WO2014075270A1 - 信息传输的方法、基站和用户设备 - Google Patents

信息传输的方法、基站和用户设备 Download PDF

Info

Publication number
WO2014075270A1
WO2014075270A1 PCT/CN2012/084679 CN2012084679W WO2014075270A1 WO 2014075270 A1 WO2014075270 A1 WO 2014075270A1 CN 2012084679 W CN2012084679 W CN 2012084679W WO 2014075270 A1 WO2014075270 A1 WO 2014075270A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission opportunity
enhanced transmission
loss value
information
channel loss
Prior art date
Application number
PCT/CN2012/084679
Other languages
English (en)
French (fr)
Inventor
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280009620.0A priority Critical patent/CN105052044B/zh
Priority to CN201910103492.XA priority patent/CN109769289B/zh
Priority to EP12888398.0A priority patent/EP2913939B1/en
Priority to EP18152134.5A priority patent/EP3402086B1/en
Priority to CN201910103468.6A priority patent/CN109756966B/zh
Priority to PCT/CN2012/084679 priority patent/WO2014075270A1/zh
Publication of WO2014075270A1 publication Critical patent/WO2014075270A1/zh
Priority to US14/713,580 priority patent/US9769798B2/en
Priority to US15/678,686 priority patent/US10314014B2/en
Priority to US16/408,998 priority patent/US10645677B2/en
Priority to US16/847,951 priority patent/US11134476B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method for transmitting information, a base station, and a user equipment. Background technique
  • the Internet of Things refers to the acquisition of information about the physical world through the deployment of various devices with certain sensing, computing, execution and communication capabilities. Collaboration and processing to achieve a network of people, things, and things. It is generally believed that the first phase of the Internet of Things is called Machine to Machine (M2M), which is to achieve free communication between machines.
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • OFDM/Multi-Input Multi-Output (MIMO) core technology can provide downlink 100Mbps, uplink 50Mbps peak rate in 20MHz spectrum bandwidth, and improve cell edge user performance Increase cell capacity and reduce system latency.
  • OFDM/Multi-Input Multi-Output (MIMO) core technology can provide downlink 100Mbps, uplink 50Mbps peak rate in 20MHz spectrum bandwidth, and improve cell edge user performance Increase cell capacity and reduce system latency.
  • OFDM/Multi-Input Multi-Output (MIMO) core technology can provide downlink 100Mbps, uplink 50Mbps peak rate in 20MHz spectrum bandwidth, and improve cell edge user performance Increase cell capacity and reduce system latency.
  • OFDM/Multi-Input Multi-Output (MIMO) core technology can provide downlink 100Mbps, uplink 50Mbps peak rate in 20MHz spectrum bandwidth, and improve cell edge user performance Increase cell capacity and reduce system latency.
  • OFDM/Multi-Input Multi-Output (MIMO) core technology can provide downlink 100Mbps, up
  • the research on low-cost MTC user equipment based on LTE mainly considers the need to enhance or optimize the LTE network and air interface for the introduction of MTC equipment.
  • the coverage problem is one of the key issues that operators care about.
  • an important application of MTC user equipment is smart meters, which are installed in the basement of a home or are isolated by a metal enclosure.
  • the MTC user equipment experiences a more severe path loss than the normal user equipment, such as an additional 20 dB of path loss. Severe path loss can increase the power consumption of the MTC user equipment.
  • the MTC user equipment is usually powered by a battery, power The increase in consumption will shorten the battery life and is not conducive to the maintenance of the equipment. Summary of the invention
  • the embodiments of the present invention provide a method for information transmission, a base station, and a user equipment, which can reduce power consumption and optimize resource allocation.
  • a method for information transmission including: determining, according to a channel loss value with a user equipment, a first enhanced transmission opportunity configuration, wherein an enhanced transmission opportunity occupies a time width greater than a time width occupied by a non-enhanced transmission opportunity Transmitting the transmission information according to the first enhanced transmission opportunity.
  • the method before determining the first enhanced transmission opportunity configuration according to a channel loss value between the user equipment, the method further includes: determining a plurality of enhanced transmission opportunity configurations, where the multiple The enhanced transmission opportunity configuration includes the first enhanced transmission opportunity configuration.
  • the multiple enhanced transmission opportunity configurations correspond to the multiple channel loss value intervals.
  • the transmission type corresponding to each of the plurality of channel loss value intervals corresponds to at least one of the plurality of information types
  • the transmission type represents a transmission format used for information transmission, and the information type represents an attribute or a category of information.
  • a transmission type corresponding to each of the plurality of channel loss value intervals corresponds to each of the plurality of information types .
  • the determining, according to the channel loss value between the user equipment and the user equipment, the first enhanced transmission opportunity configuration including: determining the multiple of the channel loss value a first channel loss value interval in the channel loss value interval; determining the first enhanced transmission opportunity configuration corresponding to the first channel loss value interval.
  • the determining, according to the channel loss value between the user equipment and the user equipment, the first enhanced transmission opportunity configuration including: according to the channel loss value interval where the channel loss value is located Determining a transmission type; determining the first enhanced transmission opportunity configuration based on the transmission type and an information type of the information.
  • the configuring, according to the first enhanced transmission opportunity, the transmission of the information includes: configuring, according to the transmission type, the first enhanced transmission opportunity configuration The transmission of the information is performed on an enhanced transmission opportunity.
  • the method includes: sending, to the user equipment, a plurality of enhanced transmission opportunity configurations corresponding to the plurality of channel loss value intervals.
  • the sending, by the user equipment, the multiple enhanced transmission opportunity configurations corresponding to the multiple channel loss value intervals including: controlling, by using a radio resource, an RRC broadcast message One or more of the RRC dedicated signaling, the RRC multicast signaling, the control element CE signaling of the media access control MAC, and the physical layer signaling, and the multiple enhanced transmission opportunity configuration information is sent to the user equipment.
  • the multiple enhanced transmission opportunity configuration information includes: each enhanced transmission opportunity configuration of the multiple enhanced transmission opportunity configurations; or, the multiple Each enhanced transmission opportunity configuration and the number of the plurality of enhanced transmission opportunity configurations in the enhanced transmission opportunity configuration.
  • the method includes: transmitting, to the user equipment, a transmission type corresponding to each of the channel loss value intervals.
  • the transmitting, by the user equipment, the transmission type corresponding to each of the channel loss value intervals includes: controlling RRC broadcast signaling by using radio resources, and using RRC One or more of signaling, RRC multicast signaling, control element CE signaling of the medium access control MAC, and physical layer signaling, and transmitting the transmission type to the user equipment.
  • the method includes: sending, to the user equipment, the first enhanced transmission opportunity configuration determined according to the transmission type.
  • the sending, by the user equipment, the first enhanced transmission opportunity configuration determined according to the transmission type includes: using RRC dedicated signaling, and/ Or the physical layer dedicated signaling sends the first enhanced transmission opportunity configuration to the user equipment.
  • the enhanced transmission opportunity configuration includes at least one of the following: a time interval for enhancing a transmission opportunity; a time starting point for enhancing a transmission opportunity; and a frequency resource starting point for enhancing a transmission opportunity ; enhance the frequency resource size and/or location occupied by the transmission opportunity; enhance the time resource size and/or location occupied by the transmission opportunity; enhance the power configuration used for information transmission in the transmission opportunity.
  • the channel loss between the user equipment and the user equipment is: a path loss between the user equipment; or a reference signal received power measured by the user equipment. RSRP; or the reference signal received quality RSRQ measured by the user equipment; or the channel quality information CQI measured by the user equipment; or the coverage enhancement desired by the user equipment.
  • the transmission type includes at least one of the following: a repetition transmission number M; a spread transmission transmission multiple M; a time transmission interval cluster size M; an aggregation level L; ; coding method; random access preamble transmission format; power configuration.
  • the information type belongs to any one of the following types: a physical channel type set; a signal type set; a message type set.
  • a second aspect provides a method for information transmission, where the method includes: determining, according to a channel loss value with a base station, a first enhanced transmission opportunity configuration, where an enhanced transmission opportunity occupies a time width greater than that occupied by a non-enhanced transmission opportunity Time width; configuring transmission information according to the first enhanced transmission opportunity.
  • the method before determining the first enhanced transmission opportunity configuration according to a channel loss value between the base station, the method further includes: determining a plurality of enhanced transmission opportunity configurations, where the multiple enhancements The transmission opportunity configuration includes the first enhanced transmission opportunity configuration.
  • the determining the multiple enhanced transmission opportunity configurations includes: receiving, by the base station, multiple enhanced transmission opportunity configurations corresponding to the plurality of channel loss value intervals; The transmission type corresponding to each channel loss value interval sent by the base station.
  • the multiple enhanced transmission opportunity configurations correspond to the multiple channel loss value intervals.
  • a transmission type corresponding to each of the plurality of channel loss value intervals and a plurality of information types At least one information type corresponding to the transmission type, wherein the transmission type represents a transmission format employed by the information transmission, the information type indicating an attribute or a category of the information.
  • the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals and at least one of the multiple information types corresponds.
  • the transmission type corresponding to each of the plurality of channel loss value intervals corresponds to each of the plurality of information types .
  • an enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals and each of the plurality of information types The type of information corresponds.
  • the determining the multiple enhanced transmission opportunity configurations further includes: acquiring the plurality of enhanced transmission opportunities configured in advance.
  • the determining, according to the channel loss value between the base station and the base station, the first enhanced transmission opportunity configuration including: determining the multiple channels where the channel loss value is located a first channel loss value interval in the loss value interval; determining the first enhanced transmission opportunity configuration corresponding to the first channel loss value interval.
  • the determining, according to the channel loss value between the base station and the base station, the first enhanced transmission opportunity configuration comprising: receiving the first enhanced transmission opportunity sent by the base station Configuration.
  • the configuring the transmission information according to the first enhanced transmission opportunity including: configuring, according to the transmission type, in the first enhanced transmission opportunity configuration
  • the transmission of the information is performed on an enhanced transmission opportunity.
  • the receiving, by the receiving, the multiple enhanced transmission opportunity configurations corresponding to the multiple channel loss value intervals sent by the base station includes: controlling RRC broadcast signaling by using a radio resource, One or more of RRC dedicated signaling, RRC multicast signaling, control element CE signaling of the medium access control MAC, and physical layer signaling, and receiving multiple enhanced transmission opportunity configuration information sent by the base station.
  • the multiple enhanced transmission opportunity configuration information includes: each enhanced transmission opportunity configuration of the multiple enhanced transmission opportunity configurations; or, the multiple Enhanced transmission opportunity configuration and each of the enhanced transmission opportunity configurations The number of multiple enhanced transport opportunity configurations.
  • the receiving, by the receiving, the transmission type corresponding to each channel loss value interval sent by the base station includes:
  • RRC broadcast signaling Receiving one or more of RRC broadcast signaling, RRC dedicated signaling, RRC multicast signaling, control element CE signaling of physical access control MAC, and physical layer signaling, receiving the transmission type sent by the base station .
  • the receiving, by the base station, the first enhanced transmission opportunity configuration includes: receiving, by using RRC dedicated signaling, and/or physical layer dedicated signaling The first enhanced transmission opportunity configuration sent by the base station.
  • the enhanced transmission opportunity configuration includes at least one of: a time interval for enhancing a transmission opportunity; a time starting point for enhancing a transmission opportunity; and a frequency resource starting point for enhancing a transmission opportunity ; enhance the frequency resource size and/or location occupied by the transmission opportunity; enhance the time resource size and/or location occupied by the transmission opportunity; enhance the power configuration used for information transmission in the transmission opportunity.
  • the transmission type includes at least one of the following: a repetition transmission number M; a spread transmission transmission multiple M; a time transmission interval cluster size M; an aggregation level L; ; coding method; random access preamble transmission format; power configuration.
  • the information type belongs to any one of the following types of types: a set of physical channel types; a set of signal types; a set of message types.
  • a base station including: a first determining module, configured to determine a first enhanced transmission opportunity configuration according to a channel loss value with a user equipment, where an enhanced transmission opportunity occupies a time width greater than a non-enhanced transmission opportunity a time width occupied by the transmission module, configured to configure transmission information according to the first enhanced transmission opportunity.
  • the base station further includes: a second determining module, configured to determine multiple enhanced transmission opportunity configurations, where the multiple enhanced transmission opportunity configurations include the first enhanced transmission opportunity Configuration.
  • the multiple enhanced transmission opportunity configurations correspond to a plurality of channel loss value intervals.
  • a transmission type corresponding to each of the plurality of channel loss value intervals and a plurality of information types At least one information type corresponding to the transmission type, wherein the transmission type represents a transmission format employed by the information transmission, the information type indicating an attribute or a category of the information.
  • At least one of the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals and the plurality of information types corresponds.
  • the transmission type corresponding to each of the plurality of channel loss value intervals corresponds to each of the plurality of information types .
  • the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals and each of the plurality of information types corresponds.
  • the first determining module is specifically configured to: determine a first channel loss value interval in the multiple channel loss value intervals in which the channel loss value is located Determining the first enhanced transmission opportunity configuration corresponding to the first channel loss value interval.
  • the first determining module is specifically configured to: determine a transmission type according to a channel loss value interval in which the channel loss value is located; according to the transmission type and the The type of information of the information determines the first enhanced transmission opportunity configuration.
  • the transmitting module is specifically configured to: perform the information on the enhanced transmission opportunity configured by the first enhanced transmission opportunity configuration according to the transmission type Transmission.
  • the transmitting module is specifically configured to: send, to the user equipment, multiple enhanced transmission mechanism configurations corresponding to the plurality of channel loss value intervals.
  • the transmission module is specifically configured to: control, by using a radio resource, RRC broadcast signaling, RRC dedicated signaling, RRC multicast signaling, and media access control MAC One or more of the control element CE signaling and the physical layer signaling, and sending the multiple enhanced transmission opportunity configuration information to the user equipment.
  • the multiple enhanced transmission opportunity configuration information includes: each enhanced transmission opportunity configuration of the multiple enhanced transmission opportunity configurations; or, the multiple Enhanced transmission opportunity configuration and each of the enhanced transmission opportunity configurations The number of multiple enhanced transport opportunity configurations.
  • the transmitting module is specifically configured to: send, to the user equipment, a transmission type corresponding to each of the channel loss value intervals.
  • the transmission module is specifically configured to: control, by using a radio resource, RRC broadcast signaling, RRC dedicated signaling, RRC multicast signaling, and media access control MAC
  • control by using a radio resource, RRC broadcast signaling, RRC dedicated signaling, RRC multicast signaling, and media access control MAC
  • One or more of the control element CE signaling and the physical layer signaling are sent to the user equipment.
  • the transmitting module is specifically configured to: send, to the user equipment, the first enhanced transmission opportunity configuration determined according to the transmission type.
  • the transmitting module is specifically configured to: send, by using RRC dedicated signaling, and/or physical layer dedicated signaling, the first enhanced transmission opportunity configuration to the User equipment.
  • a fourth aspect provides a user equipment, including: a first determining module, configured to determine a first enhanced transmission opportunity configuration according to a channel loss value with a base station, where an enhanced transmission opportunity occupies a time width greater than a non-enhanced transmission opportunity a time width occupied by the transmission module, configured to configure transmission information according to the first enhanced transmission opportunity.
  • the user equipment further includes: a second determining module, configured to determine multiple enhanced transmission opportunity configurations, where the multiple enhanced transmission opportunity configurations include the first enhanced transmission Opportunity configuration.
  • the transmitting module is specifically configured to: receive multiple enhanced transmission opportunity configurations corresponding to multiple channel loss value intervals sent by the base station; The type of transmission corresponding to each channel loss value interval.
  • the multiple enhanced transmission opportunity configurations correspond to the multiple channel loss value intervals.
  • the transmission type corresponding to each of the plurality of channel loss value intervals corresponds to at least one of the plurality of information types
  • the transmission type represents a transmission format used for information transmission, and the information type represents an attribute or a category of information.
  • the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals and the plurality of At least one type of information in the information type corresponds.
  • the transmission type corresponding to each of the plurality of channel loss value intervals and each of the plurality of information types are one by one correspond.
  • the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals and each of the plurality of information types correspond one-to-one.
  • the second determining module is specifically configured to: acquire the multiple enhanced transmission opportunities that are pre-configured.
  • the first determining module is specifically configured to: determine a first channel loss value interval in the multiple channel loss value intervals in which the channel loss value is located Determining the first enhanced transmission opportunity configuration corresponding to the first channel loss value interval.
  • the transmitting module is specifically configured to: receive the first enhanced transmission opportunity configuration sent by the base station.
  • the transmitting module is specifically configured to: perform the information on the enhanced transmission opportunity configured by the first enhanced transmission opportunity configuration according to the transmission type Transmission.
  • the transmission module is specifically configured to: control, by using a radio resource, RRC broadcast signaling, RRC dedicated signaling, RRC multicast signaling, and media access control MAC And controlling one or more of the CE signaling and the physical layer signaling, and receiving the multiple enhanced transmission opportunity configuration information sent by the base station.
  • the multiple enhanced transmission opportunity configuration information includes: each enhanced transmission opportunity configuration of the multiple enhanced transmission opportunity configurations; or, the multiple Each enhanced transmission opportunity configuration and the number of the plurality of enhanced transmission opportunity configurations in the enhanced transmission opportunity configuration.
  • the transmission module is specifically configured to: control, by using a radio resource, RRC broadcast signaling, RRC dedicated signaling, RRC multicast signaling, and media access control MAC And controlling one or more of CE signaling and physical layer signaling, and receiving the transmission type sent by the base station.
  • the transmission module is specific And the receiving, by using the RRC dedicated signaling, and/or the physical layer dedicated signaling, to receive the first enhanced transmission opportunity configuration sent by the base station.
  • FIG. 1 is a schematic flowchart of an information transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a base station according to another embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of a user equipment according to an embodiment of the present invention. detailed description
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • a user equipment may be referred to as a terminal, a mobile station (MS), a mobile terminal (Mobile Terminal), etc.
  • the user equipment may be A Radio Access Network (RAN) communicates with one or more core networks
  • the user equipment may be a mobile telephone (or "cellular" telephone), a computer with a mobile terminal, etc., for example, a user equipment It can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with a wireless access network.
  • the base station may be a base station (Base Transceiver Station; BTS) in GSM or CDMA, or may be a base station (NodeB; NB) in WCDMA, or may be an evolved base station in LTE (Evolutional Node B) ; eNB or e-NodeB), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • LTE Long Term Evolutional Node B
  • the information may be one or more of the following physical channels, signals, and messages: physical downlink control channel PDCCH, enhanced physical downlink control channel ePDCCH, physical random access channel PRACH, random access response message, random access response response Msg3 message, contention resolution message, system information, paging message, physical control format indication channel PCFICH, physical hybrid automatic repeat request indication channel PHICH, unicast physical downlink shared channel PDSCH, broadcast or multicast physical downlink shared channel PDSCH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH, common reference signal CRS, demodulation reference signal DMRS, proprietary reference signal DRS, synchronization channel SCH, physical broadcast channel PBCH, and the like.
  • the type of information may be one or more of the above information.
  • FIG. 1 is a schematic flowchart of an information transmission method according to an embodiment of the present invention.
  • the method of Figure 1 can be performed by a base station.
  • the 101 Determine, according to a channel loss value between the UE and the user equipment, a first enhanced transmission opportunity.
  • the time width occupied by the enhanced transmission opportunity is greater than the time width occupied by the non-enhanced transmission opportunity.
  • the channel loss value with the UE is a measure of the path loss with the UE, and may be any value or information capable of measuring communication quality, channel quality, quality of service QoS.
  • the specific manifestation may be: the reference signal received by the UE, RSRP; or the reference signal received by the UE, the quality RSRQ; or the channel quality information CQI measured by the UE; or any one or more of the coverage enhancements expected by the UE.
  • Different UEs may have different channel loss between different UEs and base stations in the same cell due to different geographical locations, environments, product implementations, and the like. Therefore, the coverage enhancement values required for reliable transmission or reception of signals between the base station and different UEs are different, that is, the coverage enhancement values expected by the UE are different.
  • the coverage enhanced UE can be covered by repetition, spreading, transmission time bundling, bundling, low bit rate coding, and low-order modulation, etc., that is, enhancing transmission opportunities to achieve coverage.
  • Enhanced
  • An enhanced transmission opportunity includes the time and/or location of the frequency and/or frequency resources occupied by information repetition or spread spectrum transmission, and the information is subjected to M repetition transmission or M times spread spectrum modulation on time and/or frequency on the enhanced transmission opportunity.
  • the receiving side performs M times of information superposition or M times of despreading of M times of repeated transmission or M times spread spectrum modulated signals in an enhanced transmission opportunity, thereby improving the reliability of information transmission.
  • M may be determined according to a channel loss value between the UE and the base station, or may be theoretically calculated according to a channel loss value between the UE and the base station.
  • the method for enhancing the information is not limited thereto.
  • the information may be performed by using a control channel element CCE or an enhanced control channel element eCCE aggregation level or range, modulation coding mode, power configuration, and the like. Enhancement.
  • the enhanced transmission opportunity configuration can specifically configure the location and size of the time-frequency resources occupied by the enhanced transmission opportunity and enhance the power configuration employed for information transmission in the transmission opportunity. Since the enhanced transmission opportunity requires more time-frequency resources to obtain better coverage and transmission reliability, the time width occupied by the enhanced transmission opportunity is greater than the time width occupied by the non-enhanced transmission opportunity. Among them, the non-enhanced transmission opportunity only includes one transmission time interval in time, and the information cannot realize the energy accumulation in multiple defects in the non-enhanced transmission opportunity. The enhanced transmission opportunity includes multiple ⁇ in time, and the information can realize the energy accumulation in multiple ⁇ in the enhanced transmission opportunity, thereby improving the reliability of information transmission. .
  • repeated transmission of information, or spread spectrum transmission, or ⁇ bundling is usually performed in integer multiples, so the size of the time-frequency resource occupied by the enhanced transmission opportunity is usually non-enhanced transmission.
  • the enhanced transmission opportunity configuration may include at least one of: enhancing a time interval of the transmission opportunity; enhancing a time starting point of the transmission opportunity; enhancing a frequency resource starting point occupied by the transmission opportunity; and enhancing a frequency resource occupied by the transmission opportunity Size and/or location; enhances the time resource size and/or location occupied by the transmission opportunity; enhances the power configuration employed for information transmission in the transmission opportunity.
  • the enhanced processing information such as M-time repetition or M-time spread spectrum modulation, is transmitted on the time-frequency resource configured by the first enhanced transmission opportunity configuration, thereby realizing reliable transmission of information and coverage enhancement.
  • the information processing method is not limited thereto.
  • the information may be enhanced by a control channel element CCE or an enhanced control channel element eCCE aggregation level or range, modulation and coding mode, power configuration, and the like.
  • the first enhanced transmission opportunity configuration is determined according to the channel loss value, more time-frequency resources are used for higher channel loss values, and less time-frequency resources are used for lower channel loss values, thereby achieving The reasonable allocation of time-frequency resources saves power consumption.
