TW201924371A - User equipment and resource sensing and selection method thereof - Google Patents
User equipment and resource sensing and selection method thereof Download PDFInfo
- Publication number
- TW201924371A TW201924371A TW107138692A TW107138692A TW201924371A TW 201924371 A TW201924371 A TW 201924371A TW 107138692 A TW107138692 A TW 107138692A TW 107138692 A TW107138692 A TW 107138692A TW 201924371 A TW201924371 A TW 201924371A
- Authority
- TW
- Taiwan
- Prior art keywords
- resource
- channel
- selection
- component carrier
- proximity service
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本發明是有關於一種使用者設備及其資源感測及選擇方法。The invention relates to a user equipment and a resource sensing and selection method thereof.
第三代合作夥伴關係計畫(Third Generation Partnership Project,3GPP)在長期演進(Long Term Evolution,LTE)第14版本(Release 14)中作成蜂巢式車聯網通訊(Cellular Vehicle-to-Everything,C-V2X)標準。C-V2X主要是基於LTE之車輛對於各種物體通訊的技術。例如,對其他車輛、交通基礎設施及使用者等物體進行通訊。此外,C-V2X的架構是基於針對裝置對裝置(Device-to-Device,D2D)通訊的鄰近服務(Proximity-based Services,ProSe)技術。而車對車(Vehicle-to- Vehicle,V2V)通訊即是裝置對裝置通訊的延伸,利用裝置對裝置之PC5介面(PC5 Interface)增進對於兩車輛之間直接連接與通訊的一種技術。The Third Generation Partnership Project (3GPP) created Cellular Vehicle-to-Everything (C-) in Long Term Evolution (LTE) Release 14 V2X) standard. C-V2X is mainly a LTE-based vehicle communication technology for various objects. For example, communicating with other vehicles, transportation infrastructure, and users. In addition, the architecture of C-V2X is based on Proximity-based Services (ProSe) technology for device-to-device (D2D) communication. Vehicle-to-vehicle (V2V) communication is an extension of device-to-device communication, and a device-to-device PC5 Interface is a technology that enhances the direct connection and communication between two vehicles.
在第15版本(Release 15)之3GPP V2X第二階段研究項目(Study Item)和工作項目(Work Item)之討論議題中,載波聚合(Carrier Aggregation,CA)、以及減少實體層(Physical Layer)封包抵達與資源選擇之最大延遲時間(Latency)等兩項PC5功能的議題被提出作為目標,而這兩個議題將能與第14版本所定義的資源池(Resource Pool)及排程指派(Scheduling Assignment,SA)格式共存。其中,為了減少實體層的延遲時間,3GPP標準會議已得出結論同意將資源選擇視窗縮減(即,降低T2參數)的結論。圖1是第14版本之資源感測及選擇視窗的示意圖。請參照圖1,原先資源選擇(重選擇)視窗時間長度之參數T2是介於20至100毫秒(ms),故對其縮減將可能使其數值小於20ms。而如圖1所示,n為時間基準點,n+T1 ~ n+T2是資源選擇視窗之時間範圍。而資源選擇視窗縮減將導致可選擇用於資料傳輸之資源短缺,進而增加不同使用者設備(User Equipment,UE)選擇到相同資源(即,發生碰撞)的機會。而使用載波聚合可以增加多個組成載波(Component Carriers,CCs),用以減緩上述資源選擇發生碰撞的問題。然而,在載波聚合的情境下,如何使更多使用者設備在沒有基地台協助的情況下(即是車聯網通訊模式四(V2X Mode 4))提高頻譜使用效率是主要問題之一。由此可知,針對載波聚合及資源選擇視窗縮減的議題將需要提出方案來解決。In the discussion topics of the 3GPP V2X Phase 2 Study Item and Work Item of Release 15, Carrier Aggregation (CA) and the reduction of physical layer packets Two issues of PC5 functions, such as arrival and resource selection maximum latency, have been proposed as targets, and these two issues will be compatible with the Resource Pool and Scheduling Assignment defined in version 14. , SA) format coexist. Among them, in order to reduce the delay time of the physical layer, the 3GPP standard conference has concluded that the resource selection window is reduced (that is, the T2 parameter is reduced). Figure 1 is a schematic diagram of the resource sensing and selection window of the 14th version. Please refer to FIG. 1. The parameter T2 of the original resource selection (reselection) window time length is between 20 and 100 milliseconds (ms), so reducing it may make it less than 20ms. As shown in FIG. 1, n is a time reference point, and n + T1 ~ n + T2 are time ranges of the resource selection window. The reduction of the resource selection window will result in a shortage of resources that can be selected for data transmission, thereby increasing the chances of different user equipment (User Equipment, UE) selecting the same resource (ie, collision). And the use of carrier aggregation can add multiple component carriers (CCs) to alleviate the problem of collision of resource selection mentioned above. However, in the context of carrier aggregation, how to make more user equipment improve the spectrum utilization efficiency without the assistance of a base station (ie, V2X Mode 4) is one of the main problems. It can be known that, for the issues of carrier aggregation and reduction of the resource selection window, a solution needs to be proposed to solve.
本發明提供一種使用者設備及其資源感測及選擇方法。The invention provides a user equipment and a resource sensing and selecting method thereof.
在本發明的一實施例中,本發明的資源感測及選擇方法,其適用於使用車聯網通訊(Vehicle-to-Everything,V2X)模式四的使用者設備(User Equipment,UE),即是沒有基地台協助之車聯網通訊使用者設備,其資源感測及選擇方法並包括下列步驟。量測並取得所有組成載波(component carriers,CCs)的通道使用情況。依據這些組成載波的通道使用情況量測值及此使用者設備對應的鄰近服務個別封包優先權(ProSe Per-Packet Priority,PPPP)而自那些組成載波中決定數個候選組成載波。選擇這些候選組成載波中的至少一者為選擇使用之組成載波並進行資源感測及選擇。In an embodiment of the present invention, the resource sensing and selection method of the present invention is applicable to a user equipment (User Equipment, UE) using Vehicle-to-Everything (V2X) mode four, that is, The method of resource sensing and selection for a vehicle-connected communication user equipment without a base station assistance includes the following steps. Measure and obtain the channel usage of all component carriers (CCs). Based on the channel usage measurement values of these component carriers and the ProSe Per-Packet Priority (PPPP) of the proximity service corresponding to this user equipment, a number of candidate component carriers are determined from those component carriers. Selecting at least one of these candidate component carriers is selecting a component carrier to be used and performing resource sensing and selection.
在本發明的一實施例中,上述的本發明的使用者設備,其使用車聯網通訊模式四。此使用者設備至少包括但不僅限於接收器、傳送器及處理器。接收器用以接收訊號。傳送器用以傳送訊號。處理器耦接接收器及傳送器。處理器並經組態用以執行下列步驟。透過接收器經量測取得所有組成載波的通道使用情況。依據這些組成載波的通道使用情況量測值及此使用者設備對應的鄰近服務個別封包優先權而自那些組成載波中決定數個候選組成載波。選擇這些候選組成載波中的至少一者為選擇使用之組成載波並透過接收器對該些選擇使用之組成載波進行資源感測及選擇。In an embodiment of the present invention, the above-mentioned user equipment of the present invention uses the vehicle-to-vehicle communication mode IV. This user equipment includes at least, but not limited to, a receiver, a transmitter, and a processor. The receiver is used for receiving signals. The transmitter is used for transmitting signals. The processor is coupled to the receiver and the transmitter. The processor is configured to perform the following steps. Through the receiver, the channel usage of all component carriers is obtained through measurement. Several candidate component carriers are determined from those component carriers based on the channel usage measurement values of these component carriers and the individual packet priority of the proximity service corresponding to this user equipment. At least one of these candidate component carriers is selected as the component carrier that is selected for use, and resource sensing and selection are performed on the selected component carrier by the receiver.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.
圖2是依據本發明的一實施例繪示使用者設備100的元件方塊圖。請參照圖2,使用者設備100是使用車聯網通訊(Vehicle-to-Everything,V2X)模式四(mode 4)(亦可能是車對車(Vehicle-to- Vehicle,V2V)、裝置對裝置(Device-to-Device,D2D)等兩裝置直接通訊的技術),並可支援載波聚合(Carrier Aggregation,CA)技術。使用者設備100可能有多種實施態樣,其可以是裝置或固定在可移動載具(例如,汽車、機車、自行車、船舶或飛機等)的裝置,也可以是在可移動載具的裝置(例如,手機、筆記型電腦、平板電腦或手錶等)。FIG. 2 is a block diagram illustrating components of the user equipment 100 according to an embodiment of the present invention. Please refer to FIG. 2, the user equipment 100 uses Vehicle-to-Everything (V2X) mode 4 (also may be Vehicle-to-Vehicle (V2V), device-to-device (V2V) Device-to-Device (D2D) and other two devices communicate directly) and support Carrier Aggregation (CA) technology. The user equipment 100 may have various implementations, which may be a device or a device fixed on a movable vehicle (for example, an automobile, a locomotive, a bicycle, a ship, an airplane, etc.), or a device on a movable vehicle ( (E.g. mobile phone, laptop, tablet or watch, etc.).
使用者設備100至少包括但不僅限於一個或更多個天線110、接收器120、傳送器130、類比至數位(A/D)及數位至類比(D/A)轉換器140、儲存器150及處理器160。The user equipment 100 includes at least, but not limited to, one or more antennas 110, receivers 120, transmitters 130, analog-to-digital (A / D) and digital-to-analog (D / A) converters 140, storage 150, and Processor 160.
接收器120及傳送器130分別用以透過天線110無線地接收訊號及傳送訊號。接收器120及傳送器130亦可執行諸如低雜訊放大、阻抗匹配、混頻、升頻或降頻轉換、濾波、放大及其類似者的類比訊號處理操作。類比至數位及數位至類比轉換器140經組態以將類比信號格式轉換為數位信號格式,及將數位信號格式轉換為類比信號格式。The receiver 120 and the transmitter 130 are respectively used to wirelessly receive signals and transmit signals through the antenna 110. The receiver 120 and the transmitter 130 may also perform analog signal processing operations such as low-noise amplification, impedance matching, mixing, up- or down-conversion, filtering, amplification, and the like. The analog-to-digital and digital-to-analog converter 140 is configured to convert an analog signal format into a digital signal format, and convert a digital signal format into an analog signal format.
