TWI682673B - User equipment and resource sensing and selection method thereof - Google Patents

User equipment and resource sensing and selection method thereof Download PDF

Info

Publication number
TWI682673B
TWI682673B TW107138692A TW107138692A TWI682673B TW I682673 B TWI682673 B TW I682673B TW 107138692 A TW107138692 A TW 107138692A TW 107138692 A TW107138692 A TW 107138692A TW I682673 B TWI682673 B TW I682673B
Authority
TW
Taiwan
Prior art keywords
resource
component carrier
selection
channel
component carriers
Prior art date
Application number
TW107138692A
Other languages
Chinese (zh)
Other versions
TW201924371A (en
Inventor
許崇仁
蔡華龍
胡恆鳴
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to EP18206447.7A priority Critical patent/EP3487236A1/en
Priority to US16/192,801 priority patent/US20190150197A1/en
Priority to CN201811367332.8A priority patent/CN109802821A/en
Publication of TW201924371A publication Critical patent/TW201924371A/en
Application granted granted Critical
Publication of TWI682673B publication Critical patent/TWI682673B/en

Links

Images

Abstract

A user equipment (UE) and a resource sensing and selection method thereof are provided. The resource sensing and selection method includes the following steps. Channel usage situations of all the component carriers (CCs) are measured and obtained. Multiple candidate CCs are determined from all the CCs according to the measurement values of the channel usage situations and ProSe per-packet priority (PPPP) of the UE. Resource sensing and selection is performed on the selected usable CCs, which are at least one CCs selected from the candidate CCs.

Description

使用者設備及其資源感測及選擇方法 User equipment and resource sensing and selection method

本發明是有關於一種使用者設備及其資源感測及選擇方法。 The invention relates to a user equipment and its resource sensing and selection method.

第三代合作夥伴關係計畫(Third Generation Partnership Project,3GPP)在長期演進(Long Term Evolution,LTE)第14版本(Release 14)中作成蜂巢式車聯網通訊(Cellular Vehicle-to-Everything,C-V2X)標準。C-V2X主要是基於LTE之車輛對於各種物體通訊的技術。例如,對其他車輛、交通基礎設施及使用者等物體進行通訊。此外,C-V2X的架構是基於針對裝置對裝置(Device-to-Device,D2D)通訊的鄰近服務(Proximity-based Services,ProSe)技術。而車對車(Vehicle-to-Vehicle,V2V)通訊即是裝置對裝置通訊的延伸,利用裝置對裝置之PC5介面(PC5 Interface)增進對於兩車輛之間直接連接與通訊的一種技術。 The Third Generation Partnership Project (3GPP) creates Cellular Vehicle-to-Everything, C- in Long Term Evolution (LTE) Release 14 V2X) standard. C-V2X is mainly a LTE-based vehicle communication technology for various objects. For example, to communicate with other vehicles, transportation infrastructure and users. In addition, the C-V2X architecture is based on Proximity-based Services (ProSe) technology for device-to-device (D2D) communication. Vehicle-to-vehicle (V2V) communication is an extension of device-to-device communication. The device-to-device PC5 interface (PC5 Interface) is used to enhance a technology for direct connection and communication between two vehicles.

在第15版本(Release 15)之3GPP V2X第二階段研究項目(Study Item)和工作項目(Work Item)之討論議題中,載波聚合(Carrier Aggregation,CA)、以及減少實體層(Physical Layer)封包抵達與資源選擇之最大延遲時間(Latency)等兩項PC5功能的議題被提出作為目標,而這兩個議題將能與第14版本所定義的資源池(Resource Pool)及排程指派(Scheduling Assignment,SA)格式共存。其中,為了減少實體層的延遲時間,3GPP標準會議已得出結論同意將資源選擇視窗縮減(即,降低T2參數)的結論。圖1是第14版本之資源感測及選擇視窗的示意圖。請參照圖1,原先資源選擇(重選擇)視窗時間長度之參數T2是介於20至100毫秒(ms),故對其縮減將可能使其數值小於20ms。而如圖1所示,n為時間基準點,n+T1~n+T2是資源選擇視窗之時間範圍。而資源選擇視窗縮減將導致可選擇用於資料傳輸之資源短缺,進而增加不同使用者設備(User Equipment,UE)選擇到相同資源(即,發生碰撞)的機會。而使用載波聚合可以增加多個組成載波(Component Carriers,CCs),用以減緩上述資源選擇發生碰撞的問題。然而,在載波聚合的情境下,如何使更多使用者設備在沒有基地台協助的情況下(即是車聯網通訊模式四(V2X Mode 4))提高頻譜使用效率是主要問題之一。由此可知,針對載波聚合及資源選擇視窗縮減的議題將需要提出方案來解決。 Carrier Aggregation (CA) and reduction of physical layer (Carrier Aggregation, CA) in the discussion topics of 3GPP V2X Phase 2 Study Item and Work Item of Release 15 (Release 15) Arrival and resource selection maximum latency (Latency) and other two PC5 function issues are proposed as targets, and these two issues will be able to match the resource pool (Resource Pool) and scheduling assignment (Scheduling Assignment) defined in version 14 , SA) format coexistence. Among them, in order to reduce the delay time of the physical layer, the 3GPP standard meeting has reached a conclusion that the resource selection window is reduced (ie, the T2 parameter is reduced). FIG. 1 is a schematic diagram of the 14th version of the resource sensing and selection window. Please refer to FIG. 1, the parameter T2 of the original resource selection (reselection) window duration is between 20 and 100 milliseconds (ms), so its reduction may make the value less than 20 ms. As shown in Figure 1, n is the time reference point, and n+T1~n+T2 is the time range of the resource selection window. The reduction of the resource selection window will result in a shortage of resources that can be selected for data transmission, thereby increasing the chance that different user equipments (User Equipment, UE) select the same resource (ie, collision). Using carrier aggregation can add multiple component carriers (Component Carriers, CCs) to alleviate the above-mentioned resource selection collision problem. However, in the context of carrier aggregation, how to enable more user equipment without the assistance of a base station (that is, V2X Mode 4) is one of the main problems. From this, it can be seen that solutions to the problems of carrier aggregation and resource selection window reduction will require solutions.

本發明提供一種使用者設備及其資源感測及選擇方法。 The invention provides a user equipment and its resource sensing and selection method.

在本發明的一實施例中,本發明的資源感測及選擇方法,其適用於使用者設備(User Equipment,UE),其資源感測及選擇方法並包括下列步驟。量測並取得所有多個組成載波(component carriers,CCs)的通道使用情況。依據這些組成載波的通道使用情況量測值及此使用者設備對應的鄰近服務個別封包優先權(ProSe Per-Packet Priority,PPPP)而自那些組成載波中決定數個候選組成載波。選擇這些候選組成載波中的至少一者為選擇使用之組成載波並進行資源感測及選擇。 In an embodiment of the present invention, the resource sensing and selection method of the present invention is applicable to user equipment (User Equipment, UE), and the resource sensing and selection method thereof includes the following steps. Measure and obtain the channel usage of all multiple component carriers (CCs). Based on the channel usage measurements of these component carriers and the ProSe Per-Packet Priority (PPPP) of the proximity service corresponding to this user equipment, several candidate component carriers are determined from those component carriers. Selecting at least one of these candidate component carriers is to select the component carrier to use and perform resource sensing and selection.

在本發明的一實施例中,使用者設備至少包括但不僅限於接收器、傳送器及處理器。接收器用以接收訊號。傳送器用以傳送訊號。處理器耦接接收器及傳送器。處理器並經組態用以執行下列步驟。透過接收器經量測取得所有多個組成載波的通道使用情況。依據這些組成載波的通道使用情況量測值及此使用者設備對應的鄰近服務個別封包優先權而自那些組成載波中決定數個候選組成載波。選擇這些候選組成載波中的至少一者為選擇使用之組成載波並透過接收器對該些選擇使用之組成載波進行資源感測及選擇。 In an embodiment of the invention, the user equipment includes at least but not limited to a receiver, a transmitter and a processor. The receiver is used to receive signals. The transmitter is used to transmit signals. The processor is coupled to the receiver and the transmitter. The processor is also configured to perform the following steps. Through the receiver, the channel usage of all multiple component carriers is obtained through measurement. Based on the channel usage measurements of these component carriers and the individual packet priority of the proximity service corresponding to this user equipment, several candidate component carriers are determined from those component carriers. At least one of these candidate component carriers is selected as the component carrier selected for use, and the receiver is used for resource sensing and selection of the component carrier selected for use.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows.

100、100’‧‧‧使用者設備 100, 100’‧‧‧ user equipment

110‧‧‧天線 110‧‧‧ Antenna

120‧‧‧接收器 120‧‧‧Receiver

130‧‧‧傳送器 130‧‧‧Transmitter

140‧‧‧數位至類比及類比至數位轉換器 140‧‧‧Digital to analog and analog to digital converter

150‧‧‧儲存器 150‧‧‧storage

160‧‧‧處理器 160‧‧‧ processor

S310~S350、S710~S750‧‧‧步驟 S310~S350, S710~S750 ‧‧‧ steps

SW‧‧‧感測視窗 SW‧‧‧sensor window

MP1~MP4‧‧‧量測週期 MP1~MP4‧‧‧‧Measurement period

161‧‧‧實體層 161‧‧‧ physical layer

163‧‧‧上層 163‧‧‧Upper

R‧‧‧資源 R‧‧‧Resources

RU‧‧‧資源單元 RU‧‧‧ Resource Unit

RB‧‧‧資源區塊 RB‧‧‧Resource Block

BRB‧‧‧忙碌資源區塊 BRB‧‧‧Busy resource block

IRB‧‧‧空閒資源區塊 IRB‧‧‧Idle resource block

BRBG‧‧‧忙碌資源區塊群組 BRBG‧‧‧Busy resource block group

IRBG‧‧‧空閒資源區塊群組 IRBG‧‧‧Free resource block group

RP、RP2‧‧‧資源池 RP, RP2 ‧‧‧ resource pool

NCRB‧‧‧非碰撞資源區塊 NCRB‧‧‧non-collision resource block

CRB‧‧‧碰撞資源區塊 CRB‧‧‧Collision resource block

圖1是資源感測及選擇視窗的示意圖。 FIG. 1 is a schematic diagram of a resource sensing and selection window.

圖2是依據本發明的一實施例繪示使用者設備的元件方塊圖。 2 is a block diagram of components of a user equipment according to an embodiment of the invention.

圖3是依據本發明的一實施例繪示資源感測及選擇方法的流程圖。 FIG. 3 is a flowchart illustrating a resource sensing and selection method according to an embodiment of the invention.

圖4A及4B是兩範例繪示資源感測的示意圖。 4A and 4B are schematic diagrams illustrating resource sensing by two examples.

圖5是依據本發明的一實施例繪示不同層交換資訊的示意圖。 5 is a schematic diagram illustrating the exchange of information between different layers according to an embodiment of the invention.

圖6是依據本發明的一實施例繪示選擇使用之組成載波的選擇的示意圖。 FIG. 6 is a schematic diagram illustrating selection of component carriers to be used according to an embodiment of the present invention.

圖7是依據本發明的一實施例繪示對選擇使用之組成載波之資源感測及選擇的流程圖。 FIG. 7 is a flowchart illustrating resource selection and selection of a component carrier to be used according to an embodiment of the present invention.

圖8A至8D是依據本發明的一實施例繪示資源感測的示意圖。 8A to 8D are schematic diagrams illustrating resource sensing according to an embodiment of the invention.

圖9A及圖9B是兩範例繪示資源池分割的示意圖。 FIG. 9A and FIG. 9B are schematic diagrams illustrating resource pool splitting by two examples.

圖10A及10B是一範例繪示資源選擇與資源重選擇的示意圖。 10A and 10B are schematic diagrams illustrating resource selection and resource reselection.

圖2是依據本發明的一實施例繪示使用者設備100的元件方塊圖。請參照圖2,使用者設備100是使用車聯網通訊(Vehicle-to-Everything,V2X)模式四(mode 4)(亦可能是車對車(Vehicle-to-Vehicle,V2V)、裝置對裝置(Device-to-Device,D2D)等兩裝置直接 通訊的技術),並可支援載波聚合(Carrier Aggregation,CA)技術。使用者設備100可能有多種實施態樣,其可以是裝置或固定在可移動載具(例如,汽車、機車、自行車、船舶或飛機等)的裝置,也可以是在可移動載具的裝置(例如,手機、筆記型電腦、平板電腦或手錶等)。 FIG. 2 is a block diagram of components of the user equipment 100 according to an embodiment of the invention. Referring to FIG. 2, the user equipment 100 uses vehicle-to-everything (V2X) mode 4 (mode 4) (also may be vehicle-to-vehicle (V2V), device-to-device (V2V) Device-to-Device, D2D) and other two devices directly Communication technology), and can support carrier aggregation (Carrier Aggregation, CA) technology. The user equipment 100 may have various implementation forms, which may be a device or a device fixed on a movable vehicle (for example, a car, a locomotive, a bicycle, a ship, or an airplane, etc.), or a device on a movable vehicle ( For example, mobile phones, laptops, tablets or watches, etc.).

使用者設備100至少包括但不僅限於一個或更多個天線110、接收器120、傳送器130、類比至數位(A/D)及數位至類比(D/A)轉換器140、儲存器150及處理器160。 The user equipment 100 includes at least but not limited to one or more antennas 110, receivers 120, transmitters 130, analog-to-digital (A/D) and digital-to-analog (D/A) converters 140, storage 150 and Processor 160.

接收器120及傳送器130分別用以透過天線110無線地接收訊號及傳送訊號。接收器120及傳送器130亦可執行諸如低雜訊放大、阻抗匹配、混頻、升頻或降頻轉換、濾波、放大及其類似者的類比訊號處理操作。類比至數位及數位至類比轉換器140經組態以將類比信號格式轉換為數位信號格式,及將數位信號格式轉換為類比信號格式。 The receiver 120 and the transmitter 130 are used to receive and transmit signals wirelessly through the antenna 110, respectively. The receiver 120 and the transmitter 130 may also perform analog signal processing operations such as low noise amplification, impedance matching, frequency mixing, up or down conversion, filtering, amplification, and the like. The analog-to-digital and digital-to-analog converter 140 is configured to convert the analog signal format to the digital signal format, and convert the digital signal format to the analog signal format.

儲存器150可以是任何型態的固定或可移動隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash Memory)或類似元件或上述元件的組合。儲存器150用以儲存程式碼、裝置組態、碼本(Codebook)、緩衝的或永久的資料(例如,通道使用門檻值-鄰近服務個別封包優先權(ProSe Per-packet Priority,PPPP)映射表、通道使用情況的量測值、使用者設備的能力(Capability)資訊、資源占用資訊、能量門檻值、先前資訊等資訊,且其詳細內容待後續說明), 並記錄諸如實體層(Physical Layer)、媒體存取控制(Media Access Control,MAC)層、邏輯鏈結控制(Logical Link Control,LLC)層、網路服務層、更上層等其他各種通訊協定相關軟體模組。 The memory 150 may be any type of fixed or removable random access memory (RAM), read-only memory (ROM), flash memory (Flash memory), or the like Or a combination of the above elements. The storage 150 is used to store code, device configuration, codebook, buffered or permanent data (for example, channel usage threshold-proximity service individual packet priority (ProSe Per-packet Priority, PPPP) mapping table , The measured value of channel usage, user equipment capability information, resource occupancy information, energy threshold, previous information and other information, and its details will be explained later), And record such as the physical layer (Physical Layer), media access control (Media Access Control, MAC) layer, logical link control (Logical Link Control, LLC) layer, network service layer, upper layer and other various communication protocol related software Module.

處理器160經組態以處理數位信號且執行根據本發明的例示性實施例之程序,並可存取或載入儲存器150所記錄的資料及軟體模組。處理器160的功能可藉由使用諸如中央處理器(Central Processing Unit,CPU)、微處理器、微控制器、數位信號處理(Digital Signal Processing,DSP)晶片、場可程式化邏輯閘陣列(Field Programmable Gate Array,FPGA)等可程式化單元來實施。處理器160的功能亦可用獨立電子裝置或積體電路(Integrated Circuit,IC)實施,且處理器160之操作亦可用軟體實現。 The processor 160 is configured to process digital signals and execute a program according to an exemplary embodiment of the present invention, and can access or load data recorded in the storage 150 and software modules. The functions of the processor 160 can be achieved by using, for example, a central processing unit (CPU), a microprocessor, a microcontroller, a digital signal processing (DSP) chip, a field programmable logic gate array (Field Programmable Gate Array (FPGA) and other programmable units to implement. The function of the processor 160 can also be implemented by an independent electronic device or an integrated circuit (IC), and the operation of the processor 160 can also be implemented by software.

為了方便理解本發明實施例的操作流程,以下將舉諸多實施例詳細說明本發明實施例中使用者設備100之運作流程。 In order to facilitate understanding of the operation process of the embodiment of the present invention, a number of embodiments will be described in detail below to describe the operation process of the user equipment 100 in the embodiment of the present invention.

