WO2021087955A1 - 功率分配方法以及装置 - Google Patents

功率分配方法以及装置 Download PDF

Info

Publication number
WO2021087955A1
WO2021087955A1 PCT/CN2019/116614 CN2019116614W WO2021087955A1 WO 2021087955 A1 WO2021087955 A1 WO 2021087955A1 CN 2019116614 W CN2019116614 W CN 2019116614W WO 2021087955 A1 WO2021087955 A1 WO 2021087955A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
side link
physical channel
transmission
priority
Prior art date
Application number
PCT/CN2019/116614
Other languages
English (en)
French (fr)
Inventor
张健
纪鹏宇
李国荣
张磊
王昕�
Original Assignee
富士通株式会社
张健
纪鹏宇
李国荣
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 纪鹏宇, 李国荣, 张磊, 王昕� filed Critical 富士通株式会社
Priority to JP2022525141A priority Critical patent/JP7400964B2/ja
Priority to PCT/CN2019/116614 priority patent/WO2021087955A1/zh
Priority to CN201980101543.3A priority patent/CN114586456A/zh
Publication of WO2021087955A1 publication Critical patent/WO2021087955A1/zh
Priority to US17/731,495 priority patent/US20220256470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links

Definitions

  • the embodiments of the present application relate to the field of communication technology.
  • V2X Vehicle to Everything
  • Uu links including uplink and downlink
  • V2X transmitting terminal equipment communicates with receiving terminal equipment through sidelinks. Communicate directly.
  • New Radio (NR) V2X is an important project of 5G NR. Compared with Long Term Evolution (LTE) V2X, NR V2X needs to support many new scenarios and new services, and it needs to meet higher technical indicators.
  • LTE Long Term Evolution
  • NR V2X defines several physical channels, including physical side link control channel (PSCCH, Physical Sidelink Control Channel), physical side link shared channel (PSSCH, Physical Sidelink Shared Channel), and physical side link feedback channel (PSFCH, Physical Sidelink Feedback Channel is used to carry side link control information (SCI, Sidelink Control Channel), side link data, and side link feedback information (for example, HARQ-ACK).
  • PSCCH Physical Sidelink Control Channel
  • PSSCH physical side link shared channel
  • PSFCH Physical Sidelink Feedback Channel is used to carry side link control information (SCI, Sidelink Control Channel), side link data, and side link feedback information (for example, HARQ-ACK).
  • the SCI is used to schedule the PSSCH, and the SCI will indicate the priority of the PSSCH, which is also the priority of the PSFCH associated with the PSSCH.
  • NR V2X defines two working modes.
  • NR V2X Mode 1 Mode 1
  • the time-frequency resources used by terminal equipment for V2X communication are scheduled and allocated by network equipment (such as base stations) through NR Uu links.
  • NR V2X Mode 2 Mode 2
  • the terminal equipment can Based on the sensing result, the time-frequency resource used for V2X communication is selected autonomously.
  • the terminal device can send the side link HARQ-ACK to the network device. More specifically, the terminal device may carry the side link HARQ-ACK on the physical uplink control channel (PUCCH, Physical Uplink Control Channel) or the physical uplink shared channel (PUSCH, Physical Uplink Shared Channel) to send to the network device, and the side link HARQ-ACK can be multiplexed with Uu information in PUCCH or PUSCH.
  • the network device can know whether time-frequency resources need to be allocated for the side link according to the side link HARQ-ACK.
  • embodiments of the present application provide a power distribution method and device.
  • a power distribution device including:
  • a determining unit that determines whether side link transmission is prioritized over uplink transmission, wherein the side link transmission includes the transmission of side link information carried by the second uplink physical channel and/or the transmission of side link physical channels/signals, so The uplink transmission includes the transmission of uplink information carried by the second uplink physical channel and/or the transmission of the first uplink physical channel/signal that does not carry side link information; wherein, the second uplink physical channel carries at least the side link Path information, the second uplink physical channel, the first uplink physical channel/signal, and the side link physical channel/signal overlap in time; and
  • An allocation unit which prioritizes allocating power to the second uplink physical channel and/or the side link physical channel/signal when the side link transmission is prioritized over the uplink transmission.
  • a power allocation method including:
  • the terminal device determines whether side link transmission is prioritized over uplink transmission, wherein the side link transmission includes the transmission of side link information carried by the second uplink physical channel and/or the transmission of the side link physical channel/signal, and the uplink The transmission includes the transmission of the uplink information carried by the second uplink physical channel and/or the transmission of the first uplink physical channel/signal that does not carry the side link information; wherein the second uplink physical channel carries at least the side link information , The second uplink physical channel, the first uplink physical channel/signal, and the side link physical channel/signal overlap in time; and
  • power is preferentially allocated to the second uplink physical channel and/or the side link physical channel/signal.
  • a communication system including:
  • a terminal device that determines whether side link transmission is prioritized over uplink transmission, wherein the side link transmission includes the transmission of side link information carried by the second uplink physical channel and/or the transmission of side link physical channels/signals, so
  • the uplink transmission includes the transmission of uplink information carried by the second uplink physical channel and/or the transmission of the first uplink physical channel/signal that does not carry side link information; wherein, the second uplink physical channel carries at least the side link Path information, the second uplink physical channel, the first uplink physical channel/signal, and the side link physical channel/signal overlap in time; and sending on the side link takes precedence over the uplink sending In the case of, priority is given to allocating power to the second uplink physical channel and/or the side link physical channel/signal.
  • the terminal device preferentially allocates power to at least the second uplink physical channel that carries side link information when side link transmission is prioritized over uplink transmission. Therefore, when the terminal device feeds back information to the network device, the fairness of power allocation can be ensured, so that power can be preferentially allocated to the physical channel or physical signal with the most urgent or most important demand.
  • Fig. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a power distribution method according to an embodiment of the present application.
  • FIG. 3 is an example diagram of power allocation according to an embodiment of the present application.
  • FIG. 4 is another example diagram of power allocation according to an embodiment of the present application.
  • FIG. 5 is another example diagram of power allocation according to an embodiment of the present application.
  • FIG. 6 is another example diagram of power allocation according to an embodiment of the present application.
  • FIG. 7 is an example diagram of a physical channel and/or signal according to an embodiment of the present application.
  • FIG. 8 is another schematic diagram of a power distribution method according to an embodiment of the present application.
  • FIG. 9 is an example diagram of power allocation according to an embodiment of the present application.
  • FIG. 10 is an example diagram of power priority according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a data multiplexing method according to an embodiment of the present application.
  • FIG. 12 is a diagram of an example of sending a signal according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a power distribution device according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the terms, but they do not indicate the spatial arrangement or chronological order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” can refer to a network that meets any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and 5G , New Radio (NR, New Radio), etc., and/or other currently known or future communication protocols.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • 4.5G 3G
  • 5G New Radio
  • NR, New Radio New Radio
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay), or low-power node (such as femeto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femeto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” (UE, User Equipment) or “Terminal Equipment” (TE, Terminal Equipment or Terminal Device), for example, refers to a device that accesses a communication network through a network device and receives network services.
  • the terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, In-vehicle communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side or “network device side” refers to a side of the network, which may be a certain base station, and may also include one or more network devices as described above.
  • user side or “terminal side” or “terminal device side” refers to a side of a user or terminal, which may be a certain UE, or may include one or more terminal devices as described above.
  • equipment can refer to network equipment or terminal equipment.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating a case where a terminal device and a network device are taken as an example.
  • the communication system 100 may include a network device 101 and terminal devices 102 and 103.
  • FIG. 1 only uses two terminal devices and one network device as an example for description, but the embodiment of the present application is not limited to this.
  • the network device 101 and the terminal devices 102, 103 can perform existing services or future service delivery.
  • these services may include, but are not limited to: enhanced Mobile Broadband (eMBB), large-scale machine type communication (mMTC, massive Machine Type Communication), and high-reliability and low-latency communication (URLLC, Ultra-Reliable and Low). -Latency Communication), etc.
  • FIG. 1 shows that two terminal devices 102 and 103 are both within the coverage of the network device 101, but the application is not limited to this.
  • the two terminal devices 102 and 103 may not be within the coverage area of the network device 101, or one terminal device 102 is within the coverage area of the network device 101 and the other terminal device 103 is outside the coverage area of the network device 101.
  • side link transmission may be performed between the two terminal devices 102 and 103.
  • the two terminal devices 102 and 103 may both perform side link transmission within the coverage area of the network device 101 to implement V2X communication, or both may perform side link transmission outside the coverage area of the network device 101 to implement V2X communication.
  • one terminal device 102 is within the coverage area of the network device 101 and the other terminal device 103 is outside the coverage area of the network device 101 to perform side link transmission to implement V2X communication.
  • the terminal device 102 and/or 103 may be allocated side link resources by the network device (that is, Mode 1 is adopted).
  • the embodiment of the present application can also combine the autonomous selection of side link resources (ie, Mode 2) and the allocation of side link resources by the network device (ie, Mode 1); this embodiment of the present application does not limit this.
  • different uplink carriers may be used to transmit different types of uplink physical channels or uplink physical signals, including physical random access channels (PRACH, Physical Random Access Channel). Access Channel), Physical Uplink Control Channel (PUCCH, Physical Uplink Control Channel), Physical Uplink Shared Channel (PUSCH, Physical Uplink Shared Channel), Sounding Reference Signal (SRS, Sounding Reference Signal), one or more of the following
  • PRACH Physical Random Access Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference Signal
  • the multiple uplink physical channels and/or signals are referred to as the first uplink physical channel/signal.
  • the terminal equipment will allocate power to each physical channel or physical signal in the order of priority from high to low based on the uplink physical channel and/or power allocation priority order defined in the standard, and guarantee the total power Do not exceed the maximum power limit of the terminal device.
  • the terminal device will preferentially allocate power to a physical channel or physical signal with a higher priority, or the device will preferentially transmit a physical channel or physical signal with a higher priority.
  • a terminal device sends a PUCCH carrying Uu HARQ-ACK on carrier 1, and needs to send a PUSCH carrying Uu data on carrier 2 at the same time.
  • the terminal device always preferentially allocates power to PUCCH .
  • NR V2X PUCCH/PUSCH can be used to send sidelink HARQ-ACK.
  • the priority of power allocation should not only depend on the priority of Uu, but the priority of sidelink should also be taken into consideration.
  • the priorities of sidelink and Uu cannot be directly compared, so it is impossible not to compare sidelink HARQ-ACK and Uu HARQ- ACK makes the distinction, and blindly reuses the power allocation priority of NR Uu. For the above situation, reusing the existing NR Uu power allocation priority ranking will lead to unfair power allocation results.
  • a terminal device sends a PUSCH carrying sidelink HARQ-ACK and Uu data on carrier 1, and needs to send a PUCCH carrying Uu CSI on carrier 2 at the same time. If the power allocation priority of NR Uu is reused, only Uu in PUSCH is considered. Data priority, the terminal device will always allocate power for PUCCH first. However, the priority of sidelink HARQ-ACK may be higher than that of Uu, and it is unfair for sidelink to always prioritize Uu.
  • a terminal device sends a PUCCH carrying only sidelink HARQ-ACK on carrier 1, and needs to send a PUSCH carrying Uu data on carrier 2 at the same time.
  • the terminal device will always allocate power for PUCCH first, that is, always prioritize the sidelink HARQ-ACK.
  • the importance (priority) of sidelink HARQ-ACK may be lower than that of PUSCH (for example, PUSCH carries URLLC data).
  • V2X is taken as an example to describe the side link, but the present application is not limited to this, and may also be applicable to side link transmission scenarios other than V2X.
  • side link and “V2X” can be interchanged
  • PSFCH and “side link feedback channel”
  • PSCCH and " Side link control channel” or “side link control information”
  • PSSCH and "side link data channel” or “side link data” can also be interchanged.
  • transmitting or receiving PSSCH can be understood as sending or receiving side link data carried by the PSSCH; sending or receiving PSFCH can be understood as sending or receiving side link feedback information carried by the PSFCH.
  • At least one transmission can be understood as at least one PSSCH/PSCCH transmission or at least one side link data/information transmission, and current transmission can be understood as the current PSSCH/PSCCH transmission or current side link data/information send.
  • the embodiment of the present application provides a power allocation method, which is described from a terminal device.
  • the terminal device (may be called the sending terminal device) can be used as the sender of service data, and send the side link data to one or more other terminal devices (may be called the receiving terminal device) on the side link, and can receive Feedback information of other terminal equipment; in addition, the terminal equipment sends data/information to the network equipment on the Uu link.
  • FIG. 2 is a schematic diagram of a power allocation method according to an embodiment of the present application. As shown in FIG. 2, the method includes:
  • the terminal device determines whether side link transmission is prioritized over uplink transmission, wherein the side link transmission includes the transmission of side link information carried by the second uplink physical channel and/or the transmission of side link physical channels/signals, so The uplink transmission includes the transmission of uplink information carried by the second uplink physical channel and/or the transmission of the first uplink physical channel/signal; and
  • priority is given to allocating power to the second uplink physical channel and/or the side link physical channel/signal.
  • the transmission of the first uplink physical channel/signal (transmission) does not carry side link information
  • the second uplink physical channel carries at least side link information
  • the second uplink physical channel, the first The uplink physical channels/signals and the side link physical channels/signals overlap in time.
  • the first uplink physical channel/signal may include one or more uplink physical channels/signals;
  • the side link physical channel/signal (for example, PSSCH, PSCCH, PSFCH, etc.) may include one or more side Link physical channel/signal.
  • “/” means “and/or”.
  • power is allocated to the second uplink physical channel and/or the side link physical channel/signal according to the power allocation priority of the side link.
  • the second uplink physical channel does not carry uplink information and side link transmission is not prioritized over uplink transmission
  • power is preferentially allocated to the first uplink physical channel/signal.
  • power is allocated to the first uplink physical channel/signal according to the priority of uplink power allocation.
  • the second uplink physical channel when the second uplink physical channel also carries uplink information, and the side link transmission is not prioritized over the uplink transmission, power is preferentially allocated to the second uplink physical channel and/or the first uplink physical channel/signal .
  • power is allocated to the second uplink physical channel and/or the first uplink physical channel/signal according to the priority of uplink power allocation.
  • Fig. 3 is an example diagram of power allocation according to an embodiment of the present application.
  • the terminal equipment needs to perform uplink transmission and side link transmission at the same time.
  • the terminal device sends Uu information and SL (sidelink) information to the base station through the second uplink physical channel (PUCCH or PUSCH), and the Uu2 information and the SL2 information are multiplexed in the same PUCCH or PUSCH.
  • Uu information and SL (sidelink) information to the base station through the second uplink physical channel (PUCCH or PUSCH), and the Uu2 information and the SL2 information are multiplexed in the same PUCCH or PUSCH.
  • the second uplink physical channel may only carry sidelink information, or may carry sidelink information and Uu information at the same time.
  • the embodiment of the present application takes the second uplink physical channel including one PUCCH or PUSCH as an example for description, which can be easily extended to the case where the second uplink physical channel includes multiple PUCCHs or PUSCHs.
  • the terminal device while sending the second uplink physical channel, the terminal device needs to perform uplink transmission, that is, send the first uplink physical channel/signal (Uu1), and simultaneously perform side link transmission, that is, send side link physical Channel/signal (SL3).
  • the first uplink physical channel/signal (Uu1) may be one or more uplink physical channels/signals, and does not carry any sidelink information.
  • Figure 3 takes an uplink physical channel/signal as an example.
  • the side link physical channel/signal (SL3) can be one or more side link physical channels/signals and does not carry any Uu information.
  • Figure 3 takes a side link physical channel/signal as an example. This application is not limited to this.
  • the terminal equipment is divided into two parts: uplink transmission and side link transmission according to Uu and SL. Because the second uplink physical channel PUCCH/PUSCH contains both Uu and SL, the Uu information (Uu2) belongs to the uplink transmission, and the SL information (SL2) Belongs to side link transmission.
  • Uu2 Uu information
  • SL2 SL information
  • the second uplink physical channel PUCCH/PUSCH and side-link physical channels/signals are divided into the SL side, and the SL side (Uu2, SL2, and SL3) has a higher priority than the Uu side (Uu1).
  • the first uplink physical channel/signal has a higher priority, so it will be prioritized for power allocation.
  • the second uplink physical channel PUCCH/PUSCH and the first uplink physical channel/signal are divided into Uu side, Uu side (Uu2, SL2, and Uu1) have a higher priority than the SL side (SL3, side link physical channel/signal), so power will be allocated preferentially.
  • any method can be used, without limitation, for example, using the side-link logical channel priority, uplink logical channel priority, and side-link SCI indicator At least one of the priorities.
  • any SL power allocation method can be used, for example, according to the power allocation priority of the SL, there is no restriction on this; when there is a second uplink physical channel, the Uu in the second uplink physical channel is ignored section.
  • any Uu power allocation method can be used, for example, according to the Uu power allocation priority, there is no restriction on this; when there is a second uplink physical channel, the SL in the second uplink physical channel is ignored section.
  • the second uplink physical channel, the first uplink physical channel/signal, and the side link physical channel/signal can be located on different carriers, or on the same carrier, or one part is on a different carrier, and the other part is on the same carrier. Carrier, there is no restriction on this.
  • Fig. 4 is another example diagram of power allocation according to an embodiment of the present application.
  • the second uplink physical channel only carries sidelink information (SL2).
  • SL2 and SL3 When the side-link transmission takes precedence over the uplink transmission, the second uplink physical channel and the side-link physical channel/signal are divided into the SL side, and the SL side (SL2 and SL3) has a higher ratio than the Uu side (Uu1, the first uplink physical channel/signal). Signal) has a higher priority, so it will be prioritized for power allocation.
  • the second uplink physical channel and the side link physical channel/signal are divided into the SL side, and the Uu side (Uu1, the first uplink physical channel/signal) has a higher ratio than the SL side (SL2). And SL3) higher priority, so it will be prioritized to allocate power.
  • FIG. 5 is another example diagram of power allocation according to an embodiment of the present application, showing a situation when there is no first uplink physical channel/signal.
  • Fig. 6 is another example diagram of power allocation according to an embodiment of the present application, showing a situation when there is no side link physical channel/signal.
  • the terminal device sends the side link information to the network device through the second uplink physical channel on an uplink carrier, where the side link information may be HARQ-ACK and/or CSI, and the second uplink physical channel may Is PUCCH or PUSCH.
  • the terminal device sends the first uplink physical channel and/or signal to the network device on the other one or more uplink carriers, where the first uplink physical channel and/or signal may include PRACH, PUCCH, PUSCH or SRS.
  • the second uplink physical channel is one of the following channels: physical uplink control channel (SL-PUCCH) carrying side link information, physical uplink shared channel (SL-PUSCH) carrying side link information, The physical uplink control channel (SL-UL-PUCCH) that carries side link information and uplink information (Uu information), and the physical uplink shared channel (SL-UL-PUSCH) that carries side link information and uplink information (Uu information).
  • SL-PUCCH physical uplink control channel
  • SL-PUSCH physical uplink shared channel
  • the PUCCH/PUSCH carrying sidelink information is subdivided into the following types:
  • SL-PUCCH PUCCH that only carries side link information.
  • SL-PUSCH PUSCH that only carries side link information.
  • SL-UL-PUCCH PUCCH that carries both side link information and Uu information.
  • the terminal device multiplexes the side link information and the Uu information in the same PUCCH for transmission, where the Uu information includes at least one of Uu HARQ-ACK, Uu CSI, and Uu SR.
  • SL-UL-PUSCH PUSCH that carries both side link information and Uu information.
  • the terminal device multiplexes the side link information and the Uu information in the same PUSCH for transmission, where the Uu information includes at least one of Uu HARQ-ACK, Uu CSI, and Uu data.
  • FIG. 7 is an example diagram of a physical channel and/or signal according to an embodiment of the present application.
  • the PUCCH/PUSCH carrying side link information on one carrier can be called the second uplink physical channel
  • the second uplink physical channel is SL-PUCCH, SL-PUSCH, SL-UL-PUCCH and One of SL-UL-PUSCH.
  • the physical channels and/or signals on the other one or more carriers are referred to as the first uplink physical channel/signal.
  • the first uplink physical channel/signal is called the first set (carrying Uu information but not side link information), then the first set includes PRACH, PUCCH, PUSCH, and SRS. At least one.
  • the second uplink physical channel is SL-UL-PUCCH or SL-UL-PUSCH, the union of the first set and the second uplink physical channel is called the second set (carrying Uu information and side link information) .
  • the uplink physical signal does not carry Uu information in the strict sense, because the uplink physical signal is used for Uu communication, not for sidelink communication, it is also collectively referred to as "carrying Uu information", that is, the meaning of "carrying Uu information" includes uplink
  • the physical channel carries information used for Uu communication and/or uplink physical signals are used for Uu communication.
  • FIG. 8 is another schematic diagram of a power allocation method according to an embodiment of the present application. As shown in FIG. 8, the method includes:
  • the terminal device determines whether the side link transmission of the second uplink physical channel has priority over the uplink transmission in the second set, wherein the second uplink physical channel at least carries side link information, and the first uplink physical channel/signal Bear uplink information;
  • the method includes:
  • the terminal device preferentially allocates power to the second uplink physical channel.
  • the power of the channel and/or signal so that the total power does not exceed the maximum power limit” has the same meaning.
  • “Preferentially allocating power to the second uplink physical channel” also includes sending only the second uplink physical channel without sending (discarding) one or more first uplink physical channels/signals in the first set. In the same way, “prioritly allocate power to the first set” etc. can also be explained similarly.
  • the method further includes:
  • the terminal device determines whether the second uplink physical channel carries uplink information.
  • the method further includes:
  • the terminal device preferentially allocates power to the first uplink physical channel/signal.
  • the second physical channel is SL-PUCCH or SL-PUSCH
  • power is preferentially allocated to the first uplink physical channel/signal (first set).
  • power can be allocated to multiple uplink physical channels and/or signals according to the power allocation priority of the uplink.
  • the method further includes:
  • the terminal device allocates power to the second uplink physical channel and the first uplink physical channel/signal (the second set) according to the uplink power allocation priority.
  • the second uplink physical channel is SL-UL-PUCCH or SL-UL-PUSCH
  • power is allocated to the second set in the order of Uu power allocation priority from high to low. More specifically, the power allocation order is determined only according to the power allocation priority of Uu in the second set.
  • FIG. 8 only schematically illustrates the embodiments of the present application, but the present application is not limited thereto.
  • the order of execution between operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of FIG. 8 above.
  • allocating power for the first set or "allocating power for the second set” both involve allocating power for physical channels and/or physical signals in a set. Since there may be multiple Uu physical channels and/or physical signals in the set, any NR Uu related technology can be used to determine the priority of power allocation in the set.
  • the power can be allocated according to section 7.5 of the Rel-15 NR standard TS 38.213V15.7.0. To put it simply, the power allocation priority of Release-15 NR Uu is arranged in the order from high to low as follows. For details, please refer to the relevant standard documents.
  • power allocation can be performed according to the power allocation priority defined by the future Rel-16NR standard.
  • the second set contains SL-UL-PUCCH or SL-UL-PUSCH that carries both side link information and Uu information.
  • SL-UL-PUCCH or SL-UL-PUSCH When power is allocated to the second set, SL-UL-PUCCH or SL- The UL-PUSCH is regarded as the PUCCH or PUSCH that only carries the corresponding Uu information, that is, the side link information is ignored, so that any Uu power allocation related technology can be used for power allocation.
  • FIG. 9 is an example diagram of power allocation according to an embodiment of the present application. As shown in FIG. 9, for carrier #m, during priority comparison, the side link information in the PUSCH carrying Uu CSI and sidelink HARQ-ACK is ignored, and it is regarded as the PUSCH carrying Uu CSI for power allocation.
  • FIG. 10 is an example diagram of the power priority of the embodiment of the present application, showing the priority order of the physical channels in FIG. 9, the priority from high to low corresponds to the sequence numbers 1, 2, and 3 in FIG. 10 respectively.
  • the priority from high to low is PUSCH carrying Uu CSI and sidelink HARQ-ACK ( In this case, the priority is 1), the PUCCH carrying Uu HARQ-ACK (the priority is 2 at this time), and the PUSCH carrying Uu data (the priority is 3 at this time).
  • the priority from high to low is PUCCH carrying Uu HARQ-ACK (in this case, priority is given to PUCCH).
  • PUCCH carrying Uu HARQ-ACK
  • Level 1 PUSCH carrying Uu CSI and sidelink HARQ-ACK (priority 2 at this time) and PUSCH carrying Uu data (priority 3 at this time).
  • the parameters used to determine whether the side link transmission of the second uplink physical channel has priority over the uplink transmission in the second set include at least the priority of the side link transmission of the second uplink physical channel and/or The priority of uplink transmission in the second set.
  • the terminal device determines that the side link transmission has priority over the uplink transmission when the highest priority of the side link transmission is higher than the first priority; otherwise, determines the side link transmission Link transmission does not take precedence over the uplink transmission.
  • the terminal device determines when the highest priority of the side link transmission is higher than the first priority, and the highest priority of the uplink transmission is lower than or equal to the second priority The side link transmission takes precedence over the uplink transmission; otherwise, it is determined that the side link transmission does not take precedence over the uplink transmission.
  • the priority is higher than a certain threshold is also equivalent to “the priority value is less than a certain numerical threshold", in other words, the smaller the priority value, the higher the priority.
