WO2021159381A1 - 上行信号处理方法、装置和系统 - Google Patents

上行信号处理方法、装置和系统 Download PDF

Info

Publication number
WO2021159381A1
WO2021159381A1 PCT/CN2020/075059 CN2020075059W WO2021159381A1 WO 2021159381 A1 WO2021159381 A1 WO 2021159381A1 CN 2020075059 W CN2020075059 W CN 2020075059W WO 2021159381 A1 WO2021159381 A1 WO 2021159381A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
uplink
data signal
indication information
control signal
Prior art date
Application number
PCT/CN2020/075059
Other languages
English (en)
French (fr)
Inventor
陈哲
宋磊
蒋琴艳
张磊
王昕�
Original Assignee
富士通株式会社
陈哲
宋磊
蒋琴艳
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 陈哲, 宋磊, 蒋琴艳, 张磊, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2020/075059 priority Critical patent/WO2021159381A1/zh
Publication of WO2021159381A1 publication Critical patent/WO2021159381A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communications.
  • embodiments of the present application provide an uplink signal processing method, device, and system to enhance the uplink signal transmission mechanism.
  • an uplink signal processing method wherein the method includes:
  • the terminal device receives the first indication information and the second indication information, the first indication information indicating uplink data signal transmission, and the second indication information indicating more than one uplink control signal transmission; wherein, the uplink data signal corresponds to The time domain resource overlaps with the time domain resource corresponding to each uplink control signal in the more than one uplink control signal; and, each uplink control signal in the more than one uplink control signal corresponds to The length of the time unit is less than 14 symbols respectively; the more than one uplink control signal includes the same type of uplink control information (UCI); the time domain corresponding to each uplink control signal of the more than one uplink control signal Resources correspond to different time units;
  • UCI uplink control information
  • the terminal device performs one of the following processing:
  • the terminal device Sending, by the terminal device, the uplink data signal where the uplink data signal multiplexes at least one uplink control information included in the uplink control signal, and does not send the more than one uplink control signal;
  • the terminal device sends the more than one uplink control signal, and does not send the uplink data signal;
  • the terminal device regards the reception of the first indication information and the second indication information as an error.
  • an uplink signal processing device which is configured in a terminal device, wherein the device includes:
  • a receiving unit which receives first indication information and second indication information, the first indication information indicating uplink data signal transmission, and the second indication information indicating more than one uplink control signal transmission; wherein, the uplink data signal is sent
  • the corresponding time domain resource overlaps with the time domain resource corresponding to each uplink control signal in the more than one uplink control signal; and, for each uplink control signal in the more than one uplink control signal, so The length of the corresponding time unit is less than 14 symbols respectively;
  • the more than one uplink control signal includes the same type of uplink control information (UCI); each uplink control signal of the more than one uplink control signal corresponds to Time domain resources correspond to different time units;
  • UCI uplink control information
  • Processing unit which performs one of the following processing:
  • the uplink data signal multiplexes at least one uplink control information included in the uplink control signal, and does not send the more than one uplink control signal;
  • the reception of the first indication information and the second indication information is regarded as an error.
  • an uplink signal receiving method wherein the method includes:
  • the network device sends first indication information and second indication information to the terminal device, where the first indication information indicates uplink data signal transmission, and the second indication information indicates more than one uplink control signal transmission, wherein the uplink data signal
  • the corresponding time domain resource overlaps with the time domain resource corresponding to each uplink control signal in the more than one uplink control signal, and each uplink control signal in the more than one uplink control signal is The length of the corresponding time unit is respectively less than 14 symbols, the more than one uplink control signal includes the same type of uplink control information (UCI), and each uplink control signal of the more than one uplink control signal corresponds to Time domain resources correspond to different time units;
  • UCI uplink control information
  • the network device receives an uplink control signal and/or an uplink data signal sent by the terminal device, where the uplink data signal multiplexes at least one uplink control information included in the uplink control signal.