圖3是依據本發明的一實施例繪示資源感測及選擇方法的流程圖。請參照圖3,本實施例的方法適用於圖2中的使用者設備100。下文中,將搭配使用者設備100的各項元件及模組說明本發明實施例所述之方法。本方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。 FIG. 3 is a flowchart illustrating a resource sensing and selection method according to an embodiment of the invention. Please refer to FIG. 3, the method of this embodiment is applicable to the user equipment 100 in FIG. 2. Hereinafter, the methods described in the embodiments of the present invention will be described in conjunction with various components and modules of the user equipment 100. The various processes of the method can be adjusted according to the implementation situation, and it is not limited to this.

處理器160透過接收器120量測並取得所有組成載波的通道使用情況(步驟S310)。具體而言,CA技術可同時結合兩個以上連續或不連續特定頻寬(例如,10、20、或50MHz)的組成載波,以提升資料傳輸的總頻寬,進而提升傳輸速度。而使用者設備100 可選擇的組成載波數增加(例如,3GPP V2X phase 2 Study Item/Work Item已定義CA可使用至多八個組成載波),將可以使得可用的(無線電)資源增加。若能有效排程使用者設備100對於資源的選擇,將有助於提升單一使用者設備甚至是整體系統的傳輸效率。其中,通道使用情況可以是評估資源是否被占用、忙碌、空閒、及/或干擾等情況的資訊,且其量測值可以是通道忙碌率(Channel Busy Ratio,CBR)值、通道占用率(Channel Occupancy Ratio,CR)、接收訊號強度指標(Received Signal Strength Indication,RSSI)、參考訊號接收品質(Reference Signal Received Quality,RSRQ)、參考訊號接收功率(Reference Signal Received Power,RSRP)、訊雜比等通道使用相關數值。 The processor 160 measures and obtains channel usage of all component carriers through the receiver 120 (step S310). Specifically, the CA technology can simultaneously combine two or more continuous or discontinuous specific bandwidth (for example, 10, 20, or 50MHz) component carriers to increase the total bandwidth of data transmission, thereby increasing the transmission speed. And the user equipment 100 The increase in the number of selectable component carriers (for example, 3GPP V2X phase 2 Study Item/Work Item has defined that CA can use up to eight component carriers) will increase the available (radio) resources. If the resource selection of the user equipment 100 can be effectively scheduled, it will help to improve the transmission efficiency of the single user equipment or even the overall system. Among them, the channel usage can be information to assess whether the resource is occupied, busy, idle, and/or interference, and the measured values can be the channel busy ratio (CBR) value and the channel occupancy rate (Channel Occupancy Ratio (CR), Received Signal Strength Indication (RSSI), Reference Signal Received Quality (RSRQ), Reference Signal Received Power (RSRP), signal-to-noise ratio and other channels Use relevant values.

在一實施例中,每一個組成載波的資源感測的時間相關於特定期間(例如,圖1所示感測視窗,其持續期間為1000毫秒(ms)),而處理器160對此感測視窗或其他用於資源感測的期間以一個或更多個量測週期(例如,50、100、200、及/或500ms,可隨機決定或事先定義)分割。例如,量測週期為500ms,則可將一個感測視窗分割成兩個量測週期。處理器160即可透過接收器120經量測取得一個或更多個量測週期內的所有組成載波的通道使用情況。 In an embodiment, the time for sensing the resources of each component carrier is related to a specific period (for example, the sensing window shown in FIG. 1 whose duration is 1000 milliseconds (ms)), and the processor 160 senses this The window or other period for resource sensing is divided by one or more measurement periods (for example, 50, 100, 200, and/or 500 ms, which can be randomly determined or defined in advance). For example, if the measurement period is 500 ms, a sensing window can be divided into two measurement periods. The processor 160 can obtain the channel usage of all component carriers in one or more measurement cycles through the measurement by the receiver 120.

圖4A及4B是兩範例繪示資源感測的示意圖。請先參照圖4A,假設用於資源感測的感測視窗SW為1000ms,且量測週期MP1、MP2、MP3、MP4分別是50、100、200、及500ms。處理 器160可對每一個組成載波的一個感測視窗SW內隨機/任意或特定選擇某一段量測週期MP1~MP4(彼此可重疊或不重疊),並在選擇的這些量測週期MP1~MP4過程中量測CBR值。處理器160可自這些量測週期MP1~MP4任意或特定挑選一個或更多個量測的CBR值;若處理器160僅挑選一個量測週期MP1、MP2、MP3或MP4,則直接將此選擇的量測週期MP1、MP2、MP3或MP4對應的CBR作為該組成載波的粗估通道使用情況之量測值;而若處理器160自量測週期MP1、MP2、MP3及MP4中挑選超過一個,則將挑選的CBR之平均值作為該組成載波的粗估通道使用情況之量測值。 4A and 4B are schematic diagrams illustrating resource sensing by two examples. Please refer to FIG. 4A first, assuming that the sensing window SW for resource sensing is 1000 ms, and the measurement periods MP1, MP2, MP3, and MP4 are 50, 100, 200, and 500 ms, respectively. deal with The device 160 can randomly/arbitrarily or specifically select a certain measurement period MP1~MP4 (which can overlap or not overlap each other) within a sensing window SW of each component carrier, and select the measurement period MP1~MP4 in the process The CBR value is measured in the middle. The processor 160 can arbitrarily or specifically select one or more measured CBR values from these measurement periods MP1~MP4; if the processor 160 selects only one measurement period MP1, MP2, MP3 or MP4, then directly select this The CBR corresponding to the measurement period MP1, MP2, MP3 or MP4 is used as the measurement value of the rough estimation channel usage of the component carrier; and if the processor 160 selects more than one from the measurement periods MP1, MP2, MP3 and MP4, then The average value of the selected CBR is used as the measurement value of the rough estimation channel usage of the component carrier.

請參照圖4B,假設感測視窗SW為1000ms,且量測週期MP1、MP2、MP3、MP4分別是50、100、200、及500ms。處理器160可對每一個組成載波的一個感測視窗SW分別以不同量測週期MP1~MP4均分,並在各量測週期MP1~MP4期間量測CBR值。針對各量測週期MP1~MP4,處理器160先將取得對應CBR值的平均值。處理器160可自這些量測週期MP1~MP4任意或特定挑選一個或更多個量測的CBR之平均值;若處理器160僅挑選一個量測週期MP1、MP2、MP3或MP4,則直接將此選擇的量測週期MP1、MP2、MP3或MP4對應的CBR之平均值作為該組成載波的粗估通道使用情況之量測值;而若處理器160自量測週期MP1、MP2、MP3及MP4中挑選超過一個,則將挑選的CBR之平均值再次平均後所得之值(挑選的量測週期對應CBR之平均值加總後除 以挑選的量測週期之數量)來作為該組成載波的粗估通道使用情況之量測值。 Please refer to FIG. 4B, assuming that the sensing window SW is 1000 ms, and the measurement periods MP1, MP2, MP3, and MP4 are 50, 100, 200, and 500 ms, respectively. The processor 160 can equally divide each sensing window SW of each component carrier into different measurement periods MP1~MP4, and measure the CBR value during each measurement period MP1~MP4. For each measurement period MP1~MP4, the processor 160 will first obtain the average value of the corresponding CBR value. The processor 160 can randomly or specifically select the average value of one or more measured CBRs from these measurement periods MP1~MP4; if the processor 160 selects only one measurement period MP1, MP2, MP3 or MP4, then directly The average value of the CBR corresponding to the selected measurement period MP1, MP2, MP3 or MP4 is used as the measurement value of the rough estimation channel usage of the component carrier; and if the processor 160 self-measures the measurement period MP1, MP2, MP3 and MP4 If more than one is selected, the average value of the selected CBR will be averaged again (the selected measurement period corresponds to the average of the CBR and then divided by The number of selected measurement cycles is used as the measurement value of the rough estimation channel usage of the component carrier.

需說明的是,圖4A及4B中所用量測週期MP1~MP4的大小及通道使用情況僅適用於範例說明,應用本發明實施例者可依據實際需求變更。 It should be noted that the size and channel usage of the measurement periods MP1~MP4 in FIGS. 4A and 4B are only for example description, and those applying the embodiments of the present invention may change according to actual needs.

處理器160可依據所有組成載波的通道使用情況量測值及此使用者設備100對應的鄰近服務個別封包優先權(ProSe Per-Packet Priority,PPPP)而自那些組成載波中決定數個候選組成載波(步驟S330)。具體而言,V2X模式四的兩使用者設備100之間的傳輸是經由PC5介面。而依據3GPP TS 23.303及TS 36.300標準,當鄰近服務(ProSe)上層(upper layer)在PC5介面上進行協定資料單元的傳輸時,ProSe上層會對此傳輸提供PPPP資訊(自8個可能的數值的範圍中挑選)。而此PPPP資訊是與協定資料單元相關的量化數值,且其是對協定資料單元的傳輸賦予優先處理權。而各使用者設備100會被指派有特定PPPP值,使各使用者設備100所傳送的PC5-S訊息或其他協定資料單元都能被賦予優先權(例如,優先權較高的傳輸優先處理,優先權較低的傳輸後續處理)。 The processor 160 may determine several candidate component carriers from those component carriers based on the channel usage measurement values of all component carriers and the ProSe Per-Packet Priority (PPPP) of the proximity service corresponding to the user equipment 100 (Step S330). Specifically, the transmission between the two user devices 100 in V2X mode 4 is via the PC5 interface. According to the 3GPP TS 23.303 and TS 36.300 standards, when the ProSe upper layer performs protocol data unit transmission on the PC5 interface, the ProSe upper layer will provide PPPP information (from 8 possible values) Select from the range). The PPPP information is a quantitative value related to the protocol data unit, and it gives priority to the transmission of the protocol data unit. Each user equipment 100 is assigned a specific PPPP value, so that PC5-S messages or other protocol data units sent by each user equipment 100 can be given priority (for example, transmission with higher priority is given priority, (Subsequent processing of lower priority transmission).

圖5是依據本發明的一實施例繪示不同層交換資訊的示意圖。請參照圖5,以協定堆疊(protocol stack)的觀點而言,處理器160執行實體層161軟體模組,並將所有組成載波的粗估通道使用情況量測值(例如,CBR值、CR值、訊號強度等)(請參考前述步驟S310的說明)傳送至上層163。處理器160執行上層163軟體 模組,並基於所有組成載波的通道使用情況量測值及使用者設備100被賦予的PPPP而自所有組成載波中決定候選組成載波,再將決定的候選組成載波資訊傳送至實體層161。以下將針對候選組成載波之決定方法進行說明。 5 is a schematic diagram illustrating the exchange of information between different layers according to an embodiment of the invention. Referring to FIG. 5, from the perspective of a protocol stack, the processor 160 executes the physical layer 161 software module and measures the estimated channel usage of all component carriers (eg, CBR value, CR value, Signal strength, etc.) (please refer to the description of the aforementioned step S310) to the upper layer 163. The processor 160 executes the upper layer 163 software The module determines candidate component carriers from all component carriers based on the channel usage measurement values of all component carriers and the PPPP assigned by the user equipment 100, and then transmits the determined candidate component carrier information to the physical layer 161. The method for determining candidate component carriers will be described below.

在一實施例中,處理器160比較每一個組成載波的通道使用情況量測值及對應的每一個組成載波在使用者設備100對應的PPPP所對應的通道使用門檻值來決定該組成載波是忙碌組成載波或空閒組成載波。而該通道使用門檻值例如是CBR門檻值、CR門檻值、訊雜比門檻值等,且對應於通道使用情況的類型。資料傳輸在忙碌組成載波傳送將受到嚴重干擾,且恐會導致傳輸失敗或失敗過多等情況。另一方面,空閒組成載波則可作為候選組成載波,且在其上的資料傳輸受到的干擾相對於在忙碌組成載波上傳輸低。反應於所有組成載波中的某一組成載波的通道使用情況量測值小於對應的通道使用門檻值,處理器160將這一組成載波作為候選組成載波。而反應於這一組成載波的通道使用情況量測值未小於對應的通道使用門檻值,處理器160則不將(或禁止\停止)這一組成載波作為候選組成載波。由此可知,通道使用門檻值的決定將可能影響候選組成載波的決定。 In one embodiment, the processor 160 compares the channel usage measurement value of each component carrier with the channel usage threshold value of each component carrier corresponding to the PPPP corresponding to the user equipment 100 to determine whether the component carrier is busy Component carrier or idle component carrier. The channel usage threshold value is, for example, CBR threshold value, CR threshold value, signal-to-noise ratio threshold value, etc., and corresponds to the type of channel usage. Data transmission will be severely interfered when the carrier transmission is busy, and it may cause transmission failure or excessive failure. On the other hand, idle component carriers can be used as candidate component carriers, and the interference on data transmission thereon is lower than that on busy component carriers. In response to the channel usage measurement value of a certain component carrier among all component carriers being smaller than the corresponding channel usage threshold, the processor 160 uses this component carrier as a candidate component carrier. However, in response to the channel usage measurement value of this component carrier being not less than the corresponding channel usage threshold, the processor 160 does not (or prohibit\stop) this component carrier as a candidate component carrier. It can be seen from this that the decision of the channel usage threshold value may affect the decision of the candidate component carrier.

在一實施例中,處理器160會取得通道使用門檻值-PPPP映射表(事先定義或接收來自其他裝置的指示)。而此通道使用門檻值-PPPP映射表記錄有所有組成載波在所有對應的PPPP所對應的所有通道使用門檻值。處理器160即可將具一PPPP之此使用者設 備100在每一組成載波的通道使用情況量測值與此通道使用門檻值-PPPP映射表中對應的PPPP在每一對應的組成載波所對應的通道使用門檻值比對。此通道使用門檻值可介於一上限值及一下限值之間,且此上、下限值可能固定或可被調整。例如,針對CBR門檻值的上限值為0.8且下限值為0.35。 In one embodiment, the processor 160 obtains a channel usage threshold-PPPP mapping table (defined in advance or receiving instructions from other devices). The channel usage threshold value-PPPP mapping table records all component carrier usage threshold values of all channels corresponding to all corresponding PPPPs. The processor 160 can set the user with a PPPP The measurement value of the channel usage of each component carrier is compared with the channel usage threshold of the corresponding PPPP in the corresponding PPPP mapping table in each corresponding component carrier. The threshold for this channel can be between an upper limit and a lower limit, and the upper and lower limits may be fixed or may be adjusted. For example, the upper limit value for the CBR threshold is 0.8 and the lower limit value is 0.35.

於一實施例中,通道使用門檻值-PPPP映射表所記錄的所有PPPP,包含其對應的索引,並可依據優先順序排列。例如,通道使用門檻值-PPPP映射表記錄有第一PPPP~第m PPPP(即是PPPP1~PPPPm,其中PPPPi索引i是1到m之間的正整數)。而第一PPPP具有最高優先權,第二PPPP具有次高優先權,其餘依此類推,則第m PPPP具有最低優先權。而各PPPP對應於至少一個服務類型(Service type),且這些服務類型的優先順序相同。 In one embodiment, all PPPPs recorded in the channel using the threshold-PPPP mapping table include their corresponding indexes and can be arranged according to priority. For example, the channel usage threshold-PPPP mapping table records the first PPPP~mth PPPP (that is, PPPP1~PPPPm, where PPPPi index i is a positive integer between 1 and m). While the first PPPP has the highest priority, the second PPPP has the second highest priority, and the rest is deduced by analogy, the m-th PPPP has the lowest priority. Each PPPP corresponds to at least one service type (Service type), and the priority order of these service types is the same.

此外,針對各PPPP,分別被指派特定的組成載波個數。在一實施例中,通道使用門檻值-PPPP映射表所記錄的所有PPPP對應的組成載波個數是,其PPPP之優先順序越高者(即,優先權越高者)之組成載波個數大於或等於PPPP之優先順序越低者(即,優先權越低者)之組成載波個數,以數學表示如下:

Figure 107138692-A0305-02-0013-30
其中n 1代表第一PPPP對應的組成載波個數,其餘依此類推。也就是說,PPPP之優先順序越高者可以被分配到更多個組成載波,以降低資源選擇碰撞機率並提高其可靠度(Reliability)。 In addition, each PPPP is assigned a specific number of component carriers. In an embodiment, the number of component carriers corresponding to all PPPPs recorded in the channel usage threshold-PPPP mapping table is that the higher the priority of PPPP (ie, the higher the priority), the number of component carriers is greater than Or equal to the lower the priority of PPPP (that is, the lower the priority), the number of component carriers is expressed mathematically as follows:
Figure 107138692-A0305-02-0013-30
Where n 1 represents the number of component carriers corresponding to the first PPPP, and so on for the rest. That is to say, the higher the priority of PPPP can be allocated to more component carriers to reduce the probability of resource selection collision and improve its reliability (Reliability).