  • the priority is lower than or equal to a certain threshold is also equivalent to “the priority value is greater than or equal to a certain numerical threshold”.
  • the "equal" situation can be attributed to the "greater than” or “less than” side.
  • it can be divided into two branches, “greater than or equal to” and “less than”, and can also be divided into two branches: “greater than or equal to” and “less than”.
  • the two branches of "greater than” and “less than or equal” are not listed one by one.
  • the side link information includes one or more bits of the side link hybrid automatic repeat request (HARQ) feedback, and the priority of the side link transmission is the one or more bits. The highest priority among the priorities.
  • HARQ side link hybrid automatic repeat request
  • the priority of the bit is equal to the priority of the PSSCH; when the bit does not have an associated physical side In the case of Link Shared Channel (PSSCH), the bit has the lowest priority.
  • PSSCH Physical side link shared channel
  • the priority of the sidelink information is the priority of the PSSCH associated with the sidelink HARQ-ACK. More specifically, sidelink HARQ-ACK is ACK/NACK feedback for the PSSCH.
  • the PSSCH is scheduled by the PSCCH (SCI), and the priority of the PSSCH is indicated by the "priority" field in the SCI. In fact, this priority is also equivalent to the highest priority of the logical channel carried by the PSSCH.
  • the priority of the sidelink information is the highest priority among the multiple sidelink HARQ-ACK bits. This situation may occur.
  • multiple sidelink HARQ-ACK bits for multiple PSSCHs can be multiplexed and sent on the same second uplink physical channel. Therefore, the sidelink information carried by the second uplink physical channel can include multiple sidelinks. HARQ-ACK bits.
  • the second uplink physical channel carries a semi-static HARQ-ACK codebook (also called type 1 HARQ-ACK codebook), because the size of the semi-static HARQ-ACK codebook must be fixed.
  • a semi-static HARQ-ACK codebook also called type 1 HARQ-ACK codebook
  • the terminal device will not send PSSCH when no service is available. At this time, the terminal device can report an ACK to the base station through the second uplink physical channel, which means There is no need for the base station to allocate time-frequency resources for transmission or retransmission, and this ACK will be considered to have the lowest priority.
  • the side link information includes side link channel state information (CSI), and the priority sent by the side link is the priority of the side link channel state information.
  • CSI side link channel state information
  • the priority of the sidelink information is the priority of sidelink CSI.
  • the side link information includes one or more bits of side link channel state information (CSI) and side link hybrid automatic repeat request (HARQ) feedback, and the side link transmission priority The level is the highest priority among the side link channel state information and the priority of the one or more bits.
  • CSI side link channel state information
  • HARQ side link hybrid automatic repeat request
  • the priority of the sidelink information is the highest priority of the sidelink HARQ-ACK and sidelink CSI.
  • the priority of uplink transmission in the second set is the highest priority of all Uu physical channels and/or physical signals included in the second set. For example, this priority is the highest priority of all uplink physical channels and/or logical channels carried by signals in the second set.
  • the priority of the side link transmission of the second uplink physical channel is the priority of the sidelink
  • the priority of the first uplink physical channel/signal is the priority of Uu.
  • the allocating power includes: allocating power to multiple physical channels or signals in a priority order, or allocating power to one or more physical channels or signals with the highest priority.
  • the terminal device can determine the power allocation priority according to the method in the above embodiment, and perform power allocation in the order of priority from high to low.
  • the terminal device when the terminal device can only send one physical channel, the terminal device may send the second uplink physical channel and the one with the highest priority among the uplink physical channels/signals included in the first set.
  • the terminal device preferentially allocates power to at least the second uplink physical channel carrying side link information when side link transmission is prioritized over uplink transmission. Therefore, when the terminal device feeds back information to the network device, the fairness of power allocation can be ensured, so that power can be preferentially allocated to the physical channel or physical signal with the most urgent or most important demand.
  • the embodiments of the present application are described on the basis of the embodiments of the first aspect.
  • the embodiments of the present application can be executed separately or combined with the embodiments of the first aspect; the same content as the embodiments of the first aspect will not be repeated here.
  • FIG. 11 is a schematic diagram of a data multiplexing method according to an embodiment of the present application. As shown in FIG. 11, the method includes:
  • the terminal device determines whether the code rate exceeds the maximum allowed code rate when multiplexing the side link information and the uplink information to the second uplink physical channel;
  • UCI For Uu links, when the terminal device needs to report multiple types of UCI (HARQ-ACK, SR, CSI) at the same time, and when the UCI code rate exceeds the maximum allowed code rate, the terminal device will discard some of them according to the priority rules.
  • UCI or in other words, select a part of UCI to send in the order of priority from high to low among all UCIs.
  • For the method of Uu discarding UCI please refer to section 9.2.5 of Rel-15 NR standard TS 38.213V15.7.0, for example.
  • code rate, maximum allowable code rate, etc. you can refer to related technologies, which will not be repeated here.
  • PUCCH or PUSCH needs to carry both Uu information and sidelink information, that is, when generating SL-UL-PUCCH or SL-UL-PUSCH, when the code rate calculated based on all information bits exceeds the allowable When the maximum bit rate is set, some information needs to be discarded to ensure that the bit rate is within the maximum allowed bit rate range.
  • Uu information when sidelink information has priority over Uu information, Uu information is discarded first.
  • Uu-related technologies can be used to discard Uu information, for example, using the method in section 9.2.5 of TS 38.213V15.7.0. All or part of Uu information can be discarded.
  • Uu CSI information can be discarded first; when Uu information includes multiple Uu CSI information, Uu CSI information with a lower priority is discarded first.
  • the sidelink information when the sidelink information does not take precedence over the Uu information, the sidelink information is discarded first. You can discard all or part of the sidelink information.
  • the sidelink CSI information can be discarded first; when the sidelink information includes multiple sidelink CSI information, the sidelink CSI information with lower priority is discarded first.
  • the parameter used to determine whether the sidelink information has priority over the Uu information includes at least one of the priority of the sidelink information and the priority of the Uu information.
  • the priority of side link transmission is sometimes referred to as the priority of sidelink information
  • the priority of uplink transmission is sometimes referred to as the priority of Uu information.
  • the priority of the sidelink information when the priority of the sidelink information is greater than the first priority threshold, it is considered that the sidelink information has priority over the Uu information; otherwise, it is considered that the sidelink information does not have priority over the Uu information.
  • the sidelink information when the priority of the sidelink information is greater than the first priority threshold, and the priority of the Uu information is less than or equal to the second priority threshold, the sidelink information is considered to take precedence over the Uu information, otherwise, the sidelink information is considered not to take precedence over the Uu information.
  • Uu information when the priority of the sidelink information is greater than the first priority threshold, and the priority of the Uu information is less than or equal to the second priority threshold, the sidelink information is considered to take precedence over the Uu information, otherwise, the sidelink information is considered not to take precedence over the Uu information.
  • the terminal device determines whether the side link information has priority over the uplink information; and when the side link information has priority over the uplink information, at least a part of it is discarded. For uplink information, if the side link information does not take precedence over the uplink information, at least part of the side link information is discarded. Therefore, when the terminal device feeds back information to the network device, the fairness of data multiplexing can be guaranteed, so that the most urgent or most important data is multiplexed.
  • the embodiments of the present application are described on the basis of the embodiments of the first and second aspects.
  • the embodiments of this application can be executed alone or combined with the embodiments of the first and second aspects; the same content as the embodiments of the first and second aspects will not be repeated here.
  • the terminal equipment according to the priority of the side link transmission of the second uplink physical channel and the priority of one or more physical side link feedback channels (PSFCH), in the order of priority from high to low Allocate power.
  • PSFCH physical side link feedback channels
  • Fig. 12 is an example diagram of sending signals in an embodiment of the present application.
  • a terminal device for example, the UE 1 shown in Fig. 11
  • the sidelink carrier may be located in the ITS frequency band, or may be a certain uplink carrier of Uu, that is, share the carrier with Uu, which is not limited in this application.
  • the base station schedules UE 1 to send a PUCCH carrying sidelink HARQ-ACK to the base station in time slot n, and at the same time, UE 1 needs to send PSFCH to UE 2 in time slot n.
  • UE 2 works in Mode 2, and it autonomously determines the PSSCH transmission time, which is equivalent to autonomously determining the PSFCH transmission time associated with the PSSCH.
  • the SL-PUCCH transmission time is determined by the base station. It may not be possible to coordinate, and therefore, the situation shown in Figure 12 cannot be avoided for the UE 1.
  • the UE 1 may need to transmit the second uplink physical channel and the PSFCH at the same time.
  • the power allocation is performed according to the priority of the side link transmission of the second uplink physical channel and the priority of the PSFCH in descending order of priority.
  • power allocation may also include: when the terminal device can only send one physical channel, sending the second physical channel and the PSFCH with the highest priority. It can be easily extended to the situation where the terminal device sends the second uplink physical channel and multiple PSFCHs, and the terminal device allocates power in the order of priority from high to low.
  • the priority of the side link transmission of the second uplink physical channel may be determined according to the method of the embodiment of the first aspect.
  • the priority of the PSFCH can be defined using related technologies, that is, the priority of the PSSCH associated with the PSFCH.
  • the terminal equipment is allocated according to the priority of the side link transmission of the second uplink physical channel and the priority of one or more physical side link feedback channels (PSFCH) in order of priority from high to low.
  • Power can ensure the fairness of power allocation, so that power can be allocated preferentially to physical channels or physical signals with the most urgent or most important needs.
  • An embodiment of the application provides a power distribution device.
  • the device may be, for example, a terminal device (such as the aforementioned terminal device), or may be some or some components or components configured in the terminal device, and the same content as the embodiments of the first to third aspects will not be repeated.
  • FIG. 13 is a schematic diagram of a power distribution device according to an embodiment of the present application. As shown in FIG. 13, the power distribution device 1300 includes:
  • the determining unit 1301 determines whether side link transmission is prioritized over uplink transmission, wherein the side link transmission includes the transmission of side link information carried by the second uplink physical channel and/or the transmission of the side link physical channel/signal,
  • the uplink transmission includes the transmission of uplink information carried by the second uplink physical channel and/or the transmission of the first uplink physical channel/signal;
  • the allocation unit 1302 is configured to allocate power to the second uplink physical channel and/or the side link physical channel/signal in a case where the side link transmission is prioritized to the uplink transmission.
  • the first uplink physical channel/signal transmission does not carry side link information
  • the second uplink physical channel carries at least side link information
  • the second uplink physical channel The first uplink physical channel/signal and the side link physical channel/signal overlap in time.
  • the allocation unit 1302 is further configured to allocate power to the second uplink physical channel and/or the side link physical channel/signal according to the power allocation priority of the side link.
  • the allocating unit 1302 is further configured to: when the second uplink physical channel does not carry uplink information, and the side link transmission is not prioritized over the uplink transmission, prioritize the first uplink transmission. Uplink physical channel/signal allocation power.
  • the allocating unit 1302 is further configured to allocate power to the first uplink physical channel/signal according to the priority of uplink power allocation.
  • the allocating unit 1302 is further configured to: when the second uplink physical channel also carries uplink information, and the side link transmission is not prioritized over the uplink transmission, the second uplink transmission is prioritized.
  • the uplink physical channel and/or the first uplink physical channel/signal is allocated power.
  • the allocating unit 1302 is further configured to allocate power to the second uplink physical channel and/or the first uplink physical channel/signal according to the priority of uplink power allocation.
  • the parameters used to determine whether the side link transmission is prioritized over the uplink transmission include at least the priority of the side link transmission and/or the priority of the uplink transmission.
  • the determining unit 1301 determines that the side link transmission has priority over the uplink transmission when the highest priority of the side link transmission is higher than the first priority; otherwise, determines the The side link transmission does not take precedence over the uplink transmission.
  • the determining unit 1301 determines that the side link transmission has priority over the uplink transmission; otherwise, it is determined that the side link transmission does not have priority over the uplink transmission.
  • the side link information carried by the second uplink physical channel includes one or more bits fed back by the side link hybrid automatic repeat request, and the priority of the side link transmission is the one or more bits. The highest priority among the priorities of multiple bits.
  • the priority of the bit is equal to the priority of the physical side link shared channel; when the bit does not have an associated In the case of the physical side link sharing the channel, the bit has the lowest priority.