  • FIG. 2 is a schematic flowchart of an information transmission method according to another embodiment of the present invention. The method of Figure 2 is performed by a base station.
  • FIG. 2 is a more specific embodiment of FIG. 1, which shows an enhanced transmission opportunity configuration corresponding to the determined channel loss value in FIG. 1 and a specific method for delivering the enhanced transmission opportunity configuration.
  • Multiple enhanced transport opportunity configurations can be configured for the base station in a manner predefined by the system.
  • a correspondence between a plurality of enhanced transmission opportunity configurations and a plurality of channel loss value intervals and a transmission type may be predefined.
  • the plurality of enhanced transmission opportunity configurations are in one-to-one correspondence with the plurality of channel loss value intervals; the transmission type corresponding to each of the plurality of channel loss value intervals is associated with at least one of the plurality of information types Corresponding; the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals corresponds to at least one of the plurality of information types; each of the plurality of channel loss value intervals
  • the transmission type corresponding to the interval is in one-to-one correspondence with each of the plurality of information types; the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals and each of the plurality of information types One type of information corresponds to one.
  • the transmission type indicates the transmission format used for information transmission, and the information type indicates the attribute or category of the information.
  • the division of the channel loss value interval may also be predefined by the system, and a plurality of channel loss values may be set in a large range of values, thereby dividing the large value range into a plurality of channel loss value intervals. For example: Take 5dB, 10dB, 15dB in the range of OdB to 20dB, and divide the value range into OdB to 5dB, 6dB to 10dB, lldB to 15dB and 16dB to 20dB. It should be understood that the channel loss value interval division method in the present invention is not limited thereto.
  • Table 1 illustrates the correspondence between the channel loss value interval, the transmission type, and the enhanced transmission opportunity configuration.
  • the channel loss value interval is matched with the transmission type, and the transmission type is in one-to-one correspondence with the enhanced transmission opportunity configuration, so that the plurality of enhanced transmission opportunity configurations correspond to the plurality of channel loss value intervals.
  • the section division in Table 1 is only an example and may not be limited to three sections.
  • the number of repeated transmissions in the transmission type and/or the spreading factor Ml, M2, M3 are different from each other, and M1 ⁇ M2 ⁇ M3.
  • the spreading factor is a spreading factor for performing spread spectrum modulation.
  • the transmission type is not limited to repetitive transmission and spread spectrum modulation, and may also include one or more of the following: ⁇ bundling, spreading code index, control channel element CCE or enhanced control channel element eCCE aggregation level or range, modulation coding mode, Power configuration, etc. It should be noted that part or all of the content included in the transmission type corresponding to the channel loss value interval may be included in the enhanced transmission opportunity configuration corresponding to the channel loss value interval.
  • the transmission type may not be defined; at this time, only the channel loss value interval exists. Enhance the correspondence between transmission opportunity configurations.
  • the interval of multiple channel loss values After determining the interval of multiple channel loss values, it can be determined according to the weight of each channel loss value interval.
  • the weight of the channel loss value interval may be determined according to a boundary value or an average value of the channel loss value interval.
  • the weight of the interval of 6 dB to 10 dB may be 6 dB or 10 dB or 8 dB. It should be understood that the determination of the weight of the channel loss value interval is not limited to the above method. The greater the weight of the channel loss value interval, the more repeated transmission times of the corresponding transmission type, and/or the longer the length of the spreading factor, and/or the higher the aggregation level, and/or the larger the TTI bundling size, etc. vice versa.
  • the size and location of the time-frequency resource required to be occupied can be known according to the above-mentioned transmission type capable of ensuring the reliability of information transmission. And determining the appropriate power configuration in conjunction with the weights of the channel loss value intervals described above.
  • the enhanced transmission opportunity is determined based on the size and location of the time-frequency resource and the power configuration to determine an enhanced transmission opportunity configuration.
  • information transmission of different information types may apply the same channel loss value interval, transmission type, and enhanced transmission opportunity configuration.
  • Table 2 shows the correspondence between information type x, information type y, and information type z using the same channel loss value interval, transmission type, and enhanced transmission opportunity configuration.
  • the interval division in Table 2 is only an example and may not be limited to three intervals.
  • the information type x, the information type y, and the information type z are only one exemplary division, and the number of information types is not limited to three. Extensibly, at least one of the plurality of information types may also have the above correspondence. That is, corresponding to each of the plurality of channel loss value intervals
  • the transmission type corresponds to at least one of the plurality of information types; the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals corresponds to at least one of the plurality of information types .
  • part or all of the content included in the transmission type corresponding to the channel loss value interval may be included in the enhanced transmission opportunity configuration corresponding to the channel loss value interval. If all the content included in the transmission type corresponding to the channel loss value interval is included in the enhanced transmission opportunity configuration corresponding to the channel loss value interval, the transmission type may not be defined; at this time, only the channel loss value interval exists. Enhance the correspondence between transmission opportunity configurations.
  • the information type can belong to any of the following types of collections: a collection of physical channel types; a collection of signal types; a collection of message types.
  • the physical channel type set may include: a physical downlink control channel PDCCH, an enhanced physical downlink control channel ePDCCH, a physical random access channel PRACH, a physical control format indication channel PCFICH, a physical hybrid automatic repeat request indication channel PHICH, and a unicast Physical downlink shared channel PDSCH, broadcast or multicast physical downlink shared channel PDSCH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH, synchronization channel SCH, physical broadcast channel PBCH, and the like.
  • the set of signal types may include: a common reference signal CRS, a demodulation reference signal DMRS, a proprietary reference signal DRS, and the like.
  • the message type set may include: a random access response message, a random access response response Msg3 message, a contention resolution message, system information, a paging message, and the like.
  • the correspondence between the channel loss value interval, the transmission type, and the enhanced transmission opportunity may be the same as the correspondence between the three in Table 1.
  • the method for determining the correspondence relationship can also refer to Table 1, and details are not described herein again.
  • different information types may apply different correspondence between channel loss value intervals, transmission types, and enhanced transmission opportunity configurations.
  • Table 3 shows the correspondence between the information type x, the information type y, and the information type z.
  • the information transmission uses different channel loss value intervals, transmission types, and enhanced transmission opportunity configurations.
  • a dB will configure xl Interval 2: A dB t track loss information type X transmission type x2 enhanced transmission value ⁇ B dB will configure x2 interval 3: B dB t channel loss information type X transmission type x3 enhanced transmission
  • a dB will configure yl interval 2: A dB t track loss information type y transmission type y2 enhanced transmission
  • a dB will configure zl interval 2: A dB t track loss information type z transmission type z2 enhanced transmission
  • the value ⁇ B dB will configure the z2 interval 3: B dB t track loss information type z transmission type z3 enhanced transmission
  • the value will be configured with z3. It should be understood that the interval division in Table 3 is only an example and may not be limited to three intervals.
  • the information type x, the information type y, and the information type z are only one exemplary division, and the number of information types is not limited to three.
  • the enhanced transmission opportunity configuration corresponds to each of a plurality of information types. It should be noted that part or all of the content included in the transmission type corresponding to the channel loss value interval may be included in the enhanced transmission opportunity configuration corresponding to the channel loss value interval.
  • the transmission type may actually Not defined; at this time, there is only a correspondence between the channel loss value interval and the enhanced transmission opportunity configuration.
  • the information type can belong to any of the following types of collections: a collection of physical channel types; a collection of signal types; a collection of message types.
  • the physical channel type set may include: a physical downlink control channel PDCCH, an enhanced physical downlink control channel ePDCCH, a physical random access channel PRACH, a physical control format indication channel PCFICH, a physical hybrid automatic repeat request indication channel PHICH, and a unicast Physical downlink shared channel PDSCH, broadcast or multicast physical downlink shared channel PDSCH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH, synchronization channel SCH, physical broadcast channel PBCH, and the like.
  • the signal type set may include: a common reference signal CRS, a demodulation reference signal DMRS, a proprietary reference signal DRS, and the like.
  • the message type set may include: a random access response message, a random access response response Msg3 message, a contention resolution message, system information, a paging message, and the like.
  • each information type has a correspondence between a specific channel loss value interval, a transmission type, and an enhanced transmission opportunity.
  • the system needs to separately configure different channel loss value intervals, transmission types, and enhanced transmission opportunities for different information types. Among them, there is a corresponding relationship between the transmission type and the enhanced transmission opportunity configuration.
  • the same channel loss value interval may correspond to different transmission types and enhanced transmission opportunity configurations.
  • the foregoing correspondence is sent to the user equipment.
  • a plurality of enhanced transmission opportunity configurations corresponding to the plurality of channel loss value intervals may be sent to the user equipment, and the transmission type corresponding to each channel loss value interval may be sent to the user equipment, so that the channel loss value can be established at the UE end.
  • the actual transmission manner may be: controlling RRC broadcast signaling (such as system information block SIB or main information block MIB), RRC dedicated signaling, RRC multicast signaling, and media access control MAC control by radio resources.
  • RRC broadcast signaling such as system information block SIB or main information block MIB
  • RRC dedicated signaling such as system information block SIB or main information block MIB
  • RRC multicast signaling such as RRC multicast
  • media access control MAC control by radio resources One or more of the element CE signaling and the physical layer signaling, and sending the multiple enhanced transmission opportunity configuration information and/or the transmission type to the user equipment.
  • the correspondence between the channel loss value and the transmission type and the information type may be determined by the transmission order or by a label.
  • the following pseudo code exemplifies an enhanced transmission opportunity by RRC broadcast signaling, regardless of the type of information (Enhanced Transmission Occasion; ETO ) Configure to UE:
  • ETO-ConfigCommon does not indicate the information type, that is, the information type is not considered in this embodiment. It can also be understood that all information types can apply the same channel loss value interval, transmission type and enhanced transmission opportunity configuration correspondence.
  • ETONumer indicates the number of enhanced transmission opportunities, which is equivalent to the number of enhanced transmission opportunity configurations, that is, the number of enhanced transmission opportunities configured by the base station to deliver multiple enhanced transmission opportunity configurations to the UE. The number was also sent to the UE.
  • ETOInfo specifically configures the time interval between multiple enhanced transmission opportunities, the time start and duration of each enhanced transmission opportunity, the starting point and size of the frequency resource occupied by each enhanced transmission opportunity, and the information in each enhanced transmission opportunity. The power configuration used for the transmission. ETOInfo may include any one or more of the above configuration items.
  • the transmission type may also be sent to the UE, so that the correspondence shown in Table 1 in step 201 is established at the UE side.
  • the following pseudo code exemplifies the configuration of the same enhanced transmission opportunity for information type x, information type y, and information type z by RRC broadcast signaling:
  • ETO-ConfigCommon_x_y_z:: ⁇ SEQUENCE (SIZE (1.. ETONumber)) OF ETOInfo
  • Time interval T to enhance transmission opportunities The first time to enhance the transmission opportunity
  • the ETO-ConfigCommon indicates the information type x, the information type y, and the information type z, that is, the information type is considered in this embodiment, and the same channel loss value interval, transmission type, and enhancement are configured for a plurality of different information types.
  • Correspondence of transmission opportunity configuration. ETONumer indicates the number of enhanced transmission opportunities, which is equivalent to the number of enhanced transmission opportunity configurations, that is, the number of enhanced transmission opportunities configured by the base station to deliver multiple enhanced transmission opportunity configurations to the UE. The number was also sent to the UE.
  • ETOInfo specifically configures the time interval between multiple enhanced transmission opportunities, the time start and duration of each enhanced transmission opportunity, the starting point and size of the frequency resource occupied by each enhanced transmission opportunity, and the information in each enhanced transmission opportunity.
  • the power configuration used for the transmission. ETOInfo may include any one or more of the above configuration items.
  • the transmission type can also be sent to the UE, thereby establishing the correspondence shown in Table 2 in step 201 at the UE side.
  • the following three pseudo-codes respectively respectively exemplify the enhanced transmission opportunities for the information type x, the information type y, and the information type z by RRC broadcast signaling:
  • ETO-ConfigCommon_x:: ⁇ SEQUENCE (SIZE (1.. ETONumber)) OF ETOInfo
  • ETO-ConfigCommon_y:: ⁇ SEQUENCE (SIZE (1.. ETONumber)) OF ETOInfo
  • ETO-ConfigCommon_z:: ⁇ SEQUENCE (SIZE (1.. ETONumber)) OF ETOInfo
  • ETO-ConfigCommon respectively indicates the information type x, the information type y, and the information type z, that is, the information type is considered in this embodiment, and different channel loss value intervals and transmissions are configured for a plurality of different information types.
  • ETONumer indicates the number of enhanced transmission opportunities, which is equivalent to the number of enhanced transmission opportunity configurations, that is, the number of enhanced transmission opportunities configured by the base station to deliver multiple enhanced transmission opportunity configurations to the UE. The number was also sent to the UE.
  • ETOInfo is specifically configured with multiple additions The time interval between strong transmission opportunities, the time starting and duration of each enhanced transmission opportunity, the starting point and size of the frequency resources occupied by each enhanced transmission opportunity, and the power configuration used for information transmission in each enhanced transmission opportunity.
  • ETOInfo may include any one or more of the above configuration items.
  • the transmission type can also be sent to the UE, so that the correspondence shown in Table 3 in step 201 is established at the UE side.
  • the method for information transmission in the present invention can configure the correspondence between the channel loss value interval, the transmission type, and the enhanced transmission opportunity on the base station side in a system predefined manner.
  • Different channel loss value intervals correspond to different enhanced transmission opportunity configurations, and more time-frequency resources and larger power are used in the higher channel loss value interval to ensure reliable transmission of information, and are used in lower channel loss value intervals.
  • Less time-frequency resources and less power make the time-frequency resource configuration optimized, which reduces system implementation complexity and saves power consumption.
  • FIG. 3 is a schematic flowchart of an information transmission method according to another embodiment of the present invention. The method of Figure 3 is performed by a base station. 3 is a more specific embodiment of FIG. 2, showing a specific method of determining a first enhanced transmission opportunity and transmitting information.
  • the channel loss value is determined first.
  • the specific determination method is not limited in the embodiment of the present invention.
  • the channel loss value may be measured by the base station, or may be measured by the UE and uploaded to the base station, for example: UE.
  • the first channel loss value interval including the channel loss value is determined in a range of a plurality of channel loss values predefined by the system. For example, in combination with the division example of the channel loss value interval in step 201, assuming that the channel loss value is 3 dB, the first channel loss value interval is from 0 dB to 5 dB.
  • the first enhanced transmission opportunity configuration corresponding to the first channel loss value interval is determined according to the correspondence between the channel loss value interval, the transmission type, the information type, and the enhanced transmission opportunity configuration in step 201.
  • the information type is an attribute or category that is included in the information to be transmitted.
  • the correspondence of Table 1 in 201 determines the first enhanced transmission opportunity configuration.
  • the first channel loss The value interval is: A dB ⁇ channel loss value ⁇ B dB, correspondingly, the first enhanced transmission opportunity is configured to enhance transmission opportunity configuration 2.
  • the enhanced transmission opportunity configuration may be determined by referring to the correspondence relationship of Table 2 in step 201.
  • the correspondence between the channel loss value interval and the transmission type and the enhanced transmission opportunity configuration in Tables 1 and 2 can be the same. That is, the same enhanced transmission opportunity can be configured for different information types.
  • the first channel loss value interval is: channel loss value ⁇ A dB, and accordingly, the first enhanced transmission opportunity is configured to enhance the transmission opportunity configuration 1 .
  • the enhanced transmission opportunity configuration may be determined by referring to the correspondence of Table 3 in step 201. That is, different enhanced transmission opportunities can be configured for each type of information. Therefore, in addition to determining the first channel loss value interval, it is necessary to determine the type of information of the information to be transmitted before determining the enhanced transmission opportunity.
  • the information type may be determined by the base station or may be uploaded to the base station by the UE.
  • the information type of the information to be transmitted is determined to be X
  • the first channel loss value interval is: BdB ⁇ channel loss value.
  • the first enhanced transmission opportunity is configured to enhance the transmission opportunity configuration x3, if the information type of the information to be transmitted is y, correspondingly, the first enhanced transmission opportunity is configured to enhance the transmission opportunity configuration y3.
  • the base station determines the transmission type corresponding to the first enhanced transmission opportunity by using the correspondence in the foregoing step 302. Then, the enhanced processing information is transmitted on the time-frequency resource configured by the first enhanced transmission opportunity configuration, for example, after M repetitions, or M times spread spectrum modulation, or M times TTI bundling information, in M times time width or Transmission over M times the frequency width of the resource, thereby achieving reliable transmission of information and coverage enhancement.
  • the method for enhancing the information is not limited thereto.
  • the information may be enhanced by a control channel element CCE or an enhanced control channel element eCCE aggregation level or range, modulation coding mode, power configuration, and the like.
  • the enhanced processing method of different information can be understood as different transmission types.
  • the first enhanced transmission opportunity configuration is determined according to the channel loss value, more time-frequency resources and higher power are used for higher channel loss values, and less time is used for lower channel loss values. Frequency resources and lower power, thus achieving reasonable allocation of time-frequency resources and saving power consumption.
  • FIG. 4 is a schematic flowchart of an information transmission method according to another embodiment of the present invention. The method of Figure 4 It is executed by the base station. 4 is another more specific embodiment of FIG. 1, showing a specific method of determining a first enhanced transmission opportunity in a non-system predefined manner.
  • the channel loss value is determined first.
  • the specific determination method is not limited in the embodiment of the present invention.
  • the channel loss value may be measured by the base station, or may be measured by the UE and uploaded to the base station, for example: UE.
  • the base station determines the channel loss value, the number of repeated transmissions M, or the spreading factor M, or the ⁇ bundling number, or the CCE/eCCE aggregation level, or the modulation and coding mode, which can ensure reliable transmission of information, can be determined according to the value of the channel loss value. , or power configuration, or spreading code index. That is, determine the appropriate type of transmission.
  • a plurality of channel loss value intervals may be divided to determine an interval in which the channel loss value is located. Determining the number of repeated transmissions M, or the spreading factor M, or the ⁇ bundling number, or the CCE/eCCE aggregation level, or the modulation and coding scheme, or the power configuration, or the spread spectrum, which can ensure reliable transmission of information according to the weight of the channel loss value interval Code index. That is, determine the appropriate type of transmission.
  • the weight of the channel loss value interval may be determined according to a boundary value or an average value of the channel loss value interval. For example, the weight of the 6dB to 10dB interval may be 6dB or 10dB or 8dB.
  • the determination of the weight between the channel loss values is not limited to the above method.
  • the 402. Determine a first enhanced transmission opportunity configuration according to a transmission type and an information type of the information. Depending on the type of transmission, the size of the time-frequency resource that the information transmission needs to occupy can be determined. According to the information type of the information, the location of the time-frequency resource that the information transmission needs to occupy can be determined. In addition, the coverage enhancement required for transmission can also be determined based on the channel loss value to determine the power required for information transmission.
  • the first enhanced transmission opportunity configuration can be determined by one or more of the methods described above.
  • the enhanced transmission opportunity configuration includes at least one of the following: a time interval for enhancing the transmission opportunity; a time starting point for enhancing the transmission opportunity; an increasing frequency resource starting point occupied by the transmission opportunity; and an enhanced frequency resource size and/or location occupied by the transmission opportunity; Enhance the time resource size and/or location occupied by the transmission opportunity; enhance the power configuration used for information transmission in the transmission opportunity.
  • the information type can belong to any of the following types of collections: a collection of physical channel types; a collection of signal types; a collection of message types.
  • the physical channel type set may include: a physical downlink control channel PDCCH, an enhanced physical downlink control channel ePDCCH, a physical random access channel PRACH, a physical control format indication channel PCFICH, a physical hybrid automatic repeat request indication channel PHICH, and a unicast Physical downlink shared channel PDSCH, broadcast or multicast physical downlink shared channel PDSCH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH, synchronization channel SCH, physical broadcast channel PBCH, and the like.
  • the signal type set may include: a common reference signal CRS, a demodulation reference signal DMRS, a proprietary reference signal DRS, and the like.
  • the message type set may include: a random access response message, a random access response response Msg3 message, a contention resolution message, system information, a paging message, and the like.
  • the first enhanced transmission opportunity configuration is sent to the user equipment by RRC dedicated signaling, and/or physical layer specific signaling.
  • RRC dedicated signaling and/or physical layer specific signaling.
  • the first enhanced transmission opportunity configuration may be expressed in the form of the following pseudo code without considering the information type:
  • the power configuration of the information transmission in the transmission opportunity is enhanced.
  • the pseudo code format of the RRC dedicated signaling may be referred to the embodiment of step 202 in FIG. 2, and the details are not described herein again.
  • Transmitting the enhanced processing information on the time-frequency resource configured by the first enhanced transmission opportunity configuration for example, M repetitions, or M times spread spectrum modulation, or M times ⁇ bundling information, in M times time width or M times Transmission over frequency-wide resources enables reliable transmission of information and coverage enhancement.
  • the method for enhancing the information is not limited thereto, for example, the control channel may also be aggregated by a control channel element CCE or an enhanced control channel element eCCE.
  • the information is enhanced by methods such as level or range, modulation and coding mode, and power configuration. Among them, the enhanced processing method of different information can be understood as different transmission types.
  • the two steps 403a and 403b are executed in the following ways: Execute 403a, do not execute 403b; or do not execute 403a, execute 403b; or execute 403a, execute 403b.
  • the execution of the two steps is in no particular order.
  • the first enhanced transmission opportunity configuration is determined according to the channel loss value, more time-frequency resources and higher power are used for higher channel loss values, and less time-frequency resources are used for lower channel loss values. And lower power, thereby achieving reasonable allocation of time-frequency resources and saving power consumption.
  • FIG. 5 is a schematic flowchart of an information transmission method according to another embodiment of the present invention. The method of Figure 5 is performed by a user equipment UE.
  • the channel loss value with the base station is a measure of the path loss with the base station, and may be any value or information capable of measuring communication quality, channel quality, quality of service QoS.
  • the specific manifestation may be: the reference signal received by the UE, RSRP; or the reference signal received by the UE, the quality RSRQ; or the channel quality information CQI measured by the UE; or any one or more of the coverage enhancements expected by the UE.
  • Different UEs may have different channel loss between different UEs and base stations in the same cell due to different geographical locations, environments, product implementations, and the like. Therefore, the coverage enhancement value required for reliable transmission or reception of signals between the base station and different UEs is different, that is, the coverage enhancement desired by the UE is not used.
  • coverage enhancement For a UE with a large channel loss and a large coverage enhancement, it is possible to implement coverage enhancement by repeating, spreading, ⁇ bundling, low bit rate coding, and low-order modulation and other sacrificing resources, that is, enhancing transmission opportunities.
  • An enhanced transmission opportunity includes information repetition, or spread spectrum transmission, or time and/or frequency resource location occupied by bundling, and information is transmitted M times in time and/or frequency on an enhanced transmission opportunity or M times expansion Frequency modulation, the receiving side performs M times of information superposition or M times of despreading of M times of repeated transmission or M times spread spectrum modulation of an enhanced transmission opportunity, thereby improving the reliability of information transmission.