在一實施例中,通道使用門檻值-PPPP映射表所記錄的每 一PPPP對應的所有組成載波,包含其對應的索引,依據優先順序排列。每一PPPP對應的組成載波中該些組成載波的優先順序是,優先順序越高者之組成載波的索引小於或等於優先順序越低者之組成載波的索引。例如,通道使用門檻值-PPPP映射表記錄PPPP1對應M個組成載波,包含有第一組成載波~第M組成載波(即是CC1~CCM,其中組成載波CCi索引i是1到M之間的正整數),其優先順序即是CC1

Figure 107138692-A0305-02-0014-40
CC2
Figure 107138692-A0305-02-0014-39
‧‧‧
Figure 107138692-A0305-02-0014-38
CCM。此外,此通道使用門檻值-PPPP映射表所記錄的每一PPPP對應的組成載波中排列順序最前者的索引是,PPPP之優先順序越高者之組成載波中排列順序最前者的索引小於或等於PPPP之優先順序越低者之組成載波中排列順序最前者的索引。其關係以數學表示如下:
Figure 107138692-A0305-02-0014-36
其中l 1代表第一PPPP對應的組成載波的索引偏位(其索引偏位值加一即為排列順序最前者的索引),其餘依此類推。而針對第i PPPP(索引i是1到m之間的正整數)對應的組成載波之索引為l i +k,其中k
Figure 107138692-A0305-02-0014-37
{1,...,n i }。例如,第一PPPP的組成載波個數為8,且對應到第一組成載波至第八組成載波,其中n 1=8且l 1=0(排列順序最前者的索引是l 1+1=1);第八PPPP的組成載波個數為1,且對應到第八組成載波,其中n 8=1且l 8=7(排列順序最前者的索引是l 8+1=8)。也就是說,PPPP的優先順序越高者可能被分配到索引在排列順序中越前面的組成載波。綜上所述,利用PPPP的優先順序越高者分配到索引在排列順序中越前面的組成載波以及每一PPPP 對應的組成載波的優先順序,可以盡量分散各PPPP對應的組成載波的配置並協助使各PPPP盡量對應不同組成載波作為候選組成載波,以降低資源選擇碰撞機率並提高其可靠度。 In an embodiment, all component carriers corresponding to each PPPP recorded in the threshold-PPPP mapping table of the channel, including their corresponding indexes, are arranged according to the priority order. The priority order of the component carriers in the component carrier corresponding to each PPPP is that the index of the component carrier with the higher priority order is less than or equal to the index of the component carrier with the lower priority order. For example, the channel uses the threshold-PPPP mapping table to record that PPPP1 corresponds to M component carriers, including the first component carrier to the Mth component carrier (that is, CC1 to CCM, where the component carrier CCi index i is a positive number between 1 and M Integer), the priority is CC1
Figure 107138692-A0305-02-0014-40
CC2
Figure 107138692-A0305-02-0014-39
‧‧‧
Figure 107138692-A0305-02-0014-38
CCM. In addition, this channel uses the threshold-PPPP mapping table to record the index of the top-ranking order of the component carriers corresponding to each PPPP. The index of the top-ranking order of the component carriers with the higher PPPP priority is less than or equal to The index of the former order in the component carrier with the lower priority of PPPP. The relationship is expressed mathematically as follows:
Figure 107138692-A0305-02-0014-36
Where l 1 represents the index offset of the component carrier corresponding to the first PPPP (the index offset value plus one is the index of the former in the order of arrangement), and the rest can be deduced by analogy. The index of the component carrier corresponding to the i-th PPPP (index i is a positive integer between 1 and m) is l i + k , where k
Figure 107138692-A0305-02-0014-37
{1,..., n i }. For example, the number of component carriers of the first PPPP is 8, and corresponds to the first component carrier to the eighth component carrier, where n 1 = 8 and l 1 =0 (the index of the former ranking order is l 1 +1=1 ); The number of component carriers of the eighth PPPP is 1, and corresponds to the eighth component carrier, where n 8 =1 and l 8 =7 (the index of the former in the order of arrangement is l 8 +1=8). That is to say, the higher the priority of PPPP may be assigned to the component carrier whose index is earlier in the arrangement order. In summary, the higher the priority of PPPP is, the higher the priority is to be assigned to the component carrier whose index is higher in the sort order and the priority of the component carrier corresponding to each PPPP. Each PPPP corresponds to different component carriers as candidate component carriers as much as possible to reduce the probability of resource selection collision and improve its reliability.

於不同實施例中,通道使用門檻值-PPPP映射表所記錄的各PPPP在不同組成載波對應的通道使用門檻值可不同。在一實施例中,各PPPP對應的組成載波中的通道使用門檻值,是排列順序較前者(即,索引之數值較小者)大於排列順序較後者(即,索引之數值較大者),以數學表示如下:

Figure 107138692-A0305-02-0015-41
其中
Figure 107138692-A0305-02-0015-42
代表第i PPPP在第n i 個組成載波的通道使用門檻值,其餘依此類推。例如,第一PPPP在對應第一組成載波的CBR門檻值為0.8,而在對應第二組成載波的CBR門檻值為0.75。也就是說,相同PPPP在對應組成載波的索引越前者所對應的通道使用門檻值越高。而若通道使用門檻值越低,則表示組成載波被決定為候選組成載波的機會越低。也就是說,基於此配置,若對各組成載波量測所得的通道使用量測值情況大致相同,則處理器160決定索引越前面(即,數值越小)的組成載波作為候選組成載波的機會比較高。如此可以協助使各PPPP盡量對應不同組成載波作為候選組成載波,以降低資源選擇碰撞機率並提高其可靠度。 In different embodiments, the channel usage threshold-PPPP mapping table records that each PPPP has a different channel usage threshold corresponding to different component carriers. In an embodiment, the threshold of channel usage in the component carrier corresponding to each PPPP is that the arrangement order is higher than the former (that is, the index value is smaller) than the arrangement order is the latter (that is, the index value is larger), Expressed mathematically as follows:
Figure 107138692-A0305-02-0015-41
among them
Figure 107138692-A0305-02-0015-42
Represents that the i th PPPP uses the threshold in the n i component carrier channel, and so on. For example, the CBR threshold of the first PPPP corresponding to the first component carrier is 0.8, and the CBR threshold of the second component carrier is 0.75. That is to say, the higher the index of the corresponding PPPP in the corresponding component carrier, the higher the channel usage threshold corresponding to the former. If the channel usage threshold value is lower, it means that the component carrier is determined to be a candidate component carrier with a lower chance. That is to say, based on this configuration, if the channel usage measurement values obtained for each component carrier are approximately the same, the processor 160 determines the component carrier with the earlier index (that is, the smaller the value) as the candidate component carrier. Relatively high. In this way, it is possible to help each PPPP correspond to different component carriers as candidate component carriers as much as possible, so as to reduce the probability of resource selection collision and improve its reliability.

而任一組成載波對應的PPPP可能不只一個,且單一組成載波可對應於PPPP群組包括一或數個PPPP其中同一PPPP群組之所有PPPP其對應的組成載波個數及組成載波之索引偏位數值 都相同。在一實施例中,通道使用門檻值-PPPP映射表所記錄的在每一組成載波中所有對應的PPPP所對應的通道使用門檻值可不同。例如,在第三組成載波中,第一PPPP的通道使用門檻值為0.65,而第二PPPP的通道使用門檻值為0.7。 There may be more than one PPPP corresponding to any component carrier, and a single component carrier may correspond to a PPPP group including one or several PPPPs. Among all PPPPs of the same PPPP group, the number of corresponding component carriers and the index offset of the component carriers Numerical value Are all the same. In one embodiment, the channel usage threshold value-PPPP mapping table may record different channel usage threshold values corresponding to all corresponding PPPPs in each component carrier. For example, in the third component carrier, the channel usage threshold of the first PPPP is 0.65, and the channel usage threshold of the second PPPP is 0.7.

此外,不同時間長度的資源選擇視窗(如圖1所示,即參數T2)對應的通道使用門檻值-PPPP映射表所記錄的通道使用門檻值可以不同,而使用者設備100在此資源選擇視窗進行資源選擇。在一實施例中,假設第一資源選擇視窗之時間長度小於第二資源選擇視窗之時間長度,則第一資源選擇視窗對應的通道使用門檻值-PPPP映射表所記錄的一個組成載波對應的通道使用門檻值應大於第二資源選擇視窗對應的通道使用門檻值-PPPP映射表所記錄的該相同組成載波對應的通道使用門檻值。也就是說,反應於資源選擇視窗之時間長度縮短,相同組成載波對應的通道使用門檻值將被提高,從而提升將該組成載波決定為候選組成載波的機會並降低資源選擇碰撞機率。例如,第一資源選擇視窗之時間長度為10ms對應的映射表在第三組成載波中的第三PPPP所對應的通道使用門檻值為0.7,而第二資源選擇視窗之時間長度為20ms對應的映射表在相同第三組成載波中的第三PPPP所對應通道使用門檻值為0.6。 In addition, the channel usage threshold corresponding to the resource selection window of different time lengths (as shown in FIG. 1, namely parameter T2)-the channel usage threshold recorded in the PPPP mapping table may be different, and the user equipment 100 is in this resource selection window Make resource selections. In an embodiment, assuming that the time length of the first resource selection window is less than the time length of the second resource selection window, the channel corresponding to the first resource selection window uses a threshold-a channel corresponding to a component carrier recorded in the PPPP mapping table The usage threshold should be greater than the channel usage threshold corresponding to the second resource selection window-the channel usage threshold corresponding to the same component carrier recorded in the PPPP mapping table. In other words, in response to the shortened time period of the resource selection window, the channel usage threshold corresponding to the same component carrier will be increased, thereby increasing the chance of determining the component carrier as a candidate component carrier and reducing the chance of resource selection collision. For example, the mapping table corresponding to the time length of the first resource selection window of 10 ms corresponds to the channel usage threshold value of the third PPPP in the third component carrier, and the mapping length of the second resource selection window is 20 ms. The channel usage threshold value corresponding to the third PPPP in the same third component carrier is 0.6.

為了方便讀者理解,下文以表(1)至表(10)為例,其是CBR-PPPP-服務類型映射表的範例。表(1)至表(6)的PPPP個數之參數m和組成載波個數之參數M皆為8。其中,表(1)、表(3)和表(5)之 PPPP群組分別包含一個、二個和三個PPPP,且其資源選擇視窗之參數T2皆為20ms;而表(2)、表(4)和表(6)之PPPP群組亦分別包含一個、二個和三個PPPP,其資源選擇視窗之參數T2則皆為10ms。表(7)至表(10)之PPPP群組皆包含二個PPPP。其中,表(7)和表(9)的PPPP個數之參數m和組成載波個數之參數M之(m,M)參數組合分別為(8,4)和(4,8),且其資源選擇視窗之參數T2皆為20ms;而表(8)和表(10)的PPPP個數之參數m和組成載波個數之參數M之(m,M)參數組合亦分別為(8,4)和(4,8),其資源選擇視窗之參數T2則皆為10ms。且表(1)至表(10)皆有兩種服務類型包含#1、#2等兩種服務類型。 In order to facilitate readers' understanding, the following uses Table (1) to Table (10) as examples, which are examples of CBR-PPPP-service type mapping tables. The parameter m of the number of PPPP and the parameter M of the number of component carriers in Tables (1) to (6) are both 8. Among them, Table (1), Table (3) and Table (5) The PPPP group includes one, two, and three PPPPs, respectively, and the parameter T2 of the resource selection window is 20 ms; and the PPPP groups of Tables (2), (4), and (6) also include one, For two and three PPPP, the parameter T2 of the resource selection window is 10ms. The PPPP groups in Tables (7) to (10) include two PPPPs. Among them, the parameter m of the PPPP number in Table (7) and Table (9) and the (m, M) parameter combination of the parameter M of the carrier number are (8, 4) and (4, 8) respectively, and their The parameter T2 of the resource selection window is 20 ms; the parameter m of the PPPP number in Tables (8) and (10) and the parameter (m, M) of the parameter M constituting the number of carriers are also (8, 4 ) And (4,8), the parameter T2 of the resource selection window is 10ms. And Table (1) to Table (10) have two types of services including #1, #2 and other two types of services.

表(1)中單一組成載波對應的PPPP群組包括一個PPPP,資源選擇視窗之參數T2為20ms,PPPP1~PPPP8對應之組成載波個數為(n 1 ,n 2 ,n 3 ,n 4 ,n 5 ,n 6 ,n 7 ,n 8)=(8,7,6,5,4,3,2,1),且PPPP1~PPPP8對應之組成載波之索引偏位為(l 1 ,l 2 ,l 3 ,l 4 ,l 5 ,l 6 ,l 7 ,l 8)=(0,1,2,3,4,5,6,7)。 The PPPP group corresponding to a single component carrier in Table (1) includes a PPPP, the parameter T2 of the resource selection window is 20 ms, and the number of component carriers corresponding to PPPP1~PPPP8 is ( n 1 , n 2 , n 3 , n 4 , n 5 ,n 6 ,n 7 ,n 8 )=(8,7,6,5,4,3,2,1), and the index offset of the component carrier corresponding to PPPP1~PPPP8 is ( l 1 ,l 2 , l 3 ,l 4 ,l 5 ,l 6 ,l 7 ,l 8 )=(0,1,2,3,4,5,6,7).

Figure 107138692-A0305-02-0017-1
Figure 107138692-A0305-02-0017-1
Figure 107138692-A0305-02-0018-2
Figure 107138692-A0305-02-0018-2
Figure 107138692-A0305-02-0019-3
Figure 107138692-A0305-02-0019-3

表(2)中單一組成載波對應的PPPP群組包括一個PPPP,資源選擇視窗之參數T2為10ms,PPPP1~PPPP8對應之組成載波個數為(n 1 ,n 2 ,n 3 ,n 4 ,n 5 ,n 6 ,n 7 ,n 8)=(8,7,6,5,4,3,2,1),且PPPP1~PPPP8對應之組成載波之索引偏位為(l 1 ,l 2 ,l 3 ,l 4 ,l 5 ,l 6 ,l 7 ,l 8)=(0,1,2,3,4,5,6,7)。 The PPPP group corresponding to a single component carrier in Table (2) includes a PPPP, the parameter T2 of the resource selection window is 10 ms, and the number of component carriers corresponding to PPPP1~PPPP8 is ( n 1 , n 2 , n 3 , n 4 , n 5 ,n 6 ,n 7 ,n 8 )=(8,7,6,5,4,3,2,1), and the index offset of the component carrier corresponding to PPPP1~PPPP8 is ( l 1 ,l 2 , l 3 ,l 4 ,l 5 ,l 6 ,l 7 ,l 8 )=(0,1,2,3,4,5,6,7).

Figure 107138692-A0305-02-0019-4
Figure 107138692-A0305-02-0019-4
Figure 107138692-A0305-02-0020-31
Figure 107138692-A0305-02-0020-31
Figure 107138692-A0305-02-0021-32
Figure 107138692-A0305-02-0021-32

表(3)中單一組成載波對應的PPPP群組包括兩個PPPP,資源選擇視窗之參數T2為20ms,PPPP1~PPPP8對應之組成載波個數為(n 1 ,n 2 ,n 3 ,n 4 ,n 5 ,n 6 ,n 7 ,n 8)=(8,8,6,6,4,4,2,2),且PPPP1~PPPP8對應之組成載波之索引偏位為(l 1 ,l 2 ,l 3 ,l 4 ,l 5 ,l 6 ,l 7 ,l 8)=(0,0,2,2,4,4,6,6)。 The PPPP group corresponding to a single component carrier in Table (3) includes two PPPPs, the parameter T2 of the resource selection window is 20 ms, and the number of component carriers corresponding to PPPP1~PPPP8 is ( n 1 , n 2 , n 3 , n 4 , n 5 ,n 6 ,n 7 ,n 8 )=(8,8,6,6,4,4,2,2), and the index offset of the component carrier corresponding to PPPP1~PPPP8 is ( l 1 ,l 2 , l 3 , l 4 , l 5 , l 6 , l 7 , l 8 )=(0,0,2,2,4,4,6,6).

Figure 107138692-A0305-02-0021-9
Figure 107138692-A0305-02-0021-9
Figure 107138692-A0305-02-0022-33
Figure 107138692-A0305-02-0022-33
Figure 107138692-A0305-02-0023-12
Figure 107138692-A0305-02-0023-12

表(4)中單一組成載波對應的PPPP群組包括兩個PPPP,資源選擇視窗之參數T2為10ms,PPPP1~PPPP8對應之組成載波個數為(n 1 ,n 2 ,n 3 ,n 4 ,n 5 ,n 6 ,n 7 ,n 8)=(8,8,6,6,4,4,2,2),且PPPP1~PPPP8對應之組成載波之索引偏位為(l 1 ,l 2 ,l 3 ,l 4 ,l 5 ,l 6 ,l 7 ,l 8)=(0,0,2,2,4,4,6,6)。 The PPPP group corresponding to a single component carrier in Table (4) includes two PPPPs, the parameter T2 of the resource selection window is 10 ms, and the number of component carriers corresponding to PPPP1~PPPP8 is ( n 1 , n 2 , n 3 , n 4 , n 5 ,n 6 ,n 7 ,n 8 )=(8,8,6,6,4,4,2,2), and the index offset of the component carrier corresponding to PPPP1~PPPP8 is ( l 1 ,l 2 , l 3 , l 4 , l 5 , l 6 , l 7 , l 8 )=(0,0,2,2,4,4,6,6).