儲存器150可以是任何型態的固定或可移動隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash Memory)或類似元件或上述元件的組合。儲存器150用以儲存程式碼、裝置組態、碼本(Codebook)、緩衝的或永久的資料(例如,通道使用門檻值-鄰近服務個別封包優先權(ProSe Per-packet Priority,PPPP)映射表、通道使用情況的量測值、使用者設備的能力(Capability)資訊、資源占用資訊、能量門檻值、先前資訊等資訊,且其詳細內容待後續說明),並記錄諸如實體層(Physical Layer)、媒體存取控制(Media Access Control,MAC)層、邏輯鏈結控制(Logical Link Control,LLC)層、網路服務層、更上層等其他各種通訊協定相關軟體模組。The memory 150 may be any type of fixed or removable random access memory (RAM), read-only memory (ROM), flash memory (Flash Memory), or similar elements Or a combination of the above. The storage 150 is used to store code, device configuration, codebook, buffered or permanent data (e.g., channel usage threshold-ProSe Per-packet Priority (PPPP) mapping table , Channel usage measurement, user equipment capability (Capability) information, resource occupancy information, energy thresholds, previous information, etc., and the details of which will be explained later), and records such as the physical layer , Media Access Control (MAC) layer, Logical Link Control (LLC) layer, network service layer, and other software modules related to various other communication protocols.
處理器160經組態以處理數位信號且執行根據本發明的例示性實施例之程序,並可存取或載入儲存器150所記錄的資料及軟體模組。處理器160的功能可藉由使用諸如中央處理器(Central Processing Unit,CPU)、微處理器、微控制器、數位信號處理(Digital Signal Processing,DSP)晶片、場可程式化邏輯閘陣列(Field Programmable Gate Array,FPGA)等可程式化單元來實施。處理器160的功能亦可用獨立電子裝置或積體電路(Integrated Circuit,IC)實施,且處理器160之操作亦可用軟體實現。The processor 160 is configured to process digital signals and execute a program according to an exemplary embodiment of the present invention, and may access or load data and software modules recorded in the storage 150. The functions of the processor 160 can be achieved by using, for example, a central processing unit (CPU), a microprocessor, a microcontroller, a digital signal processing (DSP) chip, and a field programmable logic gate array (Field). Programmable Gate Array (FPGA) and other programmable units. The functions of the processor 160 may also be implemented by an independent electronic device or an integrated circuit (IC), and the operations of the processor 160 may also be implemented by software.
為了方便理解本發明實施例的操作流程,以下將舉諸多實施例詳細說明本發明實施例中使用者設備100之運作流程。In order to facilitate the understanding of the operation flow of the embodiments of the present invention, the following describes the operation flow of the user equipment 100 in the embodiments of the present invention in detail.
圖3是依據本發明的一實施例繪示資源感測及選擇方法的流程圖。請參照圖3,本實施例的方法適用於圖2中的使用者設備100。下文中,將搭配使用者設備100的各項元件及模組說明本發明實施例所述之方法。本方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。FIG. 3 is a flowchart illustrating a resource sensing and selection method according to an embodiment of the present invention. Referring to FIG. 3, the method in this embodiment is applicable to the user equipment 100 in FIG. 2. In the following, the method according to the embodiment of the present invention will be described with various components and modules of the user equipment 100. Each process of the method can be adjusted according to the implementation situation, and is not limited to this.
處理器160透過接收器120量測並取得所有組成載波的通道使用情況(步驟S310)。具體而言,CA技術可同時結合兩個以上連續或不連續特定頻寬(例如,10、20、或50MHz)的組成載波,以提升資料傳輸的總頻寬,進而提升傳輸速度。而使用者設備100可選擇的組成載波數增加(例如,3GPP V2X phase 2 Study Item/ Work Item已定義CA可使用至多八個組成載波),將可以使得可用的(無線電)資源增加。若能有效排程使用者設備100對於資源的選擇,將有助於提升單一使用者設備甚至是整體系統的傳輸效率。其中,通道使用情況可以是評估資源是否被占用、忙碌、空閒、及/或干擾等情況的資訊,且其量測值可以是通道忙碌率(Channel Busy Ratio,CBR)值、通道占用率(Channel Occupancy Ratio,CR)、接收訊號強度指標(Received Signal Strength Indication,RSSI)、參考訊號接收品質(Reference Signal Received Quality,RSRQ)、參考訊號接收功率(Reference Signal Received Power,RSRP)、訊雜比等通道使用相關數值。The processor 160 measures and obtains the channel usage of all component carriers through the receiver 120 (step S310). Specifically, the CA technology can combine two or more continuous or discontinuous specific bandwidths (for example, 10, 20, or 50 MHz) component carriers at the same time to increase the total bandwidth of data transmission and thus the transmission speed. The increase in the number of component carriers that the user equipment 100 can select (for example, 3GPP V2X phase 2 Study Item / Work Item has defined that CA can use up to eight component carriers), which will increase the available (radio) resources. If the user equipment 100 can effectively schedule the resource selection, it will help improve the transmission efficiency of a single user equipment or even the entire system. Among them, the channel usage can be information to evaluate whether the resource is occupied, busy, idle, and / or interference, and its measured value can be the Channel Busy Ratio (CBR) value, the channel occupancy rate (Channel Occupancy Ratio (CR), Received Signal Strength Indication (RSSI), Reference Signal Received Quality (RSRQ), Reference Signal Received Power (RSRP), Signal-to-Noise Ratio, etc. Use relevant values.
在一實施例中,每一個組成載波的資源感測的時間相關於特定期間(例如,圖1所示感測視窗,其持續期間為1000毫秒(ms)),而處理器160對此感測視窗或其他用於資源感測的期間以一個或更多個量測週期(例如,50、100、200、及/或500 ms,可隨機決定或事先定義)分割。例如,量測週期為500ms,則可將一個感測視窗分割成兩個量測週期。處理器160即可透過接收器120經量測取得一個或更多個量測週期內的所有組成載波的通道使用情況。In an embodiment, the time of resource sensing of each component carrier is related to a specific period (for example, the sensing window shown in FIG. 1 has a duration of 1000 milliseconds (ms)), and the processor 160 senses this. The window or other period for resource sensing is divided in one or more measurement periods (for example, 50, 100, 200, and / or 500 ms, which can be randomly determined or defined in advance). For example, if the measurement period is 500 ms, a sensing window can be divided into two measurement periods. The processor 160 can obtain the channel usage of all the component carriers in one or more measurement cycles through the measurement through the receiver 120.
圖4A及4B是兩範例繪示資源感測的示意圖。請先參照圖4A,假設用於資源感測的感測視窗SW為1000ms,且量測週期MP1、MP2、MP3、MP4分別是50、100、200、及500 ms。處理器160可對每一個組成載波的一個感測視窗SW內隨機/任意或特定選擇某一段量測週期MP1~MP4 (彼此可重疊或不重疊),並在選擇的這些量測週期MP1~MP4過程中量測CBR值。處理器160可自這些量測週期MP1~MP4任意或特定挑選一個或更多個量測的CBR值;若處理器160僅挑選一個量測週期MP1、MP2、MP3或MP4,則直接將此選擇的量測週期MP1、MP2、MP3或MP4對應的CBR作為該組成載波的粗估通道使用情況之量測值;而若處理器160自量測週期MP1、MP2、MP3及MP4中挑選超過一個,則將挑選的CBR之平均值作為該組成載波的粗估通道使用情況之量測值。4A and 4B are schematic diagrams illustrating resource sensing in two examples. Please refer to FIG. 4A first, assuming that the sensing window SW for resource sensing is 1000 ms, and the measurement periods MP1, MP2, MP3, and MP4 are 50, 100, 200, and 500 ms, respectively. The processor 160 may randomly / arbitrarily or specifically select a certain measurement period MP1 ~ MP4 (may overlap or not overlap with each other) in a sensing window SW of each component carrier, and select these measurement periods MP1 ~ MP4 Measure the CBR value during the process. The processor 160 may arbitrarily or specifically select one or more measured CBR values from these measurement periods MP1 to MP4; if the processor 160 only selects one measurement period MP1, MP2, MP3 or MP4, then directly select this The CBR corresponding to the measurement period MP1, MP2, MP3 or MP4 is used as the measurement value of the rough estimation channel usage of the component carrier; and if the processor 160 selects more than one from the measurement periods MP1, MP2, MP3 and MP4, then The average value of the selected CBR is used as the measurement value of the rough estimation channel usage of the component carrier.
請參照圖4B,假設感測視窗SW為1000ms,且量測週期MP1、MP2、MP3、MP4分別是50、100、200、及500 ms。處理器160可對每一個組成載波的一個感測視窗SW分別以不同量測週期MP1~MP4均分,並在各量測週期MP1~MP4期間量測CBR值。針對各量測週期MP1~MP4,處理器160先將取得對應CBR值的平均值。處理器160可自這些量測週期MP1~MP4任意或特定挑選一個或更多個量測的CBR之平均值;若處理器160僅挑選一個量測週期MP1、MP2、MP3或MP4,則直接將此選擇的量測週期MP1、MP2、MP3或MP4對應的CBR之平均值作為該組成載波的粗估通道使用情況之量測值;而若處理器160自量測週期MP1、MP2、MP3及MP4中挑選超過一個,則將挑選的CBR之平均值再次平均後所得之值(挑選的量測週期對應CBR之平均值加總後除以挑選的量測週期之數量)來作為該組成載波的粗估通道使用情況之量測值。Please refer to FIG. 4B. Assume that the sensing window SW is 1000 ms, and the measurement periods MP1, MP2, MP3, and MP4 are 50, 100, 200, and 500 ms, respectively. The processor 160 may equally share a sensing window SW of each carrier with different measurement periods MP1 to MP4, and measure the CBR value during each measurement period MP1 to MP4. For each measurement period MP1 to MP4, the processor 160 first obtains the average value of the corresponding CBR value. The processor 160 may arbitrarily or specifically select the average value of one or more measured CBRs from these measurement periods MP1 to MP4; if the processor 160 selects only one measurement period MP1, MP2, MP3 or MP4, it will directly The average value of the CBR corresponding to the selected measurement period MP1, MP2, MP3, or MP4 is used as the measurement value of the rough estimation channel usage of the component carrier. If more than one is selected, the average value of the selected CBR average is re-averaged (the average of the selected measurement period corresponds to the average of the CBR and divided by the number of selected measurement periods) as a rough estimation channel for the component carrier Measurements of usage.
需說明的是,圖4A及4B中所用量測週期MP1~MP4的大小及通道使用情況僅適用於範例說明,應用本發明實施例者可依據實際需求變更。It should be noted that the size and channel usage of the measurement periods MP1 to MP4 shown in Figs. 4A and 4B are only suitable for illustration, and those applying the embodiments of the present invention may change according to actual needs.