  • the method for enhancing the information is not limited thereto.
  • the information may be enhanced by a control channel element CCE or an aggregation level or range of the enhanced control channel element eCCE, a modulation and coding scheme, a power configuration, and the like.
  • the enhanced transmission opportunity configuration can specifically configure the location and size of the time-frequency resources occupied by the enhanced transmission opportunity and enhance the power configuration employed for information transmission in the transmission opportunity. Since the enhanced transmission opportunity requires more time-frequency resources to obtain better coverage and transmission reliability, the time width occupied by the enhanced transmission opportunity is greater than the time width occupied by the non-enhanced transmission opportunity. Among them, the non-enhanced transmission opportunity only includes one transmission time interval in time, and the information cannot realize the energy accumulation in multiple defects in the non-enhanced transmission opportunity. The enhanced transmission opportunity includes multiple ⁇ in time, and the information can realize the energy accumulation in multiple ⁇ in the enhanced transmission opportunity, thereby improving the reliability of information transmission. .
  • repeated transmission of information, or spread spectrum transmission, or ⁇ bundling is usually performed in integer multiples, so the size of the time-frequency resource occupied by the enhanced transmission opportunity is usually the size of the time-frequency resource occupied by the non-enhanced transmission opportunity. Multiples.
  • the enhanced transmission opportunity configuration may include at least one of: enhancing a time interval of the transmission opportunity; enhancing a time starting point of the transmission opportunity; enhancing a frequency resource starting point occupied by the transmission opportunity; and enhancing a frequency resource occupied by the transmission opportunity Size and/or location; enhances the time resource size and/or location occupied by the transmission opportunity; enhances the power configuration employed for information transmission in the transmission opportunity.
  • the UE needs to determine the transmission type corresponding to the first enhanced transmission opportunity. Then, the enhanced processing information, such as M-time repetition or M-time spread spectrum modulation information, is transmitted on the time-frequency resource configured by the first enhanced transmission opportunity configuration according to the transmission type, thereby realizing reliable transmission of information and coverage enhancement.
  • the information processing method is not limited thereto.
  • the information may be enhanced by a control channel element CCE or an enhanced control channel element eCCE aggregation level or range, modulation and coding mode, power configuration, and the like.
  • the first enhanced transmission opportunity configuration is determined according to the channel loss value, more time-frequency resources are used for higher channel loss values, and less time-frequency resources are used for lower channel loss values, thereby achieving The reasonable allocation of time-frequency resources saves power consumption.
  • FIG. 6 is a schematic flowchart of an information transmission method according to another embodiment of the present invention. The method of Figure 6 is performed by the UE.
  • Figure 6 is a more specific embodiment of Figure 5, showing a specific method of determining the enhanced transmission opportunity configuration corresponding to the channel loss value of Figure 5.
  • multiple enhanced transmission opportunity configurations may be determined on the UE side. There are two methods: obtaining multiple enhanced transmission opportunity configurations configured in advance; or receiving multiple enhanced transmissions corresponding to multiple channel loss value intervals sent by the base station. Opportunity configuration.
  • multiple enhanced transmission opportunity configurations may be configured for the UE in a manner predefined by the system. Specifically, a correspondence between a plurality of enhanced transmission opportunity configurations and a plurality of channel loss value intervals and transmission types may be predefined.
  • the plurality of enhanced transmission opportunity configurations are in one-to-one correspondence with the plurality of channel loss value intervals; the transmission type corresponding to each of the plurality of channel loss value intervals is associated with at least one of the plurality of information types Corresponding; the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals corresponds to at least one of the plurality of information types; each of the plurality of channel loss value intervals The transmission type corresponding to the interval corresponds to each of the plurality of information types--the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals and each of the plurality of information types A type of information - corresponding.
  • the UE can locally acquire a plurality of enhanced transmission opportunity configurations predefined by the system.
  • the transmission type indicates the transmission format used for information transmission, and the information type indicates the attribute or category of the information.
  • the information type can belong to any of the following types of collections: a collection of physical channel types; a collection of signal types; a collection of message types.
  • the physical channel type set may include: a physical downlink control channel PDCCH, an enhanced physical downlink control channel ePDCCH, a physical random access channel PRACH, a physical control format indication channel PCFICH, a physical hybrid automatic repeat request indication channel PHICH, and a unicast Physical downlink shared channel PDSCH, broadcast or multicast physical downlink shared channel PDSCH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH, synchronization channel SCH, physical broadcast channel PBCH, and the like.
  • the signal type set may include: a common reference signal CRS, a demodulation reference signal DMRS, a proprietary reference signal DRS, and the like.
  • the message type set may include: a random access response message, a random access response response Msg3 message, a contention resolution message, system information, a paging message, and the like.
  • the division of the channel loss value interval may also be predefined by the system, and a plurality of channel loss values may be set in a large range of values, thereby dividing the large value range into a plurality of channel loss value intervals. For example: Take 5dB, 10dB, 15dB in the range of OdB to 20dB, and divide the value range into OdB to 5dB, 6dB to 10dB, lldB to 15dB and 16dB to 20dB. It should be understood that the channel loss value interval division method in the present invention is not limited thereto.
  • the actual receiving manner may be: controlling the RRC broadcast signaling (such as the system information block SIB or the main information block MIB), the RRC dedicated signaling, the RRC multicast signaling, and the media access control MAC control element by using the radio resource.
  • RRC broadcast signaling such as the system information block SIB or the main information block MIB
  • the RRC dedicated signaling such as the system information block SIB or the main information block MIB
  • the RRC multicast signaling such as the system information block SIB or the main information block MIB
  • the media access control MAC control element by using the radio resource.
  • the correspondence between the channel loss value interval and the transmission type and the information type may be determined by the transmission order or by a label.
  • the enhanced transmission opportunity configuration sent by the base station is received by the RRC dedicated signaling, and the pseudo code format may refer to the format of several RRC signaling pseudo codes in step 202 in FIG. 2, and details are not described herein again.
  • the value of the channel loss between the base station and the base station is determined first.
  • the specific determination method is not limited in the embodiment of the present invention.
  • the UE determines a first channel loss value interval including the channel loss value in a plurality of channel loss value ranges. For example, in combination with the division example of the channel loss value interval in step 601, assuming that the channel loss value is 3 dB, the first channel loss value interval is from 0 dB to 5 dB.
  • the first enhanced transmission opportunity configuration corresponding to the first channel loss value interval is determined according to the correspondence between the channel loss value interval, the transmission type, the information type, and the enhanced transmission opportunity configuration in step 601.
  • the information type is an attribute or category that is included in the information to be transmitted.
  • step 302 in FIG. 3 For the specific determination method, reference may be made to step 302 in FIG. 3, and details are not described herein again.
  • the method for information transmission in the present invention can configure the correspondence between the channel loss value interval, the transmission type, and the enhanced transmission opportunity on the UE side by means of system pre-defined or base station delivery.
  • Different channel loss value intervals correspond to different enhanced transmission opportunity configurations, and more time-frequency resources and larger power are used in the higher channel loss value interval to ensure reliable transmission of information, and are used in lower channel loss value intervals.
  • Less time-frequency resources and less power make the time-frequency resource configuration optimized, which reduces system implementation complexity and saves power consumption.
  • FIG. 7 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • Figure 7 Executed by the UE.
  • Figure 7 is another more specific embodiment of Figure 5.
  • the channel loss value is determined first.
  • the specific determination method is not limited in the embodiment of the present invention.
  • the channel loss value may be measured by the base station, or may be measured by the UE and uploaded to the base station, for example: UE.
  • the first enhanced transmission opportunity configuration sent by the base station is received, and the method for the base station to determine the configuration of the first enhanced transmission device may refer to FIG. 3 or FIG. 4, and details are not described herein again.
  • the first enhanced transmission opportunity configuration sent by the base station may be received through RRC dedicated signaling, and/or physical layer dedicated signaling.
  • RRC dedicated signaling As an example, the first enhanced transmission opportunity configuration may be expressed in the form of the following pseudo code, regardless of the type of information:
  • the power configuration of the information transmission in the transmission opportunity is enhanced.
  • the pseudo code format of the RRC dedicated signaling may be referred to the embodiment of step 202 in FIG. 2, and the details are not described herein again.
  • the UE may determine the transmission type by receiving the manner sent by the base station, and then transmit the enhanced processing information on the time-frequency resource configured by the first enhanced transmission opportunity configuration, for example, after M repetitions, or M times spread spectrum modulation. , or M times ⁇ bundling information, transmitted on M times time width or M times frequency width resources, so as to achieve reliable transmission of information and coverage enhancement.
  • the method for enhancing the information is not limited thereto, for example, the control channel may also pass the aggregation level or range of the control channel element CCE or the enhanced control channel element eCCE, Modulation coding method, power configuration and other methods are used to enhance information.
  • the enhanced processing method of different information can be understood as different transmission types.
  • the first enhanced transmission opportunity configuration is determined according to the channel loss value, more time-frequency resources and higher power are used for higher channel loss values, and less time-frequency resources are used for lower channel loss values. And lower power, thereby achieving reasonable allocation of time-frequency resources and saving power consumption.
  • FIG. 8 is a schematic block diagram of a base station according to an embodiment of the present invention. As shown in FIG. 8, the embodiment provides a base station 800, which can specifically perform the steps of the foregoing embodiment in FIG. 1, and details are not described herein again.
  • the base station 800 provided in this embodiment may specifically include a first determining module 801 and a transmitting module 802.
  • the first determining module 801 is configured to determine a first enhanced transmission opportunity configuration according to a channel loss value with the user equipment, where a time width occupied by the enhanced transmission opportunity is greater than a time width occupied by the non-enhanced transmission opportunity; and the transmission module 802 is configured to use the The first enhanced transmission opportunity configuration transmission information.
  • FIG. 9 is a schematic block diagram of a base station according to another embodiment of the present invention.
  • the present embodiment provides a base station 900, which can specifically perform the steps of the foregoing embodiments in FIG. 2, FIG. 3, and FIG. 4, and details are not described herein again.
  • the base station 900 provided in this embodiment may specifically include a second determining module 901, a first determining module 902, and a transmitting module 903.
  • a second determining module 901 configured to determine a plurality of enhanced transmission opportunity configurations
  • the first determining module 902 is configured to determine a first enhanced transmission opportunity configuration according to a channel loss value with the user equipment
  • the transmission module 903 is configured to configure transmission information according to the first enhanced transmission opportunity.
  • the second determining module 901 is optional.
  • the base station 900 needs the second determining module 901 when performing the foregoing method in FIG. 2 or FIG. 3.
  • the base station 900 does not need the second determining module 901 when performing the foregoing method in FIG. .
  • base station 900 performs the method of Figure 2 above.
  • the second determining module is specifically configured to configure multiple enhanced transmission opportunity configurations for the base station in a manner predefined by the system. Specifically, a correspondence between a plurality of enhanced transmission opportunity configurations and a plurality of channel loss value intervals and transmission types may be predefined.
  • the plurality of enhanced transmission opportunity configurations are in one-to-one correspondence with the plurality of channel loss value intervals; the transmission type corresponding to each of the plurality of channel loss value intervals is associated with at least one of the plurality of information types Corresponding; an enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals and a plurality of information types One less information type corresponds to each; a transmission type corresponding to each of the plurality of channel loss value intervals corresponds to each of the plurality of information types; each of the plurality of channel loss value intervals The enhanced transmission opportunity configuration corresponding to one channel loss value interval is in one-to-one correspondence with each of the plurality of information types.
  • the transmission type indicates the transmission format used for information transmission, and the information type indicates the attribute or category of the information. The specific correspondence is referred to the above figure.
  • the transmission module 903 is specifically configured to send, to the user equipment, multiple enhanced transmission opportunity configurations corresponding to the plurality of channel loss value intervals. After determining the correspondence between the plurality of channel loss value intervals and the plurality of enhanced transmission opportunity configurations, the corresponding relationship is sent to the user equipment. Specifically, a plurality of enhanced transmission opportunity configurations corresponding to the plurality of channel loss value intervals may be sent to the user equipment, and the transmission type corresponding to each channel loss value interval is sent to the user equipment, so that the channel loss value interval can be established at the UE end. Correspondence between transmission type and enhanced transmission opportunity configuration.
  • the actual transmission manner may be: controlling RRC broadcast signaling (such as system information block SIB or main information block MIB), RRC dedicated signaling, RRC multicast signaling, and media access control MAC control by radio resources.
  • RRC broadcast signaling such as system information block SIB or main information block MIB
  • RRC dedicated signaling such as system information block SIB or main information block MIB
  • RRC multicast signaling such as RRC multicast signaling
  • media access control MAC control by radio resources One or more of the element CE signaling and the physical layer signaling, and sending the multiple enhanced transmission opportunity configuration information and the transmission type to the user equipment.
  • the correspondence between the channel loss value interval and the transmission type and the information type may be determined by the sending order, or by a label.
  • the specific transmission method may refer to, but is not limited to, an example of RRC broadcast signaling given in step 202 of FIG.
  • the base station 900 performs the method of Figure 3 above.
  • the first determining module 902 is specifically configured to: determine a first channel loss value interval in a plurality of channel loss value intervals in which the channel loss value is located; and determine a first enhanced transmission opportunity configuration corresponding to the first channel loss value interval.
  • the channel loss value is determined first.
  • the specific determination method is not limited in the embodiment of the present invention.
  • the channel loss value may be measured by the base station, or may be measured by the UE and uploaded to the base station, for example: UE.
  • the transmission module 903 can be configured to receive a channel loss value uploaded by the UE. After determining the channel loss value, the base station determines a first channel loss value interval including the channel loss value in a range of a plurality of channel loss values predefined by the system.
  • Determining the first enhanced transmission opportunity configuration corresponding to the first channel loss value interval may be based on a pre-defined correspondence relationship in the second determining module 901
  • the method of step 302 in FIG. 3 above may be referred to, and details are not described herein again.
  • the transmission module 903 is specifically configured to perform information transmission on the enhanced transmission opportunity configured by the first enhanced transmission opportunity configuration according to the transmission type. Transmitting the enhanced processed information on the time-frequency resource configured by the first enhanced transmission opportunity configuration, for example, after M repetitions, or M times spread spectrum modulation, or M times ⁇ bundling information, in M times time width or M times Transmission over frequency-wide resources enables reliable transmission of information and coverage enhancement.
  • the information processing method is not limited thereto.
  • the control channel may further enhance information by using a control channel element CCE or an enhanced aggregation level or range of the control channel element eCCE, a modulation and coding scheme, a power configuration, and the like.
  • the enhanced processing method of different information can be understood as different transmission types.
  • the base station 900 performs the method of Figure 4 above.
  • the channel loss value sent by the UE may be received by the transmission module 903.
  • the first determining module 902 is specifically configured to: determine a transmission type according to a channel loss value interval in which the channel loss value is located; and determine a first enhanced transmission opportunity configuration according to the transmission type and the information type of the information.
  • the transmission module 903 is specifically configured to send the first enhanced transmission opportunity configuration determined according to the transmission type to the user equipment, and/or transmit the information on the enhanced transmission opportunity configured by the first enhanced transmission opportunity configuration according to the transmission type.
  • FIG. 10 is a schematic block diagram of a user equipment according to an embodiment of the present invention. As shown in FIG. 10, this embodiment provides a user equipment 1000, which can specifically perform the steps of the foregoing embodiment in FIG. 5, and details are not described herein again.
  • the user equipment 1000 provided in this embodiment may specifically include a first determining module 1001 and a transmitting module 1002.
  • the first determining module 1001 is configured to determine a first enhanced transmission opportunity configuration according to a channel loss value with the base station, where a time width occupied by the enhanced transmission opportunity is greater than a time width occupied by the non-enhanced transmission opportunity; the transmission module 1002 is configured to use, according to the The first enhanced transmission opportunity configures the transmission information.
  • FIG. 11 is a schematic block diagram of a user equipment according to another embodiment of the present invention. As shown in FIG. 11, the embodiment provides a user equipment 1100, which can specifically perform the steps of the foregoing embodiment in FIG. 6 or FIG. 7, and details are not described herein again.
  • the user equipment 1100 provided in this embodiment may specifically include a second determining module 1101, a first determining module 1102, and a transmitting module 1103.
  • a second determining module 1101 configured to determine multiple enhanced transmission opportunity configurations
  • a first determining module 1102 configured to determine a first increase according to a channel loss value between the user equipment and the user equipment Strong transmission opportunity configuration
  • the transmission module 1103 is configured to configure transmission information according to the first enhanced transmission opportunity.
  • the second determining module 1101 and the first determining module 1102 are optional, and the user equipment 1100 needs the second determining module 1101 or the first determining module 1102 when performing the foregoing method in FIG. 6, and the user equipment 1100 is performing the foregoing FIG.
  • the second determination module 1101 and the first determination module 1102 are not required in the method.
  • the user equipment 1100 performs the method in FIG. 6 above.
  • the second determining module 1101 is configured to determine multiple enhanced transmission opportunity configurations, and the UE may be configured with multiple enhanced transmission opportunity configurations in a manner predefined by the system. Specifically, a correspondence between a plurality of enhanced transmission opportunity configurations and a plurality of channel loss value intervals and transmission types may be predefined.
  • a plurality of enhanced transmission opportunity configurations are corresponding to a plurality of channel loss value intervals; a transmission type corresponding to each of the plurality of channel loss value intervals and at least one of the plurality of information types Corresponding; the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals corresponds to at least one of the plurality of information types; each of the plurality of channel loss value intervals
  • the transmission type corresponding to the interval is in one-to-one correspondence with each of the plurality of information types; the enhanced transmission opportunity configuration corresponding to each of the plurality of channel loss value intervals and each of the plurality of information types
  • One type of information corresponds to one.
  • the first determining module 1102 is specifically configured to acquire, in the second determining module 1101, a plurality of enhanced transmission opportunity configurations defined in advance.
  • the transmission type indicates the transmission format used for information transmission, and the information type indicates the attribute or category of the information.
  • the transmission module 1103 may receive multiple enhanced transmission opportunity configurations corresponding to the multiple channel loss value intervals sent by the base station, and receive the transmission type corresponding to each channel loss value interval sent by the base station, so that the channel can be established at the UE end.
  • the first determining module 1102 is specifically configured to: determine a first channel loss value interval in the plurality of channel loss value intervals in which the channel loss value is located; and determine the first enhancement corresponding to the first channel loss value interval Transmission opportunity configuration.
  • the specific method reference may be made to step 602 and step 603 in FIG. 6 above, and details are not described herein again.
  • the user equipment 1100 performs the method in FIG. 7 above.
  • the channel loss value measured by the user equipment may be transmitted by the transmission module 1103 to the base station.
  • Transmission mode Block 1103 can also be used to receive the first enhanced transmission opportunity configuration sent by the base station.
  • the transmission module 1103 can perform information transmission on the enhanced transmission opportunity configured by the first enhanced transmission opportunity configuration according to the transmission type.
  • the transmission module 1103 can perform information transmission on the enhanced transmission opportunity configured by the first enhanced transmission opportunity configuration according to the transmission type.
  • step 702 in Figure 7 above reference may be made to step 702 in Figure 7 above, and details are not described herein again.
  • the user equipment in the present invention can make the range in which each channel loss value is located corresponding to each enhanced transmission opportunity configuration, so that the user equipment can transmit information according to the range of the channel loss value between the user equipment and the base station. Or receive, which optimizes resource configuration and saves power consumption.
  • FIG. 12 is a schematic block diagram of a base station according to an embodiment of the present invention. As shown in FIG. 12, this embodiment provides a base station 1200, which can specifically perform the steps of the foregoing embodiments in FIG. 1 to FIG. 4 and FIG. 8 and FIG. 9, and details are not described herein again.
  • the base station 1200 provided in this embodiment may specifically include a processor 1201 and a transceiver 1202.
  • the processor 1201 is configured to determine a first enhanced transmission opportunity configuration based on a value of channel loss with the user equipment.
  • the transceiver 1202 is configured to transmit information according to the first enhanced transmission opportunity determined by the processor 1201.
  • the processor 1201 may be further configured to determine a plurality of enhanced transmission opportunity configurations.
  • the transceiver 1202 can also be used to send a plurality of enhanced transmission opportunity configurations and/or transmission types determined by the processor 1201.
  • For the specific transmission method refer to step 202 in FIG. 2 above, and details are not described herein again.
  • the transceiver 1202 is further configured to receive a channel loss value with the user equipment, where the processor 1201 may further be configured to determine a plurality of channels where the channel loss value received by the transceiver 1202 is located. a first channel loss value interval in the loss value interval; determining a first enhanced transmission opportunity configuration corresponding to the first channel loss value interval.
  • the processor 1201 is further configured to determine a transmission type according to a channel loss value interval in which the channel loss value is located; and determine a first enhanced transmission opportunity configuration according to the transmission type and the information type of the information.
  • the transceiver 1202 may be specifically configured to perform information transmission on the enhanced transmission opportunity configured by the first enhanced transmission opportunity configuration according to the transmission type.
  • FIG. 13 is a schematic block diagram of a user equipment according to an embodiment of the present invention. As shown in FIG. 13 , this embodiment provides a user equipment 1300, which can specifically perform the steps of the foregoing embodiments in FIG. 5 to FIG. 7 and FIG. 10 and FIG. 11 , and details are not described herein again. User equipment 1300 provided by this embodiment The processor 1301 and the transceiver 1302 may be specifically included.
  • the processor 1301 is configured to determine a first enhanced transmission opportunity configuration based on a channel loss value with the base station.
  • the transceiver 1302 is configured to configure transmission information according to the first enhanced transmission opportunity determined by the processor 1301.
  • the processor 1301 may be further configured to determine a plurality of enhanced transmission opportunity configurations.
  • the transceiver 1302 is further configured to receive a plurality of enhanced transmission opportunity configurations and/or transmission types sent by the base station.
  • the processor 1301 is further configured to: determine a first channel loss value interval among the plurality of channel loss value intervals in which the channel loss value is located; and determine a first enhanced transmission opportunity configuration corresponding to the first channel loss value interval.
  • the transceiver 1302 is further configured to: send a channel loss value to the base station to the base station; receive the first enhanced transmission opportunity configuration sent by the base station; and use the first enhanced transmission according to the transmission type.
  • the transmission of the information is performed on the enhanced transmission opportunity configured by the opportunity configuration.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, and a read only memory (ROM,
  • RAM random access memory
  • disk disk or optical disk, etc., which can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信息传输的方法。该方法包括确定多个增强传输机会配置;根据与用户设备之间的信道损耗值确定第一增强传输机会配置,其中增强传输机会占用的时间宽度大于非增强传输机会占用的时间宽度;根据所述第一增强传输机会配置传输信息。本发明实施例还提供了一种基站和用户设备,用于根据信道损耗值所在的范围来确定增强传输机会配置。这样基站和用户设备可以根据信道损耗值在合适的时频资源和功率配置上进行信息的发送和/或接收,从而优化了资源配置,节省了功率消耗。