  • an uplink signal receiving device which is configured in a network device, wherein the device includes:
  • a sending unit which sends first indication information and second indication information to the terminal device, the first indication information indicating uplink data signal transmission, and the second indication information indicating more than one uplink control signal transmission, wherein the uplink
  • the time domain resource corresponding to the data signal overlaps with the time domain resource corresponding to each uplink control signal in the more than one uplink control signal, and each uplink control signal in the more than one uplink control signal
  • the length of the time unit corresponding to the signal is less than 14 symbols
  • the more than one uplink control signal includes the same type of uplink control information (UCI), and each uplink control signal of the more than one uplink control signal
  • the corresponding time domain resources correspond to different time units respectively;
  • a receiving unit which receives an uplink control signal and/or an uplink data signal sent by the terminal device, where the uplink data signal multiplexes at least one uplink control information included in the uplink control signal.
  • an uplink signal processing method wherein the method includes:
  • the terminal device receives indication information, the indication information instructs the transmission of an uplink data signal, the indication information includes a Downlink Assignment Index (DAI, Downlink Assignment Index) field, and the uplink data signal includes at least one type multiplexed with HARQ-ACK information B PUSCH repetition;
  • DAI Downlink Assignment Index
  • the terminal device performs one of the following processing:
  • the DAI field is applicable to all or any type B PUSCH repetition multiplexed with the HARQ-ACK information
  • the reception of the instruction information is regarded as an error.
  • an uplink signal processing device which is configured in a terminal device, wherein the device includes:
  • a receiving unit which receives indication information, the indication information indicating uplink data signal transmission, the indication information includes a Downlink Assignment Index (DAI, Downlink Assignment Index) field, and the uplink data signal includes at least one HARQ-ACK information multiplexed Type B PUSCH repetition;
  • DAI Downlink Assignment Index
  • Processing unit which performs one of the following processing:
  • the DAI field is applicable to all or any type B PUSCH repetition multiplexed with the HARQ-ACK information
  • the reception of the instruction information is regarded as an error.
  • an uplink signal receiving method wherein the method includes:
  • the network device sends instruction information to the terminal device, the instruction information instructs the transmission of an uplink data signal, the uplink data signal includes at least one type B PUSCH repetition multiplexed with HARQ-ACK information, and the instruction information includes a downlink allocation index (DAI). , Downlink Assignment Index) field, the DAI field is applicable to all or any type B PUSCH repetition where the HARQ-ACK information is multiplexed, or the DAI field is applicable to the first repetition in the time domain where the HARQ-ACK information is multiplexed.
  • DAI downlink allocation index
  • the network device receives the uplink data signal sent by the terminal device.
  • an uplink signal receiving device which is configured in a network device, wherein the device includes:
  • a sending unit which sends instruction information to the terminal device, the instruction information instructs uplink data signal transmission, the uplink data signal includes at least one type B PUSCH repetition multiplexed with HARQ-ACK information, and the instruction information includes a downlink allocation index (DAI, Downlink Assignment Index) field, the DAI field is applicable to all or any type B PUSCH repetition where the HARQ-ACK information is multiplexed, or the DAI field is applicable to the first multiplexing in the time domain
  • DAI Downlink allocation index
  • a receiving unit which receives the uplink data signal sent by the terminal device.
  • an uplink signal processing method wherein the method includes:
  • the terminal device receives first indication information and second indication information, where the first indication information indicates the transmission of an uplink data signal corresponding to more than one type B PUSCH repetition, and the second indication information indicates the uplink control corresponding to the number of repetitions greater than 1. Signal transmission, and the time domain resource corresponding to the uplink data signal overlaps with the time domain resource corresponding to the uplink control signal;
  • the terminal device performs one of the following processing:
  • the terminal device sends the uplink control signal, and does not send all or part of the uplink data signal;
  • the terminal device regards the reception of the first indication information and the second indication information as an error.
  • an uplink signal processing device which is configured in a terminal device, wherein the device includes:
  • a receiving unit which receives first indication information and second indication information, where the first indication information indicates the transmission of an uplink data signal corresponding to more than one type B PUSCH repetition, and the second indication information indicates that the corresponding repetition number is greater than 1.
