WO2020191783A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020191783A1
WO2020191783A1 PCT/CN2019/080268 CN2019080268W WO2020191783A1 WO 2020191783 A1 WO2020191783 A1 WO 2020191783A1 CN 2019080268 W CN2019080268 W CN 2019080268W WO 2020191783 A1 WO2020191783 A1 WO 2020191783A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
terminal
downlink data
cel
paging message
Prior art date
Application number
PCT/CN2019/080268
Other languages
English (en)
French (fr)
Inventor
王宏
李秉肇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/080268 priority Critical patent/WO2020191783A1/zh
Priority to PCT/CN2019/099346 priority patent/WO2020191983A1/zh
Publication of WO2020191783A1 publication Critical patent/WO2020191783A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • the characteristics of data transmission are that the amount of data is small and the data arrival time is not determine.
  • RRC radio resource control
  • the terminal sends small packets of data to the network device during the random access process without establishing the RRC connection of the terminal, so that the terminal can complete the data transmission in the idle state.
  • the uplink data can be sent to the network device in Msg3 in the random access process to realize early transmission of uplink data.
  • the network device wakes up the terminal through a paging message to enable it to access the network device.
  • the network device can After the uplink signal (for example, random access preamble), the downlink data is sent to the terminal to realize early transmission of downlink data.
  • the signal coverage strength may not meet the signal reception requirements, so it is enhanced so that network equipment and terminals can support enhanced coverage (EC) or coverage enhancement ( coverage enhancement, CE).
  • EC enhanced coverage
  • CE coverage enhancement
  • the main method to achieve enhanced coverage is to repeatedly send uplink or downlink signals multiple times, and achieve the purpose of improving the success rate of data reception through multiple reception combinations.
  • the terminal can determine its coverage enhancement level (CEL) according to the measurement.
  • the network equipment will schedule the terminal according to the CEL where the terminal is located.
  • the network device cannot learn the CEL of the terminal, and thus cannot schedule the terminal according to the CEL, which reduces the efficiency of early transmission of downlink data.
  • the present application provides a communication method and device to implement downlink scheduling according to the CEL of the terminal to improve the efficiency of early downlink data transmission.
  • the present application provides a communication method.
  • the subject of the method may be a terminal.
  • the method includes: receiving a message from a network device, the message indicating m coverage enhancement level CELs, and indicating each of the m CELs A random access parameter value corresponding to a CEL, m is a positive integer; the random access parameter value is determined according to the message, and a random access preamble is sent to the network device based on the determined random access parameter value.
  • the network device can determine that the terminal that transmits the downlink data early has sent the random access preamble, and can determine the CEL of the terminal, and then, according to the downlink control information corresponding to the CEL
  • the format performs downlink scheduling. In downlink scheduling, the downlink data is transmitted to the terminal through a random access response, or the downlink data is directly sent to the terminal.
  • the message is a system message, or the message is a paging message.
  • the information carried in the message can be partly carried in the system message and partly carried in the paging message.
  • the information carried in the system message can be different from the information carried in the paging message.
  • the terminal can perform in two ways. The first is that when the terminal determines that it is under the CEL, it uses the random access parameter value to send a random access preamble to the network device. The other is that the terminal determines that it is under the CEL and uses the random access parameter value to send a random access preamble to the network device. In this way, when the network device receives the random access preamble, it can perform downlink scheduling according to the DCI format corresponding to the CEL carried in the message.
  • the message indicates multiple coverage enhancement level CELs, and indicates the random access parameter value corresponding to each of the multiple CELs.
  • the terminal can determine the CEL it is in, determine the random access parameter value corresponding to the CEL it is in according to the content indicated by the message, and send the random access preamble to the network device based on the determined random access parameter value .
  • the network device can perform blind detection according to the content indicated by the message. When the random access preamble is detected, the random access parameter value used by the terminal is determined, and the corresponding CEL is determined according to the random access parameter value.
  • the DCI format corresponding to the CEL carried is for downlink scheduling.
  • the random access parameter value includes the value of one or more of the following parameters: random access preamble index, time-frequency resource mask index for sending the random access preamble, sending random access The starting subframe of the preamble, the number of repeated transmissions of the random access preamble, the maximum number of transmissions of the random access preamble, the narrowband for monitoring downlink control information, the length of the window for monitoring downlink data, the window for monitoring the random access response RAR Length, carrier or sub-carrier sending random access preamble, and random access preamble format indication.
  • the terminal can use a variety of random parameter values to send the random access preamble, and the network device can also have more references to determine the CEL, improve the accuracy of the CEL, and improve the accuracy of downlink scheduling.
  • the paging message is also used to indicate early transmission of downlink data or indicate a small downlink data packet.
  • the first downlink control information is received according to the determined random access parameter value, where the downlink control information is used for scheduling downlink data or RAR.
  • the random access parameter value includes parameters related to receiving downlink control information.
  • the network device selects the corresponding DCI format according to the CEL, and the terminal can perform detection based on these parameters, and then can correctly detect the DCI.
  • the message if it is a paging message, it can also receive a system message from the network device.
  • the system message carries n CELs, and the random access corresponding to each of the n CELs. Input parameter values and corresponding n index values, one index value is used to indicate a random access parameter value corresponding to a CEL.
  • the paging message may carry the n indexes M index values in the value, the m index values are used to indicate the random access parameter value corresponding to each of the m CELs, where n is greater than or equal to m. In this way, the load of the paging message can be reduced, and the impact on the capacity of the paging message can be reduced.
  • the system message also carries the narrowband monitoring of the paging message and/or the number of repetitions of receiving the paging message.
  • the dedicated narrowband can reduce the overload of the narrowband caused by sending paging messages of multiple terminals on the same narrowband, and also contribute to the efficiency of early downlink data transmission.
  • By carrying narrowband information dedicated to the early transmission of downlink data in the system message it is possible to separately configure the narrowband of the terminal that supports the early transmission of downlink data to receive the downlink data, which is conducive to the reasonable allocation of resources by the access network equipment and improves resource utilization efficiency.
  • the RAR includes one or more of the following: monitoring the narrowband of the second downlink control information, monitoring the carrier or subcarrier of the second downlink control information, the number of repetitions of the second downlink control information, and carrying the downlink control information.
  • the number of repetitions of the physical downlink shared channel of the data and the length of the window for monitoring the downlink data, and the second downlink control information is used for scheduling downlink data.
  • a communication method is provided.
  • the execution subject of the method may be a network device, or an access network device or a base station.
  • the method includes: sending a message to a terminal, the message indicating m coverage enhancement levels CEL, and indicating all The random access parameter value corresponding to each of the m CELs, where m is a positive integer; according to the random access parameter value, a random access preamble is received from the terminal.
  • the network device can determine that the terminal that transmits the downlink data early sends the random access preamble, and can determine a CEL, and then proceed according to the format of the downlink control information corresponding to the CEL.
  • downlink scheduling downlink data is transmitted to the terminal through a random access response, or downlink data is directly sent to the terminal.
  • the message is a system message, or the message is a paging message.
  • the information carried in the message can be partly carried in the system message and partly carried in the paging message. To save resources, the information carried in the system message can be different from the information carried in the paging message.
  • the message indicates a CEL and the random access parameter value corresponding to the CEL.
  • the network device can perform downlink scheduling according to the DCI format corresponding to the CEL carried in the message.
  • the message indicates multiple coverage enhancement level CELs, and indicates the random access parameter value corresponding to each of the multiple CELs.
  • the network equipment can perform blind detection according to the content indicated by the message.
  • the random access parameter value used by the terminal is determined, and the corresponding CEL can be determined according to the random access parameter value.
  • the DCI format corresponding to this CEL performs downlink scheduling.
  • the random access parameter value includes the value of one or more of the following parameters: random access preamble index, time-frequency resource mask index for sending the random access preamble, sending random access The starting subframe of the preamble, the number of repeated transmissions of the random access preamble, the maximum number of transmissions of the random access preamble, the narrowband for monitoring downlink control information, the length of the window for monitoring downlink data, the window for monitoring the random access response RAR Length, carrier or sub-carrier sending random access preamble, and random access preamble format indication.
  • the terminal can use a variety of random parameter values to send the random access preamble, and the network device can also have more references to determine the CEL, improve the accuracy of the CEL, and improve the accuracy of downlink scheduling.
  • the paging message is also used to indicate early transmission of downlink data or indicate a small downlink data packet.
  • the downlink control information is sent to the terminal according to the random access parameter value, and the downlink control information is used for scheduling downlink data or RAR.
  • the random access parameter value includes parameters related to receiving downlink control information.
  • the network device selects the corresponding DCI format according to the CEL, and the terminal can perform detection based on these parameters, and then can correctly detect the DCI.
  • a system message may also be sent to the terminal.
  • the system message carries n CELs and the random access corresponding to each of the n CELs.
  • the parameter value and corresponding n index values, one index value is used to indicate the random access parameter value corresponding to one CEL.
  • the paging message based on the system message carrying n CELs, the random access parameter value corresponding to each of the n CELs, and the corresponding n index values, the paging message carries the The m index values in the n index values are used to indicate the random access parameter value corresponding to each CEL in the m CELs, where n is greater than or equal to m. In this way, the load of the paging message can be reduced, and the impact on the capacity of the paging message can be reduced.
  • the system message also carries the narrowband monitoring of the paging message and/or the number of repetitions of receiving the paging message.
  • the dedicated narrowband can reduce the overload of the narrowband caused by sending paging messages of multiple terminals on the same narrowband, and also contribute to the efficiency of early transmission of downlink small data packets.
  • the dedicated narrowband can reduce the overload of the narrowband caused by sending paging messages of multiple terminals on the same narrowband, which also helps to improve the efficiency of early downlink data transmission.
  • the RAR includes one or more of the following: narrowband monitoring of downlink control information, carrier or subcarrier monitoring of downlink control information, number of repetitions of downlink control information, and physical downlink shared channel that carries downlink data The number of repetitions, the length of the window for monitoring downlink data, and the downlink control information is used to schedule downlink data.
  • a communication device in a third aspect, has the function of realizing any possible design of the first aspect and the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device can be a chip or an integrated circuit.
  • the device includes a transceiver and a processor, the transceiver is used to communicate with other communication devices, and the processor is used to couple with the memory to execute the program stored in the memory.
  • the device can Perform the method described in the first aspect and any one of the possible designs of the first aspect.
  • the device also includes a memory for storing programs executed by the processor.
  • the device is a terminal.
  • a communication device which has the function of realizing any one of the above-mentioned second aspect and the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device can be a chip or an integrated circuit.
  • the device includes a transceiver and a processor, the transceiver is used to communicate with other communication devices, and the processor is used to couple with the memory to execute the program stored in the memory.
  • the device can Perform the method described in any one of the possible designs of the second aspect and the second aspect.
  • the device also includes a memory for storing programs executed by the processor.
  • the device is a network device.
  • a chip is provided, the chip is connected to a memory or the chip includes a memory, and is used to read and execute software programs stored in the memory, so as to implement the above-mentioned first, second, and first aspects.
  • a communication system in a sixth aspect, includes a terminal and a network device.
  • the terminal is used to perform the first aspect and any possible design method, and/or the network device is used to perform the second aspect. And any possible design method.
  • a computer storage medium which stores a computer program, and the computer program includes instructions for executing the foregoing aspects and any possible design method in each aspect.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the above-mentioned aspects and the method in any possible design of each aspect.
  • Figure 1 is a schematic diagram of the system architecture in an embodiment of the application
  • Fig. 2 is a schematic diagram of the flow of early downlink data transmission in the prior art
  • Figure 3 is a schematic diagram of system bandwidth division in an embodiment of the application.
  • FIG. 4 is a schematic diagram of the flow of the communication method in an embodiment of the application.
  • FIG. 5 is a schematic diagram of the flow of early transmission of downlink data in an embodiment of this application.
  • FIG. 6 is one of the schematic structural diagrams of the communication device in the embodiment of the application.
  • FIG. 7 is the second schematic diagram of the structure of the communication device in the embodiment of the application.
  • the embodiments of the present application provide a communication method and device for scheduling downlink data according to the coverage enhancement level CEL of the terminal when downlink data is transmitted early, thereby improving the efficiency of early downlink data transmission.
  • the method and the device are based on the same concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • "and/or" describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, and both A and B exist at the same time. There are three cases of B.
  • FIG. 1 shows the architecture of a possible communication system to which the communication method provided by the embodiment of the present application is applicable.
  • the communication system 100 includes one or more network devices and one or more terminals. It may also include one or more core network devices. Each network device can provide services for one or more terminals in the coverage area.
  • the network devices are connected through X2 interfaces for communication. S1 interface is connected.
  • the communication system 100 includes a network device 101 and a network device 101'.
  • the terminal within the coverage of the network device 101 is represented by the terminal 102, and the terminal within the coverage of the network device 101' 102' to indicate.
  • the communication system 100 also includes a core network device 103 and a core network device 103'.
  • the following examples illustrate the forms of network equipment, terminals, and core network equipment included in the communication system.
  • the network device 101, the terminal 102, and the core network device 103 are used for description.
  • the network device 101 is a device with a wireless transceiver function or a chip that can be installed in the device.
  • the device includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), the access point (AP), wireless relay node, wireless backhaul node, and transmission point (transmission and reception point, TRP or transmission) in the wireless fidelity (WIFI) system point, TP), etc., it can also be a gNB in a 5G (such as NR) system, or a transmission point (TRP or TP), one or a group of (including multiple antenna panels) antenna panels of a base station in a 5G system, or It can also be a network node that constitutes a gNB or
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network CN, which is not limited here.
  • the terminal can also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent Or user device.
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminal in industrial control, wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety (transportation safety) Wireless terminals in the smart city (smart city), wireless terminals in the smart home (smart home), etc.
  • the embodiment of this application does not limit the application scenario.
  • a terminal with a wireless transceiver function and a chip that can be installed in the aforementioned terminal are collectively referred to as a terminal.
  • the communication method provided by the embodiments of this application can be applied to various communication systems, such as: long term evolution (LTE) system, worldwide interoperability for microwave access (WiMAX) communication system, fifth generation ( 5th Generation, 5G) systems, such as new radio access technology (NR), and future communication systems, such as 6G systems.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio access technology
  • 6G systems future communication systems, such as 6G systems.
  • the core network device 103 is used for communication between the network device 101 and an IP network.
  • the IP network may be the Internet, a private IP network, or other data networks.
  • the core network equipment 103 includes a mobile management entity (mobile management entity, MME)/service-network gateway (service-network gateway, S-GW).
  • MME mobile management entity
  • S-GW service-network gateway
  • the method provided in the embodiments of the present application may be applied to a fourth generation (4th generation, 4G) communication system, a fifth generation (5th generation, 5G) communication system, or various future communication systems. Specifically, it can be applied to the communication scenario of MTC, and can also be applied to the communication scenario of NB-IoT.
  • the method provided in the embodiments of this application can be applied to the application scenario of downlink data early transmission (mobile terminated early data transmission, MT-EDT).
  • the downlink data transmitted early can have any one or more of the following Features:
  • the downlink data can be transmitted in one time, that is, the downlink data of the terminal can be transmitted in one message.
  • a single downlink data packet that is, the core network device can send the terminal's downlink data through an IP packet, which is expressed as a single downlink data packet (single packet), or a single downlink data (single DL data); or, access network equipment
  • the downlink data of the terminal can be sent through one TB, which is represented as a single downlink data packet (single DL data), or a single DL transmission (single DL transmission).
  • the downlink small data packet, or small data packet can be understood as the downlink data volume of the terminal is less than a threshold.
  • the terminal may be capable of supporting MT-EDT or not capable of supporting MT-EDT.
  • a terminal capable of supporting MT-EDT may have the characteristic of a single service.
  • the terminal's downlink data only has one downlink data packet per transmission.
  • the embodiments of the present application may but are not limited to the following application scenarios:
  • the downlink data volume of the terminal is less than the set threshold
  • the core network device can send the terminal's downlink data to the access network device through a network protocol IP packet;
  • the access network device can send the terminal's downlink data to the terminal through a transmission block (TB);
  • Scenario 4 The core network device sends the downlink data of the terminal to the access network device multiple times, but the access network device may send the downlink data received multiple times to the terminal through one TB.
  • the core idea of an embodiment in this application is that the network device sends a paging message to the terminal, and the paging message carries the random access resource and the coverage enhancement level CEL or the number of repetitions corresponding to the random access resource, and the terminal receives the paging Message, when it is determined that it is in a specific CEL, a random access preamble is sent to the network device based on the random access resource corresponding to the specific CEL.
  • the network device can receive the random access preamble based on the random access resource, and it can be determined that the terminal that transmits the downlink data early requests random access, then the downlink data can be transmitted to the terminal in the random access response, or Send downlink data directly to the terminal.
  • the network device performs downlink scheduling according to the format of the downlink control information corresponding to the specific CEL.
  • CP control plane
  • UP user plane
  • the packet data gateway packet data network gateway, P-GW
  • the serving gateway serving gateway, S-GW
  • the S-GW receives the terminal's data from the P-GW The downstream data.
  • the S-GW sends a downlink data notification (downlink data notification) message to a mobile management entity (mobile management entity, MME).
  • MME mobile management entity
  • the downlink data notification message may carry a small data packet indication (small data indication) or the data volume of the downlink data (data volume).
  • the downlink data notification message may carry the downlink data.
  • the S-GW may generate a small data transfer request (small data transfer request) message according to the data volume of the downlink data or the size of the data packet sent by the P-GW to request the MME whether the downlink data can be used
  • the downlink data is sent in an early transmission method.
  • the small data packet transmission request message may carry the downlink data.
  • step 202 the MME receives a small data transfer request, and the MME determines that the terminal of the downlink data supports MT-EDT, the MME sends a small data packet transfer confirmation (small data transfer confirmation) message to the S-GW.
  • the S-GW receives the small data transfer confirm message from the MME.
  • the MME may use a non-access stratum (Non Access Stratum) security mechanism to encrypt the downlink data.
  • Non-access stratum Non Access Stratum
  • This S204 can be executed after S205, or after step S209.
  • the MME sends a first paging (paging) message to the access network device according to the received downlink data notification message or small data transfer request message.
  • the access network device receives the first paging message from the MME.
  • the first paging message between the MME and the access network device can be recorded as S1-paging, where the S1-paging carries the identification of the terminal that needs to be paged, such as the System Architecture Evolution Temporary Mobile User Identification (System Architecture Evolution Temporary). Mobile Station Identifier, S-TMSI).
  • S-TMSI System Architecture Evolution Temporary Mobile User Identification
  • the MME decides to use MT-EDT to send downlink data to the terminal according to the small data indication or data volume or small data packet indication, as well as the ability of the terminal to support MT-EDT.
  • the NAS PDU transmission request may be included in the first paging message, or the small data indication may be included in the first paging message, or the data volume may be included in the first paging message, or MT -EDT is included in the first paging message.
  • the access network device After the access network device receives the S1-paging, if the S1-paging message contains indication information related to MT-EDT, the access network device allocates random access resources and wireless network temporary identifiers (radio network temporary identifier, RNTI).
  • the random access resource includes a random access preamble (ra-preamble), a random access time-frequency resource, the random access preamble is identified by a random access preamble index (ra-preambleIndex), and the random access The frequency resource is identified by the random access time-frequency resource mask index (ra-prach-maskIndex).
  • the access network device sends a second paging message to the terminal, and the terminal receives the second paging message from the access network device.
  • the second paging message between the access network device and the terminal can be recorded as uu-paging.
  • the uu-paging carries ra-preambleindex, RNTI, and optionally, small data indication and/or ra-prach-maskIndex.
  • the terminal According to the received uu-paging, the terminal sends a random access preamble (preamble) indicated by the ra-preambleindex carried in the paging message to the access network device.
  • preamble a random access preamble indicated by the ra-preambleindex carried in the paging message
  • the access network device If the access network device receives the preamble indicated by the ra-preambleindex, the access network device sends a NAS PDU request to the MME to request downlink data from the MME, where the downlink data is carried in the NAS PDU.
  • NAS PDU request is used to request downlink data from MME.
  • NAS PDU request can be initial NAS message, attach request, detach request, tracking area update request At least one of (tracking area update request), service request (service request), extended service request (extended service request), control plane service request (control plane service request), and initial UE message (Initial UE message).
  • Step 210 If the MME has received the downlink data from the S-GW, it sends a NAS PDU to the access network device; otherwise, the MME requests the S-GW for downlink data, and then sends the NAS PDU to the access network device.
  • the NAS PDU is carried in a radio access bearer (RAB) setup request, a radio access bearer modification request (RAB modify request), and a radio access bearer release command (RAB release).
  • RAB radio access bearer
  • RAB modify request a radio access bearer modification request
  • RAB release a radio access bearer release command
  • command initial context setup request (initial context setup request), UE context release command (UE context release command), connection establishment indication (connection establishment indication), UE information transmission (UE information transfer), downlink NAS transmission (downlink NAS transport)
  • RAB radio access bearer
  • Step 211 If the access network device receives the NAS PDU sent by the MME, the access network device sends the NAS PDU to the terminal, where the NAS PDU includes the downlink data.
  • Step 212 If the terminal successfully receives the downlink data, the terminal sends a first feedback message to the access network device.
  • the first feedback message is used by the terminal to indicate to the access network device that the downlink data is successfully received.
  • Step 213 The access network device sends a second feedback message to the MME according to the received first feedback message.
  • the second feedback message is used by the access network device to indicate to the MME that the downlink data is successfully sent.
  • the method flow of early downlink data transmission shown in FIG. 2 is only an example, and the embodiment of the present application is not limited to the method flow, and may also be applicable to other application scenarios of early downlink data transmission.
  • the embodiments of the present application mainly relate to the interaction between the access network device and the terminal, and the interaction process between the core network side devices will be different due to the difference between the CP process and the UP process.
  • the access network device and terminal can determine an appropriate control information format according to the CEL to schedule data transmission during the early transmission of downlink data.
  • the enhanced coverage level CEL may also be referred to as enhanced coverage level (enhanced coverage level, ECL), indicating the same meaning.
  • ECL enhanced coverage level
  • the coverage enhancement level may also be a repetition number or a repetition number level. This text only uses CEL as an example for illustration.
  • a terminal that supports enhanced coverage can be in a normal coverage area or in an enhanced coverage area.
  • the mode of operation under normal coverage and the mode of operation under enhanced coverage are usually different.
  • the terminal will work on the entire system bandwidth under normal coverage, such as monitoring the physical downlink control channel (PDCCH) on the entire system bandwidth, and the terminal will operate in a narrow band under the enhanced coverage.
  • monitoring MPDCCH (MTC PDCCH) on a narrowband where the system bandwidth can be 1.4MHz, 3MHz, 5MHz, 10MHz, 20MHz, and the narrowband can be 1.4MHz.
  • MTC PDCCH MPDCCH
  • MTC PDCCH MPDCCH
  • the MTC terminal it will work on a narrow band, namely 1.4MHz.
  • the MTC terminal includes a bandwidth-reduced and low-complexity (BL) terminal and a non-bandwidth-reduced low-complexity (non-BL) terminal that supports coverage enhancement.
  • BL bandwidth-reduced and low-complexity
  • non-BL non-bandwidth-reduced low-complexity
  • different coverage enhancement levels are defined according to the number of repetitive signal transmissions (repetition number), that is, different repetition times can correspond to different coverage enhancements. grade.
  • the terminal can determine its own coverage enhancement level based on the signal measurement result, where the terminal determines the coverage enhancement level through the signal strength threshold configured by the access network device.
  • the signal strength is the cell reference signal received power (reference signal received power, RSRP).
  • the access network equipment is configured with N RSRP thresholds, such as RSRP0, RSRP1,..., RSRP(N-1), where RSRP0>RSRP1>...>RSRP(N-1), if the terminal determines that the measurement result is RSRP( N):
  • the terminal determines that it is at coverage enhancement level 0, that is, CEL0;
  • the terminal determines that it is at coverage enhancement level 1, namely CEL1;
  • the terminal determines that it is at coverage enhancement level N-1, namely CEL(N-1).
  • the number of repetitions corresponding to CEL0 is less than the number of repetitions corresponding to CEL1
  • the number of repetitions corresponding to CEL1 is less than the number of repetitions corresponding to CEL2, and so on.
  • N 4 coverage enhancement levels
  • coverage enhancement modes A CE mode A
  • CE mode B coverage enhancement modes A
  • DCI downlink control information
  • CE mode A corresponds to CEL0 and CEL1
  • CE mode B corresponds to CEL2 and CEL3.
  • MTC defines different downlink control information (downlink control information, DCI) formats for CE mode A and CE mode B.
  • DCI downlink control information
  • the terminal when the terminal is in a different CEL, it may be in a different CE mode, and the access network equipment will use different downlink control information formats to send downlink control information.
  • the downlink control information is used to schedule data transmission, such as scheduling downlink Data, the terminal receives the downlink control information according to the corresponding downlink control information format.
  • the downlink control information can be used to schedule downlink data or send uplink data, which can improve the efficiency and reliability of data transmission. In this application, it can improve the early transmission of downlink data. Efficiency and reliability.
  • the network device ie, the access network device
  • the terminal receives the random access information from the access network device.
  • the random access information includes one or more random access information corresponding to the CEL.
  • Input parameter values the same CEL can correspond to one or more sets of random access parameter values, and the random access parameter values corresponding to different CELs are generally different.
  • a set of random access parameter values includes one or more random access parameter values.
  • a terminal when a terminal sends a random access preamble to an access network device, it can indicate to the access network device which CEL the terminal is in.
  • the access network device can use the CEL and
  • the downlink control information format corresponding to the CEL is used to schedule downlink data, thereby improving the efficiency and reliability of early downlink data transmission.
  • the interaction between the terminal and the network device in this application below refers to the interaction between the terminal and the access network device, and the network device mostly refers to the access network device.
  • the random access parameters may also have other names.
  • the random access parameters may include the random access preamble index (ra-preamble index), the time-frequency resource mask index for sending the random access preamble, and the sending random access parameter.
  • the random access parameters may include random access resources, and the random access resources include time domain resources, frequency domain resources, and code domain resources for sending the random access preamble.
  • Time domain resources are at least two of the real-time domain start position, end position, and time window; frequency domain resources are at least two of the frequency domain start position, end position, and bandwidth; frequency domain resources can also be random access preambles
  • the carrier or subcarrier of the code is the index of the random access preamble.
  • the random access parameters may also include some parameters used by the terminal when monitoring downlink control information or downlink data/signals.
  • RSRP threshold For example, RSRP threshold, physical random access channel (PRACH) hopping, PRACH configuration index (PRACH-ConfigIndex), PRACH frequency domain index (PRACH-FreqIndex).
  • PRACH-ConfigIndex PRACH configuration index
  • PRACH-FreqIndex PRACH frequency domain index
  • Indication information indicating whether RAR performs frequency hopping for example, the parameter is expressed as RAR-hopping
  • the number of repeated transmissions of the random access preamble during early downlink data transmission for example, the parameter is expressed as numRepetitionPerPreambleAttempt;
  • Indication information indicating the format of the random access preamble for example, the parameter is expressed as preamble format indicator
  • the parameter is expressed as carrier indication of PRACH.
  • the random access information includes one or more random access parameters, and one or more sets of random access parameter values under each CEL. It can be embodied in the form of a table or other forms. For the convenience of illustration, this application presents the content of random access information in the form of a table. Table 1 illustrates several random access parameters and two groups under each CEL. Random access parameter values, assuming that CEL includes CEL X and CEL Y, CEL X and CEL Y are two different CELs, of course, it may include more CELs. One CEL corresponds to two sets of random access parameter values. Of course, the number of random access parameters in each group may be the same or different.
  • the first group of CEL X includes S random access parameter values
  • the second lease includes S'random access parameter values, and S and S'are different.
  • the number of random access parameter groups corresponding to different CELs may be the same or different.
  • CEL X corresponds to two sets of random access parameter values
  • CEL Z corresponds to three sets or one set of random access parameter values.
  • a set of random access parameters includes one or more random access parameters, and each random access parameter has a corresponding random access parameter value with CEL, and the random access parameter value can be configured arbitrarily.
  • the access network device can send random access information to the terminal through a system message or a paging message (uu-paging).
  • a system message or a paging message uu-paging
  • the information already carried in the system message does not need to be included in the paging message.
  • Carry, or, the information carried in the paging message does not need to be carried in the system message.
  • the system bandwidth refers to the frequency range occupied by the modulated carrier.
  • the system bandwidth can include 6 different bandwidths according to the frequency range occupied by the carrier, including: 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz.
  • the system bandwidth can be divided into multiple narrowbands.
  • One narrowband includes multiple consecutive physical resource blocks (PRBs), and the PRBs contained in any two different narrowbands do not overlap.
  • the narrowband included in the system bandwidth can be identified by a sequence number or an index value.
  • a narrowband includes 6 PRBs. Taking a system bandwidth of 20MHz as an example, the system bandwidth includes 16 narrowbands, and the serial numbers of the 16 narrowbands are 0-15.
  • the full-frequency bandwidth is equivalent to the system bandwidth in the LTE system.
  • the full-frequency bandwidth is 180kHz, which is 1PRB.
  • NB-IoT supports multiple carriers, and the bandwidth on each carrier is 180kHz, which is 1PRB.
  • One carrier can also be called a narrow band.
  • the description of narrowband is applicable to both eMTC and NB-IoT.
  • the narrowband in NB-IoT is 1PRB
  • the narrowband in MTC/eMTC is 6PRB.
  • a dedicated narrowband is configured for the terminal for early transmission of downlink data in this application.
  • the narrowband monitoring of downlink data mentioned above, and the narrowband monitoring of RAR parameters can be carried in the system message:
  • the terminal that supports early data transmission monitors the narrowband of the paging message, for example, the parameter is expressed as paging-Narrowbands-MT-EDT;
  • the number of times that the terminal that supports the early transmission of data monitors the paging message for example, the parameter is expressed as mpdcch-NumRepetition-Paging-MT-EDT.
  • the system message may be used to carry the random access information in this embodiment of the application, and the random access information includes n CEL indication information, The random access parameter value corresponding to each of the n CELs and the corresponding n index values, one index value is used to indicate the random access parameter value corresponding to one CEL. If one CEL corresponds to multiple sets of random access parameter values, one CEL can be associated with multiple index values to indicate the multiple sets of random access parameter values.
  • one or more index values can be carried by the paging message, for example, m index values out of n index values can be carried.
  • the m index values are used to indicate the random access parameter value corresponding to each of the m CELs.
  • n is greater than or equal to m, and both n and m are positive integers.
  • the terminal can determine the random access parameter value corresponding to each of the m CELs indicated by the m index values according to the m index values and the random access information carried in the system message. That is, the terminal can obtain the CEL and the random access parameter value indicated by each index value in the system message, and determine the value of the random access parameter under the CEL indicated by the index value according to the index value carried in the paging message.
  • the random access information including the index value may be embodied in the form of a table. Based on the example in Table 1, as shown in Table 2, CEL includes CEL X and CEL Y, and of course it may include more CELs.
  • One CEL corresponds to two sets of random access parameter values. There are 4 groups of random access parameter values, which can be indicated by 4 index values. The four index values are represented by Index 1 to Index 4.
  • CEL X uses Index 1 to indicate the value of one group of random access parameters, and Index 2 to indicate the value of another group of random access parameters.
  • CEL Y uses Index 3 to indicate one group of random access parameter values, and Index 4 to indicate another group of random access parameter values.
  • the load of the paging message can be reduced, and the impact on the capacity of the paging message can be reduced.
  • the network device sends a paging message to the terminal, and the terminal receives the paging message from the network device.
  • the random access parameters may include one or more sets of random access parameters. If the random access parameters include multiple sets of random access parameters, the paging message indicates the CEL and a set of random access parameters corresponding to the CEL. Value, a set of random access parameter values includes the value of each random access parameter in a set of random access parameters. If m>1, the paging message indicates m CELs and the random access parameter value corresponding to each CEL.
  • the random access parameters may include one or more sets of random access parameters. If the random access parameters include multiple sets of random access parameters, the paging message indicates a set of random access parameter values corresponding to each CEL. A set of random access parameter values includes the value of each random access parameter in the set of random access parameters.
  • m coverage enhancement levels CEL can also be referred to as m repetition number levels or m repetition number values, and each repetition number level or each repetition number value corresponds to a set of random access parameter values , Where the set of random access parameter values may include one or more random access parameter values in Table 1.
  • the random access parameter may include a random access preamble index indicated by the network device for the terminal for early transmission of downlink data, for example, indicating ra-preambleindex.
  • a network device receives a paging message containing a small data indication or NAS PDU transmission request from the core network side, such as S1-paging, it sends a paging message to the terminal , Such as uu-paging.
  • the paging message received by the network device from the core network device may carry the identification of the terminal, such as S-TMSI.
  • the network device determines random access parameters for the terminal marked by the identifier, and the random access parameters include one or more of the random access parameters in Table 1.
  • the random access parameters include random access parameters corresponding to m CELs.
  • the paging message sent by the network device to the terminal carries m CEL indication information, and the indication information is used for the CEL.
  • the paging message sent by the network device to the terminal carries the identification of the terminal (for example, S-TMSI) and the random access parameter.
  • the paging message sent by the network device to the terminal is also used to indicate early transmission of downlink data. For example, the paging message sent by the network device to the terminal carries a small data packet indication (small data indication). ).
  • S402 The terminal determines a random access parameter value corresponding to the CEL where it is located according to the paging message.
  • the paging message indicates a CEL and the random access parameter value corresponding to the CEL, and the terminal determines that it is under the CEL according to the paging message, and obtains the random access parameter value corresponding to the CEL.
  • the paging message indicates a CEL and the random access parameter value corresponding to the CEL, and the terminal determines to adopt the random access parameter value corresponding to the CEL regardless of whether it is under the CEL.
  • the paging message indicates m CELs and the random access parameter value corresponding to each CEL.
  • the terminal first determines its own CEL according to the measurement, and determines the random access corresponding to the CEL according to the paging message. Access parameter value. Among them, the terminal determines the current CEL according to the measurement, and the specific method of determining the CEL is described above.
  • the terminal sends a random access preamble to the network device based on the determined random access parameter value, and the network device receives the random access preamble from the terminal.
  • the terminal sends the random access preamble indicated by the ra-preambleindex to the network device.
  • the terminal sends the random access preamble to the network device on the time-frequency resource indicated by the time-frequency resource mask index.
  • the terminal sends the random access preamble based on the random access parameters configured by the access network equipment.
  • the random access parameters include the initial subframe for sending the random access preamble, and the random access preamble. At least one of the number of repeated transmissions of the incoming preamble, the maximum number of transmissions of the random access preamble, the carrier or subcarrier for sending the random access preamble, and the random access preamble format indication.
  • S404 The network device sends downlink control information (downlink control information, DCI) to the terminal, and the terminal receives the DCI according to the random access parameters.
  • DCI downlink control information
  • the DCI here is recorded as the first DCI.
  • the network equipment performs detection or blind detection according to the random access parameters sent in the paging message or system message. After the network device receives or detects the random access preamble sent by the terminal, it is determined according to the random access parameters carried in the paging message that the random access preamble is sent by the terminal that transmits the downlink data early, and according to the random access parameters Determine the CEL of the terminal.
  • the paging message carries the ra-preambleindex
  • the network device detects the random access preamble indicated by the ra-preambleindex, determines that the terminal sending the random access preamble is the terminal for early downlink data transmission, and determines the ra-preambleindex The corresponding CEL.
  • the paging message carries multiple ra-preamble indexes, and the network equipment detects blindly. If the random access preamble indicated by one of the multiple ra-preamble indexes is detected, the random access preamble is determined to be sent
  • the terminal is a terminal for early transmission of downlink data, and the CEL corresponding to the terminal is determined according to the random access parameters.
  • the network device may also determine the CEL of the terminal according to other random access parameters used by the terminal to send the random access preamble.
  • the other random access parameters may be the parameter prach-StartingSubframe-MT-EDT.
  • the network device determines the format of the first DCI corresponding to the CEL according to the CEL of the terminal.
  • CEL is different
  • DCI format is different.
  • This application configures the corresponding DCI format for CEL, and one or more CELs correspond to one DCI format. Assuming that two CELs correspond to one DCI format, for example, CEL0 and CEL1 correspond to the first DCI format, and CEL2 and CEL3 correspond to the second DCI format.
  • the first DCI format may be DCI format 6-1A in 3GPP TS 36.212
  • the second DCI format may be DCI format 6-1B in 3GPP TS 36.212.
  • the first DCI is used to indicate a first downlink resource, and the first downlink resource is used to schedule downlink data or RAR.
  • the terminal monitors the downlink data on the first downlink resource indicated by the first DCI, thereby completing early downlink data transmission.
  • the first downlink resource is used to transmit RAR, it can be divided into the following situations according to different contents carried by RAR.
  • the RAR carries the second DCI, the second DCI is used to indicate the second downlink resource, and the second downlink resource is used to transmit downlink data, that is, downlink early transmission data.
  • the terminal After listening to the first DCI, the terminal receives the RAR on the first downlink resource indicated by the first DCI, and according to the second DCI carried by the RAR, receives downlink data on the second downlink resource indicated by the second DCI, thereby completing Downlink data is transmitted early.
  • the format of the DCI carried in the RAR has a corresponding relationship with the CEL, and the network device selects the corresponding DCI format according to the CEL of the terminal according to the corresponding relationship, and the DCI is carried in the RAR and sent to the terminal.
  • the DCI format includes a third DCI format and a fourth DCI format.
  • Each DCI format corresponds to several parameters for scheduling downlink data.
  • the third DCI format corresponds to CEL0 and CEL1, or the third format corresponds to CE mode A
  • the fourth DCI format corresponds to CEL2 and CEL3
  • the fourth DCI format corresponds to CE mode B.
  • the third DCI format and the fourth DCI format include different parameters or include different value ranges of the parameters.
  • the PDSCH narrowband index is Under CEL 2 and CEL3, the PDSCH narrowband index is 2.
  • Table 3 shows some examples of DCI indicating parameters. Of course, DCI can also indicate more parameters. The values of various parameters under different CELs are just examples, and arbitrary values can be set according to requirements.
  • the RAR carries RNTI, the RNTI is used to indicate the PDCCH, the third DCI transmitted on the PDCCH is used to indicate the third downlink resource, and the third downlink resource is used to transmit downlink data.
  • the terminal After monitoring the first DCI, the terminal receives the RAR on the first downlink resource indicated by the first DCI, monitors the PDCCH according to the RNTI carried by the RAR, and if the third DCI is monitored according to the RNTI. According to the third DCI, downlink data is received on the third downlink resource indicated by the third DCI, thereby completing early downlink data transmission.
  • the format of the DCI corresponding to the RNTI carried in the RAR has a corresponding relationship with the CEL.
  • the network device determines the corresponding DCI format according to the corresponding relationship and the CEL of the terminal, and sends it to the terminal by scrambling through the RNTI.
  • the format of the third DCI monitored by the terminal according to the RNTI can continue to use the DCI format 6-1A or DCI format 6-1B in 3GPP TS 36.212, which will not be repeated here.
  • the terminal monitors the first DCI, it determines the random access parameter corresponding to the current CEL according to the random access information, and monitors the first DCI according to the random access parameter corresponding to the CEL. For example, the terminal monitors the PDCCH on the narrowband indicated by the parameter mpdcch-NarrowbandsToMonitor-DL-Data, and the PDCCH is used to transmit the first DCI.
  • RAR can carry one or more of the following information: monitoring the narrowband of the downlink control information (second DCI), monitoring the carrier or subcarrier of the downlink control information (second DCI), and the information of the downlink control information (second DCI).
  • the number of repetitions the number of repetitions of the physical downlink shared channel carrying downlink data, and the length of the window for monitoring downlink data.
  • the communication method provided in this application can be applied to the process of early downlink data transmission. Taking the process shown in FIG. 2 as an example, as shown in FIG. 5, this application provides an example of the process of early downlink data transmission.
  • the network device (that is, the access network device) sends a system message to the terminal, and the terminal receives the system message from the network device.
  • the method described in this step refers to the explanation of the corresponding content in the above method embodiment, such as the content included in the system message, the corresponding process of sending and receiving the system message, etc., which are not repeated here.
  • S501 ⁇ S505 are the same as S201 ⁇ S205.
  • S506 to S508 refer to the process of S401 to S403, and the similarities are not repeated here.
  • S509 ⁇ S510 are the same as S209 ⁇ S210.
  • S511 is the same as S404.
  • the early downlink data transmission shown in Figure 5 is an example.
  • the communication method provided in this application can be applied to other scenarios of early downlink data transmission, as long as it involves system messages and/or paging messages carrying random access information. , And early transmission of downlink data can be scheduled during random access.
  • an embodiment of the present application further provides a communication device 600, which has a function of performing operations performed by the terminal or network device in the foregoing method embodiment.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device 600 includes a processing unit 601 and a communication unit 602.
  • the communication unit 602 is configured to perform the sending and/or receiving steps in the method embodiment.
  • the processing unit 601 is used to perform other steps except sending and receiving.
  • the communication unit 602 may include a sending unit and/or a receiving unit.
  • the communication device 600 may be a terminal, or a chip or a functional module inside the terminal.
  • the communication unit 602 is configured to receive a paging message from a network device, where the paging message indicates m coverage enhancement levels CELs and indicates the random access parameter value corresponding to each of the m CELs, m Is a positive integer;
  • the processing unit 601 is configured to determine, according to the paging message, a random access parameter value corresponding to the CEL where it is located;
  • the communication unit 602 is further configured to send a random access preamble to the network device based on the determined random access parameter value.
  • the communication unit 602 is further configured to receive system messages from the network device.
  • the communication device 600 may be a network device, or a chip or functional module inside the network device.
  • the processing unit 601 is used to schedule the communication unit 602 Communicate with other devices. Specifically, it is used to send a paging message to the terminal, where the paging message indicates m coverage enhancement level CELs, and indicates the random access parameter value corresponding to each of the m CELs, and m is a positive integer ; According to the random access parameter value, receive a random access preamble from the terminal.
  • processing unit 601 and the communication unit 602 may also perform other corresponding operations in the foregoing method embodiments, and details are not described herein again.
  • an embodiment of the present application further provides a communication device 700, which is used to implement operations performed by the terminal and/or network device in the foregoing method embodiment. .
  • FIG. 7 only shows the main components of the communication device 700.
  • the communication device 700 includes: a transceiver 701, a processor 702, and a memory 703.
  • the memory 703 is optional.
  • the transceiver 701 is used to transmit messages or signaling with other communication devices.
  • the processor 702 is coupled with the memory 703 and is used to call a program in the memory 703. When the program is executed, the processor 702 executes the above method embodiments. Operations performed by the terminal and/or network device.
  • the memory 703 is used to store a program executed by the processor 702.
  • the transceiver 701 may include a transmitter and/or a receiver, which respectively implement the transceiver function.
  • the number of processors 702 may be one or more.
  • the memory 703 may be located in the processor 702 or may exist separately.
  • FIG. 7 only shows a memory and a processor. In actual terminals and/or network devices, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor 702 is mainly used to process communication protocols and communication data, and to control the entire terminal and/or network equipment, execute software programs, and process data of the software programs, for example, to support the terminal and/or network equipment to execute the above methods The actions described in the embodiment.
  • the memory 703 is mainly used to store software programs and data.
  • the processor 702 When performing the function of the terminal, for example, the processor 702 performs the following operations: receiving a paging message from the network device; determining a random access parameter value corresponding to the CEL where it is located according to the paging message; based on the determined random access The parameter value sends a random access preamble to the network device.
  • the processor 702 When performing the function of the network device, for example, the processor 702 performs the following operations: receiving a paging message from the network device; determining a random access parameter value corresponding to the CEL where it is located according to the paging message; The input parameter value sends a random access preamble to the network device.
  • the processor 702 may also perform other operations or functions performed by the terminal or network device in the foregoing method embodiments, and the repetitions are not described again.
  • the communication device 700 is a base station, and the base station may include one or more radio frequency units, such as a remote radio unit (RRU) and one or more baseband units (BBU) (also called digital Unit (digital unit, DU)).
  • the RRU may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna and a radio frequency unit.
  • the RRU part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
  • the BBU part is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU and BBU may be physically set together, or physically separated, that is, a distributed base station.
  • the BBU is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access indication (such as an LTE network), or may respectively support different access standards.
  • Wireless access network (such as LTE network, 5G network or other network).
  • the BBU further includes a memory 703 and a processor 702, and the memory 703 is used to store necessary instructions and data.
  • the processor 702 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory and processor may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the processor 702 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor 702 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the memory 703 may include volatile memory (volatile memory), such as random-access memory (RAM); the memory 703 may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory). memory), a hard disk drive (HDD) or a solid-state drive (SSD); the memory 703 may also include a combination of the foregoing types of memories.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory 703 may also include a combination of the foregoing types of memories.
  • the communication device 700 when performing the functions of a network device, is not limited to the above-mentioned form, and may also be in other forms: for example, including BBU and adaptive radio unit (ARU), or BBU and active antenna unit (active antenna unit).
  • antenna unit, AAU can also be customer premises equipment (CPE), or it can be in other forms, which is not limited in this application.
  • CPE customer premises equipment
  • an embodiment of the present application further provides a chip, including a processor, for supporting the communication device to implement the functions related to the terminal or network device in the foregoing method embodiment .
  • the chip is connected to a memory or the chip includes a memory, and the memory is used to store the necessary program instructions and data of the communication device.
  • the embodiment of the present application provides a computer storage medium storing a computer program, and the computer program includes instructions for executing the foregoing method embodiments.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the foregoing method embodiments.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用于在下行数据早传时能够根据终端所处的覆盖增强等级CEL进行下行数据的调度,从而提高下行数据早传的效率。该方法包括:从网络设备接收寻呼消息,其中,所述寻呼消息指示m个覆盖增强等级CEL,以及指示所述m个CEL中的每一个CEL对应的随机接入参数值,m为正整数;根据所述寻呼消息确定与所处的CEL对应的随机接入参数值;基于确定的随机接入参数值向所述网络设备发送随机接入前导码。

Description

一种通信方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种通信方法及装置。
背景技术
对类似于机器类型通信(machine type communication,MTC)和窄带物联网(narrow band internet of thing,NB-IoT)等一些通信场景,其数据传输的特点是,数据量较小,且数据到达时间不确定。传输小数据量的数据包,若使用传统的无线资源控制(radio resource control,RRC)连接建立过程,系统开销过大,资源利用效率低下,终端的功耗过大,并且无法满足数据传输时延要求。现有技术中,终端在随机接入过程中将小包数据发送网络设备,而并不建立终端的RRC连接,使得终端在空闲态就可以完成数据的传输。具体的,可以在随机接入过程中的Msg3中将上行数据发送给网络设备,实现上行数据早传。在另一现有技术中,若网络侧有终端的下行数据到达,网络设备通过寻呼消息将终端唤醒,使其接入网络设备,为实现下行数据早传,网络设备可以在接收到终端发送的上行信号(例如随机接入前导码)后,向终端发送下行数据,实现下行数据早传。
考虑到MTC或NB-IoT类型的终端的部署环境,其信号覆盖强度可能无法满足信号接收要求,因此对其进行增强,使网络设备和终端能够支持增强覆盖(enhanced coverage,EC)或覆盖增强(coverage enhancement,CE)。目前,实现增强覆盖的主要方法是重复多次发送上行或下行信号,通过多次接收合并实现提高数据接收成功率的目的。终端根据测量能够确定自身所处的覆盖增强等级(coverage enhancement level,CEL)。网络设备会根据终端所处的CEL来对终端进行调度。
然而在下行数据早传的应用场景下,网络设备无法获知终端的CEL,从而无法按照CEL对终端进行调度,降低下行数据早传的效率。
发明内容
本申请提供一种通信方法及装置,用以实现根据终端的CEL进行下行调度从而提高下行数据早传的效率。
一方面,本申请提供一种通信方法,该方法的执行主体可以是终端,该方法包括:从网络设备接收消息,该消息指示m个覆盖增强等级CEL,以及指示所述m个CEL中的每一个CEL对应的随机接入参数值,m为正整数;根据该消息确定随机接入参数值,基于确定的随机接入参数值向所述网络设备发送随机接入前导码。这样,网络设备可以在接收到随机接入前导码时确定是下行数据早传的终端发送了随机接入前导码,并且,可以确定终端的CEL,之后,根据与该CEL对应的下行控制信息的格式进行下行调度,在下行调度中通过随机接入响应将下行数据传输给终端,或者直接向终端发送下行数据。
在一个可能的设计中,该消息是系统消息,或者,该消息是寻呼消息。
在一个可能的设计中,该消息携带的信息可以部分携带于系统消息,部分携带于寻呼消息。为节约资源,系统消息携带的信息与寻呼消息携带的信息可以不同。
在一个可能的设计中,m=1,则该消息指示一个CEL,和该CEL对应的随机接入参数 值。在这种情况下,终端可以按照两种方式执行。第一种是终端确定自身处于该CEL下时,采用该随机接入参数值向网络设备发送随机接入前导码。另一种是终端确定其处于该CEL下,并采用该随机接入参数值向网络设备发送随机接入前导码。这样,网络设备接收到该随机接入前导码时,可以按照消息中携带的这个CEL对应的DCI格式进行下行调度。
在一个可能的设计中,m>1,则该消息指示多个覆盖增强等级CEL,以及指示多个CEL中的每一个CEL对应的随机接入参数值。这种情况下,终端可以确定自身处于的CEL,并根据消息指示的内容,确定自身处于的CEL对应的随机接入参数值,基于确定的随机接入参数值向网络设备发送随机接入前导码。网络设备可以根据消息指示的内容进行盲检,当检测到随机接入前导码时,确定该终端使用的随机接入参数值,并根据随机接入参数值确定对应的CEL,就可以按照消息中携带的这个CEL对应的DCI格式进行下行调度。
在一个可能的设计中,所述随机接入参数值包括以下一项或多项参数的值:随机接入前导码索引、发送随机接入前导码的时频资源掩码索引、发送随机接入前导码的起始子帧、随机接入前导码的重复发送次数、随机接入前导码的最大发送次数、监听下行控制信息的窄带、监听下行数据的窗口长度、监听随机接入响应RAR的窗口长度、发送随机接入前导码的载波或子载波、随机接入前导码格式指示。这样,终端可以采用多种随机参数值发送随机接入前导码,网络设备也可以有更多的参考来确定CEL,提高CEL的准确性,以及提高下行调度的准确性。
在一个可能的设计中,该消息为寻呼消息时,该寻呼消息还用于指示下行数据早传,或者指示下行小数据包。
在一个可能的设计中,根据确定的随机接入参数值,接收第一下行控制信息,所述下行控制信息用于调度下行数据或RAR。随机接入参数值包括与接收下行控制信息相关的参数,网络设备按照CEL选择对应的DCI格式,终端可以根据这些参数进行检测,进而能够正确检测到DCI。
在一个可能的设计中,该消息如果是寻呼消息,则还可以从所述网络设备接收系统消息,所述系统消息携带n个CEL、所述n个CEL中的每一个CEL对应的随机接入参数值、以及对应的n个索引值,一个索引值用于指示一个CEL对应的随机接入参数值。
可选的,基于系统消息携带n个CEL、所述n个CEL中的每一个CEL对应的随机接入参数值、以及对应的n个索引值,所述寻呼消息可以携带所述n个索引值中的m个索引值,所述m个索引值用于指示所述m个CEL中的每一个CEL对应的随机接入参数值,其中n大于或等于m。这样,能够降低寻呼消息的负载,降低对寻呼消息容量的影响。
在一个可能的设计中,所述系统消息还携带监听寻呼消息的窄带和/或接收寻呼消息的重复次数。通过专用的窄带,能够减轻多个终端的寻呼消息在同一个窄带上发送导致该窄带负载过重,也有助于下行数据早传的效率。通过在系统消息里携带专用于下行数据早传的窄带的信息,能够实现单独配置支持下行数据早传的终端接收下行数据的窄带,有利于接入网设备合理配置资源,提高资源利用效率。
在一个可能的设计中,所述RAR包括以下一项或多项:监听第二下行控制信息的窄带、监听第二下行控制信息的载波或子载波、第二下行控制信息的重复次数、承载下行数据的物理下行共享信道的重复次数、监听下行数据的窗口长度,所述第二下行控制信息用于调度下行数据。
第二方面,提供一种通信方法,该方法的执行主体可以是网络设备,或接入网设备或 基站,该方法包括:向终端发送消息,该消息指示m个覆盖增强等级CEL,以及指示所述m个CEL中的每一个CEL对应的随机接入参数值,m为正整数;根据所述随机接入参数值,从所述终端接收随机接入前导码。这样,网络设备可以在接收到随机接入前导码时确定是下行数据早传的终端发送该随机接入前导码,并且,可以确定一个CEL,进而根据与该CEL对应的下行控制信息的格式进行下行调度,在下行调度中通过随机接入响应将下行数据传输给终端,或者直接向终端发送下行数据。
在一个可能的设计中,该消息是系统消息,或者,该消息是寻呼消息。在一个可能的设计中,该消息携带的信息可以部分携带于系统消息,部分携带于寻呼消息。为节约资源,系统消息携带的信息与寻呼消息携带的信息可以不同。
在一个可能的设计中,m=1,则该消息指示一个CEL,和该CEL对应的随机接入参数值。这样,网络设备只要是接收到随机接入前导码,就可以按照消息中携带的这个CEL对应的DCI格式进行下行调度。
在一个可能的设计中,m>1,则该消息指示多个覆盖增强等级CEL,以及指示多个CEL中的每一个CEL对应的随机接入参数值。网络设备可以根据消息指示的内容进行盲检,当检测到随机接入前导码时,确定该终端使用的随机接入参数值,并根据随机接入参数值确定对应的CEL,可以按照消息中携带的这个CEL对应的DCI格式进行下行调度。
在一个可能的设计中,所述随机接入参数值包括以下一项或多项参数的值:随机接入前导码索引、发送随机接入前导码的时频资源掩码索引、发送随机接入前导码的起始子帧、随机接入前导码的重复发送次数、随机接入前导码的最大发送次数、监听下行控制信息的窄带、监听下行数据的窗口长度、监听随机接入响应RAR的窗口长度、发送随机接入前导码的载波或子载波、随机接入前导码格式指示。这样,终端可以采用多种随机参数值发送随机接入前导码,网络设备也可以有更多的参考来确定CEL,提高CEL的准确性,以及提高下行调度的准确性。
在一个可能的设计中,该消息为寻呼消息时,该寻呼消息还用于指示下行数据早传,或者指示下行小数据包。
在一个可能的设计中,根据随机接入参数值,向所述终端发送下行控制信息,所述下行控制信息用于调度下行数据或RAR。随机接入参数值包括与接收下行控制信息相关的参数,网络设备按照CEL选择对应的DCI格式,终端可以根据这些参数进行检测,进而能够正确检测到DCI。
在一个可能的设计中,该消息如果是寻呼消息,则还可以向所述终端发送系统消息,所述系统消息携带n个CEL、所述n个CEL中的每一个CEL对应的随机接入参数值、以及对应的n个索引值,一个索引值用于指示一个CEL对应的随机接入参数值。
在一个可能的设计中,基于系统消息携带n个CEL、所述n个CEL中的每一个CEL对应的随机接入参数值、以及对应的n个索引值,所述寻呼消息中携带所述n个索引值中的m个索引值,所述m个索引值用于指示所述m个CEL中的每一个CEL对应的随机接入参数值,其中n大于或等于m。这样,能够降低寻呼消息的负载,降低对寻呼消息容量的影响。
在一个可能的设计中,所述系统消息还携带监听寻呼消息的窄带和/或接收寻呼消息的重复次数。通过专用的窄带,能够减轻多个终端的寻呼消息在同一个窄带上发送导致该窄带负载过重,也有助于下行小数据包早传的效率。通过专用的窄带,能够减轻多个终端的 寻呼消息在同一个窄带上发送导致该窄带负载过重,也有助于提高下行数据早传的效率。通过在系统消息里携带专用于下行数据早传的窄带的信息,能够实现单独配置支持下行数据早传的终端接收下行数据的窄带,有利于接入网设备合理配置资源,提高资源利用效率。
在一个可能的设计中,所述RAR包括以下一项或多项:监听下行控制信息的窄带、监听下行控制信息的载波或子载波、下行控制信息的重复次数、承载下行数据的物理下行共享信道的重复次数、监听下行数据的窗口长度,所述下行控制信息用于调度下行数据。
第三方面,提供一种通信装置,该装置具有实现上述第一方面和第一方面的任一种可能的设计的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括收发器和处理器,收发器用于与其他通信设备进行通信,处理器用于与存储器进行耦合,执行存储器存储的程序,当程序被执行时,所述装置可以执行上述第一方面和第一方面的任一种可能的设计中所述的方法。
在一个可能的设计中,该装置还包括存储器,用于存储处理器执行的程序。
在一个可能的设计中,该装置为终端。
第四方面,提供一种通信装置,该装置具有实现上述第二方面和第二方面的任一种可能的设计的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括收发器和处理器,收发器用于与其他通信设备进行通信,处理器用于与存储器进行耦合,执行存储器存储的程序,当程序被执行时,所述装置可以执行上述第二方面和第二方面的任一种可能的设计中所述的方法。
在一个可能的设计中,该装置还包括存储器,用于存储处理器执行的程序。
在一个可能的设计中,该装置为网络设备。
第五方面,提供一种芯片,该芯片与存储器相连或者该芯片包括存储器,用于读取并执行所述存储器中存储的软件程序,以实现如上述第一方面、第二方面、第一方面的任一种可能的设计或第二方面的任一种可能的设计中所述的方法。
第六方面,提供了一种通信系统,该通信系统包括终端和网络设备,终端用于执行上述第一方面和任一可能设计中的方法,和/或,网络设备用于执行上述第二方面和任一可能设计中的方法。
第七方面,提供一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述各方面和各方面的任一可能的设计中方法的指令。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面和各方面的任一可能的设计中所述的方法。
附图说明
图1为本申请实施例中系统架构示意图;
图2为现有技术中下行数据早传的流程示意图;
图3为本申请实施例中系统带宽划分示意图;
图4为本申请实施例中通信方法流程示意图;
图5为本申请实施例中下行数据早传的流程示意图;
图6为本申请实施例中通信装置结构示意图之一;
图7为本申请实施例中通信装置结构示意图之二。
具体实施方式
下面将结合附图,对本申请实施例的方案进行详细描述。
本申请实施例提供一种通信方法及装置,用于在下行数据早传时能够根据终端所处的覆盖增强等级CEL进行下行数据的调度,从而提高下行数据早传的效率。其中,方法和装置是基于同一构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
图1示出了本申请实施例提供的通信方法适用的一种可能的通信系统的架构,参阅图1所示,通信系统100中包括一个或多个网络设备、以及一个或多个终端。还可能包括一个或多个核心网设备,每个网络设备可以为覆盖范围内的一个或多个终端提供服务,网络设备之间通过X2接口相连以进行通信,网络设备与核心网设备之间通过S1接口相连。例如,如图1中所述,通信系统100中包括网络设备101和网络设备101’,网络设备101的覆盖范围内的终端用终端102来表示,网络设备101’的覆盖范围内的终端用终端102’来表示。通信系统100中还包括核心网设备103和核心网设备103’。以下对通信系统中包括的网络设备、终端和核心网设备的形态进行举例说明。以网络设备101、终端102和核心网设备103进行说明。
网络设备101为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G(如NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。 由于RRC层的信息最终会变成PHY层的信息(即通过PHY层发送),或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端及可设置于前述终端的芯片统称为终端。
本申请实施例提供的通信方法可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),及未来的通信系统,如6G系统等。
核心网设备103,用于网络设备101与IP网络之间的通信,IP网络可以是因特网(internet),私有的IP网,或其它数据网等。以长期演进(long term evolution,LTE)通信系统为例,核心网设备103包括移动管理实体(mobile management entity,MME)/服务网关(service-network gateway,S-GW)。
本申请实施例提供的方法可以应用于第四代(4th generation,4G)通信系统、第五代(5th generation,5G)通信系统或未来的各种通信系统。具体的,可以应用于MTC的通信场景,也可以应用于NB-IoT的通信场景。
本申请实施例提供的方法可以应用于下行数据早传(mobile terminated early data transmission,MT-EDT)的应用场景,在MT-EDT的应用场景下,早传的下行数据可以具有以下任意一个或多个特点:
例1、下行数据可一次传输完成,即终端的下行数据可以通过一条消息传输完。
例2、单个下行数据包,即核心网设备可以通过一个IP包发送终端的下行数据,表示为单个下行数据包(single packet),或者单个下行数据(single DL data);或者,接入网设备可以通过一个TB发送终端的下行数据,表示为单个下行数据包(single packet),或者单个下行数据(single DL data),或者单次下行传输(single DL transmission)。
例3、下行小数据包,或小数据包,可以理解为终端的下行数据量小于一个阈值。
终端可能具有支持MT-EDT的能力或不支持MT-EDT的能力。在MT-EDT的应用场景下,具有支持MT-EDT的能力的终端可能具有业务单一的特点,例如终端的下行数据每次传输仅有一个下行数据包。对于一个下行数据包的场景,本申请实施例可以但不限于以下应用场景:
场景1、终端的下行数据量小于设定阈值;
场景2、核心网设备可以将终端的下行数据通过一个网络协议IP包发送给接入网设备;
场景3、接入网设备可以将终端的下行数据通过一个传输块(transmission block,TB)发送给终端;
场景4、核心网设备将终端的下行数据通过多次发送给接入网设备,但是接入网设备可以将多次接收的下行数据通过一个TB发送给终端。
需要说明的是,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请中一个实施例的核心思想是,网络设备向终端发送寻呼消息,在寻呼消息中携带随机接入资源与该随机接入资源对应的覆盖增强等级CEL或重复次数,终端接收寻呼消息,在确定自身处于特定CEL时,基于该特定CEL对应的随机接入资源向网络设备发送随机接入前导码。这样网络设备可以基于该随机接入资源接收随机接入前导码,就可以确定是下行数据早传的终端请求随机接入,那么接下来可以在随机接入响应中将下行数据传输给终端,或者直接向终端发送下行数据。其中,网络设备是根据与该特定CEL对应的下行控制信息的格式进行下行调度的。
为方便对下行数据早传的场景的理解,下面介绍一种现有的下行数据早传的流程。该流程涉及核心网设备、接入网设备和终端。其中,核心网设备到接入网设备的流程可分为控制面(control plane,CP)流程和用户面(user plane,UP)流程,以下以CP流程为例进行描述。
如图2所示,一种可能的下行数据早传的方法流程如下所述。
S201、分组数据网关(packet data network gateway,P-GW)有终端的下行数据到达时,将该下行数据发送至服务网关(serving gateway,S-GW),S-GW从P-GW接收终端的该下行数据。
S202、S-GW向移动管理实体(mobile management entity,MME)发送下行数据通知(downlink data notification)消息。MME从S-GW接收该下行数据通知消息。
该下行数据通知消息可以携带小数据包指示(small data indication)或该下行数据的数据量(data volume)。可选地,该下行数据通知消息可以携带该下行数据。
或者,S-GW可以根据P-GW发来的该下行数据的数据量或数据包的尺寸(size)生成小数据包传输请求(small data transfer request)消息,来向MME请求可否能使用下行数据早传的方法来发送该下行数据,可选地,该小数据包传输请求消息可以携带该下行数据。
S203、若步骤202中,MME接收到small data transfer request,且MME确定该下行数据的终端支持MT-EDT,则MME向S-GW发送小数据包传输确认(small data transfer confirm)消息。S-GW从MME接收该small data transfer confirm消息。
S204、若步骤202中,MME接收到该下行数据,MME可以使用非接入层(Non Access Stratum)的安全机制对该下行数据进行加密。
该S204可以在S205之后执行,或者,在步骤S209之后执行。
S205、MME根据接收到的downlink data notification消息或small data transfer request消息,向接入网设备发送第一寻呼(paging)消息。接入网设备从MME接收该第一寻呼消息。
可以将MME与接入网设备之间的该第一寻呼消息记作S1-paging,其中该S1-paging 携带需要寻呼的终端的标识,例如系统架构演进临时移动用户标识(System Architecture Evolution Temporary Mobile Station Identifier,S-TMSI)。
MME根据small data indication或data volume或小数据包指示,以及终端支持MT-EDT的能力信息,决定使用MT-EDT向该终端发送下行数据。在一种方法中,可以将NAS PDU传输请求包含于该第一寻呼消息,或将small data indication包含于该第一寻呼消息,或将data volume包含于该第一寻呼消息,或MT-EDT包含于该第一寻呼消息。
S206、接入网设备接收到该S1-paging之后,若该S1-paging消息包含MT-EDT相关的指示信息,则该接入网设备为终端分配随机接入资源和无线网络临时标识符(radio network temporary identifier,RNTI)。其中,随机接入资源包括随机接入前导码(ra-preamble)、随机接入时频资源,该随机接入前导码使用随机接入前导码索引(ra-preambleIndex)标识,该随机接入时频资源使用随机接入时频资源掩码索引(ra-prach-maskIndex)标识。
S207、接入网设备向终端发送第二寻呼消息,终端从接入网设备接收该第二寻呼消息。
可以将接入网设备与终端之间的第二寻呼消息记作uu-paging。
其中,该uu-paging中携带ra-preambleindex、RNTI,可选地,还可以携带small data indication和/或ra-prach-maskIndex、。
S208、终端根据接收到的uu-paging,向接入网设备发送paging消息携带的ra-preambleindex所指示的随机接入前导码(preamble)。
S209、若接入网设备接收到ra-preambleindex所指示的preamble,则接入网设备向MME发送NAS PDU request,向MME请求下行数据,其中下行数据携带于NAS PDU。
在一种方法中,NAS PDU request用于向MME请求下行数据,NAS PDU request可以为初始NAS消息(initial NAS message)、附着请求(attach request)、去附着请求(detach request)、跟踪区更新请求(tracking area update request)、服务请求(service request)、扩展的服务请求(extended service request)、控制面服务请求(control plane service request)、初始UE消息(Initial UE message)中至少一项。
步骤210:若MME已经从S-GW接收到下行数据,则向接入网设备发送NAS PDU;否则,MME向S-GW请求下行数据,然后再向接入网设备发送NAS PDU。
在一种方法中,所述NAS PDU携带于无线接入承载设备请求(radio access bearer(RAB)setup request)、无线接入承载修改请求(RAB modify request)、无线接入承载释放命令(RAB release command)、初始上下文设置请求(initial context setup request)、UE上下文释放命令(UE context release command)、连接建立指示(connection establishment indication)、UE信息传输(UE information transfer)、下行NAS传输(downlink NAS transport)中的至少一项。
步骤211:若接入网设备接收到MME发送的NAS PDU,则接入网设备向终端发送该NAS PDU,其中该NAS PDU包含该下行数据。
步骤212:若终端成功接收到下行数据,则终端向接入网设备发送第一反馈消息。所述第一反馈消息用于所述终端向所述接入网设备指示成功收到下行数据。
步骤213:接入网设备根据接收到的第一反馈消息向MME发送第二反馈消息。所述第二反馈消息用于所述接入网设备向所述MME指示成功发送该下行数据。
上述图2所示的下行数据早传的方法流程仅仅是一种举例,本申请实施例不局限于该方法流程,还可以适用于其它下行数据早传的应用场景。
本申请实施例主要涉及接入网设备和终端之间的交互,核心网侧设备之间的交互过程因CP流程和UP流程不同而会有所不同。通过本申请提供的方法,接入网设备和终端在下行数据早传过程中可以根据CEL确定适当的控制信息格式来调度数据传输。
下面介绍一下覆盖增强等级CEL的相关概念,增强覆盖等级CEL也可以称为增强覆盖等级(enhanced coverage level,ECL),指示相同的意义。本申请中,覆盖增强等级还可以是重复次数(repetition number)或重复次数等级,本文仅以CEL为例进行说明。
一般来说,支持增强覆盖(或覆盖增强)的终端既可以处于正常覆盖范围,也可以处于增强覆盖范围。在正常覆盖范围下工作的模式和在增强覆盖范围下工作的模式通常不同。例如,终端在正常覆盖范围下会在整个系统带宽上工作,例如在整个系统带宽上监听物理下行控制信道(physical downlink control channel,PDCCH),而终端在增强覆盖范围下会在窄带(narrow band)上工作,例如在窄带上监听MPDCCH(MTC PDCCH),其中该系统带宽可以为1.4MHz、3MHz、5MHz、10MHz、20MHz,该窄带可以为1.4MHz。对于MTC终端,其会工作在窄带上,即1.4MHz。这里,MTC终端包含带宽减少低复杂度(bandwidth reduced and Low complexity,BL)的终端和支持覆盖增强的非带宽减少低复杂度(non-BL)的终端。此外,对于增强覆盖,由于其是通过重复发送信号来实现,所以根据重复发送信号的次数(简称重复次数,repetition number)定义了不同的覆盖增强等级,即不同的重复次数可以对应不同的覆盖增强等级。在一种实现方法中,终端可以根据信号测量结果来判断其自身所处的覆盖增强等级,其中终端通过接入网设备配置的信号强度门限来判断覆盖增强等级。该信号强度为小区参考信号接收功率(reference signal received power,RSRP)。例如,接入网设备配置N个RSRP门限,如RSRP0、RSRP1、……、RSRP(N-1),其中RSRP0>RSRP1>……>RSRP(N-1),若终端确定测量结果为RSRP(N):
若RSRP(N)>RSRP0,则终端确定其在覆盖增强等级0,即CEL0;
若RSRP1<RSRP(N)<RSRP0,则终端确定其在覆盖增强等级1,即CEL1;
……
若RSRP(N-1)<RSRP(N)<RSRP(N-2),则终端确定其在覆盖增强等级N-1,即CEL(N-1)。
一般地,CEL0对应的重复次数小于CEL1对应的重复次数,CEL1对应的重复次数小于CEL2对应的重复次数,依此类推。
现有技术中,覆盖增强等级共4个,即N等于4。
此外,重复次数的不同会引起调度数据传输时的复杂度不同,因此,MTC中定义了覆盖增强模式A(CE mode A)和(CE mode B)。一般地,CE mode A对应CEL0和CEL1,CE mode B对应CEL2和CEL3。同时,MTC定义了针对CE mode A和CE mode B的不同的下行控制信息(downlink control information,DCI)格式(format)。本申请中,终端在不同的CEL时,可能会在不同的CE mode,接入网设备会采用不同的下行控制信息格式来发送下行控制信息,其中下行控制信息用于调度数据传输,例如调度下行数据,终端根据对应的下行控制信息格式接收下行控制信息,下行控制信息可用于调度下行数据或发送上行数据,这样能够提高数据传输的效率和可靠性,本申请中,能够提高下行数据早传的效率和可靠性。本申请中,网络设备(即接入网设备)向终端通知随机接入信息,终端从接入网设备接收该随机接入信息,该随机接入信息中包括一个或多个CEL对应的随机接入参数值,同一个CEL可对应一组或多组随机接入参数值,不同CEL对应的随机接入参数值一 般不同。一组随机接入参数值包括一个或多个随机接入参数的值。通过该随机接入信息,终端向接入网设备发送随机接入前导码时,可以向接入网设备指示该终端处于哪个CEL的信息,接入网设备能够根据终端所处的CEL,采用与该CEL相对应的下行控制信息格式来调度下行数据,进而提高下行数据早传的效率和可靠性。本申请以下终端与网络设备之间的交互是指终端与接入网设备之间的交互,网络设备大多是指接入网设备。
本申请中,随机接入参数还可以有其他名称,该随机接入参数可以包括随机接入前导码索引(ra-preambleindex)、发送随机接入前导码的时频资源掩码索引、发送随机接入前导码的起始子帧、随机接入前导码的重复发送次数、随机接入前导码的最大发送次数、监听下行控制信息的窄带、监听下行数据的窗口长度、监听随机接入响应RAR的窗口长度、发送随机接入前导码的载波或子载波、随机接入前导码格式指示。
具体来说,随机接入参数可以包括随机接入资源,随机接入资源包括发送随机接入前导码的时域资源、频域资源和码域资源。时域资源即时域起始位置、结束位置和时间窗中的至少两项,频域资源为频域起始位置、结束位置和带宽中的至少两项,频域资源也可以为随机接入前导码的载波或子载波。码域资源即随机接入前导码的索引。随机接入参数还可以包括终端在监听下行控制信息或下行数据/信号时采用的一些参数。例如RSRP门限,物理随机接入信道(physical random access channel,PRACH)hopping,PRACH配置索引(PRACH-ConfigIndex),PRACH频域索引(PRACH-FreqIndex)。下行数据早传用MT-EDT来表示,随机接入参数还包括以下至少一项:
(1)监听调度下行数据的下行控制信息的窄带(narrowband),例如该参数表示为mpdcch-NarrowbandsToMonitor-DL-Data;
(2)监听用于下行数据早传时调度RAR的下行控制信息的窄带,例如该参数表示为mpdcch-NarrowbandsToMonitor-MT-EDT;
(3)监听下行数据的窗口长度,例如该参数表示为ra-ResponseWindowSize-DL-Data;
(4)监听用于下行数据早传时RAR的窗口长度(window size),例如该参数表示为ra-ResponseWindowSize-MT-EDT;、
(5)指示RAR是否进行跳频的指示信息,例如该参数表示为RAR-hopping;
(6)在下行数据早传时发送随机接入前导码的起始子帧,例如该参数表示为prach-StartingSubframe-MT-EDT;
(7)在下行数据早传时随机接入前导码的重复发送次数,例如该参数表示为numRepetitionPerPreambleAttempt;
(8)在下行数据早传时每个CEL对应的随机接入前导码的最大发送次数,例如该参数表示为PreambleTransMax-CE-MT-EDT;
(9)在下行数据早传时随机接入前导码的最大尝试次数,例如该参数表示为maxNumPreambleAttempt;
(10)指示随机接入前导码格式的指示信息,例如该参数表示为preamble format indicator;
(11)指示随机接入资源的子载波,例如该参数表示为subcarrier indication of PRACH;
(12)指示随机接入资源的载波,例如该参数表示为carrier indication of PRACH。
随机接入信息包括一种或多种随机接入参数,以及每个CEL下的一组或多组随机接入参数值。可以通过表格的形式体现也可以通过其他形式体现,为方便示意,本申请以表格 形式表现随机接入信息的内容,表1示例了几种随机接入参数,以及在每个CEL下的两组随机接入参数值,假设CEL中包括CEL X和CEL Y,CEL X和CEL Y为两个不同的CEL,当然还可能包括更多的CEL。一个CEL对应两组随机接入参数值。当然可能每组随机接入参数的数量相同或不同。例如,CEL X第一组包括S个随机接入参数值,第二租包括S’个随机接入参数值,S和S’不同。不同CEL对应的随机接入参数组数可以相同,也可以不同。例如CEL X对应两组随机接入参数值,CEL Z对应三组或一组随机接入参数值。一组随机接入参数包括一个或多个随机接入参数,每个随机接入参数与CEL有对应的随机接入参数值,随机接入参数值可以任意进行配置。
表1
Figure PCTCN2019080268-appb-000001
本申请实施例中,接入网设备可以通过系统消息或寻呼消息(uu-paging)向终端发送随机接入信息,为了节省开销,在系统消息中已携带的信息不需要在寻呼消息中携带,或者,在寻呼消息中携带的信息不需要在系统消息中携带。
另外,本申请应用的通信场景中,终端大多工作在窄带(narrowband)上,以降低终端的工作带宽,降低终端的功耗。如图3所示,系统带宽是指调制载波占据的频率范围,长期演进(long term evolution,LTE)系统中系统带宽根据载波占据用频率范围的不同,可包括6种不同的带宽,具体包括:1.4MHz,3MHz,5MHz,10MHz,15MHz,20MHz。在MTC或eMTC中,系统带宽可被划分为多个窄带,一个窄带包括多个连续的物理资源块(physical resource block,PRB),任意两个不同的窄带所包含的PRB不重叠。系统带宽包括的窄带可以用序号或索引值来标识。如图3所示,一个窄带包括6个PRB,以系统带宽为20MHz为例,系统带宽内包括16个窄带,该16个窄带的序号为0~15。
NB-IoT系统中,全频带宽等同于LTE系统中的系统带宽,全频带宽为180kHz,即1PRB,NB-IoT支持多个载波(carrier),每个载波上的带宽都为180kHz,即1PRB,1个载波也可以称为一个窄带(narrow band)。本申请实施例中,窄带的描述对eMTC和NB-IoT均可适用,在NB-IoT中的窄带为1PRB,而MTC/eMTC中窄带为6PRB。
为了避免窄带负载过重影响下行数据早传,在一可能的实施方式中,本申请中为下行数据早传的终端配置专用的窄带。例如上文提到的监听下行数据的窄带,监听RAR的窄 带等参数。可选的,在系统消息中还可以携带以下一种或多种参数:
(1)支持数据早传的终端监听寻呼消息的窄带,例如该参数表示为paging-Narrowbands-MT-EDT;
(2)支持数据早传的终端监听寻呼消息的重复次数,例如该参数表示为mpdcch-NumRepetition-Paging-MT-EDT。
通过在系统消息里携带专用于下行数据早传的窄带的信息,能够实现单独配置支持下行数据早传的终端接收下行数据的窄带,有利于接入网设备合理配置资源,提高资源利用效率。
为了减少寻呼消息携带随机接入信息的负载,在一种可能的实施方式中,本申请实施例中可以通过系统消息携带随机接入信息,该随机接入信息中包含n个CEL指示信息、n个CEL中的每一个CEL对应的随机接入参数值、以及对应的n个索引值,一个索引值用于指示一个CEL对应的随机接入参数值。若一个CEL对应多组随机接入参数值,则一个CEL可以关联多个索引值,来指示该多组随机接入参数值。
基于此,可以通过寻呼消息携带一个或多个索引值,例如携带n个索引值中的m个索引值。m个索引值用于指示m个CEL中的每一个CEL对应的随机接入参数值。n大于或等于m,n、m均为正整数。这样终端可以根据m个索引值、以及根据系统消息携带的随机接入信息,来确定m个索引值指示的m个CEL中的每一个CEL对应的随机接入参数值。即,终端可以在系统消息中获取各个索引值指示的CEL和随机接入参数值,并根据寻呼消息中携带的索引值,确定该索引值所指示CEL下随机接入参数的值。
包括索引值的随机接入信息可以以表格的形式体现。基于表1的举例,如表2所示,CEL包括CEL X和CEL Y,当然还可能包括更多的CEL。一个CEL对应两组随机接入参数值。共4组随机接入参数值,可以通过4个索引值来指示。4个索引值用Index 1~Index 4表示。CEL X用Index 1来指示其中一组随机接入参数值,用Index 2来指示另一组随机接入参数的值。CEL Y用Index 3来指示其中一组随机接入参数值,用Index 4来指示另一组随机接入参数值。
表2
Figure PCTCN2019080268-appb-000002
通过在寻呼消息中携带索引值,能够减少寻呼消息的负载,降低对寻呼消息容量的影响。
基于上述描述,如图4所示,本申请实施例提供的通信方法的流程如下所述。
S401、网络设备向终端发送寻呼消息,终端从网络设备接收寻呼消息。
该寻呼消息(uu-paging)指示m个覆盖增强等级CEL,以及指示所述m个CEL中的每一个CEL对应的随机接入参数值,m为正整数。若m=1,则寻呼消息指示一个CEL和该CEL对应的随机接入参数值。如上所述随机接入参数可以包括一组或多组随机接入参数,若随机接入参数包括多组随机接入参数,则寻呼消息指示该CEL和该CEL对应的一组随机接入参数值,一组随机接入参数值包括一组随机接入参数中每一个随机接入参数的值。若m>1,则寻呼消息指示m个CEL和每一个CEL对应的随机接入参数值。如上所述随机接入参数可以包括一组或多组随机接入参数,若随机接入参数包括多组随机接入参数,则寻呼消息指示每一个CEL对应的一组随机接入参数值,一组随机接入参数值包括一组随机接入参数中每一个随机接入参数的值。
在一种可能的实施方式中,m个覆盖增强等级CEL还可以称为m个重复次数等级或m个重复次数值,每个重复次数等级或每个重复次数值对应一组随机接入参数值,其中该组随机接入参数值可以包含表1中的一个或多个随机接入参数的取值。
在一种可能的实施方式中,当m=1时,寻呼消息指示的一个覆盖增强等级,该覆盖增强等级可以称为初始覆盖增强等级或称为初始重复次数或称为初始重复次数等级。
在一种可能的实施方式中,随机接入参数可以包括网络设备为下行数据早传的终端指示的随机接入前导码索引,例如指示ra-preambleindex。基于图2所示的下行数据早传的场景,当网络设备从核心网侧接收到包含small data indication或NAS PDU传输请求的寻呼消息时,如记为S1-paging,向终端发送寻呼消息,如记为uu-paging。网络设备从核心网络设备接收的寻呼消息可以携带终端的标识,例如S-TMSI。网络设备为该标识所标记的终端确定随机接入参数,该随机接入参数包含表1中随机接入参数中的一项或多项。在一种可能的实施方式中,该随机接入参数包含m个CEL对应的随机接入参数。在一种可能的实施方式中,该网络设备向终端发送的寻呼消息携带m个CEL的指示信息,该指示信息用于CEL。该网络设备向终端发送的寻呼消息中携带该终端的标识(例如S-TMSI)和该随机接入参数。在一种可能的实施方式中,该网络设备向终端发送的寻呼消息还用于指示下行数据早传,例如,该网络设备向终端发送的寻呼消息中携带小数据包指示(small data indication)。
S402、终端根据寻呼消息确定与所处的CEL对应的随机接入参数值。
若m=1,则寻呼消息指示一个CEL和该CEL对应的随机接入参数值,终端根据该寻呼消息确定其处于该CEL下,并获取与该CEL对应的该随机接入参数值。
或者,若m=1,则寻呼消息指示一个CEL和该CEL对应的随机接入参数值,终端无论是否处于该CEL下,均确定采用该CEL对应的随机接入参数值。
若m>1,则寻呼消息指示m个CEL和每一个CEL对应的随机接入参数值,终端先根据测量确定自身处于的CEL,并根据该寻呼消息确定与所处的CEL对应的随机接入参数值。其中,终端根据测量确定当前处于的CEL,具体确定CEL的方式见上文描述。
S403、终端基于确定的随机接入参数值向网络设备发送随机接入前导码,网络设备从终端接收该随机接入前导码。
若随机接入参数包括ra-preambleindex,终端向网络设备发送ra-preambleindex指示的随机接入前导码。
若随机接入参数包括发送随机接入前导码的时频资源掩码索引,则终端在该时频资源掩码索引指示的时频资源上,向网络设备发送随机接入前导码。
在一种可能的实施方式中,终端基于接入网设备配置的随机接入参数发送随机接入前导码,例如,该随机接入参数包含发送随机接入前导码的起始子帧、随机接入前导码的重复发送次数、随机接入前导码的最大发送次数、发送随机接入前导码的载波或子载波、随机接入前导码格式指示中至少一项。
S404、网络设备向终端发送下行控制信息(downlink control information,DCI),终端根据随机接入参数接收DCI。
为作区分,这里的DCI记为第一DCI。网络设备按照寻呼消息或系统消息中发送的随机接入参数进行检测或盲检。网络设备接收或检测到终端发送的随机接入前导码后,根据寻呼消息中携带的随机接入参数确定该随机接入前导码是下行数据早传的终端发送的,并根据随机接入参数确定该终端的CEL。例如,寻呼消息携带ra-preambleindex,网络设备检测到该ra-preambleindex指示的随机接入前导码,确定发送该随机接入前导码的终端是下行数据早传的终端,并确定该ra-preambleindex对应的CEL。又例如,寻呼消息携带多个ra-preambleindex,网络设备盲检测,若检测到多个ra-preambleindex中的某一个ra-preambleIndex指示的随机接入前导码,确定发送该随机接入前导码的终端是下行数据早传的终端,并根据随机接入参数确定该终端对应的CEL。
或者网络设备还可以根据终端发送该随机接入前导码所使用的其它随机接入参数,确定该终端的CEL,例如其它随机接入参数可以为参数prach-StartingSubframe-MT-EDT。
网络设备根据终端的CEL,确定该CEL对应的第一DCI的格式。一般地,CEL不同,DCI的格式不同。本申请为CEL配置对应的DCI格式,一个或多个CEL对应一个DCI格式。假设2个CEL对应一个DCI格式,可以举例为,CEL0和CEL1对应第一DCI格式,CEL2和CEL3对应第二DCI格式。在一种可能的实施方式中,第一DCI格式可以为3GPP TS 36.212中的DCI format 6-1A,第二DCI格式可以为3GPP TS 36.212中的DCI format 6-1B。
该第一DCI用于指示第一下行资源,该第一下行资源用于调度下行数据或者RAR。
若该第一下行资源用于传输下行数据,终端在监听到第一DCI后,在第一DCI指示的第一下行资源上监听下行数据,从而完成下行数据早传。
若该第一下行资源用于传输RAR,根据RAR携带的内容不同,分为以下几种情况。
1、RAR携带第二DCI,该第二DCI用于指示第二下行资源,第二下行资源用于传输下行数据,即下行早传的数据。
终端在监听到第一DCI后,在第一DCI指示的第一下行资源上接收到RAR,根据RAR携带的第二DCI,在第二DCI指示的第二下行资源上接收下行数据,从而完成下行数据早传。
本申请中,RAR携带的DCI的格式与CEL具有对应关系,网络设备根据该对应关系,按照终端的CEL选择对应的DCI格式,该DCI携带于RAR中发送给终端。举例来说,如表3所示,DCI格式包含第三DCI格式和第四DCI格式,其中每种DCI格式对应若干调度下行数据的参数,第三DCI格式对应CEL0和CEL1,或者第三格式对应CE mode A, 第四DCI格式对应CEL2和CEL3,或者第四DCI格式对应CE mode B。第三DCI格式和第四DCI格式包含的参数不同或包含的参数的取值范围不同。例如,CEL 0和CEL1下,PDSCH窄带索引为
Figure PCTCN2019080268-appb-000003
CEL 2和CEL3下,PDSCH窄带索引为2。表3中示出了一些DCI指示参数的举例,当然DCI还可以指示更多的参数。不同CEL下各个参数的取值也仅仅是举例,可以根据需求设置任意的值。
表3
Figure PCTCN2019080268-appb-000004
2、RAR携带RNTI,该RNTI用于指示PDCCH,该PDCCH上传输的第三DCI用于指示第三下行资源,第三下行资源用于传输下行数据。
终端在监听到第一DCI后,在第一DCI指示第一下行资源上接收到RAR,根据RAR携带的RNTI监听PDCCH,若根据该RNTI监听到第三DCI。根据该第三DCI,在第三DCI指示的第三下行资源上接收下行数据,从而完成下行数据早传。
本申请中,RAR携带的RNTI对应的DCI的格式与CEL具有对应关系。网络设备根据该对应关系及终端的CEL确定对应的DCI格式,通过该RNTI加扰发送给终端。
此外,终端根据该RNTI监听到的第三DCI的格式可以沿用3GPP TS 36.212中的DCI format 6-1A或DCI format 6-1B,此外不再赘述。上述过程中,终端监听第一DCI时,根据随机接入信息确定当前所处CEL对应的随机接入参数,按照该CEL对应的随机接入参数监听第一DCI。例如,终端在参数mpdcch-NarrowbandsToMonitor-DL-Data所指示的窄带上监听PDCCH,该PDCCH用于传输该第一DCI。
综上,RAR可以携带以下一种或多种信息:监听下行控制信息(第二DCI)的窄带、监听下行控制信息(第二DCI)的载波或子载波、下行控制信息(第二DCI)的重复次数、承载下行数据的物理下行共享信道的重复次数、监听下行数据的窗口长度。
本申请提供的通信方法可以应用于下行数据早传的流程中,以图2所示的流程为例,如图5所示,本申请给出一种下行数据早传的流程示例。
S500、网络设备(即接入网设备)向终端发送系统消息,终端从网络设备接收系统消息。
本步骤描述的方法参考上述方法实施例中对相应内容的解释,例如系统消息中包括的内容,收发系统消息的相应过程等,在此不再赘述。
S501~S505同S201~S205。
S506~S508参考S401~S403的过程,相同之处不再赘述。
S509~S510同S209~S210。
S511同S404。
在调度下行数据后,还可以有S512~S513同S212~S213。
其中S500的步骤在S506之前执行,与S501~S505之间没有严格的执行顺序。
图5所示的下行数据早传为一种示例,本申请提供的通信方法可以应用在其他下行数据早传的场景中,只要是涉及到系统消息和/或寻呼消息中携带随机接入信息,并在随机接入过程中调度下行数据早传均可以。
基于上述方法实施例的同一构思,如图6所示,本申请实施例还提供一种通信装置600,该通信装置600具有执行上述方法实施例中终端或网络设备执行的操作的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。例如,该通信装置600包括处理单元601和通信单元602。通信单元602用于执行方法实施例中发送和/或接收的步骤。处理单元601用于执行除发送接收外的其它步骤。进一步的,通信单元602可以包括发送单元和/或接收单元。该通信装置600可以是终端,也可以是终端内部的芯片或功能模块,当该通信装置600用于执行上述方法实施例中终端执行的操作时:
通信单元602,用于从网络设备接收寻呼消息,其中,所述寻呼消息指示m个覆盖增强等级CEL,以及指示所述m个CEL中的每一个CEL对应的随机接入参数值,m为正整数;
处理单元601,用于根据所述寻呼消息确定与所处的CEL对应的随机接入参数值;
通信单元602,还用于基于确定的随机接入参数值向所述网络设备发送随机接入前导码。
可选的,通信单元602,还用于从所述网络设备接收系统消息。
该通信装置600可以是网络设备,也可以是网络设备内部的芯片或功能模块,当该通信装置600用于执行上述方法实施例中网络设备执行的操作时,处理单元601用于调度通信单元602与其他设备通信。具体的用于向终端发送寻呼消息,其中,所述寻呼消息指示m个覆盖增强等级CEL,以及指示所述m个CEL中的每一个CEL对应的随机接入参数值,m为正整数;根据所述随机接入参数值,从所述终端接收随机接入前导码。
可以理解的是,处理单元601和通信单元602还可以执行上述方法实施例中的其他相应操作,在此不再赘述。
基于与上述方法实施例的同一构思,如图7所示,本申请实施例还提供了一种通信装置700,该通信装置700用于实现上述方法实施例中终端和/或网络设备执行的操作。图7仅仅示出了通信装置700的主要部件。
通信装置700包括:收发器701、处理器702、存储器703。存储器703为可选的。收发器701用于与其它通信设备进行消息或信令的传输,处理器702与存储器703耦合,用于调用存储器703中的程序,当程序被执行时,使得处理器702执行上述方法实施例中终端和/或网络设备执行的操作。存储器703用于存储处理器702执行的程序。收发器701可以包括发射器和/或接收器,分别实现收发功能。处理器702可以为一个或多个。存储器703可以位于处理器702中,也可以单独存在。图6中的功能模块处理单元601可以通过处理器702来实现,通信单元602可以通过收发器701来实现。本领域技术人员可以理解,为了便于说明,图7仅示出了一个存储器和处理器。在实际的终端和/或网络设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
处理器702主要用于对通信协议以及通信数据进行处理,以及对整个终端和/或网络设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端和/或网络设备执行 上述方法实施例中所描述的动作。存储器703主要用于存储软件程序和数据。
当执行终端的功能时,例如,处理器702执行以下操作:从网络设备接收寻呼消息;根据所述寻呼消息确定与所处的CEL对应的随机接入参数值;基于确定的随机接入参数值向所述网络设备发送随机接入前导码。
当执行网络设备的功能时,例如,处理器702执行以下操作:从网络设备接收寻呼消息;根据所述寻呼消息确定与所处的CEL对应的随机接入参数值;基于确定的随机接入参数值向所述网络设备发送随机接入前导码。
处理器702还可以执行上述方法实施例中终端或网络设备执行的其它操作或功能,重复之处不再赘述。
当执行网络设备的功能时,通信装置700的形态可以如下所述。通信装置700为一种基站,该基站可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元(digital unit,DU))。所述RRU可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线和射频单元。所述RRU部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU部分主要用于进行基带处理,对基站进行控制等。所述RRU与BBU可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实施例中,所述BBU可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。所述BBU还包括存储器703和处理器702,所述存储器703用于存储必要的指令和数据。所述处理器702用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器和处理器可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
处理器702可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器702还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器703可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器703也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器703还可以包括上述种类的存储器的组合。
另外,当执行网络设备的功能时,通信装置700不限于上述形态,也可以是其它形态:例如:包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU和有源天线单元(active antenna unit,AAU);也可以为客户终端设备(customer premises equipment,CPE), 还可以为其它形态,本申请不限定。
在本申请上述方法实施例描述的终端所执行的操作和功能中的部分或全部,或网络设备所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
为了实现上述图6或图7所述的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中终端或网络设备所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的程序指令和数据。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种通信方法,其特征在于,包括:
    从网络设备接收寻呼消息,其中,所述寻呼消息指示m个覆盖增强等级CEL,以及指示所述m个CEL中的每一个CEL对应的随机接入参数值,m为正整数;
    根据所述寻呼消息确定与所处的CEL对应的随机接入参数值;
    基于确定的随机接入参数值向所述网络设备发送随机接入前导码。
  2. 如权利要求1所述的方法,其特征在于,所述随机接入参数值包括以下一项或多项参数的值:
    随机接入前导码索引、发送随机接入前导码的时频资源掩码索引、发送随机接入前导码的起始子帧、随机接入前导码的重复发送次数、随机接入前导码的最大发送次数、监听下行控制信息的窄带、监听下行数据的窗口长度、监听随机接入响应RAR的窗口长度、发送随机接入前导码的载波或子载波、随机接入前导码格式指示。
  3. 如权利要求1或2所述的方法,其特征在于,所述寻呼消息还用于指示下行数据早传。
  4. 如权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    根据确定的随机接入参数值,接收下行控制信息,所述下行控制信息用于调度下行数据或RAR。
  5. 如权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    从所述网络设备接收系统消息,所述系统消息携带n个CEL、所述n个CEL中的每一个CEL对应的随机接入参数值、以及对应的n个索引值,一个索引值用于指示一个CEL对应的随机接入参数值,其中n大于或等于m。
  6. 如权利要求5所述的方法,其特征在于,所述寻呼消息中携带所述n个索引值中的m个索引值,所述m个索引值用于指示所述m个CEL中的每一个CEL对应的随机接入参数值。
  7. 如权利要求5或6所述的方法,其特征在于,所述系统消息还携带监听寻呼消息的窄带和/或接收寻呼消息的重复次数。
  8. 如权利要求4所述的方法,其特征在于,所述RAR包括以下一项或多项:
    监听下行控制信息的窄带、监听下行控制信息的载波或子载波、下行控制信息的重复次数、承载下行数据的物理下行共享信道的重复次数、监听下行数据的窗口长度,所述下行控制信息用于调度下行数据。
  9. 一种通信方法,其特征在于,包括:
    向终端发送寻呼消息,其中,所述寻呼消息指示m个覆盖增强等级CEL,以及指示所述m个CEL中的每一个CEL对应的随机接入参数值,m为正整数;
    根据所述随机接入参数值,从所述终端接收随机接入前导码。
  10. 如权利要求9所述的方法,其特征在于,所述随机接入参数值包括以下一项或多项参数的值:
    随机接入前导码索引、发送随机接入前导码的时频资源掩码索引、发送随机接入前导码的起始子帧、随机接入前导码的重复发送次数、随机接入前导码的最大发送次数、监听下行控制信息的窄带、监听下行数据的窗口长度、监听随机接入响应RAR的窗口长度、 发送随机接入前导码的载波或子载波、随机接入前导码格式指示。
  11. 如权利要求9或10所述的方法,其特征在于,所述寻呼消息还用于指示下行数据早传。
  12. 如权利要求9~11任一项所述的方法,其特征在于,所述方法还包括:
    根据随机接入参数值,向所述终端发送下行控制信息,所述下行控制信息用于调度下行数据或RAR。
  13. 如权利要求9~12任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端发送系统消息,所述系统消息携带n个CEL、所述n个CEL中的每一个CEL对应的随机接入参数值、以及对应的n个索引值,一个索引值用于指示一个CEL对应的随机接入参数值,其中n大于或等于m。
  14. 如权利要求13所述的方法,其特征在于,所述寻呼消息中携带所述n个索引值中的m个索引值,所述m个索引值用于指示所述m个CEL中的每一个CEL对应的随机接入参数值。
  15. 如权利要求13或14所述的方法,其特征在于,所述系统消息还携带监听寻呼消息的窄带和/或接收寻呼消息的重复次数。
  16. 如权利要求12所述的方法,其特征在于,所述RAR包括以下一项或多项:
    监听下行控制信息的窄带、监听下行控制信息的载波或子载波、下行控制信息的重复次数、承载下行数据的物理下行共享信道的重复次数、监听下行数据的窗口长度,所述下行控制信息用于调度下行数据。
  17. 一种通信装置,其特征在于,包括:
    收发器,用于与其它通信设备进行通信;
    处理器,用于与存储器耦合,调用所述存储器中的程序,执行所述程序以实现如权利要求1-8任意一项所述的方法。
  18. 一种通信装置,其特征在于,包括:
    收发器,用于与其它通信设备进行通信;
    处理器,用于与存储器耦合,调用所述存储器中的程序,执行所述程序以实现如权利要求9-16任意一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行如权利要求1-16任意一项所述的方法。
  20. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行如权利要求1-16任意一项所述的方法。
  21. 一种芯片,其特征在于,所述芯片与存储器相连或者所述芯片包括所述存储器,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1-16任意一项所述的方法。
PCT/CN2019/080268 2019-03-28 2019-03-28 一种通信方法及装置 WO2020191783A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/080268 WO2020191783A1 (zh) 2019-03-28 2019-03-28 一种通信方法及装置
PCT/CN2019/099346 WO2020191983A1 (zh) 2019-03-28 2019-08-06 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080268 WO2020191783A1 (zh) 2019-03-28 2019-03-28 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2020191783A1 true WO2020191783A1 (zh) 2020-10-01

Family

ID=72609172

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/080268 WO2020191783A1 (zh) 2019-03-28 2019-03-28 一种通信方法及装置
PCT/CN2019/099346 WO2020191983A1 (zh) 2019-03-28 2019-08-06 一种通信方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099346 WO2020191983A1 (zh) 2019-03-28 2019-08-06 一种通信方法及装置

Country Status (1)

Country Link
WO (2) WO2020191783A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101454A (zh) * 2015-08-14 2015-11-25 电信科学技术研究院 一种mtc ue随机接入的方法及装置
WO2018058303A1 (zh) * 2016-09-27 2018-04-05 中兴通讯股份有限公司 一种接入网络的方法、装置和系统
CN108464052A (zh) * 2015-11-18 2018-08-28 IPCom两合公司 单频网络随机接入

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959878B (zh) * 2013-09-26 2017-11-24 华为技术有限公司 用户设备覆盖增强资源的分配方法、基站和用户设备
WO2015116870A1 (en) * 2014-01-29 2015-08-06 Interdigital Patent Holdings, Inc. Method and apparatus for implementing coverage enhancement (ce) operations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101454A (zh) * 2015-08-14 2015-11-25 电信科学技术研究院 一种mtc ue随机接入的方法及装置
CN108464052A (zh) * 2015-11-18 2018-08-28 IPCom两合公司 单频网络随机接入
WO2018058303A1 (zh) * 2016-09-27 2018-04-05 中兴通讯股份有限公司 一种接入网络的方法、装置和系统

Also Published As

Publication number Publication date
WO2020191983A1 (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
US10986692B2 (en) Evolved node-b, user equipment, and methods for transition between idle and connected modes
US20230354454A1 (en) Re-Establishment of Component Carriers in a Wireless Communication System
US9907095B2 (en) User equipment and evolved node-B and methods for random access for machine type communication
CN107258105B (zh) 运行寻呼机制以实现增强覆盖模式
US11218965B2 (en) Method and apparatus for transmitting and receiving a wake-up signal in a wireless communication system
US10623981B2 (en) Information transmission method, apparatus, and system
JP6726767B2 (ja) ページング検出ウィンドウ
WO2020191781A1 (zh) 一种数据传输方法及装置
US11540329B2 (en) Information transmission method, terminal device, and network device
WO2021035447A1 (zh) 一种数据传输方法及装置
WO2020237489A1 (zh) 一种通信方法、装置及计算机可读存储介质
US20220303961A1 (en) Physical channel monitoring method and terminal device
CN112740813B (zh) 一种通信方法及装置
TWI678939B (zh) 一種資訊傳輸方法及裝置
WO2019192004A1 (zh) 一种数据发送方法、信息发送方法及装置
CN112806075B (zh) 一种通信方法及装置
WO2019213975A1 (zh) 一种信息传输方法和通信设备以及网络设备
WO2020191783A1 (zh) 一种通信方法及装置
WO2019041261A1 (zh) 一种通信方法及设备
WO2020062105A1 (zh) 一种通信方法及装置
WO2024108585A1 (zh) 用于侧行通信的方法、终端设备以及网络设备
WO2023063262A1 (ja) 通信装置、基地局、及び通信方法
WO2024092702A1 (zh) 通信方法、终端设备以及网络设备
WO2023123315A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019153344A1 (zh) 一种进程管理方法和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921550

Country of ref document: EP

Kind code of ref document: A1