Description

信息传输的方法、 基站和用户设备 技术领域
本发明实施例涉及通信领域, 具体地, 涉及一种信息传输的方法、 基站 和用户设备。 背景技术
物联网( Internet of Things; IOT )作为新一代信息技术的重要组成部分, 是指通过部署具有一定感知、 计算、 执行和通信能力的各种设备, 获取物理 世界的信息, 通过网络实现信息传输、 协同和处理, 从而实现人与物、 物与 物互联的网络。一般认为,物联网的第一个阶段称为机器到机器(Machine to Machine ; M2M ), 即实现机器之间的自由通信。 对于通信网络(比如, 移 动蜂窝网络) 而言, 它所承担的这种通信业务称为机器类型通信(Machine Type Communication; MTC )。
长期演进(Long Term Evolution; LTE )项目是近年来第三代合作伙伴 计划 ( The 3rf Generation Partnership Project; 3GPP )启动的最大的新技术研 发项目 , 这种以正交频分复用技术 ( Orthogonal Frequency Division Multiplexing; OFDM )/多输入多输出技术( Multi-Input Multi-Output; MIMO ) 为核心的技术在 20MHz频谱带宽上能够提供下行 100Mbps、 上行 50Mbps 的峰值速率, 并且能够改善小区边缘用户的性能、 提高小区容量、 降低系统 延迟。 LTE系统的性能优势带来很多好处, 现在已经有很多的 M2M设备可 以充分利用 LTE网络的优点, 其中, 一种是利用 LTE的高速度和低延迟特 性可以立即带来性能提升的 M2M设备, 另一种是对连接要求较低的 M2M 设备。
基于 LTE的低成本 MTC用户设备的研究主要考虑针对 MTC设备的引 入而需要对 LTE网络及空中接口进行增强或优化,其中覆盖问题是运营商关 心的关键问题之一。 例如, MTC 用户设备的一个重要应用是智能仪表, 智 能仪表是被安装在住房的地下室中, 或是被金属外壳隔离。 在这种情况下, MTC 用户设备会比普通用户设备经历更加严重的路径损耗, 比如路径损耗 额外增加 20dB。 严重的路径损耗会使得 MTC用户设备的功率消耗( Power Consumption )增大。 另外, 考虑到 MTC用户设备通常是由电池供电, 功率 消耗的增大会使得电池寿命减短, 不利于设备的维护。 发明内容
针对上述问题, 本发明实施例提供一种信息传输的方法、 基站和用户设 备, 能够降低功率消耗, 优化资源配置。
第一方面, 提供了一种信息传输的方法, 包括: 根据与用户设备之间的 信道损耗值确定第一增强传输机会配置, 其中增强传输机会占用的时间宽度 大于非增强传输机会占用的时间宽度; 根据所述第一增强传输机会配置传输 信息。
结合第一方面, 在一种实现方式中, 所述根据与用户设备之间的信道损 耗值, 确定第一增强传输机会配置之前, 还包括: 确定多个增强传输机会配 置, 其中所述多个增强传输机会配置包括所述第一增强传输机会配置。
结合第一方面及上述实现方式, 在另一实现方式中, 所述多个增强传输 机会配置与所述多个信道损耗值区间——对应。
结合第一方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的 至少一个信息类型相对应, 其中所述传输类型表示信息传输所采用的传输格 式, 所述信息类型表示信息的属性或者类别。
结合第一方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的增强传输机会配置与多个信息 类型中的至少一个信息类型相对应。
结合第一方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的 每一个信息类型相对应。
结合第一方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的增强传输机会配置与多个信息 类型中的每一个信息类型相对应。
结合第一方面及上述实现方式, 在另一实现方式中, 所述根据与用户设 备之间的信道损耗值确定第一增强传输机会配置, 包括: 确定所述信道损耗 值所在的所述多个信道损耗值区间中的第一信道损耗值区间; 确定所述第一 信道损耗值区间对应的所述第一增强传输机会配置。 结合第一方面及上述实现方式, 在另一实现方式中, 所述根据与用户设 备之间的信道损耗值确定第一增强传输机会配置, 包括: 根据所述信道损耗 值所在的信道损耗值区间确定传输类型; 根据所述传输类型和所述信息的信 息类型确定所述第一增强传输机会配置。
结合第一方面及上述实现方式, 在另一实现方式中, 所述根据所述第一 增强传输机会配置传输信息, 包括: 根据所述传输类型, 在所述第一增强传 输机会配置所配置的增强传输机会上进行所述信息的传输。
结合第一方面及上述实现方式, 在另一实现方式中, 所述方法包括: 向 所述用户设备发送所述多个信道损耗值区间对应的多个增强传输机会配置。
结合第一方面及上述实现方式, 在另一实现方式中, 所述向所述用户设 备发送所述多个信道损耗值区间对应的多个增强传输机会配置, 包括: 通过 无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒体接入控 制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 将多个增强 传输机会配置信息发送给用户设备。
结合第一方面及上述实现方式, 在另一实现方式中, 所述多个增强传输 机会配置信息包括: 所述多个增强传输机会配置中的每一个增强传输机会配 置; 或者, 所述多个增强传输机会配置中的每一个增强传输机会配置和所述 多个增强传输机会配置的个数。
结合第一方面及上述实现方式, 在另一实现方式中, 所述方法包括: 向 所述用户设备发送所述每一个信道损耗值区间对应的传输类型。
结合第一方面及上述实现方式, 在另一实现方式中, 所述向所述用户设 备发送所述每一个信道损耗值区间对应的传输类型, 包括: 通过无线资源控 制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒体接入控制 MAC 的 控制元素 CE信令、 物理层信令中的一种或者多种, 将所述传输类型发送给 用户设备。
结合第一方面及上述实现方式, 在另一实现方式中, 所述方法包括: 向 所述用户设备发送根据所述传输类型确定的所述第一增强传输机会配置。
结合第一方面及上述实现方式, 在另一实现方式中, 所述向所述用户设 备发送根据所述传输类型确定的所述第一增强传输机会配置, 包括: 通过 RRC 专用信令, 和 /或物理层专用信令将所述第一增强传输机会配置发送给 所述用户设备。 结合第一方面及上述实现方式, 在另一实现方式中, 所述增强传输机会 配置包括以下至少一项: 增强传输机会的时间间隔; 增强传输机会的时间起 点; 增强传输机会占用的频率资源起点; 增强传输机会占用的频率资源大小 和 /或位置; 增强传输机会占用的时间资源大小和 /或位置; 增强传输机会中 的信息传输所采用的功率配置。
结合第一方面及上述实现方式, 在另一实现方式中, 所述与用户设备之 间的信道损耗为: 与所述用户设备之间的路径损耗; 或者所述用户设备测量 的参考信号接收功率 RSRP; 或者所述用户设备测量的参考信号接收质量 RSRQ; 或者所述用户设备测量的信道质量信息 CQI; 或者所述用户设备期 望的覆盖增强。
结合第一方面及上述实现方式, 在另一实现方式中, 所述传输类型包括 以下至少一种:重复传输次数 M;扩频传输倍数 M;时间传输间隔簇大小 M; 聚合级别 L; 调制方式; 编码方式; 随机接入前导传输格式; 功率配置。
结合第一方面及上述实现方式, 在另一实现方式中, 所述信息类型属于 以下类型集合中的任意一个: 物理信道类型集合; 信号类型集合; 消息类型 集合。
第二方面, 提供了一种信息传输的方法, 所述方法包括: 根据与基站之 间的信道损耗值确定第一增强传输机会配置, 其中增强传输机会占用的时间 宽度大于非增强传输机会占用的时间宽度; 根据所述第一增强传输机会配置 传输信息。
结合第二方面,在一种实现方式中,所述根据与基站之间的信道损耗值, 确定第一增强传输机会配置之前, 还包括: 确定多个增强传输机会配置, 其 中所述多个增强传输机会配置包括所述第一增强传输机会配置。
结合第二方面及上述实现方式, 在另一实现方式中, 所述确定多个增强 传输机会配置包括: 接收所述基站发送的多个信道损耗值区间对应的多个增 强传输机会配置;接收所述基站发送的每一个信道损耗值区间对应的传输类 型。
结合第二方面及上述实现方式, 在另一实现方式中, 所述多个增强传输 机会配置与所述多个信道损耗值区间——对应。
结合第二方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的 至少一个信息类型相对应, 其中所述传输类型表示信息传输所采用的传输格 式, 所述信息类型表示信息的属性或者类别。
结合第二方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个 信息类型中的至少一个信息类型相对应。
结合第二方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的 每一个信息类型相对应。
结合第二方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个 信息类型中的每一个信息类型相对应。
结合第二方面及上述实现方式, 在另一实现方式中, 所述确定多个增强 传输机会配置还包括: 获取预先配置的所述多个增强传输机会。
结合第二方面及上述实现方式, 在另一实现方式中, 所述根据与基站之 间的信道损耗值确定第一增强传输机会配置, 包括: 确定所述信道损耗值所 在的所述多个信道损耗值区间中的第一信道损耗值区间; 确定所述第一信道 损耗值区间对应的所述第一增强传输机会配置。
结合第二方面及上述实现方式, 在另一实现方式中, 所述根据与基站之 间的信道损耗值确定第一增强传输机会配置, 包括: 接收所述基站发送的所 述第一增强传输机会配置。
结合第二方面及上述实现方式, 在另一实现方式中, 所述根据所述第一 增强传输机会配置传输信息, 包括: 根据所述传输类型, 在所述第一增强传 输机会配置所配置的增强传输机会上进行所述信息的传输。
结合第二方面及上述实现方式, 在另一实现方式中, 所述接收所述基站 发送的多个信道损耗值区间对应的多个增强传输机会配置, 包括: 通过无线 资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 接收所述基站 发送的多个增强传输机会配置信息。
结合第二方面及上述实现方式, 在另一实现方式中, 所述多个增强传输 机会配置信息包括: 所述多个增强传输机会配置中的每一个增强传输机会配 置; 或者, 所述多个增强传输机会配置中的每一个增强传输机会配置和所述 多个增强传输机会配置的个数。
结合第二方面及上述实现方式, 在另一实现方式中, 所述接收所述基站 发送的每一个信道损耗值区间对应的传输类型, 包括: 通过无线资源控制
RRC广播信令、 RRC专用信令、 RRC组播信令、 媒体接入控制 MAC 的控 制元素 CE信令、 物理层信令中的一种或者多种, 接收所述基站发送的所述 传输类型。
结合第二方面及上述实现方式, 在另一实现方式中, 所述接收所述基站 发送的所述第一增强传输机会配置, 包括: 通过 RRC专用信令, 和 /或物理 层专用信令接收所述基站发送的所述第一增强传输机会配置。
结合第二方面及上述实现方式, 在另一实现方式中, 所述增强传输机会 配置包括以下至少一项: 增强传输机会的时间间隔; 增强传输机会的时间起 点; 增强传输机会占用的频率资源起点; 增强传输机会占用的频率资源大小 和 /或位置; 增强传输机会占用的时间资源大小和 /或位置; 增强传输机会中 的信息传输所采用的功率配置。
结合第二方面及上述实现方式, 在另一实现方式中, 所述传输类型包括 以下至少一种:重复传输次数 M;扩频传输倍数 M;时间传输间隔簇大小 M; 聚合级别 L; 调制方式; 编码方式; 随机接入前导传输格式; 功率配置。
结合第二方面及上述实现方式, 在另一实现方式中, 所述信息类型属于 以下类型集合中的任意一个: 物理信道类型集合; 信号类型集合; 消息类型 集合。
第三方面, 提供了一种基站, 包括: 第一确定模块, 用于根据与用户设 备之间的信道损耗值确定第一增强传输机会配置,其中增强传输机会占用的 时间宽度大于非增强传输机会占用的时间宽度; 传输模块, 用于根据所述第 一增强传输机会配置传输信息。
结合第三方面, 在一种实现方式中, 所述基站还包括: 第二确定模块, 用于确定多个增强传输机会配置, 其中所述多个增强传输机会配置包括所述 第一增强传输机会配置。
结合第三方面及上述实现方式, 在另一实现方式中, 所述多个增强传输 机会配置与多个信道损耗值区间——对应。
结合第三方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的 至少一个信息类型相对应, 其中所述传输类型表示信息传输所采用的传输格 式, 所述信息类型表示信息的属性或者类别。
结合第三方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个 信息类型中的至少一个信息类型相对应。
结合第三方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的 每一个信息类型相对应。
结合第三方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个 信息类型中的每一个信息类型相对应。
结合第三方面及上述实现方式, 在另一实现方式中, 所述第一确定模块 具体用于: 确定所述信道损耗值所在的所述多个信道损耗值区间中的第一信 道损耗值区间; 确定所述第一信道损耗值区间对应的所述第一增强传输机会 配置。
结合第三方面及上述实现方式, 在另一实现方式中, 所述第一确定模块 具体用于: 根据所述信道损耗值所在的信道损耗值区间确定传输类型; 根据 所述传输类型和所述信息的信息类型确定所述第一增强传输机会配置。
结合第三方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 根据所述传输类型, 在所述第一增强传输机会配置所配置的增强传输 机会上进行所述信息的传输。
结合第三方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 向所述用户设备发送所述多个信道损耗值区间对应的多个增强传输机 会配置。
结合第三方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 将多个增强传输机会配置信息发送给用户设备。
结合第三方面及上述实现方式, 在另一实现方式中, 所述多个增强传输 机会配置信息包括: 所述多个增强传输机会配置中的每一个增强传输机会配 置; 或者, 所述多个增强传输机会配置中的每一个增强传输机会配置和所述 多个增强传输机会配置的个数。
结合第三方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 向所述用户设备发送所述每一个信道损耗值区间对应的传输类型。
结合第三方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 将所述传输类型发送给用户设备。
结合第三方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 向所述用户设备发送根据所述传输类型确定的所述第一增强传输机会 配置。
结合第三方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 通过 RRC专用信令, 和 /或物理层专用信令将所述第一增强传输机会 配置发送给所述用户设备。
第四方面, 提供了一种用户设备, 包括: 第一确定模块, 用于根据与基 站之间的信道损耗值确定第一增强传输机会配置,其中增强传输机会占用的 时间宽度大于非增强传输机会占用的时间宽度; 传输模块, 用于根据所述第 一增强传输机会配置传输信息。
结合第四方面, 在一种实现方式中, 所述用户设备还包括: 第二确定模 块, 用于确定多个增强传输机会配置, 其中所述多个增强传输机会配置包括 所述第一增强传输机会配置。
结合第四方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 接收所述基站发送的多个信道损耗值区间对应的多个增强传输机会配 置; 接收所述基站发送的每一个信道损耗值区间对应的传输类型。
结合第四方面及上述实现方式, 在另一实现方式中, 所述多个增强传输 机会配置与所述多个信道损耗值区间——对应。
结合第四方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的 至少一个信息类型相对应, 其中所述传输类型表示信息传输所采用的传输格 式, 所述信息类型表示信息的属性或者类别。
结合第四方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个 信息类型中的至少一个信息类型相对应。
结合第四方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的 每一个信息类型一一对应。
结合第四方面及上述实现方式, 在另一实现方式中, 所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个 信息类型中的每一个信息类型一一对应。
结合第四方面及上述实现方式, 在另一实现方式中, 所述第二确定模块 具体用于: 获取预先配置的所述多个增强传输机会。
结合第四方面及上述实现方式, 在另一实现方式中, 所述第一确定模块 具体用于: 确定所述信道损耗值所在的所述多个信道损耗值区间中的第一信 道损耗值区间; 确定所述第一信道损耗值区间对应的所述第一增强传输机会 配置。
结合第四方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 接收所述基站发送的所述第一增强传输机会配置。
结合第四方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 根据所述传输类型, 在所述第一增强传输机会配置所配置的增强传输 机会上进行所述信息的传输。
结合第四方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 接收所述基站发送的多个增强传输机会配置信息。
结合第四方面及上述实现方式, 在另一实现方式中, 所述多个增强传输 机会配置信息包括: 所述多个增强传输机会配置中的每一个增强传输机会配 置; 或者, 所述多个增强传输机会配置中的每一个增强传输机会配置和所述 多个增强传输机会配置的个数。
结合第四方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 接收所述基站发送的所述传输类型。
结合第四方面及上述实现方式, 在另一实现方式中, 所述传输模块具体 用于: 通过 RRC专用信令, 和 /或物理层专用信令接收所述基站发送的所述 第一增强传输机会配置。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一个实施例的信息传输方法的示意性流程图;
图 2为本发明另一实施例的信息传输方法的示意性流程图;
图 3为本发明另一实施例的信息传输方法的示意性流程图;
图 4为本发明另一实施例的信息传输方法的示意性流程图;
图 5为本发明另一实施例的信息传输方法的示意性流程图;
图 6为本发明另一实施例的信息传输方法的示意性流程图;
图 7为本发明另一实施例的信息传输方法的示意性流程图;
图 8为本发明一个实施例的一种基站的示意性框图;
图 9为本发明另一实施例的一种基站的示意性框图;
图 10为本发明一个实施例的一种用户设备的示意性框图;
图 11为本发明另一实施例的一种用户设备的示意性框图;
图 12为本发明一个实施例的基站的示意性框图;
图 13为本发明一个实施例的用户设备的示意性框图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
应理解, 本发明的技术方案可以应用于各种通信系统, 例如: 全球移动 通讯 ( Global System of Mobile communication; GSM )系统、码分多址( Code Division Multiple Access; CDMA ) 系统、 宽带码分多址 ( Wideband Code Division Multiple Access; WCDMA )系统、通用分组无线业务( General Packet Radio Service; GPRS )、 长期演进( Long Term Evolution; LTE ) 系统、 LTE 频分双工 (Frequency Division Duplex; FDD ) 系统、 LTE时分双工 (Time Division Duplex; TDD )、 通用移动通信系统 ( Universal Mobile Telecommunication System; UMTS )等。
还应理解, 在本发明实施例中, 用户设备( User Equipment; UE )可称 之为终端 ( Terminal ), 移动台 ( Mobile Station; MS )、 移动终端 ( Mobile Terminal )等, 该用户设备可以经无线接入网( Radio Access Network; RAN ) 与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为 "蜂 窝" 电话)、 具有移动终端的计算机等, 例如, 用户设备还可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入网交 换语音和 /或数据。
在本发明实施例中, 基站可以是 GSM 或 CDMA 中的基站 (Base Transceiver Station; BTS ), 也可以是 WCDMA中的基站( NodeB; NB ), 还 可以是 LTE中的演进型基站 ( Evolutional Node B; eNB或 e-NodeB ), 本发 明并不限定。 为描述方便, 下述实施例将以基站 eNB和用户设备 UE为例进 行说明, 但本发明所述的方法也可以类似地应用于其它实体之间(如终端和 终端)的通信。
还应理解, 在本发明实施例中, 传输代表的意思是发送和 /或接收。信息 可以是以下物理信道、 信号、 消息中的一种或多种: 物理下行控制信道 PDCCH、 增强型物理下行控制信道 ePDCCH、 物理随机接入信道 PRACH、 随机接入响应消息、 随机接入响应应答 Msg3消息、 竟争解决消息、 系统信 息、 寻呼消息、 物理控制格式指示信道 PCFICH、 物理混合自动重传请求指 示信道 PHICH、 单播的物理下行共享信道 PDSCH、 广播或组播的物理下行 共享信道 PDSCH、 物理上行共享信道 PUSCH、 物理上行控制信道 PUCCH、 公共参考信号 CRS、 解调参考信号 DMRS、 专有参考信号 DRS、 同步信道 SCH、 物理广播信道 PBCH等。 相应的, 信息类型可以是上述信息中的一种 或多种。
图 1为本发明一个实施例的信息传输方法的示意性流程图。 图 1的方法 可以由基站执行。
101 , 根据与用户设备 UE之间的信道损耗值确定第一增强传输机会配 置, 其中增强传输机会占用的时间宽度大于非增强传输机会占用的时间宽 度。
与 UE之间的信道损耗值为与 UE之间的路径损耗的度量值, 可以是任 意能够度量通信质量、信道质量、服务质量 QoS的值或信息。 具体表现形式 可以是: UE测量的参考信号接收功率 RSRP; 或者 UE测量的参考信号接收 质量 RSRQ; 或者 UE测量的信道质量信息 CQI; 或者 UE期望的覆盖增强 中的任意一种或多种。
不同的 UE由于地理位置、 所处的环境、 产品实现等不同, 在同一个小 区内的不同 UE与基站之间的信道损耗会存在不同。 因此, 基站和不同 UE 之间的信号可靠发送或者接收所需要的覆盖增强值不同, 即 UE期望的覆盖 增强值不同。 对于信道损耗较大, 期望覆盖增强较大的 UE, 可以通过重复、 扩频、 传输时间间隔捆绑 ΤΉ bundling, 低码率编码结合低阶调制等牺牲资 源的方式, 也就是增强传输机会来实现覆盖增强。
一个增强传输机会包含了信息重复或扩频传输所占用的时间和 /或频率 资源的大小及位置, 信息在增强传输机会上进行时间和 /或频率上的 M次重 复传输或者 M倍扩频调制, 接收侧将一个增强传输机会中 M次重复传输或 者 M倍扩频调制的信号进行 M倍的信息叠加或者 M倍的解扩,从而提高了 信息传输的可靠性。 其中, M可以根据 UE和基站之间的信道损耗值对应确 定, 或者根据 UE和基站之间的信道损耗值通过理论计算得出。 并且, 信息 的增强处理方法不限于此, 例如, 对于控制信道的增强, 还可以通过控制信 道元素 CCE或增强的控制信道元素 eCCE的聚合级别或范围、 调制编码方 式、 功率配置等方法来进行信息的增强。
