspect of the present application. Please refer to FIG. 5.
  • the method includes:
  • Operation 501 The terminal device generates a first feedback signal at least according to the first set, the first set includes at least two SPS PDSCH receptions, and the SPS PDSCH receptions of the first set correspond to the same bandwidth part (BWP) or carrier unit (Component Carrier) or serving cell (serving cell) or the same BWP of the same serving cell;
  • BWP bandwidth part
  • Component Carrier Component Carrier
  • serving cell serving cell
  • Operation 502 The terminal device sends the first feedback signal.
  • the HARQ ACK information corresponding to at least two SPS PDSCH receptions can be in the same Feedback within one time unit, thus, the network device can more flexibly configure multiple SPSs in the same BWP or CC or serving cell or the same BWP of the same serving cell, and can also reduce the time delay of SPS feedback information.
  • SPS PDSCH reception means that the terminal device monitors or receives the corresponding PDSCH according to the SPS activation of the DCI and corresponding SPS configuration information.
  • the terminal device When the terminal device successfully decodes the SPS PDSCH at the corresponding time-frequency position, it will feed back ACK, and if the SPS PDSCH is not successfully decoded at the corresponding time-frequency position, it will feed back NACK.
  • the SPS activated DCI (that is, the DCI used to activate the SPS) refers to the corresponding SPS configuration, the closest SPS in the time domain activates the DCI, that is, there is no other (belonging to) the SPS activated DCI and its corresponding SPS PDSCH.
  • the SPS configured in the same SPS activates DCI.
  • the SPS activated DCI may be, for example, DCI format scrambled by CS-RNTI.
  • the new data indicator field (new data indicator field) used to enable the transport block in the SPS activation DCI is "0", that is, "a new data indicator field for the enabled transport block is set to '0'" .
  • SPS activated DCI is the leftmost DCI
  • SPS PDSCH reception means that the UE monitors/receives the corresponding PDSCH in slot n or receives/monitors the corresponding PDSCH in slot n+P, or subsequently uses P as the The periodic slot monitors/receives the corresponding PDSCH (for example, slot n+2P).
  • SPS activated DCI is DCI#1
  • SPS PDSCH reception means that the UE monitors/receives the corresponding PDSCH in slot n or receives/monitors the corresponding PDSCH in slot n+P, or subsequently using P as the period
  • the slot monitors/receives the corresponding PDSCH (for example, slot n+2P).
  • DCI#2 is dynamic DCI instead of the aforementioned SPS activated DCI, and the PDSCH scheduled by DCI#2 is not the PDSCH corresponding to the aforementioned SPS PDSCH reception.
  • the SPS PDSCH reception in the first set corresponds to the same HARQ-ACK codebook, thereby making better use of system resources and ensuring transmission reliability.
  • the HARQ-ACK feedback of SPS PDSCH#1, SPS PDSCH#2,..., SPS PDSCH#M corresponds to the same HARQ-ACK codebook
  • the HARQ-ACK codebook can be slot-based or Based on sub-slot (sub-slot based), this application is not limited to this.
  • the HARQ-ACK codebook identifiers (identifiers) of the SPS configurations corresponding to the SPS PDSCH receptions (SPS PDSCH#1, SPS PDSCH#2, ..., SPS PDSCH#M) in the first set are the same.
  • slot-based means that the time domain position of the uplink resource corresponding to the HARQ-ACK information is determined by the time domain indication in the unit of slot.
  • sub-slot based means that the time domain position of the uplink resource corresponding to the HARQ-ACK information is determined by the time domain indication in the unit of sub-slot.
  • the SPS PDSCH in the above first set receives (SPS PDSCH#1, SPS PDSCH#2, ..., SPS PDSCH#M) corresponding to the HARQ-ACK codebook identifier in the DCI the same.
  • the SPS activated DCI corresponding to the SPS PDSCH reception means that the SPS PDSCH reception and the SPS activated DCI correspond to the same SPS configuration.
  • the SPS activated DCI contains a field whose size is 1 bit.
  • the codepoint When the codepoint is '0', it represents slot-based HARQ-ACK codebook, and when the codepoint is '1', it represents sub- slotbased HARQ-ACK codebook.
  • the value of this field in the SPS active DCI corresponding to SPS PDSCH#1, SPS PDSCH#2, ..., SPS PDSCH#M is the same ('0'/'1').
  • SPS activated DCI includes a field, the size of which is 2 bits, where the codepoint is '00', it represents HARQ-ACK codebook 1, and when the codepoint is '01', it represents HARQ-ACK codebook 2, When the codepoint is '10', it represents HARQ-ACK codebook 3, and when the codepoint is '11', it represents HARQ-ACK codebook 4.
  • the value of this field in the SPS active DCI corresponding to SPS PDSCH#1, SPS PDSCH#2, ..., SPS PDSCH#M is the same.
  • the first feedback signal includes feedback information corresponding to SPS PDSCH reception in the first set, and the feedback information corresponding to SPS PDSCH reception in the first set is The order in the first feedback signal is related to (or determined by at least one of the following methods):
  • the terminal device and the network device can determine the meaning of the HARQ-ACK information according to the sequence of the bits of the HARQ-ACK information. That is, it can be determined whether the corresponding SPS PDSCH in the first set is received successfully.
  • sequence of ACK information bits can also enable SPS PDSCH reception with a higher PDSCH time domain position to be prioritized to generate HARQ-ACK information bits earlier, in line with hardware processing timing, speeding up the processing process, and saving The cost of system resources.
  • the SPS configuration ID corresponding to the PDSCH can distinguish the order of the corresponding HARQ-ACK information bits, but also
  • the PDSCH corresponding to different SPS configuration IDs have different priority levels, that is, when the UE cannot transmit all the HARQ-ACK bits corresponding to the first set of SPS PDSCH reception, some bits can be removed according to the order, so that the feedback information The number of bits matches the corresponding transmission resource.
  • the SPS activated DCI corresponding to the PDSCH can be able to distinguish the corresponding HARQ-
  • the order of the ACK information bits can also make the PDSCH corresponding to different SPS activated DCI have different priority levels, that is, when the UE cannot transmit all the HARQ-ACK information bits corresponding to the first set of SPS PDSCH reception, it can be based on the order Some bits are removed sequentially, so that the number of bits of the feedback information matches the corresponding transmission resource.
  • the aforementioned time domain position can be one of a frame (frame), a subframe (subframe), a time slot (slot), a sub-slot (sub-slot), and a symbol (symbol). This application does not Limited to this.
  • the feedback information bits corresponding to SPS PDSCH#1, SPS PDSCH#2,..., SPS PDSCH#M are O 1 , O 2 ,..., O M respectively .
  • the order of the feedback information bits is ⁇ O 1 , O 2 ,..., O M ⁇ (from O 1 to O M )
  • the order is determined by one of the following methods:
  • the start or end position of the PDSCH signal that is, the above sequence is determined by the start/end position of the PDSCH signal corresponding to SPS PDSCH#m, for example, the start symbol of the PDSCH signal corresponding to SPS PDSCH#m is StartPDSCH# m, then:
  • SPS configuration ID that is, the above sequence is determined by the size of SPS configuration ID (SPS config#m) corresponding to SPS PDSCH#m, for example,
  • the start or end position of SPS activated DCI that is, the above sequence is determined by the start/end position of SPS activated DCI corresponding to SPS PDSCH#m, for example, the start of SPS activated DCI corresponding to SPS PDSCH#m
  • the start symbol is StartPDCCH#m, then:
  • the SPS activated DCI corresponding to SPS PDSCH#m refers to the SPS activated DCI that is closest in time domain to SPS PDSCH#m and corresponds to the same SPS configuration.
  • the above three methods can be used separately or in combination. For example, first compare the starting position of the PDSCH, if they are the same, then further compare the size of the SPS configuration ID, and vice versa; for another example, compare the size of the SPS configuration ID first. Then compare the location of SPS to activate DCI, and vice versa.
  • the terminal device may generate the foregoing first feedback signal according to the first set and the maximum number of HARQ-ACK information bits.
  • the maximum number of HARQ-ACK information bits refers to the maximum number of HARQ-ACK information bits related to SPS in an uplink signal (for example, PUCCH).
  • the maximum number of HARQ-ACK information bits may be indicated by RRC (Radio Resource Control) signaling, that is, configured by the network device through RRC signaling.
  • RRC Radio Resource Control
  • the network device sends RRC signaling to the terminal device, which instructs the terminal device to allow at most N max SPS-related HARQ feedback bits to be sent in one uplink resource/signal in one uplink resource, then N max is the above-mentioned maximum HARQ -The number of ACK information bits, and,
  • the first feedback signal includes all SPS HARQ feedback bits corresponding to SPS PDSCH receptions in the first set;
  • the first feedback signal includes at most N max HARQ-ACK bits corresponding to SPS PDSCH receptions in the first set . At this time, only part of the HARQ-ACK information corresponding to the SPS PDSCH reception in the first set is included in the first feedback signal.
  • the terminal device may determine the above-mentioned part of the SPS PDSCH reception according to the sequence of the start/end time domain positions of the PDSCH corresponding to the SPS PDSCH reception in the first set.
  • the first feedback signal only includes the feedback information (HARQ-ACK bits) received by the SPS PDSCH at the front of the corresponding PDSCH start position, so that the number of transmitted bits is less than or equal to the foregoing N max .
  • the terminal device may also determine the above-mentioned part of the SPS PDSCH reception according to the ascending/descending order of the SPS configuration ID corresponding to the SPS PDSCH reception in the first set.
  • the first feedback signal only includes feedback information (HARQ-ACK bits) received by the corresponding PDSCH with a smaller SPS configuration ID, so that the number of transmitted bits is less than or equal to the foregoing N max .
  • the terminal device may also determine the above-mentioned part of the SPS PDSCH reception according to the sequence of the start/end time domain positions of the SPS activated DCI corresponding to the SPS PDSCH reception in the first set.
  • the first feedback signal only includes feedback information (HARQ-ACK bits) received by the corresponding SPS activated DCI earlier on the PDSCH, so that the number of transmitted bits is less than or equal to the foregoing N max .
  • the above three methods can be used separately or in combination. For example, compare the starting position of the PDSCH first, if they are the same, then further compare the size of the SPS configuration ID, and vice versa; for another example, compare the size of the SPS configuration ID first. Then compare the location of SPS to activate DCI, and vice versa.
  • This application is not limited to this.
  • the aforementioned maximum HARQ-ACK information bit number may also be related to the capacity of the first feedback signal. That is, at most N max HARQ feedback bits related to SPS are not indicated by RRC signaling but related to the capacity of the first feedback signal, for example, equal. This capacity is related to the time-frequency domain resources, modulation scheme (MCS) and/or code rate of the above-mentioned first feedback signal, which will not be repeated in this application. Therefore, it is possible to avoid additional indication signaling indicating the maximum HARQ-ACK information bit number, thereby reducing system resource overhead.
  • MCS modulation scheme
  • the terminal device may generate the foregoing first feedback signal according to the first set and the largest number of ACKs related to HARQ-ACK information.
  • HARQ-ACK information refers to HARQ-ACK information related to SPS.
  • the largest number of ACKs related to HARQ-ACK information refers to the largest number of ACKs related to HARQ-ACK information in an uplink signal (for example, PUCCH), which may be determined by RRC Indicated by signaling, that is, configured by network equipment through RRC signaling.
  • PUCCH uplink signal
  • the network device sends RRC signaling to the terminal device, which instructs the terminal device to allow at most P SPS-related'ACK's to be sent in an uplink resource, that is, indicates that the terminal device has at most P valid SPS PDSCH receptions corresponding to
  • the HARQ information of may be ACK, and the HARQ information corresponding to other SPS PDSCH reception in the first set is NACK. Therefore, the number of ACKs that may be included in the feedback information is 0,1,2,...,P.
  • the terminal device does not need to generate N-bit HARQ-ACK information in the first feedback signal, but generates a certain number of bits corresponding to all the above possible states, that is, the number of bits generated in the first feedback signal for:
  • RRC signaling can flexibly configure the number of ACKs, so that more SPS PDSCHs can feed back HARQ-ACK information in the same time unit.
  • limiting the number of ACKs can greatly reduce the possible combinations of feedback information, thereby saving information bit overhead required for HARQ feedback.
  • the above-mentioned maximum number of ACKs related to HARQ-ACK information is predefined. That is, at most P SPS-related ACKs are not indicated by RRC but are predefined, for example, 2. This can avoid additional indication signaling (used to indicate the number of ACKs) and save signaling overhead.
  • the position of the HARQ-ACK information bits corresponding to each SPS PDSCH can be determined. Therefore, the network equipment and the terminal equipment can be based on the order of the HARQ-ACK information bits Determine the meaning of the feedback.
  • the above-mentioned first feedback signal only includes HARQ-ACK information corresponding to PDSCH reception (PDSCH without corresponding PDCCH) that does not correspond to PDCCH, but does not include PDSCH reception corresponding to PDCCH ( PDSCH with corresponding PDCCH) corresponding HARQ-ACK information.
  • the PDSCH without corresponding PDCCH means that the PDSCH is directly scheduled without a PDCCH, for example, the PDSCH in the SPS except for the initial PDSCH indicated by the SPS to activate the DCI.
  • the initial PDSCH refers to the first corresponding PDSCH after the SPS activates the DCI.
  • the resource can be an uplink resource corresponding to the reception of an SPS PDSCH in the first set, or it can be the first
  • the uplink resources in the second set, the uplink resources in the second set may be related to the size of the HARQ-ACK information corresponding to the SPS PDSCH reception in the first set, and the specific manner will be described below.
  • the terminal device may use the first uplink resource to send the foregoing first feedback signal, and the first uplink resource may be an SPS PDSCH receiving station in the foregoing first set.
  • the corresponding configured uplink resource may be used.
  • the SPS PDSCH reception corresponding to the first uplink resource may be the SPS PDSCH reception with the largest or smallest SPS configuration ID corresponding to the SPS PDSCH reception in the first set.
  • the configured PUCCH resource for HARQ-ACK feedback corresponding to SPS PDSCH#m in the first set is PUCCH m
  • the SPS configuration ID corresponding to SPS PDSCH#m is SPS m
  • the terminal device can follow PUCCH i sends the first feedback signal, where or
  • the SPS PDSCH reception corresponding to the first uplink resource may be the earliest or latest SPS PDSCH reception at the start time domain position or end time domain position of the PDSCH corresponding to the SPS PDSCH reception in the first set.
  • the configured PUCCH resource used for HARQ-ACK feedback corresponding to SPS PDSCH#m in the first set is PUCCH m .
  • the start time domain position (symbol/slot/subslot) of the PDSCH corresponding to SPS PDSCH#m is Then the terminal device can send the first feedback signal according to PUCCH i , where or
  • the SPS PDSCH reception corresponding to the first uplink resource may be the earliest or latest SPS PDSCH at the start time domain position or the end time domain position of the configured HARQ PUCCH resource corresponding to the SPS PDSCH reception in the first set.
  • the configured PUCCH resource for HARQ-ACK feedback corresponding to SPS PDSCH#m in the first set is PUCCH m (for example, it is the indication of HARQ PUCCH resource in the corresponding SPS configuration SPS-config IE: indicated by n1PUCCH-AN PUCCH resources).
  • the starting time domain position (symbol/slot/sub-slot) of PUCCH m is Then the terminal device can send the first feedback signal according to PUCCH i , where or
  • the SPS PDSCH reception corresponding to the first uplink resource may be an SPS PDSCH reception in which the PUCCH corresponding to the SPS PDSCH reception in the first set meets a predefined timeline.
  • the configured PUCCH resource used for HARQ-ACK feedback corresponding to SPS PDSCH#m in the first set is PUCCH m .
  • the end time domain position (symbol/slot/sub-slot) of the PDSCH corresponding to SPS PDSCH#m is in addition, the PUCCH starting time domain position (symbol/slot/sub-slot) corresponding to SPS PDSCH#m for carrying corresponding HARQ-ACK information is when The terminal device may send the first feedback signal according to PUCCH i .
  • T is a predefined threshold, for example, the same as N 2 timeline, which is equivalent to the minimum time domain interval between PDSCH transmission and the corresponding HARQ-ACK feedback.
  • Sub-carrier spacing (SCS, Sub-carrier Spacing) is related.
  • the SPS PDSCH reception corresponding to the first uplink resource may be an SPS PDSCH reception with a PUCCH capacity (capacity) greater than or equal to a corresponding total payload size (payload size) corresponding to the SPS PDSCH reception in the first set.
  • the configured PUCCH resource used for HARQ-ACK feedback corresponding to SPS PDSCH#m in the first set is PUCCH m .
  • the number of HARQ information bits corresponding to SPS PDSCH#m is N m .
  • the capacity of the PUCCH corresponding to SPS PDSCH#m for carrying the corresponding HARQ-ACK information is C m , when The terminal device may send the first feedback signal according to PUCCH i .
