WO2021087926A1 - 上行信号的发送和接收方法以及装置 - Google Patents

上行信号的发送和接收方法以及装置 Download PDF

Info

Publication number
WO2021087926A1
WO2021087926A1 PCT/CN2019/116422 CN2019116422W WO2021087926A1 WO 2021087926 A1 WO2021087926 A1 WO 2021087926A1 CN 2019116422 W CN2019116422 W CN 2019116422W WO 2021087926 A1 WO2021087926 A1 WO 2021087926A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
priority
physical layer
uplink signal
Prior art date
Application number
PCT/CN2019/116422
Other languages
English (en)
French (fr)
Inventor
李国荣
张磊
Original Assignee
富士通株式会社
李国荣
张磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 李国荣, 张磊 filed Critical 富士通株式会社
Priority to PCT/CN2019/116422 priority Critical patent/WO2021087926A1/zh
Publication of WO2021087926A1 publication Critical patent/WO2021087926A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the embodiments of the present application relate to the field of communication technology.
  • the fifth-generation (5G) mobile communication system also supports massive machine type communications (mMTC, Massive Machine Type Communications) services and ultra-high-reliability and low-latency communications (URLLC, Ultra-Reliable and Low Latency Communications) business.
  • massive machine type communications mMTC, Massive Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communications
  • the URLLC service has some key indicators.
  • the user plane delay target should be 0.5ms for uplink and 0.5ms for downlink.
  • the overall URLLC reliability requirement for one packet transmission is 1*10 -5 error rate for 32 bytes (bytes), and a user plane delay of 1ms.
  • uplink grant (UL grant) or uplink resource (UL resource) or SR (scheduling request) in the MAC (Media Access Control) layer of the terminal device does not consider PUCCH (Physical Uplink Control Channel) or The priority of PUSCH (Physical Uplink Shared Channel) processed in the physical layer may not meet the requirements of high-priority services.
  • UL grant Physical Uplink grant
  • UL resource uplink resource
  • SR scheduling request
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • embodiments of the present application provide a method and device for sending and receiving uplink signals.
  • a method for sending an uplink signal including:
  • the terminal device instructs the physical layer (PHY) from the medium access control (MAC) layer to send the first uplink signal on the first time-frequency resource;
  • the terminal device determines at the MAC layer that the second time-frequency resource and the first time-frequency resource at least partially overlap in the time domain or the time-frequency domain;
  • the terminal device compares the characteristic (metric) of the first time-frequency resource with the characteristic (metric) of the second time-frequency resource at the MAC layer.
  • an uplink signal sending device which is configured in a terminal device, wherein the device includes:
  • An indication unit that instructs the physical layer (PHY) from the medium access control (MAC) layer to send the first uplink signal in the first time-frequency resource;
  • a determining unit which determines at the MAC layer that the second time-frequency resource and the first time-frequency resource at least partially overlap (overlap) in the time domain or the time-frequency domain;
  • the comparing unit compares the characteristic (metric) of the first time-frequency resource with the characteristic (metric) of the second time-frequency resource at the MAC layer.
  • a method for sending an uplink signal including:
  • the terminal device determines at the MAC layer that the first time-frequency resource and the second time-frequency resource at least partially overlap in the time domain or the time-frequency domain;
  • the terminal device compares the characteristics of the first time-frequency resource with the characteristics of the second time-frequency resource at the MAC layer;
  • the terminal device instructs the physical layer from the MAC layer to send a first uplink signal on the first time-frequency resource and/or sends a second uplink signal on the second time-frequency resource, or instructs to send a second uplink signal on the second time-frequency resource.
  • the first time-frequency resource or the second time-frequency resource transmits a third uplink signal related to the first uplink signal and the second uplink signal.
  • an uplink signal sending device which is configured in a terminal device, wherein the device includes:
  • a determining unit which determines at the MAC layer that the first time-frequency resource and the second time-frequency resource at least partially overlap in the time domain or the time-frequency domain;
  • a comparing unit that compares the characteristics of the first time-frequency resource with the characteristics of the second time-frequency resource at the MAC layer
  • a sending unit that instructs the physical layer from the MAC layer to send a first uplink signal on the first time-frequency resource and/or sends a second uplink signal on the second time-frequency resource, or instructs the physical layer
  • the first time-frequency resource or the second time-frequency resource transmits a third uplink signal related to the first uplink signal and the second uplink signal.
  • a method for receiving an uplink signal including:
  • the network device sends configuration information or instruction information to the terminal device, where the configuration information or instruction information is at least used by the terminal device to compare the characteristics of the first time-frequency resource with the characteristics of the second time-frequency resource;
  • the network device receives the first uplink signal sent by the terminal device on the first time-frequency resource and/or the second uplink signal sent on the second time-frequency resource, or is combined with the first uplink signal and A third uplink signal related to the second uplink signal.
  • an uplink signal receiving apparatus which is configured in a network device, and the apparatus includes:
  • a sending unit that sends configuration information or instruction information to a terminal device, the configuration information or instruction information being used by the terminal device at least to compare the characteristics of the first time-frequency resource with the characteristics of the second time-frequency resource;
  • a receiving unit which receives the first uplink signal sent by the terminal device on the first time-frequency resource and/or the second uplink signal sent on the second time-frequency resource, or is combined with the first uplink signal and A third uplink signal related to the second uplink signal.
  • the MAC layer of the terminal device can send data or signals on the corresponding time-frequency resources by comparing the priorities corresponding to the time-frequency resources, ensuring high-priority time-frequency resources The delay and reliability of the data or signal sent on the network.
  • Fig. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a method for sending an uplink signal according to an embodiment of the present application
  • FIG. 3 is another schematic diagram of a method for sending an uplink signal according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of an uplink signal receiving method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an uplink signal sending device according to an embodiment of the present application.
  • FIG. 6 is another schematic diagram of an uplink signal sending apparatus according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an uplink signal receiving apparatus according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a network device according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the terms, but they do not indicate the spatial arrangement or chronological order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated feature, element, element or component, but do not exclude the presence or addition of at least one other feature, element, element or component.
  • the term "communication network” or “wireless communication network” can refer to a network that meets any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and 5G , New Radio (NR, New Radio), etc., and/or other currently known or future communication protocols.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • 4.5G 3G
  • 5G New Radio
  • NR, New Radio New Radio
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay), or low-power node (such as femeto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femeto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” (UE, User Equipment) or “Terminal Equipment” (TE, Terminal Equipment or Terminal Device), for example, refers to a device that accesses a communication network through a network device and receives network services.
  • the terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, In-vehicle communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side or “network device side” refers to a side of the network, which may be a certain base station, or may include at least one network device as described above.
  • user side or “terminal side” or “terminal device side” refers to a side of a user or a terminal, which may be a certain UE, or may include at least one terminal device as described above.
  • uplink uplink
  • sidelink side link
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating a case where a terminal device and a network device are taken as an example.
  • the communication system 100 may include a network device 101 and terminal devices 102 and 103.
  • FIG. 1 only uses two terminal devices and one network device as an example for description, but the embodiment of the present application is not limited to this.
  • the network device 101 and the terminal devices 102 and 103 may perform existing service or service transmission that can be implemented in the future.
  • these services may include, but are not limited to: enhanced mobile broadband (eMBB), large-scale machine type communication (mMTC), high-reliability and low-latency communication (URLLC), and Internet of Vehicles (V2X) communication, and so on.
  • eMBB enhanced mobile broadband
  • mMTC large-scale machine type communication
  • URLLC high-reliability and low-latency communication
  • V2X Internet of Vehicles
  • the URLLC service Since the URLLC service has very high requirements for time delay, it is comparable to the signal duration of an eMBB service. Therefore, if an eMBB service signal is being transmitted when the URLLC-related signal needs to be transmitted, in order to meet the delay requirements of the URLLC service, the URLLC-related signal often cannot wait for the eMBB service signal to be transmitted before transmission.
  • the physical layer can support two levels of SR priority (high or low); in addition, it can also support two levels of PUSCH physical layer priority for physical layer conflict handling;
  • SR priority high or low
  • PUSCH physical layer priority for physical layer conflict handling
  • uplink grant or uplink resource (UL resource) or SR in the MAC layer of the UE does not consider the priority of PUCCH or PUSCH processing in the physical layer, which may not be satisfied. High priority business requirements.
  • uplink control signal and “uplink control information (UCI, Uplink Control Information)” or “physical uplink control channel (PUCCH, Physical Uplink Control Channel)” can be used interchangeably without causing confusion.
  • uplink data signal and “uplink data information” or “physical uplink shared channel (PUSCH, Physical Uplink Shared Channel)” can be interchanged;
  • downlink control signal and “downlink control information (DCI, Downlink Control Information) )” or “Physical Downlink Control Channel (PDCCH, Physical Downlink Control Channel)” can be interchanged, and the terms “downlink data signal” and “downlink data information” or “Physical Downlink Shared Channel (PDSCH, Physical Downlink Shared Channel)” can be interchanged. change.
  • sending or receiving PUSCH can be understood as sending or receiving uplink data carried by PUSCH
  • sending or receiving PUCCH can be understood as sending or receiving uplink information carried by PUCCH
  • uplink signals can include uplink data signals and/or uplink control signals and /Or uplink reference signal, etc., can also be referred to as uplink transmission or uplink channel
  • the content carried or indicated by the signal or channel can also be referred to as service.
  • sending a signal on a resource can be understood as “sending a signal on a resource” or “sending a signal on a resource”, and can also be understood as "using a resource to send a signal” or “sending a signal according to a resource”.
  • Fig. 2 is a schematic diagram of a method for sending an uplink signal according to an embodiment of the present application. As shown in Fig. 2, the method includes:
  • the terminal device instructs the physical layer (PHY) from the medium access control (MAC) layer to send the first uplink signal in the first time-frequency resource;
  • the terminal device determines in the MAC layer that the second time-frequency resource and the first time-frequency resource at least partially overlap in the time domain or the time-frequency domain;
  • the terminal device compares the characteristic (metric) of the first time-frequency resource with the characteristic (metric) of the second time-frequency resource at the MAC layer.
  • the MAC layer has instructed the physical layer to send the first uplink signal on the first time-frequency resource, or the MAC layer has assembled the MAC PDU, and when the second uplink signal appears and the second uplink signal corresponds to the second uplink signal
  • the frequency resource conflicts with the first time-frequency resource, compare the metric of the first time-frequency resource and the second time-frequency resource; and determine whether to instruct the physical layer to send the second time-frequency resource on the second time-frequency resource according to the comparison result.
  • the conflict may be that the second time-frequency resource and the first time-frequency resource at least partially overlap in the time domain or the time-frequency domain.
  • the assembly here can also be generate or obtain, trigger a retransmission or generate a retransmission, or instruct the physical layer to retransmit a MAC PDU or transport block (Transport Block). , TB), this application is not restricted.
  • the first time-frequency resource and the second time-frequency resource respectively include at least one of the following: time and/or frequency resources used for the physical uplink shared channel (PUSCH), Time and/or frequency resources, time and/or frequency resources for sending hybrid adaptive retransmission (HARQ) acknowledgment (ACK) or non-acknowledgement (NACK), time for sending channel state indicator (CSI) reports, and/or Or frequency resources, time and/or frequency resources used to send a physical random access channel (PRACH), time and/or frequency resources used to send a monitoring reference signal (SRS), etc.
  • the time and/or frequency resource used for sending a scheduling request (SR) or HARQ ACK/NACK or CSI report is, for example, the time and/or frequency resource used for the physical uplink control channel (PUCCH).
  • the characteristic (metric) of the first time-frequency resource and the characteristic (metric) of the second time-frequency resource are respectively at least one of the following: the priority of the time-frequency resource; The physical layer channel or signal priority (priority) of the bearer; terminal processing capability (capability) corresponding to the time-frequency resource; duration of the time-frequency resource (duration); reliability level (level) corresponding to the time-frequency resource.
  • the priority of the time-frequency resource may be the priority of the processing of the time-frequency resource in the MAC layer, and the priority of the time-frequency resource may be determined by the network device through physical layer signaling and Or high-level signaling indicates to the terminal equipment.
  • the priority can be represented by a priority value (or index), the higher the priority value (or index), the lower the priority, or the higher the priority value (or index), the higher the priority, for example
  • the priority value (or index) can be 0 and 1, or the priority can be expressed in words such as high, medium, low, or high and low Wait for the text, wait for it.
  • the physical layer channel or signal priority carried or to be carried by the time-frequency resource may be the priority of the physical layer to the physical layer channel or signal processing, for example, the physical layer to the physical layer channel or The priority of a signal in a prioritization or multiplexing operation, where the physical layer channel or signal includes PUSCH, SR, PUCCH, HARQ-ACK, CSI, PRACH, SRS, and so on.
  • the priority of the physical layer channel or signal to be carried or to be carried by the time-frequency resource may be indicated to the terminal device by the network device through physical layer signaling and or high-level signaling.
  • the priority can be represented by a priority value (or index), the higher the priority value (or index), the lower the priority, or the higher the priority value (or index), the higher the priority, for example
  • the priority value (or index) can be 0 and 1, or the priority can be expressed in words such as high, medium, low, or high and low Wait for the text, wait for it.
  • the terminal processing capability (capability) corresponding to the time-frequency resource may be the processing capability of the terminal device for the time-frequency resource, for example, it may be expressed as processing capability #1, processing capability #2, or as Processing power is high, medium, low, etc.
  • the terminal processing capability corresponding to the time-frequency resource may be configured by the network device for the terminal device. For example, the network device configures the terminal device to use processing capability #1 or #2 to process the carrier or bandwidth unit (BWP) where the time-frequency resource is located.
  • BWP bandwidth unit
  • the physical layer channel or signal; the terminal processing capability corresponding to the time-frequency resource can also be determined by the terminal device itself, and reported to the network device through RRC layer signaling and/or MAC CE and/or physical layer signaling
  • the terminal device reports to the network device that it uses processing capability #1 to process the carrier on which the time-frequency resource is located or the physical layer channel or physical signal on the BWP;
  • the terminal processing capability corresponding to the time-frequency resource may also be the network device According to the terminal device reporting its processing capabilities to the network device, it is configured for the terminal device. For example, the terminal device reports its processing capabilities #1 and #2 to the network device.
  • the network device configures the terminal device to use processing capabilities #2
  • the carrier on which the time-frequency resource is located or the physical layer channel or signal on the BWP; the terminal processing capability corresponding to the time-frequency resource may also be determined by the terminal device itself or configured by the network device for the terminal device, in the time-frequency resource On the carrier or BWP where it is located, the terminal device can use both capability #1 and capability #2 to process physical signals. For a specific physical signal, the terminal device uses capability #1 or #2 for processing according to the network device's instructions.
  • the duration of the time-frequency resource may be the length of time the time-frequency resource lasts in the time domain.
  • the duration of the time-frequency resource may be indicated by the network device to the terminal device through physical layer signaling and or high-level signaling, and the unit may be milliseconds, seconds, symbols, time slots, subframes, radio frames, and so on.
  • the reliability level (level) corresponding to the time-frequency resource may be indicated by the network device to the terminal device through physical layer signaling and or high-level signaling.
  • the network device may indicate the reliability level corresponding to the time-frequency resource.
  • the level is high, medium, low, or high, low, etc., or the network device can also indicate that the reliability level corresponding to the time-frequency resource is the modulation and coding scheme (MCS) corresponding to the time-frequency resource. The lower the MCS value, the reliability The higher the level, etc.
  • MCS modulation and coding scheme
  • the terminal device after the comparison is performed, according to the comparison result, the terminal device at least instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource, or the terminal device does not check the second time-frequency resource in the MAC layer.
  • the resource performs processing or discards the second time-frequency resource or does not instruct the physical layer to send the second uplink signal on the second time-frequency resource.
  • the terminal device at least instructs the physical layer to send the second uplink signal on the second time-frequency resource from the MAC layer, and the terminal device may send the second uplink signal on the second time-frequency resource on the physical layer.
  • the terminal device does not process the second time-frequency resource at the MAC layer or discards the second time-frequency resource or does not instruct the physical layer to send the second uplink signal on the second time-frequency resource.
  • the terminal device may be in the physical layer.
  • the first uplink signal is sent in the first time-frequency resource.
  • the terminal device indicates from the MAC layer to the physical layer
  • the MAC layer of the terminal device indicates to the physical layer
  • the terminal device sends at the physical layer can be understood as “the terminal device sends at the physical layer "
  • the terminal equipment is determined at the MAC layer can be understood as "the MAC layer of the terminal equipment is determined".
  • the MAC layer of the terminal device may be one or more than one MAC entity (entity), or may be a MAC logic function.
  • the above feature is the priority of the time-frequency resource as an example for description.
  • the priority of the second time-frequency resource is higher than the priority of the first time-frequency resource
  • the terminal device at least instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the priority of the second time-frequency resource is higher than or equal to (that is, not lower than) the priority of the first time-frequency resource
  • the terminal device indicates at least the second time-frequency resource from the MAC layer to the physical layer Send the second uplink signal. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the priority of the second time-frequency resource is equal to the priority of the first time-frequency resource
  • the terminal device at least instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the priority of the second time-frequency resource is not lower than the priority of the first time-frequency resource, and the terminal device instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource, thus, It can meet the requirements of high-priority services to a certain extent.
  • the priority of the second time-frequency resource is lower than the priority of the first time-frequency resource
  • the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource, or does not indicate
  • the physical layer sends the second uplink signal on the second time-frequency resource.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is higher than the priority of the physical layer channel or signal carried by the first time-frequency resource.
  • the time-frequency resource sends the second uplink signal. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is higher than or equal to (that is, not lower than) the priority of the physical layer channel or signal carried by the first time-frequency resource.
  • the layer at least instructs the physical layer to send the second uplink signal in the second time-frequency resource. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is equal to the priority of the physical layer channel or signal carried by the first time-frequency resource.
  • Frequency resource to send the second uplink signal is equal to the priority of the physical layer channel or signal carried by the first time-frequency resource.
  • the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is not lower than the priority of the physical layer channel or signal carried by the first time-frequency resource, and the terminal device indicates from the MAC layer to the physical layer that the priority is in the second
  • the time-frequency resource sends the second uplink signal, thereby, meeting the requirements of high-priority services to a certain extent.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is lower than the priority of the physical layer channel or signal carried by the first time-frequency resource, and the terminal device does not process the second time-frequency resource in the MAC layer , Either discard the second time-frequency resource, or not instruct the physical layer to send the second uplink signal on the second time-frequency resource.
  • the reliability of the transmission of the first uplink signal is ensured.
  • the terminal processing capability level corresponding to the time-frequency resource with the above-mentioned feature is taken as an example for description below.
  • the terminal processing capability level of the second time-frequency resource is higher than the terminal processing capability level of the first time-frequency resource, and the terminal device at least instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource . Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the terminal processing capability level of the second time-frequency resource is higher than or equal to (that is, not lower than) the terminal processing capability level of the first time-frequency resource
  • the terminal device indicates at least the second time-frequency resource from the MAC layer to the physical layer.
  • the second time-frequency resource sends the second uplink signal.
  • the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the terminal processing capability level of the second time-frequency resource is equal to the terminal processing capability level of the first time-frequency resource, and the terminal device at least instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the terminal processing capability level of the second time-frequency resource is not lower than the terminal processing capability level of the first time-frequency resource, and the terminal device instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource
  • the terminal device instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource
  • the terminal processing capability level of the second time-frequency resource is lower than the terminal processing capability level of the first time-frequency resource, and the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource , Or not instruct the physical layer to send the second uplink signal on the second time-frequency resource.
  • the reliability of the transmission of the first uplink signal is ensured.
  • the following takes the above-mentioned feature as the duration of the time-frequency resource as an example for description.
  • the duration of the second time-frequency resource is lower than the duration of the first time-frequency resource
  • the terminal device at least instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the duration of the second time-frequency resource is lower than or equal to (that is, not higher than) the duration of the first time-frequency resource
  • the terminal device indicates at least the second time-frequency resource from the MAC layer to the physical layer Send the second uplink signal. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the duration of the second time-frequency resource is equal to the duration of the first time-frequency resource
  • the terminal device at least instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the duration of the second time-frequency resource is not higher than the duration of the first time-frequency resource, and the terminal device instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource, thus, It can meet the requirements of high-priority services to a certain extent.
  • the duration of the second time-frequency resource is higher than the duration of the first time-frequency resource
  • the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource, or does not indicate