  • Processing unit which performs one of the following processing:
  • the terminal device regards the reception of the first indication information and the second indication information as an error.
  • an uplink signal receiving method wherein the method includes:
  • the network device sends first indication information and second indication information to the terminal device, where the first indication information indicates the sending of uplink data signals corresponding to more than one type B PUSCH repetition, and the second indication information indicates that the corresponding number of repetitions is greater than 1.
  • the uplink control signal is sent in the uplink control signal, and the time domain resource corresponding to the uplink data signal overlaps the time domain resource corresponding to the uplink control signal;
  • the network device receives the uplink data signal and/or the uplink control signal sent by the terminal device.
  • an uplink signal receiving device which is configured in a network device, wherein the device includes:
  • a sending unit that sends first indication information and second indication information to the terminal device, where the first indication information indicates the sending of an uplink data signal corresponding to more than one type B PUSCH repetition, and the second indication information indicates the corresponding number of repetitions Sending an uplink control signal greater than 1, and the time domain resource corresponding to the uplink data signal overlaps with the time domain resource corresponding to the uplink control signal;
  • the receiving unit receives the uplink data signal and/or the uplink control signal sent by the terminal device.
  • One of the beneficial effects of the embodiments of the present application is that according to the embodiments of the present application, the transmission mechanism of uplink signals can be enhanced.
  • Figure 1 is a schematic diagram of a way of dividing time slots
  • Figure 2 is a schematic diagram of another way of dividing time slots
  • Figure 3 is a schematic diagram of Type B PUSCH repetition
  • Figure 4 is another schematic diagram of Type B PUSCH repetition
  • Figure 5 is another schematic diagram of Type B PUSCH repetition
  • FIG. 6 is a schematic diagram of an uplink signal processing method according to an embodiment of the first aspect of the present application.
  • Figures 7a and 7b are schematic diagrams of uplink data signals and uplink control signals in a time slot
  • 8a and 8b are another schematic diagrams of an uplink data signal and an uplink control signal in a time slot
  • FIG. 9 is a schematic diagram of an uplink signal receiving method according to an embodiment of the second aspect of the present application.
  • FIG. 10 is a schematic diagram of an uplink signal processing method according to an embodiment of the third aspect of the present application.
  • Figure 11 is a schematic diagram of an uplink data signal in a time slot
  • Figure 12 is another schematic diagram of an uplink data signal in a time slot
  • FIG. 13 is a schematic diagram of an uplink signal receiving method according to an embodiment of the fourth aspect of the present application.
  • FIG. 14 is a schematic diagram of an uplink signal processing method according to an embodiment of the fifth aspect of the present application.
  • 15 is another schematic diagram of uplink data signals and uplink control signals in a time slot
  • FIG. 16 is a schematic diagram of an uplink signal receiving method according to an embodiment of the sixth aspect of the present application.
  • FIG. 17 is a schematic diagram of an uplink signal processing apparatus according to an embodiment of the seventh aspect of the present application.
  • FIG. 18 is another schematic diagram of the uplink signal processing apparatus of the embodiment of the seventh aspect of the present application.
  • FIG. 19 is still another schematic diagram of the uplink signal processing apparatus of the embodiment of the seventh aspect of the present application.
  • FIG. 20 is a schematic diagram of an uplink signal receiving apparatus according to an embodiment of the eighth aspect of the present application.
  • FIG. 21 is another schematic diagram of the uplink signal receiving apparatus of the embodiment of the eighth aspect of the present application.
  • FIG. 22 is still another schematic diagram of the uplink signal receiving apparatus of the embodiment of the eighth aspect of the present application.
  • FIG. 23 is a schematic diagram of a communication system according to an embodiment of the ninth aspect of the present application.
  • FIG. 24 is a schematic diagram of a terminal device according to an embodiment of the ninth aspect of the present application.