處理器160可依據所有組成載波的通道使用情況量測值及此使用者設備100對應的鄰近服務個別封包優先權(ProSe Per-Packet Priority,PPPP)而自那些組成載波中決定數個候選組成載波(步驟S330)。具體而言,V2X模式四的兩使用者設備100之間的傳輸是經由PC5介面。而依據3GPP TS 23.303及TS 36.300標準,當鄰近服務(ProSe)上層(upper layer)在PC5介面上進行協定資料單元的傳輸時,ProSe上層會對此傳輸提供PPPP資訊(自8個可能的數值的範圍中挑選)。而此PPPP資訊是與協定資料單元相關的量化數值,且其是對協定資料單元的傳輸賦予優先處理權。而各使用者設備100會被指派有特定PPPP值,使各使用者設備100所傳送的PC5-S訊息或其他協定資料單元都能被賦予優先權(例如,優先權較高的傳輸優先處理,優先權較低的傳輸後續處理)。The processor 160 may determine a plurality of candidate constituent carriers from those constituent carriers according to the channel usage measurement values of all constituent carriers and the ProSe Per-Packet Priority (PPPP) of the proximity service corresponding to this user equipment 100. (Step S330). Specifically, the transmission between the two user equipments 100 in the V2X mode 4 is via the PC5 interface. According to 3GPP TS 23.303 and TS 36.300 standards, when the ProSe upper layer transmits the protocol data unit on the PC5 interface, the ProSe upper layer will provide PPPP information for this transmission (from 8 possible numerical values). Pick from range). And this PPPP information is a quantified value related to the agreement data unit, and it gives priority to the transmission of the agreement data unit. Each user equipment 100 will be assigned a specific PPPP value, so that PC5-S messages or other protocol data units transmitted by each user equipment 100 can be given priority (for example, higher priority transmissions are processed preferentially, Lower priority transmissions are processed later).
圖5是依據本發明的一實施例繪示不同層交換資訊的示意圖。請參照圖5,以協定堆疊(protocol stack)的觀點而言,處理器160執行實體層161軟體模組,並將所有組成載波的粗估通道使用情況量測值(例如,CBR值、CR值、訊號強度等)(請參考前述步驟S310的說明)傳送至上層163。處理器160執行上層163軟體模組,並基於所有組成載波的通道使用情況量測值及使用者設備100被賦予的PPPP而自所有組成載波中決定候選組成載波,再將決定的候選組成載波傳送至實體層161。以下將針對候選組成載波之決定方法進行說明。FIG. 5 is a schematic diagram illustrating information exchanged at different layers according to an embodiment of the present invention. Please refer to FIG. 5. From the perspective of a protocol stack, the processor 160 executes the physical layer 161 software module and measures the rough channel usage measurements (for example, CBR value, CR value, (Signal strength, etc.) (please refer to the description of step S310) to the upper layer 163. The processor 160 executes the upper layer 163 software module, and determines candidate constituent carriers from all constituent carriers based on channel usage measurement values of all constituent carriers and PPPP assigned by the user equipment 100, and transmits the determined candidate constituent carriers. To the physical layer 161. The method for determining candidate component carriers will be described below.
在一實施例中,處理器160比較每一個組成載波的通道使用情況量測值及每一個對應的組成載波中使用者設備100的PPPP對應的通道使用門檻值來決定該組成載波是忙碌組成載波或空閒組成載波。而該通道使用門檻值例如是CBR門檻值、CR門檻值、訊雜比門檻值等,且對應於通道使用情況的類型。資料傳輸在忙碌組成載波傳送將受到嚴重干擾,且恐會導致傳輸失敗或失敗過多等情況。另一方面,空閒組成載波則可作為候選組成載波,且在其上的資料傳輸受到的干擾相對於在忙碌組成載波上傳輸低。反應於所有組成載波中的某一組成載波的通道使用情況量測值小於對應的通道使用門檻值,處理器160將這一組成載波作為候選組成載波。而反應於這一組成載波的通道使用情況量測值未小於對應的通道使用門檻值,處理器160則不將(或禁止\停止)這一組成載波作為候選組成載波。由此可知,通道使用門檻值的決定將可能影響候選組成載波的決定。In an embodiment, the processor 160 compares the channel usage measurement value of each component carrier with the PPPP corresponding channel of the user equipment 100 in each corresponding component carrier using a threshold value to determine whether the component carrier is a busy component carrier. Or idle to form a carrier. The channel use threshold value is, for example, a CBR threshold value, a CR threshold value, a signal-to-noise ratio threshold value, and the like, and corresponds to the type of channel usage. Data transmission during the busy component carrier transmission will be severely disrupted, and it may cause transmission failure or excessive failure. On the other hand, the idle component carrier can be used as a candidate component carrier, and the data transmission on it is less affected than the transmission on the busy component carrier. The measured value of the channel usage of a component carrier among all the component carriers is smaller than the corresponding channel usage threshold, and the processor 160 uses this component carrier as a candidate component carrier. In response to the measurement of the channel usage of this component carrier being not less than the corresponding channel usage threshold, the processor 160 does not use (or disable \ stop) this component carrier as a candidate component carrier. It can be known that the decision of the channel usage threshold may affect the decision of candidate constituent carriers.
在一實施例中,處理器160會取得通道使用門檻值-PPPP映射表(事先定義或接收來自其他裝置的指示)。而此通道使用門檻值-PPPP映射表記錄有所有組成載波在所有對應的PPPP所對應的所有通道使用門檻值。處理器160即可將具一PPPP之此使用者設備100在每一組成載波的通道使用情況量測值與此通道使用門檻值-PPPP映射表中對應的PPPP在每一對應的組成載波所對應的通道使用門檻值比對。此通道使用門檻值可介於一上限值及一下限值之間,且此上、下限值可能固定或可被調整。例如,針對CBR門檻值的上限值為0.8且下限值為0.35。In one embodiment, the processor 160 obtains the channel usage threshold-PPPP mapping table (defined in advance or receiving instructions from other devices). And this channel use threshold value-PPPP mapping table records all component carrier use threshold values for all channels corresponding to all corresponding PPPPs. The processor 160 may match the channel usage measurement value of the user equipment 100 with a PPPP in each component carrier with the channel usage threshold value-the corresponding PPPP in the PPPP mapping table corresponding to each corresponding component carrier. Of channels use threshold matching. The usage threshold of this channel can be between an upper and lower limit, and the upper and lower limits may be fixed or adjustable. For example, the upper limit value for the CBR threshold value is 0.8 and the lower limit value is 0.35.
於一實施例中,通道使用門檻值-PPPP映射表所記錄的所有PPPP,包含其對應的索引,並可依據優先順序排列。例如,通道使用門檻值-PPPP映射表記錄有第一PPPP ~ 第m PPPP (即是PPPP1~PPPPm,其中PPPPi索引i是1到m之間的正整數)。而第一PPPP具有最高優先權,第二PPPP具有次高優先權,其餘依此類推,則第m PPPP具有最低優先權。而各PPPP對應於至少一個服務類型(Service type),且這些服務類型的優先順序相同。In one embodiment, all PPPPs recorded in the channel use threshold-PPPP mapping table include their corresponding indexes and can be arranged according to the priority order. For example, the channel usage threshold-PPPP mapping table records the first PPPP to the m-th PPPP (that is, PPPP1 to PPPPm, where the PPPPi index i is a positive integer between 1 and m). The first PPPP has the highest priority, the second PPPP has the second highest priority, and so on, the mth PPPP has the lowest priority. Each PPPP corresponds to at least one service type, and the priority order of these service types is the same.
此外,針對各PPPP,分別被指派特定的組成載波個數。在一實施例中,通道使用門檻值-PPPP映射表所記錄的所有PPPP對應的組成載波個數是,其PPPP之優先順序越高者(即,優先權越高者)之組成載波個數大於或等於PPPP之優先順序越低者(即,優先權越低者)之組成載波個數,以數學表示如下:…(1) 其中代表第一PPPP對應的組成載波個數,其餘依此類推。也就是說,PPPP之優先順序越高者可以被分配到更多個組成載波,以降低資源選擇碰撞機率並提高其可靠度(Reliability)。In addition, for each PPPP, a specific number of component carriers is assigned. In an embodiment, the number of component carriers corresponding to all PPPPs recorded in the channel usage threshold-PPPP mapping table is that the higher the priority of PPPP (that is, the higher the priority), the number of component carriers is greater than Or the number of component carriers of the lower priority order of PPPP (ie, the lower priority), expressed mathematically as follows: … (1) where Represents the number of component carriers corresponding to the first PPPP, and so on. In other words, the higher the priority of PPPP, the more it can be allocated to more component carriers, in order to reduce the probability of resource selection collision and improve its reliability.
在一實施例中,通道使用門檻值-PPPP映射表所記錄的每一PPPP對應的所有組成載波,包含其對應的索引,依據優先順序排列。每一PPPP對應的組成載波中該些組成載波的優先順序是,優先順序越高者之組成載波的索引小於或等於優先順序越低者之組成載波的索引。例如,通道使用門檻值-PPPP映射表記錄PPPP1對應M個組成載波,包含有第一組成載波 ~ 第M組成載波(即是CC1~CCM,其中組成載波CCi索引i是1到M之間的正整數),其優先順序即是CC1³ CC2³•••³ CCM。此外,此通道使用門檻值-PPPP映射表所記錄的每一PPPP對應的組成載波中排列順序最前者的索引是,PPPP之優先順序越高者之組成載波中排列順序最前者的索引小於或等於PPPP之優先順序越低者之組成載波中排列順序最前者的索引。其關係以數學表示如下:…(2) 其中代表第一PPPP對應的組成載波的索引偏位(其索引偏位值加一即為排列順序最前者的索引),其餘依此類推。而針對第i PPPP (索引i是1到m之間的正整數)對應的組成載波之索引為,其中。例如,第一PPPP的組成載波個數為8,且對應到第一組成載波至第八組成載波,其中且(排列順序最前者的索引是l 1 +1=1);第八PPPP的組成載波個數為1,且對應到第八組成載波,其中且(排列順序最前者的索引是l 8 +1=8)。也就是說,PPPP的優先順序越高者可能被分配到索引在排列順序中越前面的組成載波。綜上所述,利用PPPP的優先順序越高者分配到索引在排列順序中越前面的組成載波以及每一PPPP對應的組成載波的優先順序,可以盡量分散各PPPP對應的組成載波的配置並協助使各PPPP盡量對應不同組成載波作為候選組成載波,以降低資源選擇碰撞機率並提高其可靠度。In one embodiment, all component carriers corresponding to each PPPP recorded in the channel use threshold-PPPP mapping table, including their corresponding indexes, are arranged according to the priority order. The priority order of the component carriers corresponding to each PPPP is that the index of the component carrier with the higher priority is less than or equal to the index of the component carrier with the lower priority. For example, the channel uses a threshold-PPPP mapping table to record that PPPP1 corresponds to M component carriers, including the first component carrier to the Mth component carrier (that is, CC1 to CCM, where the component carrier CCi index i is a positive value between 1 and M). Integer), the priority is CC1³ CC2³ ••• ³ CCM. In addition, this channel uses the threshold-PPPP mapping table to record the index of the former in the constituent carriers corresponding to each PPPP. The index of the former in the constituent carriers with the higher priority of PPPP is less than or equal to The lower priority of PPPP is the index of the former in the component carrier. The relationship is expressed mathematically as follows: … (2) where It represents the index offset of the component carrier corresponding to the first PPPP (the index offset value plus one is the index of the former in the highest order), and so on. The index of the component carrier corresponding to the i-th PPPP (the index i is a positive integer between 1 and m) is ,among them . For example, the number of component carriers of the first PPPP is eight, and corresponds to the first component carrier to the eighth component carrier, where And (The index of the former of the former is l 1 + 1 = 1); the number of constituent carriers of the eighth PPPP is 1, and corresponds to the eighth constituent carrier, where And (The index of the former of the sort order is l 8 + 1 = 8). In other words, the higher the priority of PPPP, the more likely it will be assigned to the component carrier whose index is earlier in the ranking order. In summary, the higher the priority of PPPP, the higher the priority of the component carrier assigned to the index in the ranking order, and the priority of the component carrier corresponding to each PPPP. It is possible to decentralize the configuration of the component carriers corresponding to PPPP as much as possible and help As far as possible, each PPPP corresponds to a different component carrier as a candidate component carrier to reduce the probability of resource selection collision and improve its reliability.