  • the terminal device may send the first feedback signal according to the PUCCH resource with the largest capacity. That is, the SPS PDSCH reception corresponding to the first uplink resource may be the SPS PDSCH reception corresponding to the SPS PDSCH reception in the first set and with the largest PUCCH capacity (capacity). That is, if the SPS PDSCH in the first set does not have a corresponding PUCCH m that meets the above conditions, the terminal device can send the first feedback signal according to PUCCH i' , where
  • the above-mentioned PUCCH capacity is related to the time-frequency domain resource size, modulation mode, and/or code rate of the PUCCH resource, and the present application is not limited to this.
  • the terminal device may use (or according to) a second uplink resource to send the above-mentioned first feedback signal.
  • the second uplink resource belongs to the second set, and the second uplink resource belongs to the second set.
  • the resource is related to the size of the HARQ-ACK information corresponding to the SPS PDSCH reception in the first set.
  • the uplink resources in the second set may be arranged in ascending or descending order of resource capacity.
  • the terminal device may send the first feedback signal according to PUCCH i . If there is no PUCCH resource that meets the above conditions in the second set, the terminal device may send the first feedback signal according to PUCCH k' , where:
  • the terminal device may send the first feedback signal according to PUCCH k' . If the above condition is not satisfied PUCCH k ', the terminal device according to PUCCH k "transmits a first feedback signal, wherein,
  • the foregoing second uplink resource may be indicated by RRC signaling, that is, the terminal device may use the foregoing second uplink resource according to RRC signaling to send the first feedback signal.
  • the RRC signaling instructs the terminal equipment to use the uplink resources in the second set to transmit the HARQ-ACK information corresponding to the SPS PDSCH reception in the first set.
  • the IE name of the RRC signaling is'SPS-HARQ-multiplexing-PUCCH', which can be configured to be enabled or disabled or not configured (for example, not being configured is equivalent to not being configured). Enable).
  • the terminal device can transmit the HARQ information corresponding to the SPS PDSCH reception in the first set according to the uplink resources in the second set; if the indication of the RRC signaling is disabled, Then the terminal device needs to send the first feedback signal according to the HARQ PUCCH resource corresponding to the SPS PDSCH reception, and the specific implementation method is as described above.
  • the terminal device may send the first feedback signal according to RRC signaling.
  • the enable state of the RRC signaling indicates that the terminal device allows the feedback information corresponding to at least two SPS PDSCHs on the same BWP to be multiplexed in the same uplink resource.
  • the IE name of the RRC signaling is'SPS-HARQ-multiplexing', which can be configured to be enabled or disabled or not configured (for example, not being configured is equivalent to being disabled). That is, when the RRC signaling indicates the corresponding enable state, the terminal device may send the first feedback signal; if it is disabled (or when it is not configured), the terminal device cannot send the first feedback signal.
  • the terminal device may send the first feedback signal according to the reported (reported) terminal device capability (UE capability).
  • UE capability means that the terminal device can multiplex the feedback information corresponding to at least two SPS PDSCHs on the same BWP in the same uplink resource.
  • the capability may be about all CCs/serving cells of the terminal device, or the capability may be reported separately for each CC/serving cell, and this application is not limited to this.
  • the terminal device can send the first feedback signal according to the method described in the text.
  • the uplink resource (uplink signal) used to carry the above feedback information is selected, so that the feedback information can be transmitted on the uplink signal with the appropriate time and frequency size, which ensures the reliability of transmission and improves the system Performance.
  • the network device can more flexibly configure multiple SPSs (more flexible periods, starting positions) in the same BWP/CC/serving cell/same BWP of the same serving cell, and can also reduce SPS transmission time delay of feedback information.
  • the embodiment of the second aspect of the present application provides a signal receiving method, which is applied to a network device, which is a network-side processing corresponding to the method of the embodiment of the first aspect, wherein the same as the embodiment of the first aspect The content will not be repeated.
  • FIG. 6 is a schematic diagram of a signal receiving method according to an embodiment of the second aspect of the present application. As shown in FIG. 6, the method includes:
  • Operation 601 the network device sends SPS configuration information to the terminal device;
  • Operation 602 The network device receives the second feedback signal sent by the terminal device at least according to the third set, where the third set includes at least two SPS PDSCH transmissions, and the SPS PDSCH transmissions correspond to the same bandwidth part (BWP) or carrier For a unit (CC) or a serving cell (serving cell) or the same BWP of the same serving cell, the SPS PDSCH transmission corresponds to the SPS configuration information.
  • BWP bandwidth part
  • CC unit
  • serving cell serving cell
  • the same BWP of the same serving cell the SPS PDSCH transmission corresponds to the SPS configuration information.
  • SPS PDSCH sending means that the network device can (may) send the corresponding PDSCH according to the sent SPS activating DCI instruction content and corresponding SPS configuration information. It should be noted that the network device may not necessarily send the above-mentioned PDSCH, but the terminal device will monitor/receive the PDSCH at the corresponding location.
  • the network device sends SPS configuration information to the terminal device.
  • the content and sending method of the SPS configuration information are not limited in this application, and related technologies can be referred to.
  • the SPS PDSCH transmission in the third set corresponds to the same HARQ-ACK codebook.
  • the SPS PDSCH transmission in the third set corresponds to the same HARQ-ACK codebook means that the SPS PDSCH transmission in the third set corresponds to the same HARQ-ACK codebook identifier of the SPS configuration; Or, the HARQ-ACK codebook identifiers in the SPS activation DCI corresponding to the SPS PDSCH transmission in the third set are the same.
  • the second feedback signal includes HARQ-ACK information corresponding to SPS PDSCH transmission in the third set, and the feedback information corresponding to SPS PDSCH transmission in the third set is in the third feedback signal.
  • the order is related to at least one of the following ways:
  • the HARQ-ACK information corresponding to the SPS PDSCH transmission in the third set may be transmitted in the same sub-slot.
  • the network device receives the second feedback signal according to at least the third set, including: the network device receives the second feedback signal according to the third set and the maximum HARQ-ACK information bit number The second feedback signal.
  • the maximum number of HARQ-ACK information bits refers to the maximum number of HARQ-ACK information bits related to SPS in an uplink signal.
  • the maximum number of HARQ-ACK information bits is indicated by RRC signaling, or the maximum number of HARQ-ACK information bits is related to the capacity of the second feedback signal.
  • the network device receives the second feedback signal at least according to the third set, including: the network device receives the second feedback signal according to the third set and the largest HARQ-ACK information Number, receiving the second feedback signal.
  • the foregoing HARQ-ACK information is HARQ-ACK information related to SPS.
  • the above-mentioned maximum number of ACKs related to HARQ-ACK information is indicated by RRC signaling, or is predefined.
  • the network device receiving the second feedback signal includes: the network device receives the second feedback signal in a third uplink resource, and the third uplink resource is in the third set The uplink resource corresponding to one SPS PDSCH transmission.
  • the SPS PDSCH transmission corresponding to the third uplink resource is at least one of the following:
  • the SPS PDSCH transmission in the third set corresponds to the SPS PDSCH transmission with the largest or smallest SPS configuration ID
  • the SPS PDSCH transmission in the third set corresponds to the earliest or latest SPS PDSCH transmission at the start time domain position or end time domain position of the PDSCH;
  • the SPS PDSCH transmission in the third set corresponds to the PUCCH start time domain position or end time domain position of the earliest or latest SPS PDSCH transmission;
  • the PUCCH corresponding to the SPS PDSCH transmission in the third set satisfies one SPS PDSCH transmission on a predefined timeline
  • SPS PDSCH transmission in the third set corresponds to one SPS PDSCH transmission with a PUCCH capacity (capacity) greater than or equal to the corresponding total payload size (payload size);
  • the SPS PDSCH transmission in the third set corresponds to the SPS PDSCH transmission with the largest PUCCH capacity (capacity).
  • the network device receiving the second feedback signal includes: the network device receives the second feedback signal on the fourth uplink resource, the fourth uplink resource belongs to the fourth set, and the first The four uplink resources are related to the size of the HARQ-ACK information corresponding to the SPS PDSCH transmission in the third set.
  • the uplink resources in the fourth set are arranged in ascending or descending order of resource capacity.
  • the network device receiving the second feedback signal in the fourth uplink resource includes: the network device receiving the second feedback signal in the fourth uplink resource according to RRC signaling.
  • the second feedback signal only includes HARQ-ACK information corresponding to PDSCH transmission that does not correspond to the PDCCH in the SPS PDSCH transmission of the third set.
  • the network device receiving the second feedback signal includes: the network device receives the second feedback signal according to RRC signaling.
  • the network device receiving the second feedback signal includes: the network device receives the second feedback signal according to a received terminal device capability (UE capability).
  • UE capability a received terminal device capability
  • the second feedback signal corresponds to the first feedback signal of the embodiment of the first aspect
  • SPS PDSCH transmission corresponds to the SPS PDSCH reception of the embodiment of the first aspect
  • the third set corresponds to the embodiment of the first aspect
  • the first set and the fourth set correspond to the second set of the embodiments of the first aspect.
  • SPS PDSCH transmission, the third set and the fourth set of the embodiments of the present application they are the same as those of the first aspect.
  • the first feedback signal, SPS PDSCH reception, the first set and the second set of the embodiment are similar, and will not be repeated here.
  • the network device can more flexibly configure multiple SPSs (more flexible periods, starting positions) in the same BWP/CC/serving cell/same BWP of the same serving cell, and can also reduce SPS transmission time delay of feedback information.
  • the embodiment of the third aspect of the present application provides a signal sending device, which is configured in a terminal device. Since the principle of the device to solve the problem is similar to the method of embodiment 1, its specific implementation can refer to the implementation of the method of embodiment 1, and the same content will not be repeated.
  • FIG. 7 is a schematic diagram of a signal sending device 700 of this embodiment.
  • the device 700 includes a generating unit 701 and a sending unit 702.
  • the generating unit 701 generates a first feedback signal at least according to the first set.
  • One set includes at least two SPS PDSCH receptions, and the SPS PDSCH receptions of the first set correspond to the same bandwidth part (BWP) or carrier unit (CC) or serving cell or the same BWP of the same serving cell;
  • BWP bandwidth part
  • CC carrier unit
  • SPS PDSCH reception means that the terminal device monitors or receives the corresponding PDSCH according to the SPS activation DCI indication and corresponding SPS configuration information.
  • the HARQ-ACK information corresponding to the SPS PDSCH reception in the first set is sent in the same sub-slot.
  • the SPS PDSCH in the first set corresponds to the same HARQ-ACK codebook.
  • the SPS PDSCH reception in the first set corresponds to the same HARQ-ACK codebook, which means that the SPS PDSCH reception in the first set corresponds to the same HARQ-ACK codebook identifier of the SPS configuration; Or, the HARQ-ACK codebook identifiers in the SPS activated DCI corresponding to the SPS PDSCH reception in the first set are the same.
  • the first feedback signal includes feedback information corresponding to the SPS PDSCH reception in the first set, and the order of the feedback information corresponding to the SPS PDSCH reception in the first set in the first feedback signal and At least one of the following is related:
  • the generating unit 701 generates the first feedback signal at least according to the first set, including: the generating unit 701 generates the first feedback signal according to the first set and the maximum HARQ-ACK information bit number.
  • the maximum number of HARQ-ACK information bits refers to: the maximum number of HARQ-ACK information bits related to SPS in an uplink signal.
  • the maximum number of HARQ-ACK information bits is indicated by RRC signaling, or the maximum number of HARQ-ACK information bits is related to the capacity of the first feedback signal.
  • the generating unit 701 generates the first feedback signal at least according to the first set, including: the generating unit 701 generates the first feedback signal according to the first set and the largest number of ACKs related to HARQ-ACK information The first feedback signal.
  • the HARQ-ACK information is HARQ-ACK information related to SPS.
  • the maximum number of ACKs related to HARQ-ACK information is indicated by RRC signaling, or is predefined.
  • the first feedback signal only includes feedback information corresponding to PDSCH reception that does not correspond to the PDCCH in the SPS PDSCH reception of the first set.
  • the sending unit 702 sending the first feedback signal includes: the sending unit 702 uses a first uplink resource to send the first feedback signal, and the first uplink resource is from the first set One SPS PDSCH receives the corresponding uplink resource.
  • the SPS PDSCH reception corresponding to the first uplink resource is at least one of the following:
  • SPS PDSCH reception in the first set corresponds to the SPS PDSCH reception with the largest or smallest SPS configuration ID
  • the SPS PDSCH reception in the first set corresponds to the earliest or latest SPS PDSCH reception at the start time domain position or the end time domain position of the PDSCH;
  • SPS PDSCH reception corresponding to the PUCCH in the first set meets one SPS PDSCH reception of a predefined timeline
  • the SPS PDSCH reception in the first set corresponds to one SPS PDSCH reception with the largest PUCCH capacity (capacity).
  • the sending unit 702 sending the first feedback signal includes: the sending unit 702 sends the first feedback signal using a second uplink resource, the second uplink resource belongs to a second set, and the first The second uplink resource is related to the size of HARQ-ACK information corresponding to SPS PDSCH reception in the first set.
  • the uplink resources in the second set are arranged in ascending or descending order of resource capacity.
  • the sending unit 702 uses the second uplink resource to send the first feedback signal, including: the sending unit 702 uses the second uplink resource to send the first feedback signal according to RRC signaling.
  • the sending unit 702 sending the first feedback signal includes: the sending unit 702 sends the first feedback signal according to RRC signaling.
  • the sending unit 702 sending the first feedback signal includes: the sending unit 702 sends the first feedback signal according to a reported (reported) terminal equipment capability (UE capability).
  • UE capability terminal equipment capability
  • the network equipment can more flexibly configure multiple SPSs (more flexible cycles, starting positions) in the same BWP/CC/serving cell/same serving cell, and can also reduce SPS transmission time delay of feedback information.
  • the embodiment of the fourth aspect of the present application provides a signal receiving device, which is configured in a network device. Since the principle of the device to solve the problem is similar to the method of the embodiment of the second aspect, its specific implementation can refer to the implementation of the method of the embodiment of the second aspect, and the same content will not be repeated.
  • Fig. 8 is a schematic diagram of a signal receiving apparatus 800 of this embodiment.
  • the apparatus 800 includes: a sending unit 801 and a receiving unit 802.
  • the sending unit 801 sends SPS configuration information to a terminal device;
  • the third set receives the second feedback signal sent by the terminal device, the third set includes at least two SPS PDSCH transmissions corresponding to the feedback information, and the SPS PDSCH transmission corresponds to the same bandwidth part (BWP) or carrier unit (CC) or The same BWP of a serving cell (serving cell) or the same serving cell, and the SPS PDSCH transmission corresponds to the SPS configuration information.
  • BWP bandwidth part
  • CC carrier unit
  • the SPS PDSCH transmission corresponds to the SPS configuration information.
  • SPS PDSCH sending means that the network device can send the corresponding PDSCH according to the transmitted SPS activating DCI instruction content and corresponding SPS configuration information.
  • the SPS PDSCH transmission in the third set corresponds to the same HARQ-ACK codebook.
  • the SPS PDSCH transmission in the third set corresponds to the same HARQ-ACK codebook refers to:
  • the HARQ-ACK codebook identifiers of the SPS configurations corresponding to the SPS PDSCH transmission in the third set are the same; or
  • the HARQ-ACK codebook identifiers in the SPS activated DCI corresponding to the SPS PDSCH transmission in the third set are the same.
  • the second feedback signal includes HARQ-ACK information corresponding to the SPS PDSCH transmission in the third set, and the feedback information corresponding to the SPS PDSCH transmission in the third set is