  • the side link information carried by the second uplink physical channel includes side link channel state information, and the priority of the side link transmission is the priority of the side link channel state information.
  • the side link information carried by the second uplink physical channel includes side link channel state information and one or more bits of side link hybrid automatic repeat request feedback.
  • the priority is the highest priority among the side link channel state information and the priority of the one or more bits.
  • the second uplink physical channel is one of the following channels: a physical uplink control channel that carries side link information, a physical uplink shared channel that carries side link information, and side link information and uplink information.
  • the physical uplink control channel, the physical uplink shared channel that carries side link information and uplink information is one of the following channels: a physical uplink control channel that carries side link information, a physical uplink shared channel that carries side link information, and side link information and uplink information.
  • the determining unit 1301 is further configured to: when multiplexing side link information and uplink information to the second uplink physical channel, determine whether the code rate exceeds the maximum allowed code rate; If the rate exceeds the maximum allowed code rate, determine whether the side link information has priority over the uplink information; and if the side link information has priority over the uplink information, discard at least a part of the Uplink information.
  • the determining unit 1301 is further configured to discard at least a part of the side link information when the side link information is not prior to the uplink information.
  • the power distribution device 1300 may also include other components or modules.
  • the specific content of these components or modules reference may be made to related technologies.
  • FIG. 13 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the foregoing components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, and a receiver; the implementation of this application does not limit this.
  • the terminal device preferentially allocates power to at least the second uplink physical channel carrying side link information when side link transmission is prioritized over uplink transmission. Therefore, when the terminal device feeds back information to the network device, the fairness of power allocation can be ensured, so that power can be preferentially allocated to the physical channel or physical signal with the most urgent or most important demand.
  • An embodiment of the present application also provides a communication system, which may refer to FIG. 1, and the same content as the embodiments of the first aspect to the fourth aspect will not be repeated.
  • the communication system 100 may at least include:
  • a terminal device that determines whether side link transmission is prioritized over uplink transmission, wherein the side link transmission includes the transmission of side link information carried by the second uplink physical channel and/or the transmission of side link physical channels/signals, so The uplink transmission includes the transmission of uplink information carried by the second uplink physical channel and/or the transmission of the first uplink physical channel/signal; and in the case where the side link transmission has priority over the uplink transmission, the priority is The second uplink physical channel and/or the side link physical channel/signal allocates power.
  • the first uplink physical channel/signal transmission does not carry side link information
  • the second uplink physical channel carries at least side link information
  • the second uplink physical channel The first uplink physical channel/signal and the side link physical channel/signal overlap in time.
  • the embodiment of the present application also provides a network device, which may be a base station, for example, but the present application is not limited to this, and may also be other network devices.
  • a network device which may be a base station, for example, but the present application is not limited to this, and may also be other network devices.
  • FIG. 14 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • the network device 1400 may include: a processor 1410 (for example, a central processing unit CPU) and a memory 1420; the memory 1420 is coupled to the processor 1410.
  • the memory 1420 can store various data; in addition, it also stores an information processing program 1430, and the program 1430 is executed under the control of the processor 1410.
  • the network device 1400 may further include: a transceiver 1440, an antenna 1450, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the network device 1400 does not necessarily include all the components shown in FIG. 14; in addition, the network device 1400 may also include components not shown in FIG. 14, and the prior art can be referred to.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited to this, and may also be other devices.
  • FIG. 15 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1500 may include a processor 1510 and a memory 1520; the memory 1520 stores data and programs, and is coupled to the processor 1510. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace this structure to achieve telecommunication functions or other functions.
  • the processor 1510 may be configured to execute a program to implement the power distribution method as described in the embodiment of the first aspect.
  • the processor 1510 may be configured to perform the following control: determine whether side link transmission is prioritized over uplink transmission, wherein the side link transmission includes the transmission of side link information carried by the second uplink physical channel and/or the side link Physical channel/signal transmission, the uplink transmission includes the transmission of the uplink information carried by the second uplink physical channel and/or the transmission of the first uplink physical channel/signal; and the transmission on the side link takes precedence over all
  • power is preferentially allocated to the second uplink physical channel and/or the side link physical channel/signal.
  • the transmission of the first uplink physical channel/signal (transmission) does not carry side link information
  • the second uplink physical channel carries at least side link information
  • the second uplink physical channel the first uplink The physical channels/signals and the side link physical channels/signals overlap in time.
  • the processor 1510 may be configured to execute a program to implement the data multiplexing method as described in the embodiment of the second aspect.
  • the processor 1510 may be configured to perform the following control: when multiplexing the side link information and the uplink information to the second uplink physical channel, determine whether the code rate exceeds the maximum allowable code rate; In the case of the maximum allowed code rate, determine whether the side link information has priority over the uplink information; and in the case where the side link information has priority over the uplink information, discard at least a part of the uplink information .
  • the terminal device 1500 may further include: a communication module 1530, an input unit 1540, a display 1550, and a power supply 1560. Among them, the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the terminal device 1500 does not necessarily include all the components shown in FIG. 15 and the above-mentioned components are not necessary; in addition, the terminal device 1500 may also include components not shown in FIG. There is technology.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the power distribution method described in the first and third aspects, or the second The data multiplexing method described in the embodiment of the aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program enables a terminal device to execute the power distribution method described in the embodiment of the first and third aspects, or the power distribution method described in the embodiment of the second aspect Data multiplexing method.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • This application relates to such a computer-readable program.
  • the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods. Or steps.
  • This application also relates to storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can be implemented as general-purpose processors, digital signal processors (DSPs) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component or any appropriate combination thereof.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, and multiple micro-processing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a power distribution method including:
  • the terminal device determines whether side link transmission is prioritized over uplink transmission, wherein the side link transmission includes the transmission of side link information carried by the second uplink physical channel and/or the transmission of the side link physical channel/signal, and the uplink
  • the sending includes the sending of the uplink information carried by the second uplink physical channel and/or the sending of the first uplink physical channel/signal;
  • power is preferentially allocated to the second uplink physical channel and/or the side link physical channel/signal.
  • Supplement 2 The method according to Supplement 1, wherein the transmission of the first uplink physical channel/signal does not carry side link information, and the second uplink physical channel carries at least side link information, The second uplink physical channel, the first uplink physical channel/signal, and the side link physical channel/signal overlap in time.
  • Supplement 4 The method according to Supplement 1 or 2, wherein the method further includes:
  • the second uplink physical channel does not carry uplink information and the side link transmission is not prioritized over the uplink transmission
  • power is preferentially allocated to the first uplink physical channel/signal
  • Supplement 5 The method according to Supplement 4, wherein power is allocated to the first uplink physical channel/signal according to an uplink power allocation priority.
  • the second uplink physical channel also carries uplink information, and the side link transmission is not prioritized over the uplink transmission, the second uplink physical channel and/or the first uplink physical channel are prioritized /Signal distribution power.
  • Supplement 7 The method according to Supplement 6, wherein the method further includes:
  • Supplement 8 The method according to any one of Supplements 1 to 7, wherein the parameters used to determine whether the side link transmission has priority over the uplink transmission include at least the priority of the side link transmission And/or the priority of the uplink transmission.
  • Supplement 9 The method according to any one of Supplements 1 to 8, wherein in the case where the highest priority sent by the side link is higher than the first priority, the side link sending priority is determined Send in the uplink; otherwise, it is determined that the side link sending is not prioritized over the uplink sending.
  • Supplement 10 The method according to any one of Supplements 1 to 8, wherein the highest priority sent on the side link is higher than the first priority, and the highest priority sent in the uplink is lower If it is equal to or equal to the second priority, it is determined that the side link transmission has priority over the uplink transmission; otherwise, it is determined that the side link transmission does not have priority over the uplink transmission.
  • Appendix 11 The method according to any one of appendices 8 to 10, wherein the side link information carried by the second uplink physical channel includes one or more of the side link hybrid automatic repeat request (HARQ) feedback. Bits, the priority of the side link transmission of the second uplink physical channel is the highest priority among the priorities of the one or more bits.
  • HARQ side link hybrid automatic repeat request
  • Appendix 12 The method according to Appendix 11, wherein, in the case where the bit has an associated physical side link shared channel (PSSCH), the priority of the bit is equal to the priority of the PSSCH;
  • PSSCH physical side link shared channel
  • the bit does not have an associated physical side link shared channel (PSSCH)
  • PSSCH physical side link shared channel
  • Supplement 13 The method according to any one of Supplements 8 to 10, wherein the side link information carried by the second uplink physical channel includes side link channel state information (CSI), and the second uplink physical channel
  • CSI side link channel state information
  • the priority of the side link transmission of the channel is the priority of the side link channel state information.
  • Supplement 14 The method according to any one of Supplements 8 to 10, wherein the side link information carried by the second uplink physical channel includes side link channel state information (CSI) and side link hybrid automatic reconfiguration.
  • CSI side link channel state information
  • HARQ Transmission request
  • the priority of the side link transmission of the second uplink physical channel is the highest among the side link channel state information and the priority of the one or more bits Priority.
  • Supplement 15 The method according to any one of Supplements 1 to 14, wherein the second uplink physical channel is one of the following channels:
  • the physical uplink control channel (SL-PUCCH) that carries side link information
  • the physical uplink shared channel (SL-PUSCH) that carries side link information
  • the physical uplink control channel that carries side link information and uplink information (Uu information)
  • SL-UL-PUCCH The physical uplink control channel that carries side link information and uplink information
  • Uu information uplink information
  • SL-UL-PUSCH a physical uplink shared channel
  • Supplement 16 The method according to any one of Supplements 1 to 15, wherein the method further includes:
  • the terminal device When the terminal device multiplexes the side link information and the uplink information to the second uplink physical channel, determining whether the code rate exceeds the maximum allowed code rate;
  • the side link information has priority over the uplink information
  • at least a part of the uplink information is discarded.
  • the side link information does not take precedence over the uplink information, at least a part of the side link information is discarded.
  • Supplement 18 The method according to any one of Supplements 1 to 17, wherein the allocating power includes: allocating power to multiple physical channels or signals in order of priority, or to one or more of the highest priority Each physical channel or signal is allocated power.
  • a data multiplexing method including:
  • the terminal device When the terminal device multiplexes the side link information and the uplink information to the second uplink physical channel, determine whether the code rate exceeds the maximum allowed code rate;
  • the side link information has priority over the uplink information
  • at least a part of the uplink information is discarded.
  • Supplement 20 The method according to Supplement 19, wherein the method further includes:
  • the side link information does not take precedence over the uplink information, at least a part of the side link information is discarded.
  • Appendix 21 A terminal device comprising a memory and a processor, the memory storing a computer program, and the processor is configured to execute the computer program to realize the power described in any one of appendix 1 to 18. Distribution method, or data multiplexing method as described in Supplement 19 or 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种功率分配方法以及装置。所述方法包括:终端设备确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或第一上行物理信道/信号的发送;以及在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。