增强传输机会配置能够具体地配置增强传输机会所占用的时频资源的 位置和大小以及增强传输机会中信息传输所采用的功率配置。 因为增强传输 机会需要更多的时频资源来获得更好的覆盖和传输可靠性, 所以增强传输机 会占用的时间宽度大于非增强传输机会占用的时间宽度。 其中, 非增强传输 机会在时间上只包括一个传输时间间隔 ΤΉ, 信息在非增强传输机会上不能 实现多个 ΤΉ内的能量累加。 增强传输机会在时间上包含多个 ΤΉ, 信息在 增强传输机会上可以实现多个 ΤΉ内的能量累加,提高信息传输的可靠性。。 一般来说, 信息的重复传输, 或扩频传输, 或 ΤΉ bundling通常是按照整数 倍数进行的, 所以增强传输机会所占用的时频资源的大小也通常是非增强传 输机会所占用的时频资源大小的倍数。
可选地, 作为一个实施例, 增强传输机会配置可以包括以下至少一项: 增强传输机会的时间间隔; 增强传输机会的时间起点; 增强传输机会占用的 频率资源起点;增强传输机会占用的频率资源大小和 /或位置;增强传输机会 占用的时间资源大小和 /或位置;增强传输机会中的信息传输所采用的功率配 置。
102, 根据第一增强传输机会配置传输信息。
在第一增强传输机会配置所配置的时频资源上传输经过增强处理的信 息, 例如经过 M次重复或者 M倍扩频调制的信息, 从而实现信息的可靠传 输以及覆盖增强。其中,信息的增强处理方法不限于此,例如对于控制信道, 还可以通过控制信道元素 CCE或增强的控制信道元素 eCCE的聚合级别或 范围、 调制编码方式、 功率配置等方法来进行信息的增强。 同时, 因为第一 增强传输机会配置是根据信道损耗值所确定的,对于较高的信道损耗值使用 较多的时频资源, 对于较低的信道损耗值使用较少的时频资源, 从而实现了 时频资源的合理分配, 节省功率消耗。
图 2为本发明另一实施例的信息传输方法的示意性流程图。 图 2的方法 由基站执行。 图 2为图 1的一个更加具体的实施例, 给出了图 1中确定信道 损耗值对应的增强传输机会配置以及将增强传输机会配置下发的具体方法。
201 , 确定多个增强传输机会配置, 其中多个增强传输机会配置包括第 一增强传输机会配置。
可以通过系统预先定义的方式, 为基站配置多个增强传输机会配置。 具 体地, 可以预定义多个增强传输机会配置与多个信道损耗值区间以及传输类 型之间的对应关系。 例如, 多个增强传输机会配置与多个信道损耗值区间一 一对应; 多个信道损耗值区间中的每一个信道损耗值区间所对应的传输类型 与多个信息类型中的至少一个信息类型相对应; 多个信道损耗值区间中的每 一个信道损耗值区间所对应的增强传输机会配置与多个信息类型中的至少 一个信息类型相对应; 多个信道损耗值区间中的每一个信道损耗值区间所对 应的传输类型与多个信息类型中的每一个信息类型一一对应; 多个信道损耗 值区间中的每一个信道损耗值区间所对应的增强传输机会配置与多个信息 类型中的每一个信息类型一一对应。其中传输类型表示信息传输所采用的传 输格式, 信息类型表示信息的属性或者类别。 信道损耗值区间的划分也可以是系统预先定义的, 可以在一个大的取值 范围里设定多个信道损耗值,从而将大的取值范围划分为多个信道损耗值区 间。 例如: 在 OdB到 20dB的取值范围里取 5dB、 10dB、 15dB, 将取值范围 划分为 OdB到 5dB、 6dB到 10dB、 lldB到 15dB和 16dB到 20dB。 应理解, 本发明中的信道损耗值区间划分方法不限于此。
可选地, 作为一个实施例, 表 1示意了信道损耗值区间、 传输类型、 增 强传输机会配置之间的对应关系。 其中信道损耗值区间与传输类型一一对 应, 传输类型与增强传输机会配置一一对应, 从而, 多个增强传输机会配置 与多个信道损耗值区间——对应。
表 1 信道损耗值区间、 传输类型、 增强传输机会配置之间的对应关系
Figure imgf000016_0001
表 1中的区间划分仅为一个示例, 可以不限于三个区间。 传输类型中的 重复传输次数和 /或扩频因子 Ml , M2, M3互不相同, 且 M1<M2<M3。 其 中, 扩频因子是进行扩频调制的扩频倍数。 传输类型不限于重复传输和扩频 调制, 还可以包括以下的一种或者多种: ΤΉ bundling, 扩频码索引、 控制 信道元素 CCE或增强的控制信道元素 eCCE聚合级别或范围、 调制编码方 式、 功率配置等。 需要说明的是, 可以将信道损耗值区间所对应的传输类型 包括的部分或全部内容包含在该信道损耗值区间所对应的增强传输机会配 置中。如果信道损耗值区间所对应的传输类型包括的全部内容都包含在该信 道损耗值区间所对应的增强传输机会配置中, 则传输类型实际上可以不定 义; 此时, 只存在信道损耗值区间与增强传输机会配置之间的对应关系。
多个信道损耗值区间确定后, 可以根据每个信道损耗值区间的权重来确 定能够保证信息传输可靠性的传输类型。 其中, 信道损耗值区间的权重可以 根据信道损耗值区间的边界值或平均值来确定, 例如, 6dB到 10dB的区间 的权重可以是 6dB或 10dB或 8dB。 应理解, 信道损耗值区间的权重的确定 不限于上述方法。 信道损耗值区间的权重越大, 所对应的传输类型的重复传 输次数越多, 和 /或扩频因子的长度越长, 和 /或聚合等级越高, 和 /或 TTI bundling大小越大等, 反之亦然。
在不考虑信息类型的情况下,根据上述能够保证信息传输可靠性的传输 类型能够得知所需占用的时频资源的大小和位置。并且结合上述信道损耗值 区间的权重来确定合适的功率配置。根据时频资源的大小和位置以及功率配 置来确定增强传输机会, 从而确定出增强传输机会配置。
可选地, 作为另一个实施例, 考虑到信息类型, 不同信息类型的信息传 输可以应用相同的信道损耗值区间、 传输类型、 增强传输机会配置之间的对 应关系。 表 2示意了信息类型 x、 信息类型 y、 信息类型 z的信息传输采用 相同的信道损耗值区间、 传输类型、 增强传输机会配置之间的对应关系。
表 2信道损耗值区间、信息类型、传输类型、 增强传输机会配置之间的 对应关系
Figure imgf000017_0001
应理解, 表 2中的区间划分, 仅为一个示例, 可以不限于三个区间。 信 息类型 x、 信息类型 y、 信息类型 z仅为一个示例性的划分, 信息类型的个 数不限于三个。 可扩展地, 多个信息类型中的至少一个信息类型也可以有以 上对应关系。 即: 多个信道损耗值区间中的每一个信道损耗值区间所对应的 传输类型与多个信息类型中的至少一个信息类型相对应; 多个信道损耗值区 间中的每一个信道损耗值区间所对应的增强传输机会配置与多个信息类型 中的至少一个信息类型相对应。 需要说明的是, 可以将信道损耗值区间所对 应的传输类型包括的部分或全部内容包含在该信道损耗值区间所对应的增 强传输机会配置中。如果信道损耗值区间所对应的传输类型包括的全部内容 都包含在该信道损耗值区间所对应的增强传输机会配置中,则传输类型实际 上可以不定义; 此时, 只存在信道损耗值区间与增强传输机会配置之间的对 应关系。
信息类型可以属于以下类型集合中的任意一个: 物理信道类型集合; 信 号类型集合; 消息类型集合。 其中, 物理信道类型集合可以包括: 物理下行 控制信道 PDCCH、 增强型物理下行控制信道 ePDCCH、 物理随机接入信道 PRACH、 物理控制格式指示信道 PCFICH、 物理混合自动重传请求指示信道 PHICH、 单播的物理下行共享信道 PDSCH、 广播或组播的物理下行共享信 道 PDSCH、 物理上行共享信道 PUSCH、 物理上行控制信道 PUCCH、 同步 信道 SCH、 物理广播信道 PBCH等。 信号类型集合可以包括: 公共参考信 号 CRS、 解调参考信号 DMRS、 专有参考信号 DRS等。 消息类型集合可以 包括: 随机接入响应消息、 随机接入响应应答 Msg3消息、 竟争解决消息、 系统信息、 寻呼消息等。
本实施例中, 信道损耗值区间、 传输类型和增强传输机会之间的对应关 系可以与表 1中三者的对应关系相同。对应关系的确定方法也可以参考表 1 , 此处不再赘述。
可选地, 作为另一个实施例, 考虑到信息类型, 不同的信息类型可以应 用不同的信道损耗值区间、 传输类型、 增强传输机会配置之间的对应关系。 表 3示意了信息类型 x、 信息类型 y、 信息类型 z的信息传输采用不同的信 道损耗值区间、 传输类型、 增强传输机会配置之间的对应关系。
表 3 信道损耗值区间、信息类型、传输类型、 增强传输机会配置之间的 对应关系
信道损耗值区间 信息类型 传输类型 增强传输机 会配置 区间 1: 信道损耗值 ≤ 信息类型 X 传输类型 xl 增强传输机
A dB 会配置 xl 区间 2: A dB t道损耗 信息类型 X 传输类型 x2 增强传输机 值 ^ B dB 会配置 x2 区间 3: B dB t道损耗 信息类型 X 传输类型 x3 增强传输机
值 会配置 x3 信道损耗值区间 信息类型 传输类型 增强传输机
会配置 区间 1: 信道损耗值 ≤ 信息类型 y 传输类型 yl 增强传输机
A dB 会配置 yl 区间 2: A dB t道损耗 信息类型 y 传输类型 y2 增强传输机
值 ^ B dB 会配置 y2 区间 3: B dB t道损耗 信息类型 y 传输类型 y3 增强传输机
值 会配置 y3 信道损耗值区间 信息类型 传输类型 增强传输机
会配置 区间 1: 信道损耗值 ≤ 信息类型 z 传输类型 zl 增强传输机
A dB 会配置 zl 区间 2: A dB t道损耗 信息类型 z 传输类型 z2 增强传输机
值 ^ B dB 会配置 z2 区间 3: B dB t道损耗 信息类型 z 传输类型 z3 增强传输机
值 会配置 z3 应理解, 表 3中的区间划分, 仅为一个示例, 可以不限于三个区间。 信 息类型 x、 信息类型 y、 信息类型 z仅为一个示例性的划分, 信息类型的个 数不限于三个。 多个信道损耗值区间中的每一个信道损耗值区间所对应的传 输类型与多个信息类型中的每一个信息类型相对应; 多个信道损耗值区间中 的每一个信道损耗值区间所对应的增强传输机会配置与多个信息类型中的 每一个信息类型相对应。 需要说明的是, 可以将信道损耗值区间所对应的传 输类型包括的部分或全部内容包含在该信道损耗值区间所对应的增强传输 机会配置中。如果信道损耗值区间所对应的传输类型包括的全部内容都包含 在该信道损耗值区间所对应的增强传输机会配置中, 则传输类型实际上可以 不定义;此时,只存在信道损耗值区间与增强传输机会配置之间的对应关系。 信息类型可以属于以下类型集合中的任意一个: 物理信道类型集合; 信 号类型集合; 消息类型集合。 其中, 物理信道类型集合可以包括: 物理下行 控制信道 PDCCH、 增强型物理下行控制信道 ePDCCH、 物理随机接入信道 PRACH、 物理控制格式指示信道 PCFICH、 物理混合自动重传请求指示信道 PHICH、 单播的物理下行共享信道 PDSCH、 广播或组播的物理下行共享信 道 PDSCH、 物理上行共享信道 PUSCH、 物理上行控制信道 PUCCH、 同步 信道 SCH、 物理广播信道 PBCH等。 信号类型集合可以包括: 公共参考信 号 CRS、 解调参考信号 DMRS、 专有参考信号 DRS等。 消息类型集合可以 包括: 随机接入响应消息、 随机接入响应应答 Msg3消息、 竟争解决消息、 系统信息、 寻呼消息等。
本实施例中, 每个信息类型都有特定的信道损耗值区间、 传输类型和增 强传输机会之间的对应关系。 系统需要为不同的信息类型分别单独配置不同 的信道损耗值区间、 传输类型和增强传输机会之间的对应关系。 其中, 传输 类型和增强传输机会配置之间还是——对应的关系。 而相同的信道损耗值区 间可以对应于不同的传输类型和增强传输机会配置。
202, 向用户设备发送多个信道损耗值区间对应的多个增强传输机会配 置。
在确定了多个信道损耗值区间和多个增强传输机会配置的对应关系后, 将上述对应关系发送给用户设备。 具体地, 可以向用户设备发送多个信道损 耗值区间对应的多个增强传输机会配置,还可以向用户设备发送每一个信道 损耗值区间对应的传输类型, 从而能够在 UE端建立起信道损耗值区间、 传 输类型和增强传输机会配置的对应关系。
更具体地,实际的发送方式可以是:通过无线资源控制 RRC广播信令 (如 系统信息块 SIB或主信息块 MIB)、 RRC专用信令、 RRC组播信令、 媒体接 入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 将多个 增强传输机会配置信息和 /或传输类型发送给用户设备。其中,信道损耗值区 间与传输类型和信息类型的对应关系可以通过发送顺序确定, 或通过标号来 确定。
可选地, 作为一个实施例, 在不考虑信息类型的情况下, 以下伪代码示 例了通过 RRC广播信令将增强传输机会(Enhanced Transmission Occasion; ETO ) 配置给 UE:
ETO-ConfigCommon: := {SEQUENCE (SIZE (1.. ETONumber)) OF ETOInfo
ETOInfo:: ={ SEQUENCE
增强传输机会的时间间隔 T
第一个增强传输机会的时间起点
增强传输机会占用的频率资源起点
增强传输机会占用的频率资源大小和 /或位置
增强传输机会占用的时间资源大小和 /或位置
增强传输机会中信息传输所采用的功率配置
上述伪代码中, ETO-ConfigCommon没有指示信息类型, 即本实施例中 不考虑信息类型。 也可以理解为, 所有的信息类型都可以应用相同的信道损 耗值区间、 传输类型和增强传输机会配置的对应关系。 ETONumer指示了增 强传输机会的个数, 等价的, 指示了增强传输机会配置的个数, 即基站向 UE下发多个增强传输机会配置的过程中, 同时将多个增强传输机会配置的 个数也下发给了 UE。 ETOInfo 当中具体地配置了多个增强传输机会之间的 时间间隔, 每一个增强传输机会的时间起点和时间长度, 每一个增强传输机 会占用的频率资源起点和大小, 以及每一个增强传输机会中信息传输所采用 的功率配置。 ETOInfo中可以包括上述配置项中的任意一项或多项。类似地, 可以将传输类型也发送给 UE, 从而在 UE端建立起步骤 201中表 1所示的 ——对应关系。
可选地, 作为另一个实施例, 在考虑信息类型的情况下, 以下伪代码示 例了通过 RRC广播信令为信息类型 x、 信息类型y、 信息类型 z配置相同的 增强传输机会:
ETO-ConfigCommon_x_y_z::= {SEQUENCE (SIZE (1.. ETONumber)) OF ETOInfo
ETOInfo:: ={ SEQUENCE
增强传输机会的时间间隔 T 第一个增强传输机会的时间起点
增强传输机会占用的频率资源起点
增强传输机会占用的频率资源大小和 /或位置
增强传输机会占用的时间资源大小和 /或位置
增强传输机会中信息传输所采用的功率配置
上述伪代码中, ETO-ConfigCommon指示了信息类型 x、 信息类型 y、 信息类型 z, 即本实施例中考虑信息类型, 为多个不同的信息类型配置相同 的信道损耗值区间、 传输类型和增强传输机会配置的对应关系。 ETONumer 指示了增强传输机会的个数, 等价的, 指示了增强传输机会配置的个数, 即 基站向 UE下发多个增强传输机会配置的过程中, 同时将多个增强传输机会 配置的个数也下发给了 UE。 ETOInfo 当中具体地配置了多个增强传输机会 之间的时间间隔, 每一个增强传输机会的时间起点和时间长度, 每一个增强 传输机会占用的频率资源起点和大小, 以及每一个增强传输机会中信息传输 所采用的功率配置。 ETOInfo中可以包括上述配置项中的任意一项或多项。 类似地, 可以将传输类型也发送给 UE,从而在 UE端建立起步骤 201中表 2 所示的对应关系。
可选地, 作为另一个实施例, 在考虑信息类型的情况下, 以下三段伪代 码分别示例了通过 RRC广播信令为信息类型 x、 信息类型 y、 信息类型 z分 别配置增强传输机会:
ETO-ConfigCommon_x::= {SEQUENCE (SIZE (1.. ETONumber)) OF ETOInfo
ETOInfo:: ={ SEQUENCE
增强传输机会的时间间隔 T
第一个增强传输机会的时间起点
增强传输机会占用的频率资源起点
增强传输机会占用的频率资源大 d、和 /或位置
增强传输机会占用的时间资源大小和 /或位置
增强传输机会中信息传输所采用的功率配置 ETO-ConfigCommon_y::= {SEQUENCE (SIZE (1.. ETONumber)) OF ETOInfo
ETOInfo:: ={ SEQUENCE
增强传输机会的时间间隔 T
第一个增强传输机会的时间起点
增强传输机会占用的频率资源起点
增强传输机会占用的频率资源大小和 /或位置
增强传输机会占用的时间资源大小和 /或位置
增强传输机会中信息传输所采用的功率配置
ETO-ConfigCommon_z::= {SEQUENCE (SIZE (1.. ETONumber)) OF ETOInfo
ETOInfo:: ={ SEQUENCE
增强传输机会的时间间隔 T
第一个增强传输机会的时间起点
增强传输机会占用的频率资源起点
增强传输机会占用的频率资源大 d、和 /或位置
增强传输机会占用的时间资源大小和 /或位置
增强传输机会中信息传输所采用的功率配置
上述三段伪代码中, ETO-ConfigCommon分别指示了信息类型 x、 信息 类型 y、 信息类型 z, 即本实施例中考虑信息类型, 为多个不同的信息类型 配置不同的信道损耗值区间、 传输类型和增强传输机会配置的对应关系。 ETONumer指示了增强传输机会的个数, 等价的, 指示了增强传输机会配置 的个数, 即基站向 UE下发多个增强传输机会配置的过程中, 同时将多个增 强传输机会配置的个数也下发给了 UE。 ETOInfo 当中具体地配置了多个增 强传输机会之间的时间间隔, 每一个增强传输机会的时间起点和时间长度, 每一个增强传输机会占用的频率资源起点和大小, 以及每一个增强传输机会 中信息传输所采用的功率配置。 ETOInfo中可以包括上述配置项中的任意一 项或多项。 类似地, 可以将传输类型也发送给 UE, 从而在 UE端建立起步 骤 201中表 3所示的对应关系。
因此, 本发明中信息传输的方法能够通过系统预定义的方式在基站侧配 置信道损耗值区间、 传输类型和增强传输机会之间的对应关系。 不同的信道 损耗值区间对应不同的增强传输机会配置,在较高的信道损耗值区间使用较 多的时频资源和较大的功率来保证信息的可靠传输,在较低的信道损耗值区 间使用较少的时频资源和较小的功率, 使得时频资源配置得到了优化, 降低 了系统实现复杂度, 并且节省了功率消耗。
图 3为本发明另一实施例的信息传输方法的示意性流程图。 图 3的方法 由基站执行。 图 3为图 2的一个更加具体的实施例, 给出了确定第一增强传 输机会并且进行信息传输的具体方法。
301 , 确定信道损耗值所在的多个信道损耗值区间中的第一信道损耗值 区间。
首先确定与 UE间的信道损耗值, 具体的确定方法本发明实施例中不做 限定, 信道损耗值可以是由基站测量得到的, 也可以是由 UE测量得到并且 上传给基站的, 例如: UE测量的参考信号接收功率 RSRP; 或者 UE测量的 参考信号接收质量 RSRQ; 或者 UE测量的信道质量信息 CQI; 或者 UE期 望的覆盖增强等。
基站确定了信道损耗值后,在系统预先定义的多个信道损耗值范围中确 定包括该信道损耗值的第一信道损耗值区间。 例如, 结合步骤 201中信道损 耗值区间的划分例子,假设信道损耗值为 3dB,则第一信道损耗值区间为 OdB 到 5dB。
302, 确定第一信道损耗值区间对应的第一增强传输机会配置。
根据步骤 201中信道损耗值区间、 传输类型、 信息类型和增强传输机会 配置之间的对应关系来确定第一信道损耗值区间对应的第一增强传输机会 配置。 其中, 信息类型是待传输信息自带的属性或者类别。
可选地, 作为一个实施例, 在不考虑信息类型的情况下, 可以参照步骤
201中的表 1的对应关系来确定第一增强传输机会配置。 例如, 第一信道损 耗值区间为: A dB〈信道损耗值 ^ B dB, 相应的, 第一增强传输机会配置为 增强传输机会配置 2。
可选地, 作为另一个实施例, 在考虑到信息类型的情况下, 可以参照步 骤 201中的表 2的对应关系来确定增强传输机会配置。其中表 1和表 2中的 信道损耗值区间和传输类型和增强传输机会配置的对应关系可以相同。 即, 可以为不同的信息类型配置相同的增强传输机会。 例如, 对于不同的待传输 信息的信息类型 X和 y , 第一信道损耗值区间为: 信道损耗值 ^ A dB, 相应 的, 第一增强传输机会配置为增强传输机会配置 1。
可选地, 作为另一个实施例, 在考虑到信息类型的情况下, 可以参照步 骤 201中的表 3的对应关系来确定增强传输机会配置。 即, 可以为每种信息 类型分别配置不同的增强传输机会。 因此, 在确定增强传输机会之前, 除了 确定第一信道损耗值区间, 还需要确定待传输信息的信息类型。 其中, 信息 类型可以由基站来确定, 也可以通过 UE上传给基站。 例如, 确定待传输信 息的信息类型为 X , 第一信道损耗值区间为: BdB<信道损耗值, 相应的, 第 一增强传输机会配置为增强传输机会配置 x3,如果待传输信息的信息类型为 y, 相应的, 第一增强传输机会配置为增强传输机会配置 y3。
303 , 根据传输类型, 在第一增强传输机会配置所配置的增强传输机会 上进行信息的传输。
首先,基站通过上述步骤 302中的对应关系来确定第一增强传输机会所 对应的传输类型。 然后, 在第一增强传输机会配置所配置的时频资源上传输 经过增强处理的信息, 例如经过 M次重复, 或者 M倍扩频调制, 或 M倍 TTI bundling的信息, 在 M倍时间宽度或者 M倍频率宽度的资源上进行传 输, 从而实现信息的可靠传输以及覆盖增强。 其中, 信息的增强处理方法不 限于此, 例如对于控制信道, 还可以通过控制信道元素 CCE或增强的控制 信道元素 eCCE的聚合级别或范围、 调制编码方式、 功率配置等方法来进行 信息的增强。其中,不同的信息的增强处理方法可以理解为不同的传输类型。
同时, 因为第一增强传输机会配置是根据信道损耗值所确定的, 对于较 高的信道损耗值使用较多的时频资源和较高的功率,对于较低的信道损耗值 使用较少的时频资源和较低的功率, 从而实现了时频资源的合理分配, 节省 功率消耗。
图 4为本发明另一实施例的信息传输方法的示意性流程图。 图 4的方法 由基站执行。 图 4为图 1的另一个更加具体的实施例, 给出了非系统预定义 方式的确定第一增强传输机会的具体方法。
401 , 根据信道损耗值或信道损耗值所在的信道损耗值区间确定传输类 型。
首先确定与 UE间的信道损耗值, 具体的确定方法本发明实施例中不做 限定, 信道损耗值可以是由基站测量得到的, 也可以是由 UE测量得到并且 上传给基站的, 例如: UE测量的参考信号接收功率 RSRP; 或者 UE测量的 参考信号接收质量 RSRQ; 或者 UE测量的信道质量信息 CQI; 或者 UE期 望的覆盖增强等。
基站确定了信道损耗值后, 可以根据信道损耗值的大小来确定能够保证 信息可靠传输的重复传输次数 M, 或扩频倍数 M, 或 ΤΉ bundling数, 或 CCE/eCCE聚合级别, 或调制编码方式, 或功率配置, 或扩频码索引。 即, 确定合适的传输类型。
或者可以划分多个信道损耗值区间, 确定信道损耗值所在的区间。 根据 信道损耗值区间的权重来确定能够保证信息可靠传输的重复传输次数 M,或 扩频倍数 M,或 ΤΉ bundling数,或 CCE/eCCE聚合级别,或调制编码方式, 或功率配置, 或扩频码索引。 即, 确定合适的传输类型。 其中, 信道损耗值 区间的权重可以根据信道损耗值区间的边界值或平均值来确定, 例如, 6dB 到 10dB的区间的权重可以是 6dB或 10dB或 8dB。 应理解, 信道损耗值区 间的权重的确定不限于上述方法。 信道损耗值区间的权重越大, 所对应的传 输类型的重复传输次数越多, 和 /或扩频因子的长度越长, 和 /或 ΤΉ bundling 大小越大, 和 /或聚合等级越高等等, 反之亦然。
402 , 根据传输类型和信息的信息类型确定第一增强传输机会配置。 根据传输类型, 可以确定信息传输所需要占用的时频资源的大小。 根据 信息的信息类型, 可以确定信息传输所需要占用的时频资源的位置。 另外, 还可以根据信道损耗值来确定传输所需要的覆盖增强,从而确定信息传输所 需要的功率。 通过上述一种或多种方法, 可以确定第一增强传输机会配置。 即, 增强传输机会配置包括以下中的至少一项: 增强传输机会的时间间隔; 增强传输机会的时间起点; 增强传输机会占用的频率资源起点; 增强传输机 会占用的频率资源大小和 /或位置; 增强传输机会占用的时间资源大小和 /或 位置; 增强传输机会中的信息传输所采用的功率配置。 信息类型可以属于以下类型集合中的任意一个: 物理信道类型集合; 信 号类型集合; 消息类型集合。 其中, 物理信道类型集合可以包括: 物理下行 控制信道 PDCCH、 增强型物理下行控制信道 ePDCCH、 物理随机接入信道 PRACH、 物理控制格式指示信道 PCFICH、 物理混合自动重传请求指示信道 PHICH、 单播的物理下行共享信道 PDSCH、 广播或组播的物理下行共享信 道 PDSCH、 物理上行共享信道 PUSCH、 物理上行控制信道 PUCCH、 同步 信道 SCH、 物理广播信道 PBCH等。 信号类型集合可以包括: 公共参考信 号 CRS、 解调参考信号 DMRS、 专有参考信号 DRS等。 消息类型集合可以 包括: 随机接入响应消息、 随机接入响应应答 Msg3消息、 竟争解决消息、 系统信息、 寻呼消息等。