  • the sequence in the third feedback signal is related to at least one of the following ways:
  • the HARQ-ACK information corresponding to the SPS PDSCH transmission in the third set is transmitted in the same sub-slot.
  • the receiving unit 802 receives the second feedback signal at least according to the third set, including:
  • the receiving unit 802 receives the second feedback signal according to the third set and the maximum number of HARQ-ACK information bits.
  • the maximum number of HARQ-ACK information bits refers to: the maximum number of HARQ-ACK information bits related to SPS in an uplink signal.
  • the maximum number of HARQ-ACK information bits is indicated by RRC signaling, or the maximum number of HARQ-ACK information bits is related to the capacity of the second feedback signal.
  • the receiving unit 802 receives the second feedback signal at least according to the third set, including:
  • the receiving unit 802 receives the second feedback signal according to the third set and the maximum number of ACKs related to HARQ-ACK information.
  • the HARQ-ACK information is HARQ-ACK information related to SPS.
  • the maximum number of ACKs related to HARQ-ACK information is indicated by RRC signaling, or is predefined.
  • the receiving unit 802 receiving the second feedback signal includes:
  • the receiving unit 802 receives the second feedback signal on a third uplink resource, and the third uplink resource is an uplink resource corresponding to one SPS PDSCH transmission in the third set.
  • the SPS PDSCH transmission corresponding to the third uplink resource is at least one of the following:
  • the SPS PDSCH transmission in the third set corresponds to one SPS PDSCH transmission with the largest or smallest SPS configuration ID
  • the SPS PDSCH transmission in the third set corresponds to the earliest or latest SPS PDSCH transmission at the start time domain position or the end time domain position of the PDSCH;
  • the SPS PDSCH transmission in the third set corresponds to the PUCCH start time domain position or end time domain position of the earliest or latest SPS PDSCH transmission;
  • the PUCCH corresponding to the SPS PDSCH transmission in the third set satisfies one SPS PDSCH transmission of a predefined timeline
  • the PUCCH capacity (capacity) corresponding to the SPS PDSCH transmission in the third set is greater than or equal to one SPS PDSCH transmission of the corresponding total payload size (payload size);
  • the SPS PDSCH transmission in the third set corresponds to one SPS PDSCH transmission with the largest PUCCH capacity (capacity).
  • the receiving unit 802 receiving the second feedback signal includes:
  • the receiving unit 802 receives the second feedback signal on a fourth uplink resource, the fourth uplink resource belongs to a fourth set, and the fourth uplink resource corresponds to the HARQ corresponding to the SPS PDSCH transmission in the third set -The size of the ACK message is related.
  • the uplink resources in the fourth set are arranged in ascending or descending order of resource capacity.
  • the receiving unit 802 receiving the second feedback signal on the fourth uplink resource includes:
  • the receiving unit 802 receives the second feedback signal on the fourth uplink resource according to RRC signaling.
  • the second feedback signal only includes HARQ-ACK information corresponding to PDSCH transmission that does not correspond to the PDCCH in the SPS PDSCH transmission of the third set.
  • the receiving unit 802 receives the second feedback signal, including:
  • the receiving unit 802 receives the second feedback signal according to RRC signaling.
  • the receiving unit 802 receiving the second feedback signal includes:
  • the receiving unit 802 receives the second feedback signal according to a received terminal equipment capability (UE capability).
  • UE capability a received terminal equipment capability
  • the network equipment can more flexibly configure multiple SPSs (more flexible cycles, starting positions) in the same BWP/CC/serving cell/same serving cell, and can also reduce SPS transmission time delay of feedback information.
  • the embodiment of the fifth aspect of the present application provides a terminal device, which includes the apparatus described in the embodiment of the third aspect.
  • Fig. 9 is a schematic diagram of a terminal device according to an embodiment of the fifth aspect of the present application.
  • the terminal device 900 may include a central processing unit 901 and a memory 902; the memory 902 is coupled to the central processing unit 901. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace this structure to implement telecommunication functions or other functions.
  • the functions of the apparatus described in the embodiment of the third aspect may be integrated into the central processing unit 901, and the central processing unit 901 implements the functions of the apparatus described in the embodiment of the third aspect, wherein The functions of the devices described in the three aspects of the embodiments are combined here, and will not be repeated here.
  • the device described in the embodiment of the third aspect is configured separately from the central processing unit 901.
  • the device described in the embodiment of the third aspect can be configured as a chip connected to the central processing unit 901
  • the function of the device described in the embodiment of the third aspect is realized through the control of the central processing unit 901.
  • the terminal device 900 may further include: a communication module 903, an input unit 904, an audio processing unit 905, a display 906, and a power supply 907. It is worth noting that the terminal device 900 does not necessarily include all the components shown in FIG. 9; in addition, the terminal device 900 may also include components not shown in FIG. 9, which can refer to the prior art.
  • the central processing unit 901 is sometimes called a controller or an operating control, and may include a microprocessor or other processor devices and/or logic devices.
  • the central processing unit 901 receives input and controls each of the terminal equipment 900 Operation of components.
  • the memory 902 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices. Can store various information, in addition can also store and execute programs related to the information. And the central processing unit 901 can execute the program stored in the memory 902 to implement information storage or processing. The functions of other components are similar to the existing ones, so I won't repeat them here.
  • the components of the terminal device 900 may be implemented by dedicated hardware, firmware, software, or a combination thereof, without departing from the scope of the present application.
  • the network device can more flexibly configure multiple SPSs (more flexible periods, starting positions) in the same BWP/CC/serving cell/same BWP of the same serving cell, and can also reduce SPS transmission time delay of feedback information.
  • the embodiment of the sixth aspect of the present application also provides a network device, which includes the device described in the embodiment of the fourth aspect.
  • FIG. 10 is a schematic diagram of a structure of a network device according to an embodiment of the sixth aspect of the present application.
  • the network device 1000 may include: a central processing unit (CPU) 1001 and a memory 1002; the memory 1002 is coupled to the central processing unit 1001.
  • the memory 1002 can store various data; in addition, it also stores an information processing program, and the program is executed under the control of the central processing unit 1001 to receive various information sent by the terminal device and send various information to the terminal device.
  • the functions of the apparatus described in the embodiment of the fourth aspect may be integrated into the central processing unit 1001, and the central processing unit 1001 implements the functions of the apparatus described in the embodiment of the fourth aspect, wherein The functions of the devices described in the four aspects of the embodiments are incorporated here, and will not be repeated here.
  • the device described in the embodiment of the fourth aspect can be configured separately from the central processing unit 1001.
  • the device described in the embodiment of the fourth aspect can be a chip connected to the central processing unit 1001, The function of the device described in the embodiment of the fourth aspect is realized through the control of the central processing unit 1001.
  • the network device 1000 may further include: a transceiver 1003, an antenna 1004, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It should be noted that the network device 1000 does not necessarily include all the components shown in FIG. 10; in addition, the network device 1000 may also include components not shown in FIG. 10, and the prior art can be referred to.
  • the network device can more flexibly configure multiple SPSs (more flexible periods, starting positions) in the same BWP/CC/serving cell/same BWP of the same serving cell, and can also reduce SPS transmission time delay of feedback information.
  • the embodiment of the seventh aspect of the present application further provides a communication system including a network device and a terminal device.
  • the network device is, for example, the network device 1000 described in the embodiment of the sixth aspect
  • the terminal device is, for example, the fifth aspect.
  • the terminal device is, for example, a UE served by a gNB.
  • the terminal device also includes the conventional composition and functions of the terminal device, such as the embodiment of the fifth aspect. The above is not repeated here.
  • the network device may be, for example, the gNB in the NR, which in addition to the functions of the device described in the embodiment of the fourth aspect, also includes the conventional composition and functions of the network device, such as the implementation of the sixth aspect As mentioned in the examples, I will not repeat them here.
  • the network device can more flexibly configure multiple SPSs (more flexible cycles, starting positions) in the same BWP/CC/serving cell/same BWP of the same serving cell, and can also reduce SPS transmission time delay of feedback information.
  • the embodiments of the present application also provide a computer-readable program, wherein when the program is executed in a terminal device, the program causes the computer to execute the method described in the embodiment of the first aspect in the terminal device.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in the embodiment of the first aspect in a terminal device.
  • An embodiment of the present application also provides a computer-readable program, wherein when the program is executed in a network device, the program causes a computer to execute the method described in the embodiment of the second aspect in the network device.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in the embodiment of the second aspect in a network device.
  • the above devices and methods of this application can be implemented by hardware, or by hardware combined with software.
  • This application relates to such a computer-readable program, when the program is executed by a logic component, the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, etc.
  • This application also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by curing these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can be implemented as general-purpose processors, digital signal processors (DSPs) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component or any appropriate combination thereof.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, and multiple micro-processing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a signal sending device configured in a terminal device, wherein the device includes:
  • a generating unit which generates a first feedback signal according to at least a first set, the first set includes at least two SPS PDSCH receptions, and the SPS PDSCH receptions of the first set correspond to the same bandwidth part (BWP) or carrier unit ( Component carrier) or serving cell (serving cell) or the same BWP of the same serving cell;
  • BWP bandwidth part
  • carrier unit Component carrier
  • serving cell serving cell
  • a sending unit that sends the first feedback signal.
  • the HARQ-ACK codebook identifiers of the SPS configurations corresponding to the SPS PDSCH reception in the first set are the same; or
  • the HARQ-ACK codebook identifiers in the SPS activation DCI corresponding to the SPS PDSCH reception in the first set are the same.
  • the first feedback signal includes HARQ-ACK information corresponding to SPS PDSCH reception in the first set, and SPS PDSCH reception in the first set
  • the order of the corresponding feedback information in the first feedback signal is related to at least one of the following ways:
  • the generating unit generates the first feedback signal according to the first set and the maximum number of HARQ-ACK information bits.
  • the maximum number of HARQ-ACK information bits refers to the maximum number of HARQ-ACK information bits related to SPS in an uplink signal.
  • the generating unit generates the first feedback signal according to the first set and the largest number of ACKs related to HARQ-ACK information.
  • HARQ-ACK information is HARQ-ACK information related to SPS.
  • the sending unit uses a first uplink resource to send the first feedback signal, and the first uplink resource is an uplink resource corresponding to one SPS PDSCH reception in the first set.
  • SPS PDSCH reception in the first set corresponds to the SPS PDSCH reception with the largest or smallest SPS configuration ID
  • the SPS PDSCH reception in the first set corresponds to the earliest or latest SPS PDSCH reception at the start time domain position or the end time domain position of the PDSCH;
  • SPS PDSCH reception corresponding to the PUCCH in the first set meets one SPS PDSCH reception of a predefined timeline
  • the SPS PDSCH reception in the first set corresponds to one SPS PDSCH reception with the largest PUCCH capacity (capacity).
  • the sending unit uses a second uplink resource to send the first feedback signal, the second uplink resource belongs to a second set, and the second uplink resource corresponds to the HARQ received by the SPS PDSCH in the first set.
  • the size of the ACK message is related.
  • the sending unit uses the second uplink resource to send the first feedback signal according to RRC signaling.
  • the first feedback signal only includes HARQ-ACK information corresponding to PDSCH reception that does not correspond to the PDCCH in the SPS PDSCH reception of the first set.
  • the sending unit sends the first feedback signal according to RRC signaling.
  • the sending unit sends the first feedback signal according to the reported (reported) terminal equipment capability (UE capability).
  • UE capability terminal equipment capability
  • a signal receiving device configured in a network device, wherein the device includes:
  • a sending unit which sends SPS configuration information to the terminal device
  • the receiving unit which receives the second feedback signal sent by the terminal device at least according to the third set.
  • the third set includes at least two SPS PDSCH transmissions.
  • the SPS PDSCH transmissions correspond to the same bandwidth part (BWP) or carrier unit (CC ) Or a serving cell (serving cell) or the same BWP of the same serving cell, the SPS PDSCH transmission corresponds to the SPS configuration information.
  • the network device can send the corresponding PDSCH according to the instruction content of the sent SPS to activate the DCI and the corresponding SPS configuration information.
  • the HARQ-ACK codebook identifiers of the SPS configurations corresponding to the SPS PDSCH transmission in the third set are the same; or
  • the HARQ-ACK codebook identifiers in the SPS activated DCI corresponding to the SPS PDSCH transmission in the third set are the same.
  • the second feedback signal includes HARQ-ACK information corresponding to SPS PDSCH transmission in the third set, and SPS PDSCH transmission in the third set
  • the order of the corresponding feedback information in the third feedback signal is related to at least one of the following ways:
  • the receiving unit receives the second feedback signal according to the third set and the maximum number of HARQ-ACK information bits.
  • the receiving unit receives the second feedback signal according to the third set and the largest number of ACKs related to HARQ-ACK information.
  • HARQ-ACK information is HARQ-ACK information related to SPS.
  • the receiving unit receives the second feedback signal on a third uplink resource, where the third uplink resource is an uplink resource corresponding to one SPS PDSCH transmission in the third set.
  • the SPS PDSCH transmission in the third set corresponds to one SPS PDSCH transmission with the largest or smallest SPS configuration ID
  • the SPS PDSCH transmission in the third set corresponds to the earliest or latest SPS PDSCH transmission at the start time domain position or the end time domain position of the PDSCH;
  • the SPS PDSCH transmission in the third set corresponds to the PUCCH start time domain position or end time domain position of the earliest or latest SPS PDSCH transmission;
  • the PUCCH corresponding to the SPS PDSCH transmission in the third set satisfies one SPS PDSCH transmission of a predefined timeline
  • the PUCCH capacity (capacity) corresponding to the SPS PDSCH transmission in the third set is greater than or equal to one SPS PDSCH transmission of the corresponding total payload size (payload size);
  • the SPS PDSCH transmission in the third set corresponds to one SPS PDSCH transmission with the largest PUCCH capacity (capacity).
  • the receiving unit receives the second feedback signal on a fourth uplink resource, the fourth uplink resource belongs to a fourth set, and the fourth uplink resource corresponds to HARQ- corresponding to SPS PDSCH transmission in the third set.
  • the size of the ACK message is related.
  • the receiving unit receives the second feedback signal in the fourth uplink resource according to RRC signaling.
  • the receiving unit receives the second feedback signal according to RRC signaling.
  • the receiving unit receives the second feedback signal according to a received terminal equipment capability (UE capability).
  • UE capability a received terminal equipment capability
  • a communication system including network equipment and terminal equipment, wherein the network equipment includes the device described in any one of appendix 21-40, and the terminal equipment includes the device described in any one of appendix 1 to 20 Device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信号发送方法、装置和通信系统,该信号发送方法包括:终端设备至少根据第一集合生成第一反馈信号,所述第一集合至少包括两个SPS PDSCH接收,并且所述第一集合的SPS PDSCH接收对应相同的带宽部分(BWP)或载波单元(CC)或服务小区(serving cell)或相同服务小区的相同BWP;所述终端设备发送所述第一反馈信号。