  • the physical layer sends the second uplink signal on the second time-frequency resource.
  • the following takes the above-mentioned characteristic as the reliability level of time-frequency resources as an example for description.
  • the reliability level of the second time-frequency resource is higher than the reliability level of the first time-frequency resource
  • the terminal device at least instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the reliability level of the second time-frequency resource is higher than or equal to (that is, not lower than) the reliability level of the first time-frequency resource
  • the terminal device indicates at least the second time-frequency resource from the MAC layer to the physical layer. Frequency resource to send the second uplink signal. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the reliability level of the second time-frequency resource is equal to the reliability level of the first time-frequency resource
  • the terminal device at least instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource. Further, the physical layer of the terminal device sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer.
  • the reliability level of the second time-frequency resource is not lower than the reliability level of the first time-frequency resource, and the terminal device instructs the physical layer from the MAC layer to send the second uplink signal on the second time-frequency resource, and Therefore, the requirements of high-priority services can be met to a certain extent.
  • the reliability level of the second time-frequency resource is lower than the reliability level of the first time-frequency resource, and the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource, or The physical layer is not instructed to send the second uplink signal on the second time-frequency resource. Thus, the reliability of the transmission of the first uplink signal is ensured.
  • the second time-frequency resource (or the second uplink grant) corresponds to the new transmission
  • the second time-frequency resource (or the second uplink grant) is selected to satisfy the logical channel priority processing (Logical Channel).
  • logical channel priority processing Logical Channel
  • Prioritization, LCP) mapping restricted logical channels if these logical channels have no data waiting to be sent or the buffer of these logical channels is 0 or the token (Bj) value corresponding to these logical channels is less than or equal to 0, the second time frequency
  • the resource (or the second uplink grant) is further processed or the second time-frequency resource is discarded, or the physical layer is not instructed to send the second uplink signal on the second time-frequency resource.
  • the different types of the first time-frequency resource and the second time-frequency resource will be described as examples.
  • both the first time-frequency resource and the second time-frequency resource carry or will carry the PUSCH.
  • both the first time-frequency resource and the second time-frequency resource are uplink resources or uplink grants received in dynamic scheduling or RAR; or the first time-frequency resource is a dynamically scheduled uplink resource or uplink grant, and the second time-frequency resource is Configured uplink resource or uplink grant (for example, configured grant); or the first time-frequency resource is a configured uplink resource or uplink grant (for example, configured grant), and the second time-frequency resource is a dynamically scheduled uplink resource or uplink grant; or Both the first time-frequency resource and the second time-frequency resource are configured uplink resources or uplink grants (for example, configured grants).
  • the network device can indicate in DCI1 or configure the first time-frequency resource (or first uplink grant) and the priority of the physical layer channel or signal to be carried or to be carried through RRC signaling, such as the time-frequency resource of the first PUSCH and The priority of the first PUSCH, the MAC layer of the terminal device assembles a MAC PDU according to the first uplink grant, and then the network device indicates in DCI2 or configures the second time-frequency resource (or second uplink grant) and its The priority of the physical layer channel or signal to be carried or to be carried, such as the time-frequency resource of the second PUSCH and the priority of the second PUSCH.
  • the MAC layer of the terminal device receives the second time-frequency resource (or second uplink grant) from DCI or RAR or the second time-frequency resource (or second uplink grant) configured by RRC, if the first The first time-frequency resource and the second time-frequency resource overlap in the time domain or the time-frequency domain.
  • the MAC layer compares the physical layer channel or signal carried or to be carried by the first time-frequency resource (or the first uplink grant) (here, the first time-frequency resource).
  • PUSCH and the priority of the physical layer channel or signal (here, the second PUSCH) carried or to be carried by the second time-frequency resource (or second uplink grant), perform at least one of the following operations:
  • the MAC layer can perform related operations on the second time-frequency resource (or second uplink grant) and instruct the physical layer to send according to the second uplink grant Newly transmitted or retransmitted data.
  • the priority of the second PUSCH is higher than or equal to (or not lower than) the priority of the first PUSCH, then at the MAC layer, you can perform related operations on the second time-frequency resource (or second uplink grant) and indicate The physical layer sends new or retransmitted data according to the second uplink authorization.
  • the MAC layer can perform related operations on the second time-frequency resource (or the second uplink grant) and instruct the physical layer to send the new data according to the second uplink grant. Transmit or retransmit data.
  • the second time-frequency resource (or the second uplink grant) may not be further processed or the second time-frequency resource may be discarded, or the physical The layer sends the second PUSCH on the second time-frequency resource.
  • the second time-frequency resource (or second uplink grant) is transferred to the HARQ entity (entity), if the first time-frequency resource and the second time-frequency resource are in the time domain or time domain.
  • the HARQ entity compares the physical layer channels or signals carried or to be carried by the first time-frequency resource (or the first uplink grant) and the second time-frequency resource (or the second uplink grant) (here, the first PUSCH and the The priority of the second PUSCH), perform at least one of the following operations:
  • the HARQ entity performs operations related to the new transmission or retransmission according to the second time-frequency resource (or the second uplink grant), and instructs the HARQ process according to the second uplink Authorize to send new or retransmitted data.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink authorization.
  • the HARQ entity performs new transmission or retransmission related operations according to the second time-frequency resource (or second uplink grant), And instruct the HARQ process to send new or retransmitted data according to the second uplink authorization.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink authorization.
  • the HARQ entity performs new transmission or retransmission related operations according to the second time-frequency resource (or second uplink grant), and instructs the HARQ process according to the second uplink grant Send new or retransmitted data.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink authorization.
  • the HARQ entity does not further process the second time-frequency resource (or the second uplink grant) or discards the second time-frequency resource, or does not instruct the physical layer to send the second time-frequency resource.
  • the second PUSCH on the second time-frequency resource If the priority of the second PUSCH is lower than the priority of the first PUSCH, the HARQ entity does not further process the second time-frequency resource (or the second uplink grant) or discards the second time-frequency resource, or does not instruct the physical layer to send the second time-frequency resource.
  • the second PUSCH on the second time-frequency resource.
  • the second time-frequency resource (or second uplink grant) is transferred to the HARQ entity (entity), if the first time-frequency resource and the second time-frequency resource are in the time domain or time domain.
  • the HARQ entity compares the physical layer channels or signals carried or to be carried by the first time-frequency resource (or the first uplink grant) and the second time-frequency resource (or the second uplink grant) (here, the first PUSCH and the The priority of the second PUSCH), perform at least one of the following operations:
  • the HARQ entity performs new transmission or retransmission related operations according to the second time-frequency resource (or the second uplink grant).
  • the second time-frequency resource (or the second uplink grant) corresponds to the new transmission
  • the second time-frequency resource is selected to meet the logical channel priority processing (Logical Channel Prioritization, LCP) mapping restriction Logical channels. If none of these logical channels have data waiting to be sent, or the buffer of these logical channels is 0 or the token (Bj) value corresponding to these logical channels is less than or equal to 0, the second time-frequency resource (or second uplink grant ) Perform further processing or discard the second time-frequency resource, or not instruct the physical layer to send the second PUSCH on the second time-frequency resource.
  • LCP Logical Channel Prioritization
  • the second time-frequency resource (or the second uplink grant) is transferred to the HARQ entity (entity), and the HARQ entity performs a new update on the two time-frequency resources (or uplink grant) respectively.
  • the HARQ entity compares the first time-frequency resource (or the first uplink grant) with the second time-frequency resource
  • the priority of the physical layer channel or signal here, the first PUSCH and the second PUSCH carried or to be carried by the resource (or the second uplink grant)
  • at least one of the following operations is performed:
  • the HARQ entity instructs the HARQ process to send new or retransmitted data according to the second uplink grant.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink authorization.
  • the HARQ entity instructs the HARQ process to send new or retransmitted data according to the second uplink grant.
  • the HARQ entity instructs the HARQ process to send new or retransmitted data according to the second uplink grant.
  • the HARQ entity does not instruct the HARQ process to send new or retransmitted data according to the second uplink grant.
  • the second time-frequency resource (or the second uplink grant) is transferred to the HARQ entity (entity), and the HARQ entity performs new transmission or retransmission of the two time-frequency resources (or uplink grant) respectively. And respectively instruct the HARQ process to perform new transmission or retransmission on the two time-frequency resources (or uplink grants).
  • the HARQ process compares the first time-frequency resource (or the first uplink grant) with the second time-frequency resource ( Or the priority of the physical layer channel or signal (here, the first PUSCH and the second PUSCH) carried or to be carried by the second uplink grant, perform at least one of the following operations:
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink grant.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink grant.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink grant.
  • the HARQ process does not instruct the physical layer to send new or retransmitted data according to the second uplink grant.
  • the first time-frequency resource and the second time-frequency resource are both SR resources, that is, the SR is carried or will be carried, for example, the PUCCH resource is used to carry the SR.
  • the network device configures the SR priority for each SR resource configuration (SR resource configuration) through RRC signaling, that is, configures the SR priority of the SR to be carried or to be carried for each SR resource (which may be a PUCCH resource).
  • the terminal device instructs the physical layer to send the SR1 on a valid PUCCH resource 1 configured by the SR1 resource, and then the terminal device triggers SR2 again.
  • the PUCCH resource 1 corresponding to the SR1 resource configuration and the PUCCH resource 2 corresponding to the SR2 resource configuration at least partially overlap in the time domain or the time-frequency domain.
  • the terminal device compares the SR priority corresponding to the SR2 resource configuration and the SR priority corresponding to the SR1 resource configuration at the MAC layer Level, perform at least one of the following operations:
  • the physical layer may be instructed to send the SR2 on a valid PUCCH resource 2 of the SR2 resource configuration.
  • the physical layer can be instructed to send this on a valid PUCCH resource 2 of the SR2 resource configuration SR2.
  • the physical layer may be instructed to send the SR2 on a valid PUCCH resource 2 of the SR2 resource configuration.
  • SR2 may not be processed further or SR2 may be cancelled or SR2 may be discarded.
  • the first time-frequency resource and the second time-frequency resource are SR resources (that is, PUCCH resources) and PUSCH resources, respectively.
  • the first time-frequency resource is SR resource
  • the second time-frequency resource is PUSCH resource
  • the first time-frequency resource is PUSCH resource
  • the second time-frequency resource is SR resource.
  • the network equipment indicates in the DCI or configures the PUSCH time-frequency resource and PUSCH priority through RRC signaling, and the network equipment configures the SR priority for each SR resource configuration (SR resource configuration) through RRC signaling.
  • the PUCCH resource and the PUSCH resource corresponding to the SR resource configuration at least partially overlap in the time domain or the time-frequency domain, and the terminal device compares the PUSCH priority with the SR priority at the MAC layer, and performs at least one of the following operations:
  • the first time-frequency resource is the resource of PUSCH and the second time-frequency resource is the resource of SR:
  • the physical layer may be instructed to send the SR2 on a valid PUCCH resource 2 of the SR2 resource configuration.
  • the physical layer may be instructed to send the SR2 on a valid PUCCH resource 2 of the SR2 resource configuration.
  • the physical layer may be instructed to send the SR2 on a valid PUCCH resource 2 of the SR2 resource configuration.
  • SR2 may not be processed further or SR2 may be cancelled or SR2 may be discarded.
  • the first time-frequency resource is the resource of SR
  • the second time-frequency resource is the resource of PUSCH
  • the MAC layer can perform related operations on the second time-frequency resource (or second uplink grant) and instruct the physical layer to send new transmissions or retransmissions according to the second uplink grant data.
  • the MAC layer can perform related operations on the second time-frequency resource (or second uplink grant) and instruct the physical layer to follow the second Uplink authorization to send new or retransmitted data.
  • the MAC layer can perform related operations on the second time-frequency resource (or second uplink grant) and instruct the physical layer to send new or retransmitted data according to the second uplink grant .
  • the second time-frequency resource (or the second uplink grant) may not be further processed or the second time-frequency resource may be discarded, or the physical layer may not be instructed to send the second time-frequency resource.
  • PUSCH on frequency resources If the PUSCH priority is lower than the SR priority, at the MAC layer, the second time-frequency resource (or the second uplink grant) may not be further processed or the second time-frequency resource may be discarded, or the physical layer may not be instructed to send the second time-frequency resource.
  • the terminal device can also perform at least one of the following operations:
  • the HARQ entity performs new transmission or retransmission related operations according to the second time-frequency resource (or second uplink grant), and instructs the HARQ process to send the new transmission or retransmission according to the second uplink grant. Retransmit the data.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink authorization.
  • the HARQ entity performs new transmission or retransmission related operations according to the second time-frequency resource (or second uplink grant), and instructs the HARQ process according to The second uplink authorizes to send new or retransmitted data.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink authorization.
  • the HARQ entity performs the new transmission or retransmission related operations according to the second time-frequency resource (or the second uplink grant), and instructs the HARQ process to send the new transmission or retransmission according to the second uplink grant. Transfer data.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink authorization.
  • the HARQ entity does not further process the second time-frequency resource (or the second uplink grant) or discards the second time-frequency resource, or does not instruct the physical layer to send the second time-frequency resource The second uplink signal.
  • the terminal device can also perform at least one of the following operations:
  • the HARQ entity is based on the second time frequency
  • the resource (or the second uplink grant) performs operations related to new transmission or retransmission.
  • the second time-frequency resource (or the second uplink grant) corresponds to the new transmission
  • the second time-frequency resource is selected to meet the logical channel priority processing (Logical Channel Prioritization, LCP) mapping restriction Logical channels. If none of these logical channels have data waiting to be sent, or the buffer of these logical channels is 0 or the token (Bj) value corresponding to these logical channels is less than or equal to 0, the second time-frequency resource (or second uplink grant ) Perform further processing or discard the second time-frequency resource, or not instruct the physical layer to send the PUSCH on the second time-frequency resource.
  • LCP Logical Channel Prioritization
  • the terminal device can also perform at least one of the following operations:
  • the HARQ entity instructs the HARQ process to send new or retransmitted data according to the second uplink grant.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink authorization.
  • the HARQ entity instructs the HARQ process to send new or retransmitted data according to the second uplink grant.
  • the HARQ entity instructs the HARQ process to send new or retransmitted data according to the second uplink grant.
  • the HARQ entity does not instruct the HARQ process to send new or retransmitted data according to the second uplink grant, or does not instruct the physical layer to send the PUSCH on the second time-frequency resource.
  • the terminal device can also perform at least one of the following operations:
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink authorization.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink grant.
  • the HARQ process instructs the physical layer to send new or retransmitted data according to the second uplink authorization.
  • the HARQ process does not instruct the physical layer to send new or retransmitted data according to the second uplink grant, or does not instruct the physical layer to send the PUSCH on the second time-frequency resource.
  • Fig. 3 is another schematic diagram of a method for sending an uplink signal according to an embodiment of the present application. As shown in Fig. 3, the method includes:
  • the terminal device determines at the MAC layer that the first time-frequency resource and the second time-frequency resource at least partially overlap in the time domain or the time-frequency domain.
  • the terminal device compares the characteristics of the first time-frequency resource with the characteristics of the second time-frequency resource at the MAC layer;
  • the terminal device instructs the physical layer from the MAC layer to send a first uplink signal on the first time-frequency resource and/or sends a second uplink signal on the second time-frequency resource, or indicates The first time-frequency resource or the second time-frequency resource transmits a third uplink signal related to the first uplink signal and the second uplink signal.
  • the MAC layer compares the first uplink signal and the second uplink signal (MAC PDU has not been generated) and the corresponding first time-frequency resource conflicts with the second time-frequency resource.
  • the characteristics of the time-frequency resources and the characteristics of the second time-frequency resources and determine whether to send the first uplink signal or the second uplink signal, or send the third uplink signal related to the first uplink signal and the second uplink signal according to the comparison result .
  • the conflict may be that the first time-frequency resource and the second time-frequency resource at least partially overlap in the time domain or the time-frequency domain.
  • Figure 3 above only schematically illustrates the embodiments of the present application, but the present application is not limited thereto.
  • the order of execution between various operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the foregoing content.
  • the execution order of 301 and 302 can be interchanged, and is not limited to the description of the foregoing FIG. 3.
  • the terminal device may send the first uplink signal in the first time-frequency resource at the physical layer.
  • the terminal device may send the third uplink signal in the first time-frequency resource at the physical layer.
  • the terminal device may send the second uplink signal in the second time-frequency resource at the physical layer.
  • the terminal device may send the third uplink signal in the second time-frequency resource at the physical layer.
  • the implementation of 301 and 302 is the same as the implementation of 202 and 203 in the embodiment of FIG. 2, and the types, characteristics, and comparison methods of the first time-frequency resource and the second time-frequency resource are the same as those of the previous one.
  • the various embodiments are the same or similar, and will not be repeated here.
  • both the first time-frequency resource and the second time-frequency resource carry or will carry the PUSCH.
  • the first time-frequency resource and the second time-frequency resource are uplink resources or uplink grants that are dynamically scheduled or received from RAR; or the first time-frequency resource is dynamically scheduled or uplink resources received from RAR or Uplink grant
  • the second time-frequency resource is configured uplink resource or uplink grant (for example, configured grant); or the first time-frequency resource is configured uplink resource or uplink grant (for example, configured grant)
  • the second time-frequency resource is dynamic scheduling Or the uplink resource or uplink grant received from the RAR; or the first time-frequency resource and the second time-frequency resource are both configured uplink resources or uplink grants (for example, configured grant).
  • the network equipment may indicate in DCI1 or configure the first time-frequency resource (or first uplink grant) and the priority of the physical channel or signal to be carried or to be carried through RRC signaling, such as the time-frequency resource and the first PUSCH of the first PUSCH.
  • the first time-frequency resource and the second time-frequency resource are both SR resources, that is, the SR is carried or will be carried, for example, the PUCCH resource is used to carry the SR.
  • the network device configures the SR priority for each SR resource configuration (SR resource configuration) through RRC signaling, that is, configures the SR priority of the SR to be carried or to be carried for each SR resource (which may be a PUCCH resource).
  • the terminal device triggered SR1 and SR2.
  • the terminal device compares the SR priority corresponding to the SR1 resource configuration with the SR priority corresponding to the SR2 resource configuration at the MAC layer, and performs the operation in the case that the first time-frequency resource and the second time-frequency resource are both SR resources. For the same or similar operations, the description is omitted here.
  • the first time-frequency resource and the second time-frequency resource are SR resources (that is, PUCCH resources) and PUSCH resources, respectively.
  • the network equipment indicates in the DCI or configures the time-frequency resources of the PUSCH and its PUSCH priority through RRC signaling, and the network equipment configures the SR priority for each SR resource configuration (SR resource configuration) through RRC signaling.
  • the terminal device compares the priority of the PUSCH and the priority of the SR at the MAC layer, and performs the same or similar operation as the above-mentioned operation in the case that the first time-frequency resource and the second time-frequency resource are the SR resource and the PUSCH resource, respectively. , The description is omitted here.
  • the MAC layer of the terminal device can send data or signals on the corresponding time-frequency resources by comparing the priorities corresponding to the time-frequency resources, ensuring that the data or signals sent on the high-priority time-frequency resources Signal delay and reliability.
  • the embodiment of the present application provides a method for receiving an uplink signal, which is described from the side of the network device.
  • the content of the embodiment of the present application that is the same as the embodiment of the first aspect will not be repeated.
  • Fig. 4 is a schematic diagram of a method for receiving an uplink signal according to an embodiment of the present application. As shown in Fig. 4, the method includes:
  • a network device sends configuration information or instruction information to a terminal device, where the configuration information or instruction information is at least used by the terminal device to compare the characteristics of the first time-frequency resource with the characteristics of the second time-frequency resource;
  • the network device receives a first uplink signal sent by the terminal device on the first time-frequency resource and/or a second uplink signal sent on the second time-frequency resource, or communicates with the first uplink signal.
  • the signal is a third uplink signal related to the second uplink signal.
  • Figure 4 above only schematically illustrates an embodiment of the present application, but the present application is not limited thereto.
  • the order of execution between various operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the foregoing content, and are not limited to the description of the foregoing FIG. 4.
  • the MAC layer of the terminal device can send data or signals on the corresponding time-frequency resources by comparing the priorities corresponding to the time-frequency resources, ensuring that the data or signals sent on the high-priority time-frequency resources Signal delay and reliability.
  • the embodiment of the present application provides an uplink signal sending device.
  • the device may be, for example, a terminal device, or it may be one or some parts or components of the terminal device.
  • the content of the embodiment of the present application that is the same as the embodiment of the first aspect will not be repeated.
  • FIG. 5 is a schematic diagram of an uplink signal sending apparatus according to an embodiment of the present application. As shown in FIG. 5, the uplink signal sending apparatus 500 includes:
  • Instructing unit 501 which instructs the physical layer (PHY) from the medium access control (MAC) layer to send the first uplink signal in the first time-frequency resource;
  • a determining unit 502 which determines at the MAC layer that the second time-frequency resource and the first time-frequency resource at least partially overlap (overlap) in the time domain or the time-frequency domain;
  • the comparing unit 503 compares the characteristic (metric) of the first time-frequency resource with the characteristic (metric) of the second time-frequency resource at the MAC layer.
