WO2020220342A1 - 参考信号的发送方法、装置和通信系统 - Google Patents

参考信号的发送方法、装置和通信系统 Download PDF

Info

Publication number
WO2020220342A1
WO2020220342A1 PCT/CN2019/085365 CN2019085365W WO2020220342A1 WO 2020220342 A1 WO2020220342 A1 WO 2020220342A1 CN 2019085365 W CN2019085365 W CN 2019085365W WO 2020220342 A1 WO2020220342 A1 WO 2020220342A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain resource
time domain
repeated
transmission
signal
Prior art date
Application number
PCT/CN2019/085365
Other languages
English (en)
French (fr)
Inventor
宋磊
张磊
陈哲
杨现俊
Original Assignee
富士通株式会社
宋磊
张磊
陈哲
杨现俊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 宋磊, 张磊, 陈哲, 杨现俊 filed Critical 富士通株式会社
Priority to KR1020217038965A priority Critical patent/KR20220002578A/ko
Priority to JP2021564409A priority patent/JP7327509B2/ja
Priority to CN201980095571.9A priority patent/CN113711667B/zh
Priority to PCT/CN2019/085365 priority patent/WO2020220342A1/zh
Priority to EP19927564.5A priority patent/EP3965491A4/en
Publication of WO2020220342A1 publication Critical patent/WO2020220342A1/zh
Priority to US17/506,815 priority patent/US20220045792A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the present invention relates to the field of communication, and in particular to a method, device and communication system for sending a reference signal.
  • NR New Radio
  • AR Augmented Reality
  • VR Virtual Reality
  • remote driving In the transportation scenarios, distributed power system control, etc.
  • the requirements for delay of these services reach the 0.5ms-1ms level, and the reliability requirements reach the 1e-6 level. Therefore, the fifth-generation mobile communication system (5G) needs to study transmission technologies with both high reliability and low latency to meet these business scenarios.
  • version 15 has supported repeated transmission of data channels, that is, multiple redundant versions of the same data block (Transport Block, TB) in multiple consecutive time slots (slot) Repeat the transmission.
  • the time domain resources of multiple repetition transmissions can be adjusted to complete multiple repetitive transmissions in the shortest possible time, for example, in one Send multiple repetitions in a time slot, etc.
  • PUSCH Shared channel or signal
  • one of the methods is: network equipment schedules a TB for multiple repetitive transmissions, multiple repetitions can occupy multiple consecutive uplink symbols, without the need for gaps (gap), when When encountering a slot boundary or a downlink (DL)/uplink (UL) transition point, additional processing is required, that is, a repetition will be split into multiple repetitions, so that each repetition is in a slot. Transmission is performed in one UL cycle. Compared with the repeated transmission of Rel-15, the transmission delay of such repeated transmission can be greatly reduced.
  • DMRS Demodulation Reference Sgnal
  • embodiments of the present invention provide a method, device, and communication system for sending a reference signal.
  • a reference signal sending method which is applied to a sending end, wherein the method includes:
  • the sending end generates one or more signals corresponding to the same transmission block, and the one or more signals include a data channel and a reference signal;
  • the foregoing sending end sends the one or more signals in one or more time domain resource segments, and the position of the reference signal in the one or more signals is determined based on the one or more time domain resource segments.
  • a repeated transmission indication method which is applied to a network device, wherein the method includes:
  • the network device generates downlink control information, where the downlink control information includes an information field, and the information field is used to indicate a repeated transmission mode, or to indicate a repeated transmission mode and a corresponding nominal number of repeated transmissions;
  • the network device sends the downlink control information.
  • a reference signal sending device configured at the sending end, wherein the device includes:
  • a generating unit which generates one or more signals corresponding to the same transmission block, the one or more signals including a data channel and a reference signal;
  • a sending unit that sends the one or more signals in one or more time domain resource segments, and the position of the reference signal in the one or more signals is determined based on the one or more time domain resource segments.
  • a repeated transmission indication device which is configured in a network device, wherein the device includes:
  • a generating unit which generates downlink control information, where the downlink control information includes an information field, and the information field is used to indicate a repeated transmission mode, or to indicate a repeated transmission mode and a corresponding nominal number of repeated transmissions;
  • a sending unit that sends the downlink control information.
  • a terminal device wherein the terminal device includes the apparatus described in the foregoing third aspect.
  • a network device wherein the network device includes the device described in the foregoing third aspect or fourth aspect.
  • a communication system includes the terminal device described in the fifth aspect and the network device described in the sixth aspect.
  • a computer-readable program wherein when the program is executed in a terminal device, the program causes the computer to execute the method described in the foregoing first aspect in the terminal device .
  • a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in the foregoing first aspect in a terminal device.
  • a computer-readable program wherein when the program is executed in a network device, the program causes the computer to execute the aforementioned first aspect or second aspect in the network device The method described.
  • a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in the first aspect or the second aspect in a network device.
  • both the network device and the terminal device can have a consistent understanding of the transmission of the reference signal, which improves the reliability of the transmission of the reference signal.
  • Fig. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of three examples of PUSCH repetition
  • Figure 3 is a schematic diagram of the position of a repetition reference signal
  • FIG. 5 is a schematic diagram of a method for configuring the number of repeated transmissions in Embodiment 2;
  • FIG. 6 is a schematic diagram of the repeated transmission indication method of Embodiment 3.
  • FIG. 7 is a schematic diagram of the reference signal sending device of Embodiment 4.
  • FIG. 8 is another schematic diagram of the reference signal sending device of Embodiment 4.
  • FIG. 9 is a schematic diagram of a device for configuring the number of repeated transmissions in Embodiment 5.
  • FIG. 10 is a schematic diagram of a repeated transmission indicating device of Embodiment 6;
  • FIG. 11 is a schematic diagram of a terminal device of Embodiment 7.
  • FIG. 12 is a schematic diagram of a network device of Embodiment 8.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelations, but they do not indicate the spatial arrangement or temporal order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” can refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other currently known or future communication protocols.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power node (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be referred to as "Terminal Equipment” (TE, Terminal Equipment).
  • the terminal device can be fixed or mobile, and can also be referred to as a mobile station (MS, Mobile Station), terminal, user, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc. Wait.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, Vehicle-mounted communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention, which schematically illustrates a case where a terminal device and a network device are taken as an example.
  • the communication system 100 may include: a network device 101 and a terminal device 102.
  • Figure 1 only uses one terminal device as an example for illustration.
  • the network device 101 is, for example, the network device gNB in the NR system.
  • eMBB enhanced mobile broadband
  • mMTC large-scale machine type communication
  • URLLC Ultra-Reliable and Low- Latency Communication
  • the terminal device 102 may send data to the network device 101, for example, using an unauthorized transmission mode.
  • the network device 101 can receive data sent by one or more terminal devices 102 and feed back information to the terminal device 102, such as acknowledgement (ACK) information or non-acknowledgement (NACK) information.
  • ACK acknowledgement
  • NACK non-acknowledgement
  • the terminal device 102 can confirm the end of the transmission process according to the feedback information, Alternatively, new data transmission can be performed, or data retransmission can be performed.
  • front-loaded DMRS front-loaded DMRS
  • additional DMRS additional DMRS
  • PUSCH mapping type A PUSCH mapping type A
  • type B PUSCH mapping type B
  • the DMRS transmission formats corresponding to these two transmission types are different. of.
  • front-loaded DMRS always appears on the third or fourth symbol of the slot, such as symbol 2 or symbol 3, starting with symbol 0.
  • the front-loaded DMRS is always on the first symbol of the scheduled PUSCH.
  • the uplink transmission grant (UL grant) of the PUSCH can be in the form of DCI, or it can be a scheduling grant configured by RRC signaling, and it can include the time domain resource assignment (Time Domain Resource Assignment) of the first repetition. , TDRA), the time domain resources of other repetitions can be further determined according to the TDRA of the first repetition and the uplink and downlink transmission direction of the symbol.
  • Figure 2 is a schematic diagram of three examples of PUSCH repetition split.
  • the network device indicates that each repetition occupies 4 symbols, a total of 2 repetitions; in Figure 2(b), the network device Indicates that each repetition occupies 4 symbols, a total of 4 repetitions; in Figure 2 (c), the network device indicates that each repetition occupies 14 symbols, a total of 1 repetition, and, in the example of Figure 2 (c)
  • S+L>14 is required, S is the starting position of the symbol, and L is the duration of the symbol. For its definition, you can refer to existing standards.
  • the transmitted TB needs to be transmitted in one repetition.
  • one repetition occupies 4 symbols, a total of 4 repetitions, but, At the slot boundary, the PUSCH needs to be transmitted in the previous slot, and the repetition is transmitted again in the next slot, resulting in 5 repetitions, and the 3rd repetition and the 4th repetition occupy 2 symbols respectively.
  • the repetition before the slot boundary contains DMRS, how to classify the repetition and whether the DMRS in it also needs to be split is not specified in the current plan.
  • the repetition shown in Figure 3 Take the repetition shown in Figure 3 as an example. If the repetition occupies 7 symbols, and the first symbol is used to transmit front-loaded DMRS, the fifth symbol is used to transmit additional DMRS, and the other symbols are used to transmit data channels or signals.
  • PDSCH or PUSCH if there are only 4 symbols left in the current slot, which symbol or symbols are used to transmit DMRS need to be specified so that network equipment and terminal equipment have a consistent understanding.
  • one possibility is 4
  • There are still 2 symbols in the symbols used for DMRS transmission another possibility is that only 1 symbol in the 4 symbols is used for DMRS transmission, and so on. Note that part of the REs of the symbol where the DMRS is located may also be used for data channel or signal transmission.
  • the reference signal is a DMRS
  • the data channel or signal is an uplink data channel or signal (such as PUSCH) as an example.
  • the reference signal may also be other and
  • the reference signal associated with the data channel or signal, the data channel or signal may also be a downlink data channel or signal, such as PDSCH.
  • This embodiment provides a method for sending a reference signal.
  • the method is applied to the sending end and may be a terminal device or a network device.
  • FIG. 4 is a schematic diagram of the reference signal sending method of this embodiment. Please refer to FIG. 4.
  • the method includes:
  • Step 401 The sending end generates one or more signals corresponding to the same transmission block, and the one or more signals include a data channel and a reference signal;
  • Step 402 The sending end sends the one or more signals in one or more time domain resource segments, and the position of the reference signal is determined based on the one or more time domain resource segments.
  • the sender determines the position of the reference signal according to the actual repetition (one or more signals sent above) occupied by the time domain resource segment, not only according to the network device configuration or the number of repeated transmissions indicated.
  • the reference signal type determines the location of the reference signal, so that the network device and the terminal device have a consistent understanding of the transmission of the reference signal, thereby improving the reliability of the reference signal transmission.
  • the number of repeated transmissions of the network device configuration or instructions will be described later.
  • one or some signals may include both data channels and reference signals, or one or some signals may only include data channels and not reference signals,
  • This embodiment takes as an example that each of the one or more signals includes a data channel and a reference signal, but this embodiment is not limited to this.
  • the above-mentioned one or more signals may include a first signal and a second signal, and the first signal and the second signal correspond to the same transmission block, for example, two repetitions of a transmission block, and ,
  • the first signal and the second signal respectively include a data channel and a reference signal
  • the transmitting end may send the first signal in the first time domain resource segment, and send the second signal in the second time domain resource segment, in the first signal
  • the location of the reference signal may be determined based on the first time domain resource segment, and the location of the reference signal in the second signal may be determined based on the second time domain resource segment.
  • the one or more signals may include the first signal, the second signal, and the third signal.
  • the third signal also corresponds to the transmission block, that is, the first signal, the second signal, and the second signal.
  • the signal and the third signal are the repetition of the above transmission block.
  • the third signal may also include a data signal and a reference signal.
  • the transmitting end may send the third signal in the third time domain resource segment.
  • the position of the reference signal in the third signal It may be determined based on the third time domain resource segment.
  • the number of repeated transmissions of the transmission block is not configured or instructed by the network device, but actually occurs.
  • Each time the position of the reference signal in the repetition is occupied by the repetition The domain resource segment is determined, thereby avoiding inconsistent understanding of the transmission of the reference signal by the network equipment and the terminal equipment, and improving the reliability of the transmission of the reference signal.
  • the position of the reference signal may be determined based on at least one of the following:
  • the position of the reference signal may be determined based on the symbol length of the time domain resource segment.
  • the sending end may determine the time domain resource segment occupied by each repetition according to the TDRA indicated in the UL grant, and then determine the position of the reference signal according to the symbol length of the time domain resource segment of each repetition.
  • position refers to the position of the symbol occupied by the aforementioned reference signal, and therefore implicitly includes the number of reference signals.
  • the foregoing UL grant may be configured by DCI signaling or RRC signaling. This embodiment is not limited to this, and it may also be a separate signaling or parameter or indication.
  • the symbol length of the time domain resource segment of each repetition is K1, K2, ..., KN. Therefore, a table of DMRS locations can be defined in the protocol, and the DMRS location can be determined according to the symbol length (K1, K2,..., KN) of the time domain resource segment. Or, you can follow the table 6.4.1.1.3-3 in the current protocol TS38.211, replace l d in the table with the symbol length of the time domain resource segment (K1, K2,..., KN), or replace l d Interpreted as the length of the time domain resource segment (K1, K2,..., KN), that is, l d is the symbol length of the time domain resource segment (K1, K2,..., KN).