Description

信号发送方法、装置和系统 技术领域
本申请涉及通信领域。
背景技术
目前,NR(New Radio,新无线)系统支持在一个服务小区(serving cell)中的一个BWP(Bandwidth Part,带宽部分)上最多包含一个半持续调度(SPS,Semi-persistent Scheduling)配置。并且,根据现有业务模型的需求,SPS的周期较长,最小周期为10ms。然而,随着新业务模型的引入,NR系统需要在一个服务小区的一个BWP上能够同时激活多个半持续调度配置。并且,SPS的最小传输周期也需要大幅度缩短。因此,当一个服务小区的一个BWP上的多个SPS配置同时激活时,它们对应的HARQ-ACK(Hybrid Automatic Repeat request-Acknowledgement,混合自动重传请求确认)信息有可能在同一时间单位内发送。然而,现有技术无法解决该问题。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,当至少两个SPS配置在同一个服务小区的相同BWP上同时激活时,它们所对应的HARQ-ACK信息有可能在同一个时间单位内发送。但是,现有机制无法处理该情况。如果没有相应的解决方案,会导致所述SPS配置所对应的周期、时域位置等受到限制;并且,由于多个激活SPS配置所对应的HARQ-ACK信息无法同时发送,可能会使得一部分SPS配置所对应的HARQ-ACK信息延迟发送,从而导致相应的HARQ-ACK反馈的时延增加,进而影响系统性能。
为了解决上述问题中的至少一个或者解决其他类似问题,本申请实施例提供了一种信号发送方法、装置和系统,使得当至少两个SPS配置在同一个小区同一个BWP上同时激活时,它们所对应的HARQ-ACK信息能够在同一个时间单位内反馈,这不仅使得网络侧可以更灵活地在同一个小区的同一个BWP中配置多个SPS(更灵活的 周期、起始位置等),而且还能够降低SPS配置所对应的HARQ-ACK信息的时延。
根据本申请实施例的第一方面,提供了一种信号发送方法,其中,所述方法包括:
终端设备至少根据第一集合生成第一反馈信号,所述第一集合至少包括两个SPS PDSCH接收,并且所述第一集合的SPS PDSCH接收对应相同的带宽部分(BWP)或载波单元(Component Carrier)或服务小区(serving cell)或相同服务小区的相同BWP;
所述终端设备发送所述第一反馈信号。
根据本申请实施例的第二方面,提供了一种信号接收方法,其中,所述方法包括:
网络设备向终端设备发送SPS配置信息;
所述网络设备至少根据第三集合接收终端设备发送的第二反馈信号,所述第三集合至少包括两个SPS PDSCH发送所对应的反馈信息,所述SPS PDSCH发送对应相同的带宽部分(BWP)或载波单元(Component Carrier)或服务小区(serving cell)或相同服务小区的相同BWP,所述SPS PDSCH发送与所述SPS配置信息相对应。
根据本申请实施例的第三方面,提供了一种信号发送装置,配置于终端设备,其中,所述装置包括:
生成单元,其至少根据第一集合生成第一反馈信号,所述第一集合至少包括两个SPS PDSCH接收,并且所述第一集合的SPS PDSCH接收对应相同的带宽部分(BWP)或载波单元(Component Carrier)或服务小区(serving cell)或相同服务小区的相同BWP;
发送单元,其发送所述第一反馈信号。
根据本申请实施例的第四方面,提供了一种信号接收装置,配置于网络设备,其中,所述装置包括:
发送单元,其向终端设备发送SPS配置信息;
接收单元,其至少根据第三集合接收终端设备发送的第二反馈信号,所述第三集合至少包括两个SPS PDSCH发送所对应的反馈信息,所述SPS PDSCH发送对应相同的带宽部分(BWP)或载波单元(Component Carrier)或服务小区(serving cell)或相同服务小区的相同BWP,所述SPS PDSCH发送与所述SPS配置信息相对应。
根据本申请实施例的第五方面,提供了一种终端设备,其中,所述终端设备包括前述第三方面所述的装置。
根据本申请实施例的第六方面,提供了一种网络设备,其中,所述网络设备包括前述第四方面所述的装置。
根据本申请实施例的第五方面,提供了一种通信系统,所述通信系统包括前述第五方面所述的终端设备和前述第六方面所述的网络设备。
根据本申请实施例的其它方面,提供了一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行前述第一方面所述的方法。
根据本申请实施例的其它方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行前述第一方面所述的方法。
根据本申请实施例的其它方面,提供了一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行前述第二方面所述的方法。
根据本申请实施例的其它方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行前述第二方面所述的方法。
本申请实施例的有益效果之一在于:根据本申请实施例的一个方面,确定各个SPS的PDSCH(物理下行共享信道)所对应的HARQ-ACK信息的比特(bit)的位置,由此,网络设备能够根据HARQ-ACK信息中比特(bit)的先后顺序确定该HARQ-ACK信息的含义,也即网络设备能够通过HARQ-ACK信息中ACK/NACK比特的位置确定终端设备是否成功接收相应SPS PDSCH。根据本申请实施例的另一个方面,选择用于承载该HARQ-ACK信息的上行信号(上行资源),由此,该HARQ-ACK信息能够使用时频大小合适的上行信号(上行资源)进行传输,保证了传输的可靠性,从而提升系统的性能。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在, 但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是动态调度的示意图;
图2是半持续调度的一个示意图;
图3是半持续调度的另一个示意图;
图4是本申请实施例的应用场景的示意图;
图5是本申请第一方面的实施例的信号发送方法的示意图;
图6是本申请第二方面的实施例的信号接收方法的示意图;
图7是本申请第三方面的实施例的信号发送装置的示意图;
图8是本申请第四方面的实施例的信号接收装置的示意图;
图9是本申请第五方面的实施例的终端设备的示意图;
图10是本申请第六方面的实施例的网络设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语 “包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal  Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
目前,在NR系统中,物理层下行数据传输引入了数据信号接收反馈机制。具体的说,UE会根据基站的指示(PDCCH,物理下行控制信道)在指定的时频位置接收PDSCH,与此同时,UE需要对该PDSCH的接收做出相应的HARQ反馈。当UE在所述时频位置成功地解码所述PDSCH时,UE需要向基站反馈ACK;当UE未能在所述时频位置解码所述PDSCH时,UE需要向基站反馈NACK。通过接收UE的HARQ反馈,基站可以判断哪些下行数据需要相应的重传,同时也可以根据HARQ反馈中ACK和NACK的比例判断下行信道的质量,从而相应地调整下行传输的调制编码方式。
另外,在NR系统中,对于下行数据的调度主要分为两种方式:动态调度(dynamic scheduling)和半持续调度(Semi-persistent Scheduling,SPS)。对于动态调度而言,一个PDCCH调度一个对应的PDSCH。而半持续调度是指,一个PDCCH可以激活一系列的PDSCH传输,其中一系列PDSCH以P为周期重复传输。当UE接收到半持续调度的激活信令时,UE根据PDCCH中的指示以及预先配置的指示,得到第一个PDSCH的时频位置,此后UE根据之前存储的PDCCH指示以及相关的配置信息继续在时域上周期性地接收或监听PDSCH。当UE接收到半持续调度的去激活信令时,UE停止接收或监听相应的PDSCH。
无论是动态调度还是半持续调度,对应每个PDSCH,UE一般都会反馈ACK或NACK信息,也即进行HARQ反馈。
对于动态调度而言,指示相应PDSCH的下行控制信息(DCI)中包含PDSCH-to-HARQ_feedback timing indicator域,该域用于指示PDSCH和承载相应的HARQ-ACK信息比特(简称为HARQ bit)的PUCCH资源之间的偏移量k,如图1所示。即当PDSCH处于slot n时,它相应的ACK或NACK反馈在slot n+k发送。另外,所述DCI中也包含PUCCH resource indicator域,用于指示承载相应HARQ-ACK信息比特的PUCCH资源。
对于半持续调度而言,用于激活SPS的DCI中包含PDSCH-to-HARQ_feedback timing indicator域,该域用于指示每个PDSCH和承载相应的HARQ-ACK信息比特的PUCCH资源之间的偏移量k,如图2所示。另外,除了激活DCI直接指示的PDSCH之外,如果在相应的时隙仅有(没有对应PDCCH的)PDSCH所对应的HARQ反馈,则UE根据SPS配置中的IE n1PUCCH-AN确定用于承载相应HARQ-ACK信息比特的PUCCH资源。
当大于一个PDSCH的ACK/NACK反馈(也即HARQ-ACK信息)被指示在同一个时隙发送时,为了避免功率损失,半持续调度所对应的ACK/NACK信息比特与动态调度所对应的ACK/NACK信息比特需要复用在同一个上行资源中。如图3所示,当动态调度与半静态调度的ACK/NACK反馈被指示在同一个时隙发送时,它们相应的ACK/NACK反馈内容将会放在一起,并且在动态调度(DCI#2)所指示的上行资源上进行反馈。
另外,当不同PDSCH所对应的HARQ-ACK信息在同一个时隙发送时,UE会根据预定义的规则确定相应HARQ-ACK信息比特的先后顺序,从而生成相应的HARQ-ACK codebook。当该codebook生成之后,UE将会发送一个用于承载该codebook的上行信号(PUCCH/PUSCH)。
在本申请实施例的说明中,HARQ-ACK信息也即HARQ反馈信息,既可能包含ACK信息比特,也可能包含NACK信息比特。
在图1-图3以及对应的说明中,以时隙作为时间单位,但本申请不限于此,本申请涉及的时间单位也可以是符号(symbol)或者子时隙(sub-slot)或者帧(frame)或者子帧(sub-frame)等。
以下通过示例对本申请实施例的场景进行说明,但本申请实施例不限于此。
图4是本申请实施例的应用场景的示意图,如图4所示,在本申请实施例中,为 了方便说明,定义了第一集合的概念,该第一集合至少包括{SPS PDSCH#1,SPS PDSCH#2,…,SPS PDSCH#M},其中,一个元素表示一个SPS PDSCH接收,记为SPS PDSCH#m,m=1,2,3,…,M,(M>=2)。并且,在本申请实施例中,SPS PDSCH#1,SPS PDSCH#2,…,SPS PDSCH#M对应于相同的BWP或CC或服务小区(serving cell)或相同服务小区的相同BWP。
在本申请实施例中,一种实施方式为,终端设备被配置在时隙n-K m接收SPS PDSCH#m,且SPS PDSCH#m是被激活的,也即,SPS PDSCH#m所对应的SPS配置在时隙n-K m处于激活状态。其中,n是指SPS PDSCH#m所对应的发送反馈信息的时隙;K m是指SPS PDSCH#m的PDSCH与对应的HARQ反馈之间的时域偏移量(PDSCH-to-HARQ-ACK-feedback timing value),也即,SPS PDSCH#m接收所在的时隙与相应HARQ-ACK信息所在的时隙之间的时隙间隔。需要注意的是,该第一集合中的所有SPS PDSCH接收所对应的HARQ-ACK信息的发送时间在相同的时隙(也即时隙n)。
在本申请实施例中,另一种实施方式为,终端设备被配置在时隙n m接收SPS PDSCH#m,且SPS PDSCH#m是被激活的,也即,SPS PDSCH#m所对应的SPS配置在时隙n m处于激活状态。这里,SPS PDSCH#m所对应的(上行)子时隙为n’–K’ m,也即SPS PDSCH#m所对应的PDSCH结束符号在子时隙n’–K’ m。其中,n’是指SPS PDSCH#m所对应的发送反馈信息的子时隙,也即,该反馈信息所对应的上行信号的起始符号在子时隙n’;K’ m是指SPS PDSCH#m所对应的PDSCH的结束符号所对应的子时隙与SPS PDSCH#m对应的HARQ反馈的结束符号所对应的子时隙之间的子时隙间隔(PDSCH-to-HARQ-ACK-feedback timing value)。需要注意的是,该第一集合中的所有SPS PDSCH接收所对应的HARQ-ACK信息的发送时间在相同的子时隙(也即子时隙n’)。
以上说明仅以时隙、子时隙为例,上述描述中的时间单位也可以是子帧或者符号或者帧。
下面结合附图对本申请的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
第一方面的实施例
本申请第一方面的实施例提供了一种信号发送方法,该方法应用于终端设备。图 5是本申请第一方面的实施例的信号发送方法的示意图,请参照图5,该方法包括:
操作501:终端设备至少根据第一集合生成第一反馈信号,所述第一集合至少包括两个SPS PDSCH接收,并且所述第一集合的SPS PDSCH接收对应相同的带宽部分(BWP)或载波单元(Component Carrier)或服务小区(serving cell)或相同服务小区的相同BWP;
操作502:所述终端设备发送所述第一反馈信号。
根据本申请实施例,在同一个BWP或CC或serving cell或相同serving cell的相同BWP上(也即一个服务小区的同一个BWP),至少两个SPS PDSCH接收所对应的HARQ ACK信息能够在同一个时间单位内反馈,由此,网络设备可以更灵活地在同一个BWP或CC或serving cell或相同serving cell的相同BWP中配置多个SPS,而且还能够降低SPS反馈信息的时延。
在本申请实施例中,SPS PDSCH接收是指,终端设备根据SPS激活DCI以及相应的SPS配置信息监听或接收相应的PDSCH。当终端设备在相应时频位置成功解码该SPS PDSCH,则反馈ACK,如果在相应时频位置没有成功解码该SPS PDSCH,则反馈NACK。这里,SPS激活DCI(即用于激活SPS的DCI)是指,关于相应的SPS配置,时域上最近的SPS激活DCI,也即该SPS激活DCI与其相应的SPS PDSCH之间没有其它的(属于同一个SPS配置的)SPS激活DCI。另外,该SPS激活DCI例如可以是由CS-RNTI加扰的DCI format。其中,例如,SPS激活DCI中用于使能传输块的新数据指示符域(new data indicator field)为“0”,即“a new data indicator field for the enabled transport block is set to‘0’”。
以图2为例,SPS激活DCI为最左侧的DCI,SPS PDSCH接收是指UE在slot n监听/接收相应的PDSCH或在slot n+P接收/监听相应的PDSCH,或后续地以P为周期的slot监听/接收相应的PDSCH(例如,slot n+2P)。以图3为例,SPS激活DCI为DCI#1,SPS PDSCH接收是指UE在slot n监听/接收相应的PDSCH或在slot n+P接收/监听相应的PDSCH,或后续地以P为周期的slot监听/接收相应的PDSCH(例如,slot n+2P)。在图3的示例中,DCI#2为动态DCI而不是前述的SPS激活DCI,DCI#2调度的PDSCH并非前述的SPS PDSCH接收所对应的PDSCH。
在本申请实施例的至少一个实施例中,第一集合中的SPS PDSCH接收对应相同的HARQ-ACK码本(codebook),由此,能够更好地利用系统资源,同时也能保证 传输可靠性。例如,SPS PDSCH#1,SPS PDSCH#2,…,SPS PDSCH#M的HARQ-ACK反馈对应相同的HARQ-ACK codebook,该HARQ-ACK codebook可以是基于时隙的(slot-based)也可以是基于子时隙的(sub-slot based),本申请不限于此。
在一个实施例中,上述第一集合中的SPS PDSCH接收(SPS PDSCH#1,SPS PDSCH#2,…,SPS PDSCH#M)所对应的SPS配置的HARQ-ACK codebook标识(identifier)相同。
例如,在所述第一集合中,所有SPS PDSCH接收所对应的与半持续调度相关的RRC IE中包含‘codebook=slot-based’,也即,所有的PDSCH的HARQ反馈属于slot-based HARQ-ACK codebook。这里,slot-based是指,HARQ-ACK信息所对应的上行资源的时域位置是由以slot为单位的时域指示确定的。
再例如,在所述第一集合中,所有SPS PDSCH接收所对应的与半持续调度相关的RRC IE中包含‘codebook=sub-slot based’,也即,所有的PDSCH的HARQ反馈属于sub-slot based HARQ-ACK codebook。这里,sub-slot based是指,HARQ-ACK信息所对应的上行资源的时域位置是由以sub-slot为单位的时域指示确定的。
再例如,在所述第一集合中,所有SPS PDSCH接收所对应的与半持续调度相关的RRC IE中包含‘codebook=1’,也即,所有的PDSCH的HARQ-ACK信息对应于第一HARQ-ACK codebook。
再例如,在所述第一集合中,所有SPS PDSCH接收所对应的与半持续调度相关的RRC IE中包含‘codebook=2’,也即,所有的PDSCH的HARQ-ACK信息对应于第二HARQ-ACK codebook。
以上只是举例说明,本申请不限于此,根据上述例子还可以推导出其他类似的例子,此处省略说明。