  • the device 500 for sending uplink signals further includes:
  • the sending unit 504 sends the second uplink signal on the second time-frequency resource at the physical layer, and/or sends the first uplink signal on the first time-frequency resource at the physical layer.
  • the above-mentioned feature is at least one of the following: the priority of the time-frequency resource; the priority of the physical layer channel or signal carried or to be carried by the time-frequency resource; the terminal processing corresponding to the time-frequency resource Capability; the duration of the time-frequency resource; the level of reliability corresponding to the time-frequency resource.
  • the above feature is the priority of the time-frequency resource as an example for description.
  • the priority of the second time-frequency resource is higher than the priority of the first time-frequency resource
  • the instructing unit 501 at least instructs the MAC layer of the terminal device to the physical layer to send the second uplink signal on the second time-frequency resource .
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the second time-frequency resource is higher than or equal to (that is, not lower than) the priority of the first time-frequency resource
  • the instructing unit 501 indicates at least the first time-frequency resource from the MAC layer of the terminal device to the physical layer.
  • the second time-frequency resource sends the second uplink signal.
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the second time-frequency resource is equal to the priority of the first time-frequency resource
  • the instructing unit 501 at least instructs the physical layer from the MAC layer of the terminal device to send the second uplink signal on the second time-frequency resource.
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the second time-frequency resource is not lower than the priority of the first time-frequency resource
  • the instructing unit 501 instructs the physical layer from the MAC layer of the terminal device to send the second uplink signal on the second time-frequency resource
  • the priority of the second time-frequency resource is lower than the priority of the first time-frequency resource
  • the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource, or does not indicate
  • the physical layer sends the second uplink signal on the second time-frequency resource.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is higher than the priority of the physical layer channel or signal carried by the first time-frequency resource
  • the instructing unit 501 moves from the MAC layer of the terminal device to the physical layer at least Instruct to send the second uplink signal in the second time-frequency resource.
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is higher than or equal to (that is, not lower than) the priority of the physical layer channel or signal carried by the first time-frequency resource.
  • the MAC layer of the terminal device at least instructs the physical layer to send the second uplink signal in the second time-frequency resource. Further, the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is equal to the priority of the physical layer channel or signal carried by the first time-frequency resource
  • the indicating unit 501 at least instructs the physical layer from the MAC layer of the terminal device
  • the second uplink signal is sent in the second time-frequency resource.
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is not lower than the priority of the physical layer channel or signal carried by the first time-frequency resource, and the instructing unit 501 moves from the MAC layer of the terminal device to the physical layer. Instructs to send the second uplink signal on the second time-frequency resource, thereby meeting the requirements of high-priority services to a certain extent.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is lower than the priority of the physical layer channel or signal carried by the first time-frequency resource, and the terminal device does not process the second time-frequency resource in the MAC layer , Either discard the second time-frequency resource, or not instruct the physical layer to send the second uplink signal on the second time-frequency resource.
  • the reliability of the transmission of the first uplink signal is ensured.
  • the terminal processing capability level corresponding to the time-frequency resource with the above-mentioned feature is taken as an example for description below.
  • the terminal processing capability level of the second time-frequency resource is higher than the terminal processing capability level of the first time-frequency resource
  • the instructing unit 501 at least instructs the MAC layer of the terminal device to the physical layer to send data on the second time-frequency resource.
  • the second uplink signal Further, the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the terminal processing capability level of the second time-frequency resource is higher than or equal to (that is, not lower than) the terminal processing capability level of the first time-frequency resource
  • the instructing unit 501 changes from the MAC layer of the terminal device to the physical layer At least instruct to send the second uplink signal in the second time-frequency resource.
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the terminal processing capability level of the second time-frequency resource is equal to the terminal processing capability level of the first time-frequency resource
  • the instructing unit 501 at least instructs the MAC layer of the terminal device to the physical layer to send the second time-frequency resource. 2.
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the terminal processing capability level of the second time-frequency resource is not lower than the terminal processing capability level of the first time-frequency resource, and the instructing unit 501 indicates from the MAC layer of the terminal device to the physical layer to send on the second time-frequency resource.
  • the second uplink signal can meet the requirements of high-priority services to a certain extent.
  • the terminal processing capability level of the second time-frequency resource is lower than the terminal processing capability level of the first time-frequency resource, and the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource , Or not instruct the physical layer to send the second uplink signal on the second time-frequency resource.
  • the reliability of the transmission of the first uplink signal is ensured.
  • the following takes the above-mentioned feature as the duration of the time-frequency resource as an example for description.
  • the duration of the second time-frequency resource is lower than the duration of the first time-frequency resource
  • the instructing unit 501 at least instructs the MAC layer of the terminal device to the physical layer to send the second uplink signal on the second time-frequency resource .
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the duration of the second time-frequency resource is lower than or equal to (that is, not higher than) the duration of the first time-frequency resource
  • the indicating unit 501 indicates at least the second time-frequency resource from the MAC layer of the terminal device to the physical layer.
  • the second time-frequency resource sends the second uplink signal.
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the duration of the second time-frequency resource is equal to the duration of the first time-frequency resource
  • the instructing unit 501 at least instructs the physical layer from the MAC layer of the terminal device to send the second uplink signal on the second time-frequency resource.
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the duration of the second time-frequency resource is not higher than the duration of the first time-frequency resource
  • the instructing unit 501 instructs the physical layer from the MAC layer of the terminal device to send the second uplink signal on the second time-frequency resource
  • the duration of the second time-frequency resource is higher than the duration of the first time-frequency resource
  • the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource, or does not indicate
  • the physical layer sends the second uplink signal on the second time-frequency resource.
  • the following takes the above-mentioned characteristic as the reliability level of time-frequency resources as an example for description.
  • the reliability level of the second time-frequency resource is higher than the reliability level of the first time-frequency resource
  • the instructing unit 501 at least instructs the MAC layer of the terminal device to the physical layer to send the second time-frequency resource on the second time-frequency resource.
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the reliability level of the second time-frequency resource is higher than or equal to (that is, not lower than) the reliability level of the first time-frequency resource
  • the indicating unit 501 at least instructs the physical layer from the MAC layer of the terminal device
  • the second uplink signal is sent in the second time-frequency resource.
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the reliability level of the second time-frequency resource is equal to the reliability level of the first time-frequency resource
  • the instructing unit 501 at least instructs the physical layer from the MAC layer of the terminal device to send the second uplink on the second time-frequency resource. signal.
  • the sending unit 504 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the reliability level of the second time-frequency resource is not lower than the reliability level of the first time-frequency resource
  • the instructing unit 501 instructs the physical layer from the MAC layer of the terminal device to send the second time-frequency resource on the second time-frequency resource.
  • the reliability level of the second time-frequency resource is lower than the reliability level of the first time-frequency resource, and the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource, or The physical layer is not instructed to send the second uplink signal on the second time-frequency resource. Thus, the reliability of the transmission of the first uplink signal is ensured.
  • the apparatus 500 may further include: a selection unit 505, in the case that the second time-frequency resource (or the second uplink grant) corresponds to the new transmission, the selection unit 505 performs The time-frequency resource (or the second uplink grant) selects logical channels that meet the logical channel priority processing (Logical Channel Prioritization, LCP) mapping restrictions.
  • a selection unit 505 in the case that the second time-frequency resource (or the second uplink grant) corresponds to the new transmission, the selection unit 505 performs The time-frequency resource (or the second uplink grant) selects logical channels that meet the logical channel priority processing (Logical Channel Prioritization, LCP) mapping restrictions.
  • LCP Logical Channel Prioritization
  • the token (Bj) value corresponding to the channel is less than or equal to 0, and the instructing unit 501 does not further process the second time-frequency resource (or the second uplink authorization) or discards the second time-frequency resource, or does not instruct the physical layer to send the second time-frequency resource.
  • the second uplink signal on the time-frequency resource If these logical channels have no data waiting to be sent or the buffers of these logical channels are 0 or these logical channels.
  • FIG. 6 is another schematic diagram of an uplink signal sending apparatus according to an embodiment of the present application. As shown in FIG. 6, the uplink signal sending apparatus 600 includes:
  • a determining unit 601 which determines at the MAC layer that the first time-frequency resource and the second time-frequency resource at least partially overlap in the time domain or the time-frequency domain;
  • a comparing unit 602 that compares the characteristics of the first time-frequency resource with the characteristics of the second time-frequency resource at the MAC layer;
  • Instructing unit 603, which instructs from the MAC layer to the physical layer to send a first uplink signal on the first time-frequency resource and/or sends a second uplink signal on the second time-frequency resource, or instructs to send a second uplink signal on the second time-frequency resource.
  • the first time-frequency resource or the second time-frequency resource sends a third uplink signal related to the first uplink signal and the second uplink signal.
  • the device 600 for sending uplink signals further includes:
  • a sending unit 604 which sends the first uplink signal on the first time-frequency resource and/or sends the second uplink signal on the second time-frequency resource at the physical layer, or sends the second uplink signal on the first time-frequency resource.
  • the resource or the second time-frequency resource transmits a third uplink signal related to the first uplink signal and the second uplink signal.
  • the above-mentioned feature is at least one of the following: the priority of the time-frequency resource; the priority of the physical layer channel or signal carried or to be carried by the time-frequency resource; the terminal processing corresponding to the time-frequency resource Capability; the duration of the time-frequency resource; the level of reliability corresponding to the time-frequency resource.
  • the above feature is the priority of the time-frequency resource as an example for description.
  • the priority of the second time-frequency resource is higher than the priority of the first time-frequency resource
  • the instructing unit 603 at least instructs the MAC layer of the terminal device to the physical layer to send the second uplink signal on the second time-frequency resource .
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the second time-frequency resource is higher than or equal to (that is, not lower than) the priority of the first time-frequency resource
  • the indicating unit 603 indicates at least the second time-frequency resource from the MAC layer of the terminal device to the physical layer.
  • the second time-frequency resource sends the second uplink signal.
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the second time-frequency resource is equal to the priority of the first time-frequency resource
  • the indicating unit 603 at least instructs the MAC layer of the terminal device to the physical layer to send the second uplink signal on the second time-frequency resource.
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the second time-frequency resource is not lower than the priority of the first time-frequency resource
  • the instructing unit 603 instructs the physical layer from the MAC layer of the terminal device to send the second uplink signal on the second time-frequency resource
  • the priority of the second time-frequency resource is lower than the priority of the first time-frequency resource
  • the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource, or does not indicate
  • the physical layer sends the second uplink signal on the second time-frequency resource.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is higher than the priority of the physical layer channel or signal carried by the first time-frequency resource
  • the instructing unit 603 moves from the MAC layer of the terminal device to the physical layer at least Instruct to send the second uplink signal in the second time-frequency resource.
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is higher than or equal to (that is, not lower than) the priority of the physical layer channel or signal carried by the first time-frequency resource.
  • the MAC layer of the terminal device at least instructs the physical layer to send the second uplink signal in the second time-frequency resource. Further, the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is equal to the priority of the physical layer channel or signal carried by the first time-frequency resource
  • the indicating unit 603 at least instructs the physical layer from the MAC layer of the terminal device
  • the second uplink signal is sent in the second time-frequency resource.
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is not lower than the priority of the physical layer channel or signal carried by the first time-frequency resource, and the instructing unit 603 moves from the MAC layer of the terminal device to the physical layer. Instructs to send the second uplink signal on the second time-frequency resource, thereby meeting the requirements of high-priority services to a certain extent.
  • the priority of the physical layer channel or signal carried by the second time-frequency resource is lower than the priority of the physical layer channel or signal carried by the first time-frequency resource, and the terminal device does not process the second time-frequency resource in the MAC layer , Either discard the second time-frequency resource, or not instruct the physical layer to send the second uplink signal on the second time-frequency resource.
  • the reliability of the transmission of the first uplink signal is ensured.
  • the terminal processing capability level corresponding to the time-frequency resource with the above-mentioned feature is taken as an example for description below.
  • the terminal processing capability level of the second time-frequency resource is higher than the terminal processing capability level of the first time-frequency resource
  • the instructing unit 603 at least instructs the MAC layer of the terminal device to the physical layer to send data on the second time-frequency resource.
  • the second uplink signal Further, the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the terminal processing capability level of the second time-frequency resource is higher than or equal to (that is, not lower than) the terminal processing capability level of the first time-frequency resource
  • the instructing unit 603 changes from the MAC layer of the terminal device to the physical layer At least instruct to send the second uplink signal in the second time-frequency resource.
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the terminal processing capability level of the second time-frequency resource is equal to the terminal processing capability level of the first time-frequency resource
  • the instructing unit 603 at least instructs the MAC layer of the terminal device to the physical layer to send the second time-frequency resource. 2.
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the terminal processing capability level of the second time-frequency resource is not lower than the terminal processing capability level of the first time-frequency resource, and the instructing unit 603 indicates from the MAC layer of the terminal device to the physical layer to send on the second time-frequency resource.
  • the second uplink signal can meet the requirements of high-priority services to a certain extent.
  • the terminal processing capability level of the second time-frequency resource is lower than the terminal processing capability level of the first time-frequency resource, and the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource , Or not instruct the physical layer to send the second uplink signal on the second time-frequency resource.
  • the reliability of the transmission of the first uplink signal is ensured.
  • the following takes the above-mentioned feature as the duration of the time-frequency resource as an example for description.
  • the duration of the second time-frequency resource is lower than the duration of the first time-frequency resource
  • the instructing unit 603 at least instructs the MAC layer of the terminal device to the physical layer to send the second uplink signal on the second time-frequency resource .
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the duration of the second time-frequency resource is lower than or equal to (that is, not higher than) the duration of the first time-frequency resource
  • the indicating unit 603 indicates at least the second time-frequency resource from the MAC layer of the terminal device to the physical layer.
  • the second time-frequency resource sends the second uplink signal.
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the duration of the second time-frequency resource is equal to the duration of the first time-frequency resource
  • the indicating unit 603 at least instructs the physical layer from the MAC layer of the terminal device to send the second uplink signal on the second time-frequency resource.
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the duration of the second time-frequency resource is not higher than the duration of the first time-frequency resource
  • the instructing unit 603 instructs the physical layer from the MAC layer of the terminal device to send the second uplink signal on the second time-frequency resource
  • the duration of the second time-frequency resource is higher than the duration of the first time-frequency resource
  • the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource, or does not indicate
  • the physical layer sends the second uplink signal on the second time-frequency resource.
  • the following takes the above-mentioned characteristic as the reliability level of time-frequency resources as an example for description.
  • the reliability level of the second time-frequency resource is higher than the reliability level of the first time-frequency resource
  • the instructing unit 603 at least instructs the MAC layer of the terminal device to the physical layer to send the second time-frequency resource on the second time-frequency resource.
  • Uplink signal Further, the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the reliability level of the second time-frequency resource is higher than or equal to (that is, not lower than) the reliability level of the first time-frequency resource
  • the indicating unit 603 at least instructs the physical layer from the MAC layer of the terminal device
  • the second uplink signal is sent in the second time-frequency resource.
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the reliability level of the second time-frequency resource is equal to the reliability level of the first time-frequency resource
  • the instructing unit 603 at least instructs the physical layer from the MAC layer of the terminal device to send the second uplink on the second time-frequency resource. signal.
  • the sending unit 604 sends the second uplink signal in the second time-frequency resource according to the instruction of the MAC layer at the physical layer of the terminal device.
  • the reliability level of the second time-frequency resource is not lower than the reliability level of the first time-frequency resource
  • the instructing unit 603 instructs the physical layer from the MAC layer of the terminal device to send the second time-frequency resource on the second time-frequency resource.
  • the reliability level of the second time-frequency resource is lower than the reliability level of the first time-frequency resource, and the terminal device does not process the second time-frequency resource in the MAC layer, or discards the second time-frequency resource, or The physical layer is not instructed to send the second uplink signal on the second time-frequency resource. Thus, the reliability of the transmission of the first uplink signal is ensured.
  • the device 600 may further include: a selection unit 605, in the case that the second time-frequency resource (or the second uplink grant) corresponds to the new transmission, the selection unit 605 performs The time-frequency resource (or the second uplink grant) selects logical channels that meet the logical channel priority processing (Logical Channel Prioritization, LCP) mapping restrictions.
  • a selection unit 605 in the case that the second time-frequency resource (or the second uplink grant) corresponds to the new transmission, the selection unit 605 performs The time-frequency resource (or the second uplink grant) selects logical channels that meet the logical channel priority processing (Logical Channel Prioritization, LCP) mapping restrictions.
  • LCP Logical Channel Prioritization
  • the instructing unit 603 does not further process the second time-frequency resource (or the second uplink grant) or discards the second time-frequency resource, or does not instruct the physical layer to send the second time-frequency resource The second uplink signal on the time-frequency resource.
  • the uplink signal sending device 500 or 600 may also include other components or modules.
  • the uplink signal sending device 500 or 600 may also include other components or modules.
  • FIGS. 5 and 6 only exemplarily show the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the foregoing components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, and a receiver; the implementation of this application does not limit this.
  • the MAC layer of the terminal device can send data or signals on the corresponding time-frequency resources by comparing the priority corresponding to the time-frequency resources, ensuring that the data or signals sent on the high-priority time-frequency resources Signal delay and reliability.
  • the embodiment of the present application provides an uplink signal receiving device.
  • the device may be, for example, a network device, or may be a certain or some components or components of the network device.
  • the content of the embodiment of this application that is the same as the embodiment of the first aspect to the third aspect will not be repeated.
  • FIG. 7 is a schematic diagram of an uplink signal receiving apparatus according to an embodiment of the present application. As shown in FIG. 7, the uplink signal receiving apparatus 700 includes:
  • a sending unit 701 which sends configuration information or indication information to a terminal device, the configuration information or indication information being at least used by the terminal device to compare the characteristics of the first time-frequency resource with the characteristics of the second time-frequency resource;
  • the receiving unit 702 which receives the first uplink signal sent by the terminal device on the first time-frequency resource and/or the second uplink signal sent on the second time-frequency resource, or is connected to the first uplink signal A third uplink signal related to the second uplink signal.
  • the apparatus 700 for receiving uplink signals may also include other components or modules.
  • the apparatus 700 for receiving uplink signals may also include other components or modules.
  • FIG. 7 only exemplarily shows the connection relationship or signal direction between the various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the foregoing components or modules may be implemented by hardware facilities such as a processor, a memory, a transmitter, and a receiver; the embodiment of the present application does not limit this.
  • the MAC layer of the terminal device can send data or signals on the corresponding time-frequency resources by comparing the priority corresponding to the time-frequency resources, ensuring that the data or signals sent on the high-priority time-frequency resources Signal delay and reliability.
  • An embodiment of the present application also provides a communication system, which may refer to FIG. 1, and the same content as the embodiments of the first aspect to the fourth aspect will not be repeated.
  • the communication system 100 may include:
  • the terminal device 102 indicates from the medium access control layer to the physical layer to send the first uplink signal on the first time-frequency resource; the medium access control layer determines that the second time-frequency resource and the first time-frequency resource are in the time domain Or at least partially overlap in the time-frequency domain; and compare the feature (metric) of the first time-frequency resource with the feature (metric) of the second time-frequency resource in the MAC layer;
  • the network device 101 receives the first uplink signal and/or the second uplink signal related to the second time-frequency resource.
  • the communication system 100 may include:
  • the terminal device 102 determines at the medium access control layer that the first time-frequency resource and the second time-frequency resource at least partially overlap in the time domain or the time-frequency domain; compare the first time-frequency resource at the medium access control layer And the characteristics of the second time-frequency resource; and the MAC layer instructs the physical layer to send the first uplink signal in the first time-frequency resource and/or send the first uplink signal in the second time-frequency resource A second uplink signal, or instruct to send a third uplink signal related to the first uplink signal and the second uplink signal in the first time-frequency resource or the second time-frequency resource;
