US20160227580A1 - User equipment and evolved node-b and methods for operation in a coverage enhancement mode - Google Patents

User equipment and evolved node-b and methods for operation in a coverage enhancement mode Download PDF

Info

Publication number
US20160227580A1
US20160227580A1 US14/917,451 US201414917451A US2016227580A1 US 20160227580 A1 US20160227580 A1 US 20160227580A1 US 201414917451 A US201414917451 A US 201414917451A US 2016227580 A1 US2016227580 A1 US 2016227580A1
Authority
US
United States
Prior art keywords
ue
ce
according
enb
frequency resources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US14/917,451
Inventor
Gang Xiong
Seunghee Han
Youn Hyoung Heo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel IP Corp
Original Assignee
Intel IP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201361898425P priority Critical
Application filed by Intel IP Corp filed Critical Intel IP Corp
Priority to US14/917,451 priority patent/US20160227580A1/en
Priority to PCT/US2014/062533 priority patent/WO2015065947A1/en
Publication of US20160227580A1 publication Critical patent/US20160227580A1/en
Assigned to Intel IP Corporation reassignment Intel IP Corporation ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAN, SEUNGHEE, HEO, YOUN HYOUNG, XIONG, GANG
Application status is Pending legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/10Wireless resource allocation where an allocation plan is defined based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission and use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission and use of information for re-establishing the radio link
    • H04W36/0069Transmission and use of information for re-establishing the radio link in case of dual connectivity, e.g. CoMP, decoupled uplink/downlink or carrier aggregation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/60Subscription-based services using application servers or record carriers, e.g. SIM application toolkits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/06Access restriction performed under specific conditions based on traffic conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/02Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration by periodical registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/0406Wireless resource allocation involving control information exchange between nodes
    • H04W72/042Wireless resource allocation involving control information exchange between nodes in downlink direction of a wireless link, i.e. towards terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource
    • H04W72/0453Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource the resource being a frequency, carrier or frequency band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/048Wireless resource allocation where an allocation plan is defined based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/0486Wireless resource allocation where an allocation plan is defined based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/08Wireless resource allocation where an allocation plan is defined based on quality criteria
    • H04W72/085Wireless resource allocation where an allocation plan is defined based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/06Registration at serving network Location Register, VLR or user mobility server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/126Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks

Abstract

Embodiments of a User Equipment (UE) and an Evolved Node-B (eNB) and methods for operating in a coverage enhancement (CE) mode are generally described herein. The UE may include hardware processing circuitry configured to determine a CE category for the UE based at least partly on downlink channel statistics related to reception of one or more downlink signals from an eNB. The CE category may reflect one of a level of additional link margin and a level of system resources for performance at or above a performance threshold. The hardware processing circuitry may be further configured to transmit, in physical random access channel (PRACH) frequency resources, a PRACH preamble according to an uplink access repetition number. The PRACH frequency resources and the uplink access repetition number may be based at least partly on CE category for the UE.