在另一个实施例中,上述第一集合中的SPS PDSCH接收(SPS PDSCH#1,SPS PDSCH#2,…,SPS PDSCH#M)所对应的SPS激活DCI中的HARQ-ACK codebook标识(identifier)相同。这里与SPS PDSCH接收相对应的SPS激活DCI是指,该SPS PDSCH接收以及该SPS激活DCI对应于相同的SPS配置。
例如,SPS激活DCI中包含一个域,该域的大小为1比特,其中码点(codepoint)为‘0’时,代表slot-based HARQ-ACK codebook,而codepoint为‘1’时,代表sub-slotbased HARQ-ACK codebook。这里,SPS PDSCH#1,SPS PDSCH#2,…,SPS  PDSCH#M所对应的SPS激活DCI中这个域的值是相同的(‘0’/‘1’)。
再例如,SPS激活DCI中包含一个域,该域的大小为2比特,其中,codepoint为‘00’时,代表HARQ-ACK codebook 1,而codepoint为‘01’时,代表HARQ-ACK codebook 2,而codepoint为‘10’时,代表HARQ-ACK codebook 3,而codepoint为‘11’时,代表HARQ-ACK codebook 4。这里,SPS PDSCH#1,SPS PDSCH#2,…,SPS PDSCH#M所对应的SPS激活DCI中的这个域的值是相同的。
在本申请实施例的至少一个实施例中,上述第一反馈信号包括上述第一集合中的SPS PDSCH接收所对应的反馈信息,并且,该第一集合中的SPS PDSCH接收所对应的反馈信息在该第一反馈信号中的顺序与以下至少一种方式相关(或者由以下至少一种方式确定):
第一集合中的SPS PDSCH接收所对应的PDSCH的起始时域位置或结束时域位置的先后;
第一集合中的SPS PDSCH接收所对应的SPS配置ID的升序或降序;以及
第一集合中的SPS PDSCH接收所对应的SPS激活DCI的起始时域位置或结束时域位置的先后。
由此,终端设备和网络设备能够根据HARQ-ACK信息的比特(bit)的先后顺序确定该HARQ-ACK信息的含义。也即,能够确定所述第一集合中对应的SPS PDSCH接收是否成功。
此外,当上述顺序与第一集合中的SPS PDSCH接收所对应的PDSCH的起始时域位置或结束时域位置的先后相关时,不仅能够使得PDSCH的起始/结束位置可以用于区分对应HARQ-ACK信息比特(bit)的顺序,也可以使得PDSCH时域位置较前的SPS PDSCH接收能够得到优先处理从而更早地生成HARQ-ACK信息比特,符合硬件的处理时序,加速处理过程,从而节省系统资源的开销。
此外,当上述顺序与第一集合中的SPS PDSCH接收所对应的SPS配置ID的升序或降序相关时,不仅能够使得PDSCH对应的SPS配置ID能够区分对应HARQ-ACK信息比特的顺序,也可以使得不同SPS配置ID所对应的PDSCH有不同的优先等级,也即当UE无法传送所有第一集合SPS PDSCH接收所对应的HARQ-ACK bit时,可以根据该先后顺序去除一部分比特,从而使得反馈信息的比特数与相应的传输资源匹配。
此外,当上述顺序与第一集合中的SPS PDSCH接收所对应的SPS激活DCI的起始时域位置或结束时域位置的先后相关时,不仅能够使得PDSCH对应的SPS激活DCI能够区分对应HARQ-ACK信息比特的顺序,也可以使得不同SPS激活DCI所对应的PDSCH有不同的优先等级,也即当UE无法传送所有第一集合SPS PDSCH接收所对应的HARQ-ACK信息比特时,可以根据该先后顺序去除一部分比特,从而使得反馈信息的比特数与相应的传输资源匹配。
与前述时间单位类似,上述时域位置可以是帧(frame)、子帧(subframe)、时隙(slot)、子时隙(sub-slot)、符号(symbol)中的其中一个,本申请不限于此。
例如,假设SPS PDSCH#1,SPS PDSCH#2,…,SPS PDSCH#M所对应的反馈信息比特分别为O 1,O 2,…,O M。在所述第一反馈信号中,假设反馈信息比特的顺序为{O 1,O 2,…,O M}(从O 1至O M),则该顺序由以下方法之一确定:
方法1,PDSCH信号的起始或结束位置,即上述顺序由SPS PDSCH#m所对应PDSCH信号的起始/结束位置来决定,例如,SPS PDSCH#m所对应PDSCH信号的起始符号为StartPDSCH#m,则:
按照对应PDSCH信号的起始位置的时域升序排列是指:StartPDSCH#1>=StartPDSCH#2>=…>=StartPDSCH#M;
按照对应PDSCH信号的起始位置的时域降序排列是指:StartPDSCH#1<=StartPDSCH#2<=…<=StartPDSCH#M。
方法2,SPS配置ID,即,上述顺序由SPS PDSCH#m所对应SPS configuration ID(SPS config#m)的大小来决定,例如,
按照对应SPS configuration ID的升序:SPS config#1>=SPS config#2>=…>=SPS config#M;
按照对应SPS configuration ID的降序:SPS config#1<=SPS config#2<=…<=SPS config#M。
方法3,SPS激活DCI的起始或结束位置,即上述顺序由SPS PDSCH#m所对应的SPS激活DCI的起始/结束位置来决定,例如,SPS PDSCH#m所对应的SPS激活DCI的起始符号为StartPDCCH#m,则:
按照对应PUCCH信号的起始位置的时域升序排列是指:StartPDCCH#1>=StartPDCCH#2>=…>=StartPDCCH#M;
按照对应PUCCH信号的起始位置的时域降序排列是指:StartPDCCH#1<=StartPDCCH#2<=…<=StartPDCCH#M。
这里,SPS PDSCH#m所对应的SPS激活DCI是指,与SPS PDSCH#m时域距离最近且对应相同SPS配置的SPS激活DCI。
上述三种方法可以分别使用,也可以组合使用,例如,先比较PDSCH的起始位置,如果相同,则进一步比较SPS配置ID的大小,反之亦然;再例如,先比较SPS配置ID的大小,再比较SPS激活DCI的位置等,反之亦然。
在本申请实施例的上述操作501中,在至少一个实施例中,终端设备可以根据第一集合以及最大HARQ-ACK信息比特数,生成上述第一反馈信号。这里,最大HARQ-ACK信息比特数是指:一个上行信号中(例如,PUCCH)与SPS相关的最大HARQ-ACK信息比特数。
在一个实施例中,该最大HARQ-ACK信息比特数可以是RRC(无线资源控制)信令指示的,也即由网络设备通过RRC信令配置的。
例如,网络设备向终端设备发送RRC信令,其指示终端设备在一个上行资源中最多允许在一个上行资源/信号中发送N max个与SPS相关的HARQ反馈比特,则,N max为上述最大HARQ-ACK信息比特数,并且,
当所述第一集合中所有SPS PDSCH接收所对应的HARQ-ACK比特总数小于等于N max时,所述第一反馈信号中包含所有第一集合中SPS PDSCH接收所对应的SPS HARQ反馈比特;
当所述第一集合中所有SPS PDSCH接收所对应的HARQ-ACK比特总数大于N max时,所述第一反馈信号包含最多N max个与第一集合中SPS PDSCH接收相对应的HARQ-ACK比特。此时,第一集合只有一部分SPS PDSCH接收所对应的HARQ-ACK信息包含在所述第一反馈信号中。
在本申请实施例中,终端设备可以根据第一集合中的SPS PDSCH接收所对应的PDSCH起始/结束时域位置的先后,确定上述一部分SPS PDSCH接收。例如,所述第一反馈信号只包括对应的PDSCH起始位置最前的SPS PDSCH接收的反馈信息(HARQ-ACK比特),以使得发送比特数小于或等于上述N max
在本申请实施例中,终端设备也可以根据第一集合中的SPS PDSCH接收所对应的SPS配置ID的升序/降序,确定上述一部分SPS PDSCH接收。例如,所述第一反 馈信号只包括对应的SPS configuration ID较小的PDSCH接收的反馈信息(HARQ-ACK比特),以使得发送比特数小于或等于上述N max
在本申请实施例中,终端设备还可以根据第一集合中的SPS PDSCH接收所对应的SPS激活DCI的起始/结束时域位置的先后,确定上述一部分SPS PDSCH接收。例如,所述第一反馈信号只包括对应的SPS激活DCI较早的PDSCH接收的反馈信息(HARQ-ACK比特),以使得发送比特数小于或等于上述N max
以上三种方式可以分别使用,也可以组合使用,例如,先比较PDSCH的起始位置,如果相同,则进一步比较SPS配置ID的大小,反之亦然;再例如,先比较SPS配置ID的大小,再比较SPS激活DCI的位置等,反之亦然。本申请不限于此。
在另一个实施例中,上述最大HARQ-ACK信息比特数也可以与该第一反馈信号的容量(capacity)相关。也即,最多允许发送N max个与SPS相关的HARQ反馈比特不是由RRC信令指示而是与该第一反馈信号的容量相关,例如,相等。该容量与上述第一反馈信号的时频域资源、调制方式(MCS)和/或码率相关,本申请对此不再赘述。由此,可以避免额外的指示信令指示最大HARQ-ACK信息比特数,从而减少系统的资源开销。
在本申请实施例的上述操作501中,在至少一个实施例中,终端设备可以根据第一集合以及最大的与HARQ-ACK信息相关的ACK的个数,生成上述第一反馈信号。这里,HARQ-ACK信息是指与SPS相关的HARQ-ACK信息。
在一个实施例中,最大的与HARQ-ACK信息相关的ACK的个数是指,一个上行信号中(例如,PUCCH)最大的与HARQ-ACK信息相关的ACK的个数,它可以是由RRC信令指示的,也即由网络设备通过RRC信令配置的。
例如,网络设备向终端设备发送RRC信令,其指示终端设备在一个上行资源中最多允许发送P个与SPS相关的‘ACK’,也即指示终端设备最多有P个有效的SPS PDSCH接收所对应的HARQ信息可以为ACK,所述第一集合中其它的SPS PDSCH接收所对应的HARQ信息为NACK。因此,反馈信息中可能包括的ACK的个数为0,1,2,…,P,假设所述第一反馈信号中所对应的与SPS相关的HARQ反馈比特个数为N,则反馈可能发生的状态分别为
Figure PCTCN2019100868-appb-000001
Figure PCTCN2019100868-appb-000002
所以,终端设备不必在所述第一反馈信号中生成N比特HARQ-ACK信息,而是生成一 定的比特数对应上述所有可能性出现的状态,即在所述第一反馈信号中生成的比特数为:
Figure PCTCN2019100868-appb-000003
这样,RRC信令可以灵活配置ACK的个数,从而能使更多SPS PDSCH在相同时间单位内反馈HARQ-ACK信息。另外,限制ACK的个数可以极大地缩减可能的反馈信息的组合,从而节省HARQ反馈所需要的信息比特开销。
在另一个实施例中,上述最大的与HARQ-ACK信息相关的ACK的个数是预定义的。也即,最多允许发送P个与SPS相关的ACK不是由RRC指示的而是预定义的,例如为2。这样可以避免额外的指示信令(用以指示ACK的个数),节省信令开销。
根据本申请实施例的以上方法,在HARQ-ACK信息中,可以确定各个SPS PDSCH所对应的HARQ-ACK信息比特的位置,由此,网络设备和终端设备能够根据HARQ-ACK信息比特的先后顺序确定反馈信息的含义。
在本申请实施例中,在至少一个实施例中,上述第一反馈信号仅包括不对应PDCCH的PDSCH接收(PDSCH without corresponding PDCCH)所对应的HARQ-ACK信息,而不包括对应PDCCH的PDSCH接收(PDSCH with corresponding PDCCH)所对应的HARQ-ACK信息。这里,PDSCH without corresponding PDCCH是指没有PDCCH直接调度该PDSCH,例如SPS中除了SPS激活DCI指示的初始(initial)PDSCH以外的PDSCH。这里,初始PDSCH是指SPS激活DCI之后的第一个对应的PDSCH。由此,由于没有直接对应的PDCCH,第一反馈信号的资源指示无法直接由PDCCH提供,则该资源可以是上述第一集合中的一个SPS PDSCH接收所对应的上行资源,或者,也可以是第二集合中的上行资源,该第二集合中的上行资源可以与前述第一集合中的SPS PDSCH接收所对应的HARQ-ACK信息的大小相关,具体方式将在下面进行说明。
在本申请实施例中,在操作502的至少一个实施例中,终端设备可以使用第一上行资源发送上述第一反馈信号,该第一上行资源可以是上述第一集合中的一个SPS PDSCH接收所对应的配置的上行资源。
例如,该第一上行资源所对应的SPS PDSCH接收可以是上述第一集合中的SPS PDSCH接收对应的SPS配置ID最大或最小的一个SPS PDSCH接收。假设所述第一集合中SPS PDSCH#m所对应的配置的用于HARQ-ACK反馈的PUCCH资源为 PUCCH m,并且,SPS PDSCH#m所对应的SPS configuration ID为SPS m,则终端设备可以根据PUCCH i发送所述第一反馈信号,其中
Figure PCTCN2019100868-appb-000004
或者
Figure PCTCN2019100868-appb-000005
再例如,该第一上行资源所对应的SPS PDSCH接收可以是上述第一集合中的SPS PDSCH接收对应的PDSCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH接收。假设第一集合中SPS PDSCH#m所对应的配置的用于HARQ-ACK反馈的PUCCH资源为PUCCH m。另外,SPS PDSCH#m所对应的PDSCH起始时域位置(符号/时隙/子时隙)为
Figure PCTCN2019100868-appb-000006
则终端设备可以根据PUCCH i发送第一反馈信号,其中
Figure PCTCN2019100868-appb-000007
或者
Figure PCTCN2019100868-appb-000008
再例如,该第一上行资源所对应的SPS PDSCH接收可以是上述第一集合中的SPS PDSCH接收对应的配置的HARQ PUCCH资源起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH接收。假设第一集合中SPS PDSCH#m所对应的配置的用于HARQ-ACK反馈的PUCCH资源为PUCCH m(例如,是相应SPS配置SPS-config中关于HARQ PUCCH资源的指示IE:n1PUCCH-AN所指示的PUCCH资源)。另外,PUCCH m的起始时域位置(符号/时隙/子时隙)为
Figure PCTCN2019100868-appb-000009
则终端设备可以根据PUCCH i发送第一反馈信号,其中
Figure PCTCN2019100868-appb-000010
或者
Figure PCTCN2019100868-appb-000011
再例如,该第一上行资源所对应的SPS PDSCH接收可以是上述第一集合中的SPS PDSCH接收对应的PUCCH满足预定义的时间线(timeline)的一个SPS PDSCH接收。假设第一集合中SPS PDSCH#m所对应的配置的用于HARQ-ACK反馈的PUCCH资源为PUCCH m。另外,SPS PDSCH#m所对应的PDSCH的结束时域位置(符号/时隙/子时隙)为
Figure PCTCN2019100868-appb-000012
另外,SPS PDSCH#m所对应的用于承载相应HARQ-ACK信息的PUCCH起始时域位置(符号/时隙/子时隙)为
Figure PCTCN2019100868-appb-000013
Figure PCTCN2019100868-appb-000014
终端设备可以根据PUCCH i发送第一反馈信号。其中,T为一个预定义阈值,例如与N 2timeline相同,也即等同于PDSCH传输与相应HARQ-ACK反馈之间的最小时域间隔,该阈值与UE上报的能力和/或(相应的上行)子载波间隔(SCS,Sub-carrier Spacing)相关。
再例如,该第一上行资源所对应的SPS PDSCH接收可以是上述第一集合中的SPS PDSCH接收对应的PUCCH容量(capacity)大于或等于相应的总负载大小 (payload size)的一个SPS PDSCH接收。假设第一集合中SPS PDSCH#m所对应的配置的用于HARQ-ACK反馈的PUCCH资源为PUCCH m。另外,SPS PDSCH#m所对应的HARQ信息比特数为N m。另外,SPS PDSCH#m所对应的用于承载相应HARQ-ACK信息的PUCCH的容量为C m,当
Figure PCTCN2019100868-appb-000015
终端设备可以根据PUCCH i发送第一反馈信号。
在这个例子中,如果没有PUCCH的容量大于或等于总负载大小,则终端设备可以根据容量最大的PUCCH资源发送第一反馈信号。也即,该第一上行资源所对应的SPS PDSCH接收可以是上述第一集合中的SPS PDSCH接收对应的PUCCH容量(capacity)最大的一个SPS PDSCH接收。即如果在第一集合中的SPS PDSCH没有对应的满足上述条件的PUCCH m,则终端设备可以根据PUCCH i’发送第一反馈信号,其中
Figure PCTCN2019100868-appb-000016
在本申请实施例中,上述PUCCH的容量与PUCCH资源的时频域资源大小、调制方式、和/或码率有关,本申请不限于此。
在本申请实施例中,在操作502的至少一个实施例中,终端设备可以使用(或根据)第二上行资源发送上述第一反馈信号,该第二上行资源属于第二集合,该第二上行资源与第一集合中的SPS PDSCH接收所对应的HARQ-ACK信息的大小相关。
以第二上行资源为PUCCH资源为例,则第二集合可以包括{PUCCH#1,PUCCH#2,…,PUCCH#K},其中,一个元素记为PUCCH#k,k=1,2,3,…,K,(K>=1)。并且,例如,第二集合中的上行资源可以按照资源容量升序或降序排列。
例如,假设第一集合中SPS PDSCH#m所对应的HARQ反馈比特数为N m。另外,PUCCH#k所对应的PUCCH资源容量为C k,当
Figure PCTCN2019100868-appb-000017