Figure 107138692-A0305-02-0023-13
Figure 107138692-A0305-02-0023-13
Figure 107138692-A0305-02-0024-14
Figure 107138692-A0305-02-0024-14
Figure 107138692-A0305-02-0025-34
Figure 107138692-A0305-02-0025-34

表(5)中單一組成載波對應的PPPP群組包括三個PPPP,資源選擇視窗之參數T2為20ms,PPPP1~PPPP8對應之組成載波個數為(n 1 ,n 2 ,n 3 ,n 4 ,n 5 ,n 6 ,n 7 ,n 8)=(8,8,8,5,5,5,2,2),且PPPP1~PPPP8對應之組成載波之索引偏位為(l 1 ,l 2 ,l 3 ,l 4 ,l 5 ,l 6 ,l 7 ,l 8)=(0,0,0,3,3,3,6,6)。 The PPPP group corresponding to a single component carrier in Table (5) includes three PPPPs, the parameter T2 of the resource selection window is 20 ms, and the number of component carriers corresponding to PPPP1~PPPP8 is ( n 1 , n 2 , n 3 , n 4 , n 5 ,n 6 ,n 7 ,n 8 )=(8,8,8,5,5,5,2,2), and the index offset of the component carrier corresponding to PPPP1~PPPP8 is ( l 1 ,l 2 , l 3 , l 4 , l 5 , l 6 , l 7 , l 8 )=(0,0,0,3,3,3,6,6).

Figure 107138692-A0305-02-0025-16
Figure 107138692-A0305-02-0025-16
Figure 107138692-A0305-02-0026-35
Figure 107138692-A0305-02-0026-35
Figure 107138692-A0305-02-0027-18
Figure 107138692-A0305-02-0027-18

表(6)中單一組成載波對應的PPPP群組包括三個PPPP,資源選擇視窗之參數T2為10ms,PPPP1~PPPP8對應之組成載波個數為(n 1 ,n 2 ,n 3 ,n 4 ,n 5 ,n 6 ,n 7 ,n 8)=(8,8,8,5,5,5,2,2),且PPPP1~PPPP8對應之組成載波之索引偏位為(l 1 ,l 2 ,l 3 ,l 4 ,l 5 ,l 6 ,l 7 ,l 8)=(0,0,0,3,3,3,6,6)。 The PPPP group corresponding to a single component carrier in Table (6) includes three PPPPs, the parameter T2 of the resource selection window is 10 ms, and the number of component carriers corresponding to PPPP1~PPPP8 is ( n 1 , n 2 , n 3 , n 4 , n 5 ,n 6 ,n 7 ,n 8 )=(8,8,8,5,5,5,2,2), and the index offset of the component carrier corresponding to PPPP1~PPPP8 is ( l 1 ,l 2 , l 3 , l 4 , l 5 , l 6 , l 7 , l 8 )=(0,0,0,3,3,3,6,6).

Figure 107138692-A0305-02-0027-19
Figure 107138692-A0305-02-0027-19
Figure 107138692-A0305-02-0028-20
Figure 107138692-A0305-02-0028-20
Figure 107138692-A0305-02-0029-21
Figure 107138692-A0305-02-0029-21

表(7)中單一組成載波對應的PPPP群組包括兩個PPPP,資源選擇視窗之參數T2為20ms,PPPP1~PPPP8對應之組成載波個數為(n 1 ,n 2 ,n 3 ,n 4 ,n 5 ,n 6 ,n 7 ,n 8)=(4,4,3,3,2,2,1,1),且PPPP1~PPPP8對應之組成載波之索引偏位為(l 1 ,l 2 ,l 3 ,l 4 ,l 5 ,l 6 ,l 7 ,l 8)=(0,0,1,1,2,2,3,3)。 The PPPP group corresponding to a single component carrier in Table (7) includes two PPPPs, the parameter T2 of the resource selection window is 20 ms, and the number of component carriers corresponding to PPPP1~PPPP8 is ( n 1 , n 2 , n 3 , n 4 , n 5 ,n 6 ,n 7 ,n 8 )=(4,4,3,3,2,2,1,1), and the index offset of the component carrier corresponding to PPPP1~PPPP8 is ( l 1 ,l 2 , l 3 , l 4 , l 5 , l 6 , l 7 , l 8 )=(0,0,1,1,2,2,3,3).

表(7)

Figure 107138692-A0305-02-0030-22
Table (7)
Figure 107138692-A0305-02-0030-22

表(8)中單一組成載波對應的PPPP群組包括兩個PPPP, 資源選擇視窗之參數T2為10ms,PPPP1~PPPP8對應之組成載波個數為(n 1 ,n 2 ,n 3 ,n 4 ,n 5 ,n 6 ,n 7 ,n 8)=(4,4,3,3,2,2,1,1),且PPPP1~PPPP8對應之組成載波之索引偏位為(l 1 ,l 2 ,l 3 ,l 4 ,l 5 ,l 6 ,l 7 ,l 8)=(0,0,1,1,2,2,3,3)。 The PPPP group corresponding to a single component carrier in Table (8) includes two PPPPs, the parameter T2 of the resource selection window is 10 ms, and the number of component carriers corresponding to PPPP1~PPPP8 is ( n 1 , n 2 , n 3 , n 4 , n 5 ,n 6 ,n 7 ,n 8 )=(4,4,3,3,2,2,1,1), and the index offset of the component carrier corresponding to PPPP1~PPPP8 is ( l 1 ,l 2 , l 3 , l 4 , l 5 , l 6 , l 7 , l 8 )=(0,0,1,1,2,2,3,3).

Figure 107138692-A0305-02-0031-23
Figure 107138692-A0305-02-0031-23
Figure 107138692-A0305-02-0032-24
Figure 107138692-A0305-02-0032-24

表(9)中單一組成載波對應的PPPP群組包括兩個PPPP,資源選擇視窗之參數T2為20ms,PPPP1~PPPP4對應之組成載波個數為(n 1 ,n 2 ,n 3 ,n 4)=(8,8,4,4),且PPPP1~PPPP4對應之組成載波之索引偏位為(l 1 ,l 2 ,l 3 ,l 4)=(0,0,4,4)。 The PPPP group corresponding to a single component carrier in Table (9) includes two PPPPs, the parameter T2 of the resource selection window is 20 ms, and the number of component carriers corresponding to PPPP1~PPPP4 is ( n 1 , n 2 , n 3 , n 4 ) =(8,8,4,4), and the index offset of the component carriers corresponding to PPPP1~PPPP4 is ( l 1 ,l 2 ,l 3 ,l 4 )=(0,0,4,4).

Figure 107138692-A0305-02-0032-25
Figure 107138692-A0305-02-0032-25
Figure 107138692-A0305-02-0033-28
Figure 107138692-A0305-02-0033-28

表(10)中單一組成載波對應的PPPP群組包括兩個PPPP,資源選擇視窗之參數T2為10ms,PPPP1~PPPP4對應之組成載波個數為(n 1 ,n 2 ,n 3 ,n 4)=(8,8,4,4),且PPPP1~PPPP4對應之組成載波之索引偏位為(l 1 ,l 2 ,l 3 ,l 4)=(0,0,4,4)。 The PPPP group corresponding to a single component carrier in Table (10) includes two PPPPs, the parameter T2 of the resource selection window is 10 ms, and the number of component carriers corresponding to PPPP1~PPPP4 is ( n 1 , n 2 , n 3 , n 4 ) =(8,8,4,4), and the index offset of the component carriers corresponding to PPPP1~PPPP4 is ( l 1 ,l 2 ,l 3 ,l 4 )=(0,0,4,4).

Figure 107138692-A0305-02-0033-27
Figure 107138692-A0305-02-0033-27
Figure 107138692-A0305-02-0034-29
Figure 107138692-A0305-02-0034-29

以表(10)為例,假設使用者設備100被設定為第四PPPP(即,PPPP4),且其處理器160所計算得出之所有組成載波的通道使用情況量測值(此範例是CBR值)皆為0.68。由表(10)可得 出,第四PPPP對應到第五、第六、第七及第八組成載波,而其對應之CBR門檻值分別為0.75、0.7、0.65及0.6。因為PPPP4對應之第五及第六組成載波的通道使用情況量測值(分別為0.68、0.68)皆小於對應之CBR門檻值(分別為0.75、0.7),故第五及第六組成載波可作為使用者設備100之候選組成載波。而PPPP4對應之第七及第八組成載波的通道使用情況量測值(分別為0.68、0.68)皆大於對應之CBR門檻值(分別為0.65、0.6),故第七及第八組成載波不可作為使用者設備100之候選組成載波。 Taking Table (10) as an example, assume that the user equipment 100 is set to the fourth PPPP (ie, PPPP4), and the channel usage measurements of all component carriers calculated by its processor 160 (this example is CBR Value) are all 0.68. Available from table (10) The fourth PPPP corresponds to the fifth, sixth, seventh, and eighth component carriers, and the corresponding CBR thresholds are 0.75, 0.7, 0.65, and 0.6, respectively. Because the channel usage measurements of the fifth and sixth component carriers corresponding to PPPP4 (respectively 0.68 and 0.68) are less than the corresponding CBR thresholds (respectively 0.75 and 0.7), the fifth and sixth component carriers can be used as The candidates of the user equipment 100 constitute a carrier. The measured channel usage values of the seventh and eighth component carriers corresponding to PPPP4 (respectively 0.68 and 0.68) are greater than the corresponding CBR thresholds (respectively 0.65 and 0.6), so the seventh and eighth component carriers cannot be used as The candidates of the user equipment 100 constitute a carrier.

接著,處理器160選擇該些候選組成載波中的至少一者為選擇使用之組成載波並透過接收器120對至少一個選擇使用之組成載波進行資源感測及選擇(步驟S350)。在一實施例中,處理器160可依據那些候選組成載波的優先順序及使用者設備100的能力(即,UE capability),而自那些候選組成載波中決定至少一個選擇使用之組成載波。於本實施例中,每一PPPP對應之組成載波的索引在排列順序中越前面者,其組成載波的優先權越高。例如,第一組成載波的優先權比第二組成載波的優先權高。而使用者設備100的能力是相關於使用者設備100(包含傳送端、接收端、或兩者)所支援同時使用組成載波的數量、支援頻帶、是否支援載波聚合、及/或允許之頻寬等參數。 Then, the processor 160 selects at least one of the candidate component carriers as the selected component carrier and performs resource sensing and selection on the at least one component carrier selected for use by the receiver 120 (step S350). In one embodiment, the processor 160 may determine at least one component carrier to be selected from those candidate component carriers according to the priority order of those component carriers and the capability of the user equipment 100 (ie, UE capability). In this embodiment, the higher the index of the component carrier corresponding to each PPPP in the arrangement order, the higher the priority of the component carrier. For example, the priority of the first component carrier is higher than the priority of the second component carrier. The capability of the user equipment 100 is related to the number of simultaneous component carriers supported by the user equipment 100 (including the transmitting end, the receiving end, or both), the supported frequency band, whether carrier aggregation is supported, and/or the allowed bandwidth And other parameters.

圖6是依據本發明的一實施例繪示選擇使用之組成載波之選擇的示意圖。請參照圖6,假設使用者設備100經前述步驟S310和步驟S330得出候選組成載波為第一至第四組成載波,且 使用者設備100的能力是能使用兩個組成載波來傳輸資料。因此,處理器160將選擇優先順序最高的兩者(即,第一及第二組成載波)作為選擇使用之組成載波。 FIG. 6 is a schematic diagram illustrating selection of component carriers to be used according to an embodiment of the present invention. Referring to FIG. 6, assume that the user equipment 100 obtains the candidate component carriers as the first to fourth component carriers through the foregoing steps S310 and S330, and The capability of the user equipment 100 is to use two component carriers to transmit data. Therefore, the processor 160 will select the two with the highest priority order (ie, the first and second component carriers) as the component carrier to be selected for use.

在另一實施例中,若使用者設備100的能力所能同時用以傳輸資料之組成載波的數量大於或等於步驟S330所得出之候選組成載波的數量,則處理器160直接將所有該候選組成載波作為選擇使用之組成載波。 In another embodiment, if the number of component carriers that the capability of the user equipment 100 can simultaneously use to transmit data is greater than or equal to the number of candidate component carriers obtained in step S330, the processor 160 directly combines all the candidate components The carrier is used as an optional component carrier.

決定選擇使用之組成載波之後,請參照圖7是依據本發明的一實施例繪示對選擇使用之組成載波之資源感測及選擇的流程圖。處理器160透過接收器120對至少一個選擇使用之組成載波進行資源感測及選擇(步驟S710)。即,不需針對不為選擇使用之組成載波的其他組成載波來進行資源感測及選擇。而針對每一選擇使用之組成載波進行資源感測,首先將每一選擇使用之組成載波之資源以時間及/或頻率分割成多個資源單元(Resource Unit,RU),其中該資源單元大小由上層設定且其包含至少一個資源區塊(Resource Block,RB)。在一實施例中,處理器160可依據資源占用資訊決定各選擇使用之組成載波中的空閒資源單元。此資源占用資訊相關於資料傳輸之資源分配情形,且此空閒資源單元是用於進行資源選擇的候選資源。例如,處理器160可透過接收器120接收排程指派(Scheduling Assignment,SA)訊息(用於指示資源中的何者在何時被用於傳輸資料,亦可以是物理側鏈結控制通道(Physical Sidelink Control Channel,PSCCH)之訊息),並對此SA訊 息解析以取得資源占用資訊(例如,某一資源經配置或排程用於資料傳輸、及資料傳輸的資源形式(Resource pattern))。 After deciding which component carrier to use, please refer to FIG. 7 which is a flowchart illustrating resource sensing and selection of the component carrier to be used according to an embodiment of the present invention. The processor 160 performs resource sensing and selection on at least one component carrier selected for use through the receiver 120 (step S710). That is, there is no need to perform resource sensing and selection for other component carriers that are not component carriers for selection. To perform resource sensing for each component carrier selected for use, first, the resource of each component carrier selected for use is divided into multiple resource units (Resource Units, RU) with time and/or frequency, where the size of the resource unit is determined by The upper layer is configured and includes at least one resource block (Resource Block, RB). In one embodiment, the processor 160 may determine idle resource units in each component carrier that is selected for use according to the resource occupancy information. This resource occupancy information is related to the resource allocation situation of data transmission, and this idle resource unit is a candidate resource for resource selection. For example, the processor 160 may receive a scheduling assignment (SA) message (used to indicate when the resource is used to transmit data through the receiver 120, or may be a physical sidelink control channel (Physical Sidelink Control Channel) Channel, PSCCH)), and SA news Information analysis to obtain resource occupancy information (for example, a resource is configured or scheduled for data transmission, and the resource pattern of the data transmission).

圖8A至8D是依據本發明的一實施例繪示資源感測的示意圖。請先參照圖8A,圖左方所示為資源R(Resource)以時間(例如子訊框(Subframe))及頻率劃分成數個SA週期資源區,其中SA週期資源區由多個資源單元組成,每一資源單元包含至少一個資源區塊,其大小個數由上層設定。處理器160解析SA訊息可得出例如傳輸的時間資源形式(Time Resource Pattern of Transmission,T-RPT),其包含資料傳輸之資源位置資訊。圖右方所示為SA週期資源區的格式,在一個SA週期資源區中,該資源區被分成SA區及資料區。SA區記錄有T-RPT,而資料區則承載所欲傳送的資料。處理器160可藉由接收與解析各SA週期資源區中的SA區的資源排程指派訊息,以決定其資料區中之各資源單元是否為忙碌資源單元或空閒資源單元。如圖8B所示,忙碌資源單元表示被占用或有資料傳輸被排程,而空閒資源單元表示尚未被占用或未有資料傳輸被排程。 8A to 8D are schematic diagrams illustrating resource sensing according to an embodiment of the invention. Please refer to FIG. 8A first. The left side of the figure shows that the resource R (Resource) is divided into several SA periodic resource areas by time (such as subframe) and frequency. The SA periodic resource area is composed of multiple resource units. Each resource unit includes at least one resource block, the size of which is set by the upper layer. The processor 160 parses the SA message to obtain, for example, a Time Resource Pattern of Transmission (T-RPT), which includes resource location information for data transmission. The right side of the figure shows the format of the SA cycle resource area. In an SA cycle resource area, the resource area is divided into an SA area and a data area. The SA area records T-RPT, while the data area carries the data to be transmitted. The processor 160 can determine whether each resource unit in its data area is a busy resource unit or an idle resource unit by receiving and parsing the resource scheduling assignment message of the SA area in each SA cycle resource area. As shown in FIG. 8B, a busy resource unit indicates that it is occupied or that data transmission is scheduled, and an idle resource unit indicates that it is not yet occupied or that no data transmission is scheduled.