  • Table 6.4.1.1.3-3 in the current protocol TS38.211 is as follows.
  • the position of the reference signal may be determined based on the TDRA configuration or indication of the time domain resource segment. For example, if TDRA in the UL grant is configured or indicating S+L ⁇ 14, in addition to the first type of reference signal, each repetition (the above signal) can also contain the second type of reference signal; if S+L>14, every Each repetition (the above-mentioned signal) contains only the first type of reference signal.
  • S is the symbol start position of the time domain resource segment
  • L is the indicated symbol length of the time domain resource segment.
  • the first type of reference signal is, for example, the aforementioned front-loaded DMRS
  • the second type of reference signal is, for example, the aforementioned additional MDRS, but this embodiment is not limited to this.
  • the same expressions have the same meaning , Do not repeat the description.
  • a DMRS location table can also be defined to query the DMRS location based on the actual symbol length (K) of the time domain resource segment and the symbol length (L) of the time domain resource segment configured or indicated by TDRA.
  • the sender can determine the position of the reference signal according to the protocol.
  • the terminal device can determine the position of the reference signal according to the agreement, that is, the terminal device expects that the network device will not configure the second type of reference signal, that is, the above The position of the second type of reference signal is always'pos0'.
  • the terminal device determines the position of the reference signal according to the agreement, that is, its It will be executed as if the network device is not equipped with the second type of reference signal.
  • the above embodiment is applicable to the scenario where the data channel in the above signal is configured as the second type, and the network device is configured with the second type of reference signal, but this embodiment is not limited to this, the above embodiment can also be used in the above signal
  • the data channel is configured as the first type, or the network device is not configured with the second type of reference signal, and only the first type of reference signal is configured.
  • the data channel is configured as the first type, and the network device is configured with the first type reference signal and/or the second type reference signal; for another example, the data channel is configured as the second type, and the network device is configured with the first type reference signal.
  • Signal and/or type 2 reference signal are examples of the data channel in the above signal.
  • the first type is, for example, the aforementioned type A
  • the second type is, for example, the aforementioned type B.
  • this embodiment is not limited to this.
  • the same expressions have the same meaning and will not be repeated. Description.
  • the network device is configured with a second type of reference signal
  • the network device is configured with one or more first type reference signals and one or more second type reference signals, and the above signals
  • the position of the reference signal in the above signal can be determined according to the situation that the data channel is configured as the second type and the network device is not configured with the second type reference signal, or it can be determined according to the data channel. It can be determined based on the configuration of the second type and the network device is configured with the second type of reference signal. It can also be determined based on the fixed time domain position. It can also be determined based on the situation that the data channel is configured to the first type in R15 and the data channel is configured. It is determined when the configuration is the second type and the network device is configured with the second type of reference signal.
  • the first type of reference signal is always on the first symbol of the time domain resource occupied by the scheduled data channel. Then, if the network device is configured with the second type of reference signal, and the data channel in the above signal is configured as the first type, the position of the reference signal in the above signal may be the first symbol of the corresponding time domain resource segment, that is, every The first symbol of each time domain resource segment is used for reference signal transmission.
  • the position of the reference signal in the signal may be determined according to at least one of the following: the symbol of the corresponding time domain resource segment Length, corresponding time-domain resource allocation configuration or indication of the time-domain resource segment, high-level signaling configuration, and protocol regulations. Then, if the network device is configured with the second type of reference signal, and the data channel in the above signal is configured as the first type, the position of the reference signal in the above signal may also be determined according to the foregoing at least one item.
  • the position of the reference signal in the above signal may be a fixed time domain position, for example: corresponding time domain resource The first symbol of the segment, or the second symbol of the corresponding time domain resource segment, or the position of the reference signal corresponding to the first type.
  • the position of the reference signal in the above signal can be in accordance with the situation in which the data channel is configured as the first type in R15 And the data channel is configured as the second type and the network device is configured with the second type of reference signal.
  • the position of the reference signal in the signal is determined according to the situation that the data channel is configured as the first type in R15, if One or more time domain resource segments do not contain reference signal symbols, then the reference signal position in the signal corresponding to the time domain resource segment may be the first symbol of the corresponding time domain resource segment, or the corresponding time domain resource segment The second symbol of the domain resource segment.
  • the position of the reference signal in the above signal may be fixed.
  • the time domain position of is, for example: the first symbol of the corresponding time domain resource segment, or the second symbol of the corresponding time domain resource segment, or the first symbol and the second symbol of the corresponding resource resource segment.
  • the data channel in the above signal can be configured as the first type or the second type, that is, regardless of whether the data channel in the above signal is configured as the first type or the second type, if the network device Only the first type of reference signal is configured, and the position of the reference signal in the above signal may be the above fixed time domain position.
  • the network device is only configured with the first type of reference signal, according to the existing standard, one or some repetitions (such as the second repetition) do not have a reference signal. If frequency domain frequency modulation is performed, it will cause the There is no reference signal available for repetition. According to the method of this embodiment, the reference signal is sent at a fixed time domain position (the first symbol and/or the second symbol) of the corresponding time domain resource segment, which solves this problem.
  • the second and subsequent actual repetitions can be treated as R15 type B, that is, the first one of the time domain resource segment occupied by each repetition
  • the symbol sends a reference signal.
  • one or more repetitions can also be treated as type B of R15, that is, the reference signal is sent on the first symbol of the time domain resource segment occupied by each repetition.
  • the terminal device when using C-RNTI, CS-RNTI or MCS-C-RNTI scrambled DCI format, or a new DCI format (such as DCI format 0-2, 1-2, etc.), or high-level signaling
  • the terminal device when configuring a terminal device for R16 PUSCH repetition, even if the TDRA field in the UL grant or the PUSCH configured by RRC TDRA indicates the type of PUSCH is type A, the terminal device expects all the time domain resource segments occupied by the repetition, or except for the first repetition.
  • the time-domain resource segments other than the time-domain resource segment adopt the R15 type B reference signal transmission mode. Therefore, when supporting PUSCH repetition and other services, a PUSCH TDRA table or the same PUSCH TDRA configuration is used, and RRC reconfiguration is not required when supporting URLLC services.
  • the data channel is configured as the first type, and the network device is configured with the first type reference signal and/or the second type reference signal; for example, the data channel is configured For the second type, the network device is configured with the first type of reference signal and/or the second type of reference signal.
  • the network device may also configure or instruct repeated transmission of data channels or transmission blocks, for example, repeated transmission at the slot level in R15, or repeated transmission with low latency in R16.
  • a network device for a network device, it can send a command to a terminal device to configure or instruct the data channel or transmission block to repeat transmission through the command; for a terminal device, it can receive the command and determine the network device configuration based on the command Or indicated repeated transmission.
  • the network device can configure or indicate the repeated transmission of the above-mentioned data channel or transmission block only through RRC signaling, or configure or indicate the above-mentioned data channel or transmission through a combination of RRC signaling and DCI signaling.
  • the repeated transmission of blocks will be described separately below. In this embodiment, for the convenience of description, the repeated transmission of a data channel or a transmission block is simply referred to as repeated transmission.
  • the network device configures or instructs the repeated transmission only through high-layer signaling (the above-mentioned RRC signaling), and the high-layer signaling includes a first parameter that indicates the repeated transmission, or the first parameter It indicates the above repeated transmission and the number of repeated transmissions.
  • high-layer signaling the above-mentioned RRC signaling
  • a parameter used to indicate repeated transmission (referred to as the first parameter for short), such as pusch-AggregationFactor-r16, can be added to the RRC signaling to notify the terminal device to perform the aforementioned low-latency and high-reliability repeated transmission, namely ,
  • One UL grant schedules two or more repeated transmissions of one TB, and these two or more repeated transmissions can be in one slot, or can be in multiple In consecutive time slots.
  • this parameter can also be used to notify the number of subsequent repetitions, such as 1, 2, 4, 6, 8, etc. The number of repetitions is only a nominal number of transmissions. In actual transmission, a repetitive transmission may encounter a time slot boundary or an uplink/downlink (DL/UL) switching point and split into multiple repetitive transmissions.
  • DL/UL uplink/downlink
  • the format of the above first parameter may be, for example:
  • nA, nB, nC represent the number of repetitions, and the value is a natural number, and the number of configured repetitions is also a natural number.
  • pdsch-AggregationFactor-r16 it means that the network device does not configure terminal equipment for low-latency and high-reliability repeated transmission, or the number of repeated transmissions is 1, or that the network side will not dynamically indicate through DCI signaling. The number of repeated transmissions.
  • the network device configures or instructs the above-mentioned repeated transmission only through high-layer signaling (the above-mentioned RRC signaling), and the high-layer signaling includes a second parameter that is used to turn on or off the dynamic nominal repeated transmission "Number of times", “Dynamic nominal repetitive transmission times” ON means that the network device will dynamically indicate the number of nominal repetitive transmissions through a certain domain in the DCI signaling, "Dynamic nominal repetitive transmission times" off means that there is no indication name in the DCI of the network device Relevant signaling field for the number of repeated transmissions.
  • the "number of dynamic nominal repeated transmissions" is turned on by the second parameter, the above repeated transmission is also turned on accordingly, and when the "number of dynamic nominal repeated transmissions" is turned off by the second parameter, the above repeated transmission is turned off accordingly.
  • the condition that the repeated transmission is turned on or off it is also possible to add the condition that the repeated transmission is turned on or off. For example, when the number of dynamic nominal repeated transmissions is turned on by the second parameter, and the number of dynamic nominal repeated transmissions is greater than or equal to the first value, The above repeated transmission is turned on, when the above “dynamic nominal repeated transmission times” is turned off by the second parameter, or the dynamic nominal repeated transmission times is turned on by the second parameter, but the dynamic nominal repeated transmission times are less than or equal to the second value, the above repeated transmission The transmission is closed.
  • the above-mentioned "number of dynamic nominal repeated transmissions" can be indicated by DCI signaling, and the opening or closing of the domain is realized by the above-mentioned second parameter.
  • repeated transmission is also enabled at the same time; conversely, when the indication of the number of dynamic nominal repeated transmissions is configured as disabled by the second parameter above , Repeat transmission is also closed at the same time.
  • the repeated transmission is also It is enabled at the same time; on the contrary, when the indication of the number of dynamic nominal repeated transmissions is configured as disabled by the above second parameter, or when the second parameter is configured as enabled and the candidate nominal repeated transmission times are less than or equal to the second value (For example, 0, 1, 2, etc.), repeated transmission is also closed at the same time.
  • the first value for example, 0, 1, 2, etc.
  • the time domain resource allocation related parameter is'PUSCH-TimeDomainResourceAllocation-16', If the parameter includes the number of repeated transmissions parameter, it means that repeated transmission is configured, otherwise it means that repeated transmission is not configured.
  • the network device configures or instructs the repeated transmission through high-layer signaling and downlink control information
  • the high-layer signaling includes a third parameter
  • the third parameter configures or instructs the repeated transmission
  • the downlink control information includes Indication field
  • the indication field indicates whether to enable the above repeated transmission.
  • the above-mentioned indication field may be any one or any combination of the following, that is, the indication field includes at least one of the following:
  • DCI field used to indicate the number of nominal repeated transmissions
  • DCI field used to indicate time domain resource allocation
  • An information field used to indicate the number of nominal repeated transmissions and/or time domain resource allocation methods.
  • the aforementioned DCI field used to indicate the number of nominal repeated transmissions may be a separate DCI field, which is only used to transmit the nominal number of transmissions.
  • the terminal device is instructed to perform repeated transmission.
  • the individual DCI field can be 1 bit or 2 bits, and the nominal number of transmissions can be a value configured by higher layer signaling.
  • the higher layer signaling may be RRC signaling, or RRC signaling and MAC-CE signaling. , That is, RRC signaling is configured with one or more candidate values for the number of repeated transmissions, and MAC-CE signaling selects one or more values from them.
  • DCI field used to indicate time domain resource allocation, for example, when the DCI field indicates S+L>14, it indicates that the terminal device is notified to perform repeated transmission.
  • R15 supports slot-level repetitive transmission