  • FIG. 25 is a schematic diagram of a network device according to an embodiment of the ninth aspect of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the terms, but they do not indicate the spatial arrangement or chronological order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” can refer to a network that meets any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • 4.5G future 5G
  • New Radio NR, New Radio
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay), or low-power node (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be referred to as "Terminal Equipment” (TE, Terminal Equipment).
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, user, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc. Wait.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, In-vehicle communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • time slot/sub-time slot refers to the time slot or sub-time slot used by the uplink signal as a reference or corresponding (with reference to/associated), or " Upstream time slot/sub time slot”.
  • symbol refers to an uplink signal used as a reference or corresponding (with reference to/associated) symbol, or it is an "uplink symbol”.
  • subslot-based uplink signal transmission means that the terminal device transmits an uplink signal in a certain subslot according to corresponding indication information.
  • an uplink signal is sent in a sub-slot means that at least the start symbol of the uplink signal is in the sub-slot. Either the start symbol to the end symbol of the uplink signal are in the sub-slot; or the start symbol of the uplink signal is in the sub-slot, and the end symbol of the uplink signal is not in the sub-slot (In the subsequent sub-slots).
  • the former both the start and end symbols of the uplink signal are in the same sub-slot is taken as an example for description.
  • the time domain length of the sub-slot is less than 14 symbols.
  • the terminal device receives the configuration information (for example, subslotLengthForPUCCH) sent by the network device.
  • the configuration information indicates the length of the sub-slot corresponding to the uplink signal (for example, PUCCH feedback) based on the sub-slot.
  • the length unit is a symbol.
  • the length of the sub-slot indicated by the indication information can be 7 symbols or 2 symbols.
  • Fig. 1 is a schematic diagram of a division method of a time slot (corresponding to a sub-slot length of 7 symbols). As shown in Fig. 1, a 14-symbol time slot is divided into two 7-symbol sub-slots.
  • the uplink signal #1 is sent in the sub-slot #0, and the uplink signal #2 is sent in the sub-slot #1.
  • Fig. 2 is a schematic diagram of another way of dividing a time slot (corresponding to the length of a sub-slot of 2 symbols). As shown in Fig. 2, a 14-symbol time slot is divided into seven 2-symbol sub-slots. Among them, the uplink signal #1 is sent in the sub-slot #1, and the uplink signal #2 is sent in the sub-slot #4.
  • NR New Radio introduces a more flexible PUSCH repetition (uplink shared channel repetition) method.
  • This method can make the minimum time domain interval between adjacent PUSCH repetitions 0 symbols, which is called type B PUSCH repetition or PUSCH repetition type B.
  • the indication information corresponding to Type B PUSCH repetition includes at least one of the following:
  • the length corresponding to the PUSCH or can be understood as the length of a single PUSCH repetition, and the unit of the length is a symbol;
  • Invalid symbol(s) pattern (pattern of invalid symbol) can also be understood as the time domain position of the invalid symbol.
  • Fig. 3 is a schematic diagram of Type B PUSCH repetition. As shown in Fig. 3, when a terminal device receives a PUSCH transmission instruction, it transmits a corresponding PUSCH. Wherein, the PUSCH indication includes:
  • the start symbol of the first repetition of the PUSCH is the third symbol
  • the time domain length L of the PUSCH is 2 symbols, and the length can be considered as a nominal length, that is, when actually sent, the actual sent length may be equal to or less than the nominal length;
  • the number of repetitions of the PUSCH is 4, and the number of repetitions can be considered as the nominal number of repetitions, that is, the actual number of repetitions may not be equal to the nominal number of repetitions.
  • PUSCH transmission actually corresponds to four types of type B PUSCH repetition, which are respectively denoted as PUSCH#rep1, PUSCH#rep2, PUSCH#rep3, PUSCH#rep4.