Description

功率分配方法以及装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
V2X(Vehicle to Everything)是一种车辆通信技术,相比于使用Uu链路(包括上行链路和下行链路)的蜂窝通信,V2X的发送终端设备通过边链路(sidelink)与接收终端设备直接进行通信。
新无线(NR,New Radio)V2X是5G NR的重要项目,相比于长期演进(LTE,Long Term Evolution)V2X,NR V2X需要支持诸多新场景和新业务,并且需要满足更高的技术指标。
NR V2X定义了几种物理信道,包括物理边链路控制信道(PSCCH,Physical Sidelink Control Channel)、物理边链路共享信道(PSSCH,Physical Sidelink Shared Channel)和物理边链路反馈信道(PSFCH,Physical Sidelink Feedback Channel),分别用于承载边链路控制信息(SCI,Sidelink Control Channel)、边链路数据和边链路反馈信息(例如HARQ-ACK)。
其中,SCI用于调度PSSCH,SCI会指示PSSCH的优先级,这个优先级也是与PSSCH相关联的PSFCH的优先级。PSCCH/PSSCH时频资源与其所关联的PSFCH时频资源之间存在既定的映射关系,发送终端设备在发送PSCCH/PSSCH之后,即可知晓在哪一个时隙(slot)去接收与该PSSCH相关联的PSFCH。
NR V2X定义了两种工作模式。对于NR V2X模式1(Mode 1),终端设备用于V2X通信的时频资源由网络设备(例如基站)通过NR Uu链路进行调度和分配,对于NR V2X模式2(Mode 2),终端设备可以基于感知(sensing)结果,自主地对用于V2X通信的时频资源进行选择。
对于模式1,终端设备可以向网络设备发送边链路HARQ-ACK。更具体地,终端设备可以将边链路HARQ-ACK承载在物理上行控制信道(PUCCH,Physical Uplink Control Channel)或物理上行共享信道(PUSCH,Physical Uplink Shared Channel)上发送给网络设备,并且边链路HARQ-ACK可以与Uu信息复用在PUCCH或PUSCH 内。网络设备可以根据边链路HARQ-ACK知晓是否需要为边链路分配时频资源。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现:对于NR Uu链路,当终端设备同时在多个上行载波进行上行发送时,会优先将功率分配给优先级较高的物理信道或物理信号,从而保证总功率不超过终端设备的最大功率限制。但是,如果使用现有的Uu功率分配优先级规则,在NR V2X中会导致不公平的功率分配结果。
针对上述问题的至少之一,本申请实施例提供一种功率分配方法及装置。
根据本申请实施例的一个方面,提供一种功率分配装置,包括:
确定单元,其确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或不承载边链路信息的第一上行物理信道/信号的发送;其中,所述第二上行物理信道至少承载边链路信息,所述第二上行物理信道、所述第一上行物理信道/信号以及所述边链路物理信道/信号在时间上存在重叠;以及
分配单元,其在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
根据本申请实施例的另一个方面,提供一种功率分配方法,包括:
终端设备确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或不承载边链路信息的第一上行物理信道/信号的发送;其中,所述第二上行物理信道至少承载边链路信息,所述第二上行物理信道、所述第一上行物理信道/信号以及所述边链路物理信道/信号在时间上存在重叠;以及
在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
根据本申请实施例的另一个方面,提供一种通信系统,包括:
终端设备,其确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或不承载边链路信息的第一上行物理信道/信号的发送;其中,所述第二上行物理信道至少承载边链路信息,所述第二上行物理信道、所述第一上行物理信道/信号以及所述边链路物理信道/信号在时间上存在重叠;以及在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
本申请实施例的有益效果之一在于:终端设备在边链路发送优先于上行发送的情况下,优先为至少承载边链路信息的第二上行物理信道分配功率。由此,终端设备向网络设备反馈信息时,能够保证功率分配的公平性,使得功率能够优先分配给需求最迫切或重要程度最高的物理信道或物理信号。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的通信系统的示意图;
图2是本申请实施例的功率分配方法的一示意图;
图3是本申请实施例的进行功率分配的一示例图;
图4是本申请实施例的进行功率分配的另一示例图;
图5是本申请实施例的进行功率分配的另一示例图;
图6是本申请实施例的进行功率分配的另一示例图;
图7是本申请实施例的物理信道和/或信号的一示例图;
图8是本申请实施例的功率分配方法的另一示意图;
图9是本申请实施例的进行功率分配的一示例图;
图10是本申请实施例的功率优先级的一示例图;
图11是本申请实施例的数据复用方法的一示意图;
图12是本申请实施例的发送信号的一示例图;
图13是本申请实施例的功率分配装置的一示意图;
图14是本申请实施例的网络设备的示意图;
图15是本申请实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple  Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、 机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102、103。为简单起见,图1仅以两个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务发送。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
值得注意的是,图1示出了两个终端设备102、103均处于网络设备101的覆盖范围内,但本申请不限于此。两个终端设备102、103可以均不在网络设备101的覆盖范围内,或者一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外。
在本申请实施例中,两个终端设备102、103之间可以进行边链路发送。例如,两个终端设备102、103可以都在网络设备101的覆盖范围之内进行边链路发送以实现V2X通信,也可以都在网络设备101的覆盖范围之外进行边链路发送以实现V2X通信,还可以一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外进行边链路发送以实现V2X通信。
在本申请实施例中,终端设备102和/或103可以由网络设备分配边链路资源(即采用Mode 1)。当然,本申请实施例也可以将自主选择边链路资源(即采用Mode 2)和由网络设备分配边链路资源(即采用Mode 1)结合起来;本申请实施例不对此进行限制。
对于NR Uu链路,当终端设备同时在多个上行载波进行上行发送时,不同的上 行载波可能用于发送不同类型的上行物理信道或上行物理信号,包括物理随机接入信道(PRACH,Physical Random Access Channel)、物理上行控制信道(PUCCH,Physical Uplink Control Channel)、物理上行共享信道(PUSCH,Physical Uplink Shared Channel)、探测参考信号(SRS,Sounding Reference Signal)中的至少之一,以下将一个或多个上行物理信道和/或信号称为第一上行物理信道/信号。
终端设备会基于标准中定义的上行链路的物理信道和/或信号间的功率分配优先级顺序,按照优先级从高到低的顺序将功率分配给各个物理信道或物理信号,并保证总功率不超过终端设备的最大功率限制。换句话说,终端设备会优先将功率分配给优先级较高的物理信道或物理信号,或者说设备会优先发送具有较高优先级的物理信道或物理信号。
例如,终端设备在载波1上发送携带Uu HARQ-ACK的PUCCH,并且需要同时在载波2上发送携带Uu数据的PUSCH,根据标准定义的优先级顺序,终端设备总是会将功率优先分配给PUCCH。
但是,现有的Uu功率分配优先级规则在NR V2X中会导致不公平的功率分配结果。在NR V2X中,PUCCH/PUSCH可以用于发送sidelink HARQ-ACK。例如,对于携带sidelink HARQ-ACK和Uu数据的PUSCH,其功率分配优先级不应该仅取决于Uu的优先级,而应该将sidelink的优先级也纳入考虑。又例如,对于仅携带sidelink HARQ-ACK的PUCCH,由于sidelink与Uu具有各自的优先级评价体系,sidelink和Uu的优先级不能够直接进行比较,因此也不能够不对sidelink HARQ-ACK和Uu HARQ-ACK进行区分,而盲目地重用NR Uu的功率分配优先级。对于上述情况,重用现有NR Uu功率分配优先级排序均会导致不公平的功率分配结果。
例如,终端设备在载波1上发送携带sidelink HARQ-ACK和Uu数据的PUSCH,并且需要同时在载波2上发送携带Uu CSI的PUCCH,如果重用NR Uu的功率分配优先级,仅考虑PUSCH中的Uu数据优先级,则终端设备总会优先为PUCCH分配功率。然而,sidelink HARQ-ACK的优先程度可能比Uu更高,始终优先Uu对于sidelink是不公平的。
又例如,终端设备在载波1上发送仅携带sidelink HARQ-ACK的PUCCH,并且需要同时在载波2上发送携带Uu数据的PUSCH,如果重用NR Uu的功率分配优先级,不区分sidelink HARQ-ACK和Uu HARQ-ACK,则终端设备总会优先为PUCCH 分配功率,即始终优先该sidelink HARQ-ACK。然而sidelink HARQ-ACK的重要程度(优先级)是有可能低于PUSCH的(例如PUSCH携带的是URLLC数据),始终优先该sidelink HARQ-ACK会使PUSCH性能总是受到损失,这对于Uu链路显然是不公平的。
本申请的实施例针对上述问题给出相应的解决方案。
在本申请实施例中,以V2X为例对边链路进行说明,但本申请不限于此,还可以适用于V2X以外的边链路发送场景。在以下的说明中,在不引起混淆的情况下,术语“边链路”和“V2X”可以互换,术语“PSFCH”和“边链路反馈信道”可以互换,术语“PSCCH”和“边链路控制信道”或“边链路控制信息”可以互换,术语“PSSCH”和“边链路数据信道”或“边链路数据”也可以互换。
另外,发送(transmitting)或接收(receiving)PSSCH可以理解为发送或接收由PSSCH承载的边链路数据;发送或接收PSFCH可以理解为发送或接收由PSFCH承载的边链路反馈信息。至少一次发送(transmission,也可称为传输)可以理解为至少一次PSSCH/PSCCH发送或者至少一次边链路数据/信息发送,当前发送可以理解为当前PSSCH/PSCCH发送或者当前边链路数据/信息发送。
第一方面的实施例
本申请实施例提供一种功率分配方法,从终端设备进行说明。其中该终端设备(可称为发送终端设备)可以作为业务数据的发送方,在边链路上向一个或多个其他终端设备(可称为接收终端设备)发送边链路数据,并可以接收其他终端设备的反馈信息;此外该终端设备在Uu链路上向网络设备发送数据/信息。
图2是本申请实施例的功率分配方法的一示意图,如图2所示,该方法包括:
201,终端设备确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或第一上行物理信道/信号的发送;以及
202,在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
在本申请实施例中,第一上行物理信道/信号的发送(transmission)不承载边链 路信息,第二上行物理信道至少承载边链路信息,所述第二上行物理信道、所述第一上行物理信道/信号以及所述边链路物理信道/信号在时间上存在重叠。
值得注意的是,以上附图2仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图2的记载。
在本申请实施例中,第一上行物理信道/信号可以包括一个或多个上行物理信道/信号;边链路物理信道/信号(例如为PSSCH、PSCCH、PSFCH等)可以包括一个或多个边链路物理信道/信号。本文的“/”表示“和/或”。
在一些实施例中,按照边链路的功率分配优先级为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
在一些实施例中,在第二上行物理信道未承载上行信息、且边链路发送不优先于上行发送的情况下,优先为第一上行物理信道/信号分配功率。
在一些实施例中,按照上行链路的功率分配优先级为所述第一上行物理信道/信号分配功率。
在一些实施例中,在第二上行物理信道还承载上行信息、且边链路发送不优先于上行发送的情况下,优先为第二上行物理信道和/或第一上行物理信道/信号分配功率。
在一些实施例中,按照上行链路的功率分配优先级为所述第二上行物理信道和/或所述第一上行物理信道/信号分配功率。
图3是本申请实施例的进行功率分配的一示例图。如图3所示,终端设备需要同时进行上行发送和边链路发送。终端设备通过第二上行物理信道(PUCCH或PUSCH)向基站发送Uu信息和SL(sidelink)信息,Uu2信息和SL2信息复用在同一PUCCH或PUSCH内。
第二上行物理信道可以仅携带sidelink信息,或者可以同时携带sidelink信息和Uu信息。本申请实施例以第二上行物理信道包含一个PUCCH或PUSCH为例进行说明,可以容易扩展到第二上行物理信道包含多个PUCCH或PUSCH的情况。
如图3所示,在发送第二上行物理信道的同时,终端设备需要进行上行发送,即发送第一上行物理信道/信号(Uu1),以及同时进行边链路发送,即发送边链路物理信道/信号(SL3)。第一上行物理信道/信号(Uu1)可以是一个或多个上行物理信道/ 信号,并且不携带任何sidelink信息。
不失一般性,图3中以一个上行物理信道/信号为例。边链路物理信道/信号(SL3)可以是一个或多个边链路物理信道/信号,并且不携带任何Uu信息。不失一般性,图3中以一个边链路物理信道/信号为例。本申请不限于此。
终端设备根据Uu和SL分为上行发送和边链路发送两部分,由于第二上行物理信道PUCCH/PUSCH既包含Uu也包含SL,其中的Uu信息(Uu2)属于上行发送,SL信息(SL2)属于边链路发送。
例如,当边链路发送优先于上行发送时,第二上行物理信道PUCCH/PUSCH和边链路物理信道/信号被划分到SL一方,SL一方(Uu2、SL2和SL3)具有比Uu一方(Uu1,第一上行物理信道/信号)更高的优先级,因此会被优先分配功率。
例如,当上行发送优先于边链路发送(或者说边链路发送不优先于上行发送)时,第二上行物理信道PUCCH/PUSCH和第一上行物理信道/信号被划分到Uu一方,Uu一方(Uu2、SL2和Uu1)具有比SL一方(SL3,边链路物理信道/信号)更高的优先级,因此会被优先分配功率。
在判断边链路发送是否优先于上行发送时,可以使用任何方法,对此不做限制,例如使用包括边链路逻辑信道优先级、上行链路的逻辑信道优先级和边链路SCI指示的优先级中的至少一种。
在对SL一方进行功率分配时,可以使用任何SL功率分配方法,例如根据SL的功率分配优先级,对此不做限制;当存在第二上行物理信道时,忽略第二上行物理信道中的Uu部分。在对Uu一方进行功率分配时,可以使用任何Uu功率分配方法,例如根据Uu的功率分配优先级,对此不做限制;当存在第二上行物理信道时,忽略第二上行物理信道中的SL部分。
在一些实施例中,第二上行物理信道、第一上行物理信道/信号和边链路物理信道/信号可以位于不同的载波,也可以位于同一载波,或者一部分位于不同的载波,另一部分位于同一载波,对此不做限制。
以下示意性给出本申请实施例的几种变型例子。
图4是本申请实施例的进行功率分配的另一示例图。如图4所示,第二上行物理信道仅携带sidelink信息(SL2)。当边链路发送优先于上行发送时,第二上行物理信道和边链路物理信道/信号被划分到SL一方,SL一方(SL2和SL3)具有比Uu一方 (Uu1,第一上行物理信道/信号)更高的优先级,因此会被优先分配功率。