403a, 向用户设备发送根据传输类型确定的第一增强传输机会配置。 通过 RRC专用信令, 和 /或物理层专用信令将第一增强传输机会配置发 送给用户设备。 例如, 以 RRC专用信令为例, 在不考虑信息类型的情况下, 第一增强传输机会配置可以表示为以下伪代码的形式来进行发送:
ETO-ConfigDedicated: := {SEQUENCE
增强传输机会的时间间隔 T
第一个增强传输机会的时间起点
增强传输机会占用的频率资源起点
增强传输机会占用的频率资源大 d、和 /或位置
增强传输机会占用的时间资源大小和 /或位置
增强传输机会中信息传输所采用的功率配置 可选地,在考虑到信息类型的情况下, RRC专用信令的伪代码格式可以 参考图 2中步骤 202的实施例, 此处不再赘述。
403b, 根据传输类型, 在第一增强传输机会配置所配置的增强传输机会 上进行信息的传输。
在第一增强传输机会配置所配置的时频资源上传输经过增强处理的信 息, 例如经过 M次重复, 或者 M倍扩频调制, 或者 M倍 ΤΉ bundling的信 息, 在 M倍时间宽度或者 M倍频率宽度的资源上进行传输, 从而实现信息 的可靠传输以及覆盖增强。 其中, 信息的增强处理方法不限于此, 例如对于 控制信道还可以通过控制信道元素 CCE或增强的控制信道元素 eCCE的聚 合级别或范围、 调制编码方式、 功率配置等方法来进行信息的增强。 其中, 不同的信息的增强处理方法可以理解为不同的传输类型。
403a和 403b两个步骤执行方式有以下几种: 执行 403a, 不执行 403b; 或者不执行 403a, 执行 403b; 或者执行 403a, 执行 403b。 其中两个步骤执 行顺序不分先后。
因为第一增强传输机会配置是根据信道损耗值所确定的,对于较高的信 道损耗值使用较多的时频资源和较高的功率,对于较低的信道损耗值使用较 少的时频资源和较低的功率, 从而实现了时频资源的合理分配, 节省功率消 耗。
图 5为本发明另一实施例的信息传输方法的示意性流程图。 图 5的方法 由用户设备 UE执行。
501 , 根据与基站之间的信道损耗值确定第一增强传输机会配置, 其中 增强传输机会占用的时间宽度大于非增强传输机会占用的时间宽度。
与基站之间的信道损耗值为与基站之间的路径损耗的度量值, 可以是任 意能够度量通信质量、信道质量、服务质量 QoS的值或信息。 具体表现形式 可以是: UE测量的参考信号接收功率 RSRP; 或者 UE测量的参考信号接收 质量 RSRQ; 或者 UE测量的信道质量信息 CQI; 或者 UE期望的覆盖增强 中的任意一种或多种。
不同的 UE由于地理位置、 所处的环境、 产品实现等不同, 在同一个小 区内的不同 UE与基站之间的信道损耗会存在不同。 因此, 基站和不同 UE 之间的信号可靠发送或者接收所需要的覆盖增强值不同, 即 UE期望的覆盖 增强不用。 对于信道损耗较大, 期望覆盖增强较大的 UE, 可以通过重复、 扩频、 ΤΉ bundling, 低码率编码结合低阶调制等牺牲资源的方式, 也就是 增强传输机会来实现覆盖增强。
一个增强传输机会包含了信息重复, 或扩频传输, 或 ΤΉ bundling所占 用的时间和 /或频率资源位置, 信息在增强传输机会上进行时间和 /或频率上 的 M次重复传输或者 M倍扩频调制,接收侧将一个增强传输机会中 M次重 复传输或者 M倍扩频调制的信号进行 M倍的信息叠加或者 M倍的解扩,从 而提高了信息传输的可靠性。 并且, 信息的增强处理方法不限于此, 例如, 对于控制信道还可以通过控制信道元素 CCE或增强的控制信道元素 eCCE 的聚合级别或范围、 调制编码方式、 功率配置等方法来进行信息的增强。 增强传输机会配置能够具体地配置增强传输机会所占用的时频资源的 位置和大小以及增强传输机会中信息传输所采用的功率配置。 因为增强传输 机会需要更多的时频资源来获得更好的覆盖和传输可靠性, 所以增强传输机 会占用的时间宽度大于非增强传输机会占用的时间宽度。 其中, 非增强传输 机会在时间上只包括一个传输时间间隔 ΤΉ, 信息在非增强传输机会上不能 实现多个 ΤΉ内的能量累加。 增强传输机会在时间上包含多个 ΤΉ, 信息在 增强传输机会上可以实现多个 ΤΉ内的能量累加,提高信息传输的可靠性。。 一般来说, 信息的重复传输, 或扩频传输, 或 ΤΉ bundling通常是按照整数 倍数进行的, 所以增强传输机会所占用的时频资源的大小也通常是非增强传 输机会所占用的时频资源大小的倍数。
可选地, 作为一个实施例, 增强传输机会配置可以包括以下至少一项: 增强传输机会的时间间隔; 增强传输机会的时间起点; 增强传输机会占用的 频率资源起点;增强传输机会占用的频率资源大小和 /或位置;增强传输机会 占用的时间资源大小和 /或位置;增强传输机会中的信息传输所采用的功率配 置。
502, 根据第一增强传输机会配置传输信息。
首先, UE需要确定第一增强传输机会所对应的传输类型。 然后, 根据 传输类型在第一增强传输机会配置所配置的时频资源上传输经过增强处理 的信息, 例如经过 M次重复或者 M倍扩频调制的信息, 从而实现信息的可 靠传输以及覆盖增强。 其中, 信息的增强处理方法不限于此, 例如对于控制 信道, 还可以通过控制信道元素 CCE或增强的控制信道元素 eCCE的聚合 级别或范围、 调制编码方式、 功率配置等方法来进行信息的增强。 同时, 因 为第一增强传输机会配置是根据信道损耗值所确定的,对于较高的信道损耗 值使用较多的时频资源, 对于较低的信道损耗值使用较少的时频资源, 从而 实现了时频资源的合理分配, 节省功率消耗。
图 6为本发明另一实施例的信息传输方法的示意性流程图。 图 6的方法 由 UE执行。 图 6为图 5的一个更加具体的实施例, 给出了图 5中确定信道 损耗值对应的增强传输机会配置的具体方法。
601 , 确定多个增强传输机会配置, 其中多个增强传输机会配置包括第 一增强传输机会配置。
在上述图 5步骤 501根据与基站之间的信道损耗值确定第一增强传输机 会配置之前, 可以在 UE端先确定多个增强传输机会配置, 方法有两种: 获 取预先配置的多个增强传输机会配置; 或接收基站发送的多个信道损耗值区 间对应的多个增强传输机会配置。
可选地, 作为一个实施例, 可以通过系统预先定义的方式, 为 UE配置 多个增强传输机会配置。 具体地, 可以预定义多个增强传输机会配置与多个 信道损耗值区间以及传输类型之间的对应关系。 例如, 多个增强传输机会配 置与多个信道损耗值区间一一对应; 多个信道损耗值区间中的每一个信道损 耗值区间所对应的传输类型与多个信息类型中的至少一个信息类型相对应; 多个信道损耗值区间中的每一个信道损耗值区间所对应的增强传输机会配 置与多个信息类型中的至少一个信息类型相对应; 多个信道损耗值区间中的 每一个信道损耗值区间所对应的传输类型与多个信息类型中的每一个信息 类型——对应; 多个信道损耗值区间中的每一个信道损耗值区间所对应的增 强传输机会配置与多个信息类型中的每一个信息类型——对应。 UE可以在 本地获取系统预先定义的多个增强传输机会配置。其中传输类型表示信息传 输所采用的传输格式, 信息类型表示信息的属性或者类别。 信息类型可以属 于以下类型集合中的任意一个: 物理信道类型集合; 信号类型集合; 消息类 型集合。 其中, 物理信道类型集合可以包括: 物理下行控制信道 PDCCH、 增强型物理下行控制信道 ePDCCH、 物理随机接入信道 PRACH、 物理控制 格式指示信道 PCFICH、 物理混合自动重传请求指示信道 PHICH、 单播的物 理下行共享信道 PDSCH、 广播或组播的物理下行共享信道 PDSCH、 物理上 行共享信道 PUSCH、 物理上行控制信道 PUCCH、 同步信道 SCH、 物理广播 信道 PBCH等。 信号类型集合可以包括: 公共参考信号 CRS、 解调参考信号 DMRS、专有参考信号 DRS等。消息类型集合可以包括:随机接入响应消息、 随机接入响应应答 Msg3消息、 竟争解决消息、 系统信息、 寻呼消息等。
信道损耗值区间的划分也可以是系统预先定义的, 可以在一个大的取值 范围里设定多个信道损耗值,从而将大的取值范围划分为多个信道损耗值区 间。 例如: 在 OdB到 20dB的取值范围里取 5dB、 10dB、 15dB, 将取值范围 划分为 OdB到 5dB、 6dB到 10dB、 lldB到 15dB和 16dB到 20dB。 应理解, 本发明中的信道损耗值区间划分方法不限于此。
上述对应关系可以参照步骤 201中的实施例, 尤其是表 1、 表 2、 表 3。 此处不再赘述。 可选地, 作为另一个实施例, 接收基站发送的多个信道损耗值区间对应 的多个增强传输机会配置,和 /或接收基站发送的每一个信道损耗值区间对应 的传输类型, 从而能够在 UE端建立起信道损耗值区间、 传输类型和增强传 输机会配置的对应关系。
具体地, 实际的接收方式可以是: 通过无线资源控制 RRC广播信令 (如 系统信息块 SIB或主信息块 MIB)、 RRC专用信令、 RRC组播信令、 媒体接 入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 接收基 站发送的多个增强传输机会配置信息和 /或传输类型。其中,信道损耗值区间 与传输类型和信息类型的对应关系可以通过发送顺序确定, 或通过标号来确 定。
更具体地, 例如通过 RRC专用信令接收基站发送的增强传输机会配置, 其伪代码格式可以参照图 2中步骤 202的几种 RRC信令伪代码的格式, 此 处不再赘述。
602 , 确定信道损耗值所在的多个信道损耗值区间中的第一信道损耗值 区间;
首先确定与基站间的信道损耗值, 具体的确定方法本发明实施例中不做 限定。 UE确定了信道损耗值后, 在多个信道损耗值范围中确定包括该信道 损耗值的第一信道损耗值区间。 例如, 结合步骤 601中信道损耗值区间的划 分例子, 假设信道损耗值为 3dB, 则第一信道损耗值区间为 OdB到 5dB。
603, 确定第一信道损耗值区间对应的第一增强传输机会配置。
根据步骤 601中信道损耗值区间、 传输类型、 信息类型和增强传输机会 配置之间的对应关系来确定第一信道损耗值区间对应的第一增强传输机会 配置。 其中, 信息类型是待传输信息自带的属性或者类别。
具体的确定方法可以参照图 3中步骤 302, 此处不再赘述。
因此, 本发明中信息传输的方法能够通过系统预定义或基站下发的方式 在 UE侧配置信道损耗值区间、 传输类型和增强传输机会之间的对应关系。 不同的信道损耗值区间对应不同的增强传输机会配置,在较高的信道损耗值 区间使用较多的时频资源和较大的功率来保证信息的可靠传输,在较低的信 道损耗值区间使用较少的时频资源和较小的功率,使得时频资源配置得到了 优化, 降低了系统实现复杂度, 并且节省了功率消耗。
图 7为本发明另一实施例的信息传输方法的示意性流程图。 图 7的方法 由 UE执行。 图 7为图 5的另一个更加具体的实施例。
701 , 接收基站发送的第一增强传输机会配置
首先确定与基站间的信道损耗值, 具体的确定方法本发明实施例中不做 限定, 信道损耗值可以是由基站测量得到的, 也可以是由 UE测量得到并且 上传给基站的, 例如: UE测量的参考信号接收功率 RSRP; 或者 UE测量的 参考信号接收质量 RSRQ; 或者 UE测量的信道质量信息 CQI; 或者 UE期 望的覆盖增强等。
接收基站发送的第一增强传输机会配置, 其中基站确定第一增强传输机 会配置的方法可以参考图 3或者图 4, 此处不再赘述。
具体地, 可以通过 RRC专用信令, 和 /或物理层专用信令接收基站发送 的第一增强传输机会配置。 以 RRC专用信令为例, 在不考虑信息类型的情 况下, 第一增强传输机会配置可以表示为以下伪代码的形式:
ETO-ConfigDedicated: :=
{SEQUENCE
增强传输机会的时间间隔 T
第一个增强传输机会的时间起点
增强传输机会占用的频率资源起点
增强传输机会占用的频率资源大 d、和 /或位置
增强传输机会占用的时间资源大小和 /或位置
增强传输机会中信息传输所采用的功率配置 可选地,在考虑到信息类型的情况下, RRC专用信令的伪代码格式可以 参考图 2中步骤 202的实施例, 此处不再赘述。
702, 根据传输类型, 在第一增强传输机会配置所配置的增强传输机会 上进行信息的传输。
首先, UE可以通过接收基站下发的方式来确定传输类型, 然后在第一 增强传输机会配置所配置的时频资源上传输经过增强处理的信息, 例如经过 M次重复, 或者 M倍扩频调制, 或 M倍 ΤΉ bundling的信息, 在 M倍时间 宽度或者 M倍频率宽度的资源上进行传输, 从而实现信息的可靠传输以及 覆盖增强。 其中, 信息的增强处理方法不限于此, 例如对于控制信道还可以 通过控制信道元素 CCE或增强的控制信道元素 eCCE的聚合级别或范围、 调制编码方式、 功率配置等方法来进行信息的增强。 其中, 不同的信息的增 强处理方法可以理解为不同的传输类型。
因为第一增强传输机会配置是根据信道损耗值所确定的,对于较高的信 道损耗值使用较多的时频资源和较高的功率,对于较低的信道损耗值使用较 少的时频资源和较低的功率, 从而实现了时频资源的合理分配, 节省功率消 耗。
图 8为本发明一个实施例的一种基站的示意性框图。 如图 8所示, 本实 施例提供了一种基站 800, 可以具体执行上述图 1中实施例的各个步骤, 此 处不再赘述。 本实施例提供的基站 800可以具体包括第一确定模块 801、 传 输模块 802。
第一确定模块 801用于根据与用户设备之间的信道损耗值确定第一增强 传输机会配置,其中增强传输机会占用的时间宽度大于非增强传输机会占用 的时间宽度; 传输模块 802用于根据所述第一增强传输机会配置传输信息。
图 9为本发明另一实施例的一种基站的示意性框图。 如图 9所示, 本实 施例提供了一种基站 900, 可以具体执行上述图 2、 图 3、 图 4中实施例的各 个步骤, 此处不再赘述。 本实施例提供的基站 900可以具体包括第二确定模 块 901、 第一确定模块 902、 传输模块 903。
第二确定模块 901 , 用于确定多个增强传输机会配置;
第一确定模块 902, 用于根据与用户设备之间的信道损耗值确定第一增 强传输机会配置;
传输模块 903 , 用于根据所述第一增强传输机会配置传输信息。
其中第二确定模块 901是可选的,基站 900在执行上述图 2或图 3中的 方法时需要第二确定模块 901 , 基站 900在执行上述图 4中的方法时不需要 第二确定模块 901。
可选地作为一个实施例, 基站 900执行上述图 2中的方法。 第二确定模 块具体用于,通过系统预先定义的方式,为基站配置多个增强传输机会配置。 具体地,可以预定义多个增强传输机会配置与多个信道损耗值区间以及传输 类型之间的对应关系。 例如, 多个增强传输机会配置与多个信道损耗值区间 一一对应; 多个信道损耗值区间中的每一个信道损耗值区间所对应的传输类 型与多个信息类型中的至少一个信息类型相对应; 多个信道损耗值区间中的 每一个信道损耗值区间所对应的增强传输机会配置与多个信息类型中的至 少一个信息类型相对应; 多个信道损耗值区间中的每一个信道损耗值区间所 对应的传输类型与多个信息类型中的每一个信息类型一一对应; 多个信道损 耗值区间中的每一个信道损耗值区间所对应的增强传输机会配置与多个信 息类型中的每一个信息类型一一对应。其中传输类型表示信息传输所采用的 传输格式, 信息类型表示信息的属性或者类别。 具体的对应关系参照上述图
2中步骤 201的表 1、 表 2、 表 3, 此处不再赘述。
传输模块 903具体用于向用户设备发送多个信道损耗值区间对应的多个 增强传输机会配置。在确定了多个信道损耗值区间和多个增强传输机会配置 的对应关系后, 将上述对应关系发送给用户设备。 具体地, 可以向用户设备 发送多个信道损耗值区间对应的多个增强传输机会配置, 并且向用户设备发 送每一个信道损耗值区间对应的传输类型, 从而能够在 UE端建立起信道损 耗值区间、 传输类型和增强传输机会配置的对应关系。
更具体地,实际的发送方式可以是:通过无线资源控制 RRC广播信令 (如 系统信息块 SIB或主信息块 MIB)、 RRC专用信令、 RRC组播信令、 媒体接 入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 将多个 增强传输机会配置信息和传输类型发送给用户设备。 其中, 信道损耗值区间 与传输类型和信息类型的对应关系可以通过发送顺序确定, 或通过标号来确 定。 具体发送方法可以参照但不限于图 2中步骤 202给出的 RRC广播信令 的例子。
可选地, 作为另一个实施例, 基站 900执行上述图 3中的方法。
第一确定模块 902具体用于: 确定信道损耗值所在的多个信道损耗值区 间中的第一信道损耗值区间; 确定第一信道损耗值区间对应的第一增强传输 机会配置。
首先确定与 UE间的信道损耗值, 具体的确定方法本发明实施例中不做 限定, 信道损耗值可以是由基站测量得到的, 也可以是由 UE测量得到并且 上传给基站的, 例如: UE测量的参考信号接收功率 RSRP; 或者 UE测量的 参考信号接收质量 RSRQ; 或者 UE测量的信道质量信息 CQI; 或者 UE期 望的覆盖增强等。其中,传输模块 903可以用于接收 UE上传的信道损耗值。 基站确定了信道损耗值后,在系统预先定义的多个信道损耗值范围中确定包 括该信道损耗值的第一信道损耗值区间。确定第一信道损耗值区间对应的第 一增强传输机会配置可以根据第二确定模块 901中预先定义的对应关系, 具 体地, 可以参照上述图 3中步骤 302的方法, 此处不再赘述。
传输模块 903具体用于, 根据传输类型, 在第一增强传输机会配置所配 置的增强传输机会上进行信息的传输。在第一增强传输机会配置所配置的时 频资源上传输经过增强处理的信息, 例如经过 M次重复, 或者 M倍扩频调 制, 或 M倍 ΤΉ bundling的信息, 在 M倍时间宽度或者 M倍频率宽度的资 源上进行传输, 从而实现信息的可靠传输以及覆盖增强。 其中, 信息的增强 处理方法不限于此, 例如对于控制信道还可以通过控制信道元素 CCE或增 强的控制信道元素 eCCE的聚合级别或范围、 调制编码方式、 功率配置等方 法来进行信息的增强。 其中, 不同的信息的增强处理方法可以理解为不同的 传输类型。
可选地, 作为另一个实施例, 基站 900执行上述图 4中的方法。
具体地, 可以先由传输模块 903接收 UE发送的信道损耗值。 第一确定 模块 902具体用于: 根据信道损耗值所在的信道损耗值区间确定传输类型; 根据传输类型和信息的信息类型确定第一增强传输机会配置。具体的确定方 法可以参照上述图 4中步骤 401和步骤 402, 此处不再赘述。 之后传输模块 903具体用于向用户设备发送根据传输类型确定的第一增强传输机会配置, 和 /或根据传输类型,在第一增强传输机会配置所配置的增强传输机会上进行 信息的传输。 具体方法可以参照上述图 4中步骤 403a和步骤 403b。
图 10为本发明一个实施例的一种用户设备的示意性框图。如图 10所示, 本实施例提供了一种用户设备 1000,可以具体执行上述图 5中实施例的各个 步骤, 此处不再赘述。 本实施例提供的用户设备 1000可以具体包括第一确 定模块 1001、 传输模块 1002。
第一确定模块 1001用于根据与基站之间的信道损耗值确定第一增强传 输机会配置, 其中增强传输机会占用的时间宽度大于非增强传输机会占用的 时间宽度; 传输模块 1002用于根据所述第一增强传输机会配置传输信息。
图 11为本发明另一实施例的一种用户设备的示意性框图。如图 11所示, 本实施例提供了一种用户设备 1100,可以具体执行上述图 6或图 7中实施例 的各个步骤, 此处不再赘述。 本实施例提供的用户设备 1100可以具体包括 第二确定模块 1101、 第一确定模块 1102、 传输模块 1103。
第二确定模块 1101 , 用于确定多个增强传输机会配置;
第一确定模块 1102,用于根据与用户设备之间的信道损耗值确定第一增 强传输机会配置;
传输模块 1103, 用于根据所述第一增强传输机会配置传输信息。
其中第二确定模块 1101和第一确定模块 1102是可选的,用户设备 1100 在执行上述图 6中的方法时需要第二确定模块 1101或第一确定模块 1102, 用户设备 1100在执行上述图 7中的方法时不需要第二确定模块 1101和第一 确定模块 1102。
可选地, 作为一个实施例, 用户设备 1100执行上述图 6中的方法。 第二确定模块 1101 用于确定多个增强传输机会配置, 可以通过系统预 先定义的方式, 为 UE配置多个增强传输机会配置。 具体地, 可以预定义多 个增强传输机会配置与多个信道损耗值区间以及传输类型之间的对应关系。 例如, 多个增强传输机会配置与多个信道损耗值区间——对应; 多个信道损 耗值区间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中 的至少一个信息类型相对应; 多个信道损耗值区间中的每一个信道损耗值区 间所对应的增强传输机会配置与多个信息类型中的至少一个信息类型相对 应; 多个信道损耗值区间中的每一个信道损耗值区间所对应的传输类型与多 个信息类型中的每一个信息类型一一对应; 多个信道损耗值区间中的每一个 信道损耗值区间所对应的增强传输机会配置与多个信息类型中的每一个信 息类型一一对应。 第一确定模块 1102具体用于在第二确定模块 1101获取预 先定义的多个增强传输机会配置。其中传输类型表示信息传输所采用的传输 格式, 信息类型表示信息的属性或者类别。
或者, 可以由传输模块 1103接收基站发送的多个信道损耗值区间对应 的多个增强传输机会配置, 并且接收基站发送的每一个信道损耗值区间对应 的传输类型, 从而能够在 UE端建立起信道损耗值区间、 传输类型和增强传 输机会配置的对应关系。 具体接收方式可以参照上述图 6中步骤 601 , 此处 不再赘述。
第一确定模块 1102具体用于: 确定所述信道损耗值所在的所述多个信 道损耗值区间中的第一信道损耗值区间; 确定所述第一信道损耗值区间对应 的所述第一增强传输机会配置。具体方法可以参照上述图 6中步骤 602和步 骤 603, 此处不再赘述。
可选地, 作为另一个实施例, 用户设备 1100执行上述图 7中的方法。 可以由传输模块 1103 向基站发送用户设备测量的信道损耗值。 传输模 块 1103也可以用于接收基站发送的第一增强传输机会配置。 具体方法可以 参照上述图 7中步骤 701 , 此处不再赘述。
最后, 传输模块 1103可以根据传输类型, 在第一增强传输机会配置所 配置的增强传输机会上进行信息的传输。具体方法可以参照上述图 7中步骤 702, 此处不再赘述。
因此, 本发明中的用户设备能够使得每个信道损耗值所在的范围对应每 个增强传输机会配置,这样用户设备可以根据用户设备与基站之间的信道损 耗值所在的范围进行信息的发送和 /或接收,从而优化了资源配置,节省了功 率消耗。
图 12为本发明一个实施例的基站的示意性框图。 如图 12所示, 本实施 例提供了一种基站 1200,可以具体执行上述图 1到图 4以及图 8和图 9中实 施例的各个步骤, 此处不再赘述。 本实施例提供的基站 1200可以具体包括 处理器 1201和收发器 1202。
处理器 1201用于根据与用户设备之间的信道损耗值确定第一增强传输 机会配置。 收发器 1202用于根据处理器 1201确定的第一增强传输机会配置 传输信息。
可选地, 作为一个实施例, 处理器 1201还可以用于确定多个增强传输 机会配置, 具体的确定方法参照上述图 2中步骤 201 , 此处不再赘述。 收发 器 1202还可以用于发送处理器 1201确定的多个增强传输机会配置和 /或传输 类型, 具体的发送方法参照上述图 2中步骤 202, 此处不再赘述。
可选地, 作为另一个实施例, 收发器 1202还可以用于接收与用户设备 之间的信道损耗值, 处理器 1201还可以用于确定由收发器 1202接收的信道 损耗值所在的多个信道损耗值区间中的第一信道损耗值区间; 确定第一信道 损耗值区间对应的第一增强传输机会配置。
可选地, 作为另一个实施例, 处理器 1201还可以用于根据信道损耗值 所在的信道损耗值区间确定传输类型; 根据传输类型和信息的信息类型确定 第一增强传输机会配置。 收发器 1202可以具体用于根据传输类型, 在第一 增强传输机会配置所配置的增强传输机会上进行信息的传输。
图 13为本发明一个实施例的用户设备的示意性框图。 如图 13所示, 本 实施例提供了一种用户设备 1300, 可以具体执行上述图 5到图 7以及图 10 和图 11中实施例的各个步骤,此处不再赘述。本实施例提供的用户设备 1300 可以具体包括处理器 1301和收发器 1302。
处理器 1301用于根据与基站之间的信道损耗值确定第一增强传输机会 配置。收发器 1302用于根据处理器 1301确定的第一增强传输机会配置传输 信息。
可选地, 作为一个实施例, 处理器 1301还可以用于确定多个增强传输 机会配置, 具体的确定方法参照上述图 6中步骤 601 , 此处不再赘述。 收发 器 1302还可以用于接收基站发送的多个增强传输机会配置和 /或传输类型, 具体的接收方法参照上述图 6中步骤 601 ,此处不再赘述。处理器 1301还具 体用于: 确定信道损耗值所在的多个信道损耗值区间中的第一信道损耗值区 间; 确定第一信道损耗值区间对应的第一增强传输机会配置。