终端设备可以根据PUCCH i发送所述第一反馈信号。如果所述第二集合中没有满足上述条件的PUCCH资源,则终端设备可以根据PUCCH k’发送第一反馈信号,其中,
Figure PCTCN2019100868-appb-000018
再例如,假设第二集合{PUCCH#1,PUCCH#2,…,PUCCH#K}所对应的payload size范围分别为PUCCH#1→{P0,P1},PUCCH#2→{P 1,P 2},…,PUCCH#K→{P K-1,P K}。当
Figure PCTCN2019100868-appb-000019
时,终端设备可以根据PUCCH k’发送第一反馈信号。如果没有满足上述条件的PUCCH k’,则终端设备根据PUCCH k”发送第一反馈信号,其中,
Figure PCTCN2019100868-appb-000020
在本申请实施例中,上述第二上行资源可以通过RRC信令指示,也即,终端设 备可以根据RRC信令使用上述第二上行资源发送第一反馈信号。该RRC信令是指示终端设备使用第二集合中的上行资源传输第一集合中SPS PDSCH接收所对应的HARQ-ACK信息。例如,该RRC信令的IE名称为‘SPS-HARQ-multiplexing-PUCCH’,其可以被配置为使能(enable)或去使能(disabled)或不被配置(例如,不被配置等同于去使能)。在该RRC使能的条件下,终端设备可以根据所述第二集合中的上行资源传输所述第一集合中SPS PDSCH接收所对应的HARQ信息;如果该RRC信令的指示为去使能,则终端设备需要根据与SPS PDSCH接收相对应的HARQ PUCCH资源发送所述第一反馈信号,具体的实施方法如前所述。
在本申请实施例中,在操作502的至少一个实施例中,终端设备可以根据RRC信令发送第一反馈信号。例如,该RRC信令的使能状态表示,终端设备允许将同一个BWP上的至少两个SPS PDSCH对应的反馈信息在相同的上行资源中复用。例如,该RRC信令的IE名称为‘SPS-HARQ-multiplexing’,其可以被配置为使能或去使能或不被配置(例如,不被配置等同于去使能)。也即,当RRC信令指示相应的使能状态时,终端设备可以发送第一反馈信号;如果为去使能时(或没有被配置时),终端设备不能发送所述第一反馈信号。
在本申请实施例中,在操作502的至少一个实施例中,终端设备可以根据已上报的(reported)终端设备能力(UE capability)发送第一反馈信号。该能力是指终端设备能够将同一个BWP上的至少两个SPS PDSCH对应的反馈信息在相同的上行资源中复用。该能力可以是关于终端设备所有CC/服务小区的,或者该能力是每个CC/serving cell分别上报的,本申请不限于此。当终端设备拥有该能力并将相应的信息上报给网络设备时,终端设备可以按照文中所述方法发送第一反馈信号。
根据本申请实施例的以上方法选择用于承载上述反馈信息的上行资源(上行信号),使得该反馈信息能够在时频大小合适的上行信号进行传输,保证了传输的可靠性,从而提升了系统的性能。
通过本申请实施例的方法,网络设备可以更灵活地在同一个BWP/CC/serving cell/相同serving cell的相同BWP中配置多个SPS(更灵活的周期、起始位置),而且还能够降低SPS传输反馈信息的时延。
第二方面的实施例
本申请第二方面的实施例提供了一种信号接收方法,该方法应用于网络设备,其是对应第一方面的实施例的方法的网络侧的处理,其中与第一方面的实施例相同的内容不再重复说明。
图6是本本申请第二方面的实施例的信号接收方法的示意图,如图6所示,该方法包括:
操作601:网络设备向终端设备发送SPS配置信息;
操作602:所述网络设备至少根据第三集合接收终端设备发送的第二反馈信号,所述第三集合至少包括两个SPS PDSCH发送,所述SPS PDSCH发送对应相同的带宽部分(BWP)或载波单元(CC)或服务小区(serving cell)或相同服务小区的相同BWP,所述SPS PDSCH发送与所述SPS配置信息相对应。
在本申请实施例中,SPS PDSCH发送是指:网络设备能够(可以)根据已发送的SPS激活DCI的指示内容以及相应的SPS配置信息发送相应的PDSCH。需要说明的是,网络设备不一定发送了上述PDSCH,但终端设备会在相应的位置监听/接收PDSCH。
在本申请实施例中,在操作601中,网络设备会向终端设备发送SPS配置信息,关于该SPS配置信息的内容和发送方式,本申请不作限制,可以参考相关技术。
在本申请实施例中,第三集合中的SPS PDSCH发送对应相同的HARQ-ACK码本。
在至少一个实施例中,第三集合中的SPS PDSCH发送对应相同的HARQ-ACK码本是指:所述第三集合中的SPS PDSCH发送所对应的SPS配置的HARQ-ACK码本标识相同;或者,所述第三集合中的SPS PDSCH发送所对应的SPS激活DCI中的HARQ-ACK码本标识相同。
在本申请实施例中,第二反馈信号包括第三集合中的SPS PDSCH发送所对应的HARQ-ACK信息,并且,第三集合中的SPS PDSCH发送所对应的反馈信息在第三反馈信号中的顺序与以下至少一种方式相关:
第三集合中的SPS PDSCH发送所对应的PDSCH的起始时域位置或结束时域位置的先后;
第三集合中的SPS PDSCH发送所对应的SPS配置ID的升序或降序;以及
第三集合中的SPS PDSCH发送所对应的SPS激活DCI的起始时域位置或结束时 域位置的先后。
在本申请实施例中,第三集合中的SPS PDSCH发送所对应的HARQ-ACK信息可以在相同的子时隙发送。
在本申请实施例的一个实施例中,在操作602中,网络设备至少根据第三集合接收第二反馈信号,包括:网络设备根据所述第三集合以及最大HARQ-ACK信息比特数,接收该第二反馈信号。
在至少一个实施例中,最大HARQ-ACK信息比特数是指:一个上行信号中与SPS相关的最大HARQ-ACK信息比特数。
在至少一个实施例中,最大HARQ-ACK信息比特数由RRC信令指示,或者最大HARQ-ACK信息比特数与第二反馈信号的容量相关。
在本申请实施例的另一个实施例中,在操作602中,网络设备至少根据第三集合接收第二反馈信号,包括:网络设备根据第三集合以及最大的与HARQ-ACK信息相关的ACK的个数,接收所述第二反馈信号。
在至少一个实施例中,上述HARQ-ACK信息为与SPS相关的HARQ-ACK信息。
在至少一个实施例中,上述最大的与HARQ-ACK信息相关的ACK的个数是由RRC信令指示的,或者是预定义的。
在本申请实施例的一个实施例中,在操作602中,网络设备接收所述第二反馈信号,包括:网络设备在第三上行资源接收第二反馈信号,第三上行资源是第三集合中的一个SPS PDSCH发送所对应的上行资源。
在一个实施例中,第三上行资源所对应的SPS PDSCH发送是以下至少一个:
第三集合中的SPS PDSCH发送对应的SPS配置ID最大或最小的一个SPS PDSCH发送;
第三集合中的SPS PDSCH发送对应的PDSCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH发送;
第三集合中的SPS PDSCH发送对应的PUCCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH发送;
第三集合中的SPS PDSCH发送对应的PUCCH满足预定义的时间线(timeline)的一个SPS PDSCH发送;
第三集合中的SPS PDSCH发送对应的PUCCH容量(capacity)大于或等于相应 的总负载大小(payload size)的一个SPS PDSCH发送;
第三集合中的SPS PDSCH发送对应的PUCCH容量(capacity)最大的一个SPS PDSCH发送。
在本申请实施例的另一个实施例中,在操作602中,网络设备接收第二反馈信号,包括:网络设备在第四上行资源接收第二反馈信号,第四上行资源属于第四集合,第四上行资源与前述第三集合中的SPS PDSCH发送所对应的HARQ-ACK信息的大小相关。
在至少一个实施例中,上述第四集合中的上行资源按照资源容量升序或降序排列。
在至少一个实施例中,网络设备在第四上行资源接收所述第二反馈信号,包括:网络设备根据RRC信令在第四上行资源接收第二反馈信号。
在本申请实施例的一个实施例中,第二反馈信号仅包括第三集合的SPS PDSCH发送中不对应PDCCH的PDSCH发送所对应的HARQ-ACK信息。
在本申请实施例的一个实施例中,在操作602中,网络设备接收第二反馈信号,包括:网络设备根据RRC信令接收所述第二反馈信号。
在本申请实施例的一个实施例中,在操作602中,网络设备接收第二反馈信号,包括:网络设备根据已接收的(received)终端设备能力(UE capability)接收所述第二反馈信号。
在本申请实施例中,第二反馈信号对应第一方面的实施例的第一反馈信号,SPS PDSCH发送对应第一方面的实施例的SPS PDSCH接收,第三集合对应第一方面的实施例的第一集合,第四集合对应第一方面的实施例的第二集合,关于本申请实施例的第二反馈信号、SPS PDSCH发送、第三集合以及第四集合的实施方式,与第一方面的实施例的第一反馈信号、SPS PDSCH接收、第一集合以及第二集合类似,此处不再赘述。
通过本申请实施例的方法,网络设备可以更灵活地在同一个BWP/CC/serving cell/相同serving cell的相同BWP中配置多个SPS(更灵活的周期、起始位置),而且还能够降低SPS传输反馈信息的时延。
第三方面的实施例
本申请第三方面的实施例提供了一种信号发送装置,该装置配置于终端设备。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参照实施例1的方法的实施,内容相同之处不再重复说明。
图7是本实施例的信号发送装置700的示意图,如图7所示,该装置700包括:生成单元701和发送单元702,生成单元701至少根据第一集合生成第一反馈信号,所述第一集合至少包括两个SPS PDSCH接收,并且所述第一集合的SPS PDSCH接收对应相同的带宽部分(BWP)或载波单元(CC)或服务小区(serving cell)或相同服务小区的相同BWP;发送单元702发送所述第一反馈信号。
在本申请实施例中,SPS PDSCH接收是指:所述终端设备根据SPS激活DCI指示以及相应的SPS配置信息监听或接收相应的PDSCH。
在至少一个实施例中,第一集合中的SPS PDSCH接收所对应的HARQ-ACK信息在相同的子时隙发送。
在至少一个实施例中,第一集合中的SPS PDSCH接收对应相同的HARQ-ACK码本。
在一个实施例中,第一集合中的SPS PDSCH接收对应相同的HARQ-ACK码本,是指:所述第一集合中的SPS PDSCH接收所对应的SPS配置的HARQ-ACK码本标识相同;或者所述第一集合中的SPS PDSCH接收所对应的SPS激活DCI中的HARQ-ACK码本标识相同。
在至少一个实施例中,第一反馈信号包括第一集合中的SPS PDSCH接收所对应的反馈信息,并且,第一集合中的SPS PDSCH接收所对应的反馈信息在第一反馈信号中的顺序与以下至少一种方式相关:
所述第一集合中的SPS PDSCH接收所对应的PDSCH的起始时域位置或结束时域位置的先后;
所述第一集合中的SPS PDSCH接收所对应的SPS配置ID的升序或降序;以及
所述第一集合中的SPS PDSCH接收所对应的SPS激活DCI的起始时域位置或结束时域位置的先后。
在至少一个实施例中,生成单元701至少根据第一集合生成第一反馈信号,包括:生成单元701根据所述第一集合以及最大HARQ-ACK信息比特数,生成所述第一反馈信号。
在一个实施例中,最大HARQ-ACK信息比特数是指:一个上行信号中与SPS相关的最大HARQ-ACK信息比特数。
在一个实施例中,最大HARQ-ACK信息比特数由RRC信令指示,或者所述最大HARQ-ACK信息比特数与所述第一反馈信号的容量相关。
在至少一个实施例中,生成单元701至少根据第一集合生成第一反馈信号,包括:生成单元701根据所述第一集合以及最大的与HARQ-ACK信息相关的ACK的个数,生成所述第一反馈信号。
在一个实施例中,所述HARQ-ACK信息是与SPS相关的HARQ-ACK信息。
在一个实施例中,最大的与HARQ-ACK信息相关的ACK的个数是由RRC信令指示的,或者是预定义的。
在至少一个实施例中,第一反馈信号仅包括所述第一集合的SPS PDSCH接收中不对应PDCCH的PDSCH接收所对应的反馈信息。
在至少一个实施例中,发送单元702发送所述第一反馈信号,包括:发送单元702使用第一上行资源发送所述第一反馈信号,所述第一上行资源是所述第一集合中的一个SPS PDSCH接收所对应的上行资源。
在一个实施例中,第一上行资源所对应的SPS PDSCH接收是以下至少一个:
所述第一集合中的SPS PDSCH接收对应的SPS配置ID最大或最小的一个SPS PDSCH接收;
所述第一集合中的SPS PDSCH接收对应的PDSCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH接收;
所述第一集合中的SPS PDSCH接收对应的PUCCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH接收;
所述第一集合中的SPS PDSCH接收对应的PUCCH满足预定义的时间线(timeline)的一个SPS PDSCH接收;
所述第一集合中的SPS PDSCH接收对应的PUCCH容量(capacity)大于或等于相应的总负载大小(payload size)的一个SPS PDSCH接收;
所述第一集合中的SPS PDSCH接收对应的PUCCH容量(capacity)最大的一个SPS PDSCH接收。
在至少一个实施例中,发送单元702发送所述第一反馈信号,包括:发送单元 702使用第二上行资源发送所述第一反馈信号,所述第二上行资源属于第二集合,所述第二上行资源与所述第一集合中的SPS PDSCH接收所对应的HARQ-ACK信息的大小相关。
在一个实施例中,所述第二集合中的上行资源按照资源容量升序或降序排列。
在一个实施例中,发送单元702使用第二上行资源发送所述第一反馈信号,包括:发送单元702根据RRC信令利用所述第二上行资源发送所述第一反馈信号。
在至少一个实施例中,发送单元702发送所述第一反馈信号,包括:发送单元702根据RRC信令发送所述第一反馈信号。
在至少一个实施例中,发送单元702发送所述第一反馈信号,包括:发送单元702根据已上报的(reported)终端设备能力(UE capability)发送所述第一反馈信号。
通过本申请实施例的装置,网络设备可以更灵活地在同一个BWP/CC/serving cell/相同serving cell的相同BWP中配置多个SPS(更灵活的周期、起始位置),而且还能够降低SPS传输反馈信息的时延。
第四方面的实施例
本申请第四方面的实施例提供了一种信号接收装置,该装置配置于网络设备。由于该装置解决问题的原理与第二方面的实施例的方法类似,因此其具体的实施可以参照第二方面的实施例的方法的实施,内容相同之处不再重复说明。
图8是本实施例的信号接收装置800的示意图,如图8所示,该装置800包括:发送单元801和接收单元802,发送单元801向终端设备发送SPS配置信息;接收单元802至少根据第三集合接收终端设备发送的第二反馈信号,所述第三集合至少包括两个SPS PDSCH发送所对应的反馈信息,所述SPS PDSCH发送对应相同的带宽部分(BWP)或载波单元(CC)或服务小区(serving cell)或相同服务小区的相同BWP,所述SPS PDSCH发送与所述SPS配置信息相对应。
在本申请实施例中,SPS PDSCH发送是指:网络设备能够根据已发送的SPS激活DCI的指示内容以及相应的SPS配置信息发送相应的PDSCH。
在本申请实施例中,所述第三集合中的SPS PDSCH发送对应相同的HARQ-ACK码本。
在一个实施例中,所述第三集合中的SPS PDSCH发送对应相同的HARQ-ACK 码本是指:
所述第三集合中的SPS PDSCH发送所对应的SPS配置的HARQ-ACK码本标识相同;或者
所述第三集合中的SPS PDSCH发送所对应的SPS激活DCI中的HARQ-ACK码本标识相同。
在本申请实施例中,所述第二反馈信号包括所述第三集合中的SPS PDSCH发送所对应的HARQ-ACK信息,并且,所述第三集合中的SPS PDSCH发送所对应的反馈信息在所述第三反馈信号中的顺序与以下至少一种方式相关:
所述第三集合中的SPS PDSCH发送所对应的PDSCH的起始时域位置或结束时域位置的先后;
所述第三集合中的SPS PDSCH发送所对应的SPS配置ID的升序或降序;以及
所述第三集合中的SPS PDSCH发送所对应的SPS激活DCI的起始时域位置或结束时域位置的先后。
在本申请实施例中,所述第三集合中的SPS PDSCH发送所对应的HARQ-ACK信息在相同的子时隙发送。
在本申请实施例的一个实施例中,所述接收单元802至少根据第三集合接收第二反馈信号,包括:
所述接收单元802根据所述第三集合以及最大HARQ-ACK信息比特数,接收所述第二反馈信号。
在一个实施例中,所述最大HARQ-ACK信息比特数是指:一个上行信号中与SPS相关的最大HARQ-ACK信息比特数。
在一个实施例中,所述最大HARQ-ACK信息比特数由RRC信令指示,或者所述最大HARQ-ACK信息比特数与所述第二反馈信号的容量相关。
在本申请实施例的另一个实施例中,所述接收单元802至少根据第三集合接收第二反馈信号,包括:
所述接收单元802根据所述第三集合以及最大的与HARQ-ACK信息相关的ACK的个数,接收所述第二反馈信号。
在一个实施例中,所述HARQ-ACK信息为与SPS相关的HARQ-ACK信息。
在一个实施例中,所述最大的与HARQ-ACK信息相关的ACK的个数是由RRC 信令指示的,或者是预定义的。
在本申请实施例的再一个实施例中,所述接收单元802接收所述第二反馈信号,包括:
所述接收单元802在第三上行资源接收所述第二反馈信号,所述第三上行资源是所述第三集合中的一个SPS PDSCH发送所对应的上行资源。
在一个实施例中,所述第三上行资源所对应的SPS PDSCH发送是以下至少一个:
所述第三集合中的SPS PDSCH发送对应的SPS配置ID最大或最小的一个SPS PDSCH发送;