於不同實施例中,通道使用門檻值-PPPP映射表所記錄的各PPPP在不同組成載波對應的通道使用門檻值可不同。在一實施例中,各PPPP對應的組成載波中的通道使用門檻值,是排列順序較前者(即,索引之數值較小者)大於排列順序較後者(即,索引之數值較大者),以數學表示如下:…(3) 其中代表第i PPPP在第ni 個組成載波的通道使用門檻值,其餘依此類推。例如,第一PPPP在對應第一組成載波的CBR門檻值為0.8,而在對應第二組成載波的CBR門檻值為0.75。也就是說,相同PPPP在對應組成載波的索引越前者所對應的通道使用門檻值越高。而若通道使用門檻值越低,則表示組成載波被決定為候選組成載波的機會越低。也就是說,基於此配置,若對各組成載波量測所得的通道使用量測值情況大致相同,則處理器160決定索引越前面(即,數值越小)的組成載波作為候選組成載波的機會比較高。如此可以協助使各PPPP盡量對應不同組成載波作為候選組成載波,以降低資源選擇碰撞機率並提高其可靠度。In different embodiments, the channel use thresholds-PPPP recorded in the PPPP mapping table may have different channel use thresholds corresponding to different component carriers. In an embodiment, the channel use threshold value in the component carriers corresponding to each PPPP is an arrangement order higher than the former (that is, a smaller index value) than an arrangement order higher than the latter (that is, a larger index value). In mathematical terms: … (3) where It means that the i-th PPPP uses the threshold value on the n- th channel forming the carrier, and the rest can be deduced by analogy. For example, the CBR threshold value of the first PPPP corresponding to the first component carrier is 0.8, and the CBR threshold value of the second component carrier corresponds to 0.75. In other words, the same PPPP has a higher channel usage threshold corresponding to the index of the corresponding component carrier. If the channel usage threshold is lower, it means that the chance that the component carrier is determined as a candidate component carrier is lower. That is, based on this configuration, if the channel measurement values obtained for each component carrier are roughly the same, the processor 160 determines the opportunity for the component carrier with the index earlier (that is, the smaller the value) as the candidate component carrier. Relatively high. This can help make each PPPP correspond to different component carriers as candidate component carriers as much as possible to reduce the probability of resource selection collision and improve its reliability.
而任一組成載波對應的PPPP可能不只一個,且單一組成載波可對應於PPPP群組包括一或數個PPPP其中同一PPPP群組之所有PPPP其對應的組成載波個數及組成載波之索引偏位數值都相同。在一實施例中,通道使用門檻值-PPPP映射表所記錄的在每一組成載波中所有對應的PPPP所對應的通道使用門檻值可不同。例如,在第三組成載波中,第一PPPP的通道使用門檻值為0.65,而第二PPPP的通道使用門檻值為0.7。And there may be more than one PPPP corresponding to any component carrier, and a single component carrier may correspond to a PPPP group that includes one or several PPPPs. All PPPPs in the same PPPP group have corresponding component carrier numbers and component carrier index offset The values are the same. In one embodiment, the channel usage thresholds recorded in the PPPP mapping table and the corresponding channel usage thresholds of all corresponding PPPPs in each component carrier may be different. For example, in the third component carrier, the channel usage threshold of the first PPPP is 0.65, and the channel usage threshold of the second PPPP is 0.7.
此外,不同時間長度的資源選擇視窗(如圖1所示,即參數T2)對應的通道使用門檻值-PPPP映射表所記錄的通道使用門檻值可以不同,而使用者設備100在此資源選擇視窗進行資源選擇。在一實施例中,假設第一資源選擇視窗之時間長度小於第二資源選擇視窗之時間長度,則第一資源選擇視窗對應的通道使用門檻值-PPPP映射表所記錄的一個組成載波對應的通道使用門檻值應大於第二資源選擇視窗對應的通道使用門檻值-PPPP映射表所記錄的該相同組成載波對應的通道使用門檻值。也就是說,反應於資源選擇視窗之時間長度縮短,相同組成載波對應的通道使用門檻值將被提高,從而提升將該組成載波決定為候選組成載波的機會並降低資源選擇碰撞機率。例如,第一資源選擇視窗之時間長度為10ms對應的映射表在第三組成載波中的第三PPPP所對應的通道使用門檻值為0.7,而第二資源選擇視窗之時間長度為20ms對應的映射表在相同第三組成載波中的第三PPPP所對應通道使用門檻值為0.6。In addition, the channel selection thresholds corresponding to the resource selection windows of different lengths of time (as shown in FIG. 1, that is, parameter T2)-the channel usage thresholds recorded in the PPPP mapping table may be different, and the user equipment 100 in this resource selection window Make resource selection. In an embodiment, assuming that the time length of the first resource selection window is shorter than the time length of the second resource selection window, the channel corresponding to the first resource selection window uses a channel corresponding to a component carrier recorded in the threshold-PPPP mapping table. The usage threshold value should be greater than the channel usage threshold value corresponding to the second resource selection window-the channel usage threshold value of the same component carrier recorded in the PPPP mapping table. That is, in response to the shortening of the time length of the resource selection window, the channel usage threshold corresponding to the same component carrier will be increased, thereby increasing the chance of determining the component carrier as a candidate component carrier and reducing the probability of resource selection collision. For example, a mapping table corresponding to a time length of 10ms for the first resource selection window corresponds to a channel usage threshold of 0.7 for a third PPPP in a third component carrier, and a mapping corresponding to a time length of 20ms for the second resource selection window. The channel usage threshold value corresponding to the third PPPP in the same third component carrier is 0.6.
為了方便讀者理解,下文以表(1)至表(10)為例,其是CBR-PPPP-服務類型映射表的範例。表(1)至表(6)的PPPP個數之參數m和組成載波個數之參數M皆為8。其中,表(1)、表(3)和表(5)之PPPP群組分別包含一個、二個和三個PPPP,且其資源選擇視窗之參數T2皆為20ms;而表(2)、表(4)和表(6)之PPPP群組亦分別包含一個、二個和三個PPPP,其資源選擇視窗之參數T2則皆為10ms。表(7)至表(10)之PPPP群組皆包含二個PPPP。其中,表(7)和表(9)的PPPP個數之參數m和組成載波個數之參數M之(m,M)參數組合分別為(8,4)和(4,8),且其資源選擇視窗之參數T2皆為20ms;而表(8)和表(10)的PPPP個數之參數m和組成載波個數之參數M之(m,M)參數組合亦分別為(8,4)和(4,8),其資源選擇視窗之參數T2則皆為10ms。且表(1)至表(10)皆有兩種服務類型包含#1、#2等兩種服務類型。In order to facilitate the reader's understanding, Tables (1) to (10) are taken as examples below, which are examples of the CBR-PPPP-service type mapping table. The parameter m of the number of PPPPs in the table (1) to the table (6) and the parameter M of the number of the carriers are 8. Among them, the PPPP groups in Table (1), Table (3), and Table (5) include one, two, and three PPPPs, respectively, and the parameter T2 of the resource selection window is 20 ms; and Table (2), Table (4) and Table (6) The PPPP groups also include one, two, and three PPPPs, respectively, and the parameter T2 of the resource selection window is 10 ms. Each of the PPPP groups in Tables (7) to (10) includes two PPPPs. Among them, the combination of the parameter m of the number of PPPPs in the table (7) and the table (9) and the parameter (m, M) of the parameter M of the number of carriers are (8, 4) and (4, 8), and The parameter T2 of the resource selection window is 20ms; and the combination of the parameter m of the number of PPPPs in the table (8) and table (10) and the parameter (m, M) of the number of parameters constituting the number of carriers are also (8, 4) ) And (4,8), the parameter T2 of the resource selection window is 10ms. In addition, there are two service types in Tables (1) to (10), including two service types such as # 1 and # 2.
表(1)中單一組成載波對應的PPPP群組包括一個PPPP,資源選擇視窗之參數T2為20ms,PPPP1~PPPP8對應之組成載波個數為,且PPPP1~PPPP8對應之組成載波之索引偏位為。 表(1)
表(2)中單一組成載波對應的PPPP群組包括一個PPPP,資源選擇視窗之參數T2為10ms,PPPP1~PPPP8對應之組成載波個數為,且PPPP1~PPPP8對應之組成載波之索引偏位為。 表(2)
表(3)中單一組成載波對應的PPPP群組包括兩個PPPP,資源選擇視窗之參數T2為20ms,PPPP1~PPPP8對應之組成載波個數為,且PPPP1~PPPP8對應之組成載波之索引偏位為。 表(3)
表(4)中單一組成載波對應的PPPP群組包括兩個PPPP,資源選擇視窗之參數T2為10ms,PPPP1~PPPP8對應之組成載波個數為,且PPPP1~PPPP8對應之組成載波之索引偏位為。 表(4)
表(5)中單一組成載波對應的PPPP群組包括三個PPPP,資源選擇視窗之參數T2為20ms,PPPP1~PPPP8對應之組成載波個數為,且PPPP1~PPPP8對應之組成載波之索引偏位為。 表(5)
表(6)中單一組成載波對應的PPPP群組包括三個PPPP,資源選擇視窗之參數T2為10ms,PPPP1~PPPP8對應之組成載波個數為,且PPPP1~PPPP8對應之組成載波之索引偏位為。 表(6)
表(7)中單一組成載波對應的PPPP群組包括兩個PPPP,資源選擇視窗之參數T2為20ms,PPPP1~PPPP8對應之組成載波個數為,且PPPP1~PPPP8對應之組成載波之索引偏位為。 表(7)
表(8)中單一組成載波對應的PPPP群組包括兩個PPPP,資源選擇視窗之參數T2為10ms,PPPP1~PPPP8對應之組成載波個數為,且PPPP1~PPPP8對應之組成載波之索引偏位為。 表(8)
表(9)中單一組成載波對應的PPPP群組包括兩個PPPP,資源選擇視窗之參數T2為20ms,PPPP1~PPPP4對應之組成載波個數為,且PPPP1~PPPP4對應之組成載波之索引偏位為。 表(9)
表(10)中單一組成載波對應的PPPP群組包括兩個PPPP,資源選擇視窗之參數T2為10ms,PPPP1~PPPP4對應之組成載波個數為,且PPPP1~PPPP4對應之組成載波之索引偏位為。 表(10)
以表(10)為例,假設使用者設備100被設定為第四PPPP(即,PPPP4),且其處理器160所計算得出之所有組成載波的通道使用情況量測值(此範例是CBR值)皆為0.68。由表(10)可得出,第四PPPP對應到第五、第六、第七及第八組成載波,而其對應之CBR門檻值分別為0.75、0.7、0.65及0.6。因為PPPP4對應之第五及第六組成載波的通道使用情況量測值(分別為0.68、0.68)皆小於對應之CBR門檻值(分別為0.75、0.7),故第五及第六組成載波可作為使用者設備100之候選組成載波。而PPPP4對應之第七及第八組成載波的通道使用情況量測值(分別為0.68、0.68)皆大於對應之CBR門檻值(分別為0.65、0.6),故第七及第八組成載波不可作為使用者設備100之候選組成載波。Taking table (10) as an example, it is assumed that the user equipment 100 is set to the fourth PPPP (ie, PPPP4) and the channel usage measurement values of all the constituent carriers calculated by its processor 160 (this example is CBR Value) are all 0.68. It can be seen from Table (10) that the fourth PPPP corresponds to the fifth, sixth, seventh, and eighth component carriers, and the corresponding CBR thresholds are 0.75, 0.7, 0.65, and 0.6, respectively. Because the channel usage measurements of the fifth and sixth component carriers corresponding to PPPP4 (0.68, 0.68, respectively) are less than the corresponding CBR thresholds (0.75, 0.7, respectively), the fifth and sixth component carriers can be used as Candidates of the user equipment 100 constitute a carrier. The channel usage measurements of the seventh and eighth component carriers corresponding to PPPP4 (0.68, 0.68, respectively) are greater than the corresponding CBR thresholds (0.65, 0.6 respectively), so the seventh and eighth component carriers cannot be used as Candidates of the user equipment 100 constitute a carrier.