  • the network device 101 receives the first uplink signal and/or the second uplink signal, or the third uplink signal.
  • the embodiment of the present application also provides a network device, which may be a base station (gNB), for example, but the present application is not limited to this, and may also be other network devices.
  • a network device which may be a base station (gNB), for example, but the present application is not limited to this, and may also be other network devices.
  • gNB base station
  • FIG. 8 is a schematic diagram of the structure of a network device in an embodiment of the present application.
  • the network device 800 may include: a processor 810 (for example, a central processing unit CPU) and a memory 820; the memory 820 is coupled to the processor 810.
  • the memory 820 can store various data; in addition, it also stores an information processing program 830, and the program 830 is executed under the control of the processor 810.
  • the processor 810 may be configured to execute a program to implement the uplink signal receiving method as described in the embodiment of the second aspect.
  • the processor 810 may be configured to perform the following control: send configuration information or instruction information to a terminal device, where the configuration information or instruction information is at least used by the terminal device to compare the characteristics of the first time-frequency resource with the second time-frequency resource. The characteristics of the time-frequency resource; and receiving the first uplink signal sent by the terminal equipment on the first time-frequency resource and/or the second uplink signal sent on the second time-frequency resource, or with the first uplink signal
  • the uplink signal is a third uplink signal related to the second uplink signal.
  • the network device 800 may further include: a transceiver 840, an antenna 850, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the network device 800 does not necessarily include all the components shown in FIG. 8; in addition, the network device 800 may also include components not shown in FIG. 8, which can refer to the prior art.
  • the embodiment of the present application also provides a terminal device, which may be a UE, for example, but the present application is not limited to this, and may also be other devices.
  • a terminal device which may be a UE, for example, but the present application is not limited to this, and may also be other devices.
  • Fig. 9 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 900 may include a processor 910 and a memory 920; the memory 920 stores data and programs, and is coupled to the processor 910. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace this structure to implement telecommunication functions or other functions.
  • the processor 910 may be configured to execute a program to implement the uplink signal sending method as described in the embodiment of the first aspect.
  • the processor 910 may be configured to perform the following control: instruct from the medium access control (MAC) layer to the physical layer (PHY) to send the first uplink signal on the first time-frequency resource; when the MAC layer determines the second time The frequency resource and the first time-frequency resource at least partially overlap (overlap) in the time domain or the time-frequency domain; and comparing the feature (metric) of the first time-frequency resource with the second time-frequency resource in the MAC layer The metric of the time-frequency resource.
  • MAC medium access control
  • PHY physical layer
  • the processor 910 may be configured to perform the following control: determine at the MAC layer that the first time-frequency resource and the second time-frequency resource at least partially overlap (overlap) in the time domain or the time-frequency domain; The layer compares the characteristics of the first time-frequency resource with the characteristics of the second time-frequency resource; and instructs the physical layer from the MAC layer to send a first uplink signal on the first time-frequency resource and/or Send a second uplink signal on the second time-frequency resource, or instruct to send a second uplink signal related to the first uplink signal and the second uplink signal on the first time-frequency resource or the second time-frequency resource Three upstream signals.
  • the terminal device 900 may further include: a communication module 930, an input unit 940, a display 950, and a power supply 960.
  • the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the terminal device 900 does not necessarily include all the components shown in FIG. 9 and the above-mentioned components are not necessary; in addition, the terminal device 900 may also include components not shown in FIG. There is technology.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the uplink signal sending method described in the embodiment of the first aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program enables a terminal device to execute the uplink signal sending method described in the embodiment of the first aspect.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a network device, the program causes the network device to execute the uplink signal receiving method described in the embodiment of the second aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes a network device to execute the uplink signal receiving method described in the embodiment of the second aspect.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • This application relates to such a computer-readable program.
  • the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods. Or steps.
  • This application also relates to storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • at least one of the functional block diagrams and/or at least one combination of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • the functional blocks and/or at least one combination of the functional blocks described in the drawings it can be implemented as a general-purpose processor, a digital signal processor (DSP), or a dedicated integrated circuit for performing the functions described in the present application. Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any suitable combination thereof.
  • ASIC Application Specific Integrity
  • FPGA Field Programmable Gate Array
  • At least one of the functional blocks and/or at least one combination of the functional blocks described in the drawings may also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, multiple microprocessors, and a DSP At least one microprocessor or any other such configuration combined in communication.
  • a method for sending uplink signals including:
  • the terminal device instructs the physical layer (PHY) from the medium access control (MAC) layer to send the first uplink signal on the first time-frequency resource;
  • the terminal device determines at the MAC layer that the second time-frequency resource and the first time-frequency resource at least partially overlap in the time domain or the time-frequency domain;
  • the terminal device compares the characteristic (metric) of the first time-frequency resource with the characteristic (metric) of the second time-frequency resource at the MAC layer.
  • Supplement 2 The method according to Supplement 1, wherein the characteristic is at least one of the following:
  • the priority of the physical layer channel or signal to be carried or to be carried by the time-frequency resource is the priority of the physical layer channel or signal to be carried or to be carried by the time-frequency resource
  • duration of time-frequency resources (duration);
  • the level of reliability corresponding to the time-frequency resource is the level of reliability corresponding to the time-frequency resource.
  • the characteristic is the priority of the time-frequency resource, and the priority of the second time-frequency resource is higher than the priority of the first time-frequency resource, or,
  • the feature is the priority of the physical layer channel or signal carried or to be carried by the time-frequency resource, and the priority of the physical layer channel or signal carried by the second time-frequency resource is higher than that of the physical layer carried by the first time-frequency resource Channel or signal priority,
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send a second uplink signal in the second time-frequency resource.
  • the characteristic is the priority of the time-frequency resource, and the second time-frequency resource priority is higher than or equal to the first time-frequency resource priority, or,
  • the feature is the priority of the physical layer channel or signal carried or to be carried by the time-frequency resource, and the priority of the physical layer channel or signal carried by the second time-frequency resource is higher than or equal to that carried by the first time-frequency resource Physical layer channel or signal priority,
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send a second uplink signal in the second time-frequency resource.
  • the characteristic is the priority of the time-frequency resource, and the second time-frequency resource priority is equal to the first time-frequency resource priority, or,
  • the feature is the priority of the physical layer channel or signal carried or to be carried by the time-frequency resource, and the priority of the physical layer channel or signal carried by the second time-frequency resource is equal to the physical layer channel carried by the first time-frequency resource Or signal priority,
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send a second uplink signal in the second time-frequency resource.
  • the characteristic is the priority of the time-frequency resource, and the priority of the second time-frequency resource is lower than the priority of the first time-frequency resource, or,
  • the feature is the priority of the physical layer channel or signal carried or to be carried by the time-frequency resource, and the priority of the physical layer channel or signal carried by the second time-frequency resource is lower than that of the physical layer carried by the first time-frequency resource Channel or signal priority,
  • the method further includes: the terminal device does not process the second time-frequency resource or discards the second time-frequency resource in the MAC layer.
  • the characteristic is the terminal processing capability level corresponding to the time-frequency resource, and the terminal processing capability level of the second time-frequency resource is higher than the terminal processing capability level of the first time-frequency resource, or
  • the characteristic is the duration of the time-frequency resource, and the duration of the second time-frequency resource is lower than the duration of the first time-frequency resource, or
  • the characteristic is the reliability level of the time-frequency resource, and the reliability level of the second time-frequency resource is higher than the reliability level of the first time-frequency resource,
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send a second uplink signal in the second time-frequency resource.
  • the characteristic is the terminal processing capability level corresponding to the time-frequency resource, and the terminal processing capability level of the second time-frequency resource is higher than or equal to the terminal processing capability level of the first time-frequency resource, or
  • the characteristic is the duration of the time-frequency resource, and the duration of the second time-frequency resource is lower than or equal to the duration of the first time-frequency resource, or
  • the characteristic is the reliability level of the time-frequency resource, and the reliability level of the second time-frequency resource is higher than or equal to the reliability level of the first time-frequency resource,
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send a second uplink signal in the second time-frequency resource.
  • the characteristic is the terminal processing capability level corresponding to the time-frequency resource, and the terminal processing capability level of the second time-frequency resource is equal to the terminal processing capability level of the first time-frequency resource, or
  • the characteristic is the duration of the time-frequency resource, and the duration of the second time-frequency resource is equal to the duration of the first time-frequency resource, or
  • the characteristic is the reliability level of the time-frequency resource, and the reliability level of the second time-frequency resource is equal to the reliability level of the first time-frequency resource,
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send a second uplink signal in the second time-frequency resource.
  • the characteristic is the terminal processing capability level corresponding to the time-frequency resource, and the terminal processing capability level of the second time-frequency resource is lower than the terminal processing capability level of the first time-frequency resource, or
  • the characteristic is the duration of the time-frequency resource, and the duration of the second time-frequency resource is higher than the duration of the first time-frequency resource, or
  • the characteristic is the reliability level of the time-frequency resource, and the reliability level of the second time-frequency resource is lower than the reliability level of the first time-frequency resource,
  • the method further includes: the terminal device does not process the second time-frequency resource from the MAC layer or discards the second time-frequency resource.
  • Supplement 11 The method according to any one of Supplements 1 to 10, wherein the method further includes:
  • the terminal device sends the second uplink signal on the second time-frequency resource at the physical layer.
  • Supplement 12 The method according to any one of Supplements 1 to 10, wherein the method further includes:
  • Supplement 13 The method according to any one of Supplements 1 to 10, wherein the first time-frequency resource and the second time-frequency resource are both physical uplink shared channel (PUSCH) resources.
  • PUSCH physical uplink shared channel
  • Supplement 14 The method according to any one of Supplements 1 to 10, wherein the first time-frequency resource and the second time-frequency resource are both scheduling request (SR) resources.
  • SR scheduling request
  • Supplement 15 The method according to any one of Supplements 1 to 10, wherein the first time-frequency resource is a scheduling request (SR) resource, and the second time-frequency resource is a physical uplink shared channel (PUSCH )Resources.
  • SR scheduling request
  • PUSCH physical uplink shared channel
  • Supplement 16 The method according to any one of Supplements 1 to 10, wherein the first time-frequency resource is a physical uplink shared channel (PUSCH) resource, and the second time-frequency resource is a scheduling request (SR )Resources.
  • PUSCH physical uplink shared channel
  • SR scheduling request
  • Supplement 17 The method according to any one of Supplements 1 to 10, wherein the second time-frequency resource corresponds to the new transmission, and the method further includes: selecting the second time-frequency resource to satisfy the logical channel priority processing mapping restriction Logical channel,
  • the terminal device does not perform further processing on the second time-frequency resource or discards the second time-frequency resource. Two time-frequency resources, or not instructing the physical layer to send the second uplink signal corresponding to the second time-frequency resource.
  • a method for sending uplink signals including:
  • the terminal device determines at the MAC layer that the first time-frequency resource and the second time-frequency resource at least partially overlap in the time domain or the time-frequency domain;
  • the terminal device compares the characteristics of the first time-frequency resource with the characteristics of the second time-frequency resource at the MAC layer;
  • the terminal device instructs the physical layer from the MAC layer to send a first uplink signal on the first time-frequency resource and/or sends a second uplink signal on the second time-frequency resource, or instructs to send a second uplink signal on the second time-frequency resource.
  • the first time-frequency resource or the second time-frequency resource transmits a third uplink signal related to the first uplink signal and the second uplink signal.
  • Appendix 19 The method according to Appendix 18, wherein the characteristic is at least one of the following:
  • the priority of the time-frequency resource (priority);
  • the priority of the physical layer channel or signal to be carried or to be carried by the time-frequency resource is the priority of the physical layer channel or signal to be carried or to be carried by the time-frequency resource
  • duration of time-frequency resources (duration);
  • the level of reliability corresponding to the time-frequency resource is the level of reliability corresponding to the time-frequency resource.
  • the characteristic is the priority of the time-frequency resource, and the physical layer priority of the second time-frequency resource is higher than the physical layer priority of the first time-frequency resource, or
  • the feature is the priority of the physical layer channel or signal carried by the time-frequency resource or to be carried, and the priority of the physical layer channel or signal carried by the second time-frequency resource is higher than that of the physical layer channel carried by the first time-frequency resource Or signal priority,
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send the second uplink signal in the second time-frequency resource.
  • the characteristic is the priority of the time-frequency resource, and the physical layer priority of the second time-frequency resource is higher than or equal to the physical layer priority of the first time-frequency resource, or,
  • the feature is the priority of the physical layer channel or signal carried or to be carried by the time-frequency resource, and the priority of the physical layer channel or signal carried by the second time-frequency resource is higher than or equal to the physical layer carried by the first time-frequency resource.
  • Layer channel or signal priority
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send the second uplink signal in the second time-frequency resource.
  • the characteristic is the priority of the time-frequency resource, and the physical layer priority of the second time-frequency resource is equal to the physical layer priority of the first time-frequency resource, or,
  • the feature is the priority of the physical layer channel or signal carried or to be carried by the time-frequency resource, and the priority of the physical layer channel or signal carried by the second time-frequency resource is equal to the physical layer channel or signal carried by the first time-frequency resource.
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send the second uplink signal in the second time-frequency resource.
  • the characteristic is the priority of the time-frequency resource, and the physical layer priority of the second time-frequency resource is lower than the physical layer priority of the first time-frequency resource, or,
  • the feature is the priority of the physical layer channel or signal carried or to be carried by the time-frequency resource, and the priority of the physical layer channel or signal carried by the second time-frequency resource is lower than that of the physical layer channel carried by the first time-frequency resource Or signal priority,
  • the method further includes: the terminal device does not process the second time-frequency resource or discards the second time-frequency resource in the MAC layer.
  • the characteristic is the terminal processing capability level corresponding to the time-frequency resource, and the terminal processing capability level of the second time-frequency resource is higher than the terminal processing capability level of the first time-frequency resource, or
  • the characteristic is the duration of the time-frequency resource, and the duration of the second time-frequency resource is lower than the duration of the first time-frequency resource, or
  • the characteristic is the reliability level of the time-frequency resource, and the reliability level of the second time-frequency resource is higher than the reliability level of the first time-frequency resource,
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send the second uplink signal in the second time-frequency resource.
  • the characteristic is the terminal processing capability level corresponding to the time-frequency resource, and the terminal processing capability level of the second time-frequency resource is higher than or equal to the terminal processing capability level of the first time-frequency resource, or
  • the characteristic is the duration of the time-frequency resource, and the duration of the second time-frequency resource is lower than or equal to the duration of the first time-frequency resource, or
  • the characteristic is the reliability level of the time-frequency resource, and the reliability level of the second time-frequency resource is higher than or equal to the reliability level of the first time-frequency resource,
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send the second uplink signal in the second time-frequency resource.
  • the characteristic is the terminal processing capability level corresponding to the time-frequency resource, and the terminal processing capability level of the second time-frequency resource is equal to the terminal processing capability level of the first time-frequency resource, or
  • the characteristic is the duration of the time-frequency resource, and the duration of the second time-frequency resource is equal to the duration of the first time-frequency resource, or
  • the characteristic is the reliability level of the time-frequency resource, and the reliability level of the second time-frequency resource is equal to the reliability level of the first time-frequency resource,
  • the method further includes: the terminal device at least instructs from the MAC layer to the physical layer to send the second uplink signal in the second time-frequency resource.
  • the characteristic is the terminal processing capability level corresponding to the time-frequency resource, and the terminal processing capability level of the second time-frequency resource is lower than the terminal processing capability level of the first time-frequency resource, or
  • the characteristic is the duration of the time-frequency resource, and the duration of the second time-frequency resource is higher than the duration of the first time-frequency resource, or
  • the characteristic is the reliability level of the time-frequency resource, and the reliability level of the second time-frequency resource is lower than the reliability level of the first time-frequency resource,
  • the method further includes: the terminal device does not process the second time-frequency resource from the MAC layer or discards the second time-frequency resource.
  • Appendix 28 The method according to any one of Appendix 18 to Appendix 27, wherein the method further includes:
  • the terminal device sends the second uplink signal or the third uplink signal on the second time-frequency resource at the physical layer.
  • Supplement 29 The method according to any one of Supplements 18 to 27, wherein the method further comprises:
  • the terminal device sends the first uplink signal or the third uplink signal on the first time-frequency resource at the physical layer.
  • Supplement 30 The method according to any one of Supplements 18 to 27, wherein the first time-frequency resource and the second time-frequency resource are both physical uplink shared channel (PUSCH) resources.
  • PUSCH physical uplink shared channel
  • Supplement 31 The method according to any one of Supplements 18 to 27, wherein the first time-frequency resource and the second time-frequency resource are both scheduling request (SR) resources.
  • SR scheduling request
  • Supplement 32 The method according to any one of Supplements 18 to 27, wherein the first time-frequency resource is a scheduling request (SR) resource, and the second time-frequency resource is a physical uplink shared channel (PUSCH )Resources.
  • SR scheduling request
  • PUSCH physical uplink shared channel
  • Supplement 33 The method according to any one of Supplements 18 to 27, wherein the first time-frequency resource is a physical uplink shared channel (PUSCH) resource, and the second time-frequency resource is a scheduling request (SR )Resources.
  • PUSCH physical uplink shared channel
  • SR scheduling request
  • Supplement 34 The method according to any one of Supplements 18 to 27, wherein the second time-frequency resource corresponds to the new transmission, and the method further includes: selecting the second time-frequency resource to satisfy the logical channel priority processing mapping restriction Logical channel,
  • the terminal device does not perform further processing on the second time-frequency resource or discards the second time-frequency resource. Two time-frequency resources, or not instructing the physical layer to send the second uplink signal corresponding to the second time-frequency resource.
  • a method for receiving uplink signals including:
  • the network device sends configuration information or instruction information to the terminal device, where the configuration information or instruction information is at least used by the terminal device to compare the characteristics of the first time-frequency resource with the characteristics of the second time-frequency resource;
  • the network device receives the first uplink signal sent by the terminal device on the first time-frequency resource and/or the second uplink signal sent on the second time-frequency resource, or is combined with the first uplink signal and A third uplink signal related to the second uplink signal.
  • Appendix 36 A terminal device comprising a memory and a processor, the memory storing a computer program, and the processor is configured to execute the computer program to implement the uplink as described in any one of appendix 1 to 34 The method of sending the signal.
  • a network device including a memory and a processor, the memory storing a computer program, and the processor is configured to execute the computer program to implement the uplink signal receiving method as described in Supplement 35.
  • a communication system including:
  • a terminal device that instructs the physical layer (PHY) from the medium access control (MAC) layer to send the first uplink signal on the first time-frequency resource; the terminal device determines the second time-frequency resource and the first uplink signal at the MAC layer A time-frequency resource at least partially overlaps in the time domain or the time-frequency domain; and the terminal device compares the feature (metric) of the first time-frequency resource with the second time-frequency resource in the MAC layer The characteristics of the resource (metric);
  • a network device that receives the first uplink signal and/or a second uplink signal related to the second time-frequency resource.
  • a communication system including:
  • a terminal device that determines at the MAC layer that the first time-frequency resource and the second time-frequency resource at least partially overlap (overlap) in the time domain or the time-frequency domain; the terminal device compares the first time at the MAC layer And the second time-frequency resource; and the terminal device instructs from the MAC layer to the physical layer to send the first uplink signal on the first time-frequency resource and/or on the The second time-frequency resource sends a second uplink signal, or instructs to send a third uplink signal related to the first uplink signal and the second uplink signal in the first time-frequency resource or the second time-frequency resource ;
  • a network device that receives the first uplink signal and/or the second uplink signal, or the third uplink signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种上行信号的发送和接收方法以及装置,所述方法包括:终端设备从MAC层向物理层指示在第一时频资源发送第一上行信号;在MAC层确定第二时频资源与所述第一时频资源在时域上或者时频域上至少部分重叠(overlap);以及在所述MAC层比较所述第一时频资源的特征(metric)和所述第二时频资源的特征(metric)。