  • R16 includes low-latency and high-reliability repetitive transmission (referred to as R16 repetitive transmission).
  • an information field is used to represent the dynamic switching and repetition of R15 and R16. / Or indication of the number of repetitions.
  • an information field of 1 bit or 2 bits or 3 bits or other bit values can be used to indicate the repeated transmission mode and/or the number of nominal repeated transmissions.
  • different bit values of the information field indicate different repetitions. Transmission method, or indicates different repeated transmission methods and the number of repeated transmissions.
  • the information field may be 2 bits, and different bit values are used to indicate different repeated transmission modes and/or nominal repeated transmission times, as shown in Table 1 below:
  • bit value of the information field when the bit value of the information field is '00', it indicates'R15 repeated transmission'; when the bit value of the information field is '01', it indicates'R16 repeated transmission, and the nominal number of repeated transmissions is configured by higher layer signaling
  • the value of 1'; when the bit value of the information field is '10', it indicates'R16 repeated transmission, and the nominal number of repeated transmissions is the value 2 configured by higher layer signaling; when the bit value of the information field is '11', Indicate'R16 repeated transmission, and the nominal number of repeated transmissions is the value 3 configured by higher layer signaling.
  • the numerical value of the number of nominal repeated transmissions is only illustrative, and the correspondence between the information field bits of the DCI field and the meaning of the indication is also illustrative.
  • the above-mentioned high-level signaling can be RRC signaling, RRC signaling and MAC-CE signaling, that is, RRC signaling is configured with one or more candidate values for the number of repeated transmissions, and MAC-CE signaling is selected from them. One or more values.
  • the information field may be 1 bit, and its different bit values are used to indicate different repeated transmission modes and/or nominal repeated transmission times, as shown in Table 2 below:
  • the bit value of the information field when the bit value of the information field is '0', it indicates'R15 repeated transmission'; when the bit value of the information field is '1', it indicates'R16 repeated transmission, and the nominal number of repeated transmissions is configured by higher layer signaling
  • the value of the number of nominal repeated transmissions mentioned above is only illustrative, and the correspondence between the information field bits of the DCI field and the meaning of the indication is also illustrative.
  • the above-mentioned high-level signaling can be RRC signaling, RRC signaling and MAC-CE signaling, that is, RRC signaling is configured with one or more candidate values for the number of repeated transmissions, and MAC-CE signaling is selected from them.
  • the information field may also be 2 bits, and different bit values thereof are used to indicate different repeated transmission modes and/or repeated transmission times.
  • the repeated transmission times may be nominal, as shown in Table 3 below:
  • ‘01’ R15 repeated transmission, and the number of repeated transmissions is the value 2 configured by higher layer signaling ‘10’ R16 repeated transmission, and the nominal number of repeated transmissions is the value 1 configured by higher layer signaling ‘11’ R16 repeated transmission, and the nominal number of repeated transmissions is the value 2 configured by higher layer signaling
  • bit value of the information field when the bit value of the information field is '00', it indicates'R15 repeated transmission, and the number of repeated transmissions is the value 1 configured by higher layer signaling; when the bit value of the information field is '01', it indicates'R15 Repeated transmission, and the number of repeated transmissions is the value 2'configured by high-layer signaling; when the bit value of the information field is '10', it indicates'R16 repeated transmission, and the nominal number of repeated transmissions is the value 1 configured by high-layer signaling'; When the bit value of the information field is '11', it indicates'R16 repeated transmission, and the nominal number of repeated transmissions is the value 2 configured by higher layer signaling.
  • the value of the number of nominal repeated transmissions is only illustrative, the correspondence between the information field bits of the DCI field and the meaning of the indication is also illustrative, and the number of information fields used to indicate R15 repeated transmission or R16 repeated transmission is also illustrative.
  • the above-mentioned high-level signaling can be RRC signaling, RRC signaling and MAC-CE signaling, that is, RRC signaling is configured with one or more candidate values for the number of repeated transmissions, and MAC-CE signaling is selected from them.
  • RRC signaling RRC signaling
  • MAC-CE signaling is configured with one or more candidate values for the number of repeated transmissions, and MAC-CE signaling is selected from them.
  • the high-level signaling configuration of R15 repeated transmission and R16 repeated transmission may be the same parameter or different parameters, which is not limited in this embodiment.
  • the information field may also be 3 bits, and different bit values thereof are used to indicate different repeated transmission modes and/or repeated transmission times.
  • the repeated transmission times may be nominal, as shown in Table 4 below:
  • bit value of the information field when the bit value of the information field is '000', it indicates'R15 repeated transmission, and the number of repeated transmissions is the value 1 configured by higher layer signaling; when the bit value of the information field is '001', it indicates'R15 Repeated transmission, and the number of repeated transmissions is the value 2'configured by high-level signaling; when the bit value of the information field is '010', it indicates'R16 repeated transmission, and the nominal number of repeated transmissions is the value 1 configured by high-level signaling'; When the bit value of the information field is '011', it indicates'R16 repeated transmission, and the nominal number of repeated transmissions is the value 2 configured by higher layer signaling; when the bit value of the information field is '100', it indicates'R16 repeated transmission , And the nominal number of repeated transmissions is the value 3'configured by high-layer signaling; when the bit value of the information field is '101', it indicates'R16 repeated transmission, and the nominal number of repeated transmissions is the
  • the nominal number of repeated transmissions is the value 6'configured by higher layer signaling.
  • the value of the number of nominal repeated transmissions mentioned above is only illustrative, the correspondence between the information field bits of the DCI field and the meaning of the indication is also illustrative, and the number of information fields used to indicate R15 repeated transmission or R16 repeated transmission is also illustrative.
  • the number of information fields used for R15 and R16 repetition related indications can also be 1 and 7, 3 and 5, 4 and 4, 5 and 3, 6 and 2, 7 and 1.
  • the above-mentioned high-level signaling can be RRC signaling, RRC signaling and MAC-CE signaling, that is, RRC signaling is configured with one or more candidate values of repeated transmission times, and MAC-CE signaling is selected from among them One or more values.
  • the high-level signaling configuration of R15 repeated transmission and R16 repeated transmission may be the same parameter or different parameters, which is not limited in this embodiment.
  • the information field used to indicate the number of nominal repeated transmissions and/or the time domain resource allocation method can be a joint code of the number of nominal repeated transmissions and the TDRA field.
  • the number of nominal repeated transmissions is greater than or equal to a certain value (for example, 0 , 1, 2, etc.)
  • the TDRA field indicates a certain resource allocation method (for example, S+L>14), indicating that the terminal device is notified to perform repeated transmission.
  • the network device configures or instructs the foregoing repeated transmission through high-level signaling and downlink control information.
  • the high-level signaling includes a fourth parameter that configures or indicates the foregoing repeated transmission.
  • the format is associated with whether to enable the repeated transmission.
  • a terminal device when a terminal device detects a DCI format, it is used to instruct the terminal device to perform URLLC related transmissions, and the terminal device is instructed to perform repeated transmissions through the configured high-level signaling and the detected DCI format and/or the specific DCI signaling field.
  • network device configuration or instruction can mean that the network device sends configuration information or instruction information to the terminal The foregoing configuration or instruction may also be performed by the terminal device receiving configuration information or instruction information sent by the network device, and obtaining the foregoing configuration or instruction from the network device.
  • the network device and the terminal device have a consistent understanding of the transmission of the reference signal, which ensures the reliability of the transmission of the reference signal.
  • FIG. 5 is a schematic diagram of the method for configuring the number of repeated transmissions in this embodiment. As shown in FIG. 5, the method includes:
  • Step 501 The network device configures time domain resource allocation information, where the time domain resource allocation information does not include the data channel type, or the time domain resource allocation information includes the number of nominal repeated transmissions, or the time domain resource allocation information includes Joint coding of data channel type and nominal number of repeated transmissions;
  • Step 502 The network device sends the time domain resource allocation information.
  • the above-mentioned time-domain resource allocation information can be configured through RRC signaling.
  • This embodiment is not limited to this, and can also be configured through other high-level signaling.
  • the transmission mode of the reference signal is the same.
  • the network device may not indicate in the TDRA domain. Data channel type, and an indication of the nominal number of repeated transmissions is added; or, a joint coding is added for the data channel type and the number of nominal repeated transmissions.
  • the above-mentioned second column'PUSCH mapping type' can be removed and replaced with the value of the number of nominal repeated transmissions configured by higher layer signaling
  • the above-mentioned first type ie'type A'
  • the value of the nominal number of repeated transmissions configured by the higher-layer signaling can also be removed from the second type (ie'typeB') and replaced with the value of the nominal number of repeated transmissions configured by the higher-layer signaling.
  • the modified table and the above table 6.1.2.1.1-2 can exist at the same time.
  • the modified table takes effect.
  • the above Table 6.1.2.1.1-2 takes effect.
  • TDRA can be configured by high-level signaling, such as R15 time-domain resource allocation signaling, as shown below:
  • 'PUSCH-TimeDomainResourceAllocation' can also be a newly added parameter with the same function in R16, such as'PUSCH-TimeDomainResourceAllocation-16'.
  • the configurable value of the nominal number of repetitive transmissions ‘nrofrepetition’ is only illustrative. You can also remove the configuration of ‘mappingType’ in ‘PUSCH-TimeDomainResourceAllocation-16’.
  • FIG. 6 is a schematic diagram of the repeated transmission indication method of this embodiment. As shown in FIG. 6, the method includes:
  • Step 601 The network device generates downlink control information, the downlink control information includes an information field, the information field is used to indicate the repeated transmission mode, or the repeated transmission mode and the corresponding nominal number of repeated transmissions, or the time domain resource allocation and Nominal repeated transmission times;
  • Step 602 The network device sends the downlink control information.
  • the above-mentioned information field is, for example, 1 bit or 2 bits or 3 bits or other bits. Different bit values can indicate different repeated transmission modes, or indicate different repeated transmission modes and corresponding retransmission times. Details See Table 1 to Table 4 of Example 1, and the description is omitted here.
  • different bit values of the above-mentioned information field may also indicate different time-domain resource allocation and repeated transmission modes, as shown in the examples of Table 5 to Table 6 in Embodiment 2, and the description is omitted here.
  • the joint coding of TDRA and the number of repeated transmissions is realized.
  • the repeated transmission mode can be indicated through the downlink control information, and the number of repeated transmissions can be further indicated.
  • the terminal device can determine the position of the reference signal in the transmitted signal based on this. The details are as described in Embodiment 1. To repeat it, and the network device can also determine the location of the reference signal in the transmitted signal based on this, so that the network device and the terminal device have a consistent understanding of the transmission of the reference signal, and the reliability of the transmission of the reference signal is guaranteed.
  • This embodiment provides a reference signal sending device, which is configured at an originating end, such as a terminal device or a network device. Since the principle of the device to solve the problem is similar to the method of embodiment 1, its specific implementation can refer to the implementation of the method of embodiment 1, and the same content will not be repeated.
  • FIG. 7 is a schematic diagram of the reference signal sending device of this embodiment.
  • the reference signal sending device is configured in a terminal device.
  • the reference signal sending device 700 includes: a generating unit 701 and a sending unit 702.
  • the generating unit 701 generates one or more signals corresponding to the same transmission block, the one or more signals include a data channel and a reference signal;
  • the transmitting unit 702 transmits the one or more signals in one or more time domain resource segments ,
  • the position of the reference signal in the one or more signals is determined based on the one or more time domain resource segments.
  • the sending unit 701 may send the first signal in the first time domain resource segment and send the second signal in the second time domain resource segment.
  • the first signal and the second signal are identical to the same transmission block.
  • the first signal and the second signal respectively include a data channel and a reference signal, the position of the reference signal in the first signal is determined based on the first time domain resource segment, and the position of the reference signal in the second signal is based on The second time domain resource segment is determined.
  • the sending unit 701 may also send a third signal in the third time domain resource segment.
  • the third signal corresponds to the aforementioned transmission block.
  • the third signal includes a data channel and a reference signal. The location of the reference signal is determined based on the third time domain resource segment. In this example, there may be one or more than one third time domain resource segments, and correspondingly, there may also be one or more third signals.
  • the position of the reference signal in the one or more signals may be determined based on at least one of the following:
  • Time domain resource allocation (TDRA) configuration or indication of the time domain resource segment
  • the network device is not configured with the second type reference signal, or the network device is configured with one or more second type reference signals
  • the sending unit 701 considers that the network device is not configured with the second type reference signal, based on The above protocol provides for determining the position of the reference signal in the above one or more signals.
  • the network device is configured with one or more first-type reference signals and one or more second-type reference signals, and the data channels in the above-mentioned signals are configured as the first type, then the reference signals in the above-mentioned signals The position of is the first symbol of the corresponding time domain resource segment.