接著,處理器160選擇該些候選組成載波中的至少一者為選擇使用之組成載波並透過接收器120對至少一個選擇使用之組成載波進行資源感測及選擇(步驟S350)。在一實施例中,處理器160可依據那些候選組成載波的優先順序及使用者設備100的能力(即,UE capability),而自那些候選組成載波中決定至少一個選擇使用之組成載波。於本實施例中,每一PPPP對應之組成載波的索引在排列順序中越前面者,其組成載波的優先權越高。例如,第一組成載波的優先權比第二組成載波的優先權高。而使用者設備100的能力是相關於使用者設備100(包含傳送端、接收端、或兩者)所支援同時使用組成載波的數量、支援頻帶、是否支援載波聚合、及/或允許之頻寬等參數。Then, the processor 160 selects at least one of the candidate component carriers as a component carrier to be used and performs resource sensing and selection on the at least one component carrier to be selected through the receiver 120 (step S350). In an embodiment, the processor 160 may determine at least one component carrier to be selected for use from among the candidate component carriers based on the priority order of those candidate component carriers and the capability of the user equipment 100 (ie, UE capability). In this embodiment, the higher the index of the component carrier corresponding to each PPPP in the arrangement order, the higher the priority of the component carrier. For example, the first component carrier has a higher priority than the second component carrier. The capability of the user equipment 100 is related to the number of concurrent carriers supported by the user equipment 100 (including the transmitting end, the receiving end, or both), the supported frequency bands, whether carrier aggregation is supported, and / or the allowed bandwidth And other parameters.
圖6是依據本發明的一實施例繪示選擇使用之組成載波之選擇的示意圖。請參照圖6,假設使用者設備100經前述步驟S310和步驟S330得出候選組成載波為第一至第四組成載波,且使用者設備100的能力是能使用兩個組成載波來傳輸資料。因此,處理器160將選擇優先順序最高的兩者(即,第一及第二組成載波)作為選擇使用之組成載波。FIG. 6 is a schematic diagram illustrating selection of a component carrier to be selected for use according to an embodiment of the present invention. Referring to FIG. 6, it is assumed that the user equipment 100 obtains the candidate component carriers as the first to fourth component carriers through the foregoing steps S310 and S330, and the capability of the user equipment 100 is to be able to use two component carriers to transmit data. Therefore, the processor 160 selects the two with the highest priority (ie, the first and second component carriers) as the component carriers for selection.
在另一實施例中,若使用者設備100的能力所能同時用以傳輸資料之組成載波的數量大於或等於步驟S330所得出之候選組成載波的數量,則處理器160直接將所有該候選組成載波作為選擇使用之組成載波。In another embodiment, if the number of component carriers that the user equipment 100 can simultaneously use to transmit data is greater than or equal to the number of candidate component carriers obtained in step S330, the processor 160 directly combines all the candidate components. The carrier is used as a constituent carrier.
決定選擇使用之組成載波之後,請參照圖7是依據本發明的一實施例繪示對選擇使用之組成載波之資源感測及選擇的流程圖。處理器160透過接收器120對至少一個選擇使用之組成載波進行資源感測及選擇(步驟S710)。即,不需針對不為選擇使用之組成載波的其他組成載波來進行資源感測及選擇。而針對每一選擇使用之組成載波進行資源感測,首先將每一選擇使用之組成載波之資源以時間及/或頻率分割成多個資源單元(Resource Unit,RU),其中該資源單元大小由上層設定且其包含至少一個資源區塊(Resource Block,RB)。在一實施例中,處理器160可依據資源占用資訊決定各選擇使用之組成載波中的空閒資源單元。此資源占用資訊相關於資料傳輸之資源分配情形,且此空閒資源單元是用於進行資源選擇的候選資源。例如,處理器160可透過接收器120接收排程指派(Scheduling Assignment,SA)訊息(用於指示資源中的何者在何時被用於傳輸資料,亦可以是物理側鏈結控制通道(Physical Sidelink Control Channel,PSCCH)之訊息),並對此SA訊息解析以取得資源占用資訊(例如,某一資源經配置或排程用於資料傳輸、及資料傳輸的資源形式(Resource pattern))。After deciding which component carrier to use, please refer to FIG. 7, which is a flowchart illustrating resource sensing and selection of the component carrier to be used according to an embodiment of the present invention. The processor 160 performs resource sensing and selection on at least one component carrier selected for use through the receiver 120 (step S710). That is, there is no need to perform resource sensing and selection for other component carriers that are not selected for use. To perform resource sensing for each selected component carrier, first, each selected component carrier resource is divided into multiple resource units (RUs) by time and / or frequency. The size of the resource unit is determined by The upper layer is configured and includes at least one resource block (RB). In one embodiment, the processor 160 may determine the idle resource units in the component carriers selected for use according to the resource occupation information. This resource occupation information is related to the resource allocation situation of data transmission, and this idle resource unit is a candidate resource for resource selection. For example, the processor 160 may receive a Scheduling Assignment (SA) message (to indicate which of the resources are used to transmit data when the receiver 120 is received), or a physical side link control channel (Physical Sidelink Control) Channel (PSCCH) message), and parse the SA message to obtain resource occupation information (for example, a resource is allocated or scheduled for data transmission and a resource pattern of the data transmission (Resource pattern)).
圖8A至8D是依據本發明的一實施例繪示資源感測的示意圖。請先參照圖8A,圖左方所示為資源R (Resource)以時間(例如子訊框(Subframe))及頻率劃分成數個SA週期資源區,其中SA週期資源區由多個資源單元組成,每一資源單元包含至少一個資源區塊,其大小個數由上層設定。處理器160解析SA訊息可得出例如傳輸的時間資源形式(Time Resource Pattern of Transmission,T-RPT),其包含資料傳輸之資源位置資訊。圖右方所示為SA週期資源區的格式,在一個SA週期資源區中,該資源區被分成SA區及資料區。SA區記錄有T-RPT,而資料區則承載所欲傳送的資料。處理器160可藉由接收與解析各SA週期資源區中的SA區的資源排程指派訊息,以決定其資料區中之各資源單元是否為忙碌資源單元或空閒資源單元。如圖8B所示,忙碌資源單元表示被占用或有資料傳輸被排程,而空閒資源單元表示尚未被占用或未有資料傳輸被排程。8A to 8D are schematic diagrams illustrating resource sensing according to an embodiment of the present invention. Please refer to FIG. 8A first. The left side of the figure shows that the resource R (Resource) is divided into several SA periodic resource areas by time (such as a subframe) and frequency. The SA periodic resource area is composed of multiple resource units. Each resource unit includes at least one resource block, and its size is set by the upper layer. The processor 160 parses the SA message to obtain, for example, a Time Resource Pattern of Transmission (T-RPT), which includes resource location information for data transmission. The right side of the figure shows the format of the SA cycle resource area. In an SA cycle resource area, the resource area is divided into an SA area and a data area. The T-RPT is recorded in the SA area, and the data area carries the data to be transmitted. The processor 160 may determine whether each resource unit in the data area is a busy resource unit or an idle resource unit by receiving and analyzing the resource scheduling assignment information of the SA area in each SA cycle resource area. As shown in FIG. 8B, the busy resource unit indicates that it is occupied or that data transmission is scheduled, and the idle resource unit indicates that it is not occupied or that no data transmission is scheduled.
若圖8A所示的SA部分及資料部分的資源位置是事先組態 (即是每個使用者設備所對應使用的SA部分和資料部分之資源之位置是固定的且是其他使用者設備事先知道的),則針對空閒資源區、可解碼資源區及碰撞資源區可如下述實施例說明來決定。針對空閒資源區,若SA部分訊號的強度小於預設門檻值,且處理器160無法對T-RPT資訊解碼,則處理器160將認定該SA部分及對應資料部分為空閒資源區(例如,資訊欄位以“00”表示)。針對忙碌資源區中的可解碼資源區,若SA部分訊號的強度大於預設門檻值,且處理器160可對T-RPT資訊解碼,則處理器160將認定該SA部分及對應資料部分為可解碼資源區(例如,以“01”表示)。針對忙碌資源區中的碰撞資源區,若SA部分訊號的強度大於預設門檻值,且處理器160無法對T-RPT資訊解碼,則處理器160將認定該SA部分及應資料部分為碰撞資源區(例如,以“10”表示)。If the resource locations of the SA part and the data part shown in FIG. 8A are configured in advance (that is, the positions of the resources of the SA part and the data part corresponding to each user equipment are fixed and known by other user equipment in advance ), The idle resource area, the decodable resource area and the collision resource area can be determined as described in the following embodiments. For the free resource area, if the signal strength of the SA part is less than the preset threshold, and the processor 160 cannot decode the T-RPT information, the processor 160 will recognize the SA part and the corresponding data part as the free resource area (for example, information The field is indicated by "00"). For the decodable resource area in the busy resource area, if the signal strength of the SA part is greater than a preset threshold, and the processor 160 can decode the T-RPT information, the processor 160 will consider the SA part and the corresponding data part to be decodable. Decode resource area (for example, represented by "01"). For the collision resource area in the busy resource area, if the intensity of the SA part signal is greater than a preset threshold, and the processor 160 cannot decode the T-RPT information, the processor 160 will consider the SA part and the data part to be collision resources. Zone (for example, represented by "10").