Description

上行信号的发送和接收方法以及装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
近年来,基于移动通信网络的各类数据应用和服务的快速增长,被移动通信网络服务的终端设备也从传统的以人为使用主体的智能手机终端扩展到更多的以机器为主体的其它类型终端。为了适应这样的变化趋势,未来移动通信网络需要提供更灵活、更多样的服务,以满足不同终端设备、不同服务的需求。
第五代(5G)移动通信系统除传统的增强移动宽带(eMBB,enhanced Mobile Broadband)业务之外,还支持海量机器类型通信(mMTC,Massive Machine Type Communications)业务以及超高可靠低时延通信(URLLC,Ultra-Reliable and Low Latency Communications)业务。
URLLC业务有一些关键指标,例如对URLLC业务,用户面时延的目标应当是上行0.5ms和下行0.5ms。对一个包(packet)的一次传输的整体URLLC可靠性要求是对32字节(bytes)达到1*10 -5错误率,同时具有用户面时延1ms。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
但是发明人发现:在终端设备的MAC(媒体接入控制)层中对上行授权(UL grant)或上行资源(UL resource)或SR(调度请求)的处理没有考虑PUCCH(物理上行控制信道)或PUSCH(物理上行共享信道)的在物理层中处理的优先级,可能无法满足高优先级业务的要求。
针对上述问题的至少之一,本申请实施例提供一种上行信号的发送和接收方法以及装置。
根据本申请实施例的一个方面,提供一种上行信号的发送方法,包括:
终端设备从介质访问控制(MAC)层向物理层(PHY)指示在第一时频资源发送第一上行信号;
所述终端设备在所述MAC层确定第二时频资源与所述第一时频资源在时域上或者时频域上至少部分重叠(overlap);以及
所述终端设备在所述MAC层比较所述第一时频资源的特征(metric)和所述第二时频资源的特征(metric)。
根据本申请实施例的又一个方面,提供一种上行信号的发送装置,配置于终端设备,其中,所述装置包括:
指示单元,其从介质访问控制(MAC)层向物理层(PHY)指示在第一时频资源发送第一上行信号;
确定单元,其在所述MAC层确定第二时频资源与所述第一时频资源在时域上或者时频域上至少部分重叠(overlap);以及
比较单元,其在所述MAC层比较所述第一时频资源的特征(metric)和所述第二时频资源的特征(metric)。
根据本申请实施例的又一个方面,提供一种上行信号的发送方法,包括:
终端设备在MAC层确定第一时频资源与第二时频资源在时域上或者时频域上至少部分重叠(overlap);
所述终端设备在所述MAC层比较所述第一时频资源的特征和所述第二时频资源的特征;以及
所述终端设备从所述MAC层向所述物理层指示在所述第一时频资源发送第一上行信号和/或在所述第二时频资源发送第二上行信号,或者指示在所述第一时频资源或所述第二时频资源发送与所述第一上行信号和所述第二上行信号相关的第三上行信号。
根据本申请实施例的又一个方面,提供一种上行信号的发送装置,配置于终端设备,其中,所述装置包括:
确定单元,其在MAC层确定第一时频资源与第二时频资源在时域上或者时频域上至少部分重叠(overlap);
比较单元,其在所述MAC层比较所述第一时频资源的特征和所述第二时频资源的特征;以及
发送单元,其从所述MAC层向所述物理层指示在所述第一时频资源发送第一上行信号和/或在所述第二时频资源发送第二上行信号,或者指示在所述第一时频资源或所述第二时频资源发送与所述第一上行信号和所述第二上行信号相关的第三上行信号。
根据本申请实施例的又一个方面,提供一种上行信号的接收方法,包括:
网络设备向终端设备发送配置信息或指示信息,所述配置信息或指示信息至少被所述终端设备用于比较第一时频资源的特征与第二时频资源的特征;以及
所述网络设备接收所述终端设备在所述第一时频资源发送的第一上行信号和/或在所述第二时频资源发送的第二上行信号,或者与所述第一上行信号和所述第二上行信号相关的第三上行信号。
根据本申请实施例的又一个方面,提供一种上行信号的接收装置,配置于网络设备,所述装置包括:
发送单元,其向终端设备发送配置信息或指示信息,所述配置信息或指示信息至少被所述终端设备用于比较第一时频资源的特征与第二时频资源的特征;以及
接收单元,其接收所述终端设备在所述第一时频资源发送的第一上行信号和/或在所述第二时频资源发送的第二上行信号,或者与所述第一上行信号和所述第二上行信号相关的第三上行信号。
本申请实施例的有益效果之一在于:终端设备的MAC层可以通过比较时频资源对应的优先级,而进行相应的时频资源上的数据或信号的发送,保证了高优先级时频资源上发送的数据或信号的时延和可靠性。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的通信系统的一个示意图;
图2是本申请实施例的上行信号的发送方法的一示意图;
图3是本申请实施例的上行信号的发送方法的另一示意图;
图4是本申请实施例的上行信号的接收方法的一示意图;
图5是本申请实施例的上行信号的发送装置的一示意图;
图6是本申请实施例的上行信号的发送装置的另一示意图;
图7是本申请实施例的上行信号的接收装置的一示意图;
图8是本申请实施例的网络设备的一示意图;
图9是本申请实施例的终端设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加至少一个其它特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信 标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其它目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行 监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的至少一个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的至少一个终端设备。
以下通过示例对本申请实施例的场景进行说明,采用上行(uplink)业务传输进行说明,但本申请不限于此,也可以是边链路(sidelink)上的业务传输。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102、103。为简单起见,图1仅以两个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
由于URLLC业务对时延要求非常高,与一个eMBB业务的信号持续时间是可比的。因此,如果URLLC相关的信号需要传输的时候有一个eMBB业务信号正在传输,为了满足URLLC业务的时延要求,这个URLLC相关的信号常常无法等待eMBB业务信号传完再传。
针对物理层知道的2个不同业务类型,可以支持2个等级的SR优先级(高或低);此外还可以支持2个等级的PUSCH的物理层优先级,用于物理层冲突处理;对物理层的UE内部冲突处理,在高优先级上行传输与低优先级上行传输重叠的情况下,在特定的限制下,丢弃低优先级上行传输。
然而,如前所述,目前在UE的MAC层中对上行授权(UL grant)或上行资源(UL resource)或SR的处理没有考虑PUCCH或PUSCH的在物理层中处理的优先级,可能无法满足高优先级业务的要求。
在以下的说明中,在不引起混淆的情况下,术语“上行控制信号”和“上行控制信息(UCI,Uplink Control Information)”或“物理上行控制信道(PUCCH,Physical Uplink  Control Channel)”可以互换,术语“上行数据信号”和“上行数据信息”或“物理上行共享信道(PUSCH,Physical Uplink Shared Channel)”可以互换;术语“下行控制信号”和“下行控制信息(DCI,Downlink Control Information)”或“物理下行控制信道(PDCCH,Physical Downlink Control Channel)”可以互换,术语“下行数据信号”和“下行数据信息”或“物理下行共享信道(PDSCH,Physical Downlink Shared Channel)”可以互换。
另外,发送或接收PUSCH可以理解为发送或接收由PUSCH承载的上行数据,发送或接收PUCCH可以理解为发送或接收由PUCCH承载的上行信息;上行信号可以包括上行数据信号和/或上行控制信号和/或上行参考信号等,也可以称为上行传输或上行信道;信号或信道所承载或指示的内容也可以称为业务。此外,术语“在资源发送信号”可以理解为“在资源上发送信号”或者“在资源中发送信号”,也可以理解为“使用资源发送信号”或者“根据资源发送信号”。
下面结合附图对本申请实施例的各个实施方式进行说明。
第一方面的实施例
本申请实施例提供一种上行信号的发送方法,从终端设备侧进行说明。图2是本申请实施例的上行信号的发送方法的一个示意图,如图2所示,该方法包括:
201,终端设备从介质访问控制(MAC)层向物理层(PHY)指示在第一时频资源发送第一上行信号;
202,所述终端设备在所述MAC层确定第二时频资源与所述第一时频资源在时域上或者时频域上至少部分重叠(overlap);以及
203,所述终端设备在所述MAC层比较所述第一时频资源的特征(metric)和所述第二时频资源的特征(metric)。
在本申请实施例中,MAC层已经向物理层指示在第一时频资源发送第一上行信号,或者MAC层已经组装MAC PDU,在出现第二上行信号并且第二上行信号对应的第二时频资源与第一时频资源冲突的情况下,比较第一时频资源和第二时频资源的特征(metric);并根据比较结果确定是否向物理层指示在第二时频资源发送第二上行信号。其中,所述冲突可以是第二时频资源与第一时频资源在时域上或者时频域上至少部分重叠(overlap)。这里的组装(assemble)还可以是生成(generate)或获得(obtain), 还可以是触发一个重传(retransmission)或生成一个重传或向物理层指示重传一个MAC PDU或传输块(Transport Block,TB),本申请不做限制。
值得注意的是,以上附图2仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其它的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,例如202和203的执行顺序可以互换,而不仅限于上述附图2的记载。
在一些实施例中,第一时频资源和第二时频资源分别包括如下至少之一:用于物理上行共享信道(PUSCH)的时间和/或频率资源、用于发送调度请求(SR)的时间和/或频率资源、用于发送混合自适应重传(HARQ)确认(ACK)或非确认(NACK)的时间和/或频率资源、用于发送信道状态指示(CSI)报告的时间和/或频率资源、用于发送物理随机接入信道(PRACH)的时间和/或频率资源和用于发送监听参考信号(SRS)的时间和/或频率资源等。用于发送调度请求(SR)或HARQ ACK/NACK或CSI报告的时间和/或频率资源例如为用于物理上行控制信道(PUCCH)的时间和/或频率资源。
在一些实施例中,第一时频资源的特征(metric)和第二时频资源的特征(metric)分别为如下至少之一:时频资源的优先级(priority);时频资源承载或将要承载的物理层信道或信号优先级(priority);时频资源对应的终端处理能力(capability);时频资源的持续时间(duration);时频资源对应的可靠性水平(level)。
在一些实施例中,所述时频资源的优先级(priority)可以是MAC层中对时频资源的处理的优先级,所述时频资源的优先级可以由网络设备通过物理层信令和或高层信令向终端设备指示。该优先级可以以优先级的值(或索引)表示,优先级的值(或索引)越高表示优先级越低,或者,优先级的值(或索引)越高表示优先级越高,例如优先级的值(或索引)可以是0和1,或者,该优先级可以以高(high)、中(medium)、低(low)等文字表示,或者以高(high)和低(low)等文字表示,等等。
在一些实施例中,所述时频资源承载或将要承载的物理层信道或信号优先级(priority)可以是物理层对物理层信道或信号处理的优先级,例如是物理层对物理层信道或信号在优先级处理(prioritization)或复用(multiplexing)操作中的优先级,其中,物理层信道或信号包括PUSCH、SR、PUCCH、HARQ-ACK、CSI、PRACH、SRS等等。所述时频资源承载或将要承载的物理层信道或信号的优先级可以由网络设 备通过物理层信令和或高层信令向终端设备指示。该优先级可以以优先级的值(或索引)表示,优先级的值(或索引)越高表示优先级越低,或者,优先级的值(或索引)越高表示优先级越高,例如优先级的值(或索引)可以是0和1,或者,该优先级可以以高(high)、中(medium)、低(low)等文字表示,或者以高(high)和低(low)等文字表示,等等。
在一些实施例中,所述时频资源对应的终端处理能力(capability)可以是终端设备对该时频资源的处理能力,例如可以表示为处理能力#1、处理能力#2,也可以表示为处理能力高、中、低,等等。所述时频资源对应的终端处理能力可以是网络设备为终端设备配置的,例如,网络设备配置终端设备使用处理能力#1或#2处理所述时频资源所在的载波或者带宽单元(BWP)上的物理层信道或信号;所述时频资源对应的终端处理能力也可以是终端设备自行决定的,并通过RRC层信令和/或MAC CE和/或或物理层信令向网络设备上报,例如,终端设备向网络设备上报其使用处理能力#1处理所述时频资源所在的载波或者BWP上的物理层信道或物理信号;所述时频资源对应的终端处理能力也可以是网络设备根据终端设备向网络设备上报其具备的处理能力,为终端设备配置的,例如,终端设备向网络设备上报其具备的处理能力#1和#2,网络设备配置终端设备使用处理能力#2处理所述时频资源所在的载波或者BWP上的物理层信道或信号;所述时频资源对应的终端处理能力也可以是终端设备自行决定的或者网络设备为终端设备配置的,在所述时频资源所在的载波或者BWP上,终端设备既可以使用能力#1又可以使用能力#2处理物理信号,对于一个特定物理信号,终端设备根据网络设备指示采用能力#1或者#2进行处理。
在一些实施例中,所述时频资源的持续时间(duration)可以是所述时频资源在时域中所持续的时间长度。所述时频资源的持续时间可以由网络设备通过物理层信令和或高层信令向终端设备指示,单位可以是毫秒、秒、符号、时隙、子帧、无线帧,等等。
在一些实施例中,所述时频资源对应的可靠性水平(level)可以由网络设备通过物理层信令和或高层信令向终端设备指示,例如网络设备可以指示时频资源对应的可靠性水平为高、中、低或高、低等,或者网络设备也可以指示时频资源对应的可靠性水平为该时频资源对应的调制和编码机制(MCS),MCS取值越低表示可靠性水平越高,等等。
在一些实施例中,实施比较后,根据比较结果,终端设备从MAC层向物理层至少指示在所述第二时频资源发送第二上行信号,或者,终端设备在MAC层不对第二时频资源进行处理或者丢弃第二时频资源或者不指示物理层发送第二时频资源上的第二上行信号。
在一些实施例中,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号,终端设备可以在物理层在第二时频资源发送第二上行信号。
在一些实施例中,终端设备在MAC层不对第二时频资源进行处理或者丢弃第二时频资源或者不指示物理层发送第二时频资源上的第二上行信号,终端设备可以在物理层在第一时频资源发送第一上行信号。
本文中的“终端设备从MAC层向物理层指示…”可以理解为“终端设备的MAC层向物理层指示…”;“终端设备在物理层发送…”可以理解为“终端设备的物理层发送…”;“终端设备在MAC层确定…”可以理解为“终端设备的MAC层确定…”。所述终端设备的MAC层可以是一个或多于一个MAC实体(entity),也可以是MAC逻辑功能。
下面以上述特征为时频资源的优先级为例进行说明。
在一些实施例中,第二时频资源的优先级高于第一时频资源的优先级,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的优先级高于或等于(也即不低于)第一时频资源的优先级,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的优先级等于第一时频资源的优先级,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的优先级不低于第一时频资源的优先级,终端设备从MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的优先级低于第一时频资源的优先级,终端设备 在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源承载或将要承载的物理层信道或信号优先级为例进行说明。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级高于第一时频资源承载的物理层信道或信号优先级,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级高于或等于(也即不低于)第一时频资源承载的物理层信道或信号优先级,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级等于第一时频资源承载的物理层信道或信号优先级,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源承载的物理层信道或信号优先级不低于第一时频资源承载的物理层信道或信号优先级,终端设备从MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级低于第一时频资源承载的物理层信道或信号优先级,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源对应的终端处理能力水平为例进行说明。
在一些实施例中,第二时频资源的终端处理能力水平高于第一时频资源的终端处理能力水平,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的终端处理能力水平高于或等于(也即不低于) 第一时频资源的终端处理能力水平,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的终端处理能力水平等于第一时频资源的终端处理能力水平,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的终端处理能力水平不低于第一时频资源的终端处理能力水平,终端设备从MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的终端处理能力水平低于第一时频资源的终端处理能力水平,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源的持续时间为例进行说明。
在一些实施例中,第二时频资源的持续时间低于第一时频资源的持续时间,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的持续时间低于或等于(也即不高于)第一时频资源的持续时间,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的持续时间等于第一时频资源的持续时间,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的持续时间不高于第一时频资源的持续时间,终端设备从MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的持续时间高于第一时频资源的持续时间,终端 设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源的可靠性水平为例进行说明。
在一些实施例中,第二时频资源的可靠性水平高于第一时频资源的可靠性水平,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的可靠性水平高于或等于(也即不低于)第一时频资源的可靠性水平,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的可靠性水平等于第一时频资源的可靠性水平,终端设备从MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的可靠性水平不低于第一时频资源的可靠性水平,终端设备从MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的可靠性水平低于第一时频资源的可靠性水平,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
在上面的实施例中,在第二时频资源(或第二上行授权)对应新传的情况下,对第二时频资源(或第二上行授权)选择满足逻辑信道优先级处理(Logical Channel Prioritization,LCP)映射限制的逻辑信道,如果这些逻辑信道都没有数据等待发送或者这些逻辑信道的缓存为0或者这些逻辑信道对应的令牌(Bj)值小于或等于0,则不对第二时频资源(或第二上行授权)进行进一步处理或丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。
下面以时频资源承载或将要承载的物理层信道或信号的优先级为例,针对第一时频资源和第二时频资源的不同类型进行举例说明。
在一些实施例中,第一时频资源和第二时频资源都承载或将要承载PUSCH。例如第一时频资源和第二时频资源都是动态调度或RAR中收到的上行资源或上行授权;或者第一时频资源为动态调度的上行资源或上行授权,第二时频资源为配置的上行资源或上行授权(例如configured grant);或者第一时频资源为配置的上行资源或上行授权(例如configured grant),第二时频资源为动态调度的上行资源或上行授权;或者第一时频资源和第二时频资源都是配置的上行资源或上行授权(例如configured grant)。
网络设备可以在DCI1中指示或者通过RRC信令配置第一时频资源(或第一上行授权)及其承载或将要承载的物理层信道或信号的优先级,例如第一PUSCH的时频资源及第一PUSCH的优先级,终端设备的MAC层根据该第一上行授权组装了MAC PDU,之后网络设备在DCI2中指示或者通过RRC信令配置第二时频资源(或第二上行授权)及其承载或将要承载的物理层信道或信号的优先级,例如第二PUSCH的时频资源及第二PUSCH的优先级。
在一个实施例中,终端设备的MAC层对于从DCI或RAR收到的第二时频资源(或第二上行授权)或RRC配置的第二时频资源(或第二上行授权),如果第一时频资源与第二时频资源在时域或时频域中重叠,MAC层比较第一时频资源(或第一上行授权)承载或将要承载的物理层信道或信号(这里是第一PUSCH)的优先级和第二时频资源(或第二上行授权)承载或将要承载的物理层信道或信号(这里是第二PUSCH)的优先级,执行以下操作中的至少一种:
如果第二PUSCH的优先级高于第一PUSCH的优先级,则在MAC层,可以对第二时频资源(或第二上行授权)进行相关的操作,并指示物理层根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级高于或等于(或不低于)第一PUSCH的优先级,则在MAC层,可以对第二时频资源(或第二上行授权)进行相关的操作,并指示物理层根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级等于第一PUSCH的优先级,则在MAC层,可以对第二时频资源(或第二上行授权)进行相关的操作,并指示物理层根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级低于第一PUSCH的优先级,则在MAC层,可以不 对第二时频资源(或第二上行授权)进行进一步处理或丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二PUSCH。
在另一个实施例中,在MAC实体中,第二时频资源(或第二上行授权)被传递到HARQ实体(entity),如果第一时频资源与第二时频资源在时域或时频域中重叠,HARQ实体比较第一时频资源(或第一上行授权)与第二时频资源(或第二上行授权)承载或将要承载的物理层信道或信号(这里是第一PUSCH与第二PUSCH)的优先级,执行以下操作中的至少一种:
如果第二PUSCH的优先级高于第一PUSCH的优先级,则HARQ实体根据第二时频资源(或第二上行授权)执行新传或重传相关的操作,并指示HARQ进程根据第二上行授权发送新传或重传数据。HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级高于或等于(即不低于)第一PUSCH的优先级,则HARQ实体根据第二时频资源(或第二上行授权)执行新传或重传相关的操作,并指示HARQ进程根据第二上行授权发送新传或重传数据。HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级等于第一PUSCH的优先级,则HARQ实体根据第二时频资源(或第二上行授权)执行新传或重传相关的操作,并指示HARQ进程根据第二上行授权发送新传或重传数据。HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级低于第一PUSCH的优先级,则HARQ实体不对第二时频资源(或第二上行授权)进行进一步处理或丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二PUSCH。
在另一个实施例中,在MAC实体中,第二时频资源(或第二上行授权)被传递到HARQ实体(entity),如果第一时频资源与第二时频资源在时域或时频域中重叠,HARQ实体比较第一时频资源(或第一上行授权)与第二时频资源(或第二上行授权)承载或将要承载的物理层信道或信号(这里是第一PUSCH与第二PUSCH)的优先级,执行以下操作中的至少一种:
如果第二PUSCH的优先级高于第一PUSCH的优先级,或者如果第二PUSCH的优先级高于或等于(即不低于)第一PUSCH的优先级,或者如果第二PUSCH的优 先级等于第一PUSCH的优先级,则HARQ实体根据第二时频资源(或第二上行授权)执行新传或重传相关的操作。