  • the network device is configured with one or more first-type reference signals and one or more second-type reference signals
  • the data channels in the above-mentioned signals are configured as the first type
  • the reference signals in the above-mentioned signals are
  • the position is a position determined according to at least one of the following: the symbol length of the corresponding time domain resource segment, the time domain resource allocation configuration or indication of the corresponding time domain resource segment, the high-level signaling configuration, and the protocol specification.
  • the network device is configured with one or more first-type reference signals and one or more second-type reference signals, the data channels in the above-mentioned signals are configured as the first type, and the position of the reference signals in the above-mentioned signals At least one of the following: the corresponding first symbol of the time domain resource segment, the corresponding second symbol of the time domain resource segment, and the reference signal position corresponding to the first type.
  • the network device is configured with one or more first-type reference signals
  • the data channels in the above-mentioned signals are configured as the first-type or the second-type
  • the positions of the reference signals in the above-mentioned signals are in the corresponding time domain.
  • the reference signal sending apparatus 700 further includes:
  • the receiving unit 703 receives a command sent by the network device, and the command configures or instructs repeated transmission of a data channel or a transmission block. In addition, the receiving unit 703 can also receive other configuration information sent by the network device, as described above, and will not be repeated here.
  • the network device configures or instructs the repeated transmission of the above-mentioned transport block only through high-layer signaling, the high-layer signaling includes a first parameter that indicates the repeated transmission of the above-mentioned transport block, or the first parameter It indicates the repeated transmission of the above-mentioned transmission block and the number of repeated transmissions.
  • the network device configures or instructs the repeated transmission of the above-mentioned transmission block only through high-level signaling.
  • the high-level signaling includes a second parameter.
  • the second parameter turns on or off the number of dynamic nominal repeated transmissions. When the number of transmissions is turned on by the second parameter, the repeated transmission of the transmission block is turned on, and when the number of dynamic nominal repeated transmissions is turned off by the second parameter, the repeated transmission of the transmission block is turned off.
  • the repeated transmission of the transmission block is enabled.
  • the number of repeated transmissions is turned off by the second parameter, or the number of dynamic nominal repeated transmissions is turned on by the second parameter, but the number of dynamic nominal repeated transmissions is less than or equal to the second value, the repeated transmission of the transmission block is turned off.
  • the network device configures or instructs the repeated transmission of the above-mentioned transport block through high-level signaling and downlink control information
  • the high-level signaling includes a third parameter
  • the third parameter configures or instructs the repeated transmission of the above-mentioned transport block
  • the aforementioned downlink control information includes an indication field, which indicates whether to enable the aforementioned repeated transmission.
  • the above indication field includes at least one of the following: a DCI field used to indicate the number of nominal repeated transmissions; a DCI field used to indicate time domain resource allocation; used to indicate a repeated transmission mode and/or the number of nominal repeated transmissions Information field; and an information field used to indicate the number of nominal repeated transmissions and/or time domain resource allocation methods.
  • the network device configures or instructs the repeated transmission of the above-mentioned transport block through high-level signaling and downlink control information
  • the high-level signaling includes a fourth parameter
  • the fourth parameter configures or instructs the repeated transmission of the above-mentioned transport block
  • the format of the aforementioned downlink control information is associated with whether the aforementioned repeated transmission is enabled.
  • FIG. 8 is another schematic diagram of the reference signal sending apparatus of this embodiment.
  • the reference signal sending apparatus is configured in a network device.
  • the reference signal sending device 800 includes: a generating unit 801 and a sending unit 802.
  • the implementation of the generating unit 801 and the sending unit 802 is similar to the generating unit 701 and sending of the reference signal sending device 700 shown in FIG.
  • the unit 702 is the same and will not be repeated here.
  • the reference signal sending device 800 further includes:
  • the configuration unit 803 sends a command to the terminal device, and configures or instructs the repeated transmission of the data channel or the transmission block through the command.
  • the sending unit 802 may also send other configuration information to the terminal device, as described above, and will not be repeated here.
  • the network device and the terminal device have a consistent understanding of the transmission of the reference signal, which ensures the reliability of the transmission of the reference signal.
  • This embodiment provides a device for configuring the number of repeated transmissions, which is configured in a network device. Since the principle of the device to solve the problem is similar to the method of embodiment 2, its specific implementation can refer to the implementation of the method of embodiment 2, and the same content will not be repeated.
  • FIG. 9 is a schematic diagram of a device for configuring the number of repeated transmissions in this embodiment. As shown in FIG. 9, the device 900 includes:
  • the configuration unit 901 and the sending unit 902. configures time-domain resource allocation information, where the time-domain resource allocation information does not include a data channel type, or the time-domain resource allocation information includes the number of nominal repeated transmissions, or The time domain resource allocation information includes the joint coding of the data channel type and the nominal number of repeated transmissions; the sending unit 902 sends the time domain resource allocation information.
  • the joint coding of TDRA and the number of repeated transmissions is realized.
  • This embodiment provides a repeated transmission indication device, which is configured in a network device. Since the principle of the device to solve the problem is similar to the method of embodiment 3, its specific implementation can refer to the implementation of the method of embodiment 3, and the same contents will not be repeated.
  • FIG. 10 is a schematic diagram of a repeated transmission indication device 1000 of this embodiment.
  • the device 1000 includes: a generating unit 1001 and a sending unit 1002.
  • the generating unit 1001 generates downlink control information, the downlink control information includes an information field, the information field is used to indicate the repeated transmission mode, or indicate the repeated transmission mode and the corresponding number of nominal repeated transmissions, or indicate the time domain resource allocation and nominal repetition Number of transmissions; the sending unit 1002 sends the downlink control information.
  • the information field can be 1 bit or 2 bits or 3 bits or other bits, and each bit value can indicate the repeated transmission mode, and can also indicate the repeated transmission mode and the number of repeated transmissions.
  • each bit value can indicate the repeated transmission mode, and can also indicate the repeated transmission mode and the number of repeated transmissions.
  • the examples in Table 1 to Table 4 may also indicate the time domain resource allocation and the number of repeated transmissions.
  • the network device and the terminal device have a consistent understanding of the transmission of the reference signal, which ensures the reliability of the transmission of the reference signal.
  • This embodiment provides a terminal device, which includes the device described in Embodiment 4.
  • Fig. 11 is a schematic diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device 1100 may include a central processing unit 1101 and a memory 1102; the memory 1102 is coupled to the central processing unit 1101. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace this structure to implement telecommunication functions or other functions.
  • the functions of the device described in embodiment 4 can be integrated into the central processing unit 1101, and the central processing unit 1101 realizes the functions of the device described in embodiment 4, and the device described in embodiment 4 The functions of is incorporated here, so I won’t repeat them here.
  • the device described in Example 4 is configured separately from the central processing unit 1101.
  • the device described in Example 4 can be configured as a chip connected to the central processing unit 1101, and the central processing unit 1101 Control to realize the function of the device described in the fourth embodiment.
  • the terminal device 1100 may further include: a communication module 1103, an input unit 1104, an audio processing unit 1105, a display 1106, and a power supply 1107. It is worth noting that the terminal device 1100 does not necessarily include all the components shown in FIG. 11; in addition, the terminal device 1100 may also include components not shown in FIG. 11, which can refer to the prior art.
  • the central processing unit 1101 is sometimes called a controller or operating control, and may include a microprocessor or other processor devices and/or logic devices.
  • the central processing unit 1101 receives inputs and controls various components of the terminal equipment 1100. Operation of components.
  • the memory 1102 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices. Can store various information, in addition can also store and execute programs related to the information. And the central processing unit 1101 can execute the program stored in the memory 1102 to implement information storage or processing. The functions of other components are similar to the existing ones, so I won't repeat them here. Each component of the terminal device 1100 may be implemented by dedicated hardware, firmware, software, or a combination thereof, without departing from the scope of the present invention.
  • the network device and the terminal device have a consistent understanding of the transmission of the reference signal, which ensures the reliability of the transmission of the reference signal.
  • the embodiment of the present invention also provides a network device, which includes the device described in Embodiment 5 or Embodiment 6.
  • FIG. 12 is a schematic diagram of an implementation manner of a network device according to an embodiment of the present invention.
  • the network device 1200 may include: a central processing unit (CPU) 1201 and a memory 1202; the memory 1202 is coupled to the central processing unit 1201.
  • the memory 1202 can store various data; in addition, it also stores information processing programs and executes the programs under the control of the central processing unit 1201 to receive various information sent by the terminal device and send various information to the terminal device.
  • the function of the device described in embodiment 5 or embodiment 6 can be integrated into the central processing unit 1201, and the central processing unit 1201 realizes the function of the device described in embodiment 5 or embodiment 6, wherein The functions of the device described in Embodiment 5 or Embodiment 6 are incorporated here, and will not be repeated here.
  • the device described in Example 5 or Example 6 can be configured separately from the central processing unit 1201.
  • the device described in Example 5 or Example 6 can be connected to the central processing unit 1201.
  • the chip realizes the functions of the device described in Embodiment 5 or Embodiment 6 under the control of the central processing unit 1201.
  • the network device 1200 may further include: a transceiver 1203, an antenna 1204, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the network device 1200 does not necessarily include all the components shown in FIG. 12; in addition, the network device 1200 may also include components not shown in FIG. 12, and reference may be made to the prior art.
  • the network device and the terminal device have a consistent understanding of the transmission of the reference signal, which ensures the reliability of the transmission of the reference signal.
  • An embodiment of the present invention also provides a communication system, which includes a network device and a terminal device.
  • the network device is, for example, the network device 1200 described in Embodiment 8
  • the terminal device is, for example, the terminal device 1100 described in Embodiment 7.
  • the terminal device is, for example, a UE served by gNB.
  • the terminal device also includes the conventional composition and functions of the terminal device. As described in Embodiment 7, it is not here. Repeat it again.
  • the network device may be, for example, the gNB in NR.
  • the network device In addition to the functions of the device described in Embodiment 5 or Embodiment 6, it also includes the regular composition and functions of the network device, as described in Embodiment 8. I will not repeat them here.
  • the network equipment and the terminal equipment have a consistent understanding of the transmission of the reference signal, which ensures the reliability of the transmission of the reference signal.
  • the embodiment of the present invention also provides a computer-readable program, wherein when the program is executed in the terminal device, the program causes the computer to execute the method described in Embodiment 1 in the terminal device.
  • An embodiment of the present invention also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in Embodiment 1 in a terminal device.
  • the embodiment of the present invention also provides a computer-readable program, wherein when the program is executed in the network device, the program causes the computer to execute the embodiment 1 or the embodiment 2 or the embodiment 3 in the network device Methods.
  • An embodiment of the present invention also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in Embodiment 1, or Embodiment 2 or Embodiment 3 in a network device.
  • the above devices and methods of the present invention can be implemented by hardware, or by hardware combined with software.
  • the present invention relates to such a computer-readable program, when the program is executed by a logic component, the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the various methods described above Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, etc.
  • the present invention also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, and the like.
  • the method/device described in conjunction with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by curing these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the drawings can be implemented as general-purpose processors, digital signal processors (DSPs) for performing the functions described in the present invention. ), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component or any appropriate combination thereof.
  • DSPs digital signal processors
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple micro-processing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a repeated transmission indication device configured in a network device, wherein the device includes:
  • a generating unit which generates downlink control information, the downlink control information includes an information field, the information field is used to indicate the repeated transmission mode, or the repeated transmission mode and the corresponding number of nominal repeated transmissions, or the time domain resource allocation and nominal Number of repeated transmissions;
  • a sending unit that sends the downlink control information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种参考信号发送方法、装置和通信系统,该参考信号发送方法包括:发送端生成与同一个传输块相对应的一个或一个以上信号,所述一个或一个以上信号包括数据信道和参考信号;所述发送端在一个或一个以上时域资源段发送所述一个或一个以上信号,所述参考信号的位置基于所述一个或一个以上时域资源段确定。根据本发明,终端设备和网络设备能够根据实际的重复(repetition)所占用的时域资源段确定参考信号在该repetition中的位置,从而提升了参考信号的发送和接收的可靠性。