若圖8A所示的SA部分及資料部分的資源位置是事先組態(即是每個使用者設備所對應使用的SA部分和資料部分之資源之位置是固定的且是其他使用者設備事先知道的),則針對空閒資源區、可解碼資源區及碰撞資源區可如下述實施例說明來決定。針對空閒資源區,若SA部分訊號的強度小於預設門檻值,且處理器160無法對T-RPT資訊解碼,則處理器160將認定該SA部分 及對應資料部分為空閒資源區(例如,資訊欄位以“00”表示)。針對忙碌資源區中的可解碼資源區,若SA部分訊號的強度大於預設門檻值,且處理器160可對T-RPT資訊解碼,則處理器160將認定該SA部分及對應資料部分為可解碼資源區(例如,以“01”表示)。針對忙碌資源區中的碰撞資源區,若SA部分訊號的強度大於預設門檻值,且處理器160無法對T-RPT資訊解碼,則處理器160將認定該SA部分及應資料部分為碰撞資源區(例如,以“10”表示)。 If the resource positions of the SA part and the data part shown in FIG. 8A are configured in advance (that is, the resource positions of the SA part and the data part corresponding to each user device are fixed and known by other user devices in advance ), the idle resource area, the decodable resource area and the collision resource area can be determined as described in the following embodiments. For the free resource area, if the signal strength of the SA part is less than the preset threshold and the processor 160 cannot decode the T-RPT information, the processor 160 will determine the SA part And the corresponding data part is a free resource area (for example, the information field is represented by "00"). For the decodable resource area in the busy resource area, if the signal strength of the SA part is greater than the preset threshold, and the processor 160 can decode the T-RPT information, the processor 160 will determine that the SA part and the corresponding data part are Decode the resource area (for example, represented by "01"). For the collision resource area in the busy resource area, if the strength of the SA part signal is greater than the preset threshold, and the processor 160 cannot decode the T-RPT information, the processor 160 will recognize the SA part and the data part as collision resources Zone (for example, represented by "10").

另一方面,若圖8A所示的SA部分及資料部分的資源位置並未事先組態(即是每個使用者設備所對應使用的SA部分和資料部分之資源之位置是不固定的且是其他使用者設備事先不知道的),則針對空閒資源區、可解碼資源區及碰撞資源區如下述說明來決定。針對空閒資源區,與前述位置已事先組態的實施例不同之處在於,僅該SA部分被決定為空閒資源區。針對忙碌資源區中的可解碼資源區,與前述位置已事先組態的實施例相同。針對忙碌區中的碰撞資源區,與前述位置已事先組態的實施例不同之處在於,僅該SA部分被決定為碰撞資源區。 On the other hand, if the resource positions of the SA part and the data part shown in FIG. 8A are not configured in advance (that is, the resource positions of the SA part and the data part corresponding to each user device are not fixed and are If other user equipment does not know in advance), the idle resource area, the decodable resource area, and the collision resource area are determined as described below. With regard to the free resource area, the difference from the embodiment where the foregoing positions have been configured in advance is that only the SA part is determined as the free resource area. For the decodable resource area in the busy resource area, it is the same as the embodiment in which the foregoing positions have been configured in advance. With respect to the collision resource area in the busy area, it is different from the foregoing embodiment where the position has been configured in advance is that only the SA part is determined as the collision resource area.

針對資源感測的另一實施例中,流程區分為兩階段,其一是基於子通道(Subchannel)資源,其二是基於資源區塊群組(Resource Block Group,RBG)。針對基於子通道資源的第一階段資源感測,首先將每一選擇使用之組成載波之資源以時間及/或頻率分割成多個子通道資源,其中該子通道資源大小由上層設定且其包含至少一個資源區塊群組。處理器160是透過接收器120接收 及量測各選擇使用之組成載波中所有子通道資源之訊號強度,並依據一第一能量門檻值(可事先決定或動態調整,並基於背景雜訊的平均功率)決定各選擇使用之組成載波中所有子通道資源的使用情況。反應於對某一選擇使用之組成載波中某一子通道資源量測的(平均或某一區段的)能量未大於此能量門檻值,處理器160判斷此子通道資源為空閒子通道資源,而此空閒子通道資源是用於進行資源選擇的候選資源。反應於對此子通道資源量測的能量大於此能量門檻值,處理器160判斷此子通道資源不為空閒子通道資源(而是忙碌子通道資源)。如圖8C所示,所有資源R可區分成忙碌子通道資源及空閒子通道資源。此外,各子通道資源可以不同的位置資訊區別(圖中以座標為例,(1,1)代表子訊框1的子通道1)其資源位置。 In another embodiment for resource sensing, the process is divided into two stages, one is based on Subchannel resources, and the other is based on Resource Block Group (RBG). For the first-stage resource sensing based on sub-channel resources, the resources of each component carrier selected for use are first divided into multiple sub-channel resources in time and/or frequency, where the sub-channel resource size is set by the upper layer and includes at least A resource block group. The processor 160 receives through the receiver 120 And measure the signal strength of all sub-channel resources in each component carrier selected, and determine each component carrier selected based on a first energy threshold (can be determined in advance or dynamically adjusted, and based on the average power of background noise) The usage of all sub-channel resources in In response to the measured energy (average or a certain section) of a sub-channel resource in a selected component carrier being not greater than the energy threshold, the processor 160 determines that the sub-channel resource is an idle sub-channel resource, The idle sub-channel resource is a candidate resource for resource selection. In response to the measured energy of the sub-channel resource being greater than the energy threshold, the processor 160 determines that the sub-channel resource is not an idle sub-channel resource (but a busy sub-channel resource). As shown in FIG. 8C, all resources R can be divided into busy sub-channel resources and idle sub-channel resources. In addition, the resources of each sub-channel can be distinguished by different position information (in the figure, taking coordinates as an example, (1,1) represents sub-channel 1 of sub-frame 1) and its resource location.

針對基於資源區塊群組的第二階段資源感測,為了提供更準確的感測,處理器160更將第一階段中所決定的忙碌子通道資源(例如,圖8C所示的忙碌資源)以時間及/或頻率分割成數個資源區塊群組,其個數由上層設定。處理器160再透過接收器120接收及量測各忙碌子通道資源中所有資源區塊群組之訊號強度,並依據另一第一能量門檻值決定各忙碌子通道資源中所有資源區塊群組的使用情況。反應於對某一忙碌子通道資源中某一資源區塊群組量測的(平均或某一區段的)能量未大於此能量門檻值,處理器160判斷此資源區塊群組為空閒資源區塊群組。而反應於對此資源區塊群組量測的能量大於此能量門檻值,處理器160判斷此 資源區塊群組不為空閒資源區塊群組(而是忙碌資源區塊群組)。 For the second-stage resource sensing based on the resource block group, in order to provide more accurate sensing, the processor 160 further allocates the busy sub-channel resources determined in the first stage (for example, the busy resources shown in FIG. 8C) It is divided into several resource block groups by time and/or frequency, and the number is set by the upper layer. The processor 160 receives and measures the signal strength of all resource block groups in each busy sub-channel resource through the receiver 120, and determines all resource block groups in each busy sub-channel resource according to another first energy threshold Usage. In response to the measured energy (average or a certain section) of a resource block group in a busy sub-channel resource is not greater than the energy threshold, the processor 160 determines that the resource block group is an idle resource Block group. In response to the energy measured for this resource block group being greater than the energy threshold, the processor 160 determines this The resource block group is not an idle resource block group (but a busy resource block group).

以圖8D為例,一個忙碌子通道資源可分割成四個資源區塊群組1~4。處理器160基於另一第一能量門檻值判斷這四個資源區塊群組1~4是否為忙碌或空閒之資源區塊群組,並得出資源區塊群組1為空閒資源區塊群組(Idle Resource Block Group,IRBG)(對應到空閒資源)且資源區塊群組2~4為忙碌資源區塊群組(Busy Resource Block Group,BRBG)(對應到忙碌資源)。 Taking FIG. 8D as an example, a busy sub-channel resource can be divided into four resource block groups 1-4. The processor 160 determines whether the four resource block groups 1 to 4 are busy or idle resource block groups based on another first energy threshold, and concludes that the resource block group 1 is an idle resource block group Group (Idle Resource Block Group, IRBG) (corresponding to idle resources) and resource block groups 2~4 are Busy Resource Block Group (BRBG) (corresponding to busy resources).

於一實施例中,針對忙碌資源,處理器160可更基於一第二能量門檻值(可事先決定或動態調整,並基於在SA解碼程序中使用的能量門檻值)來判斷該忙碌資源區塊群組為可解碼資源區或碰撞資源區。反應於對某一忙碌資源區塊群組量測的(平均或某一區段的)能量未大於此第二能量門檻值,處理器160判斷此忙碌資源區塊群組為可解碼資源區。而反應於對此資源區塊群組量測的能量大於此能量門檻值,處理器160判斷此忙碌資源區塊群組為碰撞資源區。 In one embodiment, for busy resources, the processor 160 may further determine the busy resource block based on a second energy threshold (which may be determined in advance or dynamically adjusted, and based on the energy threshold used in the SA decoding process) The group is a decodable resource area or a collision resource area. In response to the measured energy (average or in a certain section) of a busy resource block group not exceeding the second energy threshold, the processor 160 determines that the busy resource block group is a decodable resource area. In response to the measured energy of the resource block group being greater than the energy threshold, the processor 160 determines that the busy resource block group is the collision resource area.

針對資源感測的再一實施例中,處理器160亦可結合前述基於資源占用資訊及兩階段能量量測的資源感測方法,並對兩方法所得的資源使用指示(包括資源是否被占用、可解碼或空閒等)伴隨著權重係數來比對(例如,判斷兩方法所得之結果是否相同),從而得出更加可靠及準確之混和資源指示。例如,針對SA部分及資料部分的資源位置已事先組態的情況,使用資源占用資訊方法所得出的資源使用指示將針對可解碼資源區及碰撞資源區給予較 高的權重係數。而針對SA部分及資料部分的資源位置未事先組態的情況,使用資源占用資訊方法所得出的資源使用指示將僅針對可解碼資源區給予較高的權重係數。 In yet another embodiment for resource sensing, the processor 160 may also combine the aforementioned resource sensing method based on resource occupancy information and two-stage energy measurement, and indicate the resource usage indication (including whether the resource is occupied, Decodable or idle, etc.) are accompanied by weight coefficients for comparison (for example, to determine whether the results obtained by the two methods are the same), so as to obtain a more reliable and accurate mixed resource indication. For example, in the case where the resource positions of the SA part and the data part have been configured in advance, the resource usage instruction obtained by using the resource occupancy information method will be given to the decodable resource area and the collision resource area. High weighting factor. Whereas the resource positions of the SA part and the data part are not configured in advance, the resource usage instruction obtained by using the resource occupancy information method will only give a higher weighting factor to the decodable resource area.

各選擇使用之組成載波的資源池可基於PPPP來區分。在一實施例中,處理器160可將各選擇使用之組成載波對應的資源池(Resource Pool,RP)(例如,圖8B及8C的資源R)依據PPPP分割成相同等分或不同比例。圖9A及圖9B是兩範例繪示資源池分割的示意圖。請先參照圖9A,假設有第一PPPP至第四PPPP(即,PPPP1~PPPP4),而處理器160將資源池RP平均分成四個等分,而這四等分是分別指配給具這4種不同PPPP的使用者設備100使用。即,使用者設備100只會自其PPPP對應的資源部分進行資源感測與選擇。 The resource pool of each component carrier selected for use can be distinguished based on PPPP. In an embodiment, the processor 160 may divide the resource pools (RP) (for example, the resource R shown in FIGS. 8B and 8C) corresponding to the component carriers selected for use into equal parts or different proportions according to PPPP. FIG. 9A and FIG. 9B are schematic diagrams illustrating resource pool splitting by two examples. Please refer to FIG. 9A first, assuming that there is a first PPPP to a fourth PPPP (ie, PPPP1~PPPP4), and the processor 160 divides the resource pool RP into four equal parts on average, and these four equal parts are assigned to the four Various types of PPPP user equipment 100 are used. That is, the user equipment 100 will only perform resource sensing and selection from the resource part corresponding to its PPPP.

在另一實施例中,處理器160可依據PPPP對應的通道使用門檻值而將各選擇使用之組成載波對應的資源池(例如,圖8B及8C的資源R)依據PPPP分割成不同比例。請參照圖9B,假設有第一PPPP至第四PPPP(即,PPPP1~PPPP4),且其對應之通道使用門檻值比例為0.2:0.4:0.6:0.8。處理器160將資源池RP依據上述1:2:3:4的比例分成四個資源區域,分別指配給PPPP1~PPPP4。換句話說,這四個資源區域是分別指配給具這4種不同PPPP的使用者設備100使用。即,使用者設備100只會自其PPPP對應的資源區域進行資源感測與選擇。 In another embodiment, the processor 160 may divide the resource pool corresponding to each component carrier selected for use (for example, the resource R in FIGS. 8B and 8C) into different proportions according to PPPP according to the channel usage threshold corresponding to PPPP. Referring to FIG. 9B, assume that there is a first PPPP to a fourth PPPP (ie, PPPP1~PPPP4), and the corresponding channel usage threshold ratio is 0.2: 0.4: 0.6: 0.8. The processor 160 divides the resource pool RP into four resource areas according to the above ratio of 1:2:3:4, and assigns them to PPPP1~PPPP4, respectively. In other words, the four resource areas are respectively allocated to user equipment 100 with these four different PPPPs. That is, the user equipment 100 will only perform resource sensing and selection from the resource area corresponding to its PPPP.

針對資源選擇,處理器160可對各選擇使用之組成載波 中的每一資源單元依序指派對應的位置號碼,其中該資源單元大小由上層設定其包含至少一個資源區塊。圖10A及10B是一範例繪示資源選擇與資源重選擇的示意圖。請先參照圖10A,在此假設資源單元包含一個資源區塊,資源池RP2中的各資源區塊皆有事先設定且所有使用者設備都知道的各自對應的位置號碼,而位置號碼連續且不重複。處理器160在進行資源感測後可得出忙碌資源區塊(Busy Resource Block,BRB)對應的資源位置(其對應之忙碌資源位置號碼之集合為{1,2,5,12,13,14,26})及空閒資源區塊(Idle Resource Block,IRB)對應的資源位置(其對應之空閒資源位置號碼之集合為{3,4,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,24,25,27,28,29,30})。 For resource selection, the processor 160 may use component carriers for each selection Each resource unit in is assigned a corresponding location number in sequence, where the size of the resource unit is set by the upper layer to include at least one resource block. 10A and 10B are schematic diagrams illustrating resource selection and resource reselection. Please refer to FIG. 10A first. Here, it is assumed that the resource unit includes one resource block. Each resource block in the resource pool RP2 has its corresponding location number set in advance and known to all user equipment. The location numbers are continuous and not repeat. After the resource sensing is performed by the processor 160, the resource location corresponding to the busy resource block (Busy Resource Block, BRB) can be obtained (the set of corresponding busy resource location numbers is {1,2,5,12,13,14 ,26}) and the resource location corresponding to the idle resource block (Idle Resource Block, IRB) (the set of corresponding idle resource location numbers is {3,4,6,7,8,9,10,11,15, 16,17,18,19,20,21,22,23,24,25,27,28,29,30}).

處理器160隨機對這些對應空閒資源區塊之位置號碼中的一者所對應的空閒資源區塊(例如,圖10A中的空閒資源區塊IRB)進行初次資源選擇。例如,處理器160自上述空閒資源位置號碼之集合中挑選一個位置號碼,並在此位置號碼對應的空閒資源區塊進行資料傳輸,然後再判斷選擇的資源是否發生碰撞(步驟S715)。反應於選擇的資源未發生碰撞,則處理器160將以半持續(Semi-persistent)排程的方式而週期地持續使用所選擇對應的資源進行資料傳輸(步驟S730)。以圖10B為例,非碰撞資源區塊(Non-Collided Resource Block,NCRB)是僅有被單一使用者設備100挑選,則選擇這些非碰撞資源區塊NCRB的使用者設備100可持續使用該所選擇對應的資源進行資料傳輸。 The processor 160 randomly performs initial resource selection on the idle resource block corresponding to one of the location numbers of the corresponding idle resource blocks (for example, the idle resource block IRB in FIG. 10A). For example, the processor 160 selects a location number from the set of idle resource location numbers, and performs data transmission in the idle resource block corresponding to the location number, and then determines whether the selected resource collides (step S715). In response to that the selected resources have not collided, the processor 160 will continue to use the selected corresponding resources for data transmission periodically in a semi-persistent scheduling manner (step S730). Taking FIG. 10B as an example, a non-colided resource block (Non-Collided Resource Block, NCRB) is only selected by a single user equipment 100, and the user equipment 100 that selects these non-collided resource blocks NCRB can use the institute continuously Select the corresponding resource for data transmission.

