WO2019041261A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2019041261A1
WO2019041261A1 PCT/CN2017/100023 CN2017100023W WO2019041261A1 WO 2019041261 A1 WO2019041261 A1 WO 2019041261A1 CN 2017100023 W CN2017100023 W CN 2017100023W WO 2019041261 A1 WO2019041261 A1 WO 2019041261A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
physical downlink
channel
network device
coverage enhancement
Prior art date
Application number
PCT/CN2017/100023
Other languages
English (en)
French (fr)
Inventor
余政
刘江华
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/100023 priority Critical patent/WO2019041261A1/zh
Priority to CN201780093822.0A priority patent/CN111066355A/zh
Publication of WO2019041261A1 publication Critical patent/WO2019041261A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present invention relate to the field of mobile communications technologies, and in particular, to a communication method and device.
  • the existing machine-type communications (MTC) communication technology requires a system bandwidth of at least six resource blocks (RBs).
  • RBs resource blocks
  • the base station needs to send a synchronization channel or the like to the terminal device through 6 RBs.
  • the terminal device supporting MTC can support communication with the base station on more RBs, and such terminal device can support voice, mobility, and medium-high-rate transmission well enough.
  • the embodiment of the present application provides a communication method and device for providing a new communication mode, which can support flexible deployment.
  • a communication method which can be performed by a network device, such as a base station.
  • the method includes: the network device transmitting a synchronization channel and a broadcast channel to the first terminal device and the second terminal device in the N resource blocks; N is a positive integer greater than 0; and the frequency resource occupied by the N resource blocks is less than or equal to The maximum channel bandwidth of the second terminal device, and the maximum channel bandwidth of the second terminal device is smaller than the maximum channel bandwidth of the first terminal device.
  • a communication method which can be performed by a terminal device.
  • the method includes: the terminal device receives a synchronization channel and a broadcast channel from the network device in the N resource blocks; wherein N is a positive integer greater than 0; the frequency resource occupied by the N resource blocks is less than or equal to the network device service
  • the maximum channel bandwidth of the second terminal device, and the maximum channel bandwidth of the second terminal device is smaller than the maximum channel bandwidth of the terminal device.
  • the network device may send the synchronization channel and the broadcast channel in the N resource blocks, and the first terminal device and the second terminal device may receive the synchronization channel and the broadcast channel in the N resource blocks, where the first The maximum channel bandwidth of the terminal device is greater than the maximum channel bandwidth of the second terminal device.
  • the cell access can be performed in less than 6 RBs, so that information can be transmitted to the network device in a smaller resource block, so that the embodiment of the present application provides A communication system obviously supports a more flexible deployment.
  • the network device may send system information to the first terminal device on K resource blocks, where K is a positive integer greater than 0, and K is greater than or equal to N; when K is greater than 1 And the system information carried by the network device in each of the K resource blocks is self-decoded information.
  • the terminal device receives system information from the network device on K resource blocks, where K is a positive integer greater than 0, and K is greater than or equal to N; when K is greater than 1, the network device is in the The system information carried in each of the K resource blocks is self-decoded information.
  • the network device may send the system information on the K RBs that are greater than or equal to N, that is, K may be greater than N, or K may be equal to N.
  • K may be greater than N. More RB transmissions improve the transmission quality.
  • K can be equal to N. It is guaranteed to be able to transmit successfully, and it can help save resources and facilitate flexible deployment.
  • K is greater than 1
  • the network device is in K RBs.
  • the system information sent in each RB can be self-decoding information, and does not have to rely on other system information for decoding, so that even if the terminal device does not completely receive the system information of K RBs, the system can be received. The information is decoded, and the decoding success rate of the terminal device is increased.
  • the network device sends indication information to the first terminal device by using the broadcast channel, where the indication information is used to indicate the number K of resource blocks occupied by the system information.
  • the terminal device receives the indication information from the network device by using the broadcast channel, where the indication information is used to indicate the quantity K of resource blocks occupied by the system information.
  • the network device can inform the first terminal device of the quantity K, so that the terminal device can correctly receive the system information and improve the receiving success rate.
  • the network device receives a random access channel from the first terminal device on a first frequency resource, where the first frequency resource includes a quantity of resource blocks greater than N; the network device Sending, by the first physical downlink control channel, the first physical downlink control channel to the first terminal device, where the first physical downlink control channel is used to schedule the first physical downlink shared channel; A terminal device sends a random access response or a contention resolution message.
  • the terminal device sends a random access channel to the network device on the first frequency resource, where the number of resource blocks included in the first frequency resource is greater than N; the terminal device receives from the network device a first physical downlink control channel, where the first physical downlink control channel is used to schedule a first physical downlink shared channel; and the terminal device receives a random access response or contention from the network device by using the first physical downlink shared channel Resolve the message.
  • the number of RBs occupied by the first physical downlink control channel is greater than the number of RBs occupied by the second physical downlink shared channel, and the number of RBs occupied by the first physical downlink shared channel is greater than the number of RBs occupied by the second physical downlink shared channel. That is, the first physical downlink control channel and the first physical downlink shared channel are both channels with larger bandwidth. If the first terminal device sends the random access channel to the network device on the first frequency resource, indicating that the maximum channel bandwidth of the first terminal device may be large, the network device may select that the first terminal device has a larger scheduling bandwidth.
  • the channel that is, the first physical downlink control channel and the first physical downlink shared channel, can transmit richer information, improve information transmission reliability, and improve transmission quality.
  • the network device receives a random access channel from the second terminal device on a second frequency resource, where the second frequency resource includes a quantity of resource blocks that is less than or equal to N;
  • the network device sends a second physical downlink control channel to the second terminal device, where the second physical downlink control channel is used to schedule a second physical downlink shared channel, and the network device uses the second physical downlink shared channel to
  • the second terminal device sends a random access response or a contention resolution message.
  • the second terminal device sends a random access channel to the network device on the second frequency resource, it indicates that the maximum channel bandwidth of the second terminal device may be small, if the network device schedules a channel with a larger bandwidth for the second terminal device. It is possible that the second terminal device cannot receive it normally. Therefore, the network device can select a channel with a smaller bandwidth, that is, a second physical downlink control channel and a second physical downlink shared channel, so that the transmission success rate can be improved, and the flexible deployment is also facilitated.
  • the network device receives a random access channel from the first terminal device on a third frequency resource, where the third frequency resource includes a quantity of resource blocks that is less than or equal to N;
  • the network device sends a second physical downlink control channel to the first terminal device, where the second physical downlink control channel is used to schedule a second physical downlink shared channel, and the network device uses the second physical downlink shared channel to
  • the first terminal device sends a random access response or a contention resolution message.
  • the terminal device sends the network device to the network device on a third frequency resource.
  • the terminal device Transmitting a random access channel, where the third frequency resource includes a quantity of resource blocks that is less than or equal to N; the terminal device receives a second physical downlink control channel from the network device, where the second physical downlink control channel is used And scheduling, by the second physical downlink shared channel, the terminal device to receive a random access response or a contention resolution message from the network device by using the second physical downlink shared channel.
  • the first terminal device can send a random access channel to the network device on less frequency resources, and then the network device also
  • the first terminal device can be configured with a channel with a smaller bandwidth, that is, a second physical downlink control channel and a second physical downlink shared channel. It can be seen that the network device can schedule a channel with a larger bandwidth for the first terminal device.
  • a terminal device schedules a channel with a smaller bandwidth, which is more flexible and can improve the transmission success rate.
  • the network device indicates, by using a random access response, that the message 3 of the first terminal device is transmitted through the first physical uplink shared channel or through the second physical uplink shared channel; or the network device Instructing, by the physical downlink control channel, the message 3 of the first terminal device to be transmitted through a first physical uplink shared channel or by using a second physical uplink shared channel, where the physical downlink control channel is a control channel for scheduling a random access response Or scheduling the control channel of the retransmission message 3.
  • the terminal device receives a random access response sent by the network device, where the random access response indicates that the message 3 of the terminal device is transmitted through the first physical uplink shared channel or transmitted through the second physical uplink shared channel.
  • the terminal device receives a physical downlink control channel from the network device, where the physical downlink shared channel indicates that the message 3 of the terminal device is transmitted through the first physical uplink shared channel or transmitted through the second physical uplink shared channel.
  • the physical downlink control channel is a control channel for scheduling a random access response or a control channel for scheduling a retransmission message 3.
  • the network device can indicate which shared channel transmission is used by the Msg3. In this embodiment, the network device can perform indication in different manners, and the manner is flexible.
  • the network device indicates, by using a random access response, that the contention resolution message sent to the first terminal device is transmitted through the first physical downlink shared channel or through the second physical downlink shared channel; or The network device indicates that the contention resolution message sent to the first terminal device is transmitted through the first physical downlink shared channel or through the second physical downlink shared channel, where the physical downlink control channel is randomly scheduled.
  • the control channel of the access response is a control channel for scheduling the contention resolution message; or the network device indicates the physical downlink control channel for scheduling the contention resolution message to the first terminal device by using a random access response, which is the first physical downlink. Control channel or second physical downlink control channel.
  • the terminal device receives a random access response from the network device, where the random access response indicates that the contention resolution message sent to the terminal device is transmitted through the first physical downlink shared channel or through the second physical downlink sharing. Channel transmission; or, the terminal device receives a physical downlink control channel from the network device, where the physical downlink control channel indicates that the contention resolution message sent to the terminal device is transmitted through the first physical downlink shared channel or through the second physical a downlink shared channel transmission, where the physical downlink control channel is a control channel for scheduling a random access response or a control channel for scheduling a contention resolution message; or the terminal device receives a random access response from the network device, where
  • the physical downlink control channel that indicates the scheduling contention resolution message to the terminal device is a first physical downlink control channel or a second physical downlink control channel.
  • the network device can indicate which shared channel transmission is used by the Msg4. In this embodiment, the network device can perform indication in different manners, and the manner is flexible.
  • the network device determines a coverage enhancement level or a coverage enhancement mode of the first terminal device; when the coverage enhancement level of the first terminal device is a first coverage enhancement level or the first terminal When the coverage enhancement mode of the device is the first coverage enhancement mode, the network device sends a first physical downlink control channel to the first terminal device; when the coverage enhancement level of the first terminal device is a second coverage enhancement level or When the coverage enhancement mode of the first terminal device is the second coverage enhancement mode, the network device sends a second physical downlink control channel to the first terminal device.
  • the terminal device when the coverage enhancement level of the terminal device is the first coverage enhancement level or the coverage enhancement mode of the terminal device is the first coverage enhancement mode, the terminal device receives the first physical downlink control channel from the network device; When the coverage enhancement level of the terminal device is the second coverage enhancement level or the coverage enhancement mode of the terminal device is the second coverage enhancement mode, the terminal device receives the second physical downlink control channel from the network device.
  • the network device may determine, according to the coverage enhancement mode or the coverage enhancement level of the first terminal device, how to schedule, for example, the higher the coverage enhancement level of the first terminal device indicates that the channel quality is worse, the network device may Sending a channel with less occupied RBs to the terminal device to ensure that the terminal device can successfully receive and save resources as much as possible; and the lower the coverage enhancement level, the better the channel quality, the network device can send the occupied device to the terminal device. More channels of RB to improve transmission reliability and improve transmission quality.
  • the network device allocates H resource blocks for uplink data transmission of the first terminal device; when H is greater than the first threshold, the network device uses the first physical uplink shared channel from the The first terminal device receives the uplink data.
  • the network device receives the uplink data from the first terminal device by using the second physical uplink shared channel.
  • the terminal device determines that the network device allocates H resource blocks for uplink data transmission of the terminal device; when H is greater than the first threshold, the terminal device sends the resource to the network through the first physical uplink shared channel The device sends the uplink data.
  • the terminal device sends the uplink data to the network device by using the second physical uplink shared channel.
  • the H is a positive integer.
  • the first terminal device can send uplink data to the network device by using the first physical uplink shared channel with more RBs, so that more uplinks can be sent. Data helps to support voice, mobility, and medium to high rate transmissions. If the number of RBs scheduled by the network device for the first terminal device is small, the first terminal device can send uplink data to the network device by using the second physical uplink shared channel with less RBs, thereby improving the uplink data transmission success. Rate, saving transmission resources.
  • the network device determines a coverage enhancement level or a coverage enhancement mode of the first terminal device; when the coverage enhancement level of the first terminal device is a first coverage enhancement level or the first terminal When the coverage enhancement mode of the device is the first coverage enhancement mode, the network device schedules the first terminal device to use the first physical uplink shared channel for uplink data transmission; and when the coverage enhancement level of the first terminal device is the second When the coverage enhancement level or the coverage enhancement mode of the first terminal device is the second coverage enhancement mode, the network device schedules the first terminal device to use the second physical uplink shared channel for uplink data transmission.
  • the terminal device uses the first physical uplink shared channel for uplink data transmission.
  • the coverage enhancement level of the terminal device is the second coverage enhancement level or the coverage enhancement mode of the terminal device is the second coverage enhancement mode, the terminal device uses the second physical uplink shared channel for uplink data transmission.
  • the network device can be scheduled.
  • the terminal device uses the channel with less RBs to transmit uplink data to ensure that the terminal device can successfully transmit and save resources as much as possible.
  • the channel with more RBs is used to transmit uplink data, so as to improve the transmission reliability of the uplink data and improve the transmission quality.
  • the network device determines a coverage enhancement level or a coverage enhancement mode of the first terminal device; when the coverage enhancement level of the first terminal device is a first coverage enhancement level or the first terminal When the coverage enhancement mode of the device is the first coverage enhancement mode, the network device uses the first physical downlink shared channel to perform downlink data transmission to the first terminal device; when the coverage enhancement level of the first terminal device is the second When the coverage enhancement level or the coverage enhancement mode of the first terminal device is the second coverage enhancement mode, the network device uses the second physical downlink shared channel to perform downlink data transmission to the first terminal device.
  • the terminal device when the coverage enhancement level of the terminal device is the first coverage enhancement level or the coverage enhancement mode of the terminal device is the first coverage enhancement mode, the terminal device receives from the network device by using the first physical downlink shared channel. Downlink data; when the coverage enhancement level of the terminal device is the second coverage enhancement level or the coverage enhancement mode of the terminal device is the second coverage enhancement mode, the terminal device receives from the network device by using the second physical downlink shared channel Downstream data.
  • the network device can use the channel with less occupied RBs to transmit downlink data, so as to ensure that the terminal device can successfully receive and save resources as much as possible;
  • the lower the coverage enhancement level the better the channel quality is.
  • the network device can use the channel with more RBs to transmit downlink data, so as to improve the transmission reliability of the downlink data and improve the transmission quality.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device can include a transceiver.
  • the network device may further include a processor.
  • the transceiver and processor may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a terminal device has the function of implementing the first terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a transceiver.
  • the terminal device may further include a processor.
  • the transceiver and processor may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a transceiver unit.
  • the network device may further include a processing unit.
  • the transceiver unit and the processing unit may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a terminal device has the function of implementing the first terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a transceiver unit.
  • the terminal device A processing unit can also be included.
  • the transceiver unit and the processing unit may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a communication device which may be a network device or a chip in a network device.
  • the communication device has the functionality provided in implementing any of the possible aspects of the first aspect or the first aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device when the communication device is a network device, the network device comprises: a processing unit and a communication unit, which may be, for example, a processor, which may be, for example, a transceiver, the transceiver Including a radio frequency circuit, optionally, the network device further includes a storage unit, which may be, for example, a memory.
  • the storage unit is configured to store a computer execution instruction
  • the processing unit is coupled to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit to cause the network device to perform the first aspect described above Or a communication method in any of the possible designs of the first aspect.
  • the chip comprises: a processing unit and a communication unit
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input/output interface. , pins or circuits, etc.
  • the processing unit may execute computer-executable instructions stored by the storage unit to cause the chip within the network device to perform the communication method of any of the above first aspect or the first aspect.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the network device, such as a ROM or may be stored. Static information and instructions for other types of static storage devices, RAM, etc.
  • the processor mentioned in any of the above may be a general-purpose CPU, a microprocessor, an ASIC, or one or more communications in any of the possible designs for controlling the first aspect or the first aspect described above. Method of program execution of an integrated circuit.
  • a communication device may be a terminal device or a chip in the terminal device, and the terminal device may implement the function of the first terminal device as described above.
  • the communication device has the functionality provided in implementing any of the possible aspects of the second or second aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device when the communication device is a terminal device, the terminal device comprises: a processing unit and a communication unit, the processing unit being, for example, a processor, the communication unit being, for example, a transceiver, the transceiver The radio frequency circuit is included.
  • the terminal device further includes a storage unit, and the storage unit may be, for example, a memory.
  • the storage unit is configured to store a computer execution instruction
  • the processing unit is coupled to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit to cause the terminal device to perform the second aspect Or a communication method in any of the possible designs of the second aspect.
  • the chip comprises: a processing unit and a communication unit
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input/output interface. , pins or circuits, etc.
  • the processing unit may execute a computer-executed instruction stored by the storage unit to cause the chip in the terminal device to perform the communication method of any of the above first aspect or the first aspect.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal device, such as a ROM or may be stored. Static information and instructions for other types of static storage devices, RAM, etc.
  • the processor mentioned in any of the above may be a general-purpose CPU, a microprocessor, an ASIC, or one or more communications for controlling any of the above possible aspects of the second aspect or the second aspect.
  • Method of program execution of an integrated circuit may be a general-purpose CPU, a microprocessor, an ASIC, or one or more communications for controlling any of the above possible aspects of the second aspect or the second aspect.
  • a communication system which can include a network device, a first terminal device, and a second terminal device.
  • the network device is configured to send a synchronization channel and a broadcast channel to the first terminal device and the second terminal device in the N resource blocks, where the first terminal device is configured to receive the synchronization channel sent by the network device in the N resource blocks.
  • the second terminal device is configured to receive the synchronization channel and the broadcast channel sent by the network device in the N resource blocks; where N is a positive integer greater than 0; the frequency resource corresponding to the N resource blocks is less than or And a maximum channel bandwidth of the second terminal device served by the network device, and a maximum channel bandwidth of the second terminal device is smaller than a maximum channel bandwidth of the terminal device.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect of the first aspect of the design Said method.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the possible aspects of the second aspect or the second aspect described above The method described in the above.
  • a twelfth aspect a computer program product comprising instructions, wherein instructions stored in a computer program product, when executed on a computer, cause the computer to perform any of the first aspect or the first aspect described above The method described in the design.
  • a thirteenth aspect a computer program product comprising instructions, wherein instructions stored in a computer program product, when executed on a computer, cause the computer to perform any one of the second aspect or the second aspect described above The method described in the design.
  • the cell access may be performed in less than 6 RBs, so that the information can be transmitted to the network device in a smaller resource block, and the present application is
  • the communication system provided by the embodiment obviously can support a more flexible deployment.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application
  • FIG. 2 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a position relationship of multiple RBs according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a location relationship of multiple RBs according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a location relationship of multiple RBs according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of how a network device and a terminal device use each channel in a communication process according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of how a network device and a terminal device use each channel in a communication process according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • a terminal device, or terminal, including a device that provides voice and/or data connectivity to a user may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a UE, a wireless terminal device, a mobile terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and a remote station.
  • AP access point
  • a mobile phone or "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • smart watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more cells.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in an LTE system or an evolved LTE system (LTE-A), or may also include a fifth generation mobile communication technology. (fifth generation, 5G)
  • the next generation node B (gNB) in the new radio (NR) system is not limited in the embodiment of the present application.
  • NB-IoT Narrow band internet of things
  • 3GPP 3rd generation partnership project
  • the NB-IoT system constructs an Internet of Things, which occupies 180KHz or 200KHz bandwidth and can be directly deployed in a global system for mobile communication (GSM) system, a universal mobile telecommunications system (UMTS) or a long-term evolution. (long term evolution, LTE) systems can also be deployed independently to reduce deployment costs.
  • GSM global system for mobile communication
  • UMTS universal mobile telecommunications system
  • LTE long term evolution
  • the services and terminal equipment of the NB-IoT system have the following characteristics:
  • a NB-IoT base station may cover a large number of terminal devices of this type, for example, the number may exceed tens of thousands.
  • the NB-IoT system requires lower power consumption of the terminal equipment, thereby saving the battery power of the terminal equipment and ensuring a long standby time of the terminal equipment, thereby saving the labor cost of replacing the battery.
  • the NB-IoT system has many unique designs.
  • the NB-IoT system does not have a PUCCH to simplify terminal equipment and reduce costs.
  • the control channel of the NB-IoT system for example, a narrow physical downlink control channel (NPDCCH)
  • a data channel for example, a narrow physical cownlink shared channel (NPDSCH)
  • the narrow physical uplink shared channel (NPUSCH) adopts the method of repeated transmission, and the repeated transmission of hundreds of times for the same content improves the possibility of successful reception of a poorly covered terminal device.
  • MTC mobile communications technology, able to support coverage enhancement.
  • MTC requires a system bandwidth of at least 6 RBs.
  • the system message fills 6 RBs.
  • the paging message occupies 6 RBs.
  • the random access channel occupies 6 RBs.
  • the low-complexity terminal device or the coverage-enhanced terminal device supporting the MTC can perform a physical uplink shared channel (PUSCH) on a maximum of 25 RBs or 24 RBs in the system bandwidth.
  • PUSCH physical uplink shared channel
  • the system bandwidth may be greater than 25 RBs, for example, the system bandwidth is any one of 50 RBs, 75 RBs, 100 RBs, 200 RBs, 400 RBs, and 800 RBs. Or the system bandwidth may also be less than or equal to 25 RBs, for example, the system bandwidth is 15 RBs.
  • the resources allocated by the base station to the low complexity terminal device or the coverage enhanced terminal device may not exceed 25 RBs or 24 RBs at most. Because the terminal equipment supporting MTC can support communication with the base station on more RBs, the terminal equipment supporting MTC can well support voice, mobility, and medium and high rate transmission.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • the technical solution provided by the embodiment of the present application may be applied to an LTE system or an LTE Advanced (LTE-A) system.
  • LTE-A LTE Advanced
  • the technical solution provided by the embodiment of the present application can also be applied to other communication systems, such as an NR system.
  • NR NR system
  • FIG. 1 is a schematic diagram of the application scenario.
  • FIG. 1 includes a network device and a terminal device, wherein the network device can schedule one RB or multiple RBs to transmit information with one or more of the terminal devices 1 to 6 .
  • the network device in FIG. 1 is, for example, an access network (access Network, AN) device, such as a base station.
  • AN access Network
  • the base station and the terminal device 1 to the terminal device 6 are located in one communication system.
  • the base station transmits scheduling information to one or more of the terminal devices 1 to 6 in the terminal device 6.
  • the terminal device 4 to the terminal device 6 may also constitute a communication system in which the terminal device 5 can transmit scheduling information to one or more of the terminal device 4 and the terminal device 6.
  • the RB in the present application may be a resource block in the LTE system, a resource block in the NR system, or a newly defined resource unit.
  • an embodiment of the present application provides a communication method.
  • the application scenario shown in FIG. 1 is applied to the example.
  • the embodiment of the present application substantially provides a new communication system, in which the terminal device and the network device support the transmission of information through one RB, and also support the terminal device and the network device.
  • the information is transmitted through multiple RBs, that is, the communication system fully utilizes the advantages of the NB-IoT system and machine-type communications (MTC) MTC, and can support flexible independent deployment as well as support for large coverage. And efficient capacity, support for voice, support for various rates of service, and support mobility.
  • the communication method provided by the embodiment of the present application is implemented in the communication system. The flow of this method is described below.
  • the network device sends the synchronization channel and the broadcast channel to the first terminal device and the second terminal device in the N resource blocks, where the first terminal device and the second terminal device served by the network device may be in the N resource blocks.
  • N is a positive integer greater than zero.
  • the network device is sent to all terminal devices served by the network device.
  • the frequency resource occupied by the N resource blocks is less than or equal to the maximum channel bandwidth of the second terminal device, and the maximum channel bandwidth of the second terminal device is smaller than the maximum channel bandwidth of the first terminal device.
  • the maximum channel bandwidth of the first terminal device is, for example, a bandwidth corresponding to 6 RBs
  • the maximum channel bandwidth of the second terminal device is, for example, a channel bandwidth corresponding to 1 RB
  • the second terminal device is, for example, a terminal supporting the NB-IoT system.
  • the device, the first terminal device is, for example, a terminal device that supports the eMTC system or the MTC system.
  • the embodiment of the present application is not limited thereto.
  • N may also be a decimal, that is, as long as N is greater than 0, then, for example, N is less than or equal to 1, that is, regardless of the type of terminal device, the network device can pass The fewer RBs transmit the synchronization channel and the broadcast channel, so that the communication system provided by the embodiment of the present application can support flexible deployment.
  • the frequency resource described herein is less than or equal to the maximum channel bandwidth. It can be understood that the total frequency resource occupied by the N RBs may be narrower than the maximum channel bandwidth of the second terminal device, or may be equal to the second terminal device. Maximum channel bandwidth. The maximum channel bandwidth of the terminal device can be simply understood as the maximum bandwidth supported by the terminal device.
  • the network device When the network device transmits the synchronization channel, it can transmit on N RBs. It can be understood that each of the RBs includes a synchronization channel.
  • the synchronization channel is a narrow primary synchronization signal (NPS) of the NB-IoT system.
  • NPS narrow primary synchronization signal
  • NSSS narrow secondary synchronization signal
  • each of the RBs includes a broadcast channel.
  • the broadcast channel adopts a narrow physical layer broadcast channel of the NB-IoT system. , NPBCH).
  • the embodiment of the present application does not limit the transmission sequence of the synchronization channel and the broadcast channel, or the network device may also The synchronization channel and the broadcast channel are simultaneously transmitted at the same time.
  • the network device may send the synchronization channel and the broadcast channel in the N resource blocks, and the first terminal device and the second terminal device may receive the synchronization channel and the broadcast channel in the N resource blocks, where the first The maximum channel bandwidth of the terminal device is greater than the maximum channel bandwidth of the second terminal device.
  • the cell access can be performed in less than 6 RBs, so that information can be transmitted to the network device in a smaller resource block, so that the embodiment of the present application provides A communication system obviously supports a more flexible deployment.
  • the information transmitted between the network device and the terminal device may be various, and may be roughly classified into public information and private information, for example, information transmitted on a synchronization channel (which can be understood as a synchronization channel), and information transmitted on a broadcast channel. (Can be understood as a broadcast channel), system information, paging information, and some information in the random access process.
  • the system information may include a system resource block (SIB) 1 and other SIBs, such as SIB2 and SIB3, and the information in the random access process includes, for example, a physical random access channel (PRACH).
  • SIB system resource block
  • PRACH physical random access channel
  • the transmitted information (which can be understood as a random access channel), a random access response (RAR) in a random access procedure, a contention resolution message, etc., wherein the random access response is a message in a random access procedure (Msg) 2, the contention resolution message is Msg4 in the random access process, and the response message sent by the terminal device to the random access response in the random access process is Msg3.
  • the random access channel and the Msg3 are messages sent by the terminal device to the network device, and the Msg2 and the Msg4 are messages sent by the network device to the terminal device.
  • the proprietary information includes, for example, unicast data and the like. As described above, the transmission synchronization channel and the broadcast channel have been introduced. The following describes how to transmit other information.
  • the network device may transmit on K RBs when transmitting SIB1, K is a positive integer greater than 0, and K is greater than or equal to N. If K is less than or equal to 1, the network device may choose to transmit a narrow system information block (NSIB) 1 in the NB-IoT system. Alternatively, in order to improve the transmission performance of SIB1, K may be greater than one.
  • SIB narrow system information block
  • the SIB1 carried on each of the RBs may be self-decoding information, that is, the terminal device may not rely on the information carried by each RB in the decoding.
  • the information carried on other RBs can be understood as independent information transmitted on each of the RBs.
  • the information carried by each RB may be the same or different. If they are the same, the SIB1 is repeatedly transmitted on multiple RBs.
  • the broadcast channel may indicate the scheduling information of the SIB1.
  • the network device sends a master information block (MIB) through the broadcast channel, and the scheduling information of the SIB1 is indicated by the MIB, so that the terminal device can receive the SIB1 according to the indication of the MIB.
  • MIB master information block
  • the terminal device if it is the second terminal device, the maximum channel bandwidth of such a terminal device is small, and if K is less than or equal to 1, such terminal device can receive normally, if K is greater than 1, because of The information transmitted on each RB may be self-decoded, and such terminal devices may receive only information transmitted on one of the RBs.
  • the first terminal device such a terminal device has a large maximum channel bandwidth, and such terminal devices are capable of receiving SIB1 transmitted by the network device through K RBs.
  • the network device may transmit on K RBs when transmitting other SIBs, K is a positive integer greater than 0, and K is greater than or equal to N. If K is less than or equal to 1, the network device may choose to transmit the NSIB in the NB-IoT system. Alternatively, in order to improve the transmission performance of SIB1, K may be greater than one.
  • the other SIBs carried on each of the RBs may be self-decoding information, that is, the terminal device may not depend on the information carried by each of the RBs.
  • the information carried on other RBs can be understood as independent information transmitted on each of the RBs.
  • the information carried by each RB may be the same or different. If they are the same, the other SIBs are repeatedly transmitted on multiple RBs.
  • the SIB1 may indicate scheduling information of other SIBs, so that the terminal device may receive other SIBs according to the indication of the SIB1.
  • the terminal device For the terminal device, if it is the second terminal device, the maximum channel bandwidth of such a terminal device is small, and if K is less than or equal to 1, such terminal device can receive normally, if K is greater than 1, because of The information transmitted on each RB may be self-decoded, and such terminal devices may receive only information transmitted on one of the RBs. If the terminal device of the new version is, for example, the first terminal device, the maximum channel bandwidth of such a terminal device is large, and regardless of the value of K, such terminal device can be sent by the K RB receiving network device. Other SIBs.
  • the location of the occupied RB may be pre-defined by a protocol.
  • information such as the number and/or location of occupied RBs may be indicated by a broadcast channel, for example, Indicated by MIB.
  • the network device may send indication information to the first terminal device through the broadcast channel, where the indication information is used to indicate the number K of RBs occupied by the system information transmission, or may be pre-defined by a protocol.
  • the broadcast channel or protocol may also indicate the location of each RB occupied by the public information, so that the terminal device may directly determine, or be simple, or if the public information occupies consecutive RBs, the broadcast channel or protocol may also Indicates the location of the starting RB occupied by the common information and the number of occupied RBs, or the location of the starting RB indicating the occupation of the common information and the number of other RBs occupied in addition to the starting RB.
  • the other RBs occupied by the common information may be RBs in the direction decreasing according to the frequency from the starting RB.
  • the initial RB is the RB in FIG. n
  • other RBs are RB n-1, RB n-2, RB n-3, and RB n-4, where RB n, RB n-1, RB n-2, RB n-3, and RB n -4 is a continuous RB or a discontinuous RB.
  • the other RBs occupied by the common information may be RBs in the direction of increasing frequency from the starting RB.
  • the initial RB is RB n in FIG.
  • the other RBs are RB n+1, RB n+2, RB n+3, and RB n+4, where RB n, RB n+1, RB n+2, RB n+3, and RB n+ 4 is a continuous RB, or a discontinuous RB.
  • other RBs occupied by the common information may be RBs centered on the starting RB and symmetric in the frequency domain.
  • the initial RB is the RB in FIG. n
  • other RBs are RB n+1, RB n+2, RB n-1, and RB n-2, where RB n, RB n+1, and RB n+2 are consecutive RBs, or are discontinuous RB, RB n, RB n-1, and RB n-2 are consecutive RBs, or are discontinuous RBs.
  • the network device may determine how to transmit according to the frequency resource used by the terminal device to initiate random access. For example, the first terminal device sends a random access channel to the network device on the first frequency resource, and the network device receives the random access channel sent by the first terminal device on the first frequency resource, where the RB included in the first frequency resource If the number is greater than N, the network device may send the first physical downlink control channel to the first terminal device, where the first terminal device receives the first physical downlink control channel sent by the network device, where the first physical downlink control channel is used for scheduling.
  • a physical downlink shared channel so that the network device sends the Msg2 or the Msg4 to the first terminal device by using the first physical downlink shared channel, and the first terminal device receives the Msg2 or Msg4 sent by the network device by using the first physical downlink shared channel.
  • the second terminal device sends a random access channel to the network device on the second frequency resource, where the network The device receives the random access channel sent by the second terminal device on the second frequency resource, where the number of RBs included in the second frequency resource is less than or equal to N, the network device may send the second physical downlink control to the second terminal device.
  • the second terminal device receives the second physical downlink control channel sent by the network device, where the second physical downlink control channel is used to schedule the second physical downlink shared channel, so that the network device sends the second physical downlink shared channel to the second terminal.
  • the device sends Msg2 or Msg4, and the second terminal device receives the Msg2 or Msg4 sent by the network device through the second physical downlink shared channel. Thereby ensuring that the scheduled channel is adapted to the number of RBs scheduled by the network device.
  • the first physical downlink control channel is, for example, a machine physical downlink control channel (MPDCCH)
  • the first physical downlink shared channel is, for example, a PDSCH
  • the second physical downlink control channel is, for example, an NPDCCH.
  • the second physical downlink shared channel is, for example, an NPDSCH.
  • network devices adopt a unified scheduling mode. Then, regardless of the frequency resource used by the terminal device to send the random access channel, the network device uses the second physical downlink control channel and the second physical downlink shared channel for scheduling. For example, the first terminal device sends a random access channel to the network device by using the third frequency resource, and the network device sends the second terminal device to the first terminal device, whether the number of the RBs included in the third frequency resource is less than or equal to N or greater than N.
  • the physical downlink control channel the first terminal device receives the second physical downlink control channel sent by the network device, and the second physical downlink control channel is used to schedule the second physical downlink shared channel, so that the network device passes the second physical downlink shared channel
  • the first terminal device sends Msg2 or Msg4, and the first terminal device receives the Msg2 or Msg4 sent by the network device by using the second physical downlink shared channel. In this way, various terminal devices can be normally received, and multiple transmission modes are not needed, which makes the system implementation simpler.
  • the first terminal device may send a random access channel to the network device on less frequency resources, for example, A terminal device sends a random access channel to the network device by using the third frequency resource, where the number of RBs included in the third frequency resource is less than or equal to N, the network device may also schedule a channel with a smaller bandwidth, such as a network, for the first terminal device.
  • the device sends a second physical downlink control channel to the first terminal device, where the first terminal device receives the second physical downlink control channel sent by the network device, and the second physical downlink control channel is used to schedule the second physical downlink shared channel, so that the network
  • the device sends the Msg2 or the Msg4 to the first terminal device by using the second physical downlink shared channel, and the first terminal device receives the Msg2 or Msg4 sent by the network device by using the second physical downlink shared channel. It can be seen that the network device can schedule a channel with a larger bandwidth for the first terminal device, and can also schedule a channel with a smaller bandwidth for the first terminal device, which is more flexible and can improve the transmission success rate.
  • the network device may also indicate whether the Msg4 sent to the terminal device is transmitted by using the first physical downlink shared channel or the second physical downlink shared channel, and the network device may be indicated by different manners, which is flexible.
  • the network device can indicate whether the Msg4 sent to the first terminal device is transmitted by using the first physical downlink shared channel or the second physical downlink shared channel by using the Msg2, and after the first terminal device receives the Msg2, the network device can determine Whether the Msg4 sent by the first terminal device is transmitted by using the first physical downlink shared channel or the second physical downlink shared channel.
  • the network device may indicate, by using the physical downlink control channel, whether the Msg4 sent to the first terminal device is transmitted by using the first physical downlink shared channel or the second physical downlink shared channel, where the physical downlink control channel is a control channel for scheduling Msg2, Or schedule the control channel of Msg4.
  • the network device may also schedule the Msg4 through the physical downlink control channel, and the network device may also indicate the Whether the physical downlink control channel is the first physical downlink control channel or the second physical downlink control channel.
  • the network device can indicate, by the Msg2, whether the physical downlink control channel used for scheduling the Msg4 is the first physical downlink control channel or the second physical downlink control channel, and after receiving the Msg2, the first terminal device can determine the physics for scheduling the Msg4. Whether the downlink control channel is the first physical downlink control channel or the second physical downlink control channel.
  • the network device can indicate which shared channel transmission is used, and the network device can indicate in different ways, which is flexible.
  • the network device can use the Msg2 to indicate whether the Msg3 of the first terminal device is transmitted by using the first physical uplink shared channel or the second physical uplink shared channel, and the first terminal device can determine the Msg2 sent by the network device. Whether the terminal device sends the Msg3 to the network device by using the first physical uplink shared channel or the second physical uplink shared channel.
  • the network device may also indicate, by using the physical downlink control channel, whether the Msg2 transmission of the first terminal device is transmitted by using the first physical uplink shared channel or the second physical uplink shared channel, and then the first terminal device receives the physical information sent by the network device.
  • the downlink control channel may determine whether the first terminal device sends the Msg3 to the network device by using the first physical uplink shared channel or the second physical uplink shared channel.
  • the physical downlink control channel here is a control channel for scheduling Msg2, or a control channel for retransmitting Msg2.
  • the first physical uplink shared channel is, for example, a PUSCH
  • the second physical uplink shared channel is, for example, an NPUSCH.
  • the network device may determine the coverage enhancement level or the coverage enhancement mode of the first terminal device.
  • the coverage enhancement level of the first terminal device is the first coverage enhancement level or the coverage enhancement mode of the first terminal device is the first coverage enhancement mode:
  • the network device uses the first physical downlink control channel to schedule Msg2 (or Msg3, or Msg4), and the first terminal device receives the scheduling by using the first physical downlink control channel;
  • the network device uses the first physical downlink shared channel to transmit Msg2 (or Msg4), the first terminal device receives Msg2 (or Msg4) through the first physical downlink shared channel;
  • the first terminal device uses the first physical uplink shared channel to the network device.
  • Sending Msg3, the network device receives the Msg3 by using the first physical uplink shared channel;
  • the first terminal device sends a random access preamble to the network device by using the first random access channel, and the network device receives the random access preamble by using the first random access channel.
  • the coverage enhancement level of the first terminal device is the second coverage enhancement level or the coverage enhancement mode of the second terminal device is the second coverage enhancement mode:
  • the network device uses the second physical downlink control channel to schedule Msg2 (or Msg3, or Msg4), and the first terminal device receives the scheduling by using the second physical downlink control channel;
  • the network device uses the second physical downlink shared channel to transmit Msg2 (or Msg4), the first terminal device receives Msg2 (or Msg4) through the second physical downlink shared channel;
  • the first terminal device sends the second physical uplink shared channel to the network device.
  • Msg3 the network device receives the Msg3 by using the second physical uplink shared channel;
  • the first terminal device sends a random access preamble to the network device by using the second random access channel, and the network is configured.
  • the second random access channel is used to receive the random access preamble.
  • the first coverage enhancement level may be understood as a coverage enhancement level set, where one or more specific coverage enhancement levels may be included, and the second coverage enhancement level may be understood as an coverage enhancement level set, which may include one Or a plurality of specific coverage enhancement levels, for example, the first coverage enhancement level includes coverage enhancement level 0 and coverage enhancement level 1, and the second coverage enhancement level includes coverage enhancement level 2 and coverage enhancement level 3.
  • the first coverage enhancement mode may be understood as a coverage enhancement mode set, where one or more specific coverage enhancement modes may be included, and the second coverage enhancement mode may be understood as a coverage enhancement mode set, which may include one or more specific Coverage enhancement mode.
  • the first coverage enhancement mode includes coverage enhancement mode A
  • the second coverage enhancement mode includes coverage enhancement mode B.
  • the ranges of the first coverage enhancement level, the first coverage enhancement mode, the second coverage enhancement level, the second coverage enhancement mode, and the like may all be predetermined by a protocol.
  • the first random access channel is a PRACH
  • the second random access channel is a narrow physical random access channel (NPRACH).
  • the network device in the embodiment of the present application may determine how to schedule according to the coverage enhancement mode or the coverage enhancement level of the first terminal device. For example, the higher the coverage enhancement level of the first terminal device indicates that the channel quality is worse, the network The device can use the channel with less RBs to schedule, so as to ensure that the random access can be successful and save resources as much as possible. The lower the coverage enhancement is, the better the channel quality is, and the network device can use the occupied RB. Multiple channels are scheduled to improve transmission reliability and improve transmission quality.
  • the network device can determine how to transmit paging information based on the number of scheduled RBs. For example, if the number of RBs scheduled by the network device is less than or equal to N, the network device may schedule the second physical downlink shared channel by using the second physical downlink control channel, and the terminal device receives the second physical downlink control channel, where the network device The paging information is carried by the second physical downlink shared channel, and the terminal device receives the paging information sent by the network device by using the second physical downlink shared channel.
  • the network device schedules the first physical downlink shared channel by using the first physical downlink control channel, and the terminal device receives the first physical downlink control channel, and the network device passes the first physical The downlink shared channel sends the paging information, and the terminal device receives the paging information sent by the network device by using the first physical downlink shared channel.
  • the network device may also determine how to transmit paging information based on the data channel used to carry the paging information. For example, if the data channel used to carry the paging information is the second physical downlink shared channel, the network device determines that the scheduling is less than or equal to N RBs to send paging information, if the data channel used to carry the paging information is the first The physical downlink shared channel, the network device determines that the scheduling is greater than N RBs to send paging information.
  • network devices adopt a unified scheduling mode. Then, regardless of the number of RBs scheduled by the network device, and regardless of the data channel of the data channel for carrying the paging information, the network device schedules the second physical downlink shared channel through the second physical downlink control channel, and the terminal The device receives the second physical downlink control channel, and the network device carries the paging information by using the second physical downlink shared channel, and the network device receives the loop information sent by the network device by using the second physical downlink shared channel. Therefore, various terminal devices can normally receive paging information without using multiple transmission modes, which makes the system implementation simple.
  • the maximum channel bandwidth of such a terminal device is small, and if the network device carries the paging information through the second physical downlink shared channel, such terminal device can receive normally. If the network device carries paging information through the first physical downlink shared channel, such terminal device may not be able to connect. Receive paging information. If the terminal device of the new version is, for example, the first terminal device, the maximum channel bandwidth of the terminal device is large, whether the network device carries the paging information through the second physical downlink shared channel or through the first physical downlink shared channel. Such terminal equipment should be able to receive paging information sent by the network equipment.
  • the public information as above is the common information sent by the network device to the terminal device, and another public information sent by the terminal device to the network device is described below.
  • the terminal device selects different transmission modes, and different types of terminal devices can select a transmission mode that meets their needs. Then, if the terminal device is a second terminal device, such as a terminal device of the NB-IoT of Rel-13 or Rel-14, then the maximum channel bandwidth of such a terminal device is small, and the terminal device can be at the second frequency.
  • the random access channel is sent on the resource, and the network device receives the random access channel sent by the terminal device through the second frequency resource.
  • the terminal device is a new version of the terminal device, for example, the first terminal device, the maximum channel bandwidth of the terminal device is large, and the random access channel can be sent on the first frequency resource, and the network device passes the first The frequency resource receives a random access channel transmitted by such a terminal device.
  • the first terminal device may determine whether to use the first frequency resource for random access or the second frequency according to the coverage enhancement level or reference signal receiving power (RSRP) measurement. Resources are randomly accessed. For example, the higher the coverage enhancement level, or the smaller the value of the RSRP, the worse the channel quality, the first terminal device may select the second frequency resource for random access, so as to ensure that the random access can be successful, and the coverage enhancement is performed.
  • RSRP reference signal receiving power
  • the first terminal device can select the first frequency resource for random access to improve reliability.
  • the first frequency resource and the second frequency resource may be detected to avoid missing the random access channel sent by the terminal device.
  • the first terminal device or the second terminal device may send a random access channel through the third frequency resource, where the number of RBs included in the third frequency resource is less than or equal to N, and the network device is on the third frequency resource. Receiving a random access channel sent by the terminal device. This ensures that all types of terminal devices can be supported. Moreover, for the network device, only the third frequency resource needs to be detected, and no need to detect in multiple frequency resources, thereby reducing the workload of the network device.
  • network devices or terminal devices transmit public information The manner in which network devices or terminal devices transmit public information is described above. The following describes how network devices transmit proprietary information.
  • the network device allocates H RBs for the uplink data transmission of the first terminal device, and H is a positive integer.
  • H is a positive integer.
  • the first terminal device sends the uplink data to the network device by using the first physical uplink shared channel, and the network device receives the uplink data sent by the first terminal device by using the first physical uplink shared channel, and when H is smaller than Or, in the first threshold, the first terminal device sends the uplink data to the network device by using the second physical uplink shared channel, and the network device receives the uplink data sent by the first terminal device by using the second physical uplink shared channel.
  • the first threshold is not limited to an integer, and may be a decimal number, for example, 0.5 or the like. If the first threshold is a decimal, it may be understood that the network device is a sub-carrier granularity to the terminal. The device allocates RBs.
  • the number of RBs allocated by the network device for the uplink transmission of the second terminal device may be less than or equal to the first threshold, and the second terminal device sends the uplink data to the network device by using the second physical uplink shared channel.
  • the network device receives the uplink data sent by the second terminal device by using the second physical uplink shared channel.
  • the network device may Different scheduling modes are adopted for different versions of terminal devices, which is more in line with the actual needs of the terminal devices. For example, for the first terminal device, the maximum channel bandwidth of the terminal device is large, in order to improve the reliability of the transmission, H may be greater than the first threshold, and for the second terminal device, the maximum channel bandwidth is small, in order to improve the transmission.
  • the success rate, the number of RBs allocated by the network device for the uplink data transmission of the second terminal device may be less than or equal to the first threshold.
  • the network device can allocate RBs for the uplink data transmission of the first terminal device according to actual conditions, regardless of whether the H allocated by the network device is greater than the first threshold or less than or equal to the first threshold, the first terminal.
  • the device is capable of supporting. It can be seen that, in the communication system provided by the embodiment of the present application, the data transmission mode is flexible.
  • the first threshold may be equal to N, and of course the two may not be equal.
  • the network device To receive the uplink data sent by the terminal device, the network device first needs to schedule the uplink shared channel used by the terminal device.
  • the network device may determine a coverage enhancement level or a coverage enhancement mode of the first terminal device, where the coverage enhancement level of the first terminal device is the first coverage enhancement level or the first
  • the network device may schedule the first terminal device to use the first physical uplink shared channel for uplink data transmission, that is, H is greater than the first threshold, and the coverage enhancement level of the first terminal device is used.
  • the network device may schedule the first terminal device to use the second physical uplink shared channel for uplink data transmission, that is, H is less than or equal to the first. Threshold.
  • the coverage enhancement level of the first terminal device is the first coverage enhancement level or the coverage enhancement mode of the first terminal device is the first coverage enhancement mode, indicating that the coverage of the first terminal device is good, and the transmission quality is good, and the network device is
  • the first terminal device may be scheduled to use the first physical uplink shared channel for uplink data transmission to transmit more data, and if the coverage enhancement level of the first terminal device is the second coverage enhancement level or the coverage enhancement mode of the first terminal device
  • the second coverage enhancement mode indicates that the coverage of the first terminal device is poor and the transmission quality is poor.
  • the network device can schedule the first terminal device to use the second physical uplink shared channel for uplink data transmission, so as to improve the transmission success rate.
  • the network device when scheduling the terminal device, the network device generally uses the downlink control channel for scheduling. For example, the network device can still send the downlink control channel to the terminal device according to the coverage enhancement level or the coverage enhancement mode of the terminal device, which is described below.
  • the network device determines a coverage enhancement level or a coverage enhancement mode of the first terminal device, where the coverage enhancement level of the first terminal device is the first coverage enhancement level or the coverage enhancement mode of the first terminal device is the first In a coverage enhancement mode, the network device may send the first physical downlink control channel to the first terminal device, and the first terminal device receives the first physical downlink control channel sent by the network device, and when the coverage enhancement level of the first terminal device is When the second coverage enhancement level or the coverage enhancement mode of the first terminal device is the second coverage enhancement mode, the network device may send the second physical downlink control channel to the first terminal device, and the first terminal device receives the second information sent by the network device. Physical downlink control channel.
  • the network device may also send the first physical downlink shared channel to the first terminal device.
  • the first terminal device receives the first physical downlink shared channel sent by the network device.
  • the network device may send the second physical downlink shared channel to the first terminal device, The first terminal device receives the second physical downlink shared channel sent by the network device.
  • the coverage enhancement level of the first terminal device is the first coverage enhancement level or the coverage enhancement mode of the first terminal device is the first coverage enhancement mode, indicating that the coverage of the first terminal device is good, and the transmission quality is good
  • the network device is The first physical downlink control channel may be sent to the first terminal device to transmit more detailed control information, and if the first terminal The coverage enhancement level of the end device is the second coverage enhancement level or the coverage enhancement mode of the first terminal device is the second coverage enhancement mode, indicating that the coverage of the first terminal device is poor, and the transmission quality is poor, the network device may be the first The terminal device sends a second physical downlink control channel to improve the transmission success rate.
  • FIG. 6 is a schematic diagram of different scheduling modes for a part of a public information network device, and different types of terminal devices adopt different types of frequency resources for a random access channel, wherein the upper dotted box indicates that N RB scheduling is used, and the following dotted line The box indicates that more than N RB scheduling is used, and 6 RBs are taken as an example.
  • FIG. 7 is an illustration of the same scheduling manner for a public information network device, and different types of terminal devices adopting the same type of frequency resources for a random access channel.
  • the frequency resource type is different, which mainly refers to the difference in the number and/or location of RBs included in the frequency resource.
  • FIG. 8 shows a schematic structural diagram of a network device 800.
  • the network device 800 can implement the functionality of the network devices referred to above.
  • the network device 800 can include a transceiver 801.
  • the network device 800 may further include a processor 802.
  • the transceiver 801 can be used to perform S21 in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein.
  • the processor 802 can be configured to determine a coverage enhancement level or coverage enhancement mode of the first terminal device, and/or to complete other processes supporting the techniques described herein.
  • the transceiver 801 is configured to send, in the N resource blocks, a synchronization channel and a broadcast channel to the first terminal device and the second terminal device, where N is a positive integer greater than 0; the frequency occupied by the N resource blocks
  • the resource is less than or equal to the maximum channel bandwidth of the second terminal, and the maximum channel bandwidth of the second terminal is smaller than the maximum channel bandwidth of the first terminal.
  • FIG. 9 shows a schematic structural diagram of a terminal device 900.
  • the terminal device 900 can implement the functions of the first terminal device referred to above.
  • the terminal device 900 can include a transceiver 901.
  • the terminal device 900 may further include a processor 902.
  • the transceiver 901 can be used to perform S21 in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein.
  • the processor 902 can be used to determine a coverage enhancement level or coverage enhancement mode of the terminal device 900, and/or to perform other processes supporting the techniques described herein.
  • the transceiver 901 is configured to receive, in the N resource blocks, a synchronization channel and a broadcast channel sent by the network device, where N is a positive integer greater than 0; the frequency resource occupied by the N resource blocks is less than or equal to the The maximum channel bandwidth of the second terminal device served by the network device, and the maximum channel bandwidth of the second terminal device is smaller than the maximum channel bandwidth of the terminal device.
  • the network device 800 and the terminal device 900 are presented in the form of dividing each functional module into functions, or may be presented in an integrated manner to divide the functional modules.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality. .
  • ASIC application-specific integrated circuit
  • the network device 800 or the terminal device 900 can also be implemented by the structure of the communication device 1000 as shown in FIG.
  • the transmit beam optimization protocol packet can also be used.
  • the device 500 or the device 600 that receives the beam optimization protocol packet is implemented by the structure of the communication device 700 as shown in FIG.
  • the communication device 1000 can include a processing unit 1001 and a communication unit 1002, the processing unit 1001 is, for example, a processor, the communication unit 1002 is, for example, a transceiver, and the transceiver can include a radio frequency circuit.
  • the communication device 1000 can be a field-programmable gate array (FPGA), an ASIC, a system on chip (SoC), a central processor unit (CPU), and a network processor. , NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), can also be a programmable logic device (PLD) or other integrated chip.
  • FPGA field-programmable gate array
  • SoC system on chip
  • CPU central processor unit
  • MCU microcontroller
  • PLD programmable logic device
  • the communication device 1000 can be configured in the first terminal device or the network device of the embodiment of the present application, so that the network device or the first terminal device implements the communication method provided by the embodiment of the present application.
  • the communication device 1000 is disposed at A chip inside the network device or the first terminal device.
  • the communication device 1000 may further include a storage unit 1003.
  • the storage unit 1003 is connected to the processing unit 1001.
  • the storage unit 1003 is configured to store computer programs or instructions
  • the processing unit 1001 is configured to decode and execute the computer programs or instructions. It should be understood that these computer programs or instructions may include the functional programs of the network devices described above or the functional programs of the first terminal devices.
  • the function program of the network device is decoded and executed by the processing unit 1001
  • the network device can be caused to implement the function of the network device in the communication method of the embodiment of the present application.
  • the function program of the first terminal device is decoded and executed by the processing unit 1001
  • the first terminal device can be configured to implement the function of the first terminal device in the communication method of the embodiment of the present application.
  • the function program of the network device is stored in a storage unit outside the communication device 1000.
  • the storage unit includes, for example, a storage unit located outside the communication device 1000 in the network device, such as only Read-only memory (ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • ROM Read-only memory
  • RAM random access memory
  • the functional programs of these first terminal devices are stored in a memory external to the communication device 1000.
  • the function program of the first terminal device is decoded and executed by the processing unit 1001, part or all of the content of the function program of the first terminal device is temporarily stored in the storage unit 1003.
  • the function program of the network device is set in the storage unit 1003 stored in the communication device 1000.
  • FIG. 10 is taken as an example.
  • the storage unit 1003 is, for example, a register or a cache.
  • the function program of the network device is stored in the storage unit 1003 inside the communication device 1000
  • the communication device 1000 may be disposed in the network device of the embodiment of the present application.
  • the function programs of these first terminal devices are set in the storage unit 1003 stored inside the communication device 1000.
  • the communication device 1000 can be disposed in the first terminal device of the embodiment of the present application.
  • part of the content of the functional programs of the network devices is stored in a storage unit external to the communication device 1000, and other portions of the functional programs of the network devices are stored in the storage unit 1003 inside the communication device 1000.
  • part of the contents of the functional programs of the first terminal devices are stored in a storage unit external to the communication device 1000, and other portions of the functional programs of the first terminal devices are stored in the storage unit 1003 inside the communication device 1000.
  • the network device 800 provided by the embodiment shown in FIG. 8 can also be implemented in other forms.
  • the network device includes a transceiver unit.
  • the network device may further include a processing unit.
  • the transceiver unit can be used to perform S21 in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein.
  • Processing unit It may be used to determine a coverage enhancement level or coverage enhancement mode for the first terminal device, and/or to complete other processes supporting the techniques described herein.
  • the transceiver unit is configured to send a synchronization channel and a broadcast channel to the first terminal device and the second terminal device in the N resource blocks, where N is a positive integer greater than 0; and the frequency resource corresponding to the N resource blocks And being less than or equal to a maximum channel bandwidth of the second terminal, and a maximum channel bandwidth of the second terminal device is smaller than a maximum channel bandwidth of the first terminal device.
  • the terminal device 900 provided by the embodiment shown in FIG. 9 can also be implemented in other forms.
  • the terminal device includes a transceiver unit.
  • the network device may further include a processing unit.
  • the transceiver unit can be used to perform S21 in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein.
  • the processing unit can be used to determine the coverage enhancement level or coverage enhancement mode of the terminal device 900, and/or to perform other processes that support the techniques described herein.
  • the transceiver unit is configured to receive, in the N resource blocks, a synchronization channel and a broadcast channel sent by the network device, where N is a positive integer greater than 0; and the frequency resource occupied by the N resource blocks is less than or equal to the network
  • the maximum channel bandwidth of the second terminal device served by the device, and the maximum channel bandwidth of the second terminal device is smaller than the maximum channel bandwidth of the terminal device.
  • the network device 800, the terminal device 900, and the communication device 1000 provided by the embodiments of the present application can be used to perform the method provided by the embodiment shown in FIG. 2, so that the technical effects that can be obtained can be referred to the foregoing method embodiment, where No longer.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium. Quality (for example, solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及设备,用于提供一种新的通信方式,能够支持灵活的部署。其中的一种通信方法包括:网络设备在N个资源块中向第一终端设备和第二终端设备发送同步信道和广播信道;N是大于0的正整数;所述N个资源块对应的频率资源小于或等于所述第二终端设备的最大信道带宽,且所述第二终端设备的最大信道带宽小于所述第一终端设备的最大信道带宽。

Description

一种通信方法及设备 技术领域
本申请实施例涉及移动通信技术领域,尤其涉及一种通信方法及设备。
背景技术
现有的机器类型通信(machine-type communications,MTC)通信技术,要求系统带宽至少有6个资源块(resource block,RB)。例如,基站需通过6个RB向终端设备发送同步信道等。可见,支持MTC的终端设备能够支持在较多的RB上与基站进行通信,这样的终端设备够很好的支持语音、移动性、以及中高速率的传输。
但是这种通信技术需占用较多的RB,不利于灵活的部署。
发明内容
本申请实施例提供一种通信方法及设备,用于提供一种新的通信方式,能够支持灵活的部署。
第一方面,提供一种通信方法,该方法可通过网络设备执行,网络设备例如为基站。该方法包括:网络设备在N个资源块中向第一终端设备和第二终端设备发送同步信道和广播信道;N是大于0的正整数;所述N个资源块占用的频率资源小于或等于所述第二终端设备的最大信道带宽,且所述第二终端设备的最大信道带宽小于所述第一终端设备的最大信道带宽。
第二方面,提供一种通信方法,该方法可通过终端设备执行。该方法包括:终端设备在N个资源块中从网络设备接收同步信道和广播信道;其中,N是大于0的正整数;所述N个资源块占用的频率资源小于或等于所述网络设备服务的所述第二终端设备的最大信道带宽,且所述第二终端设备的最大信道带宽小于所述终端设备的最大信道带宽。
本申请实施例中,网络设备可在N个资源块中发送同步信道和广播信道,而第一终端设备和第二终端设备都可以在N个资源块中接收同步信道和广播信道,其中第一终端设备的最大信道带宽是大于第二终端设备的最大信道带宽。对于第一终端设备这种类型的终端设备,其可以在小于6个RB中进行小区接入,从而可以支持在较少的资源块中与网络设备传输信息,从而本申请实施例所提供的这种通信系统显然能够支持较为灵活的部署。
在一个可能的设计中,所述网络设备可以在K个资源块上向所述第一终端设备发送系统信息,其中K是大于0的正整数,且K大于或等于N;当K大于1时,所述网络设备在所述K个资源块中的每个资源块中承载的系统信息均为自译码的信息。相应的,所述终端设备在K个资源块上从所述网络设备接收系统信息,其中K是大于0的正整数,且K大于等于N;当K大于1时,所述网络设备在所述K个资源块中的每个资源块中承载的系统信息均为自译码的信息。
网络设备在发送系统信息时可以在大于或等于N的K个RB上发送,即,既可以使得K大于N,也可以使得K等于N,例如,信道质量较好时可以令K大于N,通过较多的RB传输,提高传输质量,而信道质量较差时可以令K等于N,尽量保证能够传输成功,且有助于节省资源,也有利于灵活部署。另外,如果K大于1,则网络设备在K个RB中 的每个RB中发送的系统信息均可以是自译码的信息,不必依赖于其他的系统信息进行译码,从而即使终端设备没有完全接收K个RB的系统信息,也能够对已接收的系统信息进行译码,增加了终端设备的译码成功率。
在一个可能的设计中,所述网络设备通过所述广播信道向所述第一终端设备发送指示信息,所述指示信息用于指示所述系统信息所占用的资源块的数量K。相应的,所述终端设备通过所述广播信道从所述网络设备接收指示信息,所述指示信息用于指示所述系统信息所占用的资源块的数量K。
即,网络设备可以将数量K告知第一终端设备,从而终端设备能够正确接收系统信息,提高接收成功率。
在一个可能的设计中,所述网络设备在第一频率资源上从所述第一终端设备接收随机接入信道,其中所述第一频率资源包含的资源块的数量大于N;所述网络设备向所述第一终端设备发送第一物理下行控制信道,所述第一物理下行控制信道用于调度第一物理下行共享信道;所述网络设备通过所述第一物理下行共享信道向所述第一终端设备发送随机接入响应或竞争解决消息。相应的,所述终端设备在第一频率资源上向所述网络设备发送随机接入信道,其中所述第一频率资源包含的资源块的数量大于N;所述终端设备从所述网络设备接收第一物理下行控制信道,所述第一物理下行控制信道用于调度第一物理下行共享信道;所述终端设备通过所述第一物理下行共享信道从所述网络设备接收随机接入响应或竞争解决消息。
其中,第一物理下行控制信道占用的RB的数量大于第二物理下行控制信道占用的RB的数量,第一物理下行共享信道占用的RB的数量大于第二物理下行共享信道占用的RB的数量,即,第一物理下行控制信道和第一物理下行共享信道均为带宽较大的信道。如果第一终端设备在第一频率资源上向网络设备发送随机接入信道,则表明第一终端设备的最大信道带宽可能是较大的,则网络设备可以选择为第一终端设备调度带宽较大的信道,即第一物理下行控制信道和第一物理下行共享信道,从而能够传输更为丰富的信息,提高信息传输的可靠性以及传输质量。
在一个可能的设计中,所述网络设备在第二频率资源上从所述第二终端设备接收随机接入信道,其中所述第二频率资源包含的资源块的数量小于或等于N;所述网络设备向所述第二终端设备发送第二物理下行控制信道,所述第二物理下行控制信道用于调度第二物理下行共享信道;所述网络设备通过所述第二物理下行共享信道向所述第二终端设备发送随机接入响应或竞争解决消息。
如果第二终端设备在第二频率资源上向网络设备发送随机接入信道,则表明第二终端设备的最大信道带宽可能是较小的,如果网络设备为第二终端设备调度带宽较大的信道,可能第二终端设备无法正常接收。因此网络设备可以选择为第二终端设备调度带宽较小的信道,即第二物理下行控制信道和第二物理下行共享信道,从而能够提高传输成功率,也有利于灵活部署。
在一个可能的设计中,所述网络设备在第三频率资源上从所述第一终端设备接收随机接入信道,其中所述第三频率资源包含的资源块的数量小于或等于N;所述网络设备向所述第一终端设备发送第二物理下行控制信道,所述第二物理下行控制信道用于调度第二物理下行共享信道;所述网络设备通过所述第二物理下行共享信道向所述第一终端设备发送随机接入响应或竞争解决消息。相应的,所述终端设备在第三频率资源上向所述网络设备 发送随机接入信道,其中所述第三频率资源包含的资源块的数量小于或等于N;所述终端设备从所述网络设备接收第二物理下行控制信道,所述第二物理下行控制信道用于调度第二物理下行共享信道;所述终端设备通过所述第二物理下行共享信道从所述网络设备接收随机接入响应或竞争解决消息。
在该设计中,即使第一终端设备的最大信道带宽大于第二终端设备的最大信道带宽,第一终端设备也可以在较少的频率资源上向网络设备发送随机接入信道,那么网络设备也可以为第一终端设备调度带宽较小的信道,即第二物理下行控制信道和第二物理下行共享信道,可见,网络设备既可以为第一终端设备调度带宽较大的信道,也能为第一终端设备调度带宽较小的信道,较为灵活,能够提高传输成功率。
在一个可能的设计中,所述网络设备通过随机接入响应指示所述第一终端设备的消息3通过第一物理上行共享信道传输或通过第二物理上行共享信道传输;或,所述网络设备通过物理下行控制信道指示所述第一终端设备的消息3通过第一物理上行共享信道传输或通过第二物理上行共享信道传输,其中,所述物理下行控制信道是调度随机接入响应的控制信道或是调度重传消息3的控制信道。相应的,所述终端设备接收所述网络设备发送的随机接入响应,所述随机接入响应指示所述终端设备的消息3通过第一物理上行共享信道传输或通过第二物理上行共享信道传输;或,所述终端设备从所述网络设备接收物理下行控制信道,所述物理下行共享信道指示所述终端设备的消息3通过第一物理上行共享信道传输或通过第二物理上行共享信道传输,其中,所述物理下行控制信道是调度随机接入响应的控制信道或是调度重传消息3的控制信道。
对于Msg3,可以通过不同的共享信道传输,可根据实际情况选择不同的共享信道,较为灵活。如果选择带宽较大的共享信道,有助于提高传输可靠性,如果选择带宽较小的共享信道,有助于提高传输成功率。网络设备可以指示Msg3究竟采用何种共享信道传输,本申请实施例中网络设备可以采用不同的方式进行指示,方式较为灵活。
在一个可能的设计中,所述网络设备通过随机接入响应指示向所述第一终端设备发送的竞争解决消息通过第一物理下行共享信道传输或通过第二物理下行共享信道传输;或,所述网络设备通过物理下行控制信道指示向所述第一终端设备发送的竞争解决消息通过第一物理下行共享信道传输或通过第二物理下行共享信道传输,其中,所述物理下行控制信道是调度随机接入响应的控制信道或是调度竞争解决消息的控制信道;或,所述网络设备通过随机接入响应向所述第一终端设备指示调度竞争解决消息的物理下行控制信道,是第一物理下行控制信道或第二物理下行控制信道。相应的,所述终端设备从所述网络设备接收随机接入响应,所述随机接入响应指示向所述终端设备发送的竞争解决消息通过第一物理下行共享信道传输或通过第二物理下行共享信道传输;或,所述终端设备从所述网络设备接收物理下行控制信道,所述物理下行控制信道指示向所述终端设备发送的竞争解决消息通过第一物理下行共享信道传输或通过第二物理下行共享信道传输,其中,所述物理下行控制信道是调度随机接入响应的控制信道或是调度竞争解决消息的控制信道;或,所述终端设备从所述网络设备接收随机接入响应,所述随机接入响应向所述终端设备指示调度竞争解决消息的物理下行控制信道,是第一物理下行控制信道或第二物理下行控制信道。
对于Msg4,可以通过不同的共享信道传输,可根据实际情况选择不同的共享信道,较为灵活。如果选择带宽较大的共享信道,有助于提高传输可靠性,如果选择带宽较小的 共享信道,有助于提高传输成功率。网络设备可以指示Msg4究竟采用何种共享信道传输,本申请实施例中网络设备可以采用不同的方式进行指示,方式较为灵活。
在一个可能的设计中,所述网络设备确定所述第一终端设备的覆盖增强等级或覆盖增强模式;当所述第一终端设备的覆盖增强等级是第一覆盖增强等级或所述第一终端设备的覆盖增强模式是第一覆盖增强模式时,所述网络设备向所述第一终端设备发送第一物理下行控制信道;当所述第一终端设备的覆盖增强等级是第二覆盖增强等级或所述第一终端设备的覆盖增强模式是第二覆盖增强模式时,所述网络设备向所述第一终端设备发送第二物理下行控制信道。相应的,当所述终端设备的覆盖增强等级是第一覆盖增强等级或所述终端设备的覆盖增强模式是第一覆盖增强模式时,所述终端设备从网络设备接收第一物理下行控制信道;当所述终端设备的覆盖增强等级是第二覆盖增强等级或所述终端设备的覆盖增强模式是第二覆盖增强模式时,所述终端设备从所述网络设备接收第二物理下行控制信道。
本申请实施例中网络设备可以根据第一终端设备的覆盖增强模式或覆盖增强等级来确定如何调度,例如,第一终端设备的覆盖增强等级越高,则表明信道质量越差,则网络设备可向终端设备发送占用的RB较少的信道,以尽量保证终端设备能够成功接收,且尽量节省资源;而覆盖增强等级越低,则表明信道质量越好,则网络设备可向终端设备发送占用的RB较多的信道,以提高传输可靠性,提高传输质量。
在一个可能的设计中,所述网络设备为所述第一终端设备的上行数据传输分配H个资源块;当H大于第一门限时,所述网络设备通过第一物理上行共享信道从所述第一终端设备接收上行数据;当H小于或等于所述第一门限时,所述网络设备通过第二物理上行共享信道从所述第一终端设备接收上行数据。相应的,所述终端设备确定所述网络设备为所述终端设备的上行数据传输分配H个资源块;当H大于第一门限时,所述终端设备通过第一物理上行共享信道向所述网络设备发送上行数据;当H小于或等于所述第一门限时,所述终端设备通过第二物理上行共享信道向所述网络设备发送发送上行数据。所述H为正整数。
如果网络设备为第一终端设备调度的RB的数量较多,则第一终端设备就可以通过占用的RB较多的第一物理上行共享信道向网络设备发送上行数据,从而能够发送较多的上行数据,有助于很好地支持语音、移动性、及中高速率传输。而如果网络设备为第一终端设备调度的RB的数量较少,则第一终端设备就可以通过占用的RB较少的第二物理上行共享信道向网络设备发送上行数据,提高上行数据的传输成功率,节省传输资源。
在一个可能的设计中,所述网络设备确定所述第一终端设备的覆盖增强等级或覆盖增强模式;当所述第一终端设备的覆盖增强等级是第一覆盖增强等级或所述第一终端设备的覆盖增强模式是第一覆盖增强模式时,所述网络设备调度所述第一终端设备采用第一物理上行共享信道进行上行数据传输;当所述第一终端设备的覆盖增强等级是第二覆盖增强等级或所述第一终端设备的覆盖增强模式是第二覆盖增强模式时,所述网络设备调度所述第一终端设备采用第二物理上行共享信道进行上行数据传输。相应的,当所述终端设备的覆盖增强等级是第一覆盖增强等级或所述终端设备的覆盖增强模式是第一覆盖增强模式时,所述终端设备采用第一物理上行共享信道进行上行数据传输;当所述终端设备的覆盖增强等级是第二覆盖增强等级或所述终端设备的覆盖增强模式是第二覆盖增强模式时,所述终端设备采用第二物理上行共享信道进行上行数据传输。
例如,第一终端设备的覆盖增强等级越高,则表明信道质量越差,则网络设备可调度 终端设备采用占用的RB较少的信道传输上行数据,以尽量保证终端设备能够成功传输,且尽量节省资源;而覆盖增强等级越低,则表明信道质量越好,则网络设备可调度终端设备采用占用的RB较多的信道传输上行数据,以提高上行数据的传输可靠性,提高传输质量。
在一个可能的设计中,所述网络设备确定所述第一终端设备的覆盖增强等级或覆盖增强模式;当所述第一终端设备的覆盖增强等级是第一覆盖增强等级或所述第一终端设备的覆盖增强模式是第一覆盖增强模式时,所述网络设备采用第一物理下行共享信道向所述第一终端设备进行下行数据传输;当所述第一终端设备的覆盖增强等级是第二覆盖增强等级或所述第一终端设备的覆盖增强模式是第二覆盖增强模式时,所述网络设备采用第二物理下行共享信道向所述第一终端设备进行下行数据传输。相应的,当所述终端设备的覆盖增强等级是第一覆盖增强等级或所述终端设备的覆盖增强模式是第一覆盖增强模式时,所述终端设备通过第一物理下行共享信道从网络设备接收下行数据;当所述终端设备的覆盖增强等级是第二覆盖增强等级或所述终端设备的覆盖增强模式是第二覆盖增强模式时,所述终端设备通过第二物理下行共享信道从网络设备接收下行数据。
例如,第一终端设备的覆盖增强等级越高,则表明信道质量越差,则网络设备可采用占用的RB较少的信道传输下行数据,以尽量保证终端设备能够成功接收,且尽量节省资源;而覆盖增强等级越低,则表明信道质量越好,则网络设备可采用占用的RB较多的信道传输下行数据,以提高下行数据的传输可靠性,提高传输质量。
第三方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括收发器。可选的,该网络设备还可以包括处理器。收发器和处理器可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第三方面,提供一种终端设备。该终端设备具有实现上述方法设计中的第一终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该终端设备的具体结构可包括收发器。可选的,该终端设备还可以包括处理器。收发器和处理器可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第五方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括收发单元。可选的,该网络设备还可以包括处理单元。收发单元和处理单元可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第六方面,提供一种终端设备。该终端设备具有实现上述方法设计中的第一终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该终端设备的具体结构可包括收发单元。可选的,该终端设备 还可以包括处理单元。收发单元和处理单元可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第七方面,提供一种通信装置,该通信装置可以是网络设备,也可以是网络设备内的芯片。该通信装置具有实现上述第一方面或第一方面的任意一种可能的设计中所提供的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当该通信装置为网络设备时,网络设备包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是收发器,所述收发器包括射频电路,可选地,所述网络设备还包括存储单元,该存储单元例如可以是存储器。当网络设备包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该网络设备执行上述第一方面或第一方面的任意一种可能的设计中的通信方法。
在另一个可能的设计中,当该通信装置为网络设备内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该网络设备内的芯片执行上述第一方面或第一方面的任意一项的通信方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述网络设备内的位于所述芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个通用CPU,微处理器,ASIC,或一个或多个用于控制上述第一方面或第一方面的任一种可能的设计中的通信方法的程序执行的集成电路。
第八方面,提供一种通信装置,该通信装置可以是终端设备,也可以是终端设备内的芯片,该终端设备可实现如前所述的第一终端设备的功能。该通信装置具有实现上述第二方面或第二方面的任意一种可能的设计中所提供的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当该通信装置为终端设备时,终端设备包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是收发器,所述收发器包括射频电路,可选地,所述终端设备还包括存储单元,该存储单元例如可以是存储器。当终端设备包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该终端设备执行上述第二方面或第二方面的任意一种可能的设计中的通信方法。
在另一个可能的设计中,当该通信装置为终端设备内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端设备内的芯片执行上述第一方面或第一方面的任意一项的通信方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端设备内的位于所述芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个通用CPU,微处理器,ASIC,或一个或多个用于控制上述第二方面或第二方面的任一种可能的设计中的通信方法的程序执行的集成电路。
第九方面,提供一种通信系统,该通信系统可以包括网络设备、第一终端设备和第二终端设备。其中,网络设备,用于在N个资源块中向第一终端设备和第二终端设备发送同步信道和广播信道;第一终端设备,用于在N个资源块中接收网络设备发送的同步信道和广播信道;第二终端设备,用于在N个资源块中接收网络设备发送的同步信道和广播信道;其中,N是大于0的正整数;所述N个资源块对应的频率资源小于或等于所述网络设备服务的所述第二终端设备的最大信道带宽,且所述第二终端设备的最大信道带宽小于所述终端设备的最大信道带宽。
第十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
本申请实施例中,对于第一终端设备这种类型的终端设备,其可以在小于6个RB中进行小区接入,从而可以支持在较少的资源块中与网络设备传输信息,从而本申请实施例所提供的这种通信系统显然能够支持较为灵活的部署。
附图说明
图1为本申请实施例的一种应用场景示意图;
图2为本申请实施例提供的一种通信方法的流程图;
图3为本申请实施例提供的多个RB的一种位置关系示意图;
图4为本申请实施例提供的多个RB的一种位置关系示意图;
图5为本申请实施例提供的多个RB的一种位置关系示意图;
图6为本申请实施例提供的网络设备和终端设备在通信过程中如何使用各个信道的一种示意图;
图7为本申请实施例提供的网络设备和终端设备在通信过程中如何使用各个信道的一种示意图;
图8为本申请实施例提供的网络设备的一种结构示意图;
图9为本申请实施例提供的终端设备的一种结构示意图;
图10为本申请实施例提供的通信装置的一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,或者称为终端,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括UE、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),本申请实施例并不限定。
3)窄带物联网(narrow band internet of things,NB-IoT),目前第三代合作伙伴计划(3rd generation partnership project,3GPP)标准在研究基于蜂窝网络,通过设计新的空口,充分利用窄带技术的特点,来承载IoT业务,这一类IoT被称为NB-IoT。
NB-IoT系统构建物联网络,占用180KHz或200KHz的带宽,可直接部署于全球移动通信系统(global system for mobile communication,GSM)系统、通用移动通信系统(universal mobile telecommunications system,UMTS)或长期演进(long term evolution,LTE)系统中,也可以独立部署,以降低部署成本。
对于NB-IoT系统中的UE来说,只能支持在一个RB上与基站进行通信,这样使得NB-IoT系统易于灵活部署。与传统的蜂窝网络相比,NB-IoT系统的业务和终端设备具有以下特点:
(1)业务低速率、长周期:与传统的蜂窝网络相比,NB-IoT业务产生的数据包更小,同时对于时延通常不是很敏感。
(2)海量连接要求:对大规模部署的智能水/电表,智能家居,汽车,可穿戴设备等 物联网终端设备,一个NB-IoT的基站下可能覆盖大量这类型的终端设备,例如数量可能超过数万个。
(3)低成本要求:相较于现有的蜂窝网络终端设备来说,NB-IoT系统要求终端设备的成本更低,以实现终端设备的海量部署。而低成本的需求要求终端设备的实现复杂性也要很低。
(4)低功耗要求:NB-IoT系统要求终端设备的功耗更低,从而节约终端设备的电池电量,保证终端设备超长的待机时间,进而节约更换电池的人力成本。
为了应对上述低成本、深覆盖等需求,NB-IoT系统有很多特有的设计。例如,NB-IoT系统没有PUCCH,以简化终端设备、降低成本。此外,为了实现深覆盖,NB-IoT系统的控制信道(例如窄带物理下行控制信道(narrow physical downlink control channel,NPDCCH))和数据信道(例如窄带物理下行共享信道(narrow physical cownlink shared channel,NPDSCH)、窄带物理上行共享信道(narrow physical uplink shared channel,NPUSCH))采用重复发送的方式,对于同样的内容,通过成百上千次的重复发送,提高覆盖较差的终端设备成功接收的可能性。
4)MTC通信技术,能够支持覆盖增强。MTC要求系统带宽至少有6个RB。在系统消息传输的子帧,系统消息占满6个RB。类似地,在寻呼消息传输的子帧,寻呼消息占满6个RB。在随机接入信道传输的子帧,随机接入信道占满6个RB。
在覆盖增强模式A下,支持MTC的低复杂度的终端设备或者覆盖增强的终端设备可以在系统带宽内的最多25个RB或24个RB上进行物理上行共享信道(physical uplink shared channel,PUSCH)的发送或物理下行共享信道(physical downlink shared channel,PDSCH)的接收。其中,系统带宽可以大于25个RB,例如系统带宽为50个RB、75个RB、100个RB、200个RB、400个RB、以及800个RB中的任一种。或者系统带宽也可以小于或等于25个RB,例如系统带宽为15个RB。基站为低复杂度的终端设备或者覆盖增强的终端设备分配的资源最多不超过25个RB或24个RB。因为支持MTC的终端设备能支持在较多的RB上与基站进行通信,这样支持MTC的终端设备就能够很好地支持语音、移动性、及中高速率传输。
5)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本申请实施例提供的技术方案可以应用于LTE系统或长期演进升级版(LTE Advanced,LTE-A)系统。当然本申请实施例提供的技术方案也可以应用于其它的通信系统,例如NR系统。只要该通信系统中存在实体需要指示与另一个实体通信的资源分配,另一个实体需要通过某种方式解读资源分配即可。
下面介绍本申请实施例的一种应用场景,请参考图1,为该应用场景的示意图。图1中包括网络设备和终端设备,其中网络设备可调度一个RB或多个RB与终端设备1~终端设备6中的一个或多个终端设备传输信息。图1中的网络设备例如为接入网(access  network,AN)设备,例如基站。从图1中可以看到,基站和终端设备1~终端设备6位于一个通信系统中。在该通信系统中,基站发送调度信息给终端设备1~终端设备6中的一个或多个终端设备。此外,终端设备4~终端设备6也可以组成一个通信系统,在该通信系统中,终端设备5可以发送调度信息给终端设备4和终端设备6中的一个或多个终端设备。本申请中的RB可以是LTE系统中的资源块,也可以是NR系统中的资源块,还可以是新定义的资源单元。
下面结合附图介绍本申请实施例提供的技术方案。
请参见图2,本申请实施例提供一种通信方法,在下文的介绍过程中,以该方法应用在图1所示的应用场景为例。需要注意的是,本申请实施例实质上提供了一种新的通信系统,在该通信系统中,既支持终端设备和网络设备之间通过1个RB传输信息,也支持终端设备和网络设备之间通过多个RB传输信息,即,该通信系统充分利用了NB-IoT系统和机器类型通信(machine-type communications,MTC)MTC的优点,既能够支持灵活的独立部署,也能够支持大的覆盖和高效的容量,支持语音,支持各种速率的业务,支持移动性。本申请实施例所提供的通信方法就是在该通信系统中实现。该方法的流程介绍如下。
S21、网络设备在N个资源块中向第一终端设备和第二终端设备发送同步信道和广播信道,则该网络设备服务的第一终端设备和第二终端设备均可以在N个资源块中获取同步信道和广播信道,N是大于0的正整数。
其中,对于广播类型的信道,可以理解为网络设备是向该网络设备服务的所有终端设备发送的。
N个资源块占用的频率资源小于或等于第二终端设备的最大信道带宽(maximum channel bandwidth),且第二终端设备的最大信道带宽小于第一终端设备的最大信道带宽。其中,第一终端设备的最大信道带宽例如为6个RB对应的带宽,第二终端设备的最大信道带宽例如为1个RB对应的信道带宽,第二终端设备例如为支持NB-IoT系统的终端设备,第一终端设备例如为支持eMTC系统或MTC系统的终端设备,当然本申请实施例不限于此。可选的,N除了是正整数之外,也可以是小数,即N只要大于0即可,那么,例如N小于或等于1,即,无论对于何种类型的终端设备,网络设备都可以通过较少的RB来发送同步信道和广播信道,从而使得本申请实施例所提供的通信系统能够支持灵活部署。这里所述的频率资源小于或等于最大信道带宽,可以这样理解:N个RB所占用的总的频率资源,可能比第二终端设备的最大信道带宽要窄,或者也可能等于第二终端设备的最大信道带宽。其中,终端设备的最大信道带宽,可以简单理解为终端设备所支持的最大带宽。另外,如果N为小数,可以理解为网络设备是以子载波为粒度进行调度,例如N=0.5,则表明网络设备调度了一个RB中的一半的子载波。
网络设备在传输同步信道时,可以在N个RB上传输,可以理解为其中的每个RB都包括同步信道,例如,同步信道为NB-IoT系统的窄带主同步信号(narrow primary synchronization signal,NPSS)和窄带辅同步信号(narrow secondary synchronization signal,NSSS)。
网络设备在传输广播信道时,也可以在N个RB上传输,可以理解为其中的每个RB都包括广播信道,例如,广播信道采用NB-IoT系统的窄带物理层广播信道(narrow physical broadcast channel,NPBCH)。
本申请实施例对于同步信道和广播信道的传输顺序不做限制,或者,网络设备也可以 在同一时间同时传输同步信道和广播信道。
本申请实施例中,网络设备可在N个资源块中发送同步信道和广播信道,而第一终端设备和第二终端设备都可以在N个资源块中接收同步信道和广播信道,其中第一终端设备的最大信道带宽是大于第二终端设备的最大信道带宽。对于第一终端设备这种类型的终端设备,其可以在小于6个RB中进行小区接入,从而可以支持在较少的资源块中与网络设备传输信息,从而本申请实施例所提供的这种通信系统显然能够支持较为灵活的部署。
网络设备与终端设备之间传输的信息可以有多种,大致可分为公共信息与专有信息,公共信息例如包括同步信道上传输的信息(可理解为同步信道)、广播信道上传输的信息(可理解为广播信道)、系统信息、寻呼信息、以及随机接入过程中的一些信息等。其中,系统信息可包括系统资源块(system information block,SIB)1及其他SIB,例如SIB2、SIB3等,随机接入过程中的信息例如包括物理随机接入信道(physical random access channel,PRACH)上传输的信息(可理解为随机接入信道)、随机接入过程中的随机接入响应(random access response,RAR)、竞争解决消息等,其中,随机接入响应为随机接入过程中的消息(Msg)2,竞争解决消息为随机接入过程中的Msg4,随机接入过程中终端设备发送的对随机接入响应的响应消息为Msg3。其中,随机接入信道以及Msg3是终端设备发送给网络设备的消息,Msg2及Msg4是网络设备发送给终端设备的消息。专有信息例如包括单播的数据等。如前已经介绍了传输同步信道及广播信道,下面分别介绍对于其他信息如何传输。
一、公共信息。
1、SIB1。
网络设备在传输SIB1时,可以在K个RB上传输,K为大于0的正整数,且K大于或等于N。如果K小于或等于1,则网络设备可以选择传输NB-IoT系统中的窄带系统资源块(narrow system information block,NSIB)1。或者,为了提高SIB1的传输性能,K可以大于1。
可选地,如果K大于1,则其中的每个RB上承载的SIB1都可以是自译码的信息,即,终端设备对其中的每个RB所承载的信息进行译码时均可不依赖于其他RB上承载的信息,可以理解为,其中的每个RB上都传输的是独立的信息。其中的每个RB所承载的信息可以相同也可以不同,如果相同,则相当于SIB1在多个RB上重复传输。其中,广播信道可以指示SIB1的调度信息,例如网络设备通过广播信道发送主信息块(master information block,MIB),通过MIB指示SIB1的调度信息,从而终端设备可以根据MIB的指示接收SIB1。
对于终端设备来说,如果是第二终端设备,则这样的终端设备的最大信道带宽较小,则如果K小于或等于1,此类终端设备就可以正常接收,如果K大于1,因其中的每个RB上传输的信息都可以是自解码的,则此类终端设备可以只接收其中的一个RB上传输的信息即可。而如果是新版本的终端设备,例如为第一终端设备,这样的终端设备的最大信道带宽较大,此类终端设备都能够通过K个RB接收网络设备发送的SIB1。
2、其他SIB。
网络设备在传输其他SIB时,可以在K个RB上传输,K为大于0的正整数,且K大于或等于N。如果K小于或等于1,则网络设备可以选择传输NB-IoT系统中的NSIB。或者,为了提高SIB1的传输性能,K可以大于1。
可选地,如果K大于1,则其中的每个RB上承载的其他SIB都可以是自译码的信息,即,终端设备对其中的每个RB所承载的信息进行译码时均可不依赖于其他RB上承载的信息,可以理解为,其中的每个RB上都传输的是独立的信息。其中的每个RB所承载的信息可以相同也可以不同,如果相同,则相当于其他SIB在多个RB上重复传输。其中,SIB1可以指示其他SIB的调度信息,从而终端设备可以根据SIB1的指示接收其他SIB。
对于终端设备来说,如果是第二终端设备,则这样的终端设备的最大信道带宽较小,则如果K小于或等于1,此类终端设备就可以正常接收,如果K大于1,因其中的每个RB上传输的信息都可以是自解码的,则此类终端设备可以只接收其中的一个RB上传输的信息即可。而如果是新版本的终端设备,例如为第一终端设备,这样的终端设备的最大信道带宽较大,则无论K的取值如何,此类终端设备都能够通过K个RB接收网络设备发送的其他SIB。
对于同步信道或广播信道等公共信息,所占据的RB的位置可以通过协议预先规定,对于SIB1或其他SIB等公共信息,所占据的RB的数量和/或位置等信息可以通过广播信道指示,例如通过MIB指示。例如网络设备可通过广播信道向第一终端设备发送指示信息,该指示信息用于指示系统信息传输所占用的RB的数量K,或者或者通过协议预先规定。其中,广播信道或协议还可以指示公共信息所占据的每个RB的位置,从而终端设备可以直接确定,较为简单,或者,如果公共信息所占据的是连续的RB,则广播信道或协议也可以指示公共信息所占据的起始的RB的位置以及所占据的RB的数量,或者指示公共信息所占据的起始的RB的位置以及除了该起始的RB之外所占据的其他RB的数量。
其中,除了起始的RB之外,公共信息占据的其他的RB可以为从该起始的RB开始按照频率递减的方向上的RB,可参考图3,起始的RB为图3中的RB n,其他的RB为RB n-1、RB n-2、RB n-3、以及RB n-4,其中,RB n、RB n-1、RB n-2、RB n-3、以及RB n-4为连续的RB,或为不连续的RB。
或者,除了起始的RB之外,公共信息占据的其他的RB可以为从该起始的RB开始按照频率递增的方向的RB,可参考图4,起始的RB为图3中的RB n,其他的RB为RB n+1、RB n+2、RB n+3、以及RB n+4,其中,RB n、RB n+1、RB n+2、RB n+3、以及RB n+4为连续的RB,或为不连续的RB。
或者,除了起始的RB之外,公共信息占据的其他的RB可以为以起始的RB为中心,在频域上对称的RB,可参考图5,起始的RB为图3中的RB n,其他的RB为RB n+1、RB n+2、RB n-1、以及RB n-2,其中,RB n、RB n+1和RB n+2为连续的RB,或为不连续的RB,RB n、RB n-1、以及RB n-2为连续的RB,或为不连续的RB。
3、随机接入过程中的Msg2/4。
作为一种示例,对于Msg2/4,网络设备可根据终端设备发起随机接入所使用的频率资源来确定如何发送。例如,第一终端设备在第一频率资源上向网络设备发送随机接入信道,网络设备在第一频率资源上接收第一终端设备发送的随机接入信道,其中,第一频率资源包含的RB的数量大于N,则网络设备可以向第一终端设备发送第一物理下行控制信道,则第一终端设备接收网络设备发送的第一物理下行控制信道,该第一物理下行控制信道用于调度第一物理下行共享信道,从而网络设备通过第一物理下行共享信道向第一终端设备发送Msg2或Msg4,第一终端设备通过第一物理下行共享信道接收网络设备发送的Msg2或Msg4。再例如,第二终端设备在第二频率资源上向网络设备发送随机接入信道,网络 设备在第二频率资源上接收第二终端设备发送的随机接入信道,其中,第二频率资源包含的RB的数量小于或等于N,则网络设备可以向第二终端设备发送第二物理下行控制信道,则第二终端设备接收网络设备发送的第二物理下行控制信道,该第二物理下行控制信道用于调度第二物理下行共享信道,从而网络设备通过第二物理下行共享信道向第二终端设备发送Msg2或Msg4,第二终端设备通过第二物理下行共享信道接收网络设备发送的Msg2或Msg4。从而保证所调度的信道与网络设备调度的RB的数量相适应。
本申请实施例中,第一物理下行控制信道例如为机器物理下行控制信道(machine physical downlink control channel,MPDCCH),第一物理下行共享信道例如为PDSCH,第二物理下行控制信道例如为NPDCCH,第二物理下行共享信道例如为NPDSCH,当然本申请实施例不做限制。
作为另一种示例,对于Msg2和/或Msg4,网络设备都采用统一的调度方式。那么,无论终端设备发送随机接入信道所使用的是何种频率资源,网络设备都采用第二物理下行控制信道以及第二物理下行共享信道来进行调度。例如,第一终端设备通过第三频率资源向网络设备发送随机接入信道,无论第三频率资源包含的RB的数量是小于或等于N还是大于N,则网络设备向第一终端设备发送第二物理下行控制信道,则第一终端设备接收网络设备发送的第二物理下行控制信道,该第二物理下行控制信道用于调度第二物理下行共享信道,从而网络设备通过第二物理下行共享信道向第一终端设备发送Msg2或Msg4,第一终端设备通过第二物理下行共享信道接收网络设备发送的Msg2或Msg4。通过这种方式,从而保证各种终端设备能够正常接收,也无需使用多种传输方式,使得系统实现较为简单。
作为另一种示例,即使第一终端设备的最大信道带宽大于第二终端设备的最大信道带宽,第一终端设备也可以在较少的频率资源上向网络设备发送随机接入信道,例如,第一终端设备通过第三频率资源向网络设备发送随机接入信道,第三频率资源包含的RB的数量小于或等于N,那么网络设备也可以为第一终端设备调度带宽较小的信道,例如网络设备向第一终端设备发送第二物理下行控制信道,则第一终端设备接收网络设备发送的第二物理下行控制信道,该第二物理下行控制信道用于调度第二物理下行共享信道,从而网络设备通过第二物理下行共享信道向第一终端设备发送Msg2或Msg4,第一终端设备通过第二物理下行共享信道接收网络设备发送的Msg2或Msg4。可见,网络设备既可以为第一终端设备调度带宽较大的信道,也能为第一终端设备调度带宽较小的信道,较为灵活,能够提高传输成功率。
在本申请实施例中,网络设备还可以指示向终端设备发送的Msg4是采用第一物理下行共享信道传输还是采用第二物理下行共享信道传输,网络设备可通过不同的方式指示,较为灵活。
例如,网络设备可通过Msg2指示向第一终端设备发送的Msg4是采用第一物理下行共享信道传输还是采用第二物理下行共享信道传输,则第一终端设备接收Msg2后,就可以确定网络设备向第一终端设备发送的Msg4是采用第一物理下行共享信道传输还是采用第二物理下行共享信道传输。
或者,网络设备可通过物理下行控制信道指示向第一终端设备发送的Msg4是采用第一物理下行共享信道传输还是采用第二物理下行共享信道传输,其中物理下行控制信道是调度Msg2的控制信道,或是调度Msg4的控制信道。
另外,网络设备还可通过物理下行控制信道来调度Msg4,则网络设备也可以指示该 物理下行控制信道是第一物理下行控制信道还是第二物理下行控制信道。例如网络设备可通过Msg2来指示用于调度Msg4的物理下行控制信道是第一物理下行控制信道还是第二物理下行控制信道,则第一终端设备接收Msg2后,就可以确定用于调度Msg4的物理下行控制信道是第一物理下行控制信道还是第二物理下行控制信道。
4、随机接入过程中的Msg3。
对于Msg3,网络设备可以指示其究竟采用何种共享信道传输,那么网络设备可以采用不同的方式进行指示,方式较为灵活。
例如,网络设备可通过Msg2来指示第一终端设备的Msg3是采用第一物理上行共享信道传输还是采用第二物理上行共享信道传输,则第一终端设备通过接收网络设备发送的Msg2就可以确定第一终端设备是采用第一物理上行共享信道还是采用第二物理上行共享信道向网络设备发送Msg3。
或者,网络设备也可通过物理下行控制信道指示第一终端设备的Msg2传输是采用第一物理上行共享信道传输还是采用第二物理上行共享信道传输,则第一终端设备通过接收网络设备发送的物理下行控制信道就可以确定第一终端设备是采用第一物理上行共享信道还是采用第二物理上行共享信道向网络设备发送Msg3。其中,这里的物理下行控制信道是调度Msg2的控制信道,或是调度重传Msg2的控制信道。
在本申请实施例中,第一物理上行共享信道例如为PUSCH,第二物理上行共享信道例如为NPUSCH,当然本申请实施例不做限制。
需要说明的是,网络设备可以确定第一终端设备的覆盖增强等级或覆盖增强模式。
当第一终端设备的覆盖增强等级是第一覆盖增强等级或第一终端设备的覆盖增强模式是第一覆盖增强模式时:
I.网络设备采用第一物理下行控制信道调度Msg2(或Msg3,或Msg4),则第一终端设备通过第一物理下行控制信道接收调度;
II.或网络设备采用第一物理下行共享信道传输Msg2(或Msg4),则第一终端设备通过第一物理下行共享信道接收Msg2(或Msg4);
III.或,当第一终端设备的覆盖增强等级是第一覆盖增强等级或第一终端设备的覆盖增强模式是第一覆盖增强模式时,第一终端设备采用第一物理上行共享信道向网络设备发送Msg3,网络设备采用第一物理上行共享信道接收Msg3;
IV.或,第一终端设备采用第一随机接入信道向网络设备发送随机接入前导,网络设备采用第一随机接入信道接收随机接入前导。
当第一终端设备的覆盖增强等级是第二覆盖增强等级或第二终端设备的覆盖增强模式是第二覆盖增强模式时:
I.网络设备采用第二物理下行控制信道调度Msg2(或Msg3,或Msg4),则第一终端设备通过第二物理下行控制信道接收调度;
II.或网络设备采用第二物理下行共享信道传输Msg2(或Msg4),则第一终端设备通过第二物理下行共享信道接收Msg2(或Msg4);
III.或当第一终端设备的覆盖增强等级是第二覆盖增强等级或第二终端设备的覆盖增强模式是第二覆盖增强模式时,第一终端设备采用第二物理上行共享信道向网络设备发送Msg3,网络设备采用第二物理上行共享信道接收Msg3;
IV.或,第一终端设备采用第二随机接入信道向网络设备发送随机接入前导,网络设 备采用第二随机接入信道接收随机接入前导。
在本申请实施例中,第一覆盖增强等级可以理解为覆盖增强等级集合,其中可包括一个或多个具体的覆盖增强等级,第二覆盖增强等级可以理解为覆盖增强等级集合,其中可包括一个或多个具体的覆盖增强等级,例如,第一覆盖增强等级包括覆盖增强等级0和覆盖增强等级1,第二覆盖增强等级包括覆盖增强等级2和覆盖增强等级3。同理,第一覆盖增强模式可以理解为覆盖增强模式集合,其中可包括一个或多个具体的覆盖增强模式,第二覆盖增强模式可以理解为覆盖增强模式集合,其中可包括一个或多个具体的覆盖增强模式。例如,第一覆盖增强模式包括覆盖增强模式A,第二覆盖增强模式包括覆盖增强模式B。第一覆盖增强等级、第一覆盖增强模式、第二覆盖增强等级、第二覆盖增强模式等的范围均可通过协议预先规定。
再例如,第一随机接入信道是PRACH,第二随机接入信道是窄带物理随机接入信道(narrow physical random access channel,NPRACH)。
即,本申请实施例中网络设备可以根据第一终端设备的覆盖增强模式或覆盖增强等级来确定如何调度,例如,第一终端设备的覆盖增强等级越高,则表明信道质量越差,则网络设备可采用占用的RB较少的信道来调度,以尽量保证随机接入能够成功,且尽量节省资源;而覆盖增强等级越低,则表明信道质量越好,则网络设备可采用占用的RB较多的信道来调度,以提高传输可靠性,提高传输质量。
5、寻呼信息。
作为一种示例,对于寻呼信息,网络设备可根据所调度的RB的数量来确定如何发送寻呼信息。例如在网络设备所调度的RB的数量小于或等于N的情况下,则网络设备可通过第二物理下行控制信道调度第二物理下行共享信道,则终端设备接收第二物理下行控制信道,网络设备再通过第二物理下行共享信道承载寻呼信息,则终端设备通过第二物理下行共享信道接收网络设备发送的寻呼信息。或者,在网络设备调度的RB的数量大于N的情况下,网络设备通过第一物理下行控制信道调度第一物理下行共享信道,则终端设备接收第一物理下行控制信道,网络设备通过第一物理下行共享信道发送寻呼信息,则终端设备通过第一物理下行共享信道接收网络设备发送的寻呼信息。从而保证所调度的信道与网络设备调度的RB的数量相适应。
作为另一种示例,对于寻呼信息,网络设备也可能根据用于承载寻呼信息的数据信道来确定如何发送寻呼信息。例如,如果用于承载寻呼信息的数据信道为第二物理下行共享信道,则网络设备确定调度小于或等于N个RB来发送寻呼信息,如果用于承载寻呼信息的数据信道为第一物理下行共享信道,则网络设备确定调度大于N个RB来发送寻呼信息。
作为另一种示例,对于寻呼信息,网络设备都采用统一的调度方式。那么,无论网络设备调度的RB的数量是多少,也无论用于承载寻呼信息的数据信道是何种数据信道,网络设备都通过第二物理下行控制信道调度第二物理下行共享信道,则终端设备接收第二物理下行控制信道,网络设备再通过第二物理下行共享信道承载寻呼信息,则网络设备通过第二物理下行共享信道接收网络设备发送的循环信息。从而保证各种终端设备能够正常接收寻呼信息,也无需使用多种传输方式,使得系统实现较为简单。
对于终端设备来说,如果是第二终端设备,则这样的终端设备的最大信道带宽较小,则如果网络设备通过第二物理下行共享信道承载寻呼信息,此类终端设备就可以正常接收,如果网络设备通过第一物理下行共享信道承载寻呼信息,则此类终端设备可能无法接 收寻呼信息。而如果是新版本的终端设备,例如为第一终端设备,这样的终端设备的最大信道带宽较大,则无论网络设备通过第二物理下行共享信道还是通过第一物理下行共享信道承载寻呼信息,此类终端设备都应该能够接收网络设备发送的寻呼信息。
如上的公共信息都是网络设备发送给终端设备的公共信息,下面再介绍另一种由终端设备发送给网络设备的公共信息。
6、PRACH上传输的信息,或者理解为PRACH。
作为一种示例,对于PRACH,不同类型的终端设备会选择不同的传输方式,则不同类型的终端设备都可以选择符合自己需求的传输方式。那么,若终端设备是第二终端设备,例如为Rel-13或Rel-14的NB-IoT的终端设备,那么这样的终端设备的最大信道带宽较小,则此类终端设备可在第二频率资源上发送随机接入信道,网络设备也就通过第二频率资源接收此类终端设备发送的随机接入信道。若终端设备是新版本的终端设备,例如为第一终端设备,则此类终端设备的最大信道带宽较大,可在第一频率资源上发送随机接入信道,则网络设备也就通过第一频率资源接收此类终端设备发送的随机接入信道。或者,如果是第一终端设备,则第一终端设备可以根据覆盖增强等级或者参考信号接收功率(reference signal receiving power,RSRP)测量来确定是采用第一频率资源进行随机接入还是采用第二频率资源进行随机接入。例如,覆盖增强等级越高,或者RSRP的值越小,则表明信道质量越差,则第一终端设备可以选择第二频率资源进行随机接入,以尽量保证随机接入能够成功,而覆盖增强等级越低,或者RSRP的值越大,则表明信道质量越好,则第一终端设备可以选择第一频率资源进行随机接入,以提高可靠性。对于网络设备来说,可以在第一频率资源和第二频率资源均进行检测,以尽量避免遗漏终端设备发送的随机接入信道。
作为另一种示例,对于随机接入信道,不同类型的终端设备可以选择相同的传输方式,则终端设备无需做过多的选择,实现较为简单。例如,无论是第一终端设备还是第二终端设备,都可以通过第三频率资源发送随机接入信道,第三频率资源包含的RB的数量小于或等于N,则网络设备在第三频率资源上接收终端设备发送的随机接入信道。这样可以保证各种类型的终端设备都能够支持。且对于网络设备来说,也只需要在第三频率资源进行检测即可,无需在多种频率资源都检测,减少了网络设备的工作量。
如上介绍了网络设备或终端设备传输公共信息的方式,下面介绍网络设备传输专有信息的方式。
二、专有信息。
对于第一终端设备来说,网络设备为第一终端设备的上行数据传输分配H个RB,H为正整数。当H大于第一门限时,第一终端设备通过第一物理上行共享信道向网络设备发送上行数据,则网络设备通过第一物理上行共享信道接收第一终端设备发送的上行数据,而当H小于或于第一门限时,第一终端设备通过第二物理上行共享信道向网络设备发送上行数据,则网络设备通过第二物理上行共享信道接收第一终端设备发送的上行数据。其中,例如第一门限小于或等于1,第一门限不限制为整数,也可以是小数,例如为0.5等,如果第一门限为小数,则可以理解为网络设备是以子载波为粒度向终端设备分配RB。
对于第二终端设备来说,网络设备为第二终端设备的上行传输分配的RB的数量可以小于或等于第一门限,则第二终端设备通过第二物理上行共享信道向网络设备发送上行数据,网络设备通过第二物理上行共享信道接收第二终端设备发送的上行数据。
在本申请实施例中,因为专有信息是分别传输给不同的终端设备的,因此网络设备可 以对不同版本的终端设备采用不同的调度方式,从而更为符合终端设备的实际需求。例如对于第一终端设备,这类终端设备的最大信道带宽较大,则为了提高传输的可靠性,H可以大于第一门限,而对于第二终端设备,最大信道带宽较小,为了提高传输的成功率,网络设备为第二终端设备的上行数据传输分配的RB的数量可以小于或等于第一门限。当然对于第一终端设备来说,网络设备可以根据实际情况来为第一终端设备的上行数据传输分配RB,无论网络设备分配的H是大于第一门限还是小于或等于第一门限,第一终端设备都能够支持。可见,本申请实施例所提供的通信系统,数据传输方式较为灵活。其中,第一门限可以等于N,当然二者也可不相等。
网络设备要接收终端设备发送的上行数据,则首先要对终端设备采用的上行共享信道进行调度。以第一终端设备为例,在本申请实施例中,网络设备可以确定第一终端设备的覆盖增强等级或覆盖增强模式,当第一终端设备的覆盖增强等级是第一覆盖增强等级或第一终端设备的覆盖增强模式是第一覆盖增强模式时,网络设备可调度第一终端设备采用第一物理上行共享信道进行上行数据传输,即H大于第一门限,当第一终端设备的覆盖增强等级是第二覆盖增强等级或第一终端设备的覆盖增强模式是第二覆盖增强模式时,网络设备可调度第一终端设备采用第二物理上行共享信道进行上行数据传输,即H小于或等于第一门限。
其中,第一终端设备的覆盖增强等级是第一覆盖增强等级或第一终端设备的覆盖增强模式是第一覆盖增强模式,表明第一终端设备的覆盖较好,传输质量较好,则网络设备可以调度第一终端设备采用第一物理上行共享信道进行上行数据传输,以传输更多的数据,而如果第一终端设备的覆盖增强等级是第二覆盖增强等级或第一终端设备的覆盖增强模式是第二覆盖增强模式,表明第一终端设备的覆盖较差,传输质量较差,则网络设备可以调度第一终端设备采用第二物理上行共享信道进行上行数据传输,以提高传输成功率。
另外,网络设备在对终端设备进行调度时,一般采用下行控制信道进行调度,例如网络设备依然可以根据终端设备的覆盖增强等级或覆盖增强模式来向终端设备发送下行控制信道,下面进行介绍。
以第一终端设备为例,网络设备确定第一终端设备的覆盖增强等级或覆盖增强模式,当第一终端设备的覆盖增强等级是第一覆盖增强等级或第一终端设备的覆盖增强模式是第一覆盖增强模式时,网络设备可向第一终端设备发送第一物理下行控制信道,则第一终端设备接收网络设备发送的第一物理下行控制信道,而当第一终端设备的覆盖增强等级是第二覆盖增强等级或第一终端设备的覆盖增强模式是第二覆盖增强模式时,网络设备可向第一终端设备发送第二物理下行控制信道,则第一终端设备接收网络设备发送的第二物理下行控制信道。另外,当第一终端设备的覆盖增强等级是第一覆盖增强等级或第一终端设备的覆盖增强模式是第一覆盖增强模式时,网络设备也可向第一终端设备发送第一物理下行共享信道,则第一终端设备接收网络设备发送的第一物理下行共享信道。而当第一终端设备的覆盖增强等级是第二覆盖增强等级或第一终端设备的覆盖增强模式是第二覆盖增强模式时,网络设备可向第一终端设备发送第二物理下行共享信道,则第一终端设备接收网络设备发送的第二物理下行共享信道。
其中,第一终端设备的覆盖增强等级是第一覆盖增强等级或第一终端设备的覆盖增强模式是第一覆盖增强模式,表明第一终端设备的覆盖较好,传输质量较好,则网络设备可向第一终端设备发送第一物理下行控制信道,以传输较为详细的控制信息,而如果第一终 端设备的覆盖增强等级是第二覆盖增强等级或第一终端设备的覆盖增强模式是第二覆盖增强模式,表明第一终端设备的覆盖较差,传输质量较差,则网络设备可向第一终端设备发送第二物理下行控制信道,以提高传输成功率。
下面请参考图6和图7,介绍网络设备和终端设备在通信过程中如何使用各个信道。图6为对于部分公共信息网络设备采用不同的调度方式,以及不同类型的终端设备对于随机接入信道采用不同类型的频率资源的示意,其中上面的虚线框表示采用N个RB调度,下面的虚线框表示采用大于N个RB调度,且以6个RB为例。图7为对于公共信息网络设备采用相同的调度方式,以及不同类型的终端设备对于随机接入信道采用相同类型的频率资源的示意。其中,频率资源类型不同,主要是指频率资源包含的RB的数量和/或位置不同。
下面结合附图介绍本申请实施例提供的装置。
图8示出了一种网络设备800的结构示意图。该网络设备800可以实现上文中涉及的网络设备的功能。该网络设备800可以包括收发器801。可选的,该网络设备800还可以包括处理器802。其中,收发器801可以用于执行图2所示的实施例中的S21,和/或用于支持本文所描述的技术的其它过程。处理器802,可以用于确定第一终端设备的覆盖增强等级或覆盖增强模式,和/或,用于完成支持本文所描述的技术的其它过程。
例如,收发器801,用于在N个资源块中向第一终端设备和第二终端设备发送同步信道和广播信道;其中,N是大于0的正整数;所述N个资源块占用的频率资源小于或等于所述第二终端的最大信道带宽,且所述第二终端的最大信道带宽小于所述第一终端的最大信道带宽。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图9示出了一种终端设备900的结构示意图。该终端设备900可以实现上文中涉及的第一终端设备的功能。该终端设备900可以包括收发器901。可选的,该终端设备900还可以包括处理器902。其中,收发器901可以用于执行图2所示的实施例中的S21,和/或用于支持本文所描述的技术的其它过程。处理器902,可以用于确定终端设备900的覆盖增强等级或覆盖增强模式,和/或,用于完成支持本文所描述的技术的其它过程。
例如,收发器901,用于在N个资源块中接收网络设备发送的同步信道和广播信道;其中,N是大于0的正整数;所述N个资源块占用的频率资源小于或等于所述网络设备服务的所述第二终端设备的最大信道带宽,且所述第二终端设备的最大信道带宽小于所述终端设备的最大信道带宽。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,网络设备800和终端设备900对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将网络设备800或终端设备900通过如图10所示的通信装置1000的结构实现。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将发送波束优化协议包 的设备500或接收波束优化协议包的设备600通过如图7所示的通信装置700的结构实现。
该通信装置1000可以包括处理单元1001和通信单元1002,处理单元1001例如为处理器,通信单元1002例如为收发器,收发器可包括射频电路。该通信装置1000可以是现场可编程门阵列(field-programmable gate array,FPGA),ASIC,系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。该通信装置1000可被设置于本申请实施例的第一终端设备或网络设备中,以使得该网络设备或第一终端设备实现本申请实施例提供的通信方法,例如该通信装置1000为设置在网络设备或第一终端设备内部的芯片。
在一种可选实现方式中,该通信装置1000还可以包括存储单元1003,可继续参考图10,存储单元1003与处理单元1001连接。其中,存储单元1003用于存储计算机程序或指令,处理单元1001用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述网络设备的功能程序或第一终端设备的功能程序。当网络设备的功能程序被处理单元1001译码并执行时,可使得网络设备实现本申请实施例的通信方法中网络设备的功能。当第一终端设备的功能程序被处理单元1001译码并执行时,可使得第一终端设备实现本申请实施例的通信方法中第一终端设备的功能。
在另一种可选实现方式中,这些网络设备的功能程序存储在通信装置1000外部的存储单元中,此时存储单元例如包括所述网络设备内的位于通信装置1000外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。当网络设备的功能程序被处理单元1001译码并执行时,存储单元1003中临时存放上述网络设备的功能程序的部分或全部内容。或,这些第一终端设备的功能程序存储在通信装置1000外部的存储器中。当第一终端设备的功能程序被处理单元1001译码并执行时,存储单元1003中临时存放上述第一终端设备的功能程序的部分或全部内容。
在另一种可选实现方式中,这些网络设备的功能程序被设置于存储在通信装置1000内部的存储单元1003中,图10即以此为例,此时存储单元1003例如为寄存器或缓存等。当通信装置1000内部的存储单元1003中存储有网络设备的功能程序时,通信装置1000可被设置在本申请实施例的网络设备中。或,这些第一终端设备的功能程序被设置于存储在通信装置1000内部的存储单元1003中。当通信装置1000内部的存储单元1003中存储有第一终端设备的功能程序时,通信装置1000可被设置在本申请实施例的第一终端设备中。
在又一种可选实现方式中,这些网络设备的功能程序的部分内容存储在通信装置1000外部的存储单元中,这些网络设备的功能程序的其他部分内容存储在通信装置1000内部的存储单元1003中。或,这些第一终端设备的功能程序的部分内容存储在通信装置1000外部的存储单元中,这些第一终端设备的功能程序的其他部分内容存储在通信装置1000内部的存储单元1003中。
另外,图8所示的实施例提供的网络设备800还可以通过其他形式实现。例如该网络设备包括收发单元。可选的,该网络设备还可以包括处理单元。其中,收发单元可以用于执行图2所示的实施例中的S21,和/或用于支持本文所描述的技术的其它过程。处理单元 可以用于确定第一终端设备的覆盖增强等级或覆盖增强模式,和/或,用于完成支持本文所描述的技术的其它过程。
例如,收发单元,用于在N个资源块中向第一终端设备和第二终端设备发送同步信道和广播信道;其中,N是大于0的正整数;所述N个资源块对应的频率资源小于或等于所述第二终端的最大信道带宽,且所述第二终端设备的最大信道带宽小于所述第一终端设备的最大信道带宽。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图9所示的实施例提供的终端设备900还可以通过其他形式实现。例如该终端设备包括收发单元。可选的,该网络设备还可以包括处理单元。其中,收发单元可以用于执行图2所示的实施例中的S21,和/或用于支持本文所描述的技术的其它过程。处理单元可以用于确定终端设备900的覆盖增强等级或覆盖增强模式,和/或,用于完成支持本文所描述的技术的其它过程。
例如,收发单元,用于在N个资源块中接收网络设备发送的同步信道和广播信道;其中,N是大于0的正整数;所述N个资源块占用的频率资源小于或等于所述网络设备服务的所述第二终端设备的最大信道带宽,且所述第二终端设备的最大信道带宽小于所述终端设备的最大信道带宽。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的网络设备800、终端设备900及通信装置1000可用于执行图2所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介 质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (42)

  1. 一种通信方法,其特征在于,包括:
    网络设备在N个资源块中向第一终端设备和第二终端设备发送同步信道和广播信道;N是大于0的正整数;
    所述N个资源块占用的频率资源小于或等于所述第二终端设备的最大信道带宽,且所述第二终端设备的最大信道带宽小于所述第一终端设备的最大信道带宽。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备在K个资源块上向所述第一终端设备发送系统信息,其中K是大于0的正整数,且K大于等于N;
    当K大于1时,所述网络设备在所述K个资源块中的每个资源块中承载的系统信息均为自译码的信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络设备通过所述广播信道向所述第一终端设备发送指示信息,所述指示信息用于指示所述系统信息所占用的资源块的数量K。
  4. 如权利要求1至3任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备在第一频率资源上从所述第一终端设备接收随机接入信道,其中所述第一频率资源包含的资源块的数量大于N;
    所述网络设备向所述第一终端设备发送第一物理下行控制信道,所述第一物理下行控制信道用于调度第一物理下行共享信道;
    所述网络设备通过所述第一物理下行共享信道向所述第一终端设备发送随机接入响应或竞争解决消息。
  5. 如权利要求1至3任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备在第二频率资源上从所述第二终端设备接收随机接入信道,其中所述第二频率资源包含的资源块的数量小于或等于N;
    所述网络设备向所述第二终端设备发送第二物理下行控制信道,所述第二物理下行控制信道用于调度第二物理下行共享信道;
    所述网络设备通过所述第二物理下行共享信道向所述第二终端设备发送随机接入响应或竞争解决消息。
  6. 如权利要求1至3任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备在第三频率资源上从所述第一终端设备接收随机接入信道,其中所述第三频率资源包含的资源块的数量小于或等于N;
    所述网络设备向所述第一终端设备发送第二物理下行控制信道,所述第二物理下行控制信道用于调度第二物理下行共享信道;
    所述网络设备通过所述第二物理下行共享信道向所述第一终端设备发送随机接入响应或竞争解决消息。
  7. 如权利要求1至6任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备通过随机接入响应指示所述第一终端设备的消息3通过第一物理上行共享信道传输或通过第二物理上行共享信道传输;或,
    所述网络设备通过物理下行控制信道指示所述第一终端设备的消息3通过第一物理上行共享信道传输或通过第二物理上行共享信道传输,其中,所述物理下行控制信道是调度 随机接入响应的控制信道或是调度重传消息3的控制信道。
  8. 如权利要求1至7任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备通过随机接入响应指示向所述第一终端设备发送的竞争解决消息通过第一物理下行共享信道传输或通过第二物理下行共享信道传输;或,
    所述网络设备通过物理下行控制信道指示向所述第一终端设备发送的竞争解决消息通过第一物理下行共享信道传输或通过第二物理下行共享信道传输,其中,所述物理下行控制信道是调度随机接入响应的控制信道或是调度竞争解决消息的控制信道;或,
    所述网络设备通过随机接入响应向所述第一终端设备指示调度竞争解决消息的物理下行控制信道,是第一物理下行控制信道或通过第二物理下行控制信道。
  9. 如权利要求1至8任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述第一终端设备的覆盖增强等级或覆盖增强模式;
    当所述第一终端设备的覆盖增强等级是第一覆盖增强等级或所述第一终端设备的覆盖增强模式是第一覆盖增强模式时,所述网络设备向所述第一终端设备发送第一物理下行控制信道;
    当所述第一终端设备的覆盖增强等级是第二覆盖增强等级或所述第一终端设备的覆盖增强模式是第二覆盖增强模式时,所述网络设备向所述第一终端设备发送第二物理下行控制信道。
  10. 如权利要求1至9任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备为所述第一终端设备的上行数据传输分配H个资源块,所述H为正整数;
    当H大于第一门限时,所述网络设备通过第一物理上行共享信道从所述第一终端设备接收上行数据;
    当H小于或等于所述第一门限时,所述网络设备通过第二物理上行共享信道从所述第一终端设备接收上行数据。
  11. 如权利要求1至10任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述第一终端设备的覆盖增强等级或覆盖增强模式;
    当所述第一终端设备的覆盖增强等级是第一覆盖增强等级或所述第一终端设备的覆盖增强模式是第一覆盖增强模式时,所述网络设备调度所述第一终端设备采用第一物理上行共享信道进行上行数据传输;
    当所述第一终端设备的覆盖增强等级是第二覆盖增强等级或所述第一终端设备的覆盖增强模式是第二覆盖增强模式时,所述网络设备调度所述第一终端设备采用第二物理上行共享信道进行上行数据传输。
  12. 一种通信方法,其特征在于,包括:
    终端设备在N个资源块中接收网络设备发送的同步信道和广播信道;其中,N是大于0的正整数;
    所述N个资源块占用的频率资源小于或等于所述网络设备服务的所述第二终端设备的最大信道带宽,且所述第二终端设备的最大信道带宽小于所述终端设备的最大信道带宽。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述终端设备在K个资源块上从所述网络设备接收系统信息,其中K是大于0的正整数,且K大于等于N;
    当K大于1时,所述网络设备在所述K个资源块中的每个资源块中承载的系统信息均 为自译码的信息。
  14. 如权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述终端设备通过所述广播信道从所述网络设备接收指示信息,所述指示信息用于指示所述系统信息所占用的资源块的数量K。
  15. 如权利要求12至14任一项权利要求所述的方法,其特征在于,
    所述终端设备在第一频率资源上向所述网络设备发送随机接入信道,其中所述第一频率资源包含的资源块的数量大于N;
    所述终端设备从所述网络设备接收第一物理下行控制信道,所述第一物理下行控制信道用于调度第一物理下行共享信道;
    所述终端设备通过所述第一物理下行共享信道从所述网络设备接收随机接入响应或竞争解决消息。
  16. 如权利要求12至14任一项权利要求所述的方法,其特征在于,
    所述终端设备在第三频率资源上向所述网络设备发送随机接入信道,其中所述第三频率资源包含的资源块的数量小于或等于N;
    所述终端设备从所述网络设备接收第二物理下行控制信道,所述第二物理下行控制信道用于调度第二物理下行共享信道;
    所述终端设备通过所述第二物理下行共享信道从所述网络设备接收随机接入响应或竞争解决消息。
  17. 如权利要求12至16任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收随机接入响应,所述随机接入响应指示所述终端设备的消息3通过第一物理上行共享信道传输或通过第二物理上行共享信道传输;或,
    所述终端设备从所述网络设备接收物理下行控制信道,所述物理下行共享信道指示所述终端设备的消息3通过第一物理上行共享信道传输或通过第二物理上行共享信道传输,其中,所述物理下行控制信道是调度随机接入响应的控制信道或是调度重传消息3的控制信道。
  18. 如权利要求12至17任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收随机接入响应,所述随机接入响应指示向所述终端设备发送的竞争解决消息通过第一物理下行共享信道传输或通过第二物理下行共享信道传输;或,
    所述终端设备从所述网络设备接收物理下行控制信道,所述物理下行控制信道指示向所述终端设备发送的竞争解决消息通过第一物理下行共享信道传输或通过第二物理下行共享信道传输,其中,所述物理下行控制信道是调度随机接入响应的控制信道或是调度竞争解决消息的控制信道;或,
    所述终端设备从所述网络设备接收随机接入响应,所述随机接入响应向所述终端设备指示调度竞争解决消息的物理下行控制信道,是第一物理下行控制信道或第二物理下行控制信道。
  19. 如权利要求12至18任一项权利要求所述的方法,其特征在于,所述方法还包括:
    当所述终端设备的覆盖增强等级是第一覆盖增强等级或所述终端设备的覆盖增强模式是第一覆盖增强模式时,所述终端设备从网络设备接收第一物理下行控制信道;
    当所述终端设备的覆盖增强等级是第二覆盖增强等级或所述终端设备的覆盖增强模 式是第二覆盖增强模式时,所述终端设备从所述网络设备接收第二物理下行控制信道。
  20. 如权利要求12至19任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述网络设备为所述终端设备的上行数据传输分配H个资源块,所述H为正整数;
    当H大于第一门限时,所述终端设备通过第一物理上行共享信道向所述网络设备发送上行数据;
    当H小于或等于所述第一门限时,所述终端设备通过第二物理上行共享信道向所述网络设备发送发送上行数据。
  21. 如权利要求12至20任一项权利要求所述的方法,其特征在于,所述方法还包括:
    当所述终端设备的覆盖增强等级是第一覆盖增强等级或所述终端设备的覆盖增强模式是第一覆盖增强模式时,所述终端设备采用第一物理上行共享信道进行上行数据传输;
    当所述终端设备的覆盖增强等级是第二覆盖增强等级或所述终端设备的覆盖增强模式是第二覆盖增强模式时,所述终端设备采用第二物理上行共享信道进行上行数据传输。
  22. 一种网络设备,其特征在于,包括:
    收发单元,用于在N个资源块中向第一终端设备和第二终端设备发送同步信道和广播信道;其中,N是大于0的正整数;
    所述N个资源块占用的频率资源小于或等于所述第二终端设备的最大信道带宽,且所述第二终端设备的最大信道带宽小于所述第一终端设备的最大信道带宽。
  23. 如权利要求22所述的网络设备,其特征在于,所述收发单元还用于:
    在K个资源块上向所述第一终端设备发送系统信息,其中K是大于0的正整数,且K大于等于N;
    当K大于1时,所述网络设备在所述K个资源块中的每个资源块中承载的系统信息均为自译码的信息。
  24. 如权利要求22或23所述的网络设备,其特征在于,所述收发单元还用于:
    通过所述广播信道向所述第一终端设备发送指示信息,所述指示信息用于指示所述系统信息所占用的资源块的数量K。
  25. 如权利要求22至24任一项权利要求所述的网络设备,其特征在于,所述收发单元还用于:
    在第一频率资源上从所述第一终端设备接收随机接入信道,其中所述第一频率资源包含的资源块的数量大于N;
    向所述第一终端设备发送第一物理下行控制信道,所述第一物理下行控制信道用于调度第一物理下行共享信道;
    通过所述第一物理下行共享信道向所述第一终端设备发送随机接入响应或竞争解决消息。
  26. 如权利要求22至24任一项权利要求所述的网络设备,其特征在于,所述收发单元还用于:
    在第二频率资源上从所述第二终端设备接收随机接入信道,其中所述第二频率资源包含的资源块的数量小于或等于N;
    向所述第二终端设备发送第二物理下行控制信道,所述第二物理下行控制信道用于调度第二物理下行共享信道;
    通过所述第二物理下行共享信道向所述第二终端设备发送随机接入响应或竞争解决消息。
  27. 如权利要求22至24任一项权利要求所述的网络设备,其特征在于,所述收发单元还用于:
    在第三频率资源上从所述第一终端设备接收随机接入信道,其中所述第三频率资源包含的资源块的数量小于或等于N;
    向所述第一终端设备发送第二物理下行控制信道,所述第二物理下行控制信道用于调度第二物理下行共享信道;
    通过所述第二物理下行共享信道向所述第一终端设备发送随机接入响应或竞争解决消息。
  28. 如权利要求22至27任一项权利要求所述的网络设备,其特征在于,所述收发单元还用于:
    通过随机接入响应指示所述第一终端设备的消息3通过第一物理上行共享信道传输或通过第二物理上行共享信道传输;或,
    通过物理下行控制信道指示所述第一终端设备的消息3通过第一物理上行共享信道传输或通过第二物理上行共享信道传输,其中,所述物理下行控制信道是调度随机接入响应的控制信道或是调度重传消息3的控制信道。
  29. 如权利要求22至28任一项权利要求所述的网络设备,其特征在于,所述收发单元还用于:
    通过随机接入响应指示向所述第一终端设备发送的竞争解决消息是通过第一物理下行共享信道传输或通过第二物理下行共享信道传输;或,
    通过物理下行控制信道指示向所述第一终端设备发送的竞争解决消息通过第一物理下行共享信道传输或通过第二物理下行共享信道传输,其中,所述物理下行控制信道是调度随机接入响应的控制信道或是调度竞争解决消息的控制信道;或,
    通过随机接入响应向所述第一终端设备指示调度竞争解决消息的物理下行控制信道,是第一物理下行控制信道或第二物理下行控制信道。
  30. 如权利要求22至29任一项权利要求所述的网络设备,其特征在于,所述网络设备还包括处理单元;
    所述处理单元,用于确定所述第一终端设备的覆盖增强等级或覆盖增强模式;
    所述收发单元,用于当所述处理单元确定所述第一终端设备的覆盖增强等级是第一覆盖增强等级或所述第一终端设备的覆盖增强模式是第一覆盖增强模式时,向所述第一终端设备发送第一物理下行控制信道;或,当所述处理单元确定所述第一终端设备的覆盖增强等级是第二覆盖增强等级或所述第一终端的覆盖增强模式是第二覆盖增强模式时,向所述第一终端设备发送第二物理下行控制信道。
  31. 如权利要求22至30任一项权利要求所述的网络设备,其特征在于,所述网络设备还包括处理单元;
    所述处理单元,用于为所述第一终端设备的上行数据传输分配H个资源块,所述H为正整数;
    所述收发单元,还用于当H大于第一门限时,通过第一物理上行共享信道从所述第一终端设备接收上行数据;或,当H小于或等于所述第一门限时,通过第二物理上行共享信 道从所述第一终端设备接收上行数据。
  32. 如权利要求22至31任一项权利要求所述的网络设备,其特征在于,所述网络设备还包括处理单元;
    所述处理单元,用于确定所述第一终端设备的覆盖增强等级或覆盖增强模式;
    所述收发单元,还用于当所述处理单元确定所述第一终端设备的覆盖增强等级是第一覆盖增强等级或所述第一终端设备的覆盖增强模式是第一覆盖增强模式时,调度所述第一终端设备采用第一物理上行共享信道进行上行数据传输;或,当所述处理单元确定所述第一终端设备的覆盖增强等级是第二覆盖增强等级或所述第一终端设备的覆盖增强模式是第二覆盖增强模式时,调度所述第一终端设备采用第二物理上行共享信道进行上行数据传输。
  33. 一种终端设备,其特征在于,包括:
    收发单元,用于在N个资源块中从网络设备接收同步信道和广播信道;其中,N是大于0的正整数;
    所述N个资源块占用的频率资源小于或等于所述网络设备服务的第二终端设备的最大信道带宽,且所述第二终端设备的最大信道带宽小于所述终端设备的最大信道带宽。
  34. 如权利要求33所述的终端设备,其特征在于,所述收发单元还用于:
    在K个资源块上从所述网络设备接收系统信息,其中K是大于0的正整数,且K大于等于N;
    当K大于1时,所述网络设备在所述K个资源块中的每个资源块中承载的系统信息均为自译码的信息。
  35. 如权利要求33或34所述的终端设备,其特征在于,所述收发单元还用于:
    通过所述广播信道从所述网络设备接收指示信息,所述指示信息用于指示所述系统信息所占用的资源块的数量K。
  36. 如权利要求33至35任一项权利要求所述的终端设备,其特征在于,所述收发单元还用于:
    在第一频率资源上向所述网络设备发送随机接入信道,其中所述第一频率资源包含的资源块的数量大于N;
    从所述网络设备接收第一物理下行控制信道,所述第一物理下行控制信道用于调度第一物理下行共享信道;
    通过所述第一物理下行共享信道从所述网络设备接收随机接入响应或竞争解决消息。
  37. 如权利要求33至36任一项权利要求所述的终端设备,其特征在于,所述收发单元还用于:
    在第三频率资源上向所述网络设备发送随机接入信道,其中所述第三频率资源包含的资源块的数量小于或等于N;
    从所述网络设备接收第二物理下行控制信道,所述第二物理下行控制信道用于调度第二物理下行共享信道;
    通过所述第二物理下行共享信道从所述网络设备接收随机接入响应或竞争解决消息。
  38. 如权利要求33至37任一项权利要求所述的终端设备,其特征在于,所述收发单元还用于:
    从所述网络设备接收随机接入响应,所述随机接入响应指示所述终端设备的消息3通 过第一物理上行共享信道传输或通过第二物理上行共享信道传输;或,
    从所述网络设备接收物理下行控制信道,所述物理下行共享信道指示所述终端设备的消息3通过第一物理上行共享信道传输或通过第二物理上行共享信道传输,其中,所述物理下行控制信道是调度随机接入响应的控制信道或是调度重传消息3的控制信道。
  39. 如权利要求33至38任一项权利要求所述的终端设备,其特征在于,所述收发单元还用于:
    从所述网络设备接收随机接入响应,所述随机接入响应指示向所述终端设备发送的竞争解决消息通过第一物理下行共享信道传输或通过第二物理下行共享信道传输;或,
    从所述网络设备接收物理下行控制信道,所述物理下行控制信道指示向所述终端设备发送的竞争解决消息通过第一物理下行共享信道传输或通过第二物理下行共享信道传输,其中,所述物理下行控制信道是调度随机接入响应的控制信道或是调度竞争解决消息的控制信道;或,
    从所述网络设备接收随机接入响应,所述随机接入响应向所述终端设备指示调度竞争解决消息的物理下行控制信道,是第一物理下行控制信道或第二物理下行控制信道。
  40. 如权利要求33至39任一项权利要求所述的终端设备,其特征在于,所述终端设备还包括处理单元;
    所述处理单元,用于确定所述终端设备的覆盖增强等级或所述终端设备的覆盖增强模式;
    所述收发单元还用于:当所述处理单元确定所述终端设备的覆盖增强等级是第一覆盖增强等级或所述终端的覆盖增强模式是第一覆盖增强模式时,从所述网络设备接收第一物理下行控制信道;或,当所述处理单元确定所述终端设备的覆盖增强等级是第二覆盖增强等级或所述终端设备的覆盖增强模式是第二覆盖增强模式时,从所述网络设备接收第二物理下行控制信道。
  41. 如权利要求33至40任一项权利要求所述的终端设备,其特征在于,所述终端设备还包括处理单元;
    所述处理单元,用于确定所述网络设备为所述终端设备的上行数据传输分配H个资源块,所述H为正整数;
    所述收发单元,还用于当H大于第一门限时,通过第一物理上行共享信道向所述网络设备发送上行数据;或,当H小于或等于所述第一门限时,通过第二物理上行共享信道向所述网络设备发送发送上行数据。
  42. 如权利要求33至41任一项权利要求所述的终端设备,其特征在于,所述终端设备还包括处理单元;
    所述处理单元,用于确定所述终端设备的覆盖增强等级或所述终端设备的覆盖增强模式;
    所述收发单元还用于:当所述处理单元确定所述终端设备的覆盖增强等级是第一覆盖增强等级或所述终端设备的覆盖增强模式是第一覆盖增强模式时,采用第一物理上行共享信道进行上行数据传输;或,当所述处理单元确定所述终端设备的覆盖增强等级是第二覆盖增强等级或所述终端设备的覆盖增强模式是第二覆盖增强模式时,采用第二物理上行共享信道进行上行数据传输。
PCT/CN2017/100023 2017-08-31 2017-08-31 一种通信方法及设备 WO2019041261A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/100023 WO2019041261A1 (zh) 2017-08-31 2017-08-31 一种通信方法及设备
CN201780093822.0A CN111066355A (zh) 2017-08-31 2017-08-31 一种通信方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100023 WO2019041261A1 (zh) 2017-08-31 2017-08-31 一种通信方法及设备

Publications (1)

Publication Number Publication Date
WO2019041261A1 true WO2019041261A1 (zh) 2019-03-07

Family

ID=65524716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100023 WO2019041261A1 (zh) 2017-08-31 2017-08-31 一种通信方法及设备

Country Status (2)

Country Link
CN (1) CN111066355A (zh)
WO (1) WO2019041261A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653541A (zh) * 2019-10-12 2021-04-13 华为技术有限公司 通信方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117956409A (zh) * 2022-10-21 2024-04-30 北京紫光展锐通信技术有限公司 多播广播业务传输方法与装置、终端设备和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016172186A1 (en) * 2015-04-20 2016-10-27 Qualcomm Incorporated Control channel based broadcast messaging
WO2016205449A1 (en) * 2015-06-16 2016-12-22 Qualcomm Incorporated Long-term evolution compatible very narrow band design
WO2017043876A1 (ko) * 2015-09-10 2017-03-16 엘지전자 주식회사 협대역을 이용한 통신 방법 및 mtc 기기

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958133B (zh) * 2011-08-25 2015-04-08 华为技术有限公司 接入通信系统的方法、下行信息发送方法、终端及基站
CN107079319A (zh) * 2014-11-06 2017-08-18 富士通株式会社 控制信道的传输方法、装置以及通信系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016172186A1 (en) * 2015-04-20 2016-10-27 Qualcomm Incorporated Control channel based broadcast messaging
WO2016205449A1 (en) * 2015-06-16 2016-12-22 Qualcomm Incorporated Long-term evolution compatible very narrow band design
WO2017043876A1 (ko) * 2015-09-10 2017-03-16 엘지전자 주식회사 협대역을 이용한 통신 방법 및 mtc 기기

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653541A (zh) * 2019-10-12 2021-04-13 华为技术有限公司 通信方法及装置
WO2021068708A1 (zh) * 2019-10-12 2021-04-15 华为技术有限公司 通信方法及装置
CN112653541B (zh) * 2019-10-12 2022-06-10 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN111066355A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
US10555346B2 (en) Method for configuring physical channel, base station and user equipment
CN115134018B (zh) 一种传输消息的方法及设备
US9955408B2 (en) Network-assisted multi-cell device discovery protocol for device-to-device communications
US10623981B2 (en) Information transmission method, apparatus, and system
JP2022528893A (ja) 物理ダウンリンク制御チャネル(pdcch)ベースのウェイクアップ信号(wus)設定のための方法
CN109041039A (zh) 用于设备对设备通信的用户设备及其方法
CN113261320B (zh) 通信方法、装置及系统
WO2018045576A1 (zh) 通信方法及其用户设备、网络设备
CN111865536B (zh) 搜索空间的监测、配置方法及装置
JP2020145759A (ja) 通信システム
WO2022002165A1 (zh) 一种harq-ack传输方法和装置
WO2019191985A1 (zh) 一种信息发送、接收方法及装置
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
WO2015067197A1 (zh) D2d发现信号的发送方法和发送装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
JP2021519553A (ja) 早期データ送信のためのトランスポートブロックサイズ選択
WO2021134577A1 (zh) 一种数据传输方法及装置
US10306646B2 (en) Method for device-to-device communication, base station and user equipment
WO2020164460A1 (zh) 一种通信方法及装置
WO2019041261A1 (zh) 一种通信方法及设备
WO2022201106A1 (en) Resource determination for tb over multiple slots
CN108702691B (zh) 一种发送通信消息的方法和装置
WO2022077351A1 (zh) 通信方法和通信装置
WO2020088455A1 (zh) 通信方法和通信装置
WO2018201840A1 (zh) 一种信息传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923662

Country of ref document: EP

Kind code of ref document: A1