  • Fig. 4 is another schematic diagram of Type B PUSCH repetition. As shown in Fig. 4, when a terminal device receives a PUSCH transmission instruction, it transmits a corresponding PUSCH. Wherein, the PUSCH indication includes:
  • the start symbol of the first repetition of the PUSCH is the 7th symbol
  • the time domain length L of the PUSCH is 5 symbols, and the length can be considered as a nominal length, that is, when actually transmitted, the length may be equal to or less than the length;
  • the number of repetitions of the PUSCH is 3, the number of repetitions can be considered as the number of nominal (nominal) repetitions, that is, the actual number of repetitions may not be equal to the number of repetitions;
  • PUSCH transmission actually corresponds to 4 types of type B PUSCH repetitions, which are respectively denoted as PUSCH#rep1, PUSCH#rep2, PUSCH#rep3, PUSCH#rep4.
  • the actual number of repetitions is greater than the nominal number of repetitions.
  • the reason is: the second nominal PUSCH repetition, because it crosses the boundary of the time slot, is split into two actual repetitions, namely: PUSCH#rep2, PUSCH#rep3.
  • Fig. 5 is another schematic diagram of Type B PUSCH repetition. As shown in Fig. 5, when a terminal device receives a PUSCH transmission instruction, it transmits a corresponding PUSCH. Wherein, the PUSCH indication includes:
  • the start symbol of the first repetition of the PUSCH is the 7th symbol
  • the time domain length L of the PUSCH is 5 symbols, and the length can be considered as a nominal length, that is, when actually transmitted, the length may be equal to or less than the length;
  • the number of repetitions of the PUSCH is 3, the number of repetitions can be considered as the number of nominal (nominal) repetitions, that is, the actual number of repetitions may not be equal to the number of repetitions;
  • Invalid symbol is: the last symbol of slot #0 and the third symbol of slot #1.
  • PUSCH transmission actually corresponds to four types of type B PUSCH repetition, which are respectively denoted as PUSCH#rep1, PUSCH#rep2, PUSCH#rep3, PUSCH#rep4.
  • the actual number of repetitions is greater than the nominal number of repetitions.
  • the reason is: the second nominal PUSCH repetition, because it crosses the boundary of the time slot, splits into two actual repetitions, namely: PUSCH#rep2, PUSCH#rep3.
  • the last symbol of slot #0 and the third symbol of slot #1 cannot be used to transmit PUSCH, so the time domain length of PUSCH#rep2 and PUSCH#rep3 are compared with the example in Fig. 4 Shorter.
  • uplink signals may have the same priority or may have different priorities.
  • PUCCH uplink control signals
  • the uplink signal processing method of the embodiment of the first aspect of the present application is proposed, so that the UE can correctly transmit the corresponding uplink signal when receiving the foregoing scheduling instruction.
  • FIG. 6 is a schematic diagram of an uplink signal processing method according to an embodiment of the present application. Please refer to FIG. 6.
  • the method includes:
  • a terminal device receives first indication information and second indication information, where the first indication information indicates transmission of an uplink data signal, and the second indication information indicates transmission of more than one uplink control signal;
  • the uplink data signal corresponds to The time domain resource overlaps with the time domain resource corresponding to each uplink control signal in the more than one uplink control signal; and, the time unit corresponding to each uplink control signal in the more than one uplink control signal
  • the length of each uplink control signal is less than 14 symbols;
  • the more than one uplink control signal includes the same type of uplink control information (UCI); the time domain resources corresponding to each uplink control signal of the more than one uplink control signal are respectively Corresponding to different time units;
  • UCI uplink control information
  • the terminal device performs one of the following processes: the terminal device sends the uplink data signal, and the uplink data signal is multiplexed with at least one uplink control signal included in the uplink control signal Information, and does not send the more than one uplink control signal; the terminal device sends the more than one uplink control signal, and does not send the uplink data signal; the terminal device will respond to the first indication information and The reception of the second indication information is regarded as an error.
  • the terminal device when the terminal device receives the foregoing first instruction information and the second instruction, it transmits the uplink data signal multiplexed with the uplink control information included in the uplink control signal without sending the uplink control signal , Either the uplink control signal is sent but the uplink data signal is not sent, or the reception of the above-mentioned first indication information and the second indication information is regarded as an error.
  • the corresponding uplink signal can be transmitted correctly, and the transmission mechanism of the uplink signal