当边链路发送不优先于上行发送时,第二上行物理信道和边链路物理信道/信号被划分到SL一方,Uu一方(Uu1,第一上行物理信道/信号)具有比SL一方(SL2和SL3)更高的优先级,因此会被优先分配功率。
图5是本申请实施例的进行功率分配的另一示例图,示出不存在第一上行物理信道/信号时的情况。图6是本申请实施例的进行功率分配的另一示例图,示出了不存在边链路物理信道/信号时的情况。
以上对本申请的一些实施例进行了示意性说明,以下再进一步进行说明。
在一些实施例中,终端设备在一个上行载波上通过第二上行物理信道向网络设备发送边链路信息,其中边链路信息可以是HARQ-ACK和/或CSI,该第二上行物理信道可以是PUCCH或PUSCH。终端设备在其他一个或多个上行载波上向网络设备发送第一上行物理信道和/或信号,其中第一上行物理信道和/或信号可以包括PRACH、PUCCH、PUSCH或SRS。
在一些实施例中,第二上行物理信道为如下之一的信道:承载边链路信息的物理上行控制信道(SL-PUCCH)、承载边链路信息的物理上行共享信道(SL-PUSCH)、承载边链路信息和上行信息(Uu信息)的物理上行控制信道(SL-UL-PUCCH)、承载边链路信息和上行信息(Uu信息)的物理上行共享信道(SL-UL-PUSCH)。
即,为区别携带边链路信息的PUCCH/PUSCH和携带Uu信息的PUCCH/PUSCH,将携带sidelink信息的PUCCH/PUSCH细分为以下几种:
SL-PUCCH:仅携带边链路信息的PUCCH。
SL-PUSCH:仅携带边链路信息的PUSCH。
SL-UL-PUCCH:既携带边链路信息又携带Uu信息的PUCCH。终端设备将边链路信息和Uu信息复用在同一PUCCH中进行发送,其中Uu信息包括Uu HARQ-ACK、Uu CSI和Uu SR中的至少一种。
SL-UL-PUSCH:既携带边链路信息又携带Uu信息的PUSCH。终端设备将边链路信息和Uu信息复用在同一PUSCH中进行发送,其中Uu信息包括Uu HARQ-ACK、Uu CSI和Uu数据中的至少一种。
图7是本申请实施例的物理信道和/或信号的一示例图。如图7所示,可以将一个载波上的携带边链路信息的PUCCH/PUSCH称为第二上行物理信道,则第二上行 物理信道为SL-PUCCH、SL-PUSCH、SL-UL-PUCCH和SL-UL-PUSCH中的一种。将其他一个或多个载波上的物理信道和/或信号称为第一上行物理信道/信号。
如图7所示,为方便起见,将第一上行物理信道/信号称为第一集合(携带Uu信息而不携带边链路信息),则第一集合包括PRACH、PUCCH、PUSCH和SRS中的至少一种。当第二上行物理信道为SL-UL-PUCCH或SL-UL-PUSCH时,将第一集合与第二上行物理信道的并集称为第二集合(携带Uu信息,还携带边链路信息)。
尽管上行物理信号严格意义上并不携带Uu信息,但由于上行物理信号用于Uu通信,而非用于sidelink通信,因此也统称为“携带Uu信息”,即“携带Uu信息”的含义包括上行物理信道携带用于Uu通信的信息和/或上行物理信号用于Uu通信。
图8是本申请实施例的功率分配方法的另一示意图,如图8所示,该方法包括:
801,终端设备确定第二上行物理信道的边链路发送是否优先于第二集合内的上行发送,其中所述第二上行物理信道至少承载边链路信息,所述第一上行物理信道/信号承载上行信息;
如图8所示,在第二上行物理信道的边链路发送优先于第二集合内的上行发送(即图8所示的801的结果为是)的情况下,该方法包括:
802,终端设备优先为所述第二上行物理信道分配功率。
在本申请实施例中,“优先为第二上行物理信道分配功率”、“第二上行物理信道具有更高的功率分配优先级”和“调整第一集合内的一个或多个第一上行物理信道和/或信号的功率从而使总功率不超过最大功率限制”这些说法具有相同的含义。“优先为第二上行物理信道分配功率”也包括仅发送第二上行物理信道,而不发送(丢弃)第一集合内的一个或多个第一上行物理信道/信号。同理,“优先为第一集合分配功率”等也可以做类似解释。
如图8所示,在第二上行物理信道的边链路发送不优先于第二集合内的上行发送(即图8所示的801的结果为否)的情况下,该方法还包括:
803,终端设备确定第二上行物理信道是否承载上行信息;
如图8所示,在所述第二上行物理信道未承载上行信息(即图8所示的803的结果为否)的情况下,该方法还包括:
804,终端设备优先为第一上行物理信道/信号分配功率。
例如,当第二物理信道为SL-PUCCH或SL-PUSCH时,优先为第一上行物理信 道/信号(第一集合)分配功率。
在一些实施例中,可以按照上行链路的功率分配优先级为多个上行物理信道和/或信号分配功率。
如图8所示,在第二上行物理信道承载上行信息(即图8所示的803的结果为是)的情况下,该方法还包括:
805,终端设备按照上行链路的功率分配优先级为所述第二上行物理信道和所述第一上行物理信道/信号(第二集合)分配功率。
例如,当第二上行物理信道为SL-UL-PUCCH或SL-UL-PUSCH时,按照Uu功率分配优先级从高到低的顺序为第二集合分配功率。更具体地,在第二集合内仅根据Uu的功率分配优先级确定功率分配顺序。
值得注意的是,以上附图8仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图8的记载。
在一些实施例中,无论“为第一集合分配功率”还是“为第二集合分配功率”,均涉及到为一个集合内的物理信道和/或物理信号分配功率。由于集合内可能存在多个Uu物理信道和/或物理信号,集合内功率分配优先级的确定可以使用任何NR Uu的相关技术。
例如,可以根据Rel-15 NR标准TS 38.213V15.7.0的7.5节进行功率分配。简单而言,Release-15 NR Uu的功率分配优先级按照从高到低的顺序排列如下,具体细节可以参见相关标准文档。
-在PCell上发送的PRACH
-携带HARQ-ACK和/或SR的PUCCH,或者携带HARQ-ACK的PUSCH
-携带CSI的PUCCH,或者携带CSI的PUSCH
-没有携带HARQ-ACK或CSI的PUSCH(即PUSCH仅携带数据信息)
-SRS,或者在非PCell上发送的PRACH
又例如,可以根据未来Rel-16NR标准定义的功率分配优先级进行功率分配。
值得注意的是,第二集合包含既携带边链路信息又携带Uu信息的SL-UL-PUCCH或SL-UL-PUSCH,在为第二集合分配功率时,将SL-UL-PUCCH或SL-UL-PUSCH 看作仅携带相应Uu信息的PUCCH或PUSCH,即忽略边链路信息,从而可以使用任何Uu功率分配的相关技术进行功率分配。
图9是本申请实施例的进行功率分配的一示例图。如图9所示,对于载波#m,在进行优先级比较时,携带Uu CSI和sidelink HARQ-ACK的PUSCH中的边链路信息被忽略,被看作携带Uu CSI的PUSCH进行功率分配。
图10是本申请实施例的功率优先级的一示例图,示出了图9中物理信道的优先级顺序,优先级从高到低分别对应图10中的序号1、2、3。
如图10中的1002所示,当第二上行物理信道的边链路发送优先于第二集合内的上行发送时,优先级从高到低依次为携带Uu CSI和sidelink HARQ-ACK的PUSCH(此时优先级为1)、携带Uu HARQ-ACK的PUCCH(此时优先级为2)和携带Uu数据的PUSCH(此时优先级为3)。
如图10中的1001所示,当第二物理信道的边链路发送不优先于第二集合内的上行发送时,优先级从高到低依次为携带Uu HARQ-ACK的PUCCH(此时优先级为1)、携带Uu CSI和sidelink HARQ-ACK(此时优先级为2)的PUSCH和携带Uu数据的PUSCH(此时优先级为3)。
在一些实施例中,用于确定第二上行物理信道的边链路发送是否优先于第二集合内的上行发送的参数,至少包括第二上行物理信道的边链路发送的优先级和/或第二集合内的上行发送的优先级。
在一些实施例中,终端设备在所述边链路发送的最高的优先级高于第一优先级的情况下,确定所述边链路发送优先于所述上行发送;否则,确定所述边链路发送不优先于所述上行发送。
在一些实施例中,终端设备在所述边链路发送的最高的优先级高于第一优先级、且所述上行发送的最高的优先级低于或等于第二优先级的情况下,确定所述边链路发送优先于所述上行发送;否则,确定所述边链路发送不优先于所述上行发送。
本申请实施例中,“优先级高于某一阈值”也等价于“优先级数值小于某一数值阈值”,换句话说,优先级数值越小,表示优先级越高。同理,“优先级低于等于某一阈值”也等价于“优先级数值大于等于某一数值阈值”。
此外,对于判断分支的条件,“等于”的情况可以归属到“大于”一方,也可以归属到“小于”一方,例如可以分为“大于等于”和“小于”两个分支,也可以分为 “大于”和“小于等于”两个分支,这种变型不一一列举。
以上对于如何判断第二上行物理信道是否优先于第一上行物理信道和/或信号进行了示意性说明,但本申请所使用的方法不限于此。以下对于各优先级的情况进行示意性说明。
在一些实施例中,所述边链路信息包括边链路混合自动重传请求(HARQ)反馈的一个或多个比特,所述边链路发送的优先级为所述一个或多个比特的优先级中最高的优先级。
在一些实施例中,在所述比特具有关联的物理边链路共享信道(PSSCH)的情况下,所述比特的优先级等于所述PSSCH的优先级;在所述比特不具有关联的物理边链路共享信道(PSSCH)的情况下,所述比特具有最低的优先级。
例如,当sidelink信息包含单个sidelink HARQ-ACK比特时,sidelink信息的优先级为与sidelink HARQ-ACK所关联的PSSCH的优先级。更具体地,sidelink HARQ-ACK是针对该PSSCH的ACK/NACK反馈。PSSCH由PSCCH(SCI)所调度,PSSCH的优先级由SCI中的“priority”字段指示。实际上,这个优先级也等价于PSSCH所承载的逻辑信道的最高优先级。
再例如,当sidelink信息包含多个sidelink HARQ-ACK比特时,sidelink信息的优先级为多个sidelink HARQ-ACK比特中的最高优先级。这种情况可能发生,例如,针对多个PSSCH的多个sidelink HARQ-ACK比特可以被复用在同一个第二上行物理信道上发送,因此第二上行物理信道承载的sidelink信息可以包含多个sidelink HARQ-ACK比特。
再例如,当sidelink信息所包含的某个sidelink HARQ-ACK比特没有与之关联的PSSCH时,这个sidelink HARQ-ACK比特被认为具有最低的优先级。这种情况可能发生,例如,第二上行物理信道承载的是半静态HARQ-ACK codebook(也称为type 1 HARQ-ACK codebook),由于半静态HARQ-ACK codebook的尺寸(size)必须是固定的,当没有PSSCH时,也会在codebook中的相应位置填充NACK占位,这个NACK将被认为具有最低的优先级。
又例如,对于配置授权(configured grant)或免调度传输(grant-free),终端设备在没有业务达到时,不会发送PSSCH,此时终端设备可以通过第二上行物理信道向基站上报ACK,表示不需要基站为其分配用于传输或重传的时频资源,这个ACK将 被认为具有最低的优先级。
在一些实施例中,所述边链路信息包括边链路信道状态信息(CSI),所述边链路发送的优先级为所述边链路信道状态信息的优先级。
例如,当sidelink信息包含sidelink CSI时,例如包含CQI、RI和PMI中的至少一个,sidelink信息的优先级是sidelink CSI的优先级。
在一些实施例中,所述边链路信息包括边链路信道状态信息(CSI)和边链路混合自动重传请求(HARQ)反馈的一个或多个比特,所述边链路发送的优先级为所述边链路信道状态信息和所述一个或多个比特的优先级中最高的优先级。
例如,当sidelink信息同时包含sidelink HARQ-ACK和sidelink CSI时,sidelink信息的优先级是sidelink HARQ-ACK和sidelink CSI中的最高的优先级。
在一些实施例中,第二集合内的上行发送的优先级是该第二集合内所包含的所有Uu物理信道和/或物理信号的最高的优先级。例如,这个优先级是第二集合内所有上行物理信道和/或信号所承载的逻辑信道的最高优先级。
在一些实施例中,第二上行物理信道的边链路发送的优先级是sidelink的优先级,第一上行物理信道/信号的优先级是Uu的优先级。
在一些实施例中,所述分配功率包括:按照优先级顺序为多个物理信道或信号分配功率,或者,为优先级最高的一个或多个物理信道或信号分配功率。
例如,当需要在一个上行载波上同时发送第二上行物理信道(SL-PUCCH/SL-PUSCH/SL-UL-PUCCH/SL-UL-PUSCH)和第一上行物理信道和/或信号(PRACH/PUCCH/PUSCH/SRS)时,终端设备可以按照上述实施例的方法确定功率分配优先级,并按照优先级从高到低的顺序进行功率分配。
再例如,当终端设备只能发送一个物理信道时,终端设备可以发送第二上行物理信道和第一集合所包含的上行物理信道/信号中优先级最高的一个。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备在边链路发送优先于上行发送的情况下,优先为至少承载边链路信息的第二上行物理信道分配功率。由此,终端设备向网络设备反馈信息时,能够保证功率分配的公平性,使得功率能够优先分配给需求最迫切或重要程度 最高的物理信道或物理信号。
第二方面的实施例
本申请实施例在第一方面的实施例的基础上进行说明。本申请实施例可以单独执行,也可以与第一方面的实施例结合起来;与第一方面的实施例相同的内容在此不再赘述。
图11是本申请实施例的数据复用方法的一示意图,如图11所示,该方法包括:
1101,终端设备在将边链路信息和上行信息复用到第二上行物理信道时,确定码率是否超过所允许的最大码率;
1102,在所述码率超过所允许的最大码率的情况下,确定所述边链路信息是否优先于所述上行信息;以及
1103,在所述边链路信息优先于所述上行信息的情况下,丢弃至少一部分所述上行信息;在所述边链路信息不优先于所述上行信息的情况下,丢弃至少一部分所述边链路信息。
值得注意的是,以上附图11仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图11的记载。
对于Uu链路,当终端设备需要同时上报多种类型的UCI(HARQ-ACK、SR、CSI),并且当UCI码率超过所允许的最大码率时,终端设备会根据优先级规则丢弃某些UCI,或者说在所有UCI中按照优先级从高到低的顺序选择一部分UCI发送。Uu丢弃UCI的方法例如可以参见Rel-15 NR标准TS 38.213V15.7.0的9.2.5节。此外,对于数据复用、码率、允许的最大码率等内容,可以参考相关技术,在此不再赘述。
在一些实施例中,当PUCCH或PUSCH既需要携带Uu信息,又需要携带sidelink信息时,即生成SL-UL-PUCCH或SL-UL-PUSCH时,当根据所有信息比特计算的码率超过所允许的最大码率时,需要丢弃一些信息,以保证码率在允许的最大码率范围内。
在一些实施例中,当sidelink信息优先于Uu信息时,首先丢弃Uu信息。对Uu信息的丢弃可以使用Uu相关技术,例如使用TS 38.213V15.7.0的9.2.5节方法。可以 丢弃全部或部分Uu信息。
例如,当Uu信息同时包含Uu HARQ-ACK和Uu CSI时,可以先丢弃Uu CSI信息;当Uu信息包含多个Uu CSI信息时,先丢弃优先级低的Uu CSI信息。
在一些实施例中,当sidelink信息不优先于Uu信息时,首先丢弃sidelink信息。可以丢弃全部或部分sidelink信息。
例如,当sidelink信息同时包含sidelink HARQ-ACK和sidelink CSI时,可以先丢弃sidelink CSI信息;当sidelink信息包含多个sidelink CSI信息时,先丢弃优先级低的sidelink CSI信息。
在一些实施例中,用于判断sidelink信息是否优先于Uu信息的参数至少包括sidelink信息的优先级和Uu信息的优先级之中的一个。本申请实施例中,根据语境不同,边链路发送的优先级有时也称为sidelink信息的优先级,上行发送的优先级有时也称为Uu信息的优先级。
作为一种实施方式,当sidelink信息的优先级大于第一优先级阈值时,认为sidelink信息优先于Uu信息,否则,认为sidelink信息不优先于Uu信息。