Description

    PRIORITY CLAIM
  • This application claims priority to U.S. Provisional Patent Application Ser. No. 61/898,425, filed Oct. 31, 2013, which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • Embodiments pertain to wireless communications. Some embodiments relate to wireless networks including LTE networks. Some embodiments relate to operation in a coverage enhancement mode. Some embodiments relate to Machine Type Communication (MTC).
  • BACKGROUND
  • A mobile device operating in a cellular network may experience performance degradation in some cases, which may affect the ability of the device to connect or reconnect to the network. As an example, the mobile device may lose coverage as it moves toward or beyond the edge of a cell or sector of the network. As another example, a mobile device may be expected to operate in an environment with low link quality. Devices that support Machine Type Communication (MTC), for instance, may exchange small quantities of data at an infrequent rate in such low link conditions.
  • In any case, connection or reconnection to the network may be challenging in these and other scenarios. Accordingly, methods and techniques for connection or reconnection to the network are needed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a functional diagram of a 3GPP network in accordance with some embodiments;
  • FIG. 2 is a block diagram of a User Equipment (UE) in accordance with some embodiments;
  • FIG. 3 is a block diagram of an Evolved Node-B (eNB) in accordance with some embodiments;
  • FIG. 4 is an example of a scenario in which UEs operating in a network may experience reduced coverage from an eNB in accordance with some embodiments;
  • FIG. 5 illustrates the operation of a method of communicating on a random access channel (RACH) in accordance with some embodiments;
  • FIG. 6 illustrates the operation of another method of communicating on a RACH in accordance with some embodiments;
  • FIG. 7 illustrates examples of MAC random access responses (RARs) in accordance with some embodiments;
  • FIG. 8 illustrates a method for connection or reconnection in accordance with some embodiments; and
  • FIG. 9 illustrates an example of a table of repetition levels in accordance with some embodiments.
  • DETAILED DESCRIPTION
  • The following description and the drawings sufficiently illustrate specific embodiments to enable those skilled in the art to practice them. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Portions and features of some embodiments may be included in, or substituted for, those of other embodiments. Embodiments set forth in the claims encompass all available equivalents of those claims
  • FIG. 1 shows a portion of an end-to-end network architecture of an LTE network with various components of the network in accordance with some embodiments. The network 100 comprises a radio access network (RAN) (e.g., as depicted, the E-UTRAN or evolved universal terrestrial radio access network) 100 and the core network 120 (e.g., shown as an evolved packet core (EPC)) coupled together through an S1 interface 115. For convenience and brevity sake, only a portion of the core network 120, as well as the RAN 100, is shown.
  • The core network 120 includes mobility management entity (MME) 122, serving gateway (serving GW) 124, and packet data network gateway (PDN GW) 126. The RAN 100 includes Evolved Node-B's (eNBs) 104 (which may operate as base stations) for communicating with User Equipment (UE) 102. The eNBs 104 may include macro eNBs and low power (LP) eNBs.
  • The MME is similar in function to the control plane of legacy Serving GPRS Support Nodes (SGSN). The MME manages mobility aspects in access such as gateway selection and tracking area list management. The serving GW 124 terminates the interface toward the RAN 100, and routes data packets between the RAN 100 and the core network 120. In addition, it may be a local mobility anchor point for inter-eNB handovers and also may provide an anchor for inter-3GPP mobility. Other responsibilities may include lawful intercept, charging, and some policy enforcement. The serving GW 124 and the MME 122 may be implemented in one physical node or separate physical nodes. The PDN GW 126 terminates an SGi interface toward the packet data network (PDN). The PDN GW 126 routes data packets between the EPC 120 and the external PDN, and may be a key node for policy enforcement and charging data collection. It may also provide an anchor point for mobility with non-LTE accesses. The external PDN can be any kind of IP network, as well as an IP Multimedia Subsystem (IMS) domain. The PDN GW 126 and the serving GW 124 may be implemented in one physical node or separated physical nodes.
  • The eNBs 104 (macro and micro) terminate the air interface protocol and may be the first point of contact for a UE 102. In some embodiments, an eNB 104 may fulfill various logical functions for the RAN 100 including but not limited to RNC (radio network controller functions) such as radio bearer management, uplink and downlink dynamic radio resource management and data packet scheduling, and mobility management. In accordance with embodiments, UEs 102 may be configured to communicate OFDM communication signals with an eNB 104 over a multicarrier communication channel in accordance with an OFDMA communication technique. The OFDM signals may comprise a plurality of orthogonal subcarriers.
  • In accordance with some embodiments, a UE 102 may transmit, for reception at an eNB 104, a physical random access channel (PRACH) preamble according to an uplink access repetition number. The UE 102 may also receive, from the eNB 104, a random access response (RAR) message according to a downlink repetition number. These embodiments are described in more detail below.
  • The S1 interface 115 is the interface that separates the RAN 100 and the EPC 120. It is split into two parts: the S1-U, which carries traffic data between the eNBs 104 and the serving GW 124, and the S1-MME, which is a signaling interface between the eNBs 104 and the MME 122. The X2 interface is the interface between eNBs 104. The X2 interface comprises two parts, the X2-C and X2-U. The X2-C is the control plane interface between the eNBs 104, while the X2-U is the user plane interface between the eNBs 104.
  • With cellular networks, LP cells are typically used to extend coverage to indoor areas where outdoor signals do not reach well, or to add network capacity in areas with very dense phone usage, such as train stations. As used herein, the term low power (LP) eNB refers to any suitable relatively low power eNB for implementing a narrower cell (narrower than a macro cell) such as a femtocell, a picocell, or a micro cell. Femtocell eNBs are typically provided by a mobile network operator to its residential or enterprise customers. A femtocell is typically the size of a residential gateway or smaller, and generally connects to the user's broadband line. Once plugged in, the femtocell connects to the mobile operator's mobile network and provides extra coverage in a range of typically 30 to 50 meters for residential femtocells. Thus, a LP eNB might be a femtocell eNB since it is coupled through the PDN GW 126 Similarly, a picocell is a wireless communication system typically covering a small area, such as in-building (offices, shopping malls, train stations, etc.), or more recently in-aircraft. A picocell eNB can generally connect through the X2 link to another eNB such as a macro eNB through its base station controller (BSC) functionality. Thus, LP eNB may be implemented with a picocell eNB since it is coupled to a macro eNB via an X2 interface. Picocell eNBs or other LP eNBs may incorporate some or all functionality of a macro eNB. In some cases, this may be referred to as an access point base station or enterprise femtocell.
  • In some embodiments, a downlink resource grid may be used for downlink transmissions from an eNB 104 to a UE 102, while uplink transmission from the UE 102 to the eNB 104 may utilize similar techniques. The grid may be a time-frequency grid, called a resource grid or time-frequency resource grid, which is the physical resource in the downlink in each slot. Such a time-frequency plane representation is a common practice for OFDM systems, which makes it intuitive for radio resource allocation. Each column and each row of the resource grid correspond to one OFDM symbol and one OFDM subcarrier, respectively. The duration of the resource grid in the time domain corresponds to one slot in a radio frame. The smallest time-frequency unit in a resource grid is denoted as a resource element. Each resource grid comprises a number of resource blocks, which describe the mapping of certain physical channels to resource elements. Each resource block comprises a collection of resource elements and in the frequency domain, this represents the smallest quanta of resources that currently can be allocated. There are several different physical downlink channels that are conveyed using such resource blocks. With particular relevance to this disclosure, two of these physical downlink channels are the physical downlink shared channel and the physical down link control channel.
  • The physical downlink shared channel (PDSCH) carries user data and higher-layer signaling to a UE 102 (FIG. 1). The physical downlink control channel (PDCCH) carries information about the transport format and resource allocations related to the PDSCH channel, among other things. It also informs the UE 102 about the transport format, resource allocation, and H-ARQ information related to the uplink shared channel. Typically, downlink scheduling (assigning control and shared channel resource blocks to UEs 102 within a cell) is performed at the eNB 104 based on channel quality information fed back from the UEs 102 to the eNB 104, and then the downlink resource assignment information is sent to a UE 102 on the control channel (PDCCH) used for (assigned to) the UE 102.
  • The PDCCH uses CCEs (control channel elements) to convey the control information. Before being mapped to resource elements, the PDCCH complex-valued symbols are first organized into quadruplets, which are then permuted using a sub-block inter-leaver for rate matching. Each PDCCH is transmitted using one or more of these control channel elements (CCEs), where each CCE corresponds to nine sets of four physical resource elements known as resource element groups (REGs). Four QPSK symbols are mapped to each REG. The PDCCH can be transmitted using one or more CCEs, depending on the size of DCI and the channel condition. There may be four or more different PDCCH formats defined in LTE with different numbers of CCEs (e.g., aggregation level, L=1, 2, 4, or 8).
  • FIG. 2 shows a block diagram of a UE 200 in accordance with some embodiments, while FIG. 3 shows a block diagram of an eNB 300 in accordance with some embodiments. It should be noted that in some embodiments, the eNB 300 may be a stationary non-mobile device. The UE 200 may be a UE 102 as depicted in FIG. 1, while the eNB 300 may be an eNB 104 as depicted in FIG. 1. The UE 200 may include physical layer circuitry 202 for transmitting and receiving signals to and from the eNB 300, other eNBs, other UEs or other devices using one or more antennas 201, while the eNB 300 may include physical layer circuitry 302 for transmitting and receiving signals to and from the UE 200, other eNBs, other UEs or other devices using one or more antennas 301. The UE 200 may also include medium access control layer (MAC) circuitry 204 for controlling access to the wireless medium, while the eNB 300 may also include medium access control layer (MAC) circuitry 304 for controlling access to the wireless medium. The UE 200 may also include processing circuitry 206 and memory 208 arranged to perform the operations described herein, and the eNB 300 may also include processing circuitry 306 and memory 308 arranged to perform the operations described herein.
  • In some embodiments, mobile devices or other devices described herein may be part of a portable wireless communication device, such as a personal digital assistant (PDA), a laptop or portable computer with wireless communication capability, a web tablet, a wireless telephone, a smartphone, a wireless headset, a pager, an instant messaging device, a digital camera, an access point, a television, a medical device (e.g., a heart rate monitor, a blood pressure monitor, etc.), or other device that may receive and/or transmit information wirelessly. In some embodiments, the mobile device or other device can be the UE 200 or the eNB 300 configured to operate in accordance with 3GPP standards. In some embodiments, the mobile device or other device may be configured to operate according to other protocols or standards, including IEEE 802.11 or other IEEE standards. In some embodiments, the mobile device or other device may include one or more of a keyboard, a display, a non-volatile memory port, multiple antennas, a graphics processor, an application processor, speakers, and other mobile device elements. The display may be an LCD screen including a touch screen.
  • The antennas 201, 301 may comprise one or more directional or omnidirectional antennas, including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas or other types of antennas suitable for transmission of RF signals. In some multiple-input multiple-output (MIMO) embodiments, the antennas 201, 301 may be effectively separated to take advantage of spatial diversity and the different channel characteristics that may result.
  • Although the UE 200 and eNB 300 are each illustrated as having several separate functional elements, one or more of the functional elements may be combined and may be implemented by combinations of software-configured elements, such as processing elements including digital signal processors (DSPs), and/or other hardware elements. For example, some elements may comprise one or more microprocessors, DSPs, field-programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), radio-frequency integrated circuits (RFICs) and combinations of various hardware and logic circuitry for performing at least the functions described herein. In some embodiments, the functional elements may refer to one or more processes operating on one or more processing elements.
  • Embodiments may be implemented in one or a combination of hardware, firmware and software. Embodiments may also be implemented as instructions stored on a computer-readable storage device, which may be read and executed by at least one processor to perform the operations described herein. A computer-readable storage device may include any non-transitory mechanism for storing information in a form readable by a machine (e.g., a computer). For example, a computer-readable storage device may include read-only memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, and other storage devices and media. Some embodiments may include one or more processors and may be configured with instructions stored on a computer-readable storage device.
  • In accordance with embodiments, the UE 102 may determine a coverage enhancement (CE) category for the UE 102 based at least partly on downlink channel statistics related to reception of one or more downlink signals from the eNB 104. The CE category may reflect one of a level of additional link margin and a level of system resources for performance at or above a performance threshold. The UE 102 may also transmit, in physical random access channel (PRACH) frequency resources, a PRACH preamble according to an uplink access repetition number. The PRACH frequency resources and the uplink access repetition number may be based at least partly on the CE category for the UE 102. These embodiments are described in more detail below.
  • In some scenarios, the UE 102 operating in a cellular communication network (such as 100) may lose connectivity to the network or may have difficulty in remaining connected to the network for various reasons. As an example, the UE 102 may move toward an area with reduced coverage, such as the edge of a sector or cell. As another example, the UE 102 may operate in an area that is essentially out of the normal coverage of the network, such as in a basement of a building. As another example, the UE 102 or other device may support Machine Type Communication (MTC). MTC devices or devices operating in an MTC mode may be expected to operate in highly challenging link budget scenarios while exchanging small quantities of data at an infrequent rate.
  • Referring to FIG. 4, an example of a connection scenario 400 is shown, in which a tower eNB 405 (which can be the eNB 104) and three UEs 410, 415, 420 (which can be the UE 102) located at various distances from the eNB 405 are operating, or attempting to operate, as part of a 3GPP or other network. It should be noted that the eNB 405 is not limited to the tower configuration and that scenarios described herein are not limited to the number or distribution of eNBs 405 or UEs 410, 415, 420 as shown in FIG. 4. The first UE 410 is in communication with the eNB 405 over the link 430, and is comfortably located within the coverage area 450 of the eNB 405. As such, it is expected that the first UE 410 may not be involved in a reconnection procedure. The second UE 415 is located outside of the coverage area 450 in a demarcated zone 460, and may be attempting a reconnection procedure over the link 435 (note the link may not actually be established or stable yet). Similarly, the third UE 420 is also located outside of the coverage area 450 in another demarcated zone 470 that is further away from the eNB 405 than the first demarcated zone 460. The third UE 420 may also be attempting a reconnection procedure over the link 440 (which may not actually be established or stable yet).
  • The second UE 415 and third UE 420 may be described as needing “coverage enhancement,” or operating in “coverage enhancement mode,” as they are out of the coverage area 450. Additionally, while both UEs 415, 420 are outside of the coverage area 450, the third UE 420 may have more trouble or challenges in reconnecting than would the second UE 415, as the third UE 420 is further away from the eNB 405. Accordingly, it may be possible to formulate different categories of coverage enhancement for UEs depending on how far out of coverage they are located or other factors. In some embodiments, descriptions may be used in the categories. For instance, the third UE 420 may be considered in a “high” category of coverage enhancement mode while the second UE 415 may be considered in a “low” category of coverage enhancement mode. In some embodiments, the categories may be numerical, such as 5 dB, 10 dB, and 15 dB, which may represent an additional amount of link budget that may be added to the UEs 415, 420 in order to realize a “normal operation.” The normal operation may be characterized by any suitable criteria such as a target packet error rate, acquisition time, data throughput or the like.
  • It should be pointed out that the above discussion focuses on path loss due to distance only, for purposes of illustration, but this is not limiting. It is known in the art that path loss, signal loss, coverage holes or the like may result from effects other than distance, such as obstacles or indoor location. For instance, a device located in a basement of a building close to the eNB 405 may actually be in need of a coverage enhancement while another device located much further away, but outdoors, may have a stronger connection to the eNB 405 and may be in need of less or no coverage enhancement.
  • Referring to FIG. 5, a method 500 of operating in accordance with a coverage enhancement mode is shown. It is important to note that embodiments of the method 500 may include additional or even fewer operations or processes in comparison to what is illustrated in FIG. 5. In addition, embodiments of the method 500 are not necessarily limited to the chronological order that is shown in FIG. 5. In describing the method 500, reference may be made to FIGS. 1-4 and 6-9, although it is understood that the method 500 may be practiced with any other suitable systems, interfaces and components. For example, reference may be made to the scenario 400 in FIG. 4 described earlier for illustrative purposes, but the techniques and operations of the method 500 are not so limited.
  • In addition, while the method 500 and other methods described herein may refer to eNBs 104 or UEs 102 operating in accordance with 3GPP or other standards, embodiments of those methods are not limited to just those eNBs 104 or UEs 102 and may also be practiced on other mobile devices, such as a Wi-Fi access point (AP) or user station (STA). Moreover, the method 500 and other methods described herein may be practiced by wireless devices configured to operate in other suitable types of wireless communication systems, including systems configured to operate according to various IEEE standards such as IEEE 802.11. In addition the method 500 and other methods described herein may be practiced by UEs or other devices that support or are configured to support Machine Type Communication (MTC) operation.
  • At operation 505 of the method 500, a coverage enhancement (CE) category may be determined for the UE 102. The CE category for the UE 102 may reflect one of a level of additional link margin and a level of system resources for performance at or above a performance threshold associated with a normal operating mode for the UE 102. In some embodiments, the CE category may be determined from a group of candidate CE categories. As an example, the candidate CE categories may include 5, 10 or 15 dB, which may refer to a link budget addition that may enable a level of performance for the UE 102 in terms of error rate, throughput or other performance measure. An additional CE category may include “no CE” or similar, which may reflect that the UE 102 is not operating in a CE mode. In addition, previously described examples related to CE categories may also be used, such as “high” and “low.”
  • The determination of the CE category may be based at least partly on downlink channel statistics related to reception of one or more downlink signals at the UE from an Evolved Node-B (eNB). In some embodiments, the downlink channel statistics may include reference signal received power (RSRP) or other path loss measurements at the UE. As an example, a determined path loss at the UE 102 may be compared with a predetermined link budget path loss to determine the CE category for the UE 102. The predetermined link budget path loss may indicate a maximum path loss for “normal” operation in terms of packet error rate or other measure. The statistics may be based on or collected over any suitable time period, which may be on the order of symbol periods, sub-frames, seconds, minutes or longer. The measurements may include averages, moving averages, weighted averages or other suitable statistics, and may refer to scalar or logarithmic (dB) quantities.
  • At operation 510, a PRACH preamble may be transmitted in PRACH frequency resources according to an uplink access repetition number. The PRACH frequency resources may be based at least partly on the CE category for the UE 102. In some embodiments, the group of candidate CE categories may include a first and a second candidate CE category for which PRACH frequency resources for the first CE category are exclusive to PRACH frequency resources for the second CE category. In addition, the group of candidate CE categories may include more than the first and second candidate CE categories, and some or all of the candidate CE categories may be associated with different PRACH frequency resources that may be exclusive to each other. Accordingly, the frequency resources used for the transmission of the PRACH preamble may indicate or reflect the determined CE category for the UE 102. Mappings or assignments of PRACH frequency resources to candidate CE categories may be predetermined, may be part of 3GPP or other standards or may be determined by the network. In addition, the PRACH frequency resources used by the UE 102 when operating in the CE mode may be disjoint from PRACH frequency resources used by UEs not operating in the CE mode.
  • In some embodiments, a random access radio network temporary identifier (RA-RNTI) computed for the PRACH preamble transmission may depend on whether or not the UE 102 is in the CE mode. As an example, the RA-RNTI may be computed as (1+t_id+10*f id+c*MTC_id), in which t_id is the index of the first sub-frame of the specified PRACH preamble, f_id is the index of the specified PRACH preamble within that sub-frame, the value of “c” may be 60, and the MTC_id is 0 or 1 when the UE 102 is not, or is, in the CE mode.
  • The uplink access repetition number may be based at least partly on the CE category for the UE 102. In some embodiments, the group of candidate CE categories may include a first and a second candidate CE category for which an uplink access repetition number for the first CE category is different from an uplink access repetition number for the second CE category. The uplink access repetition number may refer to a number of repetitions of the PRACH preamble to be transmitted by the UE 102. In addition, the group of candidate CE categories may include more than the first and second candidate CE categories, and some or all of the candidate CE categories may be associated with uplink access repetition numbers that may be different. In some embodiments, an uplink access repetition number (or other repetition numbers or levels described herein) for a CE category considered “high” may be larger than an uplink access repetition number for a CE category considered “low.” For instance, the UE 102 may repeat the PRACH preamble 100 times when operating in the CE category of 15 dB and may repeat the PRACH preamble only 20 times when operating in the CE category of 5 dB. Accordingly, the larger number of repetitions may provide additional diversity or energy gain for the UE 102 when it operates in a higher CE category. The number of repetitions for the candidate CE categories may be pre-determined through simulation or analysis or other techniques. In some embodiments, the repetitions of the PRACH preamble may be transmitted during different time periods.
  • At operation 515 of the method 500, a Random Access Response (RAR) may be received from the eNB 104 according to a downlink repetition number. As previously described, the PRACH frequency resources used by the UE 102 may indicate the determined CE category for the UE 102, which may be ascertained by the eNB 104 using knowledge of the previously described mappings and assignments between PRACH frequency resources and CE categories. The downlink repetition number may refer to a number of repetitions of the RAR to be transmitted by the eNB 104, and the number of repetitions for some or all of the candidate CE categories may be different. Accordingly, the downlink repetition number may be based at least partly on the CE category for the UE 102, and may be pre-determined through simulation or analysis or other techniques.
  • In some embodiments, the downlink repetition number may be included in a PDCCH. A new downlink control information (DCI) format, or an existing DCI format such as “1A” or other in 3GPP standards, may include the downlink repetition number or an indicator of it. As an example, the downlink repetition number may include a bit field of two bits corresponding to “no repetition” and repetition levels of 0, 1, and 2, in which the number of repetitions associated with each repetition level may be pre-defined or signaled in other messages. As another example, the downlink repetition number may be a single bit corresponding to “no repetition” or repetition according to a pre-defined or previously signaled repetition number. As another example, the downlink repetition number may be a bit field that explicitly states a number of repetitions to be used. Embodiments are not limited to the number of bits or levels described in the above examples, however, as the downlink repetition number may describe or specify the amount of repetition in any suitable manner. In some embodiments, the downlink repetition number may refer to a “PDSCH repetition level” as will be described later.
  • In some embodiments, the RAR may be received on PDSCH frequency resources that are based at least partly on the CE category for the UE 102. In addition, the PDSCH frequency resources for the RAR may be disjoint from PDSCH frequency resources used for RARs or other messages for UEs not operating in the CE mode. In some embodiments, a pre-defined frequency allocation for the PDSCH may be determined Accordingly, the PDCCH may not need to be decoded at the UE 102, which may be beneficial due to the fact that a large number of repetitions of the PDCCH may have to be used when the UE 102 operates in the CE mode. That is, the UE 102 may refrain from decoding the PDCCH as part of the reception of the RAR. Such an arrangement may be considered “PDCCH-less” operation.
  • In some embodiments, dedicated PDSCH frequency resources may be pre-defined and configured appropriately for coverage-limited MTC UEs. In addition, knowledge of a fixed timing relationship between PRACH transmission and RAR reception may be used at the UE 102. Knowledge of a transport format for PDSCH transmission may also be used at the UE 102. In some embodiments, a control message, such as an SIB-2 or other System Information Block (SIB) message, may include information such as the timing relationship or transport format just described. The control message may be transmitted to the UE 102 by the eNB 104, either as a dedicated or broadcast message. In addition, information such as the timing relationship or transport format just described may also be pre-defined in some embodiments.
  • At operation 520, an uplink control message may be transmitted on PUSCH resources according to an uplink control repetition number. The transmission may be in response to the reception of the RAR at the UE 102. In some embodiments, the uplink control message may be an “L2/L3” message or may include or be included in one or more L2/L3 messages.
  • The uplink control repetition number may refer to a number of repetitions of the uplink control message to be transmitted by the UE 102, and the number of repetitions for some or all of the candidate CE categories may be different. In some embodiments, the uplink control repetition number may be based at least partly on the CE category for the UE 102, and may be pre-determined through simulation or analysis or other techniques. In some embodiments, the uplink control repetition number may be included in the RAR message received at the UE 102 at operation 515. In some embodiments, the uplink control repetition number may be included in RAR content of the RAR message or may be included in an uplink grant included in the RAR message, as will be described in more detail regarding the method 600 and FIG. 7. In addition, the uplink control repetition number may be a “PUSCH repetition level” that refers to a repetition number to be used for PUSCH transmission.
  • The uplink control message may be transmitted on PUSCH frequency resources that are based at least partly on the CE category for the UE 102. In addition, the PUSCH frequency resources for the uplink control message may be disjoint from PUSCH frequency resources used for uplink control or other messages for UEs not operating in the CE mode.
  • In some embodiments, the uplink control message may include a second CE category for the UE 102, which may be determined at the UE 102 based at least partly on the reception of the RAR at operation 515. For instance, based on a signal quality, signal level or other measurement for the reception of the RAR, the UE 102 may select a second CE category for the UE 102. The second category may be selected from a second group of candidate CE categories that may or may not be different from the group of candidate CE categories used in other operations such as 505-520. For instance, the second group of candidate CE categories may cover a larger range or provide finer granularity. Accordingly, the second CE category may be a new or refined value that may provide more information to the eNB 104 about coverage enhancement for the UE 102.
  • At operation 525, a contention resolution message may be received from the eNB according to the downlink repetition number. In some embodiments, the downlink repetition numbers for operations 515 and 525 may be the same. However, this arrangement is not limiting, and the two numbers may be different in some embodiments. As previously described, the downlink repetition number used at operation 525 may refer to a number of repetitions of the contention resolution message transmitted by the eNB 104, and the number of repetitions for some or all of the candidate CE categories may be different. In some embodiments, the downlink repetition number used at operation 525 may be based at least partly on the CE category for the UE 102, and may be pre-determined through simulation or analysis or other techniques.
  • Referring to FIG. 6, a method 600 of operating in a coverage enhancement mode is shown. As mentioned previously regarding the method 500, embodiments of the method 600 may include additional or even fewer operations or processes in comparison to what is illustrated in FIG. 6 and embodiments of the method 600 are not necessarily limited to the chronological order that is shown in FIG. 6. In describing the method 600, reference may be made to FIGS. 1-5 and 7-9, although it is understood that the method 600 may be practiced with any other suitable systems, interfaces and components. For example, reference may be made to the scenario 400 in FIG. 4 described earlier for illustrative purposes, but the techniques and operations of the method 600 are not so limited. In addition, embodiments of the method 600 may refer to eNBs 104, UEs 102, APs, STAs or other wireless or mobile devices.
  • It should be noted that the method 600 may be practiced at the eNB 104, and may include exchanging of signals or messages with the UE 102. Similarly, the method 500 may be practiced at the UE 102, and may include exchanging of signals or messages with the eNB 104. In some cases, operations and techniques described as part of the method 500 may be relevant to the method 600. For instance, an operation of the method 500 may include transmission of a message by the UE 102 while an operation of the method 600 may include reception of the same message at the eNB 104.
  • At operation 605 of the method 600, a PRACH preamble may be received at the eNB 104 from the UE 102 operating in a coverage enhancement (CE) mode on PRACH frequency resources. The PRACH preamble may be received according to an uplink access repetition number, which may refer to a number of repetitions of the PRACH preamble transmitted by the UE 102. In some embodiments, uplink access repetition numbers may be based at least partly on a CE category for the UE, which may be selected from a group of candidate CE categories, as previously described. The uplink access repetition numbers for the CE categories may be different and may also be known at the eNB 104 for use in the reception of the PRACH at operation 605.
  • At operation 610, a CE category may be determined for the UE 102 from a group of candidate CE categories, and the determination may be based at least partly on the PRACH frequency resources used for the PRACH preamble. As previously described, some or all of the candidate CE categories may be associated with different PRACH frequency resources that may be exclusive to each other. Mappings or assignments of PRACH frequency resources to candidate CE categories may be known at the eNB 104. Accordingly, the eNB 104 may determine the CE category for the UE 102 based on which PRACH frequency resources are used. In some embodiments, the PRACH frequency resources used by the UE 102 when operating in the CE mode may be disjoint from PRACH frequency resources used by UEs not operating in the CE mode.
  • At operation 615, a Random Access Response (RAR) may be transmitted according to a downlink repetition number, which may be based at least partly on the CE category for the UE 102. In some embodiments, PDSCH frequency resources that are based at least partly on the CE category for the UE 102 may be used for transmission of the RAR, and the PDSCH frequency resources may be disjoint from second PDSCH frequency resources for UEs not operating in a CE mode. In some embodiments, the RAR message may be transmitted in response to the reception of the PRACH preamble at operation 605.
  • A physical downlink control channel (PDCCH) data block that includes PDSCH resource allocations for UEs not operating in the CE mode may be transmitted. In addition, the eNB 104 may refrain from transmission of PDCCH data blocks for UEs operating in the CE mode. Accordingly, UEs operating in the CE mode may receive the RAR on pre-determined PDSCH frequency resources. Such an arrangement may be considered “PDCCH-less” operation, as the UEs operating in the CE mode may receive the RAR (or other messages) on PDSCH resources without decoding a PDCCH data block.
  • In addition, a control message may also be transmitted by the eNB 104 for reception at the UE 102 that may include an allocation for the PDSCH frequency resources. The control message may also include other information, such as a modulation and coding scheme (MCS) indicator for the RAR transmission. The MCS indicator may be an index that refers to an MCS of a group of pre-determined candidate MCSs, and each candidate MCS may refer to a modulation type (such as BPSK, QPSK, QAM or other) and a forward error correction (FEC) coding rate. A timing relationship between PRACH transmission at the UE 102 and the RAR transmission may also be included in the control message. In some embodiments, the timing relationship may be fixed. In some embodiments, the control message may be an SIB-2 or other System Information Block (SIB) message of 3GPP or other standards.
  • At operation 620, an uplink control message may be received from the UE 102 on PUSCH resources according to an uplink control repetition number. In some embodiments, the uplink control repetition number may be based at least partly on the CE category for the UE 102, and may also be predetermined In some embodiments, the RAR transmitted at operation 615 (or another message from the eNB 104) may include the uplink control repetition number for the UE 102 to use. The value transmitted in the RAR may override or replace, in some cases, a predetermined value for the uplink control repetition number that the UE may otherwise use, such as a value based on the CE category as described above.
  • PUSCH frequency resources that are at least partly based on the CE category for the UE 102 may be used for reception of the uplink control message at the eNB 104, and the PUSCH frequency resources may be disjoint from second PUSCH frequency resources for UEs not operating in a CE mode.
  • At operation 625, a contention resolution message may be transmitted according to the downlink repetition number. As previously described, the downlink repetition number may be based at least partly on the CE category for the UE 102. In addition, the downlink repetition number used at operation 625 may be the same as the downlink repetition number used at operation 615, but is not limited as such. In some embodiments, PDSCH frequency resources that are at least partly based on the CE category for the UE 102 may be used for transmission of the contention resolution message. The PDSCH frequency resources may or may not overlap the PDSCH frequency resources used at operation 615 for transmission of the RAR.
  • At operation 630 of the method 600, a second PRACH preamble may be received from a second UE not operating in the CE mode. The second PRACH preamble may be received on second PRACH frequency resources allocated for UEs that are not operating in the CE mode. In some embodiments, the second PRACH frequency resources may be exclusive to the PRACH frequency resources allocated for UEs operating in the CE mode. It should also be pointed out that UEs not operating in the CE mode may include legacy UEs that do not support coverage enhancement.
  • Referring to FIG. 7, examples of RAR messages, or MAC RAR messages, are shown in accordance with some embodiments. The RAR message 705 may include other parameters or information 710 that may or may not be related to coverage enhancement or connection or reconnection operations. The RAR message 705 may also include an uplink grant 715, which may include a PUSCH repetition level 725 and other parameters or information 720 that may or may not be related to coverage enhancement or connection or reconnection operations. As will be explained below, the PUSCH repetition level 725 may be the same as or may play the same role as the uplink control repetition level previously described in relation to methods 500 and 600.
  • Another example RAR 755 may include other parameters or information 760 that may or may not be related to coverage enhancement or connection or reconnection operations. The RAR 755 may also include an uplink grant 765 and a PUSCH repetition level 770. Accordingly, the PUSCH repetition level 770 may be external to the uplink grant 765, in contrast to the PUSCH repetition level 725 which may be included in the uplink grant 715.
  • In some embodiments, the PUSCH repetition level 725 may be included as part of the RAR 705 transmitted by the eNB 104 at operation 615, or may be included as part of the RAR 705 received at the UE 102 at operation 515. In some embodiments, the PUSCH repetition level 770 may be included as part of the RAR 755 transmitted by the eNB 104 at operation 615, or may be included as part of the RAR 755 received at the UE 102 at operation 515. It should be pointed out that the RARs 705, 755 serve to illustrate the concept of an RAR, but are not limiting, and other suitable arrangements for the RAR may be used.
  • Referring to FIG. 8, a signal flow diagram illustrates an example of a method 800 for connection or reconnection between the UE 102 and the eNB 104. It should be noted that some of the operations of the method 800 may be similar to operations included in the methods 500 or 600. In such cases, descriptions of such operations in the methods 500 or 600 may be applicable to corresponding operations included in the method 800. In addition, the method 800 shown in FIG. 8 may serve to illustrate the concept of a connection or reconnection procedure, but it is not limiting. Fewer or additional operations may be included in other embodiments of connection or reconnection methods, and the chronological order of operations is not limited to that shown in FIG. 8.
  • At operation 805, a PRACH preamble may be transmitted from the UE 102 to the eNB 104 according to an uplink access repetition number. At operation 810, the eNB 104 may transmit a random access response (RAR) to the UE 102 according to a downlink repetition number. At operation 815, the UE 102 may adjust its uplink timing. It should be noted that the UE 102 may perform operations 805 without timing synchronization with the eNB 104, and may acquire or refine its timing during the reception of the RAR at operation 810. At operation 820, the UE 102 may transmit an uplink control message (such as an L2/L3 message) to the eNB 104 according to an uplink control repetition number. At operation 825, the eNB 104 may transmit a contention resolution message to the UE 102 according to the same downlink repetition number used at operation 810.
  • As previously described, repetition numbers may quantify how many repetitions of a message, such as the PRACH preamble or RAR, may be transmitted, and may depend on the CE category of the UE 102. For instance, the uplink access repetition number may refer to a number of repetitions of the PRACH preamble. For a connection or reconnection procedure, messages exchanged between the UE 102 and eNB 104 may be repeated according to predetermined values, which may be determined through simulation or analysis. In some embodiments, a table may include repetition values for different CE categories, and may be used in operations described previously.
  • An example of such a table 900 is shown in FIG. 9. The column 910 includes three CE categories 912, 914, 916, which correspond to 5, 10, and 15 dB in this example. The row associated with each of the three CE categories 912, 914, 916 may include repetition values for use when the UE 102 operates in that particular CE category. The values for the columns 920, 930, 940, 950 may correspond to PRACH repetition level 920, (E)PDCCH repetition level 930, PDSCH repetition level 940, and PUSCH repetition level 950. These labels on columns 920, 930, 940, 950 may be the same as or related to repetition values previously described. As an example, the PRACH repetition level 920 may be the same as or related to the uplink access repetition number. As another example, the PDCCH repetition level 930 or the PDSCH repetition level 940 may be the same as or related to the downlink repetition number. As another example, the PUSCH repetition level 950 may be the same as or related to the uplink control repetition number.
  • A User Equipment (UE) to operate in accordance with a coverage enhancement (CE) mode is disclosed herein. The UE may include hardware processing circuitry configured to determine, from a group of candidate CE categories, a CE category for the UE based at least partly on downlink channel statistics related to reception of one or more downlink signals at the UE from an Evolved Node-B (eNB). The hardware processing circuitry may be further configured to transmit, in physical random access channel (PRACH) frequency resources, a PRACH preamble according to an uplink access repetition number. In some embodiments, the PRACH frequency resources and the uplink access repetition number may be based at least partly on the CE category for the UE. In some embodiments, the CE category for the UE may reflect one of a level of additional link margin and a level of system resources for performance at or above a performance threshold associated with a normal operating mode for the UE. In some embodiments, the downlink channel statistics may include reference signal received power (RSRP) or path loss measurements at the UE.
  • In some embodiments, the group of candidate CE categories may include a first and a second candidate CE category for which an uplink access repetition number for the first CE category is different from an uplink access repetition number for the second CE category. In some embodiments, the group of candidate CE categories may include a first and a second candidate CE category for which PRACH frequency resources for the first CE category are exclusive to PRACH frequency resources for the second CE category.
  • The hardware processing circuitry may be further configured to receive, from the eNB, a Random Access Response (RAR) according to a downlink repetition number that is based at least partly on the CE category for the UE. In some embodiments, the RAR may be received on physical downlink shared channel (PDSCH) frequency resources that may be based at least partly on the CE category for the UE and the PDSCH frequency resources may be disjoint from second PDSCH frequency resources for UEs not operating in the CE mode. The hardware processing circuitry may be further configured to receive, from the eNB, a physical downlink control channel (PDCCH) data block on PDCCH frequency resources for UEs operating in the CE mode. In some embodiments, the PDCCH data block may include a downlink control information (DCI) block that includes the downlink repetition number. The hardware processing circuitry may be further configured to refrain from decoding physical downlink control channel (PDCCH) data blocks as part of the reception of the RAR.
  • The hardware processing circuitry may be further configured to transmit, in response to the reception of the RAR, an uplink control message on physical uplink shared channel (PUSCH) resources according to an uplink control repetition number. In some embodiments, the RAR may include the uplink control repetition number. In some embodiments, the RAR may include an uplink grant for the UE and the uplink grant may include the uplink control repetition number. In some embodiments, the uplink control message may include a second CE category for the UE, the second CE category may be selected from a second group of candidate CE categories, and the second CE category may be determined at least partly from the reception of the RAR. The hardware processing circuitry may be further configured to receive, from the eNB, a contention resolution message according to the downlink repetition number. In some embodiments, the UE may further support Machine Type Communication (MTC). In some embodiments, the UE may operate according to a 3GPP protocol.
  • A non-transitory computer-readable storage medium that stores instructions for execution by one or more processors to perform operations for communication by a User Equipment (UE) in a coverage enhancement mode is disclosed herein. The operations may configure the one or more processors to determine, from a group of candidate CE categories, a CE category for the UE based at least partly on downlink channel statistics related to reception of one or more downlink signals at the UE from an Evolved Node-B (eNB) and transmit, in physical random access channel (PRACH) frequency resources, a PRACH preamble according to an uplink access repetition number. In some embodiments, the PRACH frequency resources and the uplink access repetition number may be based at least partly on the CE category for the UE. The operations may further configure the one or more processors to receive, from the eNB, a Random Access Response (RAR) according to a downlink repetition number that is based at least partly on the CE category for the UE. The operations may further configure the one or more processors to transmit, in response to the reception of the RAR, an uplink control message on physical uplink shared channel (PUSCH) resources according to an uplink control repetition number that is based at least partly on the CE category for the UE.
  • A method for communicating in a coverage enhancement mode performed by User Equipment (UE) is disclosed herein. The method may include determining, from a group of candidate CE categories, a CE category for the UE based at least partly on downlink channel statistics related to reception of one or more downlink signals at the UE from an Evolved Node-B (eNB). The method may further include transmitting, in physical random access channel (PRACH) frequency resources, a PRACH preamble according to an uplink access repetition number. In some embodiments, the PRACH frequency resources and the uplink access repetition number are based at least partly on the CE category for the UE. The method may further include receiving, from the eNB, a Random Access Response (RAR) according to a downlink repetition number that is based at least partly on the CE category for the UE. The method may further include transmitting, in response to the reception of the RAR, an uplink control message on physical uplink shared channel (PUSCH) resources according to an uplink control repetition number that is based at least partly on the CE category for the UE.
  • An Evolved Node-B (eNB) to operate in accordance with a coverage enhancement (CE) mode is disclosed herein. The eNB may include hardware processing circuitry configured to receive, from a User Equipment (UE) operating in the CE mode, a physical random access channel (PRACH) preamble on PRACH frequency resources allocated for UEs operating in the CE mode. The hardware processing circuitry may be further configured to determine, based at least partly on the PRACH frequency resources used for the reception of the PRACH preamble, a CE category for the UE from a group of candidate CE categories and transmit a Random Access Response (RAR) according to a downlink repetition number that is based at least partly on the CE category for the UE. In some embodiments, the group of candidate CE categories may include a first and a second candidate CE category for which PRACH frequency resources for the first and second CE categories are exclusive. In some embodiments, the RAR may be transmitted on physical downlink shared channel (PDSCH) frequency resources that are based at least partly on the CE category for the UE and the PDSCH frequency resources may be disjoint from second PDSCH frequency resources for UEs not operating in a CE mode.
  • The hardware processing circuitry may be further configured to transmit a physical downlink control channel (PDCCH) data block that includes PDSCH resource allocations for UEs not operating in the CE mode and to refrain from transmission of PDCCH data blocks for UEs operating in the CE mode. The hardware processing circuitry may be further configured to transmit a control message that includes an allocation for the PDSCH frequency resources, a modulation and coding scheme (MCS) indicator for the RAR transmission, and a timing relationship between PRACH transmission at the UE and the RAR transmission.
  • The hardware processing circuitry may be further configured to receive, from the UE, an uplink control message on physical uplink shared channel (PUSCH) resources according to an uplink control repetition number. In some embodiments, the uplink control repetition number may be based at least partly on the CE category for the UE. In some embodiments, the RAR may include the uplink control repetition number. The hardware processing circuitry may be further configured to transmit, in response to the reception of the uplink control message, a contention resolution message according to the downlink repetition number. The hardware processing circuitry may be further configured to receive, from a second UE not operating in the CE mode, a second PRACH preamble on second PRACH frequency resources allocated for UEs that are not operating in the CE mode. In some embodiments, the second PRACH frequency resources may be exclusive to the PRACH frequency resources allocated for UEs operating in the CE mode. In some embodiments, the eNB may operate according to a 3GPP protocol.
  • The Abstract is provided to comply with 37 C.F.R. Section 1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims The following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate embodiment.

Claims (30)

What is claimed is:
1. A User Equipment (UE) to operate in accordance with a coverage enhancement (CE) mode, the UE comprising hardware processing circuitry configured to:
determine, from a group of candidate CE categories, a CE category for the UE based at least partly on downlink channel statistics related to reception of one or more downlink signals at the UE from an Evolved Node-B (eNB); and
transmit, in physical random access channel (PRACH) frequency resources, a PRACH preamble according to an uplink access repetition number;
wherein the PRACH frequency resources and the uplink access repetition number are based at least partly on the CE category for the UE.
2. The UE according to claim 1, wherein the CE category for the UE reflects one of a level of additional link margin and a level of system resources for performance at or above a performance threshold associated with a normal operating mode for the UE.
3. The UE according to claim 1, wherein the downlink channel statistics include reference signal received power (RSRP) or path loss measurements at the UE.
4. The UE according to claim 1, wherein the group of candidate CE categories includes a first and a second candidate CE category for which an uplink access repetition number for the first CE category is different from an uplink access repetition number for the second CE category and PRACH frequency resources for the first CE category are exclusive to PRACH frequency resources for the second CE category.
5. The UE according to claim 1, the hardware processing circuitry further configured to receive, from the eNB, a Random Access Response (RAR) according to a downlink repetition number that is based at least partly on the CE category for the UE.
6. The UE according to claim 5, wherein:
the RAR is received on physical downlink shared channel (PDSCH) frequency resources that are based at least partly on the CE category for the UE; and
the PDSCH frequency resources are disjoint from second PDSCH frequency resources for UEs not operating in the CE mode.
7. The UE according to claim 6, wherein:
the hardware processing circuitry is further configured to receive, from the eNB, a physical downlink control channel (PDCCH) data block on PDCCH frequency resources for UEs operating in the CE mode;
the PDCCH data block includes a downlink control information (DCI) block that includes the downlink repetition number.
8. The UE according to claim 6, wherein the hardware processing circuitry is further configured to refrain from decoding physical downlink control channel (PDCCH) data blocks as part of the reception of the RAR.
9. The UE according to claim 5, the hardware processing circuitry further configured to transmit, in response to the reception of the RAR, an uplink control message on physical uplink shared channel (PUSCH) resources according to an uplink control repetition number.
10. The UE according to claim 9, wherein the RAR includes the uplink control repetition number.
11. The UE according to claim 10, wherein the RAR includes an uplink grant for the UE and the uplink grant includes the uplink control repetition number.
12. The UE according to claim 9, wherein:
the uplink control message includes a second CE category for the UE;
the second CE category is selected from a second group of candidate CE categories; and
the second CE category is determined at least partly from the reception of the RAR.
13. The UE according to claim 9, the hardware processing circuitry further configured to receive, from the eNB, a contention resolution message according to the downlink repetition number.
14. The UE according to claim 1, wherein the UE is further to support Machine Type Communication (MTC) and to operate according to a 3GPP protocol.
15. A non-transitory computer-readable storage medium that stores instructions for execution by one or more processors to perform operations for communication by User Equipment (UE) in a coverage enhancement (CE) mode, the operations to configure the one or more processors to:
determine, from a group of candidate CE categories, a CE category for the UE based at least partly on downlink channel statistics related to reception of one or more downlink signals at the UE from an Evolved Node-B (eNB); and
transmit, in physical random access channel (PRACH) frequency resources, a PRACH preamble according to an uplink access repetition number;
wherein the PRACH frequency resources and the uplink access repetition number are based at least partly on the CE category for the UE.
16. The non-transitory computer-readable storage medium according to claim 15, the operations to further configure the one or more processors to receive, from the eNB, a Random Access Response (RAR) according to a downlink repetition number that is based at least partly on the CE category for the UE.
17. The non-transitory computer-readable storage medium according to claim 16, the operations to further configure the one or more processors to transmit, in response to the reception of the RAR, an uplink control message on physical uplink shared channel (PUSCH) resources according to an uplink control repetition number that is based at least partly on the CE category for the UE.
18. A method for communicating in a coverage enhancement (CE) mode performed by User Equipment (UE), the method comprising:
determining, from a group of candidate CE categories, a CE category for the UE based at least partly on downlink channel statistics related to reception of one or more downlink signals at the UE from an Evolved Node-B (eNB); and
transmitting, in physical random access channel (PRACH) frequency resources, a PRACH preamble according to an uplink access repetition number;
wherein the PRACH frequency resources and the uplink access repetition number are based at least partly on the CE category for the UE.
19. The method according to claim 18, further comprising receiving, from the eNB, a Random Access Response (RAR) according to a downlink repetition number that is based at least partly on the CE category for the UE.
20. An Evolved Node-B (eNB) to operate in accordance with a coverage enhancement (CE) mode, the eNB comprising hardware processing circuitry configured to:
receive, from a User Equipment (UE) operating in the CE mode, a physical random access channel (PRACH) preamble on PRACH frequency resources allocated for UEs operating in the CE mode;
determine, based at least partly on the PRACH frequency resources used for the reception of the PRACH preamble, a CE category for the UE from a group of candidate CE categories; and
transmit a Random Access Response (RAR) according to a downlink repetition number that is based at least partly on the CE category for the UE.
21. The eNB according to claim 20, wherein the group of candidate CE categories includes a first and a second candidate CE category for which PRACH frequency resources for the first and second CE categories are exclusive.
22. The eNB according to claim 20, wherein:
the RAR is transmitted on physical downlink shared channel (PDSCH) frequency resources that are based at least partly on the CE category for the UE; and
the PDSCH frequency resources are disjoint from second PDSCH frequency resources for UEs not operating in a CE mode.
23. The eNB according to claim 22, the hardware processing circuitry further configured to transmit a physical downlink control channel (PDCCH) data block that includes PDSCH resource allocations for UEs not operating in the CE mode and to refrain from transmission of PDCCH data blocks for UEs operating in the CE mode.
24. The eNB according to claim 22, the hardware processing circuitry further configured to transmit a control message that includes an allocation for the PDSCH frequency resources, a modulation and coding scheme (MCS) indicator for the RAR transmission, and a timing relationship between PRACH transmission at the UE and the RAR transmission.
25. The eNB according to claim 20, the hardware processing circuitry further configured to receive, from the UE, an uplink control message on physical uplink shared channel (PUSCH) resources according to an uplink control repetition number.
26. The eNB according to claim 25, wherein the uplink control repetition number is based at least partly on the CE category for the UE.
27. The eNB according to claim 25, wherein the RAR includes the uplink control repetition number.
28. The eNB according to claim 25, the hardware processing circuitry further configured to transmit, in response to the reception of the uplink control message, a contention resolution message according to the downlink repetition number.
29. The eNB according to claim 20, wherein:
the hardware processing circuitry is further configured to receive, from a second UE not operating in the CE mode, a second PRACH preamble on second PRACH frequency resources allocated for UEs that are not operating in the CE mode; and
the second PRACH frequency resources are exclusive to the PRACH frequency resources allocated for UEs operating in the CE mode.
30. The eNB according to claim 20, wherein the eNB is further to operate according to a 3GPP protocol.
US14/917,451 2013-10-31 2014-10-28 User equipment and evolved node-b and methods for operation in a coverage enhancement mode Pending US20160227580A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US201361898425P true 2013-10-31 2013-10-31
US14/917,451 US20160227580A1 (en) 2013-10-31 2014-10-28 User equipment and evolved node-b and methods for operation in a coverage enhancement mode
PCT/US2014/062533 WO2015065947A1 (en) 2013-10-31 2014-10-28 User equipment and evolved node-b and methods for operation in a coverage enhancement mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/917,451 US20160227580A1 (en) 2013-10-31 2014-10-28 User equipment and evolved node-b and methods for operation in a coverage enhancement mode

Publications (1)

Publication Number Publication Date
US20160227580A1 true US20160227580A1 (en) 2016-08-04

Family

ID=52995317

Family Applications (22)

Application Number Title Priority Date Filing Date
US14/316,175 Active 2035-01-13 US9572171B2 (en) 2013-10-31 2014-06-26 Systems, methods, and devices for efficient device-to-device channel contention
US14/485,002 Active 2036-02-10 US10375705B2 (en) 2013-10-31 2014-09-12 Wireless local area network (WLAN) connectivity option discovery
US14/491,639 Active 2034-10-11 US9674852B2 (en) 2013-10-31 2014-09-19 Radio link failure handling for dual connectivity
US14/494,206 Abandoned US20150119015A1 (en) 2013-10-31 2014-09-23 Application access class barring
US14/916,843 Active US10009911B2 (en) 2013-10-31 2014-09-23 User equipment and mobility management entity and methods for periodic update in cellular networks
US14/495,704 Active 2034-11-20 US9832782B2 (en) 2013-10-31 2014-09-24 Techniques and configurations associated with user equipment-initiated congestion reporting
US14/496,596 Abandoned US20150117241A1 (en) 2013-10-31 2014-09-25 Buffer status reporting in a communications network
US15/023,063 Active 2034-12-11 US10142999B2 (en) 2013-10-31 2014-09-26 Resource selection in device to device communication
US15/022,893 Abandoned US20160227496A1 (en) 2013-10-31 2014-09-26 Synchronization of device to device communication
US15/026,174 Active US9992781B2 (en) 2013-10-31 2014-10-21 Signaling for inter-cell D2D discovery in an LTE network
US15/026,753 Active 2034-12-03 US9826539B2 (en) 2013-10-31 2014-10-27 Resource allocation for D2D discovery in an LTE network
US14/917,451 Pending US20160227580A1 (en) 2013-10-31 2014-10-28 User equipment and evolved node-b and methods for operation in a coverage enhancement mode
US14/917,154 Active 2034-12-05 US10015805B2 (en) 2013-10-31 2014-10-30 User equipment and methods of bearer operation for carrier aggregation
US15/026,788 Active US9867206B2 (en) 2013-10-31 2014-10-31 Signaling extended EARFCN and E-UTRA bands in UMTS networks
US15/614,208 Active US10015807B2 (en) 2013-10-31 2017-06-05 Radio link failure handling for dual connectivity
US15/717,540 Active US10136447B2 (en) 2013-10-31 2017-09-27 Signaling for inter-cell D2D discovery in an LTE network
US15/730,287 Active US9999063B2 (en) 2013-10-31 2017-10-11 Resource allocation for D2D discovery in an LTE network
US15/862,181 Active US10075966B2 (en) 2013-10-31 2018-01-04 Signaling extended EARFCN and E-UTRA bands in UMTS networks
US15/942,974 Active US10251187B2 (en) 2013-10-31 2018-04-02 Resource allocation for D2D discovery in an LTE network
US15/994,154 Pending US20180317237A1 (en) 2013-10-31 2018-05-31 User equipment and methods of bearer operation for carrier aggregation
US16/003,019 Active US10397935B2 (en) 2013-10-31 2018-06-07 Radio link failure handling for dual connectivity
US16/444,416 Pending US20190306868A1 (en) 2013-10-31 2019-06-18 Wireless local area network (wlan) connectivity option discovery

Family Applications Before (11)

Application Number Title Priority Date Filing Date
US14/316,175 Active 2035-01-13 US9572171B2 (en) 2013-10-31 2014-06-26 Systems, methods, and devices for efficient device-to-device channel contention
US14/485,002 Active 2036-02-10 US10375705B2 (en) 2013-10-31 2014-09-12 Wireless local area network (WLAN) connectivity option discovery
US14/491,639 Active 2034-10-11 US9674852B2 (en) 2013-10-31 2014-09-19 Radio link failure handling for dual connectivity
US14/494,206 Abandoned US20150119015A1 (en) 2013-10-31 2014-09-23 Application access class barring
US14/916,843 Active US10009911B2 (en) 2013-10-31 2014-09-23 User equipment and mobility management entity and methods for periodic update in cellular networks
US14/495,704 Active 2034-11-20 US9832782B2 (en) 2013-10-31 2014-09-24 Techniques and configurations associated with user equipment-initiated congestion reporting
US14/496,596 Abandoned US20150117241A1 (en) 2013-10-31 2014-09-25 Buffer status reporting in a communications network
US15/023,063 Active 2034-12-11 US10142999B2 (en) 2013-10-31 2014-09-26 Resource selection in device to device communication
US15/022,893 Abandoned US20160227496A1 (en) 2013-10-31 2014-09-26 Synchronization of device to device communication
US15/026,174 Active US9992781B2 (en) 2013-10-31 2014-10-21 Signaling for inter-cell D2D discovery in an LTE network
US15/026,753 Active 2034-12-03 US9826539B2 (en) 2013-10-31 2014-10-27 Resource allocation for D2D discovery in an LTE network

Family Applications After (10)

Application Number Title Priority Date Filing Date
US14/917,154 Active 2034-12-05 US10015805B2 (en) 2013-10-31 2014-10-30 User equipment and methods of bearer operation for carrier aggregation
US15/026,788 Active US9867206B2 (en) 2013-10-31 2014-10-31 Signaling extended EARFCN and E-UTRA bands in UMTS networks
US15/614,208 Active US10015807B2 (en) 2013-10-31 2017-06-05 Radio link failure handling for dual connectivity
US15/717,540 Active US10136447B2 (en) 2013-10-31 2017-09-27 Signaling for inter-cell D2D discovery in an LTE network
US15/730,287 Active US9999063B2 (en) 2013-10-31 2017-10-11 Resource allocation for D2D discovery in an LTE network
US15/862,181 Active US10075966B2 (en) 2013-10-31 2018-01-04 Signaling extended EARFCN and E-UTRA bands in UMTS networks
US15/942,974 Active US10251187B2 (en) 2013-10-31 2018-04-02 Resource allocation for D2D discovery in an LTE network
US15/994,154 Pending US20180317237A1 (en) 2013-10-31 2018-05-31 User equipment and methods of bearer operation for carrier aggregation
US16/003,019 Active US10397935B2 (en) 2013-10-31 2018-06-07 Radio link failure handling for dual connectivity
US16/444,416 Pending US20190306868A1 (en) 2013-10-31 2019-06-18 Wireless local area network (wlan) connectivity option discovery

Country Status (10)

Country Link
US (22) US9572171B2 (en)
EP (14) EP3064016B1 (en)
JP (4) JP6253788B2 (en)
KR (3) KR20160039235A (en)
CN (12) CN105580477B (en)
BR (1) BR112016006844A2 (en)
ES (5) ES2708174T3 (en)
HK (9) HK1223225A1 (en)
HU (5) HUE042854T2 (en)
WO (11) WO2015065608A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150117410A1 (en) * 2013-10-31 2015-04-30 Htc Corporation Method of Handling Coverage Enhancement in Wireless Communication System
US20150208415A1 (en) * 2014-01-23 2015-07-23 Qualcomm Incorporated Coverage enhancements with carrier aggregation
US20160050660A1 (en) * 2014-08-18 2016-02-18 Telefonaktiebolaget L M Ericsson (Publ) Channel capacity on collision based channels
US20170019931A1 (en) * 2015-07-17 2017-01-19 Apple Inc. Random Access Mechanisms for Link-Budget-Limited Devices
US9674852B2 (en) 2013-10-31 2017-06-06 Intel IP Corporation Radio link failure handling for dual connectivity
US20170238302A1 (en) * 2014-01-30 2017-08-17 Nec Corporation Machine-to-machine (m2m) terminal, base station, method, and computer readable medium
US20170245241A1 (en) * 2014-11-07 2017-08-24 Huawei Technologies Co., Ltd. Paging Message Transmission Method, Base Station, Mobility Management Entity, and User Equipment
US20170359836A1 (en) * 2015-01-08 2017-12-14 Sharp Kabushiki Kaisha Terminal device, base station device, radio communication method, and integrated circuit
US10305574B2 (en) 2013-08-08 2019-05-28 Intel IP Corporation Coverage extension level for coverage limited device
US10396965B2 (en) * 2015-03-06 2019-08-27 Lg Electronics Inc. Method and apparatus for configuring frame structure and frequency hopping for MTC UE in wireless communication system

Families Citing this family (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013263463B2 (en) * 2012-05-16 2017-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a communications network
KR101654258B1 (en) * 2012-06-15 2016-09-05 노키아 솔루션스 앤드 네트웍스 오와이 Dynamic control of network selection
US9001736B2 (en) * 2012-12-13 2015-04-07 Sony Corporation Network-controlled terminal-to-terminal direct communication in wireless telecommunication network
US9854495B2 (en) * 2013-01-11 2017-12-26 Lg Electronics Inc. Radio link failure reporting in a system using multiple cells
KR20140103729A (en) * 2013-02-19 2014-08-27 삼성전자주식회사 Apparatus, circuit and method for providing voice service in packet data communication syste
KR20160041930A (en) * 2013-07-12 2016-04-18 엘지전자 주식회사 Method and apparatus for transmitting signal in wireless communication system
CN109362125A (en) * 2013-07-19 2019-02-19 Lg电子株式会社 The method and apparatus of random access procedure is executed in a wireless communication system
US9258747B2 (en) 2013-09-17 2016-02-09 Intel IP Corporation User equipment and methods for fast handover failure recovery in 3GPP LTE network
CN105684538B (en) * 2013-10-31 2019-10-25 Lg电子株式会社 The method of the D2D operation executed in a wireless communication system by terminal and the terminal for using this method
MX347605B (en) * 2013-10-31 2017-05-04 Huawei Tech Co Ltd Transmission node and method for reporting buffer status thereof.
GB2519975A (en) * 2013-11-01 2015-05-13 Nec Corp Communication system
JP2016539603A (en) * 2013-11-01 2016-12-15 サムスン エレクトロニクス カンパニー リミテッド Resource allocation and resource allocation information transmitting / receiving apparatus and method in communication system supporting device-to-device system
WO2015066864A1 (en) * 2013-11-06 2015-05-14 Nokia Technologies Oy Method and apparatus for controlling d2d discovery process
JP2015095675A (en) * 2013-11-08 2015-05-18 株式会社Nttドコモ Mobile communication method
US9603127B2 (en) * 2013-11-08 2017-03-21 Lg Electronics Inc. Method and apparatus for allocating resources for performing device-to-device communication in wireless communication system
US10039086B2 (en) * 2013-11-11 2018-07-31 Electronics And Telecommunications Research Institute Communication method and apparatus in network environment where terminal may have dual connectivity to multiple base stations
WO2015069000A1 (en) * 2013-11-11 2015-05-14 엘지전자 주식회사 Method for detecting synchronization signal for device-to-device (d2d) communication in wireless communication system and apparatus therefor
US10123290B2 (en) * 2013-11-27 2018-11-06 Lg Electronics Inc. Method for scanning resource for device-to-device direct communication in wireless communication system and apparatus therefor
KR20160079048A (en) * 2013-12-06 2016-07-05 후지쯔 가부시끼가이샤 Method and apparatus for sending d2d discovery signal, and communications system
US9756678B2 (en) * 2013-12-13 2017-09-05 Sharp Kabushiki Kaisha Systems and methods for multi-connectivity operation
CN109951837A (en) * 2013-12-18 2019-06-28 中兴通讯股份有限公司 Method, base station and the mobile management entity of interactive information under a kind of small base-station environment
WO2015099321A1 (en) * 2013-12-25 2015-07-02 Lg Electronics Inc. Method for reporting a buffer status and device therefor
US9894699B2 (en) * 2013-12-30 2018-02-13 Nokia Technologies Oy Methods and apparatuses for proximity-based service
WO2015104118A1 (en) * 2014-01-08 2015-07-16 Nokia Solutions And Networks Oy A method and apparatus for performing congestion mitigation and barring
US10348852B2 (en) * 2014-01-21 2019-07-09 Lg Electronics Inc. Method for determining terminal identifier in wireless communication system supporting device-to-device communication and apparatus for same
KR20150087818A (en) * 2014-01-22 2015-07-30 삼성전자주식회사 Apparatus and method for avoiding collision between random access transmission and device to device transmission in communication system supporting device to device scheme
EP3091798B1 (en) * 2014-01-24 2018-09-19 Huawei Technologies Co., Ltd. Device and synchronization method thereof in device to device communication
WO2015109961A1 (en) * 2014-01-24 2015-07-30 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for transmitting d2d synchronization signals
WO2015109569A1 (en) * 2014-01-26 2015-07-30 华为技术有限公司 Resources allocation method and device
WO2015111908A1 (en) 2014-01-26 2015-07-30 엘지전자(주) Method for transmitting synchronization signal and synchronization channel in wireless communication system supporting device-to-device communication and apparatus for same
EP3100527A4 (en) * 2014-01-28 2017-08-30 Telefonaktiebolaget LM Ericsson (publ) Power control method in mixed cellular and d2d network and ue
US10219269B2 (en) 2014-01-30 2019-02-26 Qualcomm Incorporated Mixed size expression peer discovery in WWAN
US20160345374A1 (en) * 2014-01-30 2016-11-24 Nokia Technologies Oy Device to Device Discovery Resource Allocation
WO2015115573A1 (en) * 2014-01-31 2015-08-06 京セラ株式会社 Communication control method
JP5869013B2 (en) * 2014-01-31 2016-02-24 株式会社Nttドコモ Mobile station and uplink data transmission method
US9288694B2 (en) * 2014-02-07 2016-03-15 Nokia Solutions And Networks Oy Partial failure handling of bearer mapping in dual connectivity
EP3105974A1 (en) * 2014-02-14 2016-12-21 Telefonaktiebolaget LM Ericsson (publ) Pcrf assisted apn selection
JP2015154243A (en) * 2014-02-14 2015-08-24 ソニー株式会社 Terminal apparatus, program and method
US10182462B2 (en) * 2014-02-20 2019-01-15 Nokia Solutions And Networks Oy Configuring physical channel resources for sounding or discovery in a half duplex communication environment
US9635655B2 (en) * 2014-02-24 2017-04-25 Intel Corporation Enhancement to the buffer status report for coordinated uplink grant allocation in dual connectivity in an LTE network
US20170078957A1 (en) * 2014-03-06 2017-03-16 Nokia Technologies Oy Method and apparatus for determining ims connectivity through non-3gpp access networks
TWI612837B (en) * 2014-03-11 2018-01-21 財團法人資訊工業策進會 Direct mode communication system and communication resource scheduling method thereof
CN106105273B (en) * 2014-03-18 2019-08-16 夏普株式会社 Wireless communication system, terminal installation, wireless communications method and integrated circuit
WO2015141851A1 (en) * 2014-03-20 2015-09-24 京セラ株式会社 User terminal, communications control method, and base station
US9585106B2 (en) * 2014-03-27 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Network-assisted channel selection and power control for mobile devices
KR20160138400A (en) * 2014-03-28 2016-12-05 엘지전자 주식회사 Method for transmitting and receiving signal in wireless communication system supporting device-to-device communication and apparatus therefor
US9877259B2 (en) * 2014-03-31 2018-01-23 Huawei Technologies Co., Ltd. Dynamic energy-efficient transmit point (TP) muting for virtual radio access network (V-RAN)
KR101862331B1 (en) * 2014-04-10 2018-05-29 엘지전자 주식회사 Method and device for performing synchronization between terminals in wireless communication system
US10149121B2 (en) * 2014-04-13 2018-12-04 Lg Electronics Inc. Method for managing D2D terminal group in wireless communication system and apparatus for same
WO2015163728A1 (en) * 2014-04-24 2015-10-29 엘지전자 주식회사 Method for transmitting synchronization signal for d2d communication in wireless communication system and apparatus therefor
JP6527529B2 (en) * 2014-05-02 2019-06-05 シャープ株式会社 Resource Pool Configuration Mechanism for Device-to-Device Communication
US9848321B2 (en) * 2014-05-05 2017-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Protecting WLCP message exchange between TWAG and UE
JPWO2015170630A1 (en) * 2014-05-07 2017-04-20 株式会社Nttドコモ Mobile station, base station, uplink data amount reporting method, and uplink data resource allocation method
EP2950460A3 (en) * 2014-05-08 2016-02-17 Acer Incorporated A method of forming n-hop synchronous network for d2d communication and devices using the same
US20170086156A1 (en) * 2014-05-09 2017-03-23 Deutsche Telekom Ag Improving or enabling radio coverage for a user equipment with respect to a mobile communication network
MX2016013146A (en) * 2014-05-09 2017-02-14 Deutsche Telekom Ag Method, user equipment, system, mobile communication network, program and computer program product for improving device to device communication.
US9867096B2 (en) * 2014-05-09 2018-01-09 Telefonaktiebolaget Lm Ericsson (Publ) Uplink reconfiguration for split bearer in dual connectivity
EP3151621A4 (en) 2014-05-27 2017-11-15 LG Electronics Inc. Data transmission method and apparatus by device to device terminal in wireless communication system
US9591497B2 (en) * 2014-05-30 2017-03-07 Apple Inc. Wireless link quality monitoring
US10349248B2 (en) * 2014-06-02 2019-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Merging proxy
CN104010300B (en) * 2014-06-09 2018-05-15 宇龙计算机通信科技(深圳)有限公司 Data transmission method
JP6562951B2 (en) * 2014-06-20 2019-08-21 エルジー エレクトロニクス インコーポレイティド Method and apparatus for determining resources for direct communication between terminals in a wireless communication system
CN105338572A (en) * 2014-06-23 2016-02-17 北京三星通信技术研究有限公司 Data distribution method and device for segmented bearing in double-connection
US10425915B2 (en) * 2014-06-27 2019-09-24 Sharp Kabushiki Kaisha Resource pool access for device to device communications
WO2016006859A1 (en) * 2014-07-07 2016-01-14 엘지전자 주식회사 Method and device for transmitting and receiving d2d signal by relay terminal in wireless access system supporting device-to-device communication
CN104080110A (en) * 2014-07-17 2014-10-01 开曼群岛威睿电通股份有限公司 Calling control device and method based on service priority
CN105282783A (en) * 2014-07-22 2016-01-27 中兴通讯股份有限公司 Method, device, and system for reporting power headroom report (PHR) in double connection
EP3177084B1 (en) * 2014-07-29 2019-05-01 Sharp Kabushiki Kaisha Terminal device, base station device, communications method and integrated circuit
WO2016019512A1 (en) * 2014-08-05 2016-02-11 华为技术有限公司 D2d terminal, system, and d2d discovery method
JP6078699B2 (en) * 2014-08-06 2017-02-08 株式会社Nttドコモ User equipment and base station
WO2016021820A1 (en) * 2014-08-08 2016-02-11 Lg Electronics Inc. Method for processing a packet data convergence protocol re-ordering function at a user equipment in a dual connectivity system and device therefor
CN105338639A (en) * 2014-08-08 2016-02-17 中兴通讯股份有限公司 Method for measuring and reporting device to device (D2D) resource pool and equipment
JP2017527200A (en) * 2014-08-08 2017-09-14 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Processing of D2D resource permission procedure
US9225889B1 (en) 2014-08-18 2015-12-29 Entropix, Inc. Photographic image acquisition device and method
CN106664675A (en) * 2014-09-05 2017-05-10 Lg电子株式会社 Method for performing communication between devices in wireless communication system and device for performing same
EP3192323A1 (en) * 2014-09-15 2017-07-19 Reliance JIO Infocomm USA, Inc. Extending communication services to a consumption device using a proxy device
EP3185640A4 (en) * 2014-09-15 2018-05-02 Huawei Technologies Co. Ltd. Communication method, communication system and relevant device of wearable device
US10327244B2 (en) * 2014-09-21 2019-06-18 Lg Electronics Inc. D2D relay method of terminal in wireless communication system, and apparatus therefor
US10039070B2 (en) 2014-09-24 2018-07-31 Lg Electronics Inc. Method for transmitting D2D signal and terminal therefor
US20160095074A1 (en) * 2014-09-25 2016-03-31 Samsung Electronics Co., Ltd. Synchronization procedure and resource control method and apparatus for communication in d2d system
US9980159B2 (en) * 2014-09-26 2018-05-22 Mediatek Inc. RRC re-establishment on secondary eNodeB for dual connectivity
BR112017006696A2 (en) * 2014-10-03 2017-12-26 Ericsson Telefon Ab L M method for performing a random access procedure, wireless terminal and network node apparatus, computer program product, and non-transient computer readable medium.
JP6416393B2 (en) * 2014-10-10 2018-10-31 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Signal quality measurement for communication between devices
US9807713B2 (en) * 2014-11-14 2017-10-31 Telefonaktiebolaget Lm Ericsson (Publ) Synchronization in communications networks
US10070337B2 (en) * 2014-11-16 2018-09-04 Lg Electronics Inc. Method for reporting information related to D2D performed by terminal in wireless communication system
US20160157254A1 (en) * 2014-11-26 2016-06-02 Samsung Electronics Co., Ltd. Methods and apparatus for control information resource allocation for d2d communications
US10448332B2 (en) * 2014-12-02 2019-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Wake-up for D2D communication
CN105682230B (en) * 2014-12-04 2019-08-23 财团法人工业技术研究院 Resource selection method and wireless device
JP6455779B2 (en) * 2014-12-15 2019-01-23 パナソニックIpマネジメント株式会社 Radio base station apparatus, radio communication system, frequency allocation method, and radio resource allocation method
KR20170095918A (en) * 2014-12-18 2017-08-23 엘지전자 주식회사 Method for reconfiguring a pdcp reordering timer in a wireless communication system and device therefor
US9867153B2 (en) * 2014-12-18 2018-01-09 Qualcomm Incorporated Distributed synchronization of IoE devices
EP3041310B1 (en) * 2014-12-23 2018-09-26 HTC Corporation Methods of handling simultaneous communications and related communication devices
CN105744626B (en) * 2014-12-25 2019-02-22 宏达国际电子股份有限公司 The method and device thereof of processing and the failure of multiple inter base station communications
US9992806B2 (en) * 2015-01-15 2018-06-05 Intel IP Corporation Public safety discovery and communication using a UE-to-UE relay
EP3247148B1 (en) * 2015-02-09 2019-05-15 Huawei Technologies Co., Ltd. Rlc data packet offloading method, and base station
US10271365B2 (en) * 2015-02-12 2019-04-23 Nec Corporation Method and system for device to device communication
US20160262001A1 (en) * 2015-03-03 2016-09-08 Samsung Electronics Co., Ltd. Method for managing resource utilization for multi-hop device discovery and device to device communication
US20170251465A1 (en) * 2015-03-09 2017-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Reducing reference signals when communicating multiple sub-subframes between a base station and a wireless terminal
US10362510B2 (en) * 2015-03-12 2019-07-23 Lg Electronics Inc. Method and terminal for controlling network traffic in wireless communication system
US10397805B2 (en) * 2015-03-25 2019-08-27 Nec Corporation Communication device, communication system, and control method
US20160295624A1 (en) * 2015-04-02 2016-10-06 Samsung Electronics Co., Ltd Methods and apparatus for resource pool design for vehicular communications
WO2016163644A1 (en) * 2015-04-09 2016-10-13 엘지전자 주식회사 Method and apparatus for performing cell reselection procedures for load distribution
US9769862B2 (en) 2015-04-09 2017-09-19 Sharp Laboratories Of America, Inc. Method and apparatus for implementing partial coverage and out-of-coverage sidelink discovery resource pools for wireless communications
CN107534982A (en) * 2015-04-10 2018-01-02 Lg电子株式会社 The method and apparatus of D2D signals is sent/receives for considering priority in a wireless communication system
US20190045345A1 (en) * 2015-05-14 2019-02-07 Lg Electronics Inc. Method for transmitting and receiving d2d signal in wireless communication system, and apparatus therefor
US9894702B2 (en) * 2015-05-14 2018-02-13 Intel IP Corporation Performing primary cell functions in a secondary cell
US9980215B2 (en) 2015-05-18 2018-05-22 Samsung Electronics Co., Ltd. System and method for access point selection with evolved packet data gateway
US10333678B2 (en) 2015-05-29 2019-06-25 Huawei Technologies Co., Ltd. Systems and methods of adaptive frame structure for time division duplex
US10128993B2 (en) * 2015-05-29 2018-11-13 Huawei Technologies Co., Ltd. Systems and methods of adaptive frame structure for time division duplex
EP3304974A4 (en) 2015-05-29 2018-11-14 Intel IP Corporation Seamless mobility for 5g and lte systems and devices
EP3304993B1 (en) 2015-06-02 2019-03-20 Telefonaktiebolaget LM Ericsson (PUBL) Resource pools for vehicular communications
US10165599B2 (en) * 2015-06-10 2018-12-25 Apple Inc. Random access procedures for link budget constrained wireless devices
CN104980993B (en) * 2015-06-19 2017-05-17 广东欧珀移动通信有限公司 Network access method, mobile communication terminal, network server and network access system
US10111113B2 (en) 2015-06-19 2018-10-23 Qualcomm Incorporated Coverage enhancement level determination
JP6580719B2 (en) * 2015-07-01 2019-09-25 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting data in a double connection
WO2017018538A1 (en) * 2015-07-30 2017-02-02 京セラ株式会社 Wireless terminal
JP2017038276A (en) * 2015-08-11 2017-02-16 Kddi株式会社 Base station device, communication device, control method, and program
US9806775B2 (en) * 2015-09-01 2017-10-31 Qualcomm Incorporated Multi-user multiple-input-multiple-output groupings of stations
US9860761B2 (en) 2015-09-01 2018-01-02 Qualcomm Incorporated Multi-user multiple-input-multiple-output grouping metrics
WO2017048011A1 (en) * 2015-09-18 2017-03-23 엘지전자 주식회사 Method and user equipment for transmitting uplink signal and prose signal
CN107925979A (en) * 2015-10-02 2018-04-17 英特尔Ip公司 Method and user equipment (UE) for registration circuit exchange (CS) service in plural mould operation
EP3366076B1 (en) * 2015-10-21 2019-10-16 Panasonic Intellectual Property Corporation of America User equipment, enodeb and wireless communication method
US9867226B2 (en) 2015-12-14 2018-01-09 Qualcomm Incorporated Radio link failure (RLF) failover in a multi-connectivity environment
US10057272B2 (en) * 2015-12-15 2018-08-21 At&T Mobility Ii Llc Universal subscriber identity recognition and data classification
CN107371247B (en) * 2016-05-13 2019-09-17 电信科学技术研究院 A kind of resource regulating method and equipment
US20170347311A1 (en) * 2016-05-25 2017-11-30 Qualcomm Incorporated Identification and/or profiling of stationary users and mobile users
WO2018021767A1 (en) * 2016-07-26 2018-02-01 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data
WO2018021803A1 (en) * 2016-07-29 2018-02-01 Samsung Electronics Co., Ltd. Data transmission method and device
WO2018029578A1 (en) * 2016-08-12 2018-02-15 Nokia Technologies Oy Long term evolution (lte) light connection enhancements for long term evolution (lte)-new radio access technology (nr) interworking
WO2018034452A1 (en) * 2016-08-17 2018-02-22 엘지전자 주식회사 Method for transmitting frame in wireless lan system, and wireless terminal using method
WO2018062786A1 (en) * 2016-09-28 2018-04-05 엘지전자 주식회사 Method and apparatus for controlling srb
CN106550490B (en) * 2016-10-31 2019-04-26 北京小米移动软件有限公司 A kind for the treatment of method and apparatus of Radio Link Failure
WO2018128572A1 (en) * 2017-01-06 2018-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Radio network nodes, wireless device, and methods performed therein for handling connections in a wireless communication network
WO2018174602A1 (en) * 2017-03-22 2018-09-27 엘지전자(주) Method for transmitting or receiving sidelink synchronization signal in wireless communication system and apparatus therefor
WO2018174791A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing dual connectivity communication and related network nodes and wireless terminals
US10462681B2 (en) 2017-04-10 2019-10-29 Samsung Electronics Co., Ltd. Method and user equipment (UE) for cell reselection in connected mode thereof
WO2018207001A1 (en) * 2017-05-10 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for handover control in a wireless communication network
CN109219015A (en) * 2017-07-06 2019-01-15 电信科学技术研究院 A kind of resource selection method and device
EP3461219A1 (en) * 2017-09-20 2019-03-27 HTC Corporation Method of handling secondary cell group failure
WO2019061244A1 (en) * 2017-09-29 2019-04-04 Nokia Shanghai Bell Co., Ltd. Communications method, apparatus and computer program
US10389457B2 (en) 2017-11-03 2019-08-20 Qualcomm Incorporated Techniques for efficient connected mode measurements in a new radio wireless communication system
US20190230663A1 (en) * 2017-11-14 2019-07-25 Lg Electronics Inc. Method for transmitting and receiving signal by terminal supporting dual-connectivity between e-utra and nr and terminal performing the method
WO2019169576A1 (en) * 2018-03-07 2019-09-12 Qualcomm Incorporated Coverage enhancement (ce) level and transmit power determination techniques for user equipment (ue) in extended coverage
KR102011666B1 (en) 2018-12-28 2019-08-19 주식회사 온페이스 D-to-D system using 5G small cell, and the method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009876A1 (en) * 2012-07-09 2014-01-09 Aopen Inc. Electronic device and wire fixing mechanism thereof
US20140098761A1 (en) * 2012-10-05 2014-04-10 Interdigital Patent Holdings, Inc. Method and apparatus for enhancing coverage of machine type communication (mtc) devices
US20150016312A1 (en) * 2013-07-10 2015-01-15 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process

Family Cites Families (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685396B2 (en) 1992-11-17 1997-12-03 株式会社クボタ Sample display device of an automatic vending machine
US7072656B2 (en) 1999-03-16 2006-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Handover in a shared radio access network environment using subscriber-dependent neighbor cell lists
US6424673B1 (en) * 2000-11-10 2002-07-23 Motorola, Inc. Method and apparatus in a wireless communication system for facilitating detection of, and synchronization with, a predetermined synchronization signal
CN100568845C (en) * 2002-04-17 2009-12-09 汤姆森特许公司 Method for communicating with mobile station and public land mobile network in WLAN
US7983242B2 (en) 2003-08-18 2011-07-19 Qualcomm, Incorporated Packet data service with circuit-switched call notification
WO2005084128A2 (en) 2004-03-04 2005-09-15 Outsmart Ltd. Integration of packet and cellular telephone networks
JP4394541B2 (en) 2004-08-23 2010-01-06 日本電気株式会社 Communication device, data communication method, and program
US20060121935A1 (en) * 2004-11-29 2006-06-08 Nokia Corporation System, devices and methods using an indication of complementary access availability in measurement reports sent by mobile terminals
US8072948B2 (en) 2005-07-14 2011-12-06 Interdigital Technology Corporation Wireless communication system and method of implementing an evolved system attachment procedure
US8064400B2 (en) * 2005-07-20 2011-11-22 Interdigital Technology Corporation Method and system for supporting an evolved UTRAN
CA2622392A1 (en) 2005-10-21 2007-04-26 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for measurement reporting in a cellular telecommunications system
US8279887B2 (en) * 2005-11-09 2012-10-02 Telefonaktiebolaget Lm Ericsson (Publ) Selection of radio resources in a radio communications network
MX2009000259A (en) 2006-06-20 2009-01-22 Interdigital Tech Corp Handover in a long term evolution (lte) wireless communication system.
CN100411470C (en) 2006-07-31 2008-08-13 华为技术有限公司 Method and system for processing joint position service Gs interface fault
US8159980B2 (en) 2006-10-03 2012-04-17 Nokia Corporation PS network with CS service enabling functionality
EP1936837B1 (en) * 2006-12-20 2009-06-17 NTT DoCoMo Inc. Apparatus for synchronizing a first transmit and receive device to a second transmit and receive device
WO2008081531A1 (en) * 2006-12-28 2008-07-10 Fujitsu Limited Wireless communication system, base station, and random access channel transmission method
JP5190705B2 (en) * 2007-01-10 2013-04-24 日本電気株式会社 RADIO COMMUNICATION TERMINAL DEVICE, ACCESS POINT DEVICE, RADIO COMMUNICATION SYSTEM, INFORMATION PROVIDING METHOD, AND INFORMATION Fetching Method
US8565766B2 (en) * 2007-02-05 2013-10-22 Wefi Inc. Dynamic network connection system and method
US7873710B2 (en) * 2007-02-06 2011-01-18 5O9, Inc. Contextual data communication platform
US8432899B2 (en) 2007-02-22 2013-04-30 Aylus Networks, Inc. Systems and methods for enabling IP signaling in wireless networks
US8630281B2 (en) 2007-07-10 2014-01-14 Qualcomm Incorporated Coding methods of communicating identifiers in peer discovery in a peer-to-peer network
EP2028890B1 (en) * 2007-08-12 2019-01-02 LG Electronics Inc. Handover method with link failure recovery, wireless device and base station for implementing such method
WO2009038377A2 (en) * 2007-09-20 2009-03-26 Lg Electronics Inc. Method of effectively transmitting radio resource allocation request in mobile communication system
US8948749B2 (en) * 2007-10-12 2015-02-03 Qualcomm Incorporated System and method to facilitate acquisition of access point base stations
CN101426194A (en) * 2007-10-29 2009-05-06 华为技术有限公司 Method, system and network side equipment for registration
WO2009067061A1 (en) * 2007-11-22 2009-05-28 Telefonaktiebolaget L M Ericsson (Publ) A method for registering a mobile terminal in a mobile radio communication system
US20090175324A1 (en) * 2008-01-04 2009-07-09 Qualcomm Incorporated Dynamic interference control in a wireless communication network
CN101919284B (en) 2008-01-18 2015-04-01 爱立信电话股份有限公司 Method and apparatus for radio link failure recovery in a telecommunication system
US8644190B2 (en) 2008-01-28 2014-02-04 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for network access discovery and selection
US8213405B2 (en) 2008-02-01 2012-07-03 Qualcomm Incorporated Wireless network synchronization
US20090270098A1 (en) 2008-04-29 2009-10-29 Gallagher Michael D Method and Apparatus for User Equipment Registration in a Voice over Long Term Evolution via Generic Access
US8428609B2 (en) 2008-05-02 2013-04-23 Pine Valley Investments, Inc. System and method for managing communications in cells within a cellular communication system
KR20090124788A (en) 2008-05-30 2009-12-03 삼성전자주식회사 Handover method and apparatus in mobile communication network
EP2304902B1 (en) * 2008-06-04 2015-04-08 Nokia Solutions and Networks Oy Network discovery and selection
US8077638B2 (en) * 2008-06-26 2011-12-13 Qualcomm Incorporated Methods and apparatus for providing quality of service in a peer to peer network
US8391879B2 (en) * 2008-11-10 2013-03-05 Qualcomm Incorporated Methods and apparatus for supporting distributed scheduling using quality of service information in a peer to peer network
US8644338B2 (en) 2009-01-07 2014-02-04 Qualcomm Incorporated Unbundling packets received in wireless communications
JP2012516586A (en) 2009-02-01 2012-07-19 ▲ホア▼▲ウェイ▼技術有限公司 Method and corresponding system for user device access, and network access device
EP2216965B1 (en) 2009-02-05 2015-08-12 Thomson Licensing Method for managing data transmission between peers according to levels of priority of transmitted and received data and associated management device
EP2401884B1 (en) * 2009-02-24 2017-07-19 Nokia Technologies Oy Time-hopping for near-far interference mitigation in device-to-device communications
US8107883B2 (en) * 2009-03-23 2012-01-31 Nokia Corporation Apparatus and method for interference avoidance in mixed device-to-device and cellular environment
US9351340B2 (en) * 2009-04-08 2016-05-24 Nokia Technologies Oy Apparatus and method for mode selection for device-to-device communications
JP5322006B2 (en) 2009-04-23 2013-10-23 独立行政法人情報通信研究機構 Time allocation method for radio communication, time allocation device, and radio communication system
US8824326B2 (en) 2009-04-30 2014-09-02 Nokia Corporation Method and apparatus for managing device-to-device interference
CN101998590B (en) * 2009-08-25 2015-05-20 中兴通讯股份有限公司 User reachable realization method and multimode terminal
JP2013505612A (en) 2009-09-21 2013-02-14 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Caching in mobile networks
KR20110038571A (en) 2009-10-08 2011-04-14 한국전자통신연구원 Serving base station for deciding handover failure type in the wireless mobile communication system
US8542636B2 (en) 2010-01-04 2013-09-24 Lili Qiu Vehicular content distribution
EP2524543B1 (en) 2010-01-11 2018-11-07 Nokia Solutions and Networks Oy Network selection mechanisms
CN102158896B (en) * 2010-02-12 2014-01-01 华为技术有限公司 Method and device for treating local link congestion
AU2011215752A1 (en) * 2010-02-12 2012-09-06 Interdigital Patent Holdings, Inc Access control and congestion control in machine-to-machine communication
ES2614610T3 (en) 2010-04-01 2017-06-01 Alcatel Lucent Carrier aggregation optimized for handover
CN106028439B (en) 2010-04-01 2019-10-01 Lg电子株式会社 Signal processing method and its equipment in wireless communication system
US20110267948A1 (en) 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
WO2011153702A1 (en) 2010-06-10 2011-12-15 华为技术有限公司 Method, apparatus and system for selecting public land mobile network
US8359038B2 (en) * 2010-06-15 2013-01-22 Nokia Corporation Channel access for local heterogeneous communication in a cellular network
US9037137B2 (en) * 2010-07-30 2015-05-19 Deutsche Telekom Ag Method and program for cell barring in a cellular network
CN102630389B (en) 2010-08-13 2016-01-20 华为技术有限公司 A method for providing information in a cellular radio communication system
US8837443B2 (en) * 2010-08-13 2014-09-16 Sharp Kabushiki Kaisha Reducing congestion in wireless communication networks
CN102413494B (en) 2010-09-21 2016-06-01 北京三星通信技术研究有限公司 A method for radio link failure or handover failure reason detection
GB2484117A (en) 2010-09-30 2012-04-04 Fujitsu Ltd Automated network coverage hole detection by systematically modifying a connection reestablishment timer (T311) in a number of UEs
TWI446806B (en) * 2010-10-14 2014-07-21 Wistron Corp Method for pear to pear signal synchronization and the blue tooth device and system using the same
US9560682B2 (en) * 2010-11-05 2017-01-31 Qualcomm Incorporated Methods and apparatus for resource allocations to support peer-to-peer communications in cellular networks
DE102011014323A1 (en) * 2010-12-28 2012-06-28 Beda Oxygentechnik Armaturen Gmbh Multiple secured coupling device for oxygen lances
WO2012107788A1 (en) 2011-02-08 2012-08-16 Telefonaktiebolaget L M Ericsson (Publ) Method and system for mobility support for caching adaptive http streaming content in cellular networks
JP4965718B1 (en) 2011-02-21 2012-07-04 株式会社エヌ・ティ・ティ・ドコモ Network access control method in mobile device, mobile device, and processor used in mobile device
US9173192B2 (en) 2011-03-17 2015-10-27 Qualcomm Incorporated Target cell selection for multimedia broadcast multicast service continuity
US9118452B2 (en) * 2011-03-28 2015-08-25 Lg Electronics Inc. Method for transmitting an uplink signal, method for receiving an uplink signal, user equipment, and base station
US9167447B2 (en) 2011-03-31 2015-10-20 Mediatek Inc. Failure event report for initial connection setup failure
KR101796271B1 (en) 2011-04-27 2017-11-10 주식회사 팬택 Apparatus And Method For Reporting Radio Link Failure
WO2012150815A2 (en) 2011-05-02 2012-11-08 엘지전자 주식회사 Method for performing device-to-device communication in wireless access system and apparatus therefor
US8892103B2 (en) 2011-05-06 2014-11-18 Telefonaktiebolaget L M Ericsson (Publ) Methods and nodes supporting cell change
DE112011105271T5 (en) 2011-05-25 2014-03-06 Renesas Mobile Corporation Resource allocation for D2D communication
US9137804B2 (en) 2011-06-21 2015-09-15 Mediatek Inc. Systems and methods for different TDD configurations in carrier aggregation
US8848638B2 (en) 2011-06-27 2014-09-30 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
US9949189B2 (en) 2011-07-11 2018-04-17 Interdigital Patent Holdings, Inc. Systems and methods for establishing and maintaining multiple cellular connections and/or interfaces
KR101896001B1 (en) * 2011-07-12 2018-09-06 한국전자통신연구원 Method of mobility management for mobile terminal in a heterogeneous network environment
US8977268B2 (en) 2011-07-21 2015-03-10 Alcatel Lucent Methods and systems for controlling handovers in a co-channel network
DE102011052044A1 (en) 2011-07-21 2013-01-24 C. Rob. Hammerstein Gmbh & Co. Kg Fitting for an adjustment of a motor vehicle seat
US9031564B2 (en) 2011-08-04 2015-05-12 Telefonaktiebolaget L M Ericsson (Publ) Handover robustness in cellular radio communications
KR101736877B1 (en) 2011-08-08 2017-05-17 삼성전자주식회사 Apparatas and method for distributing d2d id allocation scheme a noting wireless communication network in a user terminal
US9107225B2 (en) 2011-08-12 2015-08-11 Lg Electronics Inc. Method and apparatus for reporting statistic information associated with random access in a wireless communication system
GB2494134B (en) * 2011-08-30 2014-01-15 Renesas Mobile Corp Method and apparatus for allocating device-to-device discovery portion
EP2565817A1 (en) 2011-08-30 2013-03-06 Nokia Corporation Method and apparatus for close proximity device discovery
KR20130027965A (en) 2011-09-08 2013-03-18 삼성전자주식회사 A method and apparatus for controlling in a near field communication network including a prurality of connections for direct communication between a device and a device
US9775079B2 (en) 2011-09-22 2017-09-26 Panasonic Intellectual Property Corporation Of America Method and apparatus for mobile terminal connection control and management of local accesses
US8848700B2 (en) * 2011-09-30 2014-09-30 Electronics And Telecommunications Research Institute Method for device-to-device communication based on cellular telecommunication system
US8688166B2 (en) 2011-10-17 2014-04-01 Intel Corporation Call establishment in highly congested network environment
KR101855229B1 (en) * 2011-10-27 2018-05-10 삼성전자주식회사 Method for performing synchronization between devices
GB2496153B (en) 2011-11-02 2014-07-02 Broadcom Corp Device-to-device communications
KR101953216B1 (en) 2011-11-11 2019-02-28 삼성전자주식회사 Method and apparatus for transmiting system information in mobile communucation system
US9237485B2 (en) 2011-11-18 2016-01-12 Qualcomm Incorporated Deferred measurement control reading of system information block (SIB) messages
US10271293B2 (en) * 2011-11-18 2019-04-23 Apple Inc. Group formation within a synchronized hierarchy of peer-to-peer devices
WO2013077684A1 (en) * 2011-11-24 2013-05-30 엘지전자 주식회사 Method for performing device-to-device communication in wireless access system and apparatus for same
WO2013075340A1 (en) * 2011-11-25 2013-05-30 Renesas Mobile Corporation Radio resource sharing and contention scheme for device-to-device communication in white space spectrum bands
US9083627B2 (en) 2011-12-20 2015-07-14 Cisco Technology, Inc. Assisted traffic engineering for minimalistic connected object networks
CN103188742B (en) * 2011-12-29 2015-11-25 华为技术有限公司 A communication handover method, user equipment and base station
EP2803235A1 (en) 2012-01-10 2014-11-19 Nokia Solutions and Networks Oy Providing a radio bearer on a plurality of component carriers
GB2498395B (en) 2012-01-16 2014-10-08 Broadcom Corp A method and apparatus for modifying one or more cell reselection parameters
US9055560B2 (en) 2012-01-18 2015-06-09 Mediatek Inc. Method of enhanced connection recovery and loss-less data recovery
GB2498571A (en) 2012-01-20 2013-07-24 Intellectual Ventures Holding 81 Llc Base station able to communicate with a second device type on a narrow subset frequency band contained within a first main band
GB2498575A (en) * 2012-01-20 2013-07-24 Renesas Mobile Corp Device-to-device discovery resource allocation for multiple cells in a device-to-device discovery area
US9161322B2 (en) * 2012-01-25 2015-10-13 Ofinno Technologies, Llc Configuring base station and wireless device carrier groups
US9526091B2 (en) 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9661525B2 (en) * 2012-03-21 2017-05-23 Samsung Electronics Co., Ltd. Granular network access control and methods thereof
CN103327568B (en) * 2012-03-21 2016-12-14 中国移动通信集团公司 Resource allocation message transmission method, device discovery method and related equipment
EP2645783A1 (en) * 2012-03-30 2013-10-02 British Telecommunications Public Limited Company Access point detection
WO2013150502A2 (en) * 2012-04-05 2013-10-10 Telefonaktiebolaget L M Ericsson (Publ) Sending plmn id at a shared wifi access
US9560685B2 (en) 2012-04-20 2017-01-31 Lg Electronics Inc. Method and device for transmitting D2D data in wireless communication system
RU2610422C2 (en) * 2012-04-24 2017-02-10 Сони Мобайл Коммьюникейшнз Инк. Network controlled extended access barring for user devices with multiple services
WO2013168906A1 (en) * 2012-05-11 2013-11-14 Lg Electronics Inc. Method of selecting a cell in a wireless communication system and apparatus therefor
US9661526B2 (en) * 2012-05-21 2017-05-23 Samsung Electronics Co., Ltd Method and device for transmitting and receiving data in mobile communication system
JP2013243673A (en) * 2012-05-21 2013-12-05 Zte Corp Co-existence support for 3gpp device and fixed device bearer transport via fixed broadband access network
JP5896829B2 (en) * 2012-05-22 2016-03-30 株式会社Nttドコモ Network access control method, mobile device and processor
CN103458526B (en) * 2012-06-04 2017-07-14 电信科学技术研究院 A kind of method of buffer region state reporting, system and equipment
CN104620661B (en) * 2012-07-20 2018-10-02 Lg电子株式会社 The method and apparatus for sending instruction in a wireless communication system
US8811363B2 (en) * 2012-09-11 2014-08-19 Wavemax Corp. Next generation network services for 3G/4G mobile data offload in a network of shared protected/locked Wi-Fi access points
CN104782185A (en) * 2012-09-13 2015-07-15 Lg电子株式会社 Operating method for acquiring system information in wireless communication system, and apparatus for supporting same
CN103686754B (en) 2012-09-17 2019-04-23 中兴通讯股份有限公司 A kind of band spreading capability reporting and the method and apparatus issued
CN102883451B (en) * 2012-10-12 2015-04-15 南京邮电大学 Cross layer design method of up resources of shared system by terminal direction connection technology
WO2014073866A1 (en) * 2012-11-06 2014-05-15 엘지전자 주식회사 Method for controlling access in wireless communication system and apparatus for supporting same
US9264930B2 (en) * 2012-11-07 2016-02-16 Qualcomm Incorporated Buffer status reporting and logical channel prioritization in multiflow operation
MX344890B (en) 2012-11-13 2017-01-10 Huawei Tech Co Ltd Method, base station and user equipment for transmitting data.
WO2014107917A1 (en) * 2013-01-10 2014-07-17 Broadcom Corporation Buffer status reporting for dual connection
US9854495B2 (en) * 2013-01-11 2017-12-26 Lg Electronics Inc. Radio link failure reporting in a system using multiple cells
US9144091B2 (en) 2013-01-17 2015-09-22 Sharp Kabushiki Kaisha Devices for establishing multiple connections
WO2014110813A1 (en) 2013-01-18 2014-07-24 Mediatek Inc. Mechanism of rlf handling in small cell networks
US9986380B2 (en) * 2013-01-25 2018-05-29 Blackberry Limited Proximity and interest determination by a wireless device
CN104956743B (en) * 2013-01-31 2018-10-26 Lg 电子株式会社 Synchronous method and apparatus is executed in a wireless communication system
US9313730B2 (en) * 2013-02-15 2016-04-12 Blackberry Limited Public land mobile network (“PLMN”) discovery communications in a wireless network
US9955408B2 (en) 2013-02-22 2018-04-24 Samsung Electronics Co., Ltd. Network-assisted multi-cell device discovery protocol for device-to-device communications
JP6437933B2 (en) * 2013-03-11 2018-12-12 エルジー エレクトロニクス インコーポレイティド Synchronous information receiving method for direct communication between terminals and apparatus therefor
US10219206B2 (en) * 2013-03-22 2019-02-26 Qualcomm Incorporated Selecting a network node based on precedence of network policies
CN105103605B (en) * 2013-04-04 2019-05-10 交互数字专利控股公司 The method for realizing the 3GPP WLAN interaction that improved WLAN is used by unloading
JP6117986B2 (en) 2013-04-05 2017-04-19 ノキア ソリューションズ アンド ネットワークス オサケユキチュア Avoiding key mismatch in security handling of multiple frequency bands
US9735942B2 (en) 2013-04-05 2017-08-15 Qualcomm Incorporated Physical broadcast channel (PBCH) coverage enhancements for machine type communications (MTC)
WO2014182010A1 (en) 2013-05-06 2014-11-13 Lg Electronics Inc. Method and apparatus for controlling traffic steering in wireless communication system
US9526044B2 (en) 2013-05-08 2016-12-20 Lg Electronics Inc. Method of configuring dual connectivity to UE in heterogeneous cell deployment
US9332473B2 (en) 2013-05-09 2016-05-03 Sharp Kabushiki Kaisha Systems and methods for re-establishing a connection
KR20140136365A (en) * 2013-05-20 2014-11-28 삼성전자주식회사 Method and apparatus for selecting wlan efficiently
CN103313406B (en) * 2013-05-31 2016-01-20 西安电子科技大学 X2 interfaces using different signaling interaction to complete the method of communication cells d2d
CN103338497B (en) * 2013-06-14 2016-06-01 北京交通大学 One kind of a communication system d2d autonomous device discovery method
US20160135103A1 (en) 2013-07-17 2016-05-12 Lg Electronics Inc Method and apparatus for performing handover procedure for dual connectivity in wireless communication system
US9374151B2 (en) 2013-08-08 2016-06-21 Intel IP Corporation Coverage extension level for coverage limited device
CN105612804A (en) * 2013-08-09 2016-05-25 诺基亚通信公司 Use of packet status report from secondary base station to master base station in wireless network
US9648514B2 (en) 2013-08-09 2017-05-09 Blackberry Limited Method and system for protocol layer enhancements in data offload over small cells
US9414430B2 (en) * 2013-08-16 2016-08-09 Qualcomm, Incorporated Techniques for managing radio link failure recovery for a user equipment connected to a WWAN and a WLAN
US9258747B2 (en) 2013-09-17 2016-02-09 Intel IP Corporation User equipment and methods for fast handover failure recovery in 3GPP LTE network
EP2854460B1 (en) * 2013-09-27 2017-04-05 Sun Patent Trust Power control and power headroom reporting for dual connectivity
WO2015042872A1 (en) * 2013-09-27 2015-04-02 Nokia Corporation Methods and apparatus for wireless device synchronization
US9756531B2 (en) * 2013-09-30 2017-09-05 Lg Electronics Inc. Method for determining radio resource control configuration in a wireless communication system supporting dual connectivity and apparatus thereof
KR101893160B1 (en) 2013-10-20 2018-08-29 엘지전자 주식회사 Method for detecting discovery signal for device-to-device communication in wireless communication system, and device for same
CN104581843B (en) 2013-10-21 2018-07-03 宏达国际电子股份有限公司 For the processing delivering method and its communication device of the network-side of wireless communication system
JP6376137B2 (en) 2013-10-31 2018-08-22 日本電気株式会社 Wireless communication system, base station apparatus, and wireless terminal
US20160262149A1 (en) 2013-10-31 2016-09-08 Nec Corporation Radio communication system, base station apparatus, radio terminal, and communication control method
US9572171B2 (en) 2013-10-31 2017-02-14 Intel IP Corporation Systems, methods, and devices for efficient device-to-device channel contention
KR20150085405A (en) * 2014-01-15 2015-07-23 삼성전자주식회사 Apparatus and method for congestion detection of wireless network in a communication system
US20150201337A1 (en) 2014-01-16 2015-07-16 Nokia Solutions And Networks Oy Obtaining additional supported bands of neighbor cells via automatic neighbor relation (anr)
JP6424230B2 (en) 2014-01-29 2018-11-14 インターデイジタル パテント ホールディングス インコーポレイテッド Resource selection for device-to-device discovery or device-to-device communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009876A1 (en) * 2012-07-09 2014-01-09 Aopen Inc. Electronic device and wire fixing mechanism thereof
US20140098761A1 (en) * 2012-10-05 2014-04-10 Interdigital Patent Holdings, Inc. Method and apparatus for enhancing coverage of machine type communication (mtc) devices
US20150016312A1 (en) * 2013-07-10 2015-01-15 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305574B2 (en) 2013-08-08 2019-05-28 Intel IP Corporation Coverage extension level for coverage limited device
US9961595B2 (en) * 2013-10-31 2018-05-01 Htc Corporation Method of handling coverage enhancement in wireless communication system
US10251187B2 (en) 2013-10-31 2019-04-02 Intel IP Corporation Resource allocation for D2D discovery in an LTE network
US10136447B2 (en) 2013-10-31 2018-11-20 Intel IP Corporation Signaling for inter-cell D2D discovery in an LTE network
US10015807B2 (en) 2013-10-31 2018-07-03 Intel IP Corporation Radio link failure handling for dual connectivity
US9674852B2 (en) 2013-10-31 2017-06-06 Intel IP Corporation Radio link failure handling for dual connectivity
US10015805B2 (en) 2013-10-31 2018-07-03 Intel IP Corporation User equipment and methods of bearer operation for carrier aggregation
US10009911B2 (en) 2013-10-31 2018-06-26 Intel IP Corporation User equipment and mobility management entity and methods for periodic update in cellular networks
US9999063B2 (en) 2013-10-31 2018-06-12 Intel IP Corporation Resource allocation for D2D discovery in an LTE network
US9826539B2 (en) 2013-10-31 2017-11-21 Intel IP Corporation Resource allocation for D2D discovery in an LTE network
US9992781B2 (en) 2013-10-31 2018-06-05 Intel IP Corporation Signaling for inter-cell D2D discovery in an LTE network
US9867206B2 (en) 2013-10-31 2018-01-09 Intel IP Corporation Signaling extended EARFCN and E-UTRA bands in UMTS networks
US20150117410A1 (en) * 2013-10-31 2015-04-30 Htc Corporation Method of Handling Coverage Enhancement in Wireless Communication System
US10411838B2 (en) * 2014-01-23 2019-09-10 Qualcomm Incorporated Coverage enhancements with carrier aggregation
US20150208415A1 (en) * 2014-01-23 2015-07-23 Qualcomm Incorporated Coverage enhancements with carrier aggregation
US10440718B2 (en) 2014-01-30 2019-10-08 Nec Corporation Machine-to-machine (M2M) terminal, base station, method, and computer readable medium
US20170238302A1 (en) * 2014-01-30 2017-08-17 Nec Corporation Machine-to-machine (m2m) terminal, base station, method, and computer readable medium
US10356790B2 (en) 2014-01-30 2019-07-16 Nec Corporation Machine-to-machine (M2M) terminal, base station, method, and computer readable medium
US10292166B2 (en) * 2014-01-30 2019-05-14 Nec Corporation Machine-to-machine (M2M) terminal, base station, method, and computer readable medium
US9788318B2 (en) * 2014-08-18 2017-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Channel capacity on collision based channels
US20160050660A1 (en) * 2014-08-18 2016-02-18 Telefonaktiebolaget L M Ericsson (Publ) Channel capacity on collision based channels
US20170245241A1 (en) * 2014-11-07 2017-08-24 Huawei Technologies Co., Ltd. Paging Message Transmission Method, Base Station, Mobility Management Entity, and User Equipment
US20180302880A1 (en) * 2014-11-07 2018-10-18 Huawei Technologies Co., Ltd. Paging Message Transmission Method, Base Station, Mobility Management Entity, and User Equipment
US20170359836A1 (en) * 2015-01-08 2017-12-14 Sharp Kabushiki Kaisha Terminal device, base station device, radio communication method, and integrated circuit
US10396965B2 (en) * 2015-03-06 2019-08-27 Lg Electronics Inc. Method and apparatus for configuring frame structure and frequency hopping for MTC UE in wireless communication system
US10080243B2 (en) * 2015-07-17 2018-09-18 Apple Inc. Mechanisms to facilitate random access by link-budget-limited devices
US20170019932A1 (en) * 2015-07-17 2017-01-19 Apple Inc. Mechanisms to Facilitate Random Access by Link-Budget-Limited Devices
US20170019931A1 (en) * 2015-07-17 2017-01-19 Apple Inc. Random Access Mechanisms for Link-Budget-Limited Devices
US10278209B2 (en) * 2015-07-17 2019-04-30 Apple Inc. Random access mechanisms for link-budget-limited devices

Also Published As

Publication number Publication date
US10015807B2 (en) 2018-07-03
CN105580477B (en) 2019-04-16
ES2715699T3 (en) 2019-06-05
HUE042854T2 (en) 2019-07-29
EP3064012B1 (en) 2019-02-20
CN105557051A (en) 2016-05-04
US9992781B2 (en) 2018-06-05
EP3063883A1 (en) 2016-09-07
ES2684085T3 (en) 2018-10-01
ES2690385T3 (en) 2018-11-20
HK1223478A1 (en) 2017-07-28
JP6253788B2 (en) 2017-12-27
US20150117241A1 (en) 2015-04-30
CN105580464B (en) 2019-07-09
US9867206B2 (en) 2018-01-09
US20180035441A1 (en) 2018-02-01
US10075966B2 (en) 2018-09-11
HK1223477A1 (en) 2017-07-28
EP3063980A4 (en) 2017-07-19
HUE040192T2 (en) 2019-02-28
EP3063992A4 (en) 2017-07-19
BR112016006844A2 (en) 2017-08-01
CN105594266B (en) 2019-06-18
EP3064001A1 (en) 2016-09-07
US20160219541A1 (en) 2016-07-28
EP3064007A4 (en) 2017-06-07
HK1224480A1 (en) 2017-08-18
US20180020459A1 (en) 2018-01-18
EP3346740A1 (en) 2018-07-11
CN108601085A (en) 2018-09-28
US9572171B2 (en) 2017-02-14
US20190306868A1 (en) 2019-10-03
CN105580440A (en) 2016-05-11
WO2015065608A1 (en) 2015-05-07
CN105580464A (en) 2016-05-11
US10251187B2 (en) 2019-04-02
HUE040201T2 (en) 2019-02-28
EP3064012A1 (en) 2016-09-07
US20180227932A1 (en) 2018-08-09
EP3063882A4 (en) 2017-04-05
WO2015066476A1 (en) 2015-05-07
HK1223222A1 (en) 2017-07-21
US9999063B2 (en) 2018-06-12
KR20180036804A (en) 2018-04-09
US20160234855A1 (en) 2016-08-11
US10009911B2 (en) 2018-06-26
EP3064012A4 (en) 2017-06-14
US9832782B2 (en) 2017-11-28
US20180199352A1 (en) 2018-07-12
US20170273095A1 (en) 2017-09-21
KR20160048952A (en) 2016-05-04
WO2015065619A1 (en) 2015-05-07
EP3063982A4 (en) 2017-04-19
EP3064001A4 (en) 2017-09-20
ES2684747T3 (en) 2018-10-04
EP3064013A4 (en) 2017-04-05
EP3064007B1 (en) 2018-06-20
JP6437596B2 (en) 2018-12-12
US20150117187A1 (en) 2015-04-30
EP3419317A1 (en) 2018-12-26
CN105684529A (en) 2016-06-15
US20160234847A1 (en) 2016-08-11
US20150119015A1 (en) 2015-04-30
HUE041804T2 (en) 2019-05-28
HK1223225A1 (en) 2017-07-21
US9674852B2 (en) 2017-06-06
WO2015065631A1 (en) 2015-05-07
JP2016536828A (en) 2016-11-24
HUE039962T2 (en) 2019-02-28
HK1223749A1 (en) 2017-08-04
KR20160039235A (en) 2016-04-08
CN105580417B (en) 2019-04-23
EP3064003A4 (en) 2017-07-19
JP2016531533A (en) 2016-10-06
CN105594140A (en) 2016-05-18
WO2015066123A1 (en) 2015-05-07
CN107645748A (en) 2018-01-30
JP2017200210A (en) 2017-11-02
US20180288778A1 (en) 2018-10-04
EP3063882A1 (en) 2016-09-07
US9826539B2 (en) 2017-11-21
US10136447B2 (en) 2018-11-20
CN105594266A (en) 2016-05-18
CN105556994A (en) 2016-05-04
CN105556994B (en) 2019-04-05
CN105557052B (en) 2019-06-28
JP6162330B2 (en) 2017-07-12
ES2708174T3 (en) 2019-04-09
US20150117332A1 (en) 2015-04-30
JP2018067937A (en) 2018-04-26
CN105580417A (en) 2016-05-11
WO2015065947A1 (en) 2015-05-07
EP3064016A1 (en) 2016-09-07
US10015805B2 (en) 2018-07-03
US20160255602A1 (en) 2016-09-01
EP3064016B1 (en) 2018-10-31
HK1223223A1 (en) 2017-07-21
US10142999B2 (en) 2018-11-27
CN105684529B (en) 2019-06-21
KR101969268B1 (en) 2019-04-15
CN105594140B (en) 2018-12-04
EP3063992A1 (en) 2016-09-07
US20160255640A1 (en) 2016-09-01
WO2015065632A1 (en) 2015-05-07
HK1223764A1 (en) 2017-08-04
EP3063883A4 (en) 2017-04-26
HK1224482A1 (en) 2017-08-18
WO2015065881A1 (en) 2015-05-07
EP3064013A1 (en) 2016-09-07
WO2015065768A1 (en) 2015-05-07
US20160227496A1 (en) 2016-08-04
US10375705B2 (en) 2019-08-06
EP3367737A1 (en) 2018-08-29
WO2015065761A1 (en) 2015-05-07
EP3064003A1 (en) 2016-09-07
EP3064016A4 (en) 2017-06-07
EP3063982A1 (en) 2016-09-07
EP3063883B1 (en) 2018-06-27
CN105557052A (en) 2016-05-04
EP3063980A1 (en) 2016-09-07
US10397935B2 (en) 2019-08-27
US20150117425A1 (en) 2015-04-30
EP3063982B1 (en) 2018-08-15
CN105580477A (en) 2016-05-11
KR101855018B1 (en) 2018-05-04
US20180317237A1 (en) 2018-11-01
US20150117183A1 (en) 2015-04-30
US20160255615A1 (en) 2016-09-01
EP3064007A1 (en) 2016-09-07
WO2015066281A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
US9313812B2 (en) User equipment and evolved node-B supporting machine type communication and small data communication
KR101642214B1 (en) ENHANCED PHYSICAL DOWNLINK CONTROL CHANNEL (ePDCCH) INTER-CELL INTERFERENCE COORDINATION (ICIC)
US9801207B2 (en) Evolved node-B and methods for supporting co-existence with Wi-Fi networks in an unlicensed frequency band
JP6316880B2 (en) Signaling for proximity services and D2D discovery in LTE networks
EP2939491B1 (en) Method and user equipment for device-to-device communication
JP6285033B2 (en) User device, computer program, storage medium, and communication method for device-to-device communication
US9955408B2 (en) Network-assisted multi-cell device discovery protocol for device-to-device communications
EP3149993B1 (en) Devices and method for retrieving and utilizing neighboring wlan information for lte laa operation
US10321294B2 (en) Signaling for proximity services and D2D discovery in an LTE network
US9854623B2 (en) Enhanced node B and methods for providing system information updates to user equipment with extended paging cycles
WO2014105388A2 (en) Method and apparatus for device-to-device communication
WO2014105389A1 (en) Reference signal measurement for device-to-device communication
CN105556994B (en) User equipment, evolved node B and method for being operated in coverage enhancement mode
EP3198778B1 (en) User equipment, apparatus for use in an enhanced node b, and computer-readable storage medium of handling uplink transmission collision for enhanced coverage mode ues
KR20160091491A (en) Apparatus and method of downlink data channel reception of MTC UEs
TW201225725A (en) Method and arrangement for reporting channel state information in a telecommunication system
US20160226639A1 (en) System and methods for support of frequency hopping for ues with reduced bandwidth support
US20160338110A1 (en) Method for configuring physical channel, base station and user equipment
KR101986777B1 (en) Measurement of D2D channels
US9961657B2 (en) System and method of MTC device operations
US9560574B2 (en) User equipment and method for transmit power control for D2D tranmissions
US8750886B2 (en) Apparatus and method for dynamic resolution of secondary communication system resources
US10154467B2 (en) Transmit power adjustment for inter-device communication in wireless communication systems
US20130089051A1 (en) Method and apparatus for data transmission in radio network
JP6130069B2 (en) User equipment and method for packet-based device-to-device (D2D) discovery in LTE networks

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL IP CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XIONG, GANG;HAN, SEUNGHEE;HEO, YOUN HYOUNG;REEL/FRAME:040515/0424

Effective date: 20141021

STCB Information on status: application discontinuation

Free format text: FINAL REJECTION MAILED