所述第三集合中的SPS PDSCH发送对应的PDSCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH发送;
所述第三集合中的SPS PDSCH发送对应的PUCCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH发送;
所述第三集合中的SPS PDSCH发送对应的PUCCH满足预定义的时间线(timeline)的一个SPS PDSCH发送;
所述第三集合中的SPS PDSCH发送对应的PUCCH容量(capacity)大于或等于相应的总负载大小(payload size)的一个SPS PDSCH发送;
所述第三集合中的SPS PDSCH发送对应的PUCCH容量(capacity)最大的一个SPS PDSCH发送。
在本申请实施例的又一个实施例中,所述接收单元802接收所述第二反馈信号,包括:
所述接收单元802在第四上行资源接收所述第二反馈信号,所述第四上行资源属于第四集合,所述第四上行资源与所述第三集合中的SPS PDSCH发送所对应的HARQ-ACK信息的大小相关。
在一个实施例中,所述第四集合中的上行资源按照资源容量升序或降序排列。
在另一个实施例中,所述接收单元802在第四上行资源接收所述第二反馈信号,包括:
所述接收单元802根据RRC信令在所述第四上行资源接收所述第二反馈信号。
在本申请实施例的一个实施例中,所述第二反馈信号仅包括所述第三集合的SPS PDSCH发送中不对应PDCCH的PDSCH发送所对应的HARQ-ACK信息。
在本申请实施例又一个实施例中,所述接收单元802接收所述第二反馈信号,包括:
所述接收单元802根据RRC信令接收所述第二反馈信号。
在本申请实施例的再一个实施例中,所述接收单元802接收所述第二反馈信号,包括:
所述接收单元802根据已接收的(received)终端设备能力(UE capability)接收所述第二反馈信号。
通过本申请实施例的装置,网络设备可以更灵活地在同一个BWP/CC/serving cell/相同serving cell的相同BWP中配置多个SPS(更灵活的周期、起始位置),而且还能够降低SPS传输反馈信息的时延。
第五方面的实施例
本申请第五方面的实施例提供了一种终端设备,该终端设备包括第三方面的实施例所述的装置。
图9是本申请第五方面的实施例的终端设备的示意图。如图9所示,该终端设备900可以包括中央处理器901和存储器902;存储器902耦合到中央处理器901。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
在一个实施例中,第三方面的实施例所述的装置的功能可以被集成到中央处理器901中,由中央处理器901实现第三方面的实施例所述的装置的功能,其中关于第三方面的实施例所述的装置的功能被合并于此,在此不再赘述。
在另一个实施例中,第三方面的实施例所述的装置以与中央处理器901分开配置,例如可以将该第三方面的实施例所述的装置配置为与中央处理器901连接的芯片,通过中央处理器901的控制来实现该第三方面的实施例所述的装置的功能。
如图9所示,该终端设备900还可以包括:通信模块903、输入单元904、音频处理单元905、显示器906、电源907。值得注意的是,终端设备900也并不是必须要包括图9中所示的所有部件;此外,终端设备900还可以包括图9中没有示出的部件,可以参考现有技术。
如图9所示,中央处理器901有时也称为控制器或操作控件,可以包括微处理器 或其它处理器装置和/或逻辑装置,该中央处理器901接收输入并控制终端设备900的各个部件的操作。
其中,存储器902,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种信息,此外还可存储执行有关信息的程序。并且中央处理器901可执行该存储器902存储的该程序,以实现信息存储或处理等。其它部件的功能与现有类似,此处不再赘述。终端设备900的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本申请的范围。
通过本实施例的终端设备,网络设备可以更灵活地在同一个BWP/CC/serving cell/相同serving cell的相同BWP中配置多个SPS(更灵活的周期、起始位置),而且还能够降低SPS传输反馈信息的时延。
第六方面的实施例
本申请第六方面的实施例还提供了一种网络设备,该网络设备包括第四方面的实施例所述的装置。
图10是本申请第六方面的实施例的网络设备的一个构成示意图。如图10所示,网络设备1000可以包括:中央处理器(CPU)1001和存储器1002;存储器1002耦合到中央处理器1001。其中该存储器1002可存储各种数据;此外还存储信息处理的程序,并且在中央处理器1001的控制下执行该程序,以接收终端设备发送的各种信息、并且向终端设备发送各种信息。
在一个实施例中,第四方面的实施例所述的装置的功能可以被集成到中央处理器1001中,由中央处理器1001实现第四方面的实施例所述的装置的功能,其中关于第四方面的实施例所述的装置的功能被合并于此,在此不再赘述。
在另一个实施例中,第四方面的实施例所述的装置可以与中央处理器1001分开配置,例如可以将该第四方面的实施例所述的装置为与中央处理器1001连接的芯片,通过中央处理器1001的控制来实现该第四方面的实施例所述的装置的功能。
此外,如图10所示,网络设备1000还可以包括:收发机1003和天线1004等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1000也并不是必须要包括图10中所示的所有部件;此外,网络设备1000还可以包 括图10中没有示出的部件,可以参考现有技术。
通过本实施例的网络设备,网络设备可以更灵活地在同一个BWP/CC/serving cell/相同serving cell的相同BWP中配置多个SPS(更灵活的周期、起始位置),而且还能够降低SPS传输反馈信息的时延。
第七方面的实施例
本申请第七方面的实施例还提供一种通信系统,该通信系统包括网络设备和终端设备,网络设备例如为第六方面的实施例所述的网络设备1000,终端设备例如为第五方面的实施例所述的终端设备900。
在本实施例中,该终端设备例如是gNB服务的UE,其除了包含第三方面的实施例所述的装置的功能以外,还包括终端设备的常规组成和功能,如第五方面的实施例所述,在此不再赘述。
在本实施例中,该网络设备例如可以是NR中的gNB,其除了包含第四方面的实施例所述的装置的功能以外,还包括网络设备的常规组成和功能,如第六方面的实施例所述,在此不再赘述。
通过本实施例的通信系统,网络设备可以更灵活地在同一个BWP/CC/serving cell/相同serving cell的相同BWP中配置多个SPS(更灵活的周期、起始位置),而且还能够降低SPS传输反馈信息的时延。
本申请实施例还提供一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行第一方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行第一方面的实施例所述的方法。
本申请实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行第二方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行第二方面的实施例所述的方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请 涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1、一种信号发送装置,配置于终端设备,其中,所述装置包括:
生成单元,其至少根据第一集合生成第一反馈信号,所述第一集合至少包括两个SPS PDSCH接收,并且所述第一集合的SPS PDSCH接收对应相同的带宽部分(BWP)或载波单元(Component Carrier)或服务小区(serving cell)或相同服务小区的相同BWP;
发送单元,其发送所述第一反馈信号。
2、根据附记1所述的装置,其中,所述SPS PDSCH接收是指:所述终端设备根据SPS激活DCI指示以及相应的SPS配置信息监听或接收相应的PDSCH。
3、根据附记1所述的装置,其中,所述第一集合中的SPS PDSCH接收对应相同的HARQ-ACK码本。
4、根据附记3所述的装置,其中,所述第一集合中的SPS PDSCH接收对应相同的HARQ-ACK码本是指:
所述第一集合中的SPS PDSCH接收所对应的SPS配置的HARQ-ACK码本标识相同;或者
所述第一集合中的SPS PDSCH接收所对应的SPS激活DCI中的HARQ-ACK码本标识相同。
5、根据附记1所述的装置,其中,所述第一反馈信号包括所述第一集合中的SPS PDSCH接收所对应的HARQ-ACK信息,并且,所述第一集合中的SPS PDSCH接收所对应的反馈信息在所述第一反馈信号中的顺序与以下至少一种方式相关:
所述第一集合中的SPS PDSCH接收所对应的PDSCH的起始时域位置或结束时域位置的先后;
所述第一集合中的SPS PDSCH接收所对应的SPS配置ID的升序或降序;以及
所述第一集合中的SPS PDSCH接收所对应的SPS激活DCI的起始时域位置或结束时域位置的先后。
6、根据附记1或5所述的装置,其中,所述第一集合中的SPS PDSCH接收所对应的HARQ-ACK信息在相同的子时隙发送。
7、根据附记1所述的装置,其中,所述生成单元至少根据第一集合生成第一反馈信号,包括:
所述生成单元根据所述第一集合以及最大HARQ-ACK信息比特数,生成所述第 一反馈信号。
8、根据附记7所述的装置,其中,所述最大HARQ-ACK信息比特数是指:一个上行信号中与SPS相关的最大HARQ-ACK信息比特数。
9、根据附记7所述的装置,其中,所述最大HARQ-ACK信息比特数由RRC信令指示,或者所述最大HARQ-ACK信息比特数与所述第一反馈信号的容量相关。
10、根据附记1所述的装置,其中,所述生成单元至少根据第一集合生成第一反馈信号,包括:
所述生成单元根据所述第一集合以及最大的与HARQ-ACK信息相关的ACK的个数,生成所述第一反馈信号。
11、根据附记10所述的装置,其中,所述HARQ-ACK信息为与SPS相关的HARQ-ACK信息。
12、根据附记10所述的装置,其中,所述最大的与HARQ-ACK信息相关的ACK的个数是由RRC信令指示的,或者是预定义的。
13、根据附记1所述的装置,其中,所述发送单元发送所述第一反馈信号,包括:
所述发送单元使用第一上行资源发送所述第一反馈信号,所述第一上行资源是所述第一集合中的一个SPS PDSCH接收所对应的上行资源。
14、根据附记13所述的装置,其中,所述第一上行资源所对应的SPS PDSCH接收是以下至少一个:
所述第一集合中的SPS PDSCH接收对应的SPS配置ID最大或最小的一个SPS PDSCH接收;
所述第一集合中的SPS PDSCH接收对应的PDSCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH接收;
所述第一集合中的SPS PDSCH接收对应的PUCCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH接收;
所述第一集合中的SPS PDSCH接收对应的PUCCH满足预定义的时间线(timeline)的一个SPS PDSCH接收;
所述第一集合中的SPS PDSCH接收对应的PUCCH容量(capacity)大于或等于相应的总负载大小(payload size)的一个SPS PDSCH接收;
所述第一集合中的SPS PDSCH接收对应的PUCCH容量(capacity)最大的一个 SPS PDSCH接收。
15、根据附记1所述的装置,其中,所述发送单元发送所述第一反馈信号,包括:
所述发送单元使用第二上行资源发送所述第一反馈信号,所述第二上行资源属于第二集合,所述第二上行资源与所述第一集合中的SPS PDSCH接收所对应的HARQ-ACK信息的大小相关。
16、根据附记15所述的装置,其中,所述第二集合中的上行资源按照资源容量升序或降序排列。
17、根据附记15所述的装置,其中,所述发送单元使用第二上行资源发送所述第一反馈信号,包括:
所述发送单元根据RRC信令利用所述第二上行资源发送所述第一反馈信号。
18、根据附记1或13或15所述的装置,其中,所述第一反馈信号仅包括所述第一集合的SPS PDSCH接收中不对应PDCCH的PDSCH接收所对应的HARQ-ACK信息。
19、根据附记1所述的装置,其中,所述发送单元发送所述第一反馈信号,包括:
所述发送单元根据RRC信令发送所述第一反馈信号。
20、根据附记1所述的装置,其中,所述发送单元发送所述第一反馈信号,包括:
所述发送单元根据已上报的(reported)终端设备能力(UE capability)发送所述第一反馈信号。
21、一种信号接收装置,配置于网络设备,其中,所述装置包括:
发送单元,其向终端设备发送SPS配置信息;
接收单元,其至少根据第三集合接收终端设备发送的第二反馈信号,所述第三集合至少包括两个SPS PDSCH发送,所述SPS PDSCH发送对应相同的带宽部分(BWP)或载波单元(CC)或服务小区(serving cell)或相同服务小区的相同BWP,所述SPS PDSCH发送与所述SPS配置信息相对应。
22、根据附记21所述的装置,其中,所述SPS PDSCH发送是指:网络设备能够根据已发送的SPS激活DCI的指示内容以及相应的SPS配置信息发送相应的PDSCH。
23、根据附记21所述的装置,其中,所述第三集合中的SPS PDSCH发送对应相同的HARQ-ACK码本。
24、根据附记23所述的装置,其中,所述第三集合中的SPS PDSCH发送对应相同的码本是指:
所述第三集合中的SPS PDSCH发送所对应的SPS配置的HARQ-ACK码本标识相同;或者
所述第三集合中的SPS PDSCH发送所对应的SPS激活DCI中的HARQ-ACK码本标识相同。
25、根据附记21所述的装置,其中,所述第二反馈信号包括所述第三集合中的SPS PDSCH发送所对应的HARQ-ACK信息,并且,所述第三集合中的SPS PDSCH发送所对应的反馈信息在所述第三反馈信号中的顺序与以下至少一种方式相关:
所述第三集合中的SPS PDSCH发送所对应的PDSCH的起始时域位置或结束时域位置的先后;
所述第三集合中的SPS PDSCH发送所对应的SPS配置ID的升序或降序;以及
所述第三集合中的SPS PDSCH发送所对应的SPS激活DCI的起始时域位置或结束时域位置的先后。
26、根据附记21或25所述的装置,其中,所述第三集合中的SPS PDSCH发送所对应的HARQ-ACK信息在相同的子时隙发送。
27、根据附记21所述的装置,其中,所述接收单元至少根据第三集合接收第二反馈信号,包括:
所述接收单元根据所述第三集合以及最大HARQ-ACK信息比特数,接收所述第二反馈信号。
28、根据附记27所述的装置,其中,所述最大HARQ-ACK信息比特数是指:一个上行信号中与SPS相关的最大HARQ-ACK信息比特数。
29、根据附记27所述的装置,其中,所述最大HARQ-ACK信息比特数由RRC信令指示,或者所述最大HARQ-ACK信息比特数与所述第二反馈信号的容量相关。
30、根据附记21所述的装置,其中,所述接收单元至少根据第三集合接收第二反馈信号,包括:
所述接收单元根据所述第三集合以及最大的与HARQ-ACK信息相关的ACK的个数,接收所述第二反馈信号。
31、根据附记30所述的装置,其中,所述HARQ-ACK信息为与SPS相关的 HARQ-ACK信息。
32、根据附记30所述的装置,其中,所述最大的与HARQ-ACK信息相关的ACK的个数是由RRC信令指示的,或者是预定义的。
33、根据附记21所述的装置,其中,所述接收单元接收所述第二反馈信号,包括:
所述接收单元在第三上行资源接收所述第二反馈信号,所述第三上行资源是所述第三集合中的一个SPS PDSCH发送所对应的上行资源。
34、根据附记33所述的装置,其中,所述第三上行资源所对应的SPS PDSCH发送是以下至少一个:
所述第三集合中的SPS PDSCH发送对应的SPS配置ID最大或最小的一个SPS PDSCH发送;
所述第三集合中的SPS PDSCH发送对应的PDSCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH发送;
所述第三集合中的SPS PDSCH发送对应的PUCCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH发送;
所述第三集合中的SPS PDSCH发送对应的PUCCH满足预定义的时间线(timeline)的一个SPS PDSCH发送;
所述第三集合中的SPS PDSCH发送对应的PUCCH容量(capacity)大于或等于相应的总负载大小(payload size)的一个SPS PDSCH发送;
所述第三集合中的SPS PDSCH发送对应的PUCCH容量(capacity)最大的一个SPS PDSCH发送。
35、根据附记21所述的装置,其中,所述接收单元接收所述第二反馈信号,包括:
所述接收单元在第四上行资源接收所述第二反馈信号,所述第四上行资源属于第四集合,所述第四上行资源与所述第三集合中的SPS PDSCH发送所对应的HARQ-ACK信息的大小相关。
36、根据附记35所述的装置,其中,所述第四集合中的上行资源按照资源容量升序或降序排列。
37、根据附记35所述的装置,其中,所述接收单元在第四上行资源接收所述第 二反馈信号,包括:
所述接收单元根据RRC信令在所述第四上行资源接收所述第二反馈信号。
38、根据附记21或33或35所述的装置,其中,所述第二反馈信号仅包括所述第三集合的SPS PDSCH发送中不对应PDCCH的PDSCH发送所对应的HARQ-ACK信息。
39、根据附记21所述的装置,其中,所述接收单元接收所述第二反馈信号,包括:
所述接收单元根据RRC信令接收所述第二反馈信号。
40、根据附记21所述的装置,其中,所述接收单元接收所述第二反馈信号,包括:
所述接收单元根据已接收的(received)终端设备能力(UE capability)接收所述第二反馈信号。
41、一种通信系统,包括网络设备和终端设备,其中,所述网络设备包括附记21-40任一项所述的装置,所述终端设备包括附记1至20任一项所述的装置。