另一方面,若圖8A所示的SA部分及資料部分的資源位置並未事先組態(即是每個使用者設備所對應使用的SA部分和資料部分之資源之位置是不固定的且是其他使用者設備事先不知道的),則針對空閒資源區、可解碼資源區及碰撞資源區如下述說明來決定。針對空閒資源區,與前述位置已事先組態的實施例不同之處在於,僅該SA部分被決定為空閒資源區。針對忙碌資源區中的可解碼資源區,與前述位置已事先組態的實施例相同。針對忙碌區中的碰撞資源區,與前述位置已事先組態的實施例不同之處在於,僅該SA部分被決定為碰撞資源區。On the other hand, if the resource positions of the SA part and the data part shown in FIG. 8A are not configured in advance (that is, the positions of the resources of the SA part and the data part corresponding to each user equipment are not fixed and are Other user equipments are not known in advance), the idle resource area, the decodable resource area and the collision resource area are determined as described below. Regarding the free resource area, it is different from the embodiment in which the foregoing location is configured in advance, in that only the SA part is determined as the free resource area. The decodable resource area in the busy resource area is the same as the embodiment in which the foregoing location has been configured in advance. Regarding the collision resource area in the busy area, the difference from the embodiment in which the position is configured in advance is that only the SA portion is determined as the collision resource area.
針對資源感測的另一實施例中,流程區分為兩階段,其一是基於子通道(Subchannel)資源,其二是基於資源區塊群組(Resource Block Group,RBG)。針對基於子通道資源的第一階段資源感測,首先將每一選擇使用之組成載波之資源以時間及/或頻率分割成多個子通道資源,其中該子通道資源大小由上層設定且其包含至少一個資源區塊群組。處理器160是透過接收器120接收及量測各選擇使用之組成載波中所有子通道資源之訊號強度,並依據一第一能量門檻值(可事先決定或動態調整,並基於背景雜訊的平均功率)決定各選擇使用之組成載波中所有子通道資源的使用情況。反應於對某一選擇使用之組成載波中某一子通道資源量測的(平均或某一區段的)能量未大於此能量門檻值,處理器160判斷此子通道資源為空閒子通道資源,而此空閒子通道資源是用於進行資源選擇的候選資源。反應於對此子通道資源量測的能量大於此能量門檻值,處理器160判斷此子通道資源不為空閒子通道資源(而是忙碌子通道資源)。如圖8C所示,所有資源R可區分成忙碌子通道資源及空閒子通道資源。此外,各子通道資源可以不同的位置資訊區別(圖中以座標為例,(1,1)代表子訊框1的子通道1)其資源位置。In another embodiment for resource sensing, the process is divided into two phases, one is based on Subchannel resources, and the other is based on Resource Block Group (RBG). For the first stage of resource sensing based on sub-channel resources, firstly, each selected carrier component resource is divided into multiple sub-channel resources by time and / or frequency. The size of the sub-channel resources is set by the upper layer and includes at least A resource block group. The processor 160 receives and measures the signal strengths of all sub-channel resources in the selected component carriers through the receiver 120, and according to a first energy threshold (can be determined in advance or dynamically adjusted, and based on the average of background noise) Power) determines the usage of all sub-channel resources in each component carrier that is selected for use. In response to measuring the energy (average or a certain section) of a sub-channel resource in a component carrier selected for use not exceeding this energy threshold, the processor 160 determines that the sub-channel resource is an idle sub-channel resource, The idle subchannel resource is a candidate resource for resource selection. In response to the energy measured for the sub-channel resource being greater than the energy threshold, the processor 160 determines that the sub-channel resource is not an idle sub-channel resource (but a busy sub-channel resource). As shown in FIG. 8C, all resources R can be divided into busy subchannel resources and idle subchannel resources. In addition, each sub-channel resource can be distinguished by different location information (the coordinates are taken as an example in the figure, (1,1) represents the sub-channel 1 of the sub-frame 1) and its resource location.
針對基於資源區塊群組的第二階段資源感測,為了提供更準確的感測,處理器160更將第一階段中所決定的忙碌子通道資源(例如,圖8C所示的忙碌資源) 以時間及/或頻率分割成數個資源區塊群組,其個數由上層設定。處理器160再透過接收器120接收及量測各忙碌子通道資源中所有資源區塊群組之訊號強度,並依據另一第一能量門檻值決定各忙碌子通道資源中所有資源區塊群組的使用情況。反應於對某一忙碌子通道資源中某一資源區塊群組量測的(平均或某一區段的)能量未大於此能量門檻值,處理器160判斷此資源區塊群組為空閒資源區塊群組。而反應於對此資源區塊群組量測的能量大於此能量門檻值,處理器160判斷此資源區塊群組不為空閒資源區塊群組(而是忙碌資源區塊群組)。For the second stage resource sensing based on the resource block group, in order to provide more accurate sensing, the processor 160 further determines the busy sub-channel resources determined in the first stage (for example, the busy resources shown in FIG. 8C) It is divided into several resource block groups by time and / or frequency, the number of which is set by the upper layer. The processor 160 then receives and measures the signal strength of all resource block groups in each busy sub-channel resource through the receiver 120, and determines all resource block groups in each busy sub-channel resource according to another first energy threshold. Usage. In response to measuring the energy (average or a certain section) of a resource block group in a busy subchannel resource not exceeding the energy threshold, the processor 160 determines that the resource block group is an idle resource Block group. In response to the energy measured for the resource block group being greater than the energy threshold, the processor 160 determines that the resource block group is not an idle resource block group (but a busy resource block group).
以圖8D為例,一個忙碌子通道資源可分割成四個資源區塊群組1~4。處理器160基於另一第一能量門檻值判斷這四個資源區塊群組1~4是否為忙碌或空閒之資源區塊群組,並得出資源區塊群組1為空閒資源區塊群組(Idle Resource Block Group,IRBG)(對應到空閒資源)且資源區塊群組2~4為忙碌資源區塊群組(Busy Resource Block Group,BRBG)(對應到忙碌資源)。Taking FIG. 8D as an example, a busy subchannel resource can be divided into four resource block groups 1 to 4. The processor 160 determines whether the four resource block groups 1 to 4 are busy or idle resource block groups based on another first energy threshold, and determines that the resource block group 1 is an idle resource block group Idle resource block group (IRBG) (corresponding to idle resources) and resource block groups 2 to 4 are busy resource block groups (BRBG) (corresponding to busy resources).
於一實施例中,針對忙碌資源,處理器160可更基於一第二能量門檻值(可事先決定或動態調整,並基於在SA解碼程序中使用的能量門檻值)來判斷該忙碌資源區塊群組為可解碼資源區或碰撞資源區。反應於對某一忙碌資源區塊群組量測的(平均或某一區段的)能量未大於此第二能量門檻值,處理器160判斷此忙碌資源區塊群組為可解碼資源區。而反應於對此資源區塊群組量測的能量大於此能量門檻值,處理器160判斷此忙碌資源區塊群組為碰撞資源區。In an embodiment, for busy resources, the processor 160 may further determine the busy resource block based on a second energy threshold (which may be determined in advance or dynamically adjusted and based on the energy threshold used in the SA decoding process). The group is a decodable resource area or a collision resource area. In response to the measured energy (average or a certain section) of a busy resource block group not being greater than the second energy threshold, the processor 160 determines that the busy resource block group is a decodable resource area. In response to the energy measured for the resource block group being greater than the energy threshold, the processor 160 determines that the busy resource block group is a collision resource area.
針對資源感測的再一實施例中,處理器160亦可結合前述基於資源占用資訊及兩階段能量量測的資源感測方法,並對兩方法所得的資源使用指示(包括資源是否被占用、可解碼或空閒等)伴隨著權重係數來比對(例如,判斷兩方法所得之結果是否相同),從而得出更加可靠及準確之混和資源指示。例如,針對SA部分及資料部分的資源位置已事先組態的情況,使用資源占用資訊方法所得出的資源使用指示將針對可解碼資源區及碰撞資源區給予較高的權重係數。而針對SA部分及資料部分的資源位置未事先組態的情況,使用資源占用資訊方法所得出的資源使用指示將僅針對可解碼資源區給予較高的權重係數。In another embodiment for resource sensing, the processor 160 may also combine the foregoing resource sensing method based on the resource occupancy information and the two-stage energy measurement, and provide an indication of resource usage (including whether the resource is occupied, Decodable or idle, etc.) are compared with the weight coefficients (for example, determining whether the results obtained by the two methods are the same), so as to obtain a more reliable and accurate mixed resource indication. For example, in the case where the resource locations of the SA part and the data part have been configured in advance, the resource usage instruction obtained by using the resource occupancy information method will give a higher weight coefficient to the decodable resource area and the collision resource area. In the case where the resource locations of the SA part and the data part are not configured in advance, the resource usage instruction obtained by using the resource occupation information method will only give higher weight coefficients to the decodable resource area.
各選擇使用之組成載波的資源池可基於PPPP來區分。在一實施例中,處理器160可將各選擇使用之組成載波對應的資源池(Resource Pool,RP)(例如,圖8B及8C的資源R)依據PPPP分割成相同等分或不同比例。圖9A及圖9B是兩範例繪示資源池分割的示意圖。請先參照圖9A,假設有第一PPPP至第四PPPP(即,PPPP1~PPPP4),而處理器160將資源池RP平均分成四個等分,而這四等分是分別指配給具這4種不同PPPP的使用者設備100使用。即,使用者設備100只會自其PPPP對應的資源部分進行資源感測與選擇。The resource pool of each component carrier selected for use can be distinguished based on PPPP. In one embodiment, the processor 160 may divide the resource pool (RP) (for example, the resource R in FIGS. 8B and 8C) corresponding to the component carriers selected for use into the same equal division or different proportions according to PPPP. FIG. 9A and FIG. 9B are schematic diagrams illustrating resource pool division in two examples. Please refer to FIG. 9A first. Assume that there are first PPPP to fourth PPPP (that is, PPPP1 to PPPP4), and the processor 160 divides the resource pool RP into four equal divisions, and the four divisions are assigned to the 4 Different PPPP user equipments 100 are used. That is, the user equipment 100 only performs resource sensing and selection from the resource portion corresponding to its PPPP.