而反應於選擇的資源發生碰撞,則處理器160依據其資源選擇對應的位置號碼的大小來決定對後續感測的所有空閒資源或所有碰撞資源進行資源選擇。而此碰撞資源表示在至少二個使用者設備100進行資源選擇時同時被選擇到。以圖10B為例,碰撞資源區塊(Collided Resource Block,CRB)是被兩個以上的使用者設備100同時挑選。於一實施例中,這些遭遇到資源選擇碰撞的使用者設備100會在接續的感測視窗過程中,重新感測資源,並再次判斷資源為忙碌資源區塊、空閒資源區塊、及碰撞資源區塊中的一者,並判斷各碰撞資源區塊中同時選到此資源區塊之使用者設備100的數目。接著,這些遭遇到資源選擇碰撞的使用者設備100會進行資源重新選擇。前次資源選擇的位置號碼較小的該些遭遇到資源選擇碰撞的使用者設備100將會對所有碰撞資源區塊再次進行上述之資源選擇,即是隨機對這些對應碰撞資源區塊之位置號碼中的一者所對應的碰撞資源區塊進行資源選擇。另一方面,前次資源選擇的位置號碼較大的該些遭遇到資源選擇碰撞的使用者設備100或初次進行資源選擇的新使用者設備100將對所有空閒資源區塊進行上述之資源選擇,而不對所有碰撞資源區塊進行上述之資源選擇,即是隨機對這些對應空閒資源區塊之位置號碼中的一者所對應的空閒資源區塊進行資源選擇。藉此,讓不同類型的使用者設備100分散選擇不同類型的資源區塊,以降低資源選擇碰撞機率並提高其可靠度 In response to the collision of the selected resources, the processor 160 decides to perform resource selection on all idle resources or all collision resources subsequently sensed according to the size of the location number corresponding to the resource selection. The collision resource means that at least two user equipments 100 are selected at the same time when selecting resources. Taking FIG. 10B as an example, the collided resource block (Collided Resource Block, CRB) is selected by more than two user devices 100 at the same time. In an embodiment, the user equipment 100 that encounters the resource selection collision will re-sense the resource during the subsequent sensing window, and again determine that the resource is a busy resource block, an idle resource block, and a collision resource One of the blocks, and determine the number of user devices 100 in each collision resource block that have selected this resource block at the same time. Then, the user equipment 100 encountering the resource selection collision will perform resource reselection. The user equipment 100 that encountered the resource selection collision at the previous location number with the smaller resource selection will perform the above resource selection again for all collision resource blocks, that is, randomly assign the location numbers of the corresponding collision resource blocks The collision resource block corresponding to one of them performs resource selection. On the other hand, the user equipment 100 that encountered the resource selection collision with the location number of the previous resource selection that is larger or the new user equipment 100 that performs the resource selection for the first time will perform the above resource selection on all free resource blocks, Instead of performing the above resource selection on all collision resource blocks, it is to randomly perform resource selection on the idle resource block corresponding to one of the location numbers of these corresponding idle resource blocks. In this way, different types of user equipment 100 are allowed to decentralize the selection of different types of resource blocks, so as to reduce the probability of resource selection collision and improve its reliability

以圖10B為例,假設兩位使用者設備100在前次資源選 擇的位置號碼為17的資源區塊發生碰撞,另兩位使用者設備100則是在前次資源選擇的位置號碼為19的資源區塊發生碰撞,又三位使用者設備100則是在前次資源選擇的位置號碼為27的資源區塊發生碰撞,且再三位使用者設備100則是在前次資源選擇的位置號碼為29的資源區塊發生碰撞。接著,在下一次資源選擇時段時,前次資源選擇的位置號碼為17(其位置號碼小於上述其他三個碰撞資源區塊所對應的位置號碼19、27、29)的兩位遭遇到資源選擇碰撞的使用者設備100將自所有碰撞資源區塊所對應的位置號碼為17、19、27、29的所有碰撞資源區塊中隨機地挑選,而其餘八位遭遇到資源選擇碰撞的使用者設備100則自所有空閒資源區塊所對應的位置號碼為3、4、6、10、11、15、16、20、21、25、30的所有空閒資源區塊中隨機地挑選。 Taking FIG. 10B as an example, assume that two user equipments 100 select the previous resource The selected resource block with location number 17 collided, the other two user devices 100 collided with the resource block with location number 19 selected in the previous resource, and the three user device 100 were in front. The resource block with the location number 27 selected by the secondary resource collides, and the three user devices 100 collide with the resource block with the location number 29 selected by the previous resource. Then, in the next resource selection period, two of the previous resource selection location number 17 (the location number is less than the location numbers 19, 27, and 29 corresponding to the other three collision resource blocks) encountered a resource selection collision The user equipment 100 will randomly select from all collision resource blocks corresponding to the location numbers 17, 19, 27, and 29 corresponding to all collision resource blocks, and the remaining eight user equipments 100 that encounter resource selection collisions Then randomly selected from all the idle resource blocks corresponding to the location numbers 3, 4, 6, 10, 11, 15, 16, 20, 21, 25, 30 corresponding to all the idle resource blocks.

需說明的是,前述判斷位置號碼為較大或較小是基於位置號碼門檻值,而此號碼門檻值則與所欲選擇的所有空閒或碰撞資源區塊的數量有關(例如,上述範例中,位置號碼門檻值為所有碰撞資源區塊的數量的一半,所以位置號碼門檻值為2,並使對應位置號碼最小的前兩位遭遇到資源選擇碰撞的使用者設備100將自所有碰撞資源區塊所對應的位置號碼為17、19、27、29的所有(4個)碰撞資源區塊中隨機地挑選)。此外,在其他實施例中,位置號碼較小的使用者設備100亦可以是對空閒資源進行隨機選擇,而位置號碼較大的使用者設備100則對碰撞資源進行隨機選擇 It should be noted that the aforementioned determination of whether the location number is larger or smaller is based on the location number threshold, and this number threshold is related to the number of all free or collision resource blocks to be selected (for example, in the above example, The location number threshold value is half of the number of all collision resource blocks, so the location number threshold value is 2, and the user equipment 100 that encounters the resource selection collision with the first two digits of the corresponding location number will be removed from all collision resource blocks (All (4) collision resource blocks with corresponding position numbers 17, 19, 27, and 29 are randomly selected). In addition, in other embodiments, the user equipment 100 with a smaller location number may also randomly select idle resources, while the user equipment 100 with a larger location number randomly selects collision resources.

除了對相同選擇使用之組成載波進行資源重選擇,反應 於自一第一選擇使用之組成載波選擇資源而發生碰撞的次數超過一次數門檻值(例如,3、5、或7次等),處理器160會對與該第一選擇使用之組成載波不同的另一新的選擇使用之組成載波進行資源感測及選擇(步驟S750),且針對該第一選擇使用之組成載波的資源感測及選擇將停止,其中該另一新的選擇使用之組成載波來自在其他候選組成載波中選擇一優先順序最高者之組成載波。以圖6為例,使用者設備100原本自四個候選組成載波中選擇第一、二組成載波作為選擇使用之組成載波。然而,例如當使用者設備100在第二組成載波上選擇資源而發生碰撞的次數超過一次數門檻值(例如是5次),則使用者設備100會依據優先順序而自其他候選組成載波中選擇優先順序最高者(例如是第三組成載波)作為新的選擇使用之組成載波來進行資源感測及選擇。 In addition to resource reselection of component carriers used for the same selection, reaction When the number of collisions that occur when a resource is selected from a first selected component carrier exceeds a threshold (for example, 3, 5, or 7 times), the processor 160 will differ from the component carrier used by the first selection Another newly selected component carrier is used for resource sensing and selection (step S750), and the resource sensing and selection for the first selected component carrier will be stopped, where the other new selected component is used The carrier comes from selecting a component carrier with the highest priority among other candidate component carriers. Taking FIG. 6 as an example, the user equipment 100 originally selects the first and second component carriers from the four candidate component carriers as the selected component carrier. However, for example, when the user equipment 100 selects resources on the second component carrier and the number of collisions exceeds a threshold (for example, 5 times), the user equipment 100 will select from other candidate component carriers according to the priority order The component with the highest priority (for example, the third component carrier) is used as a new component carrier for resource sensing and selection.

綜上所述,本發明實施例的使用者設備及資源感測及選擇方法,對V2X模式四提出改進方案。使用者設備基於其PPPP來查閱上層設定之通道使用門檻值-PPPP映射表以得出對應其PPPP之組成載波及其通道使用門檻值,並將自對應組成載波量測的通道使用情況量測值與對應通道使用門檻值比較,從而得出候選組成載波。接著,依據使用者設備的能力與組成載波之優先順序,將自候選組成載波中挑選出至少一個選擇使用之組成載波,並對這些選擇使用之組成載波同時進行資源感測及選擇。針對資源感測,可基於資源占用資訊、能量量測或其組合而得出忙碌資源及空閒資源之資源位置資訊。而針對資源選擇,若選擇結果遭遇資源 選擇碰撞,則將依據先前資源選擇之位置號碼來決定後續資源選擇為在所有空閒資源或所有碰撞資源進行資源選擇。此外,可依據一先前資訊對每一選擇使用之組成載波中的空閒資源進行資源重選擇,其中先前資訊是基於先前對每一選擇使用之組成載波的一資源選擇結果,而資源選擇結果與資源選擇發生碰撞相關。 In summary, the user equipment and resource sensing and selection methods of the embodiments of the present invention provide an improved solution for V2X mode four. The user equipment refers to the channel usage threshold-PPPP mapping table set by the upper layer based on its PPPP to obtain the component carrier corresponding to its PPPP and its channel usage threshold, and measures the channel usage from the corresponding component carrier. Compare with the threshold of the corresponding channel to obtain the candidate component carrier. Then, according to the capabilities of the user equipment and the priority order of component carriers, at least one component carrier selected from the candidate component carriers is selected for use, and resource sensing and selection are simultaneously performed on these component carriers selected for use. For resource sensing, resource location information of busy resources and idle resources can be obtained based on resource occupancy information, energy measurement, or a combination thereof. For resource selection, if the result of the selection encounters resources If you select collision, the location number of the previous resource selection will be used to determine the subsequent resource selection as resource selection among all idle resources or all collision resources. In addition, resource reselection can be performed on idle resources in each component carrier selected for use based on a previous information, where the previous information is based on a resource selection result for each component carrier selected for use, and the resource selection result and the resource Choose collision related.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

S310~S350‧‧‧步驟 S310~S350‧‧‧Step

Claims (50)