在第二时频资源(或第二上行授权)对应新传的情况下,对第二时频资源(或第二上行授权)选择满足逻辑信道优先级处理(Logical Channel Prioritization,LCP)映射限制的逻辑信道,如果这些逻辑信道都没有数据等待发送或者这些逻辑信道的缓存为0或者这些逻辑信道对应的令牌(Bj)值小于或等于0,则不对第二时频资源(或第二上行授权)进行进一步处理或丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二PUSCH。
在另一个实施例中,在MAC层中,第二时频资源(或第二上行授权)被传递到HARQ实体(entity),HARQ实体对这2个时频资源(或上行授权)分别进行新传或重传相关的操作,如果第一时频资源与第二时频资源在时域或时频域中重叠,HARQ实体比较第一时频资源(或第一上行授权)与第二时频资源(或第二上行授权)承载或将要承载的物理层信道或信号(这里是第一PUSCH与第二PUSCH)的优先级,执行以下操作中的至少一种:
如果第二PUSCH的优先级高于第一PUSCH的优先级,则HARQ实体指示HARQ进程根据第二上行授权发送新传或重传数据。HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级高于或等于(即不低于)第一PUSCH的优先级,则HARQ实体指示HARQ进程根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级等于第一PUSCH的优先级,则HARQ实体指示HARQ进程根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级低于第一PUSCH的优先级,则HARQ实体不指示HARQ进程根据第二上行授权发送新传或重传数据。
在另一个实施例中,第二时频资源(或第二上行授权)被传递到HARQ实体(entity),HARQ实体对这2个时频资源(或上行授权)分别进行新传或重传相关的操作,并分别指示HARQ进程对2个时频资源(或上行授权)进行新传或重传。在HARQ进程处理中,如果第一时频资源与第二时频资源在时域或时频域中重叠,HARQ进程比较第一时频资源(或第一上行授权)与第二时频资源(或第二上行授权)承载或将要承载的物理层信道或信号(这里是第一PUSCH与第二PUSCH)的优先 级,执行以下操作中的至少一种:
如果第二PUSCH的优先级高于第一PUSCH的优先级,则HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级高于或等于(即不低于)第一PUSCH的时频资源的优先级,则HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级等于第一PUSCH的优先级,则HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果第二PUSCH的优先级低于第一PUSCH的优先级,则HARQ进程不指示物理层根据第二上行授权发送新传或重传数据。
在一些实施例中,第一时频资源和第二时频资源都是SR的资源,也即承载或将要承载SR,例如使用PUCCH资源承载SR。
网络设备通过RRC信令对每个SR资源配置(SR resource configuration)配置SR优先级,即对每个SR资源(可以是PUCCH资源)配置其承载或将要承载的SR的SR优先级。终端设备指示(instruct)物理层在SR1资源配置的一个有效PUCCH资源1上发送该SR1,之后终端设备又触发了SR2。SR1资源配置对应的PUCCH资源1与SR2资源配置对应的PUCCH资源2在时域或时频域至少部分重叠,终端设备在MAC层比较SR2资源配置对应的SR优先级和SR1资源配置对应的SR优先级,执行以下操作中的至少一种:
如果SR2资源配置对应的SR优先级高于SR1资源配置对应的SR优先级,则在MAC层,可以指示物理层在SR2资源配置的一个有效PUCCH资源2上发送该SR2。
如果SR2资源配置对应的SR优先级高于或等于(或不低于)SR1资源配置对应的SR优先级,则在MAC层,可以指示物理层在SR2资源配置的一个有效PUCCH资源2上发送该SR2。
如果SR2资源配置对应的SR优先级等于SR1资源配置对应的SR优先级,则在MAC层,可以指示物理层在SR2资源配置的一个有效PUCCH资源2上发送该SR2。
如果SR2资源配置对应的SR优先级小于SR1资源配置对应的SR优先级,则在MAC层,可以不对SR2进行进一步处理或取消SR2或丢弃SR2。
在一些实施例中,第一时频资源和第二时频资源分别为SR的资源(即PUCCH资源)和PUSCH的资源,例如:第一时频资源是SR的资源,第二时频资源是PUSCH 的资源;或者,第一时频资源是PUSCH的资源,第二时频资源是SR的资源。
网络设备在DCI中指示或者通过RRC信令配置PUSCH的时频资源及PUSCH的优先级,网络设备通过RRC信令对每个SR资源配置(SR resource configuration)配置SR优先级。SR资源配置对应的PUCCH资源和PUSCH的资源在时域或时频域至少部分重叠,终端设备在MAC层比较PUSCH的优先级和SR优先级,执行以下操作中的至少一种:
对于第一时频资源为PUSCH的资源,第二时频资源为SR的资源的情况:
如果SR优先级高于PUSCH的优先级,则在MAC层,可以指示物理层在SR2资源配置的一个有效PUCCH资源2上发送该SR2。
如果SR优先级高于或等于(不低于)PUSCH的优先级,则在MAC层,可以指示物理层在SR2资源配置的一个有效PUCCH资源2上发送该SR2。
如果SR优先级等于PUSCH的优先级,则在MAC层,可以指示物理层在SR2资源配置的一个有效PUCCH资源2上发送该SR2。
如果SR优先级小于PUSCH优先级,则在MAC层,可以不对SR2进行进一步处理或取消SR2或丢弃SR2。
对于第一时频资源为SR的资源,第二时频资源为PUSCH的资源的情况:
如果PUSCH的优先级高于SR优先级,则在MAC层,可以对第二时频资源(或第二上行授权)进行相关的操作,并指示物理层根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级高于或等于(或不低于)SR优先级,则在MAC层,可以对第二时频资源(或第二上行授权)进行相关的操作,并指示物理层根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级等于SR优先级,则在MAC层,可以对第二时频资源(或第二上行授权)进行相关的操作,并指示物理层根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级低于SR优先级,则在MAC层,可以不对第二时频资源(或第二上行授权)进行进一步处理或丢弃第二时频资源,或者不指示物理层发送第二时频资源上的PUSCH。
或者,终端设备也可以执行以下操作的至少一种:
如果PUSCH的优先级高于SR优先级,则HARQ实体根据第二时频资源(或第二上行授权)执行新传或重传的相关操作,并指示HARQ进程根据第二上行授权发送新传或重传数据。HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级高于或等于(即不低于)SR优先级,则HARQ实体根据第二时频资源(或第二上行授权)执行新传或重传的相关操作,并指示HARQ进程根据第二上行授权发送新传或重传数据。HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级等于SR优先级,则HARQ实体根据第二时频资源(或第二上行授权)执行新传或重传的相关操作,并指示HARQ进程根据第二上行授权发送新传或重传数据。HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级低于SR优先级,则HARQ实体不对第二时频资源(或第二上行授权)进行进一步处理或丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。
或者终端设备也可以执行以下操作的至少一种:
如果PUSCH的优先级高于SR优先级,或者如果PUSCH的优先级高于或等于(即不低于)SR优先级,或者如果PUSCH的优先级等于SR优先级,则HARQ实体根据第二时频资源(或第二上行授权)执行新传或重传相关的操作。
在第二时频资源(或第二上行授权)对应新传的情况下,对第二时频资源(或第二上行授权)选择满足逻辑信道优先级处理(Logical Channel Prioritization,LCP)映射限制的逻辑信道,如果这些逻辑信道都没有数据等待发送或者这些逻辑信道的缓存为0或者这些逻辑信道对应的令牌(Bj)值小于或等于0,则不对第二时频资源(或第二上行授权)进行进一步处理或丢弃第二时频资源,或者不指示物理层发送第二时频资源上的PUSCH。
或者,终端设备也可以执行以下操作的至少一种:
如果PUSCH的优先级高于SR优先级,则HARQ实体指示HARQ进程根据第二上行授权发送新传或重传数据。HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级高于或等于(即不低于)SR优先级,则HARQ实体指示HARQ进程根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级等于SR优先级,则HARQ实体指示HARQ进程根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级低于SR优先级,则HARQ实体不指示HARQ进程根据第二上行授权发送新传或重传数据,或者不指示物理层发送第二时频资源上的PUSCH。
或者,终端设备也可以执行以下操作的至少一种:
如果PUSCH的优先级高于SR优先级,则HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级高于或等于(即不低于)SR优先级,则HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级等于SR优先级,则HARQ进程指示物理层根据第二上行授权发送新传或重传数据。
如果PUSCH的优先级低于SR优先级,则HARQ进程不指示物理层根据第二上行授权发送新传或重传数据,或者不指示物理层发送第二时频资源上的PUSCH。
图3是本申请实施例的上行信号的发送方法的另一示意图,如图3所示,该方法包括:
301,终端设备在MAC层确定第一时频资源与第二时频资源在时域上或者时频域上至少部分重叠(overlap);
302,所述终端设备在所述MAC层比较所述第一时频资源的特征和所述第二时频资源的特征;以及
303,所述终端设备从所述MAC层向所述物理层指示在所述第一时频资源发送第一上行信号和/或在所述第二时频资源发送第二上行信号,或者指示在所述第一时频资源或所述第二时频资源发送与所述第一上行信号和所述第二上行信号相关的第三上行信号。
在本申请实施例中,MAC层在出现了第一上行信号和第二上行信号(还没有生成MAC PDU)并且对应的第一时频资源和第二时频资源冲突的情况下,比较第一时频资源的特征和第二时频资源的特征;并根据比较结果确定发送第一上行信号还是发送第二上行信号,还是发送与该第一上行信号和第二上行信号相关的第三上行信号。其中,所述冲突可以是第一时频资源与所述第二时频资源在时域上或者时频域上至少部分重叠(overlap)。
值得注意的是,以上附图3仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其它的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,例如301和302的执行顺序可以互换,而不仅限于上述附图3的记载。
在一些实施例中,终端设备可以在物理层在第一时频资源发送第一上行信号。
在一些实施例中,终端设备可以在物理层在第一时频资源发送第三上行信号。
在一些实施例中,终端设备可以在物理层在第二时频资源发送第二上行信号。
在一些实施例中,终端设备可以在物理层在第二时频资源发送第三上行信号。
在本申请实施例中,301和302的实施与图2的实施例的202和203的实施相同,并且,第一时频资源和第二时频资源的类型、特征以及比较方式均与前面的各个实施例相同或类似,此处不再赘述。
例如,第一时频资源和第二时频资源都承载或将要承载PUSCH。例如第一时频资源和第二时频资源都是动态调度的或从RAR中收到的上行资源或上行授权;或者第一时频资源为动态调度的或从RAR中收到的上行资源或上行授权,第二时频资源为配置的上行资源或上行授权(例如configured grant);或者第一时频资源为配置的上行资源或上行授权(例如configured grant),第二时频资源为动态调度的或从RAR中收到的上行资源或上行授权;或者第一时频资源和第二时频资源都是配置的上行资源或上行授权(例如configured grant)。
网络设备可以在DCI1中指示或者通过RRC信令配置第一时频资源(或第一上行授权)及其承载或将要承载的物理信道或信号的优先级,例如第一PUSCH的时频资源及第一PUSCH的优先级,在DCI2中指示或者通过RRC信令配置第二时频资源(或第二上行授权)及其承载或将要承载的物理信道或信号的优先级,例如第二PUSCH的时频资源及第二PUSCH的优先级,第一时频资源与第二时频资源在时域或时频域中重叠,那么终端设备在MAC层比较第一PUSCH的优先级和第二PUSCH的优先级,执行与前述“第一时频资源和第二时频资源都是PUSCH资源”的情况下的操作相同或类似的操作,此处省略说明。
再例如,第一时频资源和第二时频资源都是SR的资源,也即承载或将要承载SR,例如使用PUCCH资源承载SR。网络设备通过RRC信令对每个SR资源配置(SRresource configuration)配置SR优先级,即对每个SR资源(可以是PUCCH资源) 配置其承载或将要承载的SR的SR优先级。终端设备触发了SR1和SR2。终端设备在MAC层比较SR1资源配置对应的SR优先级和SR2资源配置对应的SR优先级,执行与前述“第一时频资源和第二时频资源都是SR的资源”的情况下的操作相同或类似的操作,此处省略说明。
再例如,第一时频资源和第二时频资源分别是SR的资源(即PUCCH资源)和PUSCH的资源。网络设备在DCI中指示或者通过RRC信令配置PUSCH的时频资源及其PUSCH的优先级,网络设备通过RRC信令对每个SR资源配置(SR resource configuration)配置SR优先级。终端设备在MAC层比较PUSCH的优先级和SR优先级,执行与前述“第一时频资源和第二时频资源分别是SR的资源和PUSCH的资源”的情况下的操作相同或类似的操作,此处省略说明。
根据本申请实施例,终端设备的MAC层可以通过比较时频资源对应的优先级,而进行相应的时频资源上的数据或信号的发送,保证了高优先级时频资源上发送的数据或信号的时延和可靠性。
第二方面的实施例
本申请实施例提供一种上行信号的接收方法,从网络设备侧进行说明。本申请实施例与第一方面的实施例相同的内容不再赘述。
图4是本申请实施例的上行信号的接收方法的一示意图,如图4所示,该方法包括:
401,网络设备向终端设备发送配置信息或指示信息,所述配置信息或指示信息至少被所述终端设备用于比较第一时频资源的特征和第二时频资源的特征;以及
402,所述网络设备接收所述终端设备在所述第一时频资源发送的第一上行信号和/或在所述第二时频资源发送的第二上行信号,或者与所述第一上行信号和所述第二上行信号相关的第三上行信号。
值得注意的是,以上附图4仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其它的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图4的记载。
由上述实施例可知,终端设备的MAC层可以通过比较时频资源对应的优先级, 而进行相应的时频资源上的数据或信号的发送,保证了高优先级时频资源上发送的数据或信号的时延和可靠性。
第三方面的实施例
本申请实施例提供一种上行信号的发送装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。本申请实施例与第一方面的实施例相同的内容不再赘述。
图5是本申请实施例的上行信号的发送装置的一个示意图,如图5所示,上行信号的发送装置500包括:
指示单元501,其从介质访问控制(MAC)层向物理层(PHY)指示在第一时频资源发送第一上行信号;
确定单元502,其在所述MAC层确定第二时频资源与所述第一时频资源在时域上或者时频域上至少部分重叠(overlap);以及
比较单元503,其在所述MAC层比较所述第一时频资源的特征(metric)和所述第二时频资源的特征(metric)。
在一些实施例中,如图5所示,上行信号的发送装置500还包括:
发送单元504,其在物理层在所述第二时频资源发送所述第二上行信号,和/或,在物理层在所述第一时频资源发送所述第一上行信号。
在一些实施例中,上述特征为下面的至少一个:时频资源的优先级(priority);时频资源承载或将要承载的物理层信道或信号优先级(priority);时频资源对应的终端处理能力(capability);时频资源的持续时间(duration);时频资源对应的可靠性水平(level)。
下面以上述特征为时频资源的优先级为例进行说明。
在一些实施例中,第二时频资源的优先级高于第一时频资源的优先级,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的优先级高于或等于(也即不低于)第一时频资源的优先级,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源 发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的优先级等于第一时频资源的优先级,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的优先级不低于第一时频资源的优先级,指示单元501从终端设备的MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的优先级低于第一时频资源的优先级,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源承载或将要承载的物理层信道或信号优先级为例进行说明。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级高于第一时频资源承载的物理层信道或信号优先级,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级高于或等于(也即不低于)第一时频资源承载的物理层信道或信号优先级,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级等于第一时频资源承载的物理层信道或信号优先级,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源承载的物理层信道或信号优先级不低于第一时频资源承载的物理层信道或信号优先级,指示单元501从终端设备的MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务 的要求。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级低于第一时频资源承载的物理层信道或信号优先级,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源对应的终端处理能力水平为例进行说明。
在一些实施例中,第二时频资源的终端处理能力水平高于第一时频资源的终端处理能力水平,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的终端处理能力水平高于或等于(也即不低于)第一时频资源的终端处理能力水平,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的终端处理能力水平等于第一时频资源的终端处理能力水平,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的终端处理能力水平不低于第一时频资源的终端处理能力水平,指示单元501从终端设备的MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的终端处理能力水平低于第一时频资源的终端处理能力水平,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源的持续时间为例进行说明。
在一些实施例中,第二时频资源的持续时间低于第一时频资源的持续时间,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源 发送第二上行信号。
在一些实施例中,第二时频资源的持续时间低于或等于(也即不高于)第一时频资源的持续时间,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的持续时间等于第一时频资源的持续时间,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的持续时间不高于第一时频资源的持续时间,指示单元501从终端设备的MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的持续时间高于第一时频资源的持续时间,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源的可靠性水平为例进行说明。
在一些实施例中,第二时频资源的可靠性水平高于第一时频资源的可靠性水平,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的可靠性水平高于或等于(也即不低于)第一时频资源的可靠性水平,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的可靠性水平等于第一时频资源的可靠性水平,指示单元501从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元504在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的可靠性水平不低于第一时频资源的可靠性水平,指示单元501从终端设备的MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的可靠性水平低于第一时频资源的可靠性水平,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
在上面的实施例中,如图5所示,该装置500还可以包括:选择单元505,在第二时频资源(或第二上行授权)对应新传的情况下,选择单元505对第二时频资源(或第二上行授权)选择满足逻辑信道优先级处理(Logical Channel Prioritization,LCP)映射限制的逻辑信道,如果这些逻辑信道都没有数据等待发送或者这些逻辑信道的缓存为0或者这些逻辑信道对应的令牌(Bj)值小于或等于0,则指示单元501不对第二时频资源(或第二上行授权)进行进一步处理或丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。
图6是本申请实施例的上行信号的发送装置的另一个示意图,如图6所示,上行信号的发送装置600包括:
确定单元601,其在MAC层确定第一时频资源与第二时频资源在时域上或者时频域上至少部分重叠(overlap);
比较单元602,其在所述MAC层比较所述第一时频资源的特征和所述第二时频资源的特征;以及
指示单元603,其从所述MAC层向所述物理层指示在所述第一时频资源发送第一上行信号和/或在所述第二时频资源发送第二上行信号,或者指示在所述第一时频资源或所述第二时频资源发送与所述第一上行信号和所述第二上行信号相关的第三上行信号。
在一些实施例中,如图6所示,上行信号的发送装置600还包括:
发送单元604,其在物理层在所述第一时频资源发送所述第一上行信号和/或在所述第二时频资源发送所述第二上行信号,或者在所述第一时频资源或所述第二时频资源发送与所述第一上行信号和所述第二上行信号相关的第三上行信号。
在一些实施例中,上述特征为下面的至少一个:时频资源的优先级(priority); 时频资源承载或将要承载的物理层信道或信号优先级(priority);时频资源对应的终端处理能力(capability);时频资源的持续时间(duration);时频资源对应的可靠性水平(level)。
下面以上述特征为时频资源的优先级为例进行说明。
在一些实施例中,第二时频资源的优先级高于第一时频资源的优先级,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的优先级高于或等于(也即不低于)第一时频资源的优先级,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的优先级等于第一时频资源的优先级,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的优先级不低于第一时频资源的优先级,指示单元603从终端设备的MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的优先级低于第一时频资源的优先级,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源承载或将要承载的物理层信道或信号优先级为例进行说明。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级高于第一时频资源承载的物理层信道或信号优先级,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级高于或等于(也 即不低于)第一时频资源承载的物理层信道或信号优先级,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级等于第一时频资源承载的物理层信道或信号优先级,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源承载的物理层信道或信号优先级不低于第一时频资源承载的物理层信道或信号优先级,指示单元603从终端设备的MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源承载的物理层信道或信号优先级低于第一时频资源承载的物理层信道或信号优先级,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源对应的终端处理能力水平为例进行说明。