Claims (20)

  1. 一种信号发送装置,配置于终端设备,其特征在于,所述装置包括:
    生成单元,其至少根据第一集合生成第一反馈信号,所述第一集合至少包括两个SPS PDSCH接收,并且所述第一集合的SPS PDSCH接收对应相同的带宽部分(BWP)或载波单元(Component Carrier)或服务小区(serving cell)或相同服务小区的相同BWP;
    发送单元,其发送所述第一反馈信号。
  2. 根据权利要求1所述的装置,其中,所述SPS PDSCH接收是指:所述终端设备根据SPS激活DCI指示以及相应的SPS配置信息监听或接收相应的PDSCH。
  3. 根据权利要求1所述的装置,其中,所述第一集合中的SPS PDSCH接收对应相同的HARQ-ACK码本。
  4. 根据权利要求3所述的装置,其中,所述第一集合中的SPS PDSCH接收对应相同的HARQ-ACK码本是指:
    所述第一集合中的SPS PDSCH接收所对应的SPS配置的HARQ-ACK码本标识相同;或者
    所述第一集合中的SPS PDSCH接收所对应的SPS激活DCI中的HARQ-ACK码本标识相同。
  5. 根据权利要求1所述的装置,其中,所述第一反馈信号包括所述第一集合中的SPS PDSCH接收所对应的HARQ-ACK信息,并且,所述第一集合中的SPS PDSCH接收所对应的反馈信息在所述第一反馈信号中的顺序与以下至少一种方式相关:
    所述第一集合中的SPS PDSCH接收所对应的PDSCH的起始时域位置或结束时域位置的先后;
    所述第一集合中的SPS PDSCH接收所对应的SPS配置ID的升序或降序;以及
    所述第一集合中的SPS PDSCH接收所对应的SPS激活DCI的起始时域位置或结束时域位置的先后。
  6. 根据权利要求1或5所述的装置,其中,所述第一集合中的SPS PDSCH接收所对应的HARQ-ACK信息在相同的子时隙发送。
  7. 根据权利要求1所述的装置,其中,所述生成单元至少根据第一集合生成第一反馈信号,包括:
    所述生成单元根据所述第一集合以及最大HARQ-ACK信息比特数,生成所述第一反馈信号。
  8. 根据权利要求7所述的装置,其中,所述最大HARQ-ACK信息比特数是指:一个上行信号中与SPS相关的最大HARQ-ACK信息比特数。
  9. 根据权利要求7所述的装置,其中,所述最大HARQ-ACK信息比特数由RRC信令指示,或者所述最大HARQ-ACK信息比特数与所述第一反馈信号的容量相关。
  10. 根据权利要求1所述的装置,其中,所述生成单元至少根据第一集合生成第一反馈信号,包括:
    所述生成单元根据所述第一集合以及最大的与HARQ-ACK信息相关的ACK的个数,生成所述第一反馈信号。
  11. 根据权利要求10所述的装置,其中,所述HARQ-ACK信息为与SPS相关的HARQ-ACK信息。
  12. 根据权利要求10所述的装置,其中,所述最大的与HARQ-ACK信息相关的ACK的个数是由RRC信令指示的,或者是预定义的。
  13. 根据权利要求1所述的装置,其中,所述发送单元发送所述第一反馈信号,包括:
    所述发送单元使用第一上行资源发送所述第一反馈信号,所述第一上行资源是所述第一集合中的一个SPS PDSCH接收所对应的上行资源。
  14. 根据权利要求13所述的装置,其中,所述第一上行资源所对应的SPS PDSCH接收是以下至少一个:
    所述第一集合中的SPS PDSCH接收对应的SPS配置ID最大或最小的一个SPS PDSCH接收;
    所述第一集合中的SPS PDSCH接收对应的PDSCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH接收;
    所述第一集合中的SPS PDSCH接收对应的PUCCH起始时域位置或结束时域位置最早或最晚的一个SPS PDSCH接收;
    所述第一集合中的SPS PDSCH接收对应的PUCCH满足预定义的时间线 (timeline)的一个SPS PDSCH接收;
    所述第一集合中的SPS PDSCH接收对应的PUCCH容量(capacity)大于或等于相应的总负载大小(payload size)的一个SPS PDSCH接收;
    所述第一集合中的SPS PDSCH接收对应的PUCCH容量(capacity)最大的一个SPS PDSCH接收。
  15. 根据权利要求1所述的装置,其中,所述发送单元发送所述第一反馈信号,包括:
    所述发送单元使用第二上行资源发送所述第一反馈信号,所述第二上行资源属于第二集合,所述第二上行资源与所述第一集合中的SPS PDSCH接收所对应的HARQ-ACK信息的大小相关。
  16. 根据权利要求15所述的装置,其中,所述发送单元使用第二上行资源发送所述第一反馈信号,包括:
    所述发送单元根据RRC信令利用所述第二上行资源发送所述第一反馈信号。
  17. 根据权利要求1所述的装置,其中,所述第一反馈信号仅包括所述第一集合的SPS PDSCH接收中不对应PDCCH的PDSCH接收所对应的HARQ-ACK信息。
  18. 根据权利要求1所述的装置,其中,所述发送单元发送所述第一反馈信号,包括:
    所述发送单元根据RRC信令发送所述第一反馈信号。
  19. 根据权利要求1所述的装置,其中,所述发送单元发送所述第一反馈信号,包括:
    所述发送单元根据已上报的(reported)终端设备能力(UE capability)发送所述第一反馈信号。
  20. 一种信号接收装置,配置于网络设备,其特征在于,所述装置包括:
    发送单元,其向终端设备发送SPS配置信息;
    接收单元,其至少根据第三集合接收终端设备发送的第二反馈信号,所述第三集合至少包括两个SPS PDSCH发送,所述SPS PDSCH发送对应相同的带宽部分(BWP)或载波单元(CC)或服务小区(serving cell)或相同服务小区的相同BWP,所述SPS PDSCH发送与所述SPS配置信息相对应。
PCT/CN2019/100868 2019-08-15 2019-08-15 信号发送方法、装置和系统 WO2021026917A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022507757A JP7371761B2 (ja) 2019-08-15 2019-08-15 信号送信方法、装置及びシステム
PCT/CN2019/100868 WO2021026917A1 (zh) 2019-08-15 2019-08-15 信号发送方法、装置和系统
EP19941696.7A EP4017188B1 (en) 2019-08-15 2019-08-15 Signal transmission method and apparatus, and system
CN201980099069.5A CN114208362A (zh) 2019-08-15 2019-08-15 信号发送方法、装置和系统
KR1020227004243A KR20220031091A (ko) 2019-08-15 2019-08-15 신호 송신 방법 및 장치, 그리고 시스템
US17/589,966 US20220159691A1 (en) 2019-08-15 2022-02-01 Signal transmission method and apparatus and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100868 WO2021026917A1 (zh) 2019-08-15 2019-08-15 信号发送方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/589,966 Continuation US20220159691A1 (en) 2019-08-15 2022-02-01 Signal transmission method and apparatus and communication system

Publications (1)

Publication Number Publication Date
WO2021026917A1 true WO2021026917A1 (zh) 2021-02-18

Family

ID=74569491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100868 WO2021026917A1 (zh) 2019-08-15 2019-08-15 信号发送方法、装置和系统

Country Status (6)

Country Link
US (1) US20220159691A1 (zh)
EP (1) EP4017188B1 (zh)
JP (1) JP7371761B2 (zh)
KR (1) KR20220031091A (zh)
CN (1) CN114208362A (zh)
WO (1) WO2021026917A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023003415A1 (ko) * 2021-07-22 2023-01-26 주식회사 아이티엘 무선 통신 시스템에서 단말의 데이터 디코딩 수행 방법 및 장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
US20220038213A1 (en) * 2020-07-28 2022-02-03 Qualcomm Incorporated Multi-transmission negative acknowledgement indication in physical sidelink feedback channel
US11924840B2 (en) * 2020-09-15 2024-03-05 Qualcomm Incorporated Feedback for mixed grant types
US20220183032A1 (en) * 2020-12-04 2022-06-09 Samsung Electronics Co., Ltd. Acknowledgment information for groupcast communications
CN117528800A (zh) * 2022-07-25 2024-02-06 维沃移动通信有限公司 信息配置方法、装置、终端、网络侧设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104521304A (zh) * 2012-06-14 2015-04-15 夏普株式会社 用于发送和接收反馈信息的设备
CN104604175A (zh) * 2012-09-28 2015-05-06 英特尔公司 用于载波聚合(ca)的混合自动重传请求(harq)映射
WO2017160350A1 (en) * 2016-03-17 2017-09-21 Intel IP Corporation User equipment (ue), evolved node-b (enb) and hybrid automatic repeat request (harq) methods for carrier aggregation arrangements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104521304A (zh) * 2012-06-14 2015-04-15 夏普株式会社 用于发送和接收反馈信息的设备
CN104604175A (zh) * 2012-09-28 2015-05-06 英特尔公司 用于载波聚合(ca)的混合自动重传请求(harq)映射
WO2017160350A1 (en) * 2016-03-17 2017-09-21 Intel IP Corporation User equipment (ue), evolved node-b (enb) and hybrid automatic repeat request (harq) methods for carrier aggregation arrangements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Physical layer enhancements for DL SPS", 3GPP DRAFT; R1-1906219, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 4 May 2019 (2019-05-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051708258 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023003415A1 (ko) * 2021-07-22 2023-01-26 주식회사 아이티엘 무선 통신 시스템에서 단말의 데이터 디코딩 수행 방법 및 장치

Also Published As

Publication number Publication date
EP4017188A1 (en) 2022-06-22
JP7371761B2 (ja) 2023-10-31
JP2022543671A (ja) 2022-10-13
CN114208362A (zh) 2022-03-18
EP4017188B1 (en) 2024-04-10
KR20220031091A (ko) 2022-03-11
EP4017188A4 (en) 2022-07-27
US20220159691A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
CN111758233B (zh) 调度请求和ack/nack的优先化
JP6523578B1 (ja) Puschにおけるharq−ack多重化
WO2021026917A1 (zh) 信号发送方法、装置和系统
JP6908135B2 (ja) フィードバック情報の送受信方法、装置及び通信システム
US20210410124A1 (en) Signal reception or transmission method and apparatus and system
US11997686B2 (en) Transmission apparatus and method of feedback information
WO2021087922A1 (zh) 无线通信方法、装置和系统
WO2020220342A1 (zh) 参考信号的发送方法、装置和通信系统
WO2022077410A1 (zh) 信息反馈方法以及装置
WO2018107457A1 (zh) 数据复用装置、方法以及通信系统
WO2021031042A1 (zh) 信号发送和接收方法以及装置
WO2021056702A1 (zh) 上行信号的发送和接收方法以及装置
WO2021159381A1 (zh) 上行信号处理方法、装置和系统
WO2020143743A1 (zh) 接收数据的方法和装置
WO2019028775A1 (zh) 反馈信息的发送和接收方法、装置及通信系统
WO2024031696A1 (zh) 信道状态信息的上报方法和装置
WO2023151048A1 (zh) 信息反馈方法以及装置
JP7347664B2 (ja) 無線通信方法、装置及びシステム
WO2021026903A1 (zh) 信号发送方法和信号接收方法及其装置、通信系统
WO2023206302A1 (zh) 信号发送、信号接收装置以及方法
US20240172321A1 (en) Methods, Node, UE and Computer Readable Media for Aligning Partial Sensing Configuration with DRX Configuration
WO2022205447A1 (zh) 上行控制信息的发送方法、接收方法及其装置、通信系统
WO2021087926A1 (zh) 上行信号的发送和接收方法以及装置
WO2020237408A1 (zh) 信号处理方法以及装置
WO2021262071A1 (en) Enhanced hybrid arq (harq) for a wireless network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507757

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227004243

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019941696

Country of ref document: EP

Effective date: 20220315