Description

参考信号的发送方法、装置和通信系统 技术领域
本发明涉及通信领域,特别涉及一种参考信号的发送方法、装置和通信系统。
背景技术
在新无线(New Radio,NR)系统中,需要支持一些低时延高可靠性的业务场景,如增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR),工厂自动化,包括远程驾驶在内的交通运输场景,分布式电力系统控制等。这些业务对延时的要求达到0.5ms-1ms的级别,可靠性的要求达到了1e-6级别。因此,第五代移动通信系统(5G)需要研究兼具高可靠性和低时延性的传输技术,以满足这些业务场景。
为提高传输的可靠性,版本15(Rel-15)已经支持了数据信道的重复传输,即同一个数据块(Transport Block,TB)的多个冗余版本在多个连续的时隙(slot)进行重复传输。为了继续保持传输的可靠性,并且进一步减小传输时延,可以对多个重复(repetition)传输的时域资源进行调整,在尽可能短的时间内完成多次重复的发送,例如,在一个时隙内发送多个repetition等。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
另一方面,为了提高传输的可靠性,在第三代合作伙伴计划(3GPP)的无线接入网第一工作组(RAN1)的第96次会议(#96)上,提出了三种物理上行共享信道或信号(PUSCH)的传输方法,其中一种方法是:网络设备调度一个TB进行多次重复传输,多个repetitions可以占用多个连续的上行符号,而不需要有间隙(gap),当遇到时隙边界(slot boundary)或下行(Downlink,DL)/上行(Uplink,UL)转换点则需要另外的处理,即一次repetition就将分裂成多个repetitions,使得每个repetition在一个slot的一个UL周期进行传输。相比Rel-15的重复传输,此种重复传输的传输时延可以大大缩小。
然而,发明人发现,根据Rel-15的协议,解调参考信号(DemodulationReference Sgnal,DMRS)的传输是和数据信道或信号的传输相关联的,将一次repetition分裂成多个repetition时,DMRS是否也需要进行分裂以及如何分裂,并没有解决方案。
为了解决上述问题中的至少一个或者解决其他类似问题,本发明实施例提供了一种参考信号的发送方法、装置和通信系统。
根据本发明实施例的第一方面,提供了一种参考信号发送方法,应用于发送端,其中,所述方法包括:
发送端生成与同一个传输块对应的一个或一个以上信号,所述一个或一个以上信号包括数据信道和参考信号;
上述发送端在一个或一个以上时域资源段发送所述一个或一个以上信号,所述一个或一个以上信号中参考信号的位置基于所述一个或一个以上时域资源段确定。
根据本发明实施例的第二方面,提供了一种重复传输指示方法,应用于网络设备,其中,所述方法包括:
网络设备生成下行控制信息,所述下行控制信息包括信息域,所述信息域用于指示重复传输方式,或者指示重复传输方式和相应的名义重复传输次数;
所述网络设备发送所述下行控制信息。
根据本发明实施例的第三方面,提供了一种参考信号发送装置,配置于发送端,其中,所述装置包括:
生成单元,其生成与同一个传输块对应的一个或一个以上信号,所述一个或一个以上信号包括数据信道和参考信号;
发送单元,其在一个或一个以上时域资源段发送所述一个或一个以上信号,所述一个或一个以上信号中参考信号的位置基于所述一个或一个以上时域资源段确定。
根据本发明实施例的第四方面,提供了一种重复传输指示装置,配置于网络设备,其中,所述装置包括:
生成单元,其生成下行控制信息,所述下行控制信息包括信息域,所述信息域用于指示重复传输方式,或者指示重复传输方式和相应的名义重复传输次数;
发送单元,其发送所述下行控制信息。
根据本发明实施例的第五方面,提供了一种终端设备,其中,所述终端设备包括前述第三方面所述的装置。
根据本发明实施例的第六方面,提供了一种网络设备,其中,所述网络设备包括前述第三方面或第四方面所述的装置。
根据本发明实施例的第七方面,提供了一种通信系统,所述通信系统包括前述第五方面所述的终端设备和前述第六方面所述的网络设备。
根据本发明实施例的其它方面,提供了一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行前述第一方面所述的方法。
根据本发明实施例的其它方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行前述第一方面所述的方法。
根据本发明实施例的其它方面,提供了一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行前述第一方面或第二方面所述的方法。
根据本发明实施例的其它方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行前述第一方面或第二方面所述的方法。
本发明实施例的有益效果在于:根据本发明实施例的至少一个方面,网络设备和终端设备双方能够对参考信号的传输有一个一致性的理解,提高了参考信号的传输的可靠性。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或 更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本发明实施例的通信系统的示意图;
图2是PUSCH repetition的三个示例的示意图;
图3是一个repetition的参考信号的位置的示意图;
图4是实施例1的参考信号发送方法的示意图;
图5是实施例2的重复传输次数配置方法的示意图;
图6是实施例3的重复传输指示方法的示意图;
图7是实施例4的参考信号发送装置的一个示意图;
图8是实施例4的参考信号发送装置的另一个示意图;
图9是实施例5的重复传输次数配置装置的示意图;
图10是实施例6的重复传输指示装置的示意图;
图11是实施例7的终端设备的示意图;
图12是实施例8的网络设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、 站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
以下通过示例对本发明实施例的场景进行说明,但本发明实施例不限于此。
图1是本发明实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括:网络设备101和终端设备102。为简单起见,图1仅以一个终端设备为例进行说明。网络设备101例如为NR系统中的网络设备gNB。
在本发明实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
在本发明实施例中,终端设备102可以向网络设备101发送数据,例如使用免授权传输方式。网络设备101可以接收一个或多个终端设备102发送的数据,并向终端设备102反馈信息,例如确认(ACK)信息或非确认(NACK)信息,终端设备102根据反馈信息可以确认结束传输过程、或者还可以再进行新的数据传输,或者可以进行数据重传。
为了方便说明,下面对本发明实施例涉及的一些概念进行说明。
在本发明实施例中,DMRS有两种,即前载DMRS(front-loaded DMRS)和附加DMRS(additional DMRS),front-loaded DMRS总是存在,即总是会传输,而additional DMRS是否存在以及存在的位置取决于高层信令配置和协议规定。
在本发明实施例中,PUSCH传输有两种类型,PUSCH mapping type A(简称为 type A PUSCH)和PUSCH mapping type B(简称为type B PUSCH),这两种传输类型对应的DMRS传输格式是不同的。对于type A PUSCH,front-loaded DMRS总是出现在slot的第三或第四个符号上,如symbol 2或symbol 3,从symbol 0开始编号。对于type B PUSCH,front-loaded DMRS总是在调度的PUSCH的第一个符号上。
在本发明实施例中,PUSCH的上行传输许可(UL grant)可以是DCI的形式,也可以是RRC信令配置的调度许可,其可以包含第一个repetition的时域资源分配(Time Domain Resource Assignment,TDRA),其他repetitions的时域资源可以根据第一个repetition的TDRA以及符号的上下行传输方向来进一步确定。
图2是PUSCH的repetition分裂的三个示例的示意图,在图2的(a)中,网络设备指示每个repetition占用4个符号,共2个repetition;在图2的(b)中,网络设备指示每个repetition占用4个符号,共4个repetition;在图2的(c)中,网络设备指示每个repetition占用14个符号,共1个repetition,并且,在图2的(c)的例子中,要求S+L>14,S是符号的起始位置,L是符号的持续长度,关于其定义,可以参考现有标准。
从图2中可以看出,虽然说是分裂,但是传输的TB需要在一个repetition里传完,以图2中的(b)为例,一次repetition占用4个symbols,共4次repetition,但是,在slot边界,PUSCH需要在前一个slot传输完毕,后一个slot再传一次repetition,由此衍生出了5次repetition,并且第3次repetition和第4次repetition分别占用2个符号。然而,如果slot边界前的repetition包含DMRS,那么该repetition如何进行分类,其中的DMRS是否也需要分裂,在当前方案中并没有进行规定。
以图3所示的repetition为例,如果该repetition占用7个符号,并且第1个符号用于传输front-loaded DMRS,第5个符号用于传输additional DMRS,其他符号用于传输数据信道或信号,例如PDSCH或PUSCH,则,如果当前slot只剩4个符号了,哪个或哪些符号用于传输DMRS需要规定好,以便网络设备和终端设备有一致的理解,例如,一种可能性是4个符号中仍然有2个符号用于DMRS传输,另一种可能性是4个符号中只有1个符号用于DMRS传输,等等。注意,DMRS所在符号的部分RE也可能用于数据信道或信号的传输。
本实施例以参考信号为DMRS,数据信道或信号为上行数据信道或信号(如PUSCH)为例进行说明,但本实施例对此不作限制,在本实施例中,参考信号也可 以是其他与数据信道或信号所关联的参考信号,数据信道或信号也可以是下行数据信道或信号,例如PDSCH。
下面结合附图对本发明的各种实施方式进行说明。这些实施方式只是示例性的,不是对本发明的限制。
实施例1
本实施例提供了一种参考信号发送方法,该方法应用于发送端,可以是终端设备,也可以是网络设备。图4是本实施例的参考信号发送方法的示意图,请参照图4,该方法包括:
步骤401:发送端生成与同一个传输块相对应的一个或一个以上信号,所述一个或一个以上信号包括数据信道和参考信号;
步骤402:所述发送端在一个或一个以上时域资源段发送所述一个或一个以上信号,所述参考信号的位置基于所述一个或一个以上时域资源段确定。
在本实施例中,发送端根据实际的repetition(上述发送的一个或一个以上信号)所占用的时域资源段来确定参考信号的位置,而不仅仅根据网络设备配置或指示的重复传输次数和参考信号类型来确定参考信号的位置,使得网络设备和终端设备对参考信号的发送具有一致的理解,由此提高了参考信号传输的可靠性。关于网络设备配置或指示的重复传输次数,将在后面进行说明。
在本实施例中,上述一个或一个以上的信号中,某个或某些信号可以既包括数据信道又包括参考信号,或者,某个或某些信号仅包括数据信道,而不包括参考信号,本实施例以该一个或一个以上的信号的每一个都包括数据信道和参考信号为例,但本实施例不限于此。
在一个实施方式中,上述一个或一个以上信号可以包括第一信号和第二信号,该第一信号和该第二信号与同一个传输块相对应,例如是一个传输块的两次repetition,并且,该第一信号和该第二信号分别包括数据信道和参考信号,发送端可以在第一时域资源段发送第一信号,并在第二时域资源段发送第二信号,第一信号中参考信号的位置可以基于该第一时域资源段确定,第二信号中参考信号的位置可以基于该第二时域资源段确定。
在另一个实施方式中,上述一个或一个以上信号可以包括上述第一信号、上述第二信号以及第三信号,该第三信号也与前述传输块相对应,也即,第一信号、第二信 号、以及第三信号是上述传输块的repetition,该第三信号也可以包括数据信号和参考信号,发送端可以在第三时域资源段发送第三信号,该第三信号中参考信号的位置可以基于该第三时域资源段来确定。
在本实施方式中,上述第三时域资源段可以是一个或一个以上,相应的,上述第三信号为一个或一个以上。
在本实施例中,上述传输块的重复传输次数,也即上述repetition的次数,不是网络设备配置或指示的,而是实际发生的,每次repetition中参考信号的位置由该repetition所占用的时域资源段来确定,由此避免了网络设备和终端设备对参考信号的发送有不一致的理解,提高了参考信号的传输的可靠性。
在本实施例中,该参考信号的位置可以基于以下至少一项确定:
时域资源段的符号长度;
时域资源段的TDRA配置或指示;
高层信令配置;以及
协议规定。
例如,参考信号的位置可以基于时域资源段的符号长度来确定。例如,发送端可以根据UL grant中指示的TDRA确定每个repetition占用的时域资源段,而后再根据每个repetition的时域资源段的符号长度确定参考信号的位置。这里,‘位置’是指上述参考信号占用的符号的位置,因此隐含包括了参考信号的个数,在本实施例中,如无特别说明,相同的表述具有相同的含义。上述UL grant可以是DCI信令配置的,也可以是RRC信令配置的,本实施例不限于此,其也可以是单独的信令或参数或指示的。
假设实际传输的repetition次数为N,每个repetition的时域资源段的符号长度分别为K1,K2,…,KN。由此,在协议中可以定义一张DMRS位置的表格,根据时域资源段的符号长度(K1,K2,…,KN)来确定DMRS位置。或者,也可以沿用当前协议TS38.211中的表6.4.1.1.3-3,将表中的l d替换为时域资源段的符号长度(K1,K2,…,KN),或者将l d解读为时域资源段的长度(K1,K2,…,KN),即l d为时域资源段的符号长度(K1,K2,…,KN)。当前协议TS38.211中的表6.4.1.1.3-3如下。
Figure PCTCN2019085365-appb-000001
再例如,参考信号的位置可以基于时域资源段的TDRA配置或指示确定。例如,如果UL grant中的TDRA配置或指示S+L≤14,除了第一类参考信号以外,每个repetition(上述信号)中还可以包含第二类参考信号;如果S+L>14,每个repetition(上述信号)仅包含第一类参考信号。S为时域资源段的符号起始位置,L为指示的时域资源段的符号长度。这里,第一类参考信号例如为前述front-loaded DMRS,第二类参考信号例如为前述additional MDRS,但本实施例不限于此,在以下的说明中,如无特别说明,相同表述具有相同含义,不再重复说明。
再例如,参考信号的位置可以基于实际的时域资源段的符号长度和TDRA配置或指示的时域资源段的符号长度联合确定。例如,如果实际的时域资源段的符号长度(如实际的可用的上行符号数)为K,而TDRA配置或指示的时域资源段的符号长度为L,如果L>K,则可以根据实际的时域资源段的长度(K)确定参考信号的位置,例如,L=7,参考信号为DMRS,其位置如图3所示为例,则当K=4时,可以将DMRS的符号数由2个减少为1个;当K=5时,可以将DMRS的符号数设定为2个;如果L=K,则可以按照上述配置或指示的时域资源段的长度(L)确定DMRS的位置。此外,在协议中,也可以定义一张DMRS位置表格,根据实际的时域资源段的符号长度(K)和TDRA配置或指示的时域资源段的符号长度(L)来查询DMRS位置。
再例如,发送端可以根据协议规定确定参考信号的位置。以发送端为终端设备为例,当网络设备配置终端设备进行重复传输时,终端设备可以根据协议规定确定参考 信号的位置,即,终端设备期望网络设备不会配置第二类参考信号,即上述第二类参考信号的位置始终为‘pos0’。仍以发送端为终端设备为例,当网络设备配置终端设备进行重复传输时,如果网络设备配置了一个或一个以上第二类参考信号,终端设备根据协议规定确定参考信号的位置,即,其会当成网络设备没有配置第二类参考信号的情况来执行。
以上实施例适用于上述信号中的数据信道被配置为第二类型,并且网络设备配置了第二类参考信号的场景,但本实施例不限于此,以上实施例也可以用于上述信号中的数据信道被配置为第一类型,或者网络设备没有配置第二类参考信号,只配置了第一类参考信号的场景。例如,数据信道被配置为第一类型,网络设备配置了第一类参考信号和/或第二类参考信号;又例如,数据信道被被配置为第二类型,网络设备配置了第一类参考信号和/或第二类参考信号。这里,第一类型例如为前述的type A,第二类型例如为前述的type B,但本实施例不限于此,在以下的说明中,如无特别说明,相同表述具有相同含义,不再重复说明。