在一些实施例中,第二时频资源的终端处理能力水平高于第一时频资源的终端处理能力水平,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的终端处理能力水平高于或等于(也即不低于)第一时频资源的终端处理能力水平,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的终端处理能力水平等于第一时频资源的终端处理能力水平,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的终端处理能力水平不低于第一时频资源的终端 处理能力水平,指示单元603从终端设备的MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的终端处理能力水平低于第一时频资源的终端处理能力水平,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源的持续时间为例进行说明。
在一些实施例中,第二时频资源的持续时间低于第一时频资源的持续时间,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的持续时间低于或等于(也即不高于)第一时频资源的持续时间,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的持续时间等于第一时频资源的持续时间,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的持续时间不高于第一时频资源的持续时间,指示单元603从终端设备的MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的持续时间高于第一时频资源的持续时间,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
下面以上述特征为时频资源的可靠性水平为例进行说明。
在一些实施例中,第二时频资源的可靠性水平高于第一时频资源的可靠性水平,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行 信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的可靠性水平高于或等于(也即不低于)第一时频资源的可靠性水平,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在一些实施例中,第二时频资源的可靠性水平等于第一时频资源的可靠性水平,指示单元603从终端设备的MAC层向物理层至少指示在第二时频资源发送第二上行信号。进一步的,发送单元604在终端设备的物理层根据MAC层的指示,在第二时频资源发送第二上行信号。
在前述实施例中,第二时频资源的可靠性水平不低于第一时频资源的可靠性水平,指示单元603从终端设备的MAC层向物理层指示在第二时频资源发送第二上行信号,由此,可以在一定程度上满足高优先级业务的要求。
在一些实施例中,第二时频资源的可靠性水平低于第一时频资源的可靠性水平,终端设备在MAC层不对第二时频资源进行处理,或者丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。由此,保证了第一上行信号的传输的可靠性。
在上面的实施例中,如图6所示,该装置600还可以包括:选择单元605,在第二时频资源(或第二上行授权)对应新传的情况下,选择单元605对第二时频资源(或第二上行授权)选择满足逻辑信道优先级处理(Logical Channel Prioritization,LCP)映射限制的逻辑信道,如果这些逻辑信道都没有数据等待发送或者这些逻辑信道的缓存为0或者这些逻辑信道对应的令牌(Bj)值小于或等于0,则指示单元603不对第二时频资源(或第二上行授权)进行进一步处理或丢弃第二时频资源,或者不指示物理层发送第二时频资源上的第二上行信号。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。上行信号的发送装置500或600还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图5、6中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技 术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备的MAC层可以通过比较时频资源对应的优先级,而进行相应的时频资源上的数据或信号的发送,保证了高优先级时频资源上发送的数据或信号的时延和可靠性。
第四方面的实施例
本申请实施例提供一种上行信号的接收装置。该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件。本申请实施例与第一方面至第三方面的实施例相同的内容不再赘述。
图7是本申请实施例的上行信号的接收装置的一个示意图,如图7所示,上行信号的接收装置700包括:
发送单元701,其向终端设备发送配置信息或指示信息,所述配置信息或指示信息至少被所述终端设备用于比较第一时频资源的特征和第二时频资源的特征;以及
接收单元702,其接收所述终端设备在所述第一时频资源发送的第一上行信号和/或在所述第二时频资源发送的第二上行信号,或者与所述第一上行信号和所述第二上行信号相关的第三上行信号。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。上行信号的接收装置700还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图7中仅示例性示出各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施例并不对此进行限制。
由上述实施例可知,终端设备的MAC层可以通过比较时频资源对应的优先级,而进行相应的时频资源上的数据或信号的发送,保证了高优先级时频资源上发送的数 据或信号的时延和可靠性。
第五方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一方面至第四方面的实施例相同的内容不再赘述。
在一些实施例中,通信系统100可以包括:
终端设备102,其从介质访问控制层向物理层指示在第一时频资源发送第一上行信号;在所述介质访问控制层确定第二时频资源与所述第一时频资源在时域上或者时频域上至少部分重叠;以及在所述MAC层比较所述第一时频资源的特征(metric)和所述第二时频资源的特征(metric);
网络设备101,其接收所述第一上行信号和/或与所述第二时频资源相关的第二上行信号。
在一些实施例中,通信系统100可以包括:
终端设备102,其在介质访问控制层确定第一时频资源与第二时频资源在时域上或者时频域上至少部分重叠;在所述介质访问控制层比较所述第一时频资源的特征和所述第二时频资源的特征;以及从所述MAC层向所述物理层指示在所述第一时频资源发送第一上行信号和/或在所述第二时频资源发送第二上行信号,或者指示在所述第一时频资源或所述第二时频资源发送与所述第一上行信号和所述第二上行信号相关的第三上行信号;
网络设备101,其接收所述第一上行信号和/或所述第二上行信号,或者所述第三上行信号。
本申请实施例还提供一种网络设备,例如可以是基站(gNB),但本申请不限于此,还可以是其它的网络设备。
图8是本申请实施例的网络设备的构成示意图。如图8所示,网络设备800可以包括:处理器810(例如中央处理器CPU)和存储器820;存储器820耦合到处理器810。其中该存储器820可存储各种数据;此外还存储信息处理的程序830,并且在处理器810的控制下执行该程序830。
例如,处理器810可以被配置为执行程序而实现如第二方面的实施例所述的上行信号的接收方法。例如,处理器810可以被配置为进行如下的控制:向终端设备发送 配置信息或指示信息,所述配置信息或指示信息至少被所述终端设备用于比较第一时频资源的特征与第二时频资源的特征;以及接收所述终端设备在所述第一时频资源发送的第一上行信号和/或在所述第二时频资源发送的第二上行信号,或者与所述第一上行信号和所述第二上行信号相关的第三上行信号。
此外,如图8所示,网络设备800还可以包括:收发机840和天线850等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备800也并不是必须要包括图8中所示的所有部件;此外,网络设备800还可以包括图8中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,例如可以是UE,但本申请不限于此,还可以是其它的设备。
图9是本申请实施例的终端设备的示意图。如图9所示,该终端设备900可以包括处理器910和存储器920;存储器920存储有数据和程序,并耦合到处理器910。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
例如,处理器910可以被配置为执行程序而实现如第一方面的实施例所述的上行信号的发送方法。例如,处理器910可以被配置为进行如下的控制:从介质访问控制(MAC)层向物理层(PHY)指示在第一时频资源发送第一上行信号;在所述MAC层确定第二时频资源与所述第一时频资源在时域上或者时频域上至少部分重叠(overlap);以及在所述MAC层比较所述第一时频资源的特征(metric)和所述第二时频资源的特征(metric)。
再例如,处理器910可以被配置为进行如下的控制:在MAC层确定第一时频资源与第二时频资源在时域上或者时频域上至少部分重叠(overlap);在所述MAC层比较所述第一时频资源的特征和所述第二时频资源的特征;以及从所述MAC层向所述物理层指示在所述第一时频资源发送第一上行信号和/或在所述第二时频资源发送第二上行信号,或者指示在所述第一时频资源或所述第二时频资源发送与所述第一上行信号和所述第二上行信号相关的第三上行信号。
如图9所示,该终端设备900还可以包括:通信模块930、输入单元940、显示器950、电源960。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备900也并不是必须要包括图9中所示的所有部件,上述部件并不是 必需的;此外,终端设备900还可以包括图9中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一方面的实施例所述的上行信号的发送方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一方面的实施例所述的上行信号的发送方法。
本申请实施例还提供一种计算机程序,其中当在网络设备中执行所述程序时,所述程序使得所述网络设备执行第二方面的实施例所述的上行信号的接收方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得网络设备执行第二方面的实施例所述的上行信号的接收方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的至少一个和/或功能框图的至少一个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的至少一个和/或功能方框的至少一个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或 者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的至少一个和/或功能方框的至少一个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的至少一个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1、一种上行信号的发送方法,包括:
终端设备从介质访问控制(MAC)层向物理层(PHY)指示在第一时频资源发送第一上行信号;
所述终端设备在所述MAC层确定第二时频资源与所述第一时频资源在时域上或者时频域上至少部分重叠(overlap);以及
所述终端设备在所述MAC层比较所述第一时频资源的特征(metric)和所述第二时频资源的特征(metric)。
附记2、根据附记1所述的方法,其中,所述特征为下面的至少一个:
时频资源的优先级(priority);
时频资源承载或将要承载的物理层信道或信号的优先级(priority);
时频资源对应的终端处理能力(capability);
时频资源的持续时间(duration);
时频资源对应的可靠性水平(level)。
附记3、根据附记1或2所述的方法,其中,
所述特征为时频资源的优先级,所述第二时频资源优先级高于所述第一时频资源的优先级,或者,
所述特征为时频资源承载或将要承载的物理层信道或信号的优先级,所述第二时频资源承载的物理层信道或信号优先级高于所述第一时频资源承载的物理层信道或信号优先级,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第 二时频资源发送第二上行信号。
附记4、根据附记1或2所述的方法,其中,
所述特征为时频资源的优先级,所述第二时频资源优先级高于或等于所述第一时频资源优先级,或者,
所述特征为时频资源承载或将要承载的物理层信道或信号的优先级,所述第二时频资源承载的物理层信道或信号优先级高于或等于所述第一时频资源承载的物理层信道或信号优先级,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第二时频资源发送第二上行信号。
附记5、根据附记1或2所述的方法,其中,
所述特征为时频资源的优先级,所述第二时频资源优先级等于所述第一时频资源优先级,或者,
所述特征为时频资源承载或将要承载的物理层信道或信号的优先级,所述第二时频资源承载的物理层信道或信号优先级等于所述第一时频资源承载的物理层信道或信号优先级,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第二时频资源发送第二上行信号。
附记6、根据附记1或2所述的方法,其中,
所述特征为时频资源的优先级,所述第二时频资源的优先级低于所述第一时频资源优先级,或者,
所述特征为时频资源承载或将要承载的物理层信道或信号的优先级,所述第二时频资源承载的物理层信道或信号优先级低于所述第一时频资源承载的物理层信道或信号优先级,
所述方法还包括:所述终端设备在所述MAC层不对所述第二时频资源进行处理或者丢弃所述第二时频资源。
附记7、根据附记1或2所述的方法,其中,
所述特征为时频资源对应的终端处理能力水平,所述第二时频资源的终端处理能力水平高于所述第一时频资源的终端处理能力水平,或者
所述特征为时频资源的持续时间,所述第二时频资源的持续时间低于所述第一时 频资源的持续时间,或者
所述特征为时频资源的可靠性水平,所述第二时频资源的可靠性水平高于所述第一时频资源的可靠性水平,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第二时频资源发送第二上行信号。
附记8、根据附记1或2所述的方法,其中,
所述特征为时频资源对应的终端处理能力水平,所述第二时频资源的终端处理能力水平高于或等于所述第一时频资源的终端处理能力水平,或者
所述特征为时频资源的持续时间,所述第二时频资源的持续时间低于或等于所述第一时频资源的持续时间,或者
所述特征为时频资源的可靠性水平,所述第二时频资源的可靠性水平高于或等于所述第一时频资源的可靠性水平,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第二时频资源发送第二上行信号。
附记9、根据附记1或2所述的方法,其中,
所述特征为时频资源对应的终端处理能力水平,所述第二时频资源的终端处理能力水平等于所述第一时频资源的终端处理能力水平,或者
所述特征为时频资源的持续时间,所述第二时频资源的持续时间等于所述第一时频资源的持续时间,或者
所述特征为时频资源的可靠性水平,所述第二时频资源的可靠性水平等于所述第一时频资源的可靠性水平,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第二时频资源发送第二上行信号。
附记10、根据附记1或2所述的方法,其中,
所述特征为时频资源对应的终端处理能力水平,所述第二时频资源的终端处理能力水平低于所述第一时频资源的终端处理能力水平,或者
所述特征为时频资源的持续时间,所述第二时频资源的持续时间高于所述第一时频资源的持续时间,或者
所述特征为时频资源的可靠性水平,所述第二时频资源的可靠性水平低于所述第 一时频资源的可靠性水平,
所述方法还包括:所述终端设备从所述MAC层不对所述第二时频资源进行处理或者丢弃所述第二时频资源。
附记11、根据附记1至10任一项所述的方法,其中,所述方法还包括:
所述终端设备在所述物理层在所述第二时频资源发送所述第二上行信号。
附记12、根据附记1至10任一项所述的方法,其中,所述方法还包括:
所述终端设备在所述物理层在所述第一时频资源发送所述第一上行信号。
附记13、根据附记1至10任一项所述的方法,其中,所述第一时频资源和所述第二时频资源都是物理上行共享信道(PUSCH)的资源。
附记14、根据附记1至10任一项所述的方法,其中,所述第一时频资源和所述第二时频资源都是调度请求(SR)的资源。
附记15、根据附记1至10任一项所述的方法,其中,所述第一时频资源是调度请求(SR)的资源,所述第二时频资源是物理上行共享信道(PUSCH)的资源。
附记16、根据附记1至10任一项所述的方法,其中,所述第一时频资源是物理上行共享信道(PUSCH)的资源,所述第二时频资源是调度请求(SR)的资源。
附记17、根据附记1至10任一项所述的方法,其中,第二时频资源对应新传,所述方法还包括:对第二时频资源选择满足逻辑信道优先级处理映射限制的逻辑信道,
如果所述逻辑信道没有数据等待发送或者所述逻辑信道的缓存为0或者所述逻辑信道对应的令牌值小于或等于0,则所述终端设备不对第二时频资源进行进一步处理或丢弃第二时频资源,或者不指示物理层发送所述第二时频资源对应的第二上行信号。
附记18、一种上行信号的发送方法,包括:
终端设备在MAC层确定第一时频资源与第二时频资源在时域上或者时频域上至少部分重叠(overlap);
所述终端设备在所述MAC层比较所述第一时频资源的特征和所述第二时频资源的特征;以及
所述终端设备从所述MAC层向所述物理层指示在所述第一时频资源发送第一上行信号和/或在所述第二时频资源发送第二上行信号,或者指示在所述第一时频资源或所述第二时频资源发送与所述第一上行信号和所述第二上行信号相关的第三上行 信号。
附记19、根据附记18所述的方法,其中,所述特征为下面的至少一个:
时频资源的优先级(priority);
时频资源承载或将要承载的物理层信道或信号优先级(priority);
时频资源对应的终端处理能力(capability);
时频资源的持续时间(duration);
时频资源对应的可靠性水平(level)。
附记20、根据附记18或19所述的方法,其中,
所述特征为时频资源的优先级,所述第二时频资源的物理层优先级高于所述第一时频资源的物理层优先级,或者
所述特征为时频资源承载或将要承载的物理层信道或信号优先级,所述第二时频资源承载的物理层信道或信号优先级高于所述第一时频资源承载的物理层信道或信号优先级,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第二时频资源发送所述第二上行信号。
附记21、根据附记18或19所述的方法,其中,
所述特征为时频资源的优先级,所述第二时频资源的物理层优先级高于或等于所述第一时频资源的物理层优先级,或者,
所述特征为时频资源承载或将要承载的物理层信道或信号优先级,所述第二时频资源承载的物理层信道或信号优先级高于或等于所述第一时频资源承载的物理层信道或信号优先级,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第二时频资源发送所述第二上行信号。
附记22、根据附记18或19所述的方法,其中,
所述特征为时频资源的优先级,所述第二时频资源的物理层优先级等于所述第一时频资源的物理层优先级,或者,
所述特征为时频资源承载或将要承载的物理层信道或信号优先级,所述第二时频资源承载的物理层信道或信号优先级等于所述第一时频资源承载的物理层信道或信号优先级,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第二时频资源发送所述第二上行信号。
附记23、根据附记18或19所述的方法,其中,
所述特征为时频资源的优先级,所述第二时频资源的物理层优先级低于所述第一时频资源的物理层优先级,或者,
所述特征为时频资源承载或将要承载的物理层信道或信号优先级,所述第二时频资源承载的物理层信道或信号优先级低于所述第一时频资源承载的物理层信道或信号优先级,
所述方法还包括:所述终端设备在所述MAC层不对所述第二时频资源进行处理或者丢弃所述第二时频资源。
附记24、根据附记18或19所述的方法,其中,
所述特征为时频资源对应的终端处理能力水平,所述第二时频资源的终端处理能力水平高于所述第一时频资源的终端处理能力水平,或者
所述特征为时频资源的持续时间,所述第二时频资源的持续时间低于所述第一时频资源的持续时间,或者
所述特征为时频资源的可靠性水平,所述第二时频资源的可靠性水平高于所述第一时频资源的可靠性水平,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第二时频资源发送所述第二上行信号。
附记25、根据附记18或19所述的方法,其中,
所述特征为时频资源对应的终端处理能力水平,所述第二时频资源的终端处理能力水平高于或等于所述第一时频资源的终端处理能力水平,或者
所述特征为时频资源的持续时间,所述第二时频资源的持续时间低于或等于所述第一时频资源的持续时间,或者
所述特征为时频资源的可靠性水平,所述第二时频资源的可靠性水平高于或等于所述第一时频资源的可靠性水平,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第二时频资源发送所述第二上行信号。
附记26、根据附记18或19所述的方法,其中,
所述特征为时频资源对应的终端处理能力水平,所述第二时频资源的终端处理能力水平等于所述第一时频资源的终端处理能力水平,或者
所述特征为时频资源的持续时间,所述第二时频资源的持续时间等于所述第一时频资源的持续时间,或者
所述特征为时频资源的可靠性水平,所述第二时频资源的可靠性水平等于所述第一时频资源的可靠性水平,
所述方法还包括:所述终端设备从所述MAC层向所述物理层至少指示在所述第二时频资源发送所述第二上行信号。
附记27、根据附记18或19所述的方法,其中,
所述特征为时频资源对应的终端处理能力水平,所述第二时频资源的终端处理能力水平低于所述第一时频资源的终端处理能力水平,或者
所述特征为时频资源的持续时间,所述第二时频资源的持续时间高于所述第一时频资源的持续时间,或者
所述特征为时频资源的可靠性水平,所述第二时频资源的可靠性水平低于所述第一时频资源的可靠性水平,
所述方法还包括:所述终端设备从所述MAC层不对所述第二时频资源进行处理或者丢弃所述第二时频资源。
附记28、根据附记18至附记27任一项所述的方法,其中,所述方法还包括:
所述终端设备在所述物理层在所述第二时频资源发送所述第二上行信号或第三上行信号。
附记29、根据附记18至27任一项所述的方法,其中,所述方法还包括:
所述终端设备在所述物理层在所述第一时频资源发送所述第一上行信号或第三上行信号。
附记30、根据附记18至27任一项所述的方法,其中,所述第一时频资源和所述第二时频资源都是物理上行共享信道(PUSCH)的资源。
附记31、根据附记18至27任一项所述的方法,其中,所述第一时频资源和所述第二时频资源都是调度请求(SR)的资源。
附记32、根据附记18至27任一项所述的方法,其中,所述第一时频资源是调度请求(SR)的资源,所述第二时频资源是物理上行共享信道(PUSCH)的资源。
附记33、根据附记18至27任一项所述的方法,其中,所述第一时频资源是物理上行共享信道(PUSCH)的资源,所述第二时频资源是调度请求(SR)的资源。
附记34、根据附记18至27任一项所述的方法,其中,第二时频资源对应新传,所述方法还包括:对第二时频资源选择满足逻辑信道优先级处理映射限制的逻辑信道,
如果所述逻辑信道没有数据等待发送或者所述逻辑信道的缓存为0或者所述逻辑信道对应的令牌值小于或等于0,则所述终端设备不对第二时频资源进行进一步处理或丢弃第二时频资源,或者不指示物理层发送所述第二时频资源对应的第二上行信号。
附记35、一种上行信号的接收方法,包括:
网络设备向终端设备发送配置信息或指示信息,所述配置信息或指示信息至少被所述终端设备用于比较第一时频资源的特征与第二时频资源的特征;以及
所述网络设备接收所述终端设备在所述第一时频资源发送的第一上行信号和/或在所述第二时频资源发送的第二上行信号,或者与所述第一上行信号和所述第二上行信号相关的第三上行信号。
附记36、一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至34任一项所述的上行信号的发送方法。
附记37、一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记35所述的上行信号的接收方法。
附记38、一种通信系统,包括:
终端设备,其从介质访问控制(MAC)层向物理层(PHY)指示在第一时频资源发送第一上行信号;所述终端设备在所述MAC层确定第二时频资源与所述第一时频资源在时域上或者时频域上至少部分重叠(overlap);以及所述终端设备在所述MAC层比较所述第一时频资源的特征(metric)和所述第二时频资源的特征(metric);
网络设备,其接收所述第一上行信号和/或与所述第二时频资源相关的第二上行信号。
附记39、一种通信系统,包括:
终端设备,其在MAC层确定第一时频资源与第二时频资源在时域上或者时频域 上至少部分重叠(overlap);所述终端设备在所述MAC层比较所述第一时频资源的特征和所述第二时频资源的特征;以及所述终端设备从所述MAC层向所述物理层指示在所述第一时频资源发送第一上行信号和/或在所述第二时频资源发送第二上行信号,或者指示在所述第一时频资源或所述第二时频资源发送与所述第一上行信号和所述第二上行信号相关的第三上行信号;
网络设备,其接收所述第一上行信号和/或所述第二上行信号,或者所述第三上行信号。