作为一种实施方式,当sidelink信息的优先级大于第一优先级阈值,并且Uu信息的优先级小于等于第二优先级阈值时,认为sidelink信息优先于Uu信息,否则,认为sidelink信息不优先于Uu信息。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备在码率超过所允许的最大码率的情况下,确定边链路信息是否优先于上行信息;以及在边链路信息优先于上行信息的情况下,丢弃至少一部分上行信息,在边链路信息不优先于上行信息的情况下,丢弃至少一部分边链路信息。由此,终端设备向网络设备反馈信息时,能够保证数据复用的公平性,使得需求最迫切或重要程度最高的数据被复用。
第三方面的实施例
本申请实施例在第一、二方面的实施例的基础上进行说明。本申请实施例可以单独执行,也可以与第一、二方面的实施例结合起来;与第一、二方面的实施例相同的 内容在此不再赘述。
在本申请实施例中,终端设备根据第二上行物理信道的边链路发送的优先级和一个或多个物理边链路反馈信道(PSFCH)的优先级,按照优先级从高到低的顺序分配功率。
图12是本申请实施例的发送信号的一示例图,如图12所示,终端设备(例如图11所示的UE 1)可能在一个上行载波上发送第二上行物理信道(SL-PUCCH/SL-PUSCH/SL-UL-PUCCH/SL-UL-PUSCH),同时需要在一个sidelink载波上发送PSFCH。该sidelink载波可以位于ITS频段,也可以是Uu的某一个上行载波,即与Uu共享载波,本申请对此不做限制。
如图12所示,例如基站调度UE 1在时隙n向基站发送携带sidelink HARQ-ACK的PUCCH,同时,UE 1需要在时隙n向UE 2发送PSFCH。例如UE 2工作在Mode 2,其自主决定PSSCH的发送时刻,也相当于自主决定了与PSSCH相关联的PSFCH的发送时刻,SL-PUCCH的发送时刻是基站决定的,由于基站与UE 2之间可能无法协调,因而无法避免UE 1发生图12所示的情况。
更广义地,UE 1可能需要同时发送第二上行物理信道和PSFCH。当UE 1需要同时发送第二物理信道和PSFCH时,根据第二上行物理信道的边链路发送的优先级和PSFCH的优先级,按照优先级从高到低的顺序进行功率分配。
在一些实施例中,功率分配也可以包括:当终端设备只能发送一个物理信道时,发送第二物理信道和PSFCH中优先级最高的一个。可以轻易扩展到终端设备发送第二上行物理信道和多个PSFCH情形,终端设备按照优先级从高到低的顺序分配功率。第二上行物理信道的边链路发送的优先级可以根据第一方面的实施例的方法确定。PSFCH的优先级使用可以使用相关技术的定义,即是PSFCH所关联的PSSCH的优先级。
由上述实施例可知,终端设备根据第二上行物理信道的边链路发送的优先级和一个或多个物理边链路反馈信道(PSFCH)的优先级,按照优先级从高到低的顺序分配功率,能够保证功率分配的公平性,使得功率能够优先分配给需求最迫切或重要程度最高的物理信道或物理信号。
第四方面的实施例
本申请实施例提供一种功率分配装置。该装置例如可以是终端设备(例如前述的终端设备),也可以是配置于终端设备的某个或某些部件或者组件,与第一至第三方面的实施例相同的内容不再赘述。
图13是本申请实施例的功率分配装置的一示意图。如图13所示,功率分配装置1300包括:
确定单元1301,其确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或第一上行物理信道/信号的发送;以及
分配单元1302,其在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
在本申请实施例中,所述第一上行物理信道/信号的发送(transmission)不承载边链路信息,所述第二上行物理信道至少承载边链路信息,所述第二上行物理信道、所述第一上行物理信道/信号以及所述边链路物理信道/信号在时间上存在重叠。
在一些实施例中,分配单元1302还用于:按照边链路的功率分配优先级为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
在一些实施例中,分配单元1302还用于:在所述第二上行物理信道未承载上行信息、且所述边链路发送不优先于所述上行发送的情况下,优先为所述第一上行物理信道/信号分配功率。
在一些实施例中,分配单元1302还用于:按照上行链路的功率分配优先级为所述第一上行物理信道/信号分配功率。
在一些实施例中,分配单元1302还用于:在所述第二上行物理信道还承载上行信息、且所述边链路发送不优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述第一上行物理信道/信号分配功率。
在一些实施例中,分配单元1302还用于:按照上行链路的功率分配优先级为所述第二上行物理信道和/或所述第一上行物理信道/信号分配功率。
在一些实施例中,用于确定所述边链路发送是否优先于所述上行发送的参数,至少包括所述边链路发送的优先级和/或所述上行发送的优先级。
在一些实施例中,确定单元1301在所述边链路发送的最高的优先级高于第一优 先级的情况下,确定所述边链路发送优先于所述上行发送;否则,确定所述边链路发送不优先于所述上行发送。
在一些实施例中,确定单元1301在所述边链路发送的最高的优先级高于第一优先级、且所述上行发送的最高的优先级低于或等于第二优先级的情况下,确定所述边链路发送优先于所述上行发送;否则,确定所述边链路发送不优先于所述上行发送。
在一些实施例中,所述第二上行物理信道承载的边链路信息包括边链路混合自动重传请求反馈的一个或多个比特,所述边链路发送的优先级为所述一个或多个比特的优先级中最高的优先级。
在一些实施例中,在所述比特具有关联的物理边链路共享信道的情况下,所述比特的优先级等于所述物理边链路共享信道的优先级;在所述比特不具有关联的物理边链路共享信道的情况下,所述比特具有最低的优先级。
在一些实施例中,所述第二上行物理信道承载的边链路信息包括边链路信道状态信息,所述边链路发送的优先级为所述边链路信道状态信息的优先级。
在一些实施例中,所述第二上行物理信道承载的边链路信息包括边链路信道状态信息和边链路混合自动重传请求反馈的一个或多个比特,所述边链路发送的优先级为所述边链路信道状态信息和所述一个或多个比特的优先级中最高的优先级。
在一些实施例中,所述第二上行物理信道为如下之一的信道:承载边链路信息的物理上行控制信道、承载边链路信息的物理上行共享信道、承载边链路信息和上行信息的物理上行控制信道、承载边链路信息和上行信息的物理上行共享信道。
在一些实施例中,确定单元1301还用于:在将边链路信息和上行信息复用到所述第二上行物理信道时,确定码率是否超过所允许的最大码率;在所述码率超过所允许的最大码率的情况下,确定所述边链路信息是否优先于所述上行信息;以及在所述边链路信息优先于所述上行信息的情况下,丢弃至少一部分所述上行信息。
在一些实施例中,确定单元1301还用于:在所述边链路信息不优先于所述上行信息的情况下,丢弃至少一部分所述边链路信息。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不 限于此。功率分配装置1300还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图13中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,终端设备在边链路发送优先于上行发送的情况下,优先为至少承载边链路信息的第二上行物理信道分配功率。由此,终端设备向网络设备反馈信息时,能够保证功率分配的公平性,使得功率能够优先分配给需求最迫切或重要程度最高的物理信道或物理信号。
第五方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一方面至第四方面的实施例相同的内容不再赘述。
在一些实施例中,通信系统100至少可以包括:
终端设备,其确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或第一上行物理信道/信号的发送;以及在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
在本申请实施例中,所述第一上行物理信道/信号的发送(transmission)不承载边链路信息,所述第二上行物理信道至少承载边链路信息,所述第二上行物理信道、所述第一上行物理信道/信号以及所述边链路物理信道/信号在时间上存在重叠。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图14是本申请实施例的网络设备的构成示意图。如图14所示,网络设备1400可以包括:处理器1410(例如中央处理器CPU)和存储器1420;存储器1420耦合到处理器1410。其中该存储器1420可存储各种数据;此外还存储信息处理的程序1430,并且在处理器1410的控制下执行该程序1430。
此外,如图14所示,网络设备1400还可以包括:收发机1440和天线1450等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1400也并不是必须要包括图14中所示的所有部件;此外,网络设备1400还可以包括图14中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图15是本申请实施例的终端设备的示意图。如图15所示,该终端设备1500可以包括处理器1510和存储器1520;存储器1520存储有数据和程序,并耦合到处理器1510。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器1510可以被配置为执行程序而实现如第一方面的实施例所述的功率分配方法。例如处理器1510可以被配置为进行如下的控制:确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或第一上行物理信道/信号的发送;以及在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
其中,所述第一上行物理信道/信号的发送(transmission)不承载边链路信息,所述第二上行物理信道至少承载边链路信息,所述第二上行物理信道、所述第一上行物理信道/信号以及所述边链路物理信道/信号在时间上存在重叠。
例如,处理器1510可以被配置为执行程序而实现如第二方面的实施例所述的数据复用方法。例如处理器1510可以被配置为进行如下的控制:在将边链路信息和上行信息复用到第二上行物理信道时,确定码率是否超过所允许的最大码率;在所述码率超过所允许的最大码率的情况下,确定所述边链路信息是否优先于所述上行信息;以及在所述边链路信息优先于所述上行信息的情况下,丢弃至少一部分所述上行信息。
如图15所示,该终端设备1500还可以包括:通信模块1530、输入单元1540、显示器1550、电源1560。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1500也并不是必须要包括图15中所示的所有部件,上述部件并不是必需的;此外,终端设备1500还可以包括图15中没有示出的部件,可以参 考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一、三方面的实施例所述的功率分配方法,或者第二方面的实施例所述的数据复用方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一、三方面的实施例所述的功率分配方法,或者第二方面的实施例所述的数据复用方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合, 例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1、一种功率分配方法,包括:
终端设备确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或第一上行物理信道/信号的发送;以及
在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
附记2、根据附记1所述的方法,其中,所述第一上行物理信道/信号的发送(transmission)不承载边链路信息,所述第二上行物理信道至少承载边链路信息,所述第二上行物理信道、所述第一上行物理信道/信号以及所述边链路物理信道/信号在时间上存在重叠。
附记3、根据附记1或2所述的方法,其中,所述方法还包括:
按照边链路的功率分配优先级为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
附记4、根据附记1或2所述的方法,其中,所述方法还包括:
在所述第二上行物理信道未承载上行信息、且所述边链路发送不优先于所述上行发送的情况下,优先为所述第一上行物理信道/信号分配功率
附记5、根据附记4所述的方法,其中,按照上行链路的功率分配优先级为所述第一上行物理信道/信号分配功率。
附记6、根据附记1或2所述的方法,其中,所述方法还包括:
在所述第二上行物理信道还承载上行信息、且所述边链路发送不优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述第一上行物理信道/信号分配 功率。
附记7、根据附记6所述的方法,其中,所述方法还包括:
按照上行链路的功率分配优先级为所述第二上行物理信道和/或所述第一上行物理信道/信号分配功率。
附记8、根据附记1至7任一项所述的方法,其中,用于确定所述边链路发送是否优先于所述上行发送的参数,至少包括所述边链路发送的优先级和/或所述上行发送的优先级。
附记9、根据附记1至8任一项所述的方法,其中,在所述边链路发送的最高的优先级高于第一优先级的情况下,确定所述边链路发送优先于所述上行发送;否则,确定所述边链路发送不优先于所述上行发送。
附记10、根据附记1至8任一项所述的方法,其中,在所述边链路发送的最高的优先级高于第一优先级、且所述上行发送的最高的优先级低于或等于第二优先级的情况下,确定所述边链路发送优先于所述上行发送;否则,确定所述边链路发送不优先于所述上行发送。
附记11、根据附记8至10任一项所述的方法,其中,所述第二上行物理信道承载的边链路信息包括边链路混合自动重传请求(HARQ)反馈的一个或多个比特,所述第二上行物理信道的边链路发送的优先级为所述一个或多个比特的优先级中最高的优先级。
附记12、根据附记11所述的方法,其中,在所述比特具有关联的物理边链路共享信道(PSSCH)的情况下,所述比特的优先级等于所述PSSCH的优先级;
在所述比特不具有关联的物理边链路共享信道(PSSCH)的情况下,所述比特具有最低的优先级。
附记13、根据附记8至10任一项所述的方法,其中,所述第二上行物理信道承载的边链路信息包括边链路信道状态信息(CSI),所述第二上行物理信道的边链路发送的优先级为所述边链路信道状态信息的优先级。
附记14、根据附记8至10任一项所述的方法,其中,所述第二上行物理信道承载的边链路信息包括边链路信道状态信息(CSI)和边链路混合自动重传请求(HARQ)反馈的一个或多个比特,所述第二上行物理信道的边链路发送的优先级为所述边链路信道状态信息和所述一个或多个比特的优先级中最高的优先级。
附记15、根据附记1至14任一项所述的方法,其中,所述第二上行物理信道为如下之一的信道:
承载边链路信息的物理上行控制信道(SL-PUCCH)、承载边链路信息的物理上行共享信道(SL-PUSCH)、承载边链路信息和上行信息(Uu信息)的物理上行控制信道(SL-UL-PUCCH)、承载边链路信息和上行信息(Uu信息)的物理上行共享信道(SL-UL-PUSCH)。
附记16、根据附记1至15任一项所述的方法,其中,所述方法还包括:
所述终端设备在将边链路信息和上行信息复用到所述第二上行物理信道时,确定码率是否超过所允许的最大码率;
在所述码率超过所允许的最大码率的情况下,确定所述边链路信息是否优先于所述上行信息;以及
在所述边链路信息优先于所述上行信息的情况下,丢弃至少一部分上行信息。
附记17、根据附记16所述的方法,其中,所述方法还包括:
在所述边链路信息不优先于所述上行信息的情况下,丢弃至少一部分边链路信息。
附记18、根据附记1至17任一项所述的方法,其中,所述分配功率包括:按照优先级顺序为多个物理信道或信号分配功率,或者,为优先级最高的一个或多个物理信道或信号分配功率。
附记19、一种数据复用方法,包括:
终端设备在将边链路信息和上行信息复用到第二上行物理信道时,确定码率是否超过所允许的最大码率;
在所述码率超过所允许的最大码率的情况下,确定所述边链路信息是否优先于所述上行信息;以及
在所述边链路信息优先于所述上行信息的情况下,丢弃至少一部分上行信息。
附记20、根据附记19所述的方法,其中,所述方法还包括:
在所述边链路信息不优先于所述上行信息的情况下,丢弃至少一部分边链路信息。
附记21、一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至18任一项所述的功率分配方法,或者如附记19或20所述的数据复用方法。