一種資源感測及選擇方法,適用於一使用者設備(User Equipment,UE),該資源感測及選擇方法包括:量測並取得所有多個組成載波(component carriers,CCs)的通道使用情況;比較每一該組成載波的通道使用情況量測值及該使用者設備對應的鄰近服務個別封包優先權(ProSe Per-packet Priority,PPPP)所對應的通道使用門檻值,以自該些組成載波中決定候選組成載波,其中該候選組成載波個數為一大於或等於零之整數;以及選擇該些候選組成載波中的至少一者為選擇使用之組成載波並對該至少一選擇使用之組成載波進行資源感測及選擇。 A resource sensing and selection method suitable for a user equipment (User Equipment, UE). The resource sensing and selection method includes: measuring and obtaining channel usage of all multiple component carriers (CCs); Compare the channel usage measurement value of each component carrier and the channel usage threshold value corresponding to the ProSe Per-packet Priority (PPPP) corresponding to the user equipment to select from these component carriers Determining candidate component carriers, wherein the number of candidate component carriers is an integer greater than or equal to zero; and at least one of the candidate component carriers is selected as a component carrier to be selected for use and resources are allocated to the at least one component carrier to be used for selection Sensing and selection. 如申請專利範圍第1項所述的資源感測及選擇方法,其中決定該些候選組成載波的步驟復包括:比較每一該組成載波的通道使用情況量測值及對應的每一該組成載波在該對應的鄰近服務個別封包優先權所對應的通道使用門檻值;反應於該些組成載波中的一第一組成載波的通道使用情況量測值小於該對應的通道使用門檻值,將該第一組成載波作為該些候選組成載波中的一者;以及反應於該第一組成載波的通道使用情況量測值未小於該對應的通道使用門檻值,不將該第一組成載波作為該些候選組成載波中的一者。 The resource sensing and selection method as described in item 1 of the patent application scope, wherein the step of determining the candidate component carriers includes: comparing the channel usage measurement value of each component carrier and the corresponding corresponding component carrier The channel usage threshold corresponding to the priority of individual packets of the corresponding proximity service; the channel usage measurement of a first component carrier in response to the component carriers is less than the corresponding channel usage threshold, the A component carrier as one of the candidate component carriers; and in response to the channel usage measurement of the first component carrier being not less than the corresponding channel usage threshold, the first component carrier is not considered as the candidate Form one of the carriers. 如申請專利範圍第2項所述的資源感測及選擇方法,其中比較每一該組成載波的通道使用情況量測值及對應的每一該組成載波在該對應的鄰近服務個別封包優先權所對應的通道使用門檻值的步驟復包括:取得一通道使用門檻值-鄰近服務個別封包優先權映射表,其中該通道使用門檻值-鄰近服務個別封包優先權映射表記錄有所有組成載波在所有對應的鄰近服務個別封包優先權所對應的所有通道使用門檻值;以及將該鄰近服務個別封包優先權之該使用者設備在每一該組成載波的通道使用情況量測值與該通道使用門檻值-鄰近服務個別封包優先權映射表中該對應的鄰近服務個別封包優先權在每一該對應的組成載波所對應的通道使用門檻值比對。 The resource sensing and selection method as described in item 2 of the patent application scope, wherein the channel usage measurement value of each of the component carriers and the corresponding individual packet priority of each of the component carriers in the corresponding proximity service are compared The corresponding steps of the channel usage threshold include: obtaining a channel usage threshold-proximity service individual packet priority mapping table, wherein the channel usage threshold-proximity service individual packet priority mapping table records all component carriers in all corresponding Thresholds for all channels corresponding to the individual packet priority of the proximity service of the adjacent service; and the channel usage measurement value and the threshold of the channel usage of the user equipment of the individual packet priority of the proximity service for each of the component carriers- In the proximity service individual packet priority mapping table, the corresponding proximity service individual packet priority is compared at each channel usage threshold corresponding to the corresponding component carrier. 如申請專利範圍第3項所述的資源感測及選擇方法,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的所有該些鄰近服務個別封包優先權包含其對應的索引依據一優先順序排列。 The resource sensing and selection method as described in item 3 of the patent application scope, in which the channel uses a threshold-proximity service individual packet priority mapping table to record all the proximity service individual packet priority records including their corresponding index basis A priority order. 如申請專利範圍第4項所述的資源感測及選擇方法,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的所有該些鄰近服務個別封包優先權所對應的組成載波個數是,該鄰近服務個別封包優先權之優先順序越高者所對應之該組成載波個數大於或等於該鄰近服務個別封包優先權之優先順序越低者所對應之該組成載波個數。 The resource sensing and selection method as described in item 4 of the patent application scope, in which the channel uses a threshold-proximity service individual packet priority mapping table to record the component carriers corresponding to all of the proximity service individual packet priorities The number is that the number of component carriers corresponding to the higher priority order of the individual packet priority of the proximity service is greater than or equal to the number of component carriers corresponding to the lower priority order of the individual packet priority of the proximity service. 如申請專利範圍第4項所述的資源感測及選擇方法,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的每一該鄰近服務個別封包優先權所對應的該些組成載波包含其對應的索引依據一優先順序排列。 The resource sensing and selection method as described in item 4 of the patent application scope, in which the channel uses a threshold-proximity service individual packet priority mapping table to record each component corresponding to each of the proximity service individual packet priorities Carriers include their corresponding indexes according to a priority order. 如申請專利範圍第6項所述的資源感測及選擇方法,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的每一該鄰近服務個別封包優先權所對應的該些組成載波中該些組成載波包含其對應的索引的優先順序是,該優先順序越高者之該組成載波的索引小於或等於該優先順序越低者之該組成載波的索引;以及所有該些鄰近服務個別封包優先權所對應之該些組成載波中排列順序最前者的索引是,該鄰近服務個別封包優先權之優先順序越高者所對應之該些組成載波中排列順序最前者的索引小於或等於該鄰近服務個別封包優先權之優先順序越低者所對應之該些組成載波中排列順序最前者的索引。 The resource sensing and selection method as described in item 6 of the patent application scope, wherein the channel uses a threshold-proximity service individual packet priority mapping table to record each component corresponding to each of the proximity service individual packet priorities The priority order of the component carriers in the carrier including their corresponding indexes is that the index of the component carrier with the higher priority is less than or equal to the index of the component carrier with the lower priority; and all the neighboring services The index of the foremost order of the component carriers corresponding to the individual packet priority is that the index of the foremost order of the component carriers corresponding to the higher priority order of the adjacent service individual packet priority is less than or equal to The index of the foremost order among the component carriers corresponding to the lower priority order of the individual packet priority of the proximity service. 如申請專利範圍第4項所述的資源感測及選擇方法,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的在每一該組成載波中所有該些對應的不同鄰近服務個別封包優先權所對應的通道使用門檻值不同。 The resource sensing and selection method as described in item 4 of the patent application scope, in which the channel uses a threshold-proximity service individual packet priority mapping table to record all the corresponding different proximity services in each of the component carriers The threshold of channel usage corresponding to individual packet priorities is different. 如申請專利範圍第3項所述的資源感測及選擇方法,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的 每一該鄰近服務個別封包優先權在所有該些對應的不同組成載波所對應的通道使用門檻值不同。 The method of resource sensing and selection as described in item 3 of the patent application scope, in which the channel uses the threshold-recorded by the individual service priority mapping table of the proximity service Each of the adjacent service individual packet priorities has different thresholds for channel usage corresponding to all the corresponding different component carriers. 如申請專利範圍第8項所述的資源感測及選擇方法,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的每一該鄰近服務個別封包優先權在對應的所有該些組成載波所對應的通道使用門檻值是,該組成載波的索引較小者所對應之通道使用門檻值大於該組成載波的索引較大者所對應之通道使用門檻值。 The resource sensing and selection method as described in item 8 of the patent application scope, in which the channel uses a threshold-proximity service individual packet priority mapping table to record each of the proximity service individual packet priority in all corresponding The channel usage threshold corresponding to the component carrier is that the channel usage threshold corresponding to the smaller component carrier index is greater than the channel usage threshold corresponding to the higher component carrier index. 如申請專利範圍第3項所述的資源感測及選擇方法,其中一第一資源選擇視窗對應的該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的一該組成載波對應的通道使用門檻值大於一第二資源選擇視窗對應的該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的相同該組成載波對應的通道使用門檻值,其中該第一資源選擇視窗之時間長度小於該第二資源選擇視窗之時間長度。 The resource sensing and selection method as described in item 3 of the patent application scope, wherein the channel usage threshold corresponding to a first resource selection window-a channel corresponding to the component carrier recorded in the priority map of the individual packet of the proximity service The usage threshold is greater than the channel usage threshold corresponding to a second resource selection window-the channel usage threshold corresponding to the same component carrier recorded in the neighboring service individual packet priority mapping table, wherein the time length of the first resource selection window Less than the time length of the second resource selection window. 如申請專利範圍第3項所述的資源感測及選擇方法,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的所有該些鄰近服務個別封包優先權對應於至少一服務類型,而該至少一服務類型的優先順序相同。 The resource sensing and selection method as described in item 3 of the patent application scope, wherein the channel usage threshold-neighbor service individual packet priority mapping table records all the neighbor service individual packet priorities corresponding to at least one service type , And the priority order of the at least one service type is the same. 如申請專利範圍第2項所述的資源感測及選擇方法,其中每一該通道使用情況的量測值是一通道忙碌率(Channel Busy Ratio,CBR)值。 The resource sensing and selection method as described in item 2 of the patent application scope, wherein the measurement value of each channel usage is a channel busy ratio (CBR) value. 如申請專利範圍第1項所述資源感測及選擇方法,其中取得所有該些組成載波的通道使用情況量測值的步驟復包括:對一感測視窗以至少一量測週期分割;以及量測並取得該至少一量測週期內的所有該些組成載波的通道使用情況量測值。 The resource sensing and selection method as described in item 1 of the patent application scope, wherein the step of obtaining the channel usage measurement values of all the component carriers includes: dividing a sensing window by at least one measurement period; and the quantity Measuring and obtaining channel usage measurement values of all the component carriers in the at least one measurement period. 如申請專利範圍第1項所述資源感測及選擇方法,其中自該些候選組成載波中選擇至少一者為選擇使用之組成載波的步驟復包括:依據該些候選組成載波的優先順序及該使用者設備的能力,而自該些候選組成載波中選擇至少一者為選擇使用之組成載波;以及對該至少一選擇使用之組成載波進行資源感測及選擇。 The method for resource sensing and selection as described in item 1 of the patent application scope, wherein the step of selecting at least one of the candidate component carriers as the component carrier to be selected includes: according to the priority order of the candidate component carriers and the The capability of the user equipment, and at least one of the candidate component carriers is selected as the component carrier to be selected for use; and resource sensing and selection are performed on the at least one component carrier to be selected for use. 如申請專利範圍第1項所述資源感測及選擇方法,其中對該至少一選擇使用之組成載波進行資源感測及選擇的步驟復包括:將每一該選擇使用之組成載波之資源以時間及/或頻率分割成多個資源單元,其中該資源單元大小由上層設定且其包含至少一個資源區塊;以及依據一資源占用資訊決定每一該選擇使用之組成載波中的至少一空閒資源單元,其中該資源占用資訊相關於資料傳輸之資源分配情形,且該至少一空閒資源單元是用於進行資源選擇的候選資源。 The resource sensing and selection method as described in item 1 of the patent application scope, wherein the step of performing resource sensing and selection on the at least one component carrier selected for use includes: And/or frequency division into multiple resource units, wherein the resource unit size is set by the upper layer and includes at least one resource block; and at least one idle resource unit in each of the selected component carriers is determined according to a resource occupancy information , Where the resource occupancy information is related to the resource allocation situation of data transmission, and the at least one idle resource unit is a candidate resource for resource selection. 如申請專利範圍第16項所述資源感測及選擇方法,其中依據該資源占用資訊決定每一該選擇使用之組成載波中的該至少一空閒資源單元復包括:自至少一排程指派(Scheduling Assignment,SA)訊息取得該資源占用資訊。 The resource sensing and selection method as described in item 16 of the patent application scope, wherein the determination of the at least one idle resource unit in each of the selected component carriers based on the resource occupancy information includes: from at least one scheduling assignment (Scheduling Assignment (SA) message to obtain the resource occupancy information. 如申請專利範圍第1項所述資源感測及選擇方法,其中對該至少一選擇使用之組成載波進行資源感測及選擇的步驟復包括:將每一該選擇使用之組成載波之資源以時間及/或頻率分割成多個子通道資源,其中該子通道資源包含至少一個資源區塊群組;依據一能量門檻值決定每一該選擇使用之組成載波中每一該子通道資源的使用情況;反應於對一該選擇使用之組成載波中一第一子通道資源量測的能量未大於該能量門檻值,判斷該第一子通道資源為一空閒子通道資源,其中該空閒子通道資源是用於進行資源選擇的候選資源;以及反應於對該第一子通道資源量測的能量大於該能量門檻值,判斷該第一子通道資源為一忙碌子通道資源。 The resource sensing and selection method as described in item 1 of the patent application scope, wherein the step of performing resource sensing and selection on the at least one component carrier selected for use includes: And/or frequency division into multiple sub-channel resources, where the sub-channel resources include at least one resource block group; the usage of each of the sub-channel resources in each of the selected component carriers is determined according to an energy threshold; In response to the measured energy of a first subchannel resource in a component carrier selected for use not exceeding the energy threshold, it is determined that the first subchannel resource is an idle subchannel resource, wherein the idle subchannel resource is used A candidate resource for resource selection; and in response to the measured energy of the first sub-channel resource being greater than the energy threshold, determining that the first sub-channel resource is a busy sub-channel resource. 如申請專利範圍第18項所述資源感測及選擇方法,其中對該至少一選擇使用之組成載波進行資源感測及選擇的步驟復包括: 決定每一該選擇使用之組成載波中的每一該忙碌子通道資源;將每一該忙碌子通道資源以時間及/或頻率分割成多個資源區塊群組;依據一能量門檻值決定每一該資源區塊群組的使用情況;反應於對一該忙碌子通道資源中一第一資源區塊群組量測的能量未大於該能量門檻值,判斷該第一資源區塊群組為一空閒資源區塊群組,其中該空閒資源區塊群組是用於進行資源選擇的候選資源;以及反應於對該第一資源區塊群組量測的能量大於該能量門檻值,判斷該第一資源區塊群組不為該空閒資源區塊群組。 The method for resource sensing and selection as described in item 18 of the patent application scope, wherein the steps of resource sensing and selection for the at least one component carrier selected for use include: Determine each busy sub-channel resource in each component carrier selected for use; divide each busy sub-channel resource into multiple resource block groups with time and/or frequency; determine each based on an energy threshold A usage of the resource block group; in response to the measured energy of a first resource block group in a busy sub-channel resource is not greater than the energy threshold, the first resource block group is determined to be An idle resource block group, wherein the idle resource block group is a candidate resource for resource selection; and in response to the energy measured for the first resource block group being greater than the energy threshold, determining the The first resource block group is not the idle resource block group. 如申請專利範圍第1項所述資源感測及選擇方法,其中對該至少一選擇使用之組成載波進行資源感測及選擇的步驟復包括:依據一先前資訊對每一該選擇使用之組成載波中的空閒資源進行資源重選擇,其中該先前資訊是基於先前對每一該選擇使用之組成載波的一資源選擇結果,而該資源選擇結果與資源選擇發生碰撞相關。 The resource sensing and selection method as described in item 1 of the patent application scope, wherein the step of performing resource sensing and selection on the at least one selected component carrier includes: according to a previous information, for each selected component carrier Resource reselection is performed on the idle resources in, wherein the previous information is based on a resource selection result for each component carrier previously used by the selection, and the resource selection result is related to the collision of resource selection. 如申請專利範圍第20項所述資源感測及選擇方法,其中對該至少一選擇使用之組成載波進行資源感測及選擇的步驟復包括:對該至少一選擇使用之組成載波中的每一資源單元依序指派對應的位置號碼,其中該資源單元大小由上層設定其包含至少一 個資源區塊;以及隨機對該些對應空閒資源單元之位置號碼中的一者所對應的空閒資源單元進行初次資源選擇。 The resource sensing and selection method as described in item 20 of the patent application scope, wherein the step of performing resource sensing and selection on the at least one selected component carrier includes: each of the at least one selected component carrier The resource units are assigned corresponding position numbers in sequence, wherein the size of the resource unit is set by the upper layer and includes at least Resource blocks; and randomly performing initial resource selection for the idle resource unit corresponding to one of the location numbers of the corresponding idle resource units. 如申請專利範圍第21項所述資源感測及選擇方法,其中復包括:反應於該初次資源選擇或該資源重新選擇對應的資源未發生資源選擇碰撞,持續使用該初次資源選擇或該資源重新選擇對應的資源進行資料傳輸;以及反應於該初次資源選擇或該資源重新選擇對應的資源發生資源選擇碰撞,依據該初次資源選擇或該資源重新選擇對應的位置號碼的大小來決定對後續感測的所有空閒資源或所有碰撞資源進行資源選擇,其中該碰撞資源表示一該資源單元在至少二該使用者設備進行資源選擇時同時被選擇到。 As described in Item 21 of the patent application scope, the resource sensing and selection method includes: in response to the resource selection corresponding to the initial resource selection or the resource reselection, there is no resource selection collision, continuous use of the initial resource selection or the resource reselection Select the corresponding resource for data transmission; and respond to the resource selection collision in response to the initial resource selection or the resource reselection, and determine the subsequent sensing based on the size of the location number corresponding to the initial resource selection or the resource reselection All idle resources or all collision resources are used for resource selection, where the collision resource indicates that one of the resource units is simultaneously selected when at least two of the user equipments perform resource selection. 如申請專利範圍第1項所述資源感測及選擇方法,其中對該至少一選擇使用之組成載波進行資源感測及選擇方法復包括:將該至少一選擇使用之組成載波對應的資源池依據該些對應之鄰近服務個別封包優先權分割成相同等分或不同比例。 The resource sensing and selection method as described in item 1 of the patent application scope, wherein the resource sensing and selection method for the at least one component carrier selected for use further includes: a resource pool basis corresponding to the at least one component carrier selected for use The priority of the individual packets of the corresponding adjacent services is divided into the same equal division or different proportions. 如申請專利範圍第1項所述資源感測及選擇方法,其中對該至少一選擇使用之組成載波進行資源感測及選擇方法復包括:反應於自該至少一選擇使用之組成載波中的一第一選擇使用 之組成載波選擇資源而發生碰撞的次數超過一次數門檻值,重新在其他候選組成載波中選擇一優先順序最高者作為一新選擇使用之組成載波並對此選擇使用之組成載波進行資源感測及選擇。 The resource sensing and selection method as described in item 1 of the patent application scope, wherein the resource sensing and selection method for the at least one component carrier selected for use includes: reacting to one of the component carriers selected from the at least one component used for selection First choice The component carrier selects resources and the number of collisions exceeds the threshold of a number of times. Reselect one of the other candidate component carriers with the highest priority as a newly selected component carrier and perform resource sensing on this selected component carrier and select. 如申請專利範圍第1項所述資源感測及選擇方法,其中該使用者設備適用於車聯網通訊(Vehicle-to-Everything,V2X)模式四。 The resource sensing and selection method as described in item 1 of the patent application scope, in which the user equipment is suitable for Vehicle-to-Everything (V2X) mode four. 一種使用者設備,包括:一接收器,接收訊號;一傳送器,傳送訊號;一處理器,耦接該接收器及該傳送器,並經組態用以:透過該接收器經量測取得所有多個組成載波的通道使用情況;比較每一該組成載波的通道使用情況量測值及該使用者設備對應的鄰近服務個別封包優先權所對應的通道使用門檻值,以自該些組成載波中決定候選組成載波,其中該候選組成載波個數為一大於或等於零之整數;以及選擇該些候選組成載波中的至少一者為選擇使用之組成載波並透過該接收器對該至少一選擇使用之組成載波進行資源感測及選擇。 A user equipment includes: a receiver to receive signals; a transmitter to transmit signals; a processor coupled to the receiver and the transmitter, and configured to: obtain through measurement through the receiver Channel usage of all multiple component carriers; compare the channel usage measurement value of each component carrier with the channel usage threshold corresponding to the individual packet priority of the proximity service corresponding to the user equipment to select from these component carriers Determine the candidate component carrier in which the number of the candidate component carrier is an integer greater than or equal to zero; and select at least one of the candidate component carriers as the component carrier to be selected and use the at least one selected carrier through the receiver The component carrier is used for resource sensing and selection. 如申請專利範圍第26項所述的使用者設備,其中該處理器經組態用以:比較每一該組成載波的通道使用情況量測值及對應的每一該 組成載波在該對應的鄰近服務個別封包優先權所對應的通道使用門檻值;反應於該些組成載波中的一第一組成載波的通道使用情況量測值小於該對應的通道使用門檻值,將該第一組成載波作為該些候選組成載波中的一者;以及反應於該第一組成載波的通道使用情況量測值未小於該對應的通道使用門檻值,不將該第一組成載波作為該些候選組成載波中的一者。 The user equipment as described in item 26 of the patent application scope, wherein the processor is configured to: compare the channel usage measurement value of each of the component carriers and the corresponding The channel usage threshold of the component carrier corresponding to the priority of the corresponding individual packet of the adjacent service; the channel usage value of a first component carrier reflected in the component carriers is less than the corresponding channel usage threshold, The first component carrier is one of the candidate component carriers; and the channel usage measurement value reflecting that the first component carrier is not less than the corresponding channel usage threshold, the first component carrier is not used as the These candidates constitute one of the carriers. 如申請專利範圍第27項所述的使用者設備,其中該處理器經組態用以:取得一通道使用門檻值-鄰近服務個別封包優先權映射表,其中該通道使用門檻值-鄰近服務個別封包優先權映射表記錄有所有組成載波在所有對應的鄰近服務個別封包優先權所對應的所有通道使用門檻值;以及將該鄰近服務個別封包優先權之該使用者設備在每一該組成載波的通道使用情況量測值與該通道使用門檻值-鄰近服務個別封包優先權映射表中該對應的鄰近服務個別封包優先權在每一該對應的組成載波所對應的通道使用門檻值比對。 The user equipment as described in item 27 of the patent application scope, wherein the processor is configured to: obtain a channel usage threshold value-proximity service individual packet priority mapping table, wherein the channel usage threshold value-proximity service individual The packet priority mapping table records all channel usage thresholds of all component carriers corresponding to individual packet priorities of all corresponding proximity services; and the user equipment priority of the individual packet priority of the proximity service on each component carrier The channel usage measurement value is compared with the channel usage threshold value in the channel usage threshold-neighbor service individual packet priority mapping table for the corresponding channel usage threshold value of each corresponding component carrier in the corresponding neighbor service individual packet priority map. 如申請專利範圍第28項所述的使用者設備,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的所有該些鄰近服務個別封包優先權包含其對應的索引依據一優先順序排列。 The user equipment as described in item 28 of the patent application scope, wherein the channel usage threshold-neighbor service individual packet priority mapping table records all the neighbor service individual packet priority records including their corresponding indexes according to a priority order arrangement. 如申請專利範圍第29項所述的使用者設備,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的所有該些鄰近服務個別封包優先權所對應的組成載波個數是,該鄰近服務個別封包優先權之優先順序越高者所對應之該組成載波個數大於或等於該鄰近服務個別封包優先權之優先順序越低者所對應之該組成載波個數。 The user equipment as described in item 29 of the patent application scope, wherein the channel usage threshold-proximity service individual packet priority mapping table records the number of component carriers corresponding to all of the proximity service individual packet priorities recorded in the mapping table, The number of component carriers corresponding to the higher priority order of the adjacent service individual packet priorities is greater than or equal to the number of component carriers corresponding to the lower priority order of the adjacent service individual packet priority. 如申請專利範圍第29項所述的使用者設備,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的每一該鄰近服務個別封包優先權所對應的該些組成載波包含其對應的索引依據一優先順序排列。 The user equipment as described in item 29 of the patent application scope, wherein the channel usage threshold-proximity service individual packet priority mapping table records the component carriers corresponding to each of the proximity service individual packet priority records included in the channel The corresponding indexes are arranged according to a priority order. 如申請專利範圍第31項所述的使用者設備,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的每一該鄰近服務個別封包優先權所對應的該些組成載波中該些組成載波包含其對應的索引的優先順序是,該優先順序越高者之該組成載波的索引小於或等於該優先順序越低者之該組成載波的索引;以及所有該些鄰近服務個別封包優先權所對應之該些組成載波中排列順序最前者的索引是,該鄰近服務個別封包優先權之優先順序越高者所對應之該些組成載波中排列順序最前者的索引小於或等於該鄰近服務個別封包優先權之優先順序越低者所對應之該些組成載波中排列順序最前者的索引。 The user equipment as described in item 31 of the patent application scope, wherein the channel usage threshold-proximity service individual packet priority mapping table records the component carriers corresponding to each of the adjacent service individual packet priorities recorded in the proximity service The priority order of the component carriers including their corresponding indexes is that the index of the component carrier with the higher priority is less than or equal to the index of the component carrier with the lower priority; and all the individual packets of the neighboring services have priority The index of the foremost order of the component carriers corresponding to the weight is the index of the foremost order of the component carriers corresponding to the higher priority of the individual packet priority of the neighboring service is less than or equal to the neighboring service The index of the foremost order among the component carriers corresponding to the lower priority order of individual packet priorities. 如申請專利範圍第29項所述的使用者設備,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的在每一該組成載波中所有該些對應的不同鄰近服務個別封包優先權所對應的通道使用門檻值不同。 The user equipment as described in item 29 of the patent application scope, wherein the channel usage threshold-proximity service individual packet priority mapping table records that all corresponding different proximity service individual packets in each of the component carriers have priority The threshold of the channel usage corresponding to the weight is different. 如申請專利範圍第28項所述的使用者設備,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的每一該鄰近服務個別封包優先權在所有該些對應的不同組成載波所對應的通道使用門檻值不同。 The user equipment as described in item 28 of the patent application scope, wherein the channel usage threshold-proximity service individual packet priority mapping table records each of the proximity service individual packet priorities in all of the corresponding different component carriers The corresponding channel usage threshold is different. 如申請專利範圍第33項所述的使用者設備,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的每一該鄰近服務個別封包優先權在對應的所有該些組成載波所對應的通道使用門檻值是,該組成載波的索引較小者所對應之通道使用門檻值大於該組成載波的索引較大者所對應之通道使用門檻值。 The user equipment as described in item 33 of the patent application scope, wherein the channel usage threshold-proximity service individual packet priority mapping table records each of the proximity service individual packet priorities in all corresponding component carriers. The corresponding channel usage threshold value is that the channel usage threshold value corresponding to the smaller component carrier index is greater than the channel usage threshold value corresponding to the higher component carrier index. 如申請專利範圍第28項所述的使用者設備,其中一第一資源選擇視窗對應的通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的一該組成載波對應的通道使用門檻值大於一第二資源選擇視窗對應的通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的相同該組成載波對應的通道使用門檻值,其中該第一資源選擇視窗之時間長度小於該第二資源選擇視窗之時間長度。 The user equipment as described in item 28 of the patent application scope, wherein the channel usage threshold corresponding to a first resource selection window-a channel usage threshold corresponding to the component carrier recorded in the neighboring service individual packet priority mapping table is greater than A channel usage threshold corresponding to a second resource selection window-the channel usage threshold corresponding to the same component carrier recorded in the priority mapping table of the individual packets of the proximity service, wherein the time length of the first resource selection window is less than the second resource Choose the length of the window. 如申請專利範圍第28項所述的使用者設備,其中該通道使用門檻值-鄰近服務個別封包優先權映射表所記錄的所有該 些鄰近服務個別封包優先權對應於至少一服務類型,而該至少一服務類型的優先順序相同。 The user equipment as described in item 28 of the patent application scope, in which the channel usage threshold-neighbor service individual packet priority mapping table records all such The individual packet priorities of these proximity services correspond to at least one service type, and the priority order of the at least one service type is the same. 如申請專利範圍第27項所述的使用者設備,其中每一該通道使用情況的量測值是一通道忙碌率值。 The user equipment as described in item 27 of the patent application scope, wherein the measurement value of each channel usage is a channel busy rate value. 如申請專利範圍第26項所述的使用者設備,其中該處理器經組態用以:對一感測視窗以至少一量測週期分割;以及透過該接收器經量測取得該至少一量測週期內的所有該些組成載波的通道使用情況量測值。 The user equipment as described in item 26 of the patent application range, wherein the processor is configured to: divide a sensing window by at least one measurement period; and obtain the at least one quantity by measurement through the receiver Measured values of channel usage of all these component carriers in the measurement period. 如申請專利範圍第26項所述的使用者設備,其中該處理器經組態用以:依據該些候選組成載波的優先順序及該使用者設備的能力,而自該些候選組成載波中選擇至少一者為選擇使用之組成載波;以及對該至少一選擇使用之組成載波進行資源感測及選擇。 The user equipment as described in item 26 of the patent application scope, wherein the processor is configured to: select from the candidate component carriers according to the priority order of the candidate component carriers and the capabilities of the user equipment At least one of the component carriers selected for use; and resource sensing and selection of the at least one component carrier selected for use. 如申請專利範圍第26項所述的使用者設備,其中該處理器經組態用以:將每一該選擇使用之組成載波之資源以時間及/或頻率分割成多個資源單元,其中該資源單元大小由上層設定且其包含至少一個資源區塊;依據一資源占用資訊決定每一該選擇使用之組成載波中的至少一空閒資源單元,其中該資源占用資訊相關於資料傳輸之資源 分配情形,且該至少一空閒資源單元是用於進行資源選擇的候選資源。 The user equipment as described in item 26 of the patent application scope, wherein the processor is configured to: divide the resources of each selected component carrier into multiple resource units in time and/or frequency, wherein the The size of the resource unit is set by the upper layer and includes at least one resource block; at least one idle resource unit in each of the component carriers selected for use is determined according to a resource occupancy information, wherein the resource occupancy information is related to data transmission resources The allocation situation, and the at least one idle resource unit is a candidate resource for resource selection. 如申請專利範圍第41項所述的使用者設備,其中該處理器經組態用以:透過該接收器而自至少一排程指派訊息取得該資源占用資訊。 The user equipment according to item 41 of the patent application scope, wherein the processor is configured to: obtain the resource occupancy information from at least one scheduled assignment message through the receiver. 如申請專利範圍第26項所述的使用者設備,其中該處理器經組態用以:將每一該選擇使用之組成載波之資源以時間及/或頻率分割成多個子通道資源,其中該子通道資源包含至少一個資源區塊群組;依據一能量門檻值決定每一該選擇使用之組成載波中每一該子通道資源的使用情況;反應於對一該選擇使用之組成載波中一第一子通道資源量測的能量未大於該能量門檻值,判斷該第一子通道資源為一空閒子通道資源,其中該空閒子通道資源是用於進行資源選擇的候選資源;以及反應於對該第一子通道資源量測的能量大於該能量門檻值,判斷該第一子通道資源為一忙碌子通道資源。 The user equipment as described in item 26 of the patent application scope, wherein the processor is configured to: divide the resources of each selected component carrier into multiple sub-channel resources with time and/or frequency, wherein the The sub-channel resources include at least one resource block group; the usage of each of the sub-channel resources in each of the selected component carriers is determined according to an energy threshold; this is reflected in the first The energy measured for a sub-channel resource is not greater than the energy threshold, and the first sub-channel resource is determined to be an idle sub-channel resource, where the idle sub-channel resource is a candidate resource for resource selection; The measured energy of the first sub-channel resource is greater than the energy threshold, and the first sub-channel resource is determined to be a busy sub-channel resource. 如申請專利範圍第43項所述的使用者設備,其中該處理器經組態用以:決定每一該選擇使用之組成載波中的每一該忙碌子通道資源;將每一該忙碌子通道資源以時間及/或頻率分割成多個資源 區塊群組;依據一能量門檻值決定每一該資源區塊群組的使用情況;反應於對一該忙碌子通道資源中一第一資源區塊群組量測的能量未大於該能量門檻值,判斷該第一資源區塊群組為一空閒資源區塊群組,其中該空閒資源區塊群組是用於進行資源選擇的候選資源;以及反應於對該第一資源區塊群組量測的能量大於該能量門檻值,判斷該第一資源區塊群組不為該空閒資源區塊群組。 The user equipment as described in item 43 of the patent application scope, wherein the processor is configured to: determine each of the busy sub-channel resources in each of the selected component carriers; use each of the busy sub-channels Resources are divided into multiple resources by time and/or frequency Block group; determine the usage of each resource block group according to an energy threshold; reflect that the energy measured for a first resource block group in a busy sub-channel resource is not greater than the energy threshold Value, judging that the first resource block group is an idle resource block group, wherein the idle resource block group is a candidate resource for resource selection; and reflected in the first resource block group If the measured energy is greater than the energy threshold, it is determined that the first resource block group is not the idle resource block group. 如申請專利範圍第26項所述的使用者設備,其中該處理器經組態用以:依據一先前資訊對每一該選擇使用之組成載波中的空閒資源進行資源重選擇,其中該先前資訊是基於先前對每一該選擇使用之組成載波的一資源選擇結果,而該資源選擇結果與資源選擇發生碰撞相關。 The user equipment as described in item 26 of the patent application scope, wherein the processor is configured to: perform resource reselection on idle resources in each of the selected component carriers used according to a previous information, wherein the previous information It is based on a resource selection result for each component carrier used in the previous selection, and the resource selection result is related to the collision of resource selection. 如申請專利範圍第45項所述的使用者設備,其中該處理器經組態用以:對該至少一選擇使用之組成載波中的每一資源單元依序指派對應的位置號碼,其中該資源單元大小由上層設定其包含至少一個資源區塊;以及隨機對該些對應空閒資源單元之位置號碼中的一者所對應的空閒資源單元進行初次資源選擇。 The user equipment according to item 45 of the patent application scope, wherein the processor is configured to: sequentially assign a corresponding location number to each resource unit in the at least one component carrier selected for use, wherein the resource The unit size is set by the upper layer to include at least one resource block; and a random resource unit corresponding to one of the location numbers of the corresponding idle resource units is randomly selected for initial resource selection. 如申請專利範圍第46項所述的使用者設備,其中該處理器經組態用以:反應於該初次資源選擇或該資源重新選擇對應的資源未發生資源選擇碰撞,持續使用該初次資源選擇或該資源重新選擇對應的資源進行資料傳輸;以及反應於該初次資源選擇或該資源重新選擇對應的資源發生資源選擇碰撞,依據該初次資源選擇或該資源重新選擇對應的位置號碼的大小來決定對後續感測的所有空閒資源或所有碰撞資源進行選擇,其中該碰撞資源表示一該資源單元在至少二該使用者設備進行資源選擇時同時被選擇到。 The user equipment as described in item 46 of the patent application scope, wherein the processor is configured to: continue to use the initial resource selection in response to no resource selection collision in response to the initial resource selection or the resource reselection corresponding resource Or the resource reselects the corresponding resource for data transmission; and a resource selection collision in response to the initial resource selection or the resource reselection corresponds to the size of the location number corresponding to the initial resource selection or the resource reselection Select all the idle resources or all collision resources that are subsequently sensed, where the collision resources indicate that one of the resource units is selected at the same time when at least two of the user equipments perform resource selection. 如申請專利範圍第26項所述的使用者設備,其中該處理器經組態用以:將該至少一選擇使用之組成載波對應的資源池依據該些鄰近服務個別封包優先權分割成相同等分或不同比例。 The user equipment as described in item 26 of the patent application scope, wherein the processor is configured to divide the resource pool corresponding to the at least one selected component carrier into the same according to the priority of individual packets of the adjacent services Points or different proportions. 如申請專利範圍第26項所述的使用者設備,其中該處理器經組態用以:反應於自該至少一選擇使用之組成載波中的一第一選擇使用之組成載波選擇資源而發生碰撞的次數超過一次數門檻值,重新在其他候選組成載波中選擇一優先順序最高者作為一新選擇使用之組成載波並對此選擇使用之組成載波進行資源感測及選擇。 The user equipment as described in item 26 of the patent application range, wherein the processor is configured to: react to a collision with a resource selected by a first selected component carrier out of the at least one component carrier selected for use If the number of times exceeds the threshold value of one time, re-select a component carrier with the highest priority among other candidate component carriers as a newly selected component carrier and perform resource sensing and selection on the component carrier selected for use. 如申請專利範圍第26項所述的使用者設備,其適用於車聯網通訊模式四。 The user equipment as described in item 26 of the patent application scope is applicable to the vehicle-to-vehicle communication mode 4.
TW107138692A 2017-11-16 2018-10-31 User equipment and resource sensing and selection method thereof TWI682673B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18206447.7A EP3487236A1 (en) 2017-11-16 2018-11-15 User equipment and resource sensing and selection method thereof
US16/192,801 US20190150197A1 (en) 2017-11-16 2018-11-16 User equipment and resource sensing and selection method thereof
CN201811367332.8A CN109802821A (en) 2017-11-16 2018-11-16 User equipment and its resource sensing and selection method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762587423P 2017-11-16 2017-11-16
US62/587,423 2017-11-16
US201862629151P 2018-02-12 2018-02-12
US62/629,151 2018-02-12