在本实施例的一个实施方式中,如果网络设备配置了第二类参考信号,例如,网络设备配置了一个或一个以上第一类参考信号以及一个或一个以上第二类参考信号,并且上述信号中的数据信道被配置为第一类型,则上述信号中参考信号的位置可以按照数据信道被配置为第二类型且网络设备没有配置第二类参考信号的情况来确定,也可以按照数据信道被配置为第二类型且网络设备配置了第二类参考信号的情况来确定,还可以按照固定的时域位置来确定,还可以按照R15中数据信道被配置成第一类型的情况以及数据信道被配置为第二类型且网络设备配置了第二类参考信号的情况来确定。
例如,由于数据信道被配置为第二类型且网络设备没有配置第二类参考信号的情况下,第一类参考信号总是在调度的数据信道所占用的时域资源的第一个符号上,则,如果网络设备配置了第二类参考信号,并且上述信号中数据信道被配置为第一类型,则上述信号中参考信号的位置可以为相应的时域资源段的第一个符号,即每个时域资源段的第一个符号用于参考信号传输。
再例如,由于数据信道被配置为第二类型且网络设备配置了第二类参考信号的情况下,信号中参考信号的位置可以根据以下至少一项确定:相应的所述时域资源段的符号长度,相应的所述时域资源段的时域资源分配配置或指示,高层信令配置,以及 协议规定。则,如果网络设备配置了第二类参考信号,并且上述信号中数据信道被配置为第一类型,则上述信号中参考信号的位置也可以根据前述至少一项确定。
再例如,如果网络设备配置了第二类参考信号,并且上述信号中数据信道被配置为第一类型,则上述信号中参考信号的位置可以是固定的时域位置,例如:相应的时域资源段的第一个符号,或者,相应的时域资源段的第二符号,或者,上述第一类型所对应的参考信号的位置。
再例如,如果网络设备配置了第二类参考信号,并且上述信号中数据信道被配置为第一类型,则上述信号中参考信号的位置可以按照按照R15中数据信道被配置成第一类型的情况以及数据信道被配置为第二类型且网络设备配置了第二类参考信号的情况来确定,例如,根据R15中数据信道被配置成第一类型的情况确定该信号中的参考信号的位置,如果一个或一个以上时域资源段中不包含参考信号的符号,则所述时域资源段对应的信号中的参考信号位置可以是相应的时域资源段的第一个符号,或者,相应的时域资源段的第二符号。
在本实施例的另一个实施方式中,如果网络设备仅配置了第一类参考信号,例如,网络设备配置了一个或一个以上第一类参考信号,则上述信号中参考信号的位置可以是固定的时域位置,例如为:相应时域资源段的第一个符号,或者,相应时域资源段的第二符号,或者相应资源资源段的第一个符号和第二符号。在本实施方式中,上述信号中数据信道可以被配置为第一类型,也可以被配置为第二类型,即,无论上述信号中数据信道被配置为第一类型还是第二类型,如果网络设备仅配置了第一类参考信号,则上述信号中参考信号的位置可以是上述固定的时域位置。
在本实施方式中,如果网络设备仅配置了第一类参考信号,则按照现有标准,某个或某些repetition(例如第二个repetition)没有参考信号,如果执行频域调频,会导致该repetition没有可用的参考信号,根据本实施方式的方法,在相应时域资源段的固定时域位置(第一个符号和/或第二个符号)发送参考信号,解决了这一问题。
例如,即使TDRA配置或指示数据信道为第一类型,也可以将第二个及其后面的实际repetition当成R15的type B来处理,即在每个repetition所占用的时域资源段的第一个符号发送参考信号。或者,也可以将一个或一个以上的repetition当成R15的type B处理,即在每个repetition所占用的时域资源段的第一个符号发送参考信号。
在这个例子中,当采用C-RNTI,CS-RNTI或MCS-C-RNTI加扰的DCI format, 或者新的DCI格式(例如DCI format 0-2,1-2等)时,或者高层信令配置终端设备进行R16PUSCH repetition时,即使UL grant中的TDRA域或者RRC配置的PUSCH TDRA指示PUSCH的类型为type A,终端设备期望所有repetition所占用的时域资源段,或者除第一个repetition所占用的时域资源段以外的时域资源段采用R15的type B参考信号的传输方式。由此,在支持PUSCH repetition和其它业务时,使用一张PUSCH TDRA table,或者相同的PUSCH TDRA配置,在支持URLLC业务时无需RRC重配。
以上所有实施方式都可以适用于所有的DMRS配置,例如:数据信道被配置为第一类型,网络设备配置了第一类参考信号和/或第二类参考信号;又例如,数据信道被被配置为第二类型,网络设备配置了第一类参考信号和/或第二类参考信号。
在本实施例中,如前所述,网络设备还可以配置或指示数据信道或传输块的重复传输,例如,R15中slot级别的重复传输,或者R16的低时延重复传输。
在本实施例中,对于网络设备,其可以向终端设备发送命令,通过该命令配置或指示数据信道或传输块重复传输;对于终端设备,其可以接收该命令,根据该命令,确定网络设备配置或指示的重复传输。
在本实施例中,网络设备可以仅通过RRC信令配置或指示上述数据信道或传输块的重复传输,也可以通过RRC信令和DCI信令相结合的方式来配置或指示上述数据信道或传输块的重复传输,下面分别进行说明。在本实施例中,为了方便说明,将数据信道或传输块的重复传输简称为重复传输。
在一个实施方式中,网络设备仅通过高层信令(上述RRC信令)配置或指示上述重复传输,该高层信令包括第一参数,该第一参数指示了上述重复传输,或者该第一参数指示了上述重复传输以及重复传输的次数。
例如,可以在RRC信令中增加用于指示重复传输的参数(简称为第一参数),如pusch-AggregationFactor-r16,以通知终端设备进行前面所述的低时延高可靠性重复传输,即,一个UL grant调度一个TB的两个或两个以上的重复传输,且这两个或两个以上的重复传输可以在一个时隙(slot)内,或者,可以在跨时隙边界的多个连续时隙内。此外,该参数还可以用于通知后续的重复次数,例如1,2,4,6,8次等。该重复次数仅为名义上的传输次数,在实际传输时,一次重复传输可能会遇到时隙边界或上下行(DL/UL)转换点而分裂成多次重复传输。
上述第一参数的格式例如可以是:
pdsch-AggregationFactor-r16ENUMERATED{nA,nB,nC…}OPTIONAL
其中,nA,nB,nC表示重复次数,取值为自然数,配置的重复次数的个数也为自然数。当pdsch-AggregationFactor-r16没有被配置时,表示网络设备不配置终端设备进行低时延高可靠性重复传输,或者重复传输的次数为1,或者表示网络侧不会通过DCI信令动态指示名义上的重复传输次数。
在另一个实施方式中,网络设备仅通过高层信令(上述RRC信令)配置或指示上述重复传输,该高层信令包括第二参数,该第二参数用于开启或关闭‘动态名义重复传输次数’,‘动态名义重复传输次数’开启表示网络设备会通过DCI信令中的某个域动态的指示名义重复传输次数,‘动态名义重复传输次数’关闭表示网络设备的DCI中不存在指示名义重复传输次数的相关信令域。当该‘动态名义重复传输次数’被第二参数开启时,上述重复传输也相应地被开启,当该‘动态名义重复传输次数’被第二参数关闭时,上述重复传输也相应地被关闭。
在本实施方式中,还可以增加上述重复传输被开启或关闭的条件,例如,当上述‘动态名义重复传输次数’被第二参数开启,并且动态名义重复传输次数大于或等于第一数值时,上述重复传输被开启,当上述‘动态名义重复传输次数’被第二参数关闭,或者,动态名义重复传输次数被第二参数开启,但是动态名义重复传输次数小于或等于第二数值时,上述重复传输被关闭。
在本实施方式中,上述‘动态名义重复传输次数’可以通过DCI信令来指示,该域的开启或关闭则通过上述第二参数来实现。
例如,当‘动态名义重复传输次数’的指示被上述第二参数配置为enabled时,重复传输也同时被开启;反之,当‘动态名义重复传输次数’的指示被上述第二参数配置为disabled时,重复传输也同时被关闭。
又例如,当‘动态名义重复传输次数’的指示被上述第二参数配置为enabled,且候选的名义重复传输次数为大于或等于第一数值时(例如0,1,2等),重复传输也同时被开启;反之,当‘动态名义重复传输次数’的指示被上述第二参数配置为disabled时,或者被上述第二参数配置为enabled且候选的名义重复传输次数为小于或等于第二数值时(例如0,1,2等),重复传输也同时被关闭。
在本实施方式中,还可以通过高层信令配置的时域资源分配中是否包含重复传输次数来确定是否配置或指示上述重复传输,如时域资源分配相关参数为 ‘PUSCH-TimeDomainResourceAllocation-16’,如该参数中包含重复传输次数参数,则表示配置了重复传输,否则表示没有配置重复传输。
在另一个实施方式中,网络设备通过高层信令和下行控制信息配置或指示上述重复传输,该高层信令包括第三参数,该第三参数配置或指示了上述重复传输,该下行控制信息包括指示域,该指示域指示是否开启上述重复传输。
在本实施方式中,上述指示域可以是以下任意一种或任意组合,也即,该指示域包括以下至少一种:
用于指示名义重复传输次数的DCI域;
用于指示时域资源分配的DCI域;
用于指示重复传输方式和/或名义重复传输次数的信息域;以及
用于指示名义重复传输次数和/或时域资源分配方式的信息域。
对于上述用于指示名义重复传输次数的DCI域,例如,其可以是一个单独的DCI域,仅用于传输名义上的传输次数。当上述高层信令指示该DCI域开启,且该DCI域指示重复传输次数大于或等于某个数值(例如0,1,2等)时,指示终端设备进行重复传输。该单独的DCI域可以是1比特或2比特,名义上的传输次数可以是高层信令配置的数值,所述高层信令可以是RRC信令,也可以是RRC信令和MAC-CE信令,即RRC信令配置了一个或一个以上重复传输次数的候选数值,MAC-CE信令从中选了一个或一个以上数值。
对于上述用于指示时域资源分配的DCI域,例如,该DCI域指示S+L>14时,表示通知终端设备进行重复传输。
对于上述用于指示重复传输方式和/或名义重复传输次数的信息域。例如,R15中支持slot级别的重复传输,R16中包含低时延高可靠性的重复传输(简称为R16重复传输),在本实施方式中,使用一个信息域表示R15和R16重复的动态切换和/或重复次数的指示。
在本实施方式中,可以使用1比特或2比特或3比特或其他比特值的信息域来指示重复传输方式和/或名义重复传输次数,例如该信息域的不同的比特值指示了不同的重复传输方式,或者指示了不同的重复传输方式和重复传输次数。
例如,该信息域可以是2比特,其不同的比特值用于指示不同的重复传输方式和/或名义重复传输次数,如下表1所示:
信息域 指示含义
‘00’ R15重复传输
‘01’ R16重复传输,且名义重复传输次数为高层信令配置的数值1
‘10’ R16重复传输,且名义重复传输次数为高层信令配置的数值2
‘11’ R16重复传输,且名义重复传输次数为高层信令配置的数值3
表1
也即,当信息域的比特值为‘00’时,指示‘R15重复传输’;当信息域的比特值为‘01’时,指示‘R16重复传输,且名义重复传输次数为高层信令配置的数值1’;当信息域的比特值为‘10’时,指示‘R16重复传输,且名义重复传输次数为高层信令配置的数值2’;当信息域的比特值为‘11’时,指示‘R16重复传输,且名义重复传输次数为高层信令配置的数值3’。上述名义重复传输次数的数值仅为示意性,DCI域的信息域比特与指示含义的对应关系也为示意性的。此外,上述高层信令可以是RRC信令,也可以是RRC信令和MAC-CE信令,即RRC信令配置了一个或一个以上重复传输次数的候选数值,MAC-CE信令从中选了一个或一个以上数值。
又例如,该信息域可以是1比特,其不同的比特值用于指示不同的重复传输方式和/或名义重复传输次数,如下表2所示:
信息域 指示含义
‘0’ R15重复传输
‘1’ R16重复传输,且名义重复传输次数为高层信令配置的次数
表2
也即,当信息域的比特值为‘0’时,指示‘R15重复传输’;当信息域的比特值为‘1’时,指示‘R16重复传输,且名义重复传输次数为高层信令配置的次数’;上述名义重复传输次数的数值仅为示意性,DCI域的信息域比特与指示含义的对应关系也为示意性的。此外,上述高层信令可以是RRC信令,也可以是RRC信令和MAC-CE信令,即RRC信令配置了一个或一个以上重复传输次数的候选数值,MAC-CE信令从中选了一个数值。
又例如,该信息域还可以是2比特,其不同的比特值用于指示不同的重复传输方式和/或重复传输次数,该重复传输次数可以是名义的,如下表3所示:
信息域 指示含义
‘00’ R15重复传输,且重复传输次数为高层信令配置的数值1
‘01’ R15重复传输,且重复传输次数为高层信令配置的数值2
‘10’ R16重复传输,且名义重复传输次数为高层信令配置的数值1
‘11’ R16重复传输,且名义重复传输次数为高层信令配置的数值2
表3
也即,当信息域的比特值为‘00’时,指示‘R15重复传输,且重复传输次数为高层信令配置的数值1’;当信息域的比特值为‘01’时,指示‘R15重复传输,且重复传输次数为高层信令配置的数值2’;当信息域的比特值为‘10’时,指示‘R16重复传输,且名义重复传输次数为高层信令配置的数值1’;当信息域的比特值为‘11’时,指示‘R16重复传输,且名义重复传输次数为高层信令配置的数值2’。上述名义重复传输次数的数值仅为示意性,DCI域的信息域比特与指示含义的对应关系也为示意性的,用于指示R15重复传输或R16重复传输的信息域个数也为示意性。此外,上述高层信令可以是RRC信令,也可以是RRC信令和MAC-CE信令,即RRC信令配置了一个或一个以上重复传输次数的候选数值,MAC-CE信令从中选了一个或一个以上数值。R15重复传输和R16重复传输的高层信令配置可以是同一个参数,也可以是不同的参数,本实施例不对此做出限制。
又例如,该信息域还可以是3比特,其不同的比特值用于指示不同的重复传输方式和/或重复传输次数,该重复传输次数可以是名义的,如下表4所示:
信息域 指示含义
‘000’ R15重复传输,且重复传输次数为高层信令配置的数值1
‘001’ R15重复传输,且重复传输次数为高层信令配置的数值2
‘010’ R16重复传输,且名义重复传输次数为高层信令配置的数值1
‘011’ R16重复传输,且名义重复传输次数为高层信令配置的数值2
‘100’ R16重复传输,且名义重复传输次数为高层信令配置的数值3
‘101’ R16重复传输,且名义重复传输次数为高层信令配置的数值4
‘110’ R16重复传输,且名义重复传输次数为高层信令配置的数值5
‘111’ R16重复传输,且名义重复传输次数为高层信令配置的数值6
表4
也即,当信息域的比特值为‘000’时,指示‘R15重复传输,且重复传输次数为高层信令配置的数值1’;当信息域的比特值为‘001’时,指示‘R15重复传输,且重复传输次数为高层信令配置的数值2’;当信息域的比特值为‘010’时,指示‘R16 重复传输,且名义重复传输次数为高层信令配置的数值1’;当信息域的比特值为‘011’时,指示‘R16重复传输,且名义重复传输次数为高层信令配置的数值2’;当信息域的比特值为‘100’时,指示‘R16重复传输,且名义重复传输次数为高层信令配置的数值3’;当信息域的比特值为‘101’时,指示‘R16重复传输,且名义重复传输次数为高层信令配置的数值4’;当信息域的比特值为‘110’时,指示‘R16重复传输,且名义重复传输次数为高层信令配置的数值5’;当信息域的比特值为‘111’时,指示‘R16重复传输,且名义重复传输次数为高层信令配置的数值6’。上述名义重复传输次数的数值仅为示意性,DCI域的信息域比特与指示含义的对应关系也为示意性的,用于指示R15重复传输或R16重复传输的信息域个数也为示意性,例如用于R15和R16重复相关指示的信息域个数还可以为1和7,3和5,4和4,5和3,6和2,7和1。此外,上述高层信令可以是RRC信令,也可以是RRC信令和MAC-CE信令,即RRC信令配置了一个或一个以上重复传输次数的候选数值,MAC-CE信令从中下选一个或一个以上数值。此外,R15重复传输和R16重复传输的高层信令配置可以是同一个参数,也可以是不同的参数,本实施例不对此做出限制。
对于上述用于指示名义重复传输次数和/或时域资源分配方式的信息域,例如,可以为名义重复传输次数和TDRA域的联合编码,当名义重复传输次数大于或等于某个数值(例如0,1,2等),且TDRA域指示某种资源分配方式(例如S+L>14),表示通知终端设备进行重复传输。
在另一个实施方式中,网络设备通过高层信令和下行控制信息配置或指示上述重复传输,该高层信令包括第四参数,该第四参数配置或指示了上述重复传输,上述下行控制信息的格式关联了是否开启所述重复传输。
例如,当终端设备监测到一种DCI format,用于指示终端设备进行URLLC相关传输,通过配置的高层信令和检测到的DCI format和/或具体的DCI信令域来指示终端设备进行重复传输。
在本实施例中,仅以“网络设备配置或指示”为例做了说明,在具体实施时,“网络设备配置或指示”可以是网络设备向终端设备发送配置信息或指示信息,对终端设备进行上述配置或指示,也可以是终端设备接收网络设备发送的配置信息或指示信息,从网络设备获得上述配置或指示。
根据本发明实施例,网络设备和终端设备对参考信号的传输有了一致的理解,保 证了参考信号的传输的可靠性。