Claims (20)

  1. 一种功率分配装置,包括:
    确定单元,其确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或不承载边链路信息的第一上行物理信道/信号的发送;其中,所述第二上行物理信道至少承载边链路信息,所述第二上行物理信道、所述第一上行物理信道/信号以及所述边链路物理信道/信号在时间上存在重叠;以及
    分配单元,其在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
  2. 根据权利要求1所述的装置,其中,所述分配单元还用于:按照边链路的功率分配优先级为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
  3. 根据权利要求1所述的装置,其中,所述分配单元还用于:在所述第二上行物理信道未承载上行信息、且所述边链路发送不优先于所述上行发送的情况下,优先为所述第一上行物理信道/信号分配功率。
  4. 根据权利要求3所述的装置,其中,所述分配单元还用于:按照上行链路的功率分配优先级为所述第一上行物理信道/信号分配功率。
  5. 根据权利要求1所述的装置,其中,所述分配单元还用于:在所述第二上行物理信道还承载上行信息、且所述边链路发送不优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述第一上行物理信道/信号分配功率。
  6. 根据权利要求5所述的装置,其中,所述分配单元还用于:按照上行链路的功率分配优先级为所述第二上行物理信道和/或所述第一上行物理信道/信号分配功率。
  7. 根据权利要求1所述的装置,其中,用于确定所述边链路发送是否优先于所述上行发送的参数,至少包括所述边链路发送的优先级和/或所述上行发送的优先级。
  8. 根据权利要求7所述的装置,其中,所述确定单元在所述边链路发送的最高的优先级高于第一优先级的情况下,确定所述边链路发送优先于所述上行发送;否则,确定所述边链路发送不优先于所述上行发送。
  9. 根据权利要求7所述的装置,其中,所述确定单元在所述边链路发送的最高 的优先级高于第一优先级、且所述上行发送的最高的优先级低于或等于第二优先级的情况下,确定所述边链路发送优先于所述上行发送;否则,确定所述边链路发送不优先于所述上行发送。
  10. 根据权利要求7所述的装置,其中,所述第二上行物理信道承载的边链路信息包括边链路混合自动重传请求反馈的一个或多个比特,所述第二上行物理信道的边链路发送的优先级为所述一个或多个比特的优先级中最高的优先级。
  11. 根据权利要求10所述的装置,其中,在所述比特具有关联的物理边链路共享信道的情况下,所述比特的优先级等于所述物理边链路共享信道的优先级;在所述比特不具有关联的物理边链路共享信道的情况下,所述比特具有最低的优先级。
  12. 根据权利要求7所述的装置,其中,所述第二上行物理信道承载的边链路信息包括边链路信道状态信息,所述第二上行物理信道的边链路发送的优先级为所述边链路信道状态信息的优先级。
  13. 根据权利要求7所述的装置,其中,所述第二上行物理信道承载的边链路信息包括边链路信道状态信息和边链路混合自动重传请求反馈的一个或多个比特,所述第二上行物理信道的边链路发送的优先级为所述边链路信道状态信息和所述一个或多个比特的优先级中最高的优先级。
  14. 根据权利要求1所述的装置,其中,所述第二上行物理信道为如下之一的信道:承载边链路信息的物理上行控制信道、承载边链路信息的物理上行共享信道、承载边链路信息和上行信息的物理上行控制信道、承载边链路信息和上行信息的物理上行共享信道。
  15. 根据权利要求1所述的装置,其中,所述确定单元还用于:
    在将边链路信息和上行信息复用到所述第二上行物理信道时,确定码率是否超过所允许的最大码率;在所述码率超过所允许的最大码率的情况下,确定所述边链路信息是否优先于所述上行信息;以及在所述边链路信息优先于所述上行信息的情况下,丢弃至少一部分所述上行信息。
  16. 根据权利要求15所述的装置,其中,所述确定单元还用于:
    在所述边链路信息不优先于所述上行信息的情况下,丢弃至少一部分所述边链路信息。
  17. 一种功率分配方法,包括:
    终端设备确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或不承载边链路信息的第一上行物理信道/信号的发送;其中,所述第二上行物理信道至少承载边链路信息,所述第二上行物理信道、所述第一上行物理信道/信号以及所述边链路物理信道/信号在时间上存在重叠;以及
    在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
  18. 根据权利要求17所述的方法,其中,所述方法还包括:
    按照边链路的功率分配优先级为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
  19. 根据权利要求17所述的方法,其中,所述方法还包括:
    在所述第二上行物理信道未承载上行信息、且所述边链路发送不优先于所述上行发送的情况下,优先为所述第一上行物理信道/信号分配功率;
    或者,在所述第二上行物理信道还承载上行信息、且所述边链路发送不优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述第一上行物理信道/信号分配功率。
  20. 一种通信系统,包括:
    终端设备,其确定边链路发送是否优先于上行发送,其中所述边链路发送包括第二上行物理信道承载的边链路信息的发送和/或边链路物理信道/信号的发送,所述上行发送包括所述第二上行物理信道承载的上行信息的发送和/或不承载边链路信息的第一上行物理信道/信号的发送;其中,所述第二上行物理信道至少承载边链路信息,所述第二上行物理信道、所述第一上行物理信道/信号以及所述边链路物理信道/信号在时间上存在重叠;以及在所述边链路发送优先于所述上行发送的情况下,优先为所述第二上行物理信道和/或所述边链路物理信道/信号分配功率。
PCT/CN2019/116614 2019-11-08 2019-11-08 功率分配方法以及装置 WO2021087955A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022525141A JP7400964B2 (ja) 2019-11-08 2019-11-08 電力割り当て方法及び装置
PCT/CN2019/116614 WO2021087955A1 (zh) 2019-11-08 2019-11-08 功率分配方法以及装置
CN201980101543.3A CN114586456A (zh) 2019-11-08 2019-11-08 功率分配方法以及装置
US17/731,495 US20220256470A1 (en) 2019-11-08 2022-04-28 Power allocation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116614 WO2021087955A1 (zh) 2019-11-08 2019-11-08 功率分配方法以及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/731,495 Continuation US20220256470A1 (en) 2019-11-08 2022-04-28 Power allocation method and apparatus

Publications (1)

Publication Number Publication Date
WO2021087955A1 true WO2021087955A1 (zh) 2021-05-14

Family

ID=75849243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116614 WO2021087955A1 (zh) 2019-11-08 2019-11-08 功率分配方法以及装置

Country Status (4)

Country Link
US (1) US20220256470A1 (zh)
JP (1) JP7400964B2 (zh)
CN (1) CN114586456A (zh)
WO (1) WO2021087955A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385763A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 一种信号发送、配置优先级的方法及设备
US11653375B2 (en) * 2021-01-22 2023-05-16 Qualcomm Incorporated Transmit power adjustment for full duplex feedback
US20230379954A1 (en) * 2022-05-17 2023-11-23 Qualcomm Incorporated Sidelink channel state information reporting for multiple remote user equipments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074876A1 (en) * 2016-10-20 2018-04-26 Lg Electronics Inc. Method for performing sidelink transmission prioritized over the uplink transmission in wireless communication system and a device therefor
CN108696935A (zh) * 2017-04-11 2018-10-23 中国移动通信有限公司研究院 一种v2x资源配置方法、装置和相关设备
CN108696896A (zh) * 2017-04-12 2018-10-23 中国移动通信有限公司研究院 一种服务质量控制方法及装置
CN109314841A (zh) * 2016-07-18 2019-02-05 松下电器(美国)知识产权公司 对v2x传输的服务质量的改进的支持

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889157B (zh) 2016-09-30 2023-07-28 北京三星通信技术研究有限公司 功率控制的方法及设备
EP4027732B1 (en) * 2019-10-06 2024-09-11 LG Electronics Inc. Method and device for determining priority of ul transmission in nr v2x
CN110856192B (zh) * 2019-11-07 2022-12-09 展讯通信(上海)有限公司 传输处理方法及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314841A (zh) * 2016-07-18 2019-02-05 松下电器(美国)知识产权公司 对v2x传输的服务质量的改进的支持
WO2018074876A1 (en) * 2016-10-20 2018-04-26 Lg Electronics Inc. Method for performing sidelink transmission prioritized over the uplink transmission in wireless communication system and a device therefor
CN108696935A (zh) * 2017-04-11 2018-10-23 中国移动通信有限公司研究院 一种v2x资源配置方法、装置和相关设备
CN108696896A (zh) * 2017-04-12 2018-10-23 中国移动通信有限公司研究院 一种服务质量控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO (RAPPORTEUR): "Summary of [106#77] UL/SL prioritization", 3GPP DRAFT; R2-1908717 - SUMMARY OF [106#77] V2X PRIORITISATION (OPPO)_V1.0, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051766539 *

Also Published As

Publication number Publication date
US20220256470A1 (en) 2022-08-11
JP7400964B2 (ja) 2023-12-19
CN114586456A (zh) 2022-06-03
JP2022554261A (ja) 2022-12-28

Similar Documents

Publication Publication Date Title
US20210218511A1 (en) Methods and apparatuses for transmitting and receiving sidelink information
US12052720B2 (en) Uplink control information collision handling
WO2021007685A1 (zh) 用于传输侧行数据的方法、终端设备和网络设备
WO2020177218A1 (zh) 传输侧行链路数据的方法和终端设备
US20220159667A1 (en) Signal transmission and reception methods and apparatus
WO2020248101A1 (zh) 上报csi的方法和终端设备
WO2021087955A1 (zh) 功率分配方法以及装置
WO2021062866A1 (zh) 无线通信方法和终端设备
WO2021204218A1 (zh) 一种harq信息传输方法及装置
US11729819B2 (en) Method and device for determining contention window
CN114342535B (zh) 上行信号的发送和接收方法以及装置
WO2019213968A1 (zh) 上行信道的发送方法和终端设备
US20230026327A1 (en) Sidelink transmission method and apparatus
WO2021203347A1 (zh) 边链路发送和接收方法以及装置
WO2021026841A1 (zh) 调度请求传输的方法和设备
CN115088329A (zh) 信息发送和接收的方法及装置
WO2019192500A1 (zh) 通信方法和通信装置
WO2021226972A1 (zh) 边链路反馈信息的发送和接收方法以及装置
WO2022027426A1 (zh) 资源上报和资源选择方法以及装置
WO2024031696A1 (zh) 信道状态信息的上报方法和装置
WO2023065151A1 (zh) 边链路反馈信息的发送和接收方法以及装置
WO2022151236A1 (zh) 资源确定方法、装置、设备及存储介质
WO2021087926A1 (zh) 上行信号的发送和接收方法以及装置
WO2020155183A1 (zh) 无线通信方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951687

Country of ref document: EP

Kind code of ref document: A1