可选地, 作为另一个实施例, 收发器 1302还可以用于: 向基站发送与 基站之间的信道损耗值; 接收基站发送的第一增强传输机会配置; 根据传输 类型,在第一增强传输机会配置所配置的增强传输机会上进行所述信息的传 输。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为了描述的方便和筒洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或 通信连接, 也可以是电的, 机械的或其它的形式连接。 所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件 功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分, 或者该技术方 案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM,
Read-Only Memory )、 随机存取存储器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1. 一种信息传输的方法, 其特征在于, 所述方法包括:
根据与用户设备之间的信道损耗值确定第一增强传输机会配置, 其中增 强传输机会占用的时间宽度大于非增强传输机会占用的时间宽度;
根据所述第一增强传输机会配置传输信息。
2.根据权利要求 1所述的方法,其特征在于,所述根据与用户设备之间 的信道损耗值, 确定第一增强传输机会配置之前, 还包括: 确定多个增强传 输机会配置, 其中所述多个增强传输机会配置包括所述第一增强传输机会配 置。
3.根据权利要求 2所述的方法,其特征在于,所述多个增强传输机会配 置与多个信道损耗值区间——对应。
4.根据权利要求 3所述的方法,其特征在于,所述多个信道损耗值区间 中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的至少一 个信息类型相对应, 其中所述传输类型表示信息传输所采用的传输格式, 所 述信息类型表示信息的属性或者类别。
5.根据权利要求 4所述的方法,其特征在于,所述多个信道损耗值区间 中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个信息类 型中的至少一个信息类型相对应。
6.根据权利要求 3所述的方法,其特征在于,所述多个信道损耗值区间 中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的每一个 信息类型相对应。
7.根据权利要求 6所述的方法,其特征在于,所述多个信道损耗值区间 中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个信息类 型中的每一个信息类型相对应。
8.根据权利要求 1或 3所述的方法,其特征在于,所述根据与用户设备 之间的信道损耗值确定第一增强传输机会配置, 包括:
确定所述信道损耗值所在的所述多个信道损耗值区间中的第一信道损 耗值区间;
确定所述第一信道损耗值区间对应的所述第一增强传输机会配置。
9.根据权利要求 1所述的方法,其特征在于,所述根据与用户设备之间 的信道损耗值确定第一增强传输机会配置, 包括: 根据所述信道损耗值所在的信道损耗值区间确定传输类型; 根据所述传输类型和所述信息的信息类型确定所述第一增强传输机会 配置。
10. 根据权利要求 1-9中任意一项所述的方法, 其特征在于, 所述根据 所述第一增强传输机会配置传输信息, 包括: 根据所述传输类型, 在所述第 一增强传输机会配置所配置的增强传输机会上进行所述信息的传输。
11. 根据权利要求 2或 3所述的方法, 其特征在于, 所述方法包括: 向 所述用户设备发送所述多个信道损耗值区间对应的多个增强传输机会配置。
12. 根据权利要求 11所述的方法,其特征在于,所述向所述用户设备发 送所述多个信道损耗值区间对应的多个增强传输机会配置, 包括:
通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒 体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 将 多个增强传输机会配置信息发送给用户设备。
13. 根据权利要求 12所述的方法,其特征在于,所述多个增强传输机会 配置信息包括:
所述多个增强传输机会配置中的每一个增强传输机会配置; 或者, 所述多个增强传输机会配置中的每一个增强传输机会配置和所述多个 增强传输机会配置的个数。
14. 根据权利要求 4或 6所述的方法, 其特征在于, 所述方法包括: 向 所述用户设备发送所述每一个信道损耗值区间对应的传输类型。
15. 根据权利要求 14所述的方法,其特征在于,所述向所述用户设备发 送所述每一个信道损耗值区间对应的传输类型, 包括:
通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒 体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 将 所述传输类型发送给用户设备。
16. 根据权利要求 9所述的方法, 其特征在于, 所述方法包括: 向所述 用户设备发送根据所述传输类型确定的所述第一增强传输机会配置。
17. 根据权利要求 16所述的方法,其特征在于,所述向所述用户设备发 送根据所述传输类型确定的所述第一增强传输机会配置, 包括: 通过 RRC 专用信令,和 /或物理层专用信令将所述第一增强传输机会配置发送给所述用 户设备。
18. 根据权利要求 1所述的方法, 其特征在于, 所述增强传输机会配置 包括以下至少一项:
增强传输机会的时间间隔;
增强传输机会的时间起点;
增强传输机会占用的频率资源起点;
增强传输机会占用的频率资源大小和 /或位置;
增强传输机会占用的时间资源大小和 /或位置;
增强传输机会中的信息传输所采用的功率配置。
19. 根据权利要求 1所述的方法, 其特征在于, 所述与用户设备之间的 信道损耗为: 与所述用户设备之间的路径损耗; 或者所述用户设备测量的参 考信号接收功率 RSRP;或者所述用户设备测量的参考信号接收质量 RSRQ; 或者所述用户设备测量的信道质量信息 CQI; 或者所述用户设备期望的覆盖 增强。
20. 根据权利要求 4所述的方法, 其特征在于, 所述传输类型包括以下 至少一种: 重复传输次数 M; 扩频传输倍数 M; 时间传输间隔簇大小 M; 聚合级别 L; 调制方式; 编码方式; 随机接入前导传输格式; 功率配置。
21. 根据权利要求 4所述的方法, 其特征在于, 所述信息类型属于以下 类型集合中的任意一个:
物理信道类型集合;
信号类型集合;
消息类型集合。
22. 一种信息传输的方法, 其特征在于, 所述方法包括:
根据与基站之间的信道损耗值确定第一增强传输机会配置, 其中增强传 输机会占用的时间宽度大于非增强传输机会占用的时间宽度;
根据所述第一增强传输机会配置传输信息。
23. 根据权利要求 22所述的方法,其特征在于,所述根据与基站之间的 信道损耗值, 确定第一增强传输机会配置之前, 还包括: 确定多个增强传输 机会配置, 其中所述多个增强传输机会配置包括所述第一增强传输机会配 置。
24. 根据权利要求 23所述的方法,其特征在于,所述确定多个增强传输 机会配置包括:接收所述基站发送的多个信道损耗值区间对应的多个增强传 输机会配置; 接收所述基站发送的每一个信道损耗值区间对应的传输类型。
25. 根据权利要求 24所述的方法,其特征在于,所述多个增强传输机会 配置与所述多个信道损耗值区间——对应。
26. 根据权利要求 25所述的方法,其特征在于,所述多个信道损耗值区 间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的至少 一个信息类型相对应, 其中所述传输类型表示信息传输所采用的传输格式, 所述信息类型表示信息的属性或者类别。
27. 根据权利要求 26所述的方法,其特征在于,所述多个信道损耗值区 间中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个信息 类型中的至少一个信息类型相对应。
28. 根据权利要求 25所述的方法,其特征在于,所述多个信道损耗值区 间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的每一 个信息类型相对应。
29. 根据权利要求 28所述的方法,其特征在于,所述多个信道损耗值区 间中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个信息 类型中的每一个信息类型相对应。
30.根据权利要求 23所述的方法,其特征在于,所述确定多个增强传输 机会配置还包括: 获取预先配置的所述多个增强传输机会。
31. 根据权利要求 22或 25所述的方法, 其特征在于, 所述根据与基站 之间的信道损耗值确定第一增强传输机会配置, 包括:
确定所述信道损耗值所在的所述多个信道损耗值区间中的第一信道损 耗值区间;
确定所述第一信道损耗值区间对应的所述第一增强传输机会配置。
32. 根据权利要求 22所述的方法,其特征在于,所述根据与基站之间的 信道损耗值确定第一增强传输机会配置, 包括: 接收所述基站发送的所述第 一增强传输机会配置。
33. 根据权利要求 22-32中任意一项所述的方法, 其特征在于, 所述根 据所述第一增强传输机会配置传输信息, 包括: 根据所述传输类型, 在所述 第一增强传输机会配置所配置的增强传输机会上进行所述信息的传输。
34. 根据权利要求 24所述的方法,其特征在于,所述接收所述基站发送 的多个信道损耗值区间对应的多个增强传输机会配置, 包括: 通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒 体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 接 收所述基站发送的多个增强传输机会配置信息。
35.根据权利要求 34所述的方法,其特征在于,所述多个增强传输机会 配置信息包括:
所述多个增强传输机会配置中的每一个增强传输机会配置; 或者, 所述多个增强传输机会配置中的每一个增强传输机会配置和所述多个 增强传输机会配置的个数。
36. 根据权利要求 24所述的方法,其特征在于,所述接收所述基站发送 的每一个信道损耗值区间对应的传输类型, 包括:
通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒 体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 接 收所述基站发送的所述传输类型。
37.根据权利要求 32所述的方法,其特征在于,所述接收所述基站发送 的所述第一增强传输机会配置, 包括: 通过 RRC专用信令, 和 /或物理层专 用信令接收所述基站发送的所述第一增强传输机会配置。
38.根据权利要求 22所述的方法,其特征在于,所述增强传输机会配置 包括以下至少一项:
增强传输机会的时间间隔;
增强传输机会的时间起点;
增强传输机会占用的频率资源起点;
增强传输机会占用的频率资源大小和 /或位置;
增强传输机会占用的时间资源大小和 /或位置;
增强传输机会中的信息传输所采用的功率配置。
39.根据权利要求 24所述的方法,其特征在于,所述传输类型包括以下 至少一种: 重复传输次数 M; 扩频传输倍数 M; 时间传输间隔簇大小 M; 聚合级别 L; 调制方式; 编码方式; 随机接入前导传输格式; 功率配置。
40. 根据权利要求 26所述的方法,其特征在于,所述信息类型属于以下 类型集合中的任意一个:
物理信道类型集合;
信号类型集合; 消息类型集合。
41. 一种基站, 其特征在于, 包括:
第一确定模块, 用于根据与用户设备之间的信道损耗值确定第一增强传 输机会配置, 其中增强传输机会占用的时间宽度大于非增强传输机会占用的 时间宽度;
传输模块, 用于根据所述第一增强传输机会配置传输信息。
42. 根据权利要求 41所述的基站, 其特征在于, 所述基站还包括: 第二 确定模块, 用于确定多个增强传输机会配置, 其中所述多个增强传输机会配 置包括所述第一增强传输机会配置。
43. 根据权利要求 42所述的基站,其特征在于,所述多个增强传输机会 配置与多个信道损耗值区间——对应。
44. 根据权利要求 43所述的基站,其特征在于,所述多个信道损耗值区 间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的至少 一个信息类型相对应, 其中所述传输类型表示信息传输所采用的传输格式, 所述信息类型表示信息的属性或者类别。
45. 根据权利要求 44所述的基站,其特征在于,所述多个信道损耗值区 间中的每一个信道损耗值区间所对应的增强传输机会配置与 所述多个信息 类型中的至少一个信息类型相对应。
46. 根据权利要求 43所述的基站,其特征在于,所述多个信道损耗值区 间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的每一 个信息类型相对应。
47. 根据权利要求 46所述的基站,其特征在于,所述多个信道损耗值区 间中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个信息 类型中的每一个信息类型相对应。
48. 根据权利要求 41或 43所述的基站, 其特征在于, 所述第一确定模 块具体用于:
确定所述信道损耗值所在的所述多个信道损耗值区间中的第一信道损 耗值区间;
确定所述第一信道损耗值区间对应的所述第一增强传输机会配置。
49. 根据权利要求 41所述的基站,其特征在于,所述第一确定模块具体 用于: 根据所述信道损耗值所在的信道损耗值区间确定传输类型; 根据所述传输类型和所述信息的信息类型确定所述第一增强传输机会 配置。
50. 根据权利要求 41-49中任意一项所述的基站, 其特征在于, 所述传 输模块具体用于: 根据所述传输类型, 在所述第一增强传输机会配置所配置 的增强传输机会上进行所述信息的传输。
51. 根据权利要求 42或 43所述的基站, 其特征在于, 所述传输模块具 体用于: 向所述用户设备发送所述多个信道损耗值区间对应的多个增强传输 机会配置。
52. 根据权利要求 51所述的基站,其特征在于,所述传输模块具体用于: 通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒 体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 将 多个增强传输机会配置信息发送给用户设备。
53. 根据权利要求 52所述的基站,其特征在于,所述多个增强传输机会 配置信息包括:
所述多个增强传输机会配置中的每一个增强传输机会配置; 或者, 所述多个增强传输机会配置中的每一个增强传输机会配置和所述多个 增强传输机会配置的个数。
54. 根据权利要求 44或 46所述的基站, 其特征在于, 所述传输模块具 体用于: 向所述用户设备发送所述每一个信道损耗值区间对应的传输类型。
55. 根据权利要求 54所述的基站,其特征在于,所述传输模块具体用于: 通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒 体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 将 所述传输类型发送给用户设备。
56. 根据权利要求 49所述的基站, 其特征在于, 所述传输模块具体用 于: 向所述用户设备发送根据所述传输类型确定的所述第一增强传输机会配 置。
57. 根据权利要求 56所述的基站,其特征在于,所述传输模块具体用于: 通过 RRC专用信令, 和 /或物理层专用信令将所述第一增强传输机会配置发 送给所述用户设备。
58. 一种用户设备, 其特征在于, 包括: 第一确定模块, 用于根据与基站之间的信道损耗值确定第一增强传输机 会配置,其中增强传输机会占用的时间宽度大于非增强传输机会占用的时间 宽度;
传输模块, 用于根据所述第一增强传输机会配置传输信息。
59. 根据权利要求 58所述的用户设备,其特征在于,所述用户设备还包 括: 第二确定模块, 用于确定多个增强传输机会配置, 其中所述多个增强传 输机会配置包括所述第一增强传输机会配置。
60. 根据权利要求 58所述的用户设备,其特征在于,所述传输模块具体 用于: 接收所述基站发送的多个信道损耗值区间对应的多个增强传输机会配 置; 和 /或接收所述基站发送的每一个信道损耗值区间对应的传输类型。
61. 根据权利要求 60所述的用户设备,其特征在于,所述多个增强传输 机会配置与所述多个信道损耗值区间——对应。
62. 根据权利要求 61所述的用户设备,其特征在于,所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的 至少一个信息类型相对应, 其中所述传输类型表示信息传输所采用的传输格 式, 所述信息类型表示信息的属性或者类别。
63. 根据权利要求 62所述的用户设备,其特征在于,所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个 信息类型中的至少一个信息类型相对应。
64. 根据权利要求 61所述的用户设备,其特征在于,所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的传输类型与多个信息类型中的 每一个信息类型一一对应。
65. 根据权利要求 64所述的用户设备,其特征在于,所述多个信道损耗 值区间中的每一个信道损耗值区间所对应的增强传输机会配置与所述多个 信息类型中的每一个信息类型一一对应。
66. 根据权利要求 59所述的用户设备,其特征在于,所述第二确定模块 具体用于: 获取预先配置的所述多个增强传输机会。
67. 根据权利要求 58或 61所述的用户设备, 其特征在于, 所述第一确 定模块具体用于:
确定所述信道损耗值所在的所述多个信道损耗值区间中的第一信道损 耗值区间; 确定所述第一信道损耗值区间对应的所述第一增强传输机会配置。
68. 根据权利要求 58所述的用户设备,其特征在于,所述传输模块具体 用于: 接收所述基站发送的所述第一增强传输机会配置。
69. 根据权利要求 58-68 中任意一项所述的用户设备, 其特征在于, 所 述传输模块具体用于: 根据所述传输类型, 在所述第一增强传输机会配置所 配置的增强传输机会上进行所述信息的传输。
70. 根据权利要求 60所述的用户设备,其特征在于,所述传输模块具体 用于:
通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒 体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 接 收所述基站发送的多个增强传输机会配置信息。
71.根据权利要求 70所述的用户设备,其特征在于,所述多个增强传输 机会配置信息包括:
所述多个增强传输机会配置中的每一个增强传输机会配置; 或者, 所述多个增强传输机会配置中的每一个增强传输机会配置和所述多个 增强传输机会配置的个数。
72.根据权利要求 60所述的用户设备,其特征在于,所述传输模块具体 用于:
通过无线资源控制 RRC广播信令、 RRC专用信令、 RRC组播信令、 媒 体接入控制 MAC 的控制元素 CE信令、 物理层信令中的一种或者多种, 接 收所述基站发送的所述传输类型。
73.根据权利要求 68所述的用户设备,其特征在于,所述传输模块具体 用于: 通过 RRC专用信令, 和 /或物理层专用信令接收所述基站发送的所述 第一增强传输机会配置。
74. 一种基站, 其特征在于, 包括:
处理器, 用于根据与用户设备之间的信道损耗值确定第一增强传输机会 配置, 其中增强传输机会占用的时间宽度大于非增强传输机会占用的时间宽 度;
收发器, 用于根据所述第一增强传输机会配置传输信息。
75.根据权利要求 74所述的基站,其特征在于,所述处理器还用于确定 多个增强传输机会配置, 其中所述多个增强传输机会配置包括所述第一增强 传输机会配置。
76. 根据权利要求 75所述的基站, 其特征在于, 所述处理器具体用于: 确定所述信道损耗值所在的多个信道损耗值区间中的第一信道损耗值区间; 确定所述第一信道损耗值区间对应的所述第一增强传输机会配置。
77. 根据权利要求 74所述的基站, 其特征在于, 所述处理器具体用于: 根据所述信道损耗值所在的信道损耗值区间确定传输类型; 根据所述传输类 型和所述信息的信息类型确定所述第一增强传输机会配置。
78. 根据权利要求 74-77 中任意一项所述的基站, 其特征在于, 所述收 发器具体用于: 根据所述传输类型, 在所述第一增强传输机会配置所配置的 增强传输机会上进行所述信息的传输。
79. 根据权利要求 75所述的基站, 其特征在于, 所述收发器具体用于: 向所述用户设备发送所述多个信道损耗值区间对应的多个增强传输机会配 置; 和 /或向所述用户设备发送所述每一个信道损耗值区间对应的传输类型。
80. 根据权利要求 77所述的基站, 其特征在于, 所述收发器具体用于: 向所述用户设备发送根据所述传输类型确定的所述第一增强传输机会配置。
81. 一种用户设备, 其特征在于, 包括:
处理器, 用于根据与基站之间的信道损耗值确定第一增强传输机会配 置, 其中增强传输机会占用的时间宽度大于非增强传输机会占用的时间宽 度;
收发器, 用于根据所述第一增强传输机会配置传输信息。
82. 根据权利要求 81所述的用户设备,其特征在于,所述处理器还用于 确定多个增强传输机会配置, 其中所述多个增强传输机会配置包括所述第一 增强传输机会配置。
83. 根据权利要求 81所述的用户设备,其特征在于,所述收发器具体用 于: 接收所述基站发送的多个信道损耗值区间对应的多个增强传输机会配 置; 和 /或接收所述基站发送的每一个信道损耗值区间对应的传输类型。
84. 根据权利要求 82所述的用户设备,其特征在于,所述处理器具体用 于: 获取预先配置的所述多个增强传输机会。
85. 根据权利要求 81-84中任意一项所述的用户设备, 其特征在于, 所 述处理器具体用于: 确定所述信道损耗值所在的所述多个信道损耗值区间中 的第一信道损耗值区间; 确定所述第一信道损耗值区间对应的所述第一增强 传输机会配置。
86. 根据权利要求 81所述的用户设备,其特征在于,所述收发器具体用 于: 接收所述基站发送的所述第一增强传输机会配置。
87. 根据权利要求 81-86中任意一项所述的用户设备, 其特征在于, 所 述收发器具体用于: 根据所述传输类型, 在所述第一增强传输机会配置所配 置的增强传输机会上进行所述信息的传输。
PCT/CN2012/084679 2012-11-15 2012-11-15 信息传输的方法、基站和用户设备 WO2014075270A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201280009620.0A CN105052044B (zh) 2012-11-15 2012-11-15 信息传输的方法、基站和用户设备
CN201910103492.XA CN109769289B (zh) 2012-11-15 2012-11-15 信息传输的方法、基站和用户设备
EP12888398.0A EP2913939B1 (en) 2012-11-15 2012-11-15 Method, base station and user equipment for transmitting information
EP18152134.5A EP3402086B1 (en) 2012-11-15 2012-11-15 Method for information transmission, base station, and user equipment
CN201910103468.6A CN109756966B (zh) 2012-11-15 2012-11-15 信息传输的方法、基站和用户设备
PCT/CN2012/084679 WO2014075270A1 (zh) 2012-11-15 2012-11-15 信息传输的方法、基站和用户设备
US14/713,580 US9769798B2 (en) 2012-11-15 2015-05-15 Method for information transmission, base station, and user equipment
US15/678,686 US10314014B2 (en) 2012-11-15 2017-08-16 Method for information transmission, base station, and user equipment
US16/408,998 US10645677B2 (en) 2012-11-15 2019-05-10 Method for information transmission, base station, and user equipment
US16/847,951 US11134476B2 (en) 2012-11-15 2020-04-14 Method for information transmission, base station, and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/084679 WO2014075270A1 (zh) 2012-11-15 2012-11-15 信息传输的方法、基站和用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/713,580 Continuation US9769798B2 (en) 2012-11-15 2015-05-15 Method for information transmission, base station, and user equipment

Publications (1)

Publication Number Publication Date
WO2014075270A1 true WO2014075270A1 (zh) 2014-05-22

Family

ID=50730496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084679 WO2014075270A1 (zh) 2012-11-15 2012-11-15 信息传输的方法、基站和用户设备

Country Status (4)

Country Link
US (4) US9769798B2 (zh)
EP (2) EP2913939B1 (zh)
CN (3) CN109756966B (zh)
WO (1) WO2014075270A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120419A3 (en) * 2015-01-30 2016-09-22 Nokia Solutions And Networks Oy Paging enhancement for low complexity user equipment and/or user equipment in coverage enhancement mode
KR20170012284A (ko) * 2014-06-02 2017-02-02 퀄컴 인코포레이티드 멀티-홉 능력들의 발견 및 링크 당 기준 라우팅
CN106797663A (zh) * 2014-10-09 2017-05-31 高通股份有限公司 利用不同的路径损耗的设备的随机接入方法
CN110521244A (zh) * 2017-01-30 2019-11-29 黑莓有限公司 对上行链路数据传输的控制
WO2020220342A1 (zh) * 2019-04-30 2020-11-05 富士通株式会社 参考信号的发送方法、装置和通信系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075270A1 (zh) * 2012-11-15 2014-05-22 华为技术有限公司 信息传输的方法、基站和用户设备
US20150078188A1 (en) * 2013-09-13 2015-03-19 Qualcomm Incorporated Uplink channel design with coverage enhancements
WO2016045017A1 (zh) * 2014-09-24 2016-03-31 华为技术有限公司 通信设备和非连续传输的方法
ES2959502T3 (es) * 2015-06-23 2024-02-26 Huawei Tech Co Ltd Método de envío de información de control y método de detección, estación base y equipo de usuario
CN109450505B (zh) * 2016-05-13 2019-11-15 华为技术有限公司 一种信道信息发送方法、数据发送方法和设备
US11051180B2 (en) 2017-11-15 2021-06-29 Arris Enterprises Llc Electronic device with configurable antenna-pattern group
CN111629439B (zh) * 2019-02-27 2023-06-23 大唐移动通信设备有限公司 一种消息处理方法和消息处理装置
WO2021174494A1 (zh) * 2020-03-05 2021-09-10 北京小米移动软件有限公司 增强上行覆盖的处理方法、装置及存储介质
CN111371487B (zh) * 2020-03-10 2021-12-14 展讯通信(上海)有限公司 基于卫星系统的数据传输方法及装置、存储介质、ue、基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602088A (zh) * 2003-09-24 2005-03-30 日本电气株式会社 移动通信系统、无线电基站、调度装置、调度方法及程序
CN102484509A (zh) * 2009-04-28 2012-05-30 华为技术有限公司 无线通信系统中协调电子设备的系统和方法
CN102665284A (zh) * 2012-04-13 2012-09-12 华为技术有限公司 上行业务传输调度方法和终端
CN102739371A (zh) * 2011-04-01 2012-10-17 中兴通讯股份有限公司 信道信息收集方法及装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261056A (en) * 1979-07-16 1981-04-07 Bell Telephone Laboratories, Incorporated Equalizing signal combiner
US6014606A (en) * 1996-10-07 2000-01-11 Mcdonnell Douglas Corporation Cockpit weather information system
US20030225492A1 (en) * 2002-05-29 2003-12-04 Cope Gary G. Flight data transmission via satellite link and ground storage of data
GB0406664D0 (en) * 2004-03-24 2004-04-28 Samsung Electronics Co Ltd Mobile communications
US7512714B2 (en) * 2004-08-31 2009-03-31 Honeywell International Inc. System and method for transmitting ACARS messages over a TCP/IP data communication link
US7801174B2 (en) * 2004-12-29 2010-09-21 Alcatel-Lucent Usa Inc. Techniques for efficient control of aggregating wireless voice communications
US20070112576A1 (en) * 2005-11-16 2007-05-17 Avery Robert L Centralized management of maintenance and materials for commercial aircraft fleets with fleet-wide benchmarking data
EP1833203B1 (en) * 2006-03-07 2011-06-22 Panasonic Corporation Overhead reduction of uplink control signaling in a mobile communication system
SI2068455T1 (sl) * 2006-09-30 2011-09-30 Huawei Tech Co Ltd Postopek za porazdelitev sekvenc, postopek za obdelavo sekvenc in naprava v komunikacijskem sistemu
US9357564B2 (en) * 2007-06-19 2016-05-31 Texas Instruments Incorporated Signaling of random access preamble parameters in wireless networks
KR20110081954A (ko) * 2008-09-22 2011-07-15 가부시키가이샤 엔티티 도코모 이동국 및 무선기지국
KR20100037883A (ko) * 2008-10-02 2010-04-12 삼성전자주식회사 광대역 무선통신 시스템에서 상향링크 스케줄링 우선순위 결정 장치 및 방법
FR2938676B1 (fr) * 2008-11-18 2011-01-21 Eads Europ Aeronautic Defence Procede de reconnaissance de motifs sequentiels pour procede de traitement des messages de pannes
CN101772171B (zh) * 2009-01-06 2015-07-22 中兴通讯股份有限公司 组资源分配方法
CN101860947B (zh) * 2009-04-10 2012-12-26 电信科学技术研究院 一种多载波上行功率控制的方法及设备
US8981967B1 (en) * 2010-08-18 2015-03-17 The Boeing Company Aircraft equipment management system
CN102740468A (zh) * 2011-04-02 2012-10-17 华为技术有限公司 分配信道资源的方法、基站设备、终端设备和通信系统
CN102331331A (zh) * 2011-06-20 2012-01-25 中国国际航空股份有限公司 飞机机载氧气性能检测方法
GB2498588B (en) * 2012-01-20 2014-08-20 Toshiba Res Europ Ltd Wireless communication methods and apparatus
WO2014075270A1 (zh) * 2012-11-15 2014-05-22 华为技术有限公司 信息传输的方法、基站和用户设备
US9318024B1 (en) * 2013-10-04 2016-04-19 Satcom Direct, Inc. MyFlight—An automated service for real-time aircraft position and communication status
CN106470900B (zh) * 2014-06-26 2019-05-03 庞巴迪公司 用于辅助维护飞机和其它移动平台的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602088A (zh) * 2003-09-24 2005-03-30 日本电气株式会社 移动通信系统、无线电基站、调度装置、调度方法及程序
CN102484509A (zh) * 2009-04-28 2012-05-30 华为技术有限公司 无线通信系统中协调电子设备的系统和方法
CN102739371A (zh) * 2011-04-01 2012-10-17 中兴通讯股份有限公司 信道信息收集方法及装置
CN102665284A (zh) * 2012-04-13 2012-09-12 华为技术有限公司 上行业务传输调度方法和终端

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10506607B2 (en) 2014-06-02 2019-12-10 Qualcomm Incorporated Discovery of multi-hop capabilities and routing on a per link basis
KR20170012284A (ko) * 2014-06-02 2017-02-02 퀄컴 인코포레이티드 멀티-홉 능력들의 발견 및 링크 당 기준 라우팅
CN106465387A (zh) * 2014-06-02 2017-02-22 高通股份有限公司 多跳能力的发现和每链路基础上的路由
KR102182767B1 (ko) 2014-06-02 2020-11-25 퀄컴 인코포레이티드 멀티-홉 능력들의 발견 및 링크 당 기준 라우팅
CN106465387B (zh) * 2014-06-02 2020-08-07 高通股份有限公司 多跳能力的发现和每链路基础上的路由
CN106797663A (zh) * 2014-10-09 2017-05-31 高通股份有限公司 利用不同的路径损耗的设备的随机接入方法
US11019606B2 (en) 2014-10-09 2021-05-25 Qualcomm Incorporated Random access method of devices with different path loss
WO2016120419A3 (en) * 2015-01-30 2016-09-22 Nokia Solutions And Networks Oy Paging enhancement for low complexity user equipment and/or user equipment in coverage enhancement mode
CN110521244A (zh) * 2017-01-30 2019-11-29 黑莓有限公司 对上行链路数据传输的控制
US11395233B2 (en) 2017-01-30 2022-07-19 Blackberry Limited Control of uplink data transmission
CN110521244B (zh) * 2017-01-30 2022-08-12 黑莓有限公司 对上行链路数据传输的控制
US11832190B2 (en) 2017-01-30 2023-11-28 Blackberry Limited Control of uplink data transmission
WO2020220342A1 (zh) * 2019-04-30 2020-11-05 富士通株式会社 参考信号的发送方法、装置和通信系统

Also Published As

Publication number Publication date
US10645677B2 (en) 2020-05-05
US10314014B2 (en) 2019-06-04
US20190268881A1 (en) 2019-08-29
CN105052044A (zh) 2015-11-11
EP2913939A1 (en) 2015-09-02
EP2913939A4 (en) 2015-11-18
CN109756966B (zh) 2023-09-29
US11134476B2 (en) 2021-09-28
CN105052044B (zh) 2019-02-26
US20170374650A1 (en) 2017-12-28
EP2913939B1 (en) 2018-04-18
EP3402086A1 (en) 2018-11-14
EP3402086B1 (en) 2023-12-27
CN109769289A (zh) 2019-05-17
US9769798B2 (en) 2017-09-19
CN109756966A (zh) 2019-05-14
CN109769289B (zh) 2021-10-15
US20150249971A1 (en) 2015-09-03
US20200245299A1 (en) 2020-07-30
EP3402086C0 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
US11134476B2 (en) Method for information transmission, base station, and user equipment
CN107258105B (zh) 运行寻呼机制以实现增强覆盖模式
EP3133861B1 (en) Methods, apparatuses and computer readable media for acknowledging multi-destination traffic in a wireless network
US20160227580A1 (en) User equipment and evolved node-b and methods for operation in a coverage enhancement mode
TW202033043A (zh) 具有多個傳輸接收點的半持久排程
JP6910483B2 (ja) 通信方法、ネットワークデバイス、およびユーザ機器
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
JP2019536308A (ja) 無線通信システムにおけるダウンリンク制御チャネルの送信および検出のための方法およびデバイス
TWI771337B (zh) 傳輸上行控制訊息的方法、終端設備和網路設備
US10873430B2 (en) Signal sending method and apparatus
WO2014166122A1 (zh) 一种专用信道数据传输的方法和装置
US20210385827A1 (en) Method and devices for resource allocation in a wireless communication system
WO2021031319A1 (zh) 一种上行传输资源的确定方法及装置
US20210168812A1 (en) Data transmission method and apparatus
TW202123735A (zh) 用於雙活動協定堆疊(daps)交遞的盲解碼限制
KR20150128285A (ko) 단말간 통신을 지원하는 무선 통신 시스템에서 잉여전력보고 방법 및 장치
WO2020143713A9 (zh) 通信方法、装置和存储介质
WO2020220477A1 (zh) 一种通信方法及装置
EP3487240B1 (en) Efficient wireless communication with reduced overhead signaling
JP7488377B2 (ja) マルチキャスト通信のための方法および装置
WO2021138762A1 (zh) 通知发送时间信息的方法以及装置
EP4329421A1 (en) Reconfigured trigger-frame response
WO2020191783A1 (zh) 一种通信方法及装置
CN115804224A (zh) 用于多播通信的方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280009620.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012888398

Country of ref document: EP