在另一實施例中,處理器160可依據PPPP對應的通道使用門檻值而將各選擇使用之組成載波對應的資源池(例如,圖8B及8C的資源R)依據PPPP分割成不同比例。請參照圖9B,假設有第一PPPP至第四PPPP(即,PPPP1~PPPP4),且其對應之通道使用門檻值比例為0.2:0.4:0.6:0.8。處理器160將資源池RP依據上述1:2:3:4的比例分成四個資源區域,分別指配給PPPP1~PPPP4。換句話說,這四個資源區域是分別指配給具這4種不同PPPP的使用者設備100使用。即,使用者設備100只會自其PPPP對應的資源區域進行資源感測與選擇。In another embodiment, the processor 160 may divide the resource pool (for example, resource R of FIGS. 8B and 8C) corresponding to each component carrier selected for use according to the channel usage threshold corresponding to PPPP into different proportions according to PPPP. Referring to FIG. 9B, it is assumed that there are first PPPP to fourth PPPP (that is, PPPP1 to PPPP4), and the corresponding channel use threshold ratio is 0.2: 0.4: 0.6: 0.8. The processor 160 divides the resource pool RP into four resource areas according to the ratio of 1: 2: 3: 4, and assigns them to PPPP1 ~ PPPP4, respectively. In other words, the four resource areas are respectively allocated to the user equipment 100 with the four different PPPPs. That is, the user equipment 100 only performs resource sensing and selection from the resource area corresponding to its PPPP.
針對資源選擇,處理器160可對各選擇使用之組成載波中的每一資源單元依序指派對應的位置號碼,其中該資源單元大小由上層設定其包含至少一個資源區塊。圖10A及10B是一範例繪示資源選擇與資源重選擇的示意圖。請先參照圖10A,在此假設資源單元包含一個資源區塊,資源池RP2中的各資源區塊皆有事先設定且所有使用者設備都知道的各自對應的位置號碼,而位置號碼連續且不重複。處理器160在進行資源感測後可得出忙碌資源區塊(Busy Resource Block,BRB)對應的資源位置(其對應之忙碌資源位置號碼之集合為{1, 2, 5 ,12, 13, 14, 26})及空閒資源區塊(Idle Resource Block,IRB)對應的資源位置(其對應之空閒資源位置號碼之集合為{3, 4, 6 ,7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30})。For resource selection, the processor 160 may sequentially assign a corresponding location number to each resource unit in each selected component carrier, wherein the size of the resource unit is set by an upper layer and includes at least one resource block. 10A and 10B are schematic diagrams illustrating resource selection and resource reselection according to an example. Please refer to FIG. 10A first, here it is assumed that the resource unit includes a resource block, and each resource block in the resource pool RP2 has a corresponding location number that is set in advance and known to all user equipment, and the location numbers are continuous and not repeat. The processor 160 can obtain a resource location corresponding to a busy resource block (BRB) after performing resource sensing (the corresponding set of busy resource location numbers is {1, 2, 5, 12, 13, 14, 14 , 26}) and the resource location corresponding to the Idle Resource Block (IRB) (the corresponding set of idle resource location numbers is {3, 4, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30}).
處理器160隨機對這些對應空閒資源區塊之位置號碼中的一者所對應的空閒資源區塊(例如,圖10A中的空閒資源區塊IRB)進行初次資源選擇。例如,處理器160自上述空閒資源位置號碼之集合中挑選一個位置號碼,並在此位置號碼對應的空閒資源區塊進行資料傳輸,然後再判斷選擇的資源是否發生碰撞(步驟S715)。反應於選擇的資源未發生碰撞,則處理器160將以半持續(Semi-persistent)排程的方式而週期地持續使用所選擇對應的資源進行資料傳輸(步驟S730)。以圖10B為例,非碰撞資源區塊(Non-Collided Resource Block,NCRB)是僅有被單一使用者設備100挑選,則選擇這些非碰撞資源區塊NCRB的使用者設備100可持續使用該所選擇對應的資源進行資料傳輸。The processor 160 randomly performs initial resource selection on an idle resource block (for example, the idle resource block IRB in FIG. 10A) corresponding to one of the position numbers of the corresponding idle resource blocks. For example, the processor 160 selects a location number from the above set of idle resource location numbers, performs data transmission in the idle resource block corresponding to the location number, and then determines whether the selected resources collide (step S715). In response to the collision of the selected resources not occurring, the processor 160 will periodically and continuously use the selected corresponding resources for data transmission in a semi-persistent schedule (step S730). Taking FIG. 10B as an example, a non-collided resource block (NCRB) is only selected by a single user equipment 100, and the user equipment 100 selecting these non-collised resource blocks NCRB can continue to use the institute. Select the corresponding resource for data transmission.
而反應於選擇的資源發生碰撞,則處理器160依據其資源選擇對應的位置號碼的大小來決定對後續感測的所有空閒資源或所有碰撞資源進行資源選擇。而此碰撞資源表示在至少二個使用者設備100進行資源選擇時同時被選擇到。以圖10B為例,碰撞資源區塊(Collided Resource Block,CRB)是被兩個以上的使用者設備100同時挑選。於一實施例中,這些遭遇到資源選擇碰撞的使用者設備100會在接續的感測視窗過程中,重新感測資源,並再次判斷資源為忙碌資源區塊、空閒資源區塊、及碰撞資源區塊中的一者,並判斷各碰撞資源區塊中同時選到此資源區塊之使用者設備100的數目。接著,這些遭遇到資源選擇碰撞的使用者設備100會進行資源重新選擇。前次資源選擇的位置號碼較小的該些遭遇到資源選擇碰撞的使用者設備100將會對所有碰撞資源區塊再次進行上述之資源選擇,即是隨機對這些對應碰撞資源區塊之位置號碼中的一者所對應的碰撞資源區塊進行資源選擇。另一方面,前次資源選擇的位置號碼較大的該些遭遇到資源選擇碰撞的使用者設備100或初次進行資源選擇的新使用者設備100將對所有空閒資源區塊進行上述之資源選擇,而不對所有碰撞資源區塊進行上述之資源選擇,即是隨機對這些對應空閒資源區塊之位置號碼中的一者所對應的空閒資源區塊進行資源選擇。藉此,讓不同類型的使用者設備100分散選擇不同類型的資源區塊,以降低資源選擇碰撞機率並提高其可靠度In response to the collision of the selected resources, the processor 160 determines the resource selection of all idle resources or all collision resources that are subsequently sensed according to the size of the position number corresponding to the resource selection. The collision resource indicates that they are selected at the same time when at least two user equipments 100 perform resource selection. Taking FIG. 10B as an example, a collided resource block (CRB) is selected by two or more user equipments 100 simultaneously. In an embodiment, the user equipments 100 that have encountered the resource selection collision will re-sense the resources during the subsequent sensing window process, and judge the resources again as busy resource blocks, free resource blocks, and collision resources. One of the blocks, and determine the number of user equipments 100 in each collision resource block that have selected this resource block at the same time. Then, the user equipments 100 that have encountered the resource selection collision will perform resource reselection. The user equipment 100 that encountered a resource selection collision with a smaller position number in the previous resource selection will perform the above resource selection on all collision resource blocks again, that is, the position numbers of these corresponding collision resource blocks are randomly selected. The collision resource block corresponding to one of the resources is selected. On the other hand, the user equipment 100 that encountered a resource selection collision with a larger location number in the previous resource selection or the new user equipment 100 that made the resource selection for the first time will perform the above resource selection on all free resource blocks. Without performing the above-mentioned resource selection on all collision resource blocks, it is a random selection of the resource blocks corresponding to one of the position numbers of the corresponding free resource blocks. In this way, different types of user equipment 100 are distributed to select different types of resource blocks to reduce the probability of resource selection collisions and improve their reliability.
以圖10B為例,假設兩位使用者設備100在前次資源選擇的位置號碼為17的資源區塊發生碰撞,另兩位使用者設備100則是在前次資源選擇的位置號碼為19的資源區塊發生碰撞,又三位使用者設備100則是在前次資源選擇的位置號碼為27的資源區塊發生碰撞,且再三位使用者設備100則是在前次資源選擇的位置號碼為29的資源區塊發生碰撞。接著,在下一次資源選擇時段時,前次資源選擇的位置號碼為17(其位置號碼小於上述其他三個碰撞資源區塊所對應的位置號碼19、27、29)的兩位遭遇到資源選擇碰撞的使用者設備100將自所有碰撞資源區塊所對應的位置號碼為17、19、27、29的所有碰撞資源區塊中隨機地挑選,而其餘八位遭遇到資源選擇碰撞的使用者設備100則自所有空閒資源區塊所對應的位置號碼為3、4、6、10、11、15、16、20、21、25、30的所有空閒資源區塊中隨機地挑選。Taking FIG. 10B as an example, it is assumed that two user equipments 100 collided at a resource block with a location number of 17 in the previous resource selection, and the other two user equipments 100 had a location number of 19 in the previous resource selection. The resource block collided, and the three user devices 100 collided at the resource block with the previous resource selection location number 27, and the three user devices 100 collided at the previous resource with the location number selected 29 resource blocks collided. Next, at the next resource selection period, two persons at the previous resource selection location number 17 (its position number is less than the position numbers 19, 27, and 29 corresponding to the other three collision resource blocks mentioned above) encountered a resource selection collision Of the user equipment 100 will be randomly selected from all collision resource blocks whose location numbers are 17, 19, 27, 29 corresponding to all collision resource blocks, and the remaining eight user equipment 100 encountering a resource selection collision Then randomly select from all the free resource blocks whose position numbers corresponding to all the free resource blocks are 3, 4, 6, 10, 11, 15, 16, 20, 21, 25, 30.
需說明的是,前述判斷位置號碼為較大或較小是基於位置號碼門檻值,而此號碼門檻值則與所欲選擇的所有空閒或碰撞資源區塊的數量有關(例如,上述範例中,位置號碼門檻值為所有碰撞資源區塊的數量的一半,所以位置號碼門檻值為2,並使對應位置號碼最小的前兩位遭遇到資源選擇碰撞的使用者設備100將自所有碰撞資源區塊所對應的位置號碼為17、19、27、29的所有(4個)碰撞資源區塊中隨機地挑選)。此外,在其他實施例中,位置號碼較小的使用者設備100亦可以是對空閒資源進行隨機選擇,而位置號碼較大的使用者設備100則對碰撞資源進行隨機選擇It should be noted that the aforementioned determination of whether the position number is larger or smaller is based on the position number threshold, and this number threshold is related to the number of all free or collision resource blocks to be selected (for example, in the above example, The position number threshold value is half the number of all collision resource blocks, so the position number threshold value is 2, and the first two digits that have the smallest corresponding position number to encounter a resource selection collision will be removed from all collision resource blocks. The corresponding position numbers are randomly selected from all (4) collision resource blocks of 17, 19, 27, and 29). In addition, in other embodiments, the user equipment 100 with a smaller location number may also randomly select an idle resource, and the user equipment 100 with a larger location number may randomly select a collision resource.