Claims (20)

  1. 一种上行信号的发送装置,配置于终端设备,其中,所述装置包括:
    指示单元,其从介质访问控制(MAC)层向物理层(PHY)指示在第一时频资源发送第一上行信号;
    确定单元,其在所述MAC层确定第二时频资源与所述第一时频资源在时域上或者时频域上至少部分重叠(overlap);以及
    比较单元,其在所述MAC层比较所述第一时频资源的特征(metric)和所述第二时频资源的特征(metric)。
  2. 根据权利要求1所述的装置,其中,所述特征为下面的至少一个:
    时频资源的优先级(priority);
    时频资源承载或将要承载的物理层信道或信号的优先级(priority);
    时频资源对应的终端处理能力(capability);
    时频资源的持续时间(duration);
    时频资源对应的可靠性水平(level)。
  3. 根据权利要求1所述的装置,其中,
    所述特征为时频资源的优先级,所述第二时频资源优先级高于所述第一时频资源的优先级,或者,
    所述特征为时频资源承载或将要承载的物理层信道或信号的优先级,所述第二时频资源承载的物理层信道或信号优先级高于所述第一时频资源承载的物理层信道或信号优先级,
    所述指示单元从所述MAC层向所述物理层至少指示在所述第二时频资源发送第二上行信号。
  4. 根据权利要求1所述的装置,其中,
    所述特征为时频资源的优先级,所述第二时频资源优先级高于或等于所述第一时频资源优先级,或者,
    所述特征为时频资源承载或将要承载的物理层信道或信号的优先级,所述第二时频资源承载的物理层信道或信号优先级高于或等于所述第一时频资源承载的物理层信道或信号优先级,
    所述指示单元从所述MAC层向所述物理层至少指示在所述第二时频资源发送第二上行信号。
  5. 根据权利要求1所述的装置,其中,
    所述特征为时频资源的优先级,所述第二时频资源优先级等于所述第一时频资源优先级,或者,
    所述特征为时频资源承载或将要承载的物理层信道或信号的优先级,所述第二时频资源承载的物理层信道或信号优先级等于所述第一时频资源承载的物理层信道或信号优先级,
    所述指示单元从所述MAC层向所述物理层至少指示在所述第二时频资源发送第二上行信号。
  6. 根据权利要求1所述的装置,其中,
    所述特征为时频资源对应的终端处理能力水平,所述第二时频资源的终端处理能力水平高于或等于所述第一时频资源的终端处理能力水平,或者
    所述特征为时频资源的持续时间,所述第二时频资源的持续时间低于或等于所述第一时频资源的持续时间,或者
    所述特征为时频资源的可靠性水平,所述第二时频资源的可靠性水平高于或等于所述第一时频资源的可靠性水平,
    所述指示单元从所述MAC层向所述物理层至少指示在所述第二时频资源发送第二上行信号。
  7. 根据权利要求1所述的装置,其中,
    所述特征为时频资源对应的终端处理能力水平,所述第二时频资源的终端处理能力水平等于所述第一时频资源的终端处理能力水平,或者
    所述特征为时频资源的持续时间,所述第二时频资源的持续时间等于所述第一时频资源的持续时间,或者
    所述特征为时频资源的可靠性水平,所述第二时频资源的可靠性水平等于所述第一时频资源的可靠性水平,
    所述指示单元从所述MAC层向所述物理层至少指示在所述第二时频资源发送第二上行信号。
  8. 根据权利要求1所述的装置,其中,所述装置还包括:
    发送单元,其在所述物理层在所述第二时频资源发送所述第二上行信号。
  9. 根据权利要求1所述的装置,其中,所述第一时频资源和所述第二时频资源都是物理上行共享信道(PUSCH)的资源。
  10. 根据权利要求1所述的装置,其中,所述第一时频资源和所述第二时频资源都是调度请求(SR)的资源。
  11. 根据权利要求1所述的装置,其中,第二时频资源对应新传,所述装置还包括:选择单元,其对第二时频资源选择满足逻辑信道优先级处理映射限制的逻辑信道,
    如果所述逻辑信道没有数据等待发送或者所述逻辑信道的缓存为0或者所述逻辑信道对应的令牌值小于或等于0,则所述指示单元不对第二时频资源进行进一步处理或丢弃第二时频资源,或者不指示物理层发送所述第二时频资源对应的第二上行信号。
  12. 一种上行信号的发送装置,配置于终端设备,所述装置包括:
    确定单元,其在MAC层确定第一时频资源与第二时频资源在时域上或者时频域上至少部分重叠(overlap);
    比较单元,其在所述MAC层比较所述第一时频资源的特征和所述第二时频资源的特征;以及
    指示单元,其从所述MAC层向所述物理层指示在所述第一时频资源发送第一上行信号和/或在所述第二时频资源发送第二上行信号,或者指示在所述第一时频资源或所述第二时频资源发送与所述第一上行信号和所述第二上行信号相关的第三上行信号。
  13. 根据权利要求12所述的装置,其中,所述特征为下面的至少一个:
    时频资源的优先级(priority);
    时频资源承载或将要承载的物理层信道或信号优先级(priority);
    时频资源对应的终端处理能力(capability);
    时频资源的持续时间(duration);
    时频资源对应的可靠性水平(level)。
  14. 根据权利要求12所述的装置,其中,
    所述特征为时频资源的优先级,所述第二时频资源的物理层优先级高于所述第一时频资源的物理层优先级,或者
    所述特征为时频资源承载或将要承载的物理层信道或信号优先级,所述第二时频资源承载的物理层信道或信号优先级高于所述第一时频资源承载的物理层信道或信号优先级,
    所述指示单元从所述MAC层向所述物理层至少指示在所述第二时频资源发送所述第二上行信号。
  15. 根据权利要求12所述的装置,其中,
    所述特征为时频资源的优先级,所述第二时频资源的物理层优先级高于或等于所述第一时频资源的物理层优先级,或者,
    所述特征为时频资源承载或将要承载的物理层信道或信号优先级,所述第二时频资源承载的物理层信道或信号优先级高于或等于所述第一时频资源承载的物理层信道或信号优先级,
    所述指示单元从所述MAC层向所述物理层至少指示在所述第二时频资源发送所述第二上行信号。
  16. 根据权利要求12所述的装置,其中,
    所述特征为时频资源的优先级,所述第二时频资源的物理层优先级等于所述第一时频资源的物理层优先级,或者,
    所述特征为时频资源承载或将要承载的物理层信道或信号优先级,所述第二时频资源承载的物理层信道或信号优先级等于所述第一时频资源承载的物理层信道或信号优先级,
    所述指示单元从所述MAC层向所述物理层至少指示在所述第二时频资源发送所述第二上行信号。
  17. 根据权利要求12所述的装置,其中,所述第一时频资源和所述第二时频资源都是物理上行共享信道(PUSCH)的资源。
  18. 根据权利要求12所述的装置,其中,所述第一时频资源和所述第二时频资源都是调度请求(SR)的资源。
  19. 根据权利要求12所述的装置,其中,第二时频资源对应新传,所述装置还包括:选择单元,其对第二时频资源选择满足逻辑信道优先级处理映射限制的逻辑信道,
    如果所述逻辑信道都没有数据等待发送或者所述逻辑信道的缓存为0或者所述 逻辑信道对应的令牌值小于或等于0,则所述指示单元不对第二时频资源进行进一步处理或丢弃第二时频资源,或者不指示物理层发送所述第二时频资源对应的第二上行信号。
  20. 一种上行信号的接收装置,配置于网络设备,所述装置包括:
    发送单元,其向终端设备发送配置信息或指示信息,所述配置信息或指示信息至少被所述终端设备用于比较第一时频资源的特征与第二时频资源的特征;以及
    接收单元,其接收所述终端设备在所述第一时频资源发送的第一上行信号和/或在所述第二时频资源发送的第二上行信号,或者与所述第一上行信号和所述第二上行信号相关的第三上行信号。
PCT/CN2019/116422 2019-11-07 2019-11-07 上行信号的发送和接收方法以及装置 WO2021087926A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116422 WO2021087926A1 (zh) 2019-11-07 2019-11-07 上行信号的发送和接收方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116422 WO2021087926A1 (zh) 2019-11-07 2019-11-07 上行信号的发送和接收方法以及装置

Publications (1)

Publication Number Publication Date
WO2021087926A1 true WO2021087926A1 (zh) 2021-05-14

Family

ID=75848759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116422 WO2021087926A1 (zh) 2019-11-07 2019-11-07 上行信号的发送和接收方法以及装置

Country Status (1)

Country Link
WO (1) WO2021087926A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812007A (zh) * 2014-01-28 2015-07-29 索尼公司 在无线通信系统中进行无线通信的方法、基站和用户设备
CN105340347A (zh) * 2013-06-28 2016-02-17 苹果公司 用于提高多载波环境中的无线电链路性能的系统和方法
CN106165515A (zh) * 2014-04-28 2016-11-23 英特尔Ip公司 双连接中的同时调度请求发送
CN108811128A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种功率控制方法及终端设备
CN109121098A (zh) * 2018-08-24 2019-01-01 京东方科技集团股份有限公司 一种分配信道的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105340347A (zh) * 2013-06-28 2016-02-17 苹果公司 用于提高多载波环境中的无线电链路性能的系统和方法
CN104812007A (zh) * 2014-01-28 2015-07-29 索尼公司 在无线通信系统中进行无线通信的方法、基站和用户设备
CN106165515A (zh) * 2014-04-28 2016-11-23 英特尔Ip公司 双连接中的同时调度请求发送
CN108811128A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种功率控制方法及终端设备
CN109121098A (zh) * 2018-08-24 2019-01-01 京东方科技集团股份有限公司 一种分配信道的方法及系统

Similar Documents

Publication Publication Date Title
WO2020087531A1 (zh) 边链路信息的发送和接收方法以及装置
US12089223B2 (en) Signal reception or transmission method and apparatus and system
WO2018227600A1 (zh) 反馈信息的发送和接收方法、装置以及通信系统
WO2021026917A1 (zh) 信号发送方法、装置和系统
WO2022033274A1 (zh) 通信方法、用户设备、网络设备及计算机可读存储介质
JP2016526845A (ja) マルチキャリア環境内における無線リンク性能を向上させるためのシステム及び方法
US20200389277A1 (en) Indication method, network device, and user equipment
TW201507415A (zh) 處理通訊運作的方法及其通訊裝置
WO2021031042A1 (zh) 信号发送和接收方法以及装置
WO2019192153A1 (zh) 一种资源确定方法、指示方法及装置
WO2021056581A1 (zh) 上行信号的发送和接收方法以及装置
US20230024055A1 (en) Method and apparatus for transmitting data and communication system
WO2020252708A1 (zh) 无线通信方法、终端设备和网络设备
WO2021087955A1 (zh) 功率分配方法以及装置
WO2016189916A1 (ja) 基地局
WO2021203392A1 (zh) 边链路传输方法以及装置
WO2018120107A1 (zh) 通信方法、网络设备和终端设备
TWI784764B (zh) 處理混合自動重傳請求重新傳送的裝置
WO2021226972A1 (zh) 边链路反馈信息的发送和接收方法以及装置
WO2021159381A1 (zh) 上行信号处理方法、装置和系统
WO2020156394A1 (zh) 一种反馈方法及装置
WO2021087926A1 (zh) 上行信号的发送和接收方法以及装置
WO2021056419A1 (zh) 边链路资源的预留方法以及装置
WO2020118520A1 (zh) 数据传输的方法和设备
WO2019028775A1 (zh) 反馈信息的发送和接收方法、装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951372

Country of ref document: EP

Kind code of ref document: A1