实施例2
本实施例提供了一种重复传输次数配置方法,应用于网络设备,图5是本实施例的重复传输次数配置方法的示意图,如图5所示,该方法包括:
步骤501:网络设备配置时域资源分配信息,所述时域资源分配信息不包含数据信道类型,或者,所述时域资源分配信息包含名义重复传输次数,或者,所述时域资源分配信息包含数据信道类型和名义重复传输次数的联合编码;
步骤502:所述网络设备发送所述时域资源分配信息。
在本实施例中,上述时域资源分配信息可以通过RRC信令来配置,本实施例不限于此,也可以通过其他高层信令来配置。
在本实施例中,在有些情况下,数据信道被配置为第一类型和第二类型时,参考信号的传输方式是相同的,在本实施例中,网络设备也可以在TDRA域中不指示数据信道类型,而加入名义重复传输次数的指示;或者,加入数据信道类型与名义重复传输次数指示联合编码。
例如,在R15中,一个TDRA指示的例子为表6.1.2.1.1-2,如下:
Figure PCTCN2019085365-appb-000002
在本实施例中,可以将上述第二列‘PUSCH mapping type’去掉,换成高层信令 配置的名义重复传输次数的数值,还可以将上述第一类型(即‘type A’)去掉,换成高层信令配置的名义重复传输次数的数值,还可以将第二类型(即‘typeB’)去掉,换成高层信令配置的名义重复传输次数的数值,还可以将上述第二列修改为‘数据信道类型与名义重复传输次数’的联合指示。例如表5和表6所示,
Figure PCTCN2019085365-appb-000003
表5
Figure PCTCN2019085365-appb-000004
表6
以上数值A,B,C,D均为示意性,取值为自然数。
修改后的表格与上述表6.1.2.1.1-2可以同时存在,当高层信令配置进行数据信道重复传输时,修改后的表格生效,当高层信令没有配置进行数据信道重复传输时,上述表6.1.2.1.1-2生效。
在本实施例中,由于TDRA可以是由高层信令配置的,如R15的时域资源分配信令,如下所示:
Figure PCTCN2019085365-appb-000005
则在R16中,可以将TDRA中加入名义重复传输次数配置‘nrofrepetition’,如 下所示:
Figure PCTCN2019085365-appb-000006
在以上例子中,‘PUSCH-TimeDomainResourceAllocation’也可以是R16新加的具有相同功能的参数,如‘PUSCH-TimeDomainResourceAllocation-16’等。在本例中,名义重复传输次数‘nrofrepetition’的可配置值仅为示意性。还可以在‘PUSCH-TimeDomainResourceAllocation-16’中去除‘mappingType’的配置。
通过本实施例的方法,实现了TDRA与重复传输次数的联合编码。
实施例3
本实施例提供了一种重复传输指示方法,应用于网络设备,图6是本实施例的重复传输指示方法的示意图,如图6所示,该方法包括:
步骤601:网络设备生成下行控制信息,所述下行控制信息包括信息域,所述信息域用于指示重复传输方式,或者指示重复传输方式和相应的名义重复传输次数,或者指示时域资源分配和名义重复传输次数;
步骤602:所述网络设备发送所述下行控制信息。
在本实施例中,上述信息域例如为1比特或2比特或3比特或其他比特,不同的比特值可以指示不同的重复传输方式,或者指示不同的重复传输方式和相应的重复传输次数,详见实施例1的表格1~表格4,此处省略说明。
此外,在本实施例中,上述信息域的不同的比特值也可以指示不同的时域资源分配和重复传输方式,如实施例2的表格5~表格6的示例,此处省略说明。由此,实现了TDRA和重复传输次数的联合编码。
根据本发明实施例,通过下行控制信息可以指示重复传输方式,进一步可以指示重复传输次数,终端设备据此可以确定发送的信号中参考信号所在的位置,具体如实施例1所述,此处不再赘述,并且,网络设备据此也可以确定发送的信号中参考信号所在的位置,使得网络设备和终端设备对参考信号的传输有了一致的理解,保证了参考信号的传输的可靠性。
实施例4
本实施例提供了一种参考信号发送装置,该装置配置于发端,例如终端设备或者网络设备。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参照实施例1的方法的实施,内容相同之处不再重复说明。
图7是本实施例的参考信号发送装置的一个示意图,在这个实施例中,该参考信号发送装置配置于终端设备。如图7所示,该参考信号发送装置700包括:生成单元701和发送单元702。生成单元701生成与同一个传输块对应的一个或一个以上信号,该一个或一个以上信号包括数据信道和参考信号;发送单元702在一个或一个以上时域资源段发送所述一个或一个以上信号,该一个或一个以上信号中参考信号的位置基于上述一个或一个以上时域资源段确定。
在本实施例中,发送单元701可以在第一时域资源段发送第一信号,在第二时域资源段发送第二信号,该第一信号和所述第二信号与同一个传输块相对应,并且,该第一信号和所述第二信号分别包括数据信道和参考信号,该第一信号中参考信号的位置基于第一时域资源段确定,该第二信号中参考信号的位置基于第二时域资源段确定。
在本实施例中,发送单元701还可以在第三时域资源段发送第三信号,该第三信号与前述传输块相对应,该第三信号包括数据信道和参考信号,该第三信号中参考信号的位置基于第三时域资源段确定。在这个例子中,第三时域资源段可以是一个或一个以上,相应的,第三信号也可以是一个或一个以上。
在本实施例中,上述一个或一个以上信号中参考信号的位置可以基于以下至少一项确定:
所述时域资源段的符号长度;
所述时域资源段的时域资源分配(TDRA)配置或指示;
高层信令配置;以及
协议规定。
在一个实施方式中,网络设备没有配置第二类参考信号,或者,网络设备配置了一个或一个以上第二类参考信号,则发送单元701认为网络设备没有配置所述第二类参考信号,基于上述协议规定确定上述一个或一个以上信号中的参考信号的位置。
在一个实施方式中,网络设备配置了一个或一个以上第一类参考信号以及一个或 一个以上第二类参考信号,上述信号中的数据信道被配置为第一类型,则上述信号中的参考信号的位置为相应的时域资源段的第一个符号。
在一个实施方式中,网络设备配置了一个或一个以上第一类参考信号以及一个或一个以上第二类参考信号,上述信号中的数据信道被配置为第一类型,上述信号中的参考信号的位置为根据以下至少一项确定的位置:相应的时域资源段的符号长度,相应的时域资源段的时域资源分配配置或指示,高层信令配置,以及协议规定。
在一个实施方式中,网络设备配置了一个或一个以上第一类参考信号以及一个或一个以上第二类参考信号,上述信号中的数据信道被配置为第一类型,上述信号中参考信号的位置为以下至少一项:相应的所述时域资源段的第一个符号,相应的所述时域资源段的第二个符号,以及所述第一类型对应的参考信号位置。
在一个实施方式中,网络设备配置了一个或一个以上第一类参考信号,上述信号中的数据信道被配置为第一类型或第二类型,上述信号中的参考信号的位置为相应的时域资源段的第一个符号和/或第二个符号。
在本实施例中,如图7所示,该参考信号发送装置700还包括:
接收单元703,其接收网络设备发送的命令,该命令配置或指示数据信道或传输块的重复传输。此外,该接收单元703还可以接收网络设备发送的其他配置信息,如前所述,此处不再赘述。
在一个实施方式中,网络设备仅通过高层信令配置或指示上述传输块的重复传输,该高层信令包括第一参数,该第一参数指示了上述传输块的重复传输,或者该第一参数指示了上述传输块的重复传输以及重复传输的次数。
在一个实施方式中,网络设备仅通过高层信令配置或指示上述传输块的重复传输,该高层信令包括第二参数,该第二参数开启或关闭动态名义重复传输次数,当该动态名义重复传输次数被上述第二参数开启时,上述传输块的重复传输被开启,当该动态名义重复传输次数被上述第二参数关闭时,上述传输块的重复传输被关闭。
在本实施方式中,也可以是,当动态名义重复传输次数被所述第二参数开启,并且动态名义重复传输次数大于或等于第一数值时,上述传输块的重复传输被开启,当动态名义重复传输次数被上述第二参数关闭,或者,动态名义重复传输次数被上述第二参数开启,但是动态名义重复传输次数小于或等于第二数值时,上述传输块的重复传输被关闭。
在一个实施方式中,网络设备通过高层信令和下行控制信息配置或指示上述传输块的重复传输,该高层信令包括第三参数,该第三参数配置或指示了上述传输块的重复传输,上述下行控制信息包括指示域,该指示域指示是否开启上述重复传输。
在本实施方式中,上述指示域包括以下至少一种:用于指示名义重复传输次数的DCI域;用于指示时域资源分配的DCI域;用于指示重复传输方式和/或名义重复传输次数的信息域;以及用于指示名义重复传输次数和/或时域资源分配方式的信息域。
在一个实施方式中,网络设备通过高层信令和下行控制信息配置或指示上述传输块的重复传输,该高层信令包括第四参数,该第四参数配置或指示了上述传输块的重复传输,上述下行控制信息的格式关联了是否开启上述重复传输。
图8是本实施例的参考信号发送装置的另一个示意图,在这个实施例中,该参考信号发送装置配置于网络设备。如图8所示,该参考信号发送装置800包括:生成单元801和发送单元802,该生成单元801和发送单元802的实施方式与图7所示的参考信号发送装置700的生成单元701和发送单元702相同,此处不再赘述。
如图8所示,该参考信号发送装置800还包括:
配置单元803,其向终端设备发送命令,通过该命令配置或指示数据信道或传输块的重复传输。
在本实施例中,关于上述重复传输的配置方式,已经在图7所示的参考信号发送装置700的说明中做了详细说明,其内容被合并于此,此处不再赘述。
在本实施例中,上述发送单元802还可以向终端设备发送其他配置信息,如前所述,此处不再赘述。
根据本发明实施例,网络设备和终端设备对参考信号的传输有了一致的理解,保证了参考信号的传输的可靠性。
实施例5
本实施例提供了一种重复传输次数配置装置,该装置配置于网络设备。由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参照实施例2的方法的实施,内容相同之处不再重复说明。
图9是本实施例的重复传输次数配置装置的示意图,如图9所示,该装置900包括:
配置单元901和发送单元902,配置单元901配置时域资源分配信息,所述时域资源分配信息不包含数据信道类型,或者,所述时域资源分配信息包含名义重复传输次数,或者,所述时域资源分配信息包含数据信道类型和名义重复传输次数的联合编码;发送单元902发送所述时域资源分配信息。
通过本实施例的装置,实现了TDRA与重复传输次数的联合编码。
实施例6
本实施例提供了一种重复传输指示装置,该装置配置于网络设备。由于该装置解决问题的原理与实施例3的方法类似,因此其具体的实施可以参照实施例3的方法的实施,内容相同之处不再重复说明。
图10是本实施例的重复传输指示装置1000的示意图,如图10所示,该装置1000包括:生成单元1001和发送单元1002。生成单元1001生成下行控制信息,所述下行控制信息包括信息域,所述信息域用于指示重复传输方式,或者指示重复传输方式和相应的名义重复传输次数,或者指示时域资源分配和名义重复传输次数;发送单元1002发送所述下行控制信息。
在本实施例中,所述信息域可以为1比特或2比特或3比特或其他比特,各个比特值可以指示重复传输方式,也可以指示重复传输方式和重复传输次数,详见实施例1的表1~表4的示例,还可以指示时域资源分配和重复传输次数,详见实施例2的表5和表6的示例,此处不再赘述。
根据本发明实施例,网络设备和终端设备对参考信号的传输有了一致的理解,保证了参考信号的传输的可靠性。
实施例7
本实施例提供了一种终端设备,该终端设备包括实施例4所述的装置。
图11是本发明实施例的终端设备的示意图。如图11所示,该终端设备1100可以包括中央处理器1101和存储器1102;存储器1102耦合到中央处理器1101。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
在一个实施方式中,实施例4所述的装置的功能可以被集成到中央处理器1101 中,由中央处理器1101实现实施例4所述的装置的功能,其中关于实施例4所述的装置的功能被合并于此,在此不再赘述。
在另一个实施方式中,实施例4所述的装置以与中央处理器1101分开配置,例如可以将该实施例4所述的装置配置为与中央处理器1101连接的芯片,通过中央处理器1101的控制来实现该实施例4所述的装置的功能。
如图11所示,该终端设备1100还可以包括:通信模块1103、输入单元1104、音频处理单元1105、显示器1106、电源1107。值得注意的是,终端设备1100也并不是必须要包括图11中所示的所有部件;此外,终端设备1100还可以包括图11中没有示出的部件,可以参考现有技术。
如图11所示,中央处理器1101有时也称为控制器或操作控件,可以包括微处理器或其它处理器装置和/或逻辑装置,该中央处理器1101接收输入并控制终端设备1100的各个部件的操作。
其中,存储器1102,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种信息,此外还可存储执行有关信息的程序。并且中央处理器1101可执行该存储器1102存储的该程序,以实现信息存储或处理等。其它部件的功能与现有类似,此处不再赘述。终端设备1100的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
通过本实施例的终端设备,网络设备和终端设备对参考信号的传输有了一致的理解,保证了参考信号的传输的可靠性。
实施例8
本发明实施例还提供了一种网络设备,该网络设备包括实施例5或实施例6所述的装置。
图12是本发明实施例的网络设备的一个实施方式的构成示意图。如图12所示,网络设备1200可以包括:中央处理器(CPU)1201和存储器1202;存储器1202耦合到中央处理器1201。其中该存储器1202可存储各种数据;此外还存储信息处理的程序,并且在中央处理器1201的控制下执行该程序,以接收终端设备发送的各种信息、并且向终端设备发送各种信息。
在一个实施方式中,实施例5或实施例6所述的装置的功能可以被集成到中央处理器1201中,由中央处理器1201实现实施例5或实施例6所述的装置的功能,其中关于实施例5或实施例6所述的装置的功能被合并于此,在此不再赘述。
在另一个实施方式中,实施例5或实施例6所述的装置可以与中央处理器1201分开配置,例如可以将该实施例5或实施例6所述的装置为与中央处理器1201连接的芯片,通过中央处理器1201的控制来实现该实施例5或实施例6所述的装置的功能。
此外,如图12所示,网络设备1200还可以包括:收发机1203和天线1204等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1200也并不是必须要包括图12中所示的所有部件;此外,网络设备1200还可以包括图12中没有示出的部件,可以参考现有技术。
通过本实施例的网络设备,网络设备和终端设备对参考信号的传输有了一致的理解,保证了参考信号的传输的可靠性。
实施例9
本发明实施例还提供一种通信系统,该通信系统包括网络设备和终端设备,网络设备例如为实施例8所述的网络设备1200,终端设备例如为实施例7所述的终端设备1100。
在本实施例中,该终端设备例如是gNB服务的UE,其除了包含实施例4所述的装置的功能以外,还包括终端设备的常规组成和功能,如实施例7所述,在此不再赘述。
在本实施例中,该网络设备例如可以是NR中的gNB,其除了包含实施例5或实施例6所述的装置的功能以外,还包括网络设备的常规组成和功能,如实施例8所述,在此不再赘述。
通过本实施例的通信系统,网络设备和终端设备对参考信号的传输有了一致的理解,保证了参考信号的传输的可靠性。
本发明实施例还提供一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行实施例1所述的方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行实施例1所述的方法。
本发明实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行实施例1或实施例2或实施例3所述的方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行实施例1或实施例2或实施例3所述的方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立 门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1、一种重复传输指示装置,配置于网络设备,其中,所述装置包括:
生成单元,其生成下行控制信息,所述下行控制信息包括信息域,所述信息域用于指示重复传输方式,或者指示重复传输方式和相应的名义重复传输次数,或者指示时域资源分配和名义重复传输次数;
发送单元,其发送所述下行控制信息。
2、根据附记1所述的装置,其中,所述信息域为1比特或2比特或3比特,不同的比特值指示了不同的重复传输方式,或者指示了不同的重复传输方式和名义重复传输次数,或者指示了不同的时域资源分配和名义重复传输次数。