除了對相同選擇使用之組成載波進行資源重選擇,反應於自一第一選擇使用之組成載波選擇資源而發生碰撞的次數超過一次數門檻值(例如,3、5、或7次等),處理器160會對與該第一選擇使用之組成載波不同的另一新的選擇使用之組成載波進行資源感測及選擇(步驟S750),且針對該第一選擇使用之組成載波的資源感測及選擇將停止,其中該另一新的選擇使用之組成載波來自在其他候選組成載波中選擇一優先順序最高者之組成載波。以圖6為例,使用者設備100原本自四個候選組成載波中選擇第一、二組成載波作為選擇使用之組成載波。然而,例如當使用者設備100在第二組成載波上選擇資源而發生碰撞的次數超過一次數門檻值(例如是5次),則使用者設備100會依據優先順序而自其他候選組成載波中選擇優先順序最高者(例如是第三組成載波)作為新的選擇使用之組成載波來進行資源感測及選擇。In addition to reselecting the resources of the component carriers used in the same selection, the number of collisions in response to selecting resources from a component carrier used in a first selection exceeds a threshold (for example, 3, 5, or 7 times), and processing The device 160 performs resource sensing and selection on another newly selected component carrier different from the first selected component carrier (step S750), and performs resource sensing and selection on the first selected component carrier used by the resource. The selection will stop, in which the other newly selected component carrier is selected from the component carriers with the highest priority among the other candidate component carriers. Taking FIG. 6 as an example, the user equipment 100 originally selects the first and second component carriers from the four candidate component carriers as the component carriers to be selected for use. However, for example, when the user equipment 100 selects a resource on the second component carrier and the number of collisions exceeds a threshold (for example, 5 times), the user equipment 100 selects from other candidate component carriers according to the priority order. The one with the highest priority (for example, the third component carrier) is used as a new component carrier to be selected for resource sensing and selection.
綜上所述,本發明實施例的使用者設備及資源感測及選擇方法,對V2X模式四提出改進方案。使用者設備基於其PPPP來查閱上層設定之通道使用門檻值-PPPP映射表以得出對應其PPPP之組成載波及其通道使用門檻值,並將自對應組成載波量測的通道使用情況量測值與對應通道使用門檻值比較,從而得出候選組成載波。接著,依據使用者設備的能力與組成載波之優先順序,將自候選組成載波中挑選出至少一個選擇使用之組成載波,並對這些選擇使用之組成載波同時進行資源感測及選擇。針對資源感測,可基於資源占用資訊、能量量測或其組合而得出忙碌資源及空閒資源之資源位置資訊。而針對資源選擇,若選擇結果遭遇資源選擇碰撞,則將依據先前資源選擇之位置號碼來決定後續資源選擇為在所有空閒資源或所有碰撞資源進行資源選擇。In summary, the user equipment and resource sensing and selection method according to the embodiments of the present invention propose an improvement scheme for V2X mode 4. The user equipment consults the upper-layer set channel usage threshold value-PPPP mapping table based on its PPPP to obtain the component carrier corresponding to its PPPP and its channel usage threshold value, and will measure the channel usage measurement value from the corresponding component carrier measurement Compare it with the threshold value of the corresponding channel to get the candidate component carrier. Then, according to the capability of the user equipment and the priority order of the component carriers, at least one component carrier selected for use is selected from the candidate component carriers, and resource sensing and selection are performed on the selected component carriers simultaneously. For resource sensing, resource location information of busy resources and idle resources can be obtained based on resource occupancy information, energy measurement, or a combination thereof. With regard to resource selection, if the selection result encounters a resource selection collision, the subsequent resource selection will be determined based on the position number of the previous resource selection to perform resource selection on all idle resources or all collision resources.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
100、100’‧‧‧使用者設備100, 100’‧‧‧ user equipment
110‧‧‧天線110‧‧‧antenna
120‧‧‧接收器120‧‧‧ Receiver
130‧‧‧傳送器130‧‧‧ transmitter
140‧‧‧數位至類比及類比至數位轉換器140‧‧‧ Digital to Analog and Analog to Digital Converter
150‧‧‧儲存器150‧‧‧Storage
160‧‧‧處理器160‧‧‧Processor
S310~S350、S710~S750‧‧‧步驟S310 ~ S350, S710 ~ S750‧‧‧step
SW‧‧‧感測視窗SW‧‧‧Sensing window
MP1~MP4‧‧‧量測週期MP1 ~ MP4‧‧‧Measurement period
161‧‧‧實體層161‧‧‧ entity layer
163‧‧‧上層163‧‧‧ Upper Level
R‧‧‧資源R‧‧‧ resources
RU‧‧‧資源單元RU‧‧‧Resource Unit
RB‧‧‧資源區塊RB‧‧‧Resource Block
BRB‧‧‧忙碌資源區塊BRB‧‧‧ Busy Resource Block
IRB‧‧‧空閒資源區塊IRB‧‧‧Free Resource Block
BRBG‧‧‧忙碌資源區塊群組BRBG ‧‧‧ Busy Resource Block Group
IRBG‧‧‧空閒資源區塊群組IRBG‧‧‧Free Resource Block Group
RP、RP2‧‧‧資源池RP, RP2‧‧‧ resource pool
NCRB‧‧‧非碰撞資源區塊NCRB‧‧‧Non-collision resource block
CRB‧‧‧碰撞資源區塊CRB‧‧‧ Collision Resource Block
圖1是資源感測及選擇視窗的示意圖。 圖2是依據本發明的一實施例繪示使用者設備的元件方塊圖。 圖3是依據本發明的一實施例繪示資源感測及選擇方法的流程圖。 圖4A及4B是兩範例繪示資源感測的示意圖。 圖5是依據本發明的一實施例繪示不同層交換資訊的示意圖。 圖6是依據本發明的一實施例繪示選擇使用之組成載波的選擇的示意圖。 圖7是依據本發明的一實施例繪示對選擇使用之組成載波之資源感測及選擇的流程圖。 圖8A至8D是依據本發明的一實施例繪示資源感測的示意圖。 圖9A及圖9B是兩範例繪示資源池分割的示意圖。 圖10A及10B是一範例繪示資源選擇與資源重選擇的示意圖。FIG. 1 is a schematic diagram of a resource sensing and selection window. FIG. 2 is a block diagram illustrating components of a user equipment according to an embodiment of the present invention. FIG. 3 is a flowchart illustrating a resource sensing and selection method according to an embodiment of the present invention. 4A and 4B are schematic diagrams illustrating resource sensing in two examples. FIG. 5 is a schematic diagram illustrating information exchanged at different layers according to an embodiment of the present invention. FIG. 6 is a schematic diagram illustrating selection of a component carrier to be selected for use according to an embodiment of the present invention. FIG. 7 is a flowchart illustrating resource sensing and selection of component carriers to be selected for use according to an embodiment of the present invention. 8A to 8D are schematic diagrams illustrating resource sensing according to an embodiment of the present invention. FIG. 9A and FIG. 9B are schematic diagrams illustrating resource pool division in two examples. 10A and 10B are schematic diagrams illustrating resource selection and resource reselection according to an example.
Claims (50)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18206447.7A EP3487236A1 (en) | 2017-11-16 | 2018-11-15 | User equipment and resource sensing and selection method thereof |
CN201811367332.8A CN109802821A (en) | 2017-11-16 | 2018-11-16 | User equipment and its resource sensing and selection method |
US16/192,801 US20190150197A1 (en) | 2017-11-16 | 2018-11-16 | User equipment and resource sensing and selection method thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762587423P | 2017-11-16 | 2017-11-16 | |
US62/587,423 | 2017-11-16 | ||
US201862629151P | 2018-02-12 | 2018-02-12 | |
US62/629,151 | 2018-02-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201924371A true TW201924371A (en) | 2019-06-16 |
TWI682673B TWI682673B (en) | 2020-01-11 |
Family
ID=67702086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107138692A TWI682673B (en) | 2017-11-16 | 2018-10-31 | User equipment and resource sensing and selection method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI682673B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110401933A (en) * | 2019-08-05 | 2019-11-01 | 皖西学院 | A kind of vehicle-carrying communication mode enhancing media access control layer reliability |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2385745B (en) | 2002-02-21 | 2004-06-09 | Motorola Inc | A method and apparatus for selecting carriers |
US9572171B2 (en) * | 2013-10-31 | 2017-02-14 | Intel IP Corporation | Systems, methods, and devices for efficient device-to-device channel contention |
US10992589B2 (en) * | 2016-01-12 | 2021-04-27 | Qualcomm Incorporated | LTE based V2X communication QOS and congestion mitigation |
CN108886769B (en) * | 2016-04-08 | 2021-05-18 | 华为技术有限公司 | Communication resource coordination method and device |
-
2018
- 2018-10-31 TW TW107138692A patent/TWI682673B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110401933A (en) * | 2019-08-05 | 2019-11-01 | 皖西学院 | A kind of vehicle-carrying communication mode enhancing media access control layer reliability |
CN110401933B (en) * | 2019-08-05 | 2022-07-19 | 皖西学院 | Vehicle-mounted communication mode for enhancing reliability of media access control layer |
Also Published As
Publication number | Publication date |
---|---|
TWI682673B (en) | 2020-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7322349B2 (en) | Resource selection method and terminal device | |
US20190150197A1 (en) | User equipment and resource sensing and selection method thereof | |
CN115065448B (en) | Integrated circuit for access point | |
US10903872B2 (en) | Device-to-device communication method and terminal device | |
CN103369585B (en) | The method and apparatus quickly setting up D2D communication | |
EP3138341B1 (en) | Method and radio network node for scheduling of wireless devices in a cellular network | |
US11510159B2 (en) | Signal transmission method, network device, and terminal device | |
US10412707B2 (en) | Resource pools for vehicular communications | |
KR102265455B1 (en) | Apparatus and method for mitigating for interference in wireless communication system | |
WO2015109805A1 (en) | Method and device for determining and acquiring radio resource | |
CN107889158B (en) | Method and device for transmitting control and data | |
CN110115059A (en) | Transmit the method and terminal of data packet | |
WO2015081718A1 (en) | Communication processing method and apparatus for wireless network | |
TWI682673B (en) | User equipment and resource sensing and selection method thereof | |
WO2015180017A1 (en) | Method for transmitting signal in device to device proximity service, base station and user equipment | |
CN105284175B (en) | Method and device for establishing direct link in wireless local area network | |
RU2745417C1 (en) | Method of monitoring and terminal device in the internet system of vehicles | |
CN109845313B (en) | Device-to-device data transmission method, device and system | |
CN113170419A (en) | Communication device and wireless communication system | |
WO2022141582A1 (en) | Wireless communication method and apparatus | |
CN115529572A (en) | Resource selection method and device | |
WO2023155586A1 (en) | Sidelink channel access method and communication apparatus | |
CN106535244B (en) | Wireless communication method and device | |
WO2022077215A1 (en) | Wireless communication method, terminal and network device | |
WO2023151391A1 (en) | Beam training method and communication apparatus |