Publications (2)

Publication Number Publication Date
TW201924371A TW201924371A (en) 2019-06-16
TWI682673B true TWI682673B (en) 2020-01-11

Family

ID=67702086

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138692A TWI682673B (en) 2017-11-16 2018-10-31 User equipment and resource sensing and selection method thereof

Country Status (1)

Country Link
TW (1) TWI682673B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110401933B (en) * 2019-08-05 2022-07-19 皖西学院 Vehicle-mounted communication mode for enhancing reliability of media access control layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071824A1 (en) 2002-02-21 2003-08-28 Motorola Inc. A method and apparatus for selecting carriers
WO2015065632A1 (en) * 2013-10-31 2015-05-07 Intel IP Corporation Resource selection in device to device communication
US20170201461A1 (en) * 2016-01-12 2017-07-13 Qualcomm Incorporated Lte based v2x communication qos and congestion mitigation
WO2017173665A1 (en) * 2016-04-08 2017-10-12 华为技术有限公司 Communication resource coordination method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071824A1 (en) 2002-02-21 2003-08-28 Motorola Inc. A method and apparatus for selecting carriers
WO2015065632A1 (en) * 2013-10-31 2015-05-07 Intel IP Corporation Resource selection in device to device communication
US20170201461A1 (en) * 2016-01-12 2017-07-13 Qualcomm Incorporated Lte based v2x communication qos and congestion mitigation
WO2017173665A1 (en) * 2016-04-08 2017-10-12 华为技术有限公司 Communication resource coordination method and device

Also Published As

Publication number Publication date
TW201924371A (en) 2019-06-16

Similar Documents

Publication Publication Date Title
JP7304551B2 (en) Terminal device, communication method and integrated circuit
US20190150197A1 (en) User equipment and resource sensing and selection method thereof
JP6166469B2 (en) Method and apparatus for triggering multi-UE coordinated communication
TW201919430A (en) Method and terminal device for resource selection in D2D communication
WO2016092528A1 (en) Transport format for communications
EP3266266B1 (en) Scheduling of resources adapted to another node's scheduling information in the context of vehicular decentralized cooperative communications
US10412707B2 (en) Resource pools for vehicular communications
EP2578037A2 (en) Wireless communication methods, systems, and computer program products
WO2015081718A1 (en) Communication processing method and apparatus for wireless network
JP2019527998A (en) Device-to-device communication method and terminal device
CN110115059A (en) Transmit the method and terminal of data packet
JP2023533365A (en) Information transmission method and device
CN113518381A (en) Resource determination method and device and terminal equipment
TWI682673B (en) User equipment and resource sensing and selection method thereof
WO2021203379A1 (en) Sidelink resource reselection method and apparatus
RU2745417C1 (en) Method of monitoring and terminal device in the internet system of vehicles
WO2022141582A1 (en) Wireless communication method and apparatus
WO2022205387A1 (en) Sidelink resource reselection method and apparatus
CN110741708A (en) Method for selecting carrier in D2D communication and terminal equipment
EP3509344A1 (en) Device-to-device data transmission method, apparatus and system
WO2022141104A1 (en) Resource selection method and apparatus, device and storage medium
WO2023155586A1 (en) Sidelink channel access method and communication apparatus
WO2022077215A1 (en) Wireless communication method, terminal and network device
EP4351247A1 (en) Resource selection method and apparatus
WO2021212261A1 (en) Communication method and communication apparatus