Claims (20)

  1. 一种参考信号发送装置,配置于发送端,其中,所述装置包括:
    生成单元,其生成与同一个传输块对应的一个或一个以上信号,所述一个或一个以上信号包括数据信道和参考信号;
    发送单元,其在一个或一个以上时域资源段发送所述一个或一个以上信号,所述一个或一个以上信号中参考信号的位置基于所述一个或一个以上时域资源段确定。
  2. 根据权利要求1所述的装置,其中,
    所述发送单元在第一时域资源段发送第一信号,在第二时域资源段发送第二信号,所述第一信号和所述第二信号与同一个传输块相对应,并且,所述第一信号和所述第二信号分别包括数据信道和参考信号,所述第一信号中参考信号的位置基于所述第一时域资源段确定,所述第二信号中参考信号的位置基于所述第二时域资源段确定。
  3. 根据权利要求2所述的装置,其中,
    所述发送单元在第三时域资源段发送第三信号,所述第三信号与所述传输块相对应,所述第三信号包括数据信道和参考信号,所述第三信号中参考信号的位置基于所述第三时域资源段确定;
    其中,所述第三时域资源段为一个或一个以上,相应的,所述第三信号为一个或一个以上。
  4. 根据权利要求1所述的装置,其中,基于所述一个或一个以上时域资源段确定是指,基于以下至少一项确定:
    所述时域资源段的符号长度;
    所述时域资源段的时域资源分配(TDRA)配置或指示;
    高层信令配置;以及
    协议规定。
  5. 根据权利要求4所述的装置,其中,所述发送端为终端设备,网络设备没有配置第二类参考信号,或者,网络设备配置了一个或一个以上第二类参考信号,所述发送单元认为所述网络设备没有配置所述第二类参考信号,所述一个或一个以上信号中的参考信号的位置基于所述协议规定确定。
  6. 根据权利要求1所述的装置,其中,网络设备配置了一个或一个以上第一类参考信号以及一个或一个以上第二类参考信号,所述信号中的数据信道被配置为第一类型,所述信号中的参考信号的位置为相应的所述时域资源段的第一个符号。
  7. 根据权利要求1所述的装置,其中,网络设备配置了一个或一个以上第一类参考信号以及一个或一个以上第二类参考信号,所述信号中的数据信道被配置为第一类型,所述信号中的参考信号的位置为根据以下至少一项确定的位置:相应的所述时域资源段的符号长度,相应的所述时域资源段的时域资源分配配置或指示,高层信令配置,以及协议规定。
  8. 根据权利要求1所述的装置,其中,网络设备配置了一个或一个以上第一类参考信号以及一个或一个以上第二类参考信号,所述信号中的数据信道被配置为第一类型,所述信号中参考信号的位置为以下至少一项:相应的所述时域资源段的第一个符号,相应的所述时域资源段的第二个符号,以及所述第一类型对应的参考信号位置。
  9. 根据权利要求1所述的装置,其中,网络设备配置了一个或一个以上第一类参考信号,所述信号中的数据信道被配置为第一类型,所述信号中的参考信号的位置为相应的时域资源段的第一个符号和/或第二个符号。
  10. 根据权利要求1所述的装置,其中,网络设备配置了一个或一个以上第一类参考信号,所述信号中的数据信道被配置为第二类型,所述信号中的参考信号的位置为相应的时域资源段的第一个符号和/或第二个符号。
  11. 根据权利要求1所述的装置,其中,所述发送端为终端设备,所述装置还包括:
    接收单元,其在所述发送单元发送所述信号之前,接收网络设备发送的命令,所述命令配置或指示数据信道或传输块的重复传输。
  12. 根据权利要求1所述的装置,其中,所述发送端为网络设备,所述装置还包括:
    配置单元,其在所述发送单元发送所述信号之前,向终端设备发送命令,通过所述命令配置或指示数据信道或传输块的重复传输。
  13. 根据权利要求11所述的装置,其中,所述命令配置或指示数据信道或传输块的重复传输,包括:网络设备仅通过高层信令配置或指示所述传输块的重复传输,所述高层信令包括第一参数,所述第一参数指示了所述传输块的重复传输,或者所述 第一参数指示了所述传输块的重复传输以及重复传输的次数。
  14. 根据权利要求11所述的装置,其中,所述命令配置或指示数据信道或传输块的重复传输,包括:网络设备仅通过高层信令配置或指示所述传输块的重复传输,所述高层信令包括第二参数,所述第二参数开启或关闭动态名义重复传输次数,当所述动态名义重复传输次数被所述第二参数开启时,所述传输块的重复传输被开启,当所述动态名义重复传输次数被所述第二参数关闭时,所述传输块的重复传输被关闭。
  15. 根据权利要求14所述的装置,其中,当所述动态名义重复传输次数被所述第二参数开启,并且名义重复传输次数大于或等于第一数值时,所述传输块的重复传输被开启,当所述动态名义重复传输次数被所述第二参数关闭,或者,所述动态名义重复传输次数被所述第二参数开启,但是名义重复传输次数小于或等于第二数值时,所述传输块的重复传输被关闭。
  16. 根据权利要求11所述的装置,其中,所述命令配置或指示数据信道或传输块的重复传输,包括:网络设备通过高层信令和下行控制信息配置或指示所述传输块的重复传输,所述高层信令包括第三参数,所述第三参数配置或指示了所述传输块的重复传输,所述下行控制信息包括指示域,所述指示域指示是否开启所述重复传输。
  17. 根据权利要求16所述的装置,其中,所述指示域包括以下至少一种:
    用于指示名义重复传输次数的DCI域;
    用于指示时域资源分配的DCI域;
    用于指示重复传输方式和/或名义重复传输次数的信息域;以及
    用于指示名义重复传输次数和/或时域资源分配方式的信息域。
  18. 根据权利要求11所述的装置,其中,所述命令配置或指示数据信道或传输块的重复传输,包括:网络设备通过高层信令和下行控制信息配置或指示所述传输块的重复传输,所述高层信令包括第四参数,所述第四参数配置或指示了所述传输块的重复传输,所述下行控制信息的格式关联了是否开启所述重复传输。
  19. 一种重复传输次数配置装置,配置于网络设备,其中,所述装置包括:
    配置单元,其配置时域资源分配信息,所述时域资源分配信息不包含数据信道类型,或者,所述时域资源分配信息包含名义重复传输次数,或者,所述时域资源分配信息包含数据信道类型和名义重复传输次数的联合编码;
    发送单元,其发送所述时域资源分配信息。
  20. 一种重复传输指示装置,配置于网络设备,其中,所述装置包括:
    生成单元,其生成下行控制信息,所述下行控制信息包括信息域,所述信息域用于指示重复传输方式,或者指示重复传输方式和相应的名义重复传输次数,或者指示时域资源分配和名义重复传输次数;
    发送单元,其发送所述下行控制信息。
PCT/CN2019/085365 2019-04-30 2019-04-30 参考信号的发送方法、装置和通信系统 WO2020220342A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217038965A KR20220002578A (ko) 2019-04-30 2019-04-30 참고 신호의 송신을 위한 방법 및 장치 및 통신 시스템
JP2021564409A JP7327509B2 (ja) 2019-04-30 2019-04-30 参照信号の送信方法、装置及び通信システム
CN201980095571.9A CN113711667B (zh) 2019-04-30 2019-04-30 参考信号的发送方法、装置和通信系统
PCT/CN2019/085365 WO2020220342A1 (zh) 2019-04-30 2019-04-30 参考信号的发送方法、装置和通信系统
EP19927564.5A EP3965491A4 (en) 2019-04-30 2019-04-30 REFERENCE SIGNAL SENDING METHOD AND APPARATUS AND COMMUNICATION SYSTEM
US17/506,815 US20220045792A1 (en) 2019-04-30 2021-10-21 Method and apparatus for transmitting reference signal transmission and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/085365 WO2020220342A1 (zh) 2019-04-30 2019-04-30 参考信号的发送方法、装置和通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/506,815 Continuation US20220045792A1 (en) 2019-04-30 2021-10-21 Method and apparatus for transmitting reference signal transmission and communication system

Publications (1)

Publication Number Publication Date
WO2020220342A1 true WO2020220342A1 (zh) 2020-11-05

Family

ID=73029653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085365 WO2020220342A1 (zh) 2019-04-30 2019-04-30 参考信号的发送方法、装置和通信系统

Country Status (6)

Country Link
US (1) US20220045792A1 (zh)
EP (1) EP3965491A4 (zh)
JP (1) JP7327509B2 (zh)
KR (1) KR20220002578A (zh)
CN (1) CN113711667B (zh)
WO (1) WO2020220342A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053353A1 (en) * 2020-08-14 2022-02-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement and reporting for multi-beam operations
US11792799B2 (en) * 2021-04-26 2023-10-17 Qualcomm Incorporated Scheduling transmission with multiple transport blocks
US20230216605A1 (en) * 2022-01-06 2023-07-06 Qualcomm Incorporated Self-decodable data portion for physical uplink repetition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075270A1 (zh) * 2012-11-15 2014-05-22 华为技术有限公司 信息传输的方法、基站和用户设备
CN104349458A (zh) * 2013-08-08 2015-02-11 中兴通讯股份有限公司 控制信道的传输方法、传输处理方法、通信节点及终端
CN106162908A (zh) * 2015-04-09 2016-11-23 中兴通讯股份有限公司 一种传输调度请求的方法和装置
CN108401292A (zh) * 2017-02-04 2018-08-14 中兴通讯股份有限公司 控制信息的传输方法、接收方法、装置、基站及终端

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014153777A1 (en) * 2013-03-29 2014-10-02 Nec(China) Co., Ltd. Methods and apparatuses for data transmission in a wireless communication system
WO2016187744A1 (zh) * 2015-05-22 2016-12-01 富士通株式会社 参考信号的资源配置方法、装置以及通信系统
US10455514B2 (en) * 2015-07-17 2019-10-22 Samsung Electronics Co., Ltd. Method and device for transmitting signal in wireless communication system
US10869333B2 (en) * 2016-12-16 2020-12-15 Huawei Technologies Co., Ltd. Systems and methods for mixed grant-free and grant-based uplink transmissions
US10548079B2 (en) * 2017-02-06 2020-01-28 Qualcomm Incorporated Tracking reference signal for new radio
KR102264030B1 (ko) * 2017-03-21 2021-06-11 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
US10448414B2 (en) * 2017-03-23 2019-10-15 Sharp Kabushiki Kaisha Downlink control channel for uplink ultra-reliable and low-latency communications
KR102318438B1 (ko) * 2017-04-26 2021-10-27 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 dmrs 위치 설정 방법 및 장치
WO2018227337A1 (en) * 2017-06-12 2018-12-20 Qualcomm Incorporated Techniques and apparatuses for signaling regarding bandwidth dependent control size
EP3666001B1 (en) * 2017-08-10 2022-10-05 Sharp Kabushiki Kaisha Procedures, base stations and user equipments for uplink transmission without grant
CN109660324B (zh) * 2017-10-11 2021-01-08 维沃移动通信有限公司 解调参考信号传输方法、网络设备及终端
US10624118B2 (en) * 2017-12-01 2020-04-14 Lg Electronics Inc. Method and apparatus for uplink transmission and reception in a wireless communication system
WO2019215340A1 (en) * 2018-05-11 2019-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Control signalling for a repeated transmission
US11350416B2 (en) * 2018-07-20 2022-05-31 Qualcomm Incorporated Physical uplink control channel repetition configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075270A1 (zh) * 2012-11-15 2014-05-22 华为技术有限公司 信息传输的方法、基站和用户设备
CN105052044A (zh) * 2012-11-15 2015-11-11 华为技术有限公司 信息传输的方法、基站和用户设备
CN104349458A (zh) * 2013-08-08 2015-02-11 中兴通讯股份有限公司 控制信道的传输方法、传输处理方法、通信节点及终端
CN106162908A (zh) * 2015-04-09 2016-11-23 中兴通讯股份有限公司 一种传输调度请求的方法和装置
CN108401292A (zh) * 2017-02-04 2018-08-14 中兴通讯股份有限公司 控制信息的传输方法、接收方法、装置、基站及终端

Also Published As

Publication number Publication date
CN113711667B (zh) 2024-02-27
KR20220002578A (ko) 2022-01-06
EP3965491A4 (en) 2022-08-17
JP2022530801A (ja) 2022-07-01
EP3965491A1 (en) 2022-03-09
US20220045792A1 (en) 2022-02-10
CN113711667A (zh) 2021-11-26
JP7327509B2 (ja) 2023-08-16

Similar Documents

Publication Publication Date Title
US10812243B2 (en) Feedback information transmission and reception method and apparatus and communication system
WO2019227467A1 (zh) 带宽部分指示的配置方法、装置和通信系统
WO2019213921A1 (zh) 波束指示方法、装置和系统
WO2021032203A1 (zh) Pucch传输方法、终端设备和网络设备
JP7371761B2 (ja) 信号送信方法、装置及びシステム
EP4149132A1 (en) Information sending method, apparatus and system, and information receiving method, apparatus and system
US10492209B2 (en) Control information sending or receiving method, apparatus, and system
WO2020191740A1 (zh) 信号接收或发送方法、装置和系统
WO2022078204A1 (zh) Pucch重复传输次数的确定方法、终端及基站
US20220045792A1 (en) Method and apparatus for transmitting reference signal transmission and communication system
US10952185B2 (en) Methods and arrangements for managing allocation of uplink resources regarding remaining data blocks of an uplink transmission
US20190379519A1 (en) Confirmation apparatus for activation command, report apparatus for data transmission mode and methods thereof
JP2019523606A (ja) Ranプロファイルインデックスをシグナリングする方法およびそれを用いた無線通信装置
WO2020143064A1 (zh) 数据传输方法及装置
US11582813B2 (en) System information indication method and apparatus and communication system
WO2021031042A1 (zh) 信号发送和接收方法以及装置
US20220368505A1 (en) Data feedback method and apparatus
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2021056562A1 (zh) 无线通信方法、装置和系统
WO2018227596A1 (zh) 时域资源指示方法、数据传输方法、装置和通信系统
US12004242B2 (en) System information indication method and apparatus and communication system
WO2023050138A1 (en) Method and system for managing multicast communications in wireless communication networks
WO2019028775A1 (zh) 反馈信息的发送和接收方法、装置及通信系统
WO2022156436A1 (zh) 一种终端识别方法及设备
US11968683B2 (en) Apparatus, method and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564409

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217038965

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019927564

Country of ref document: EP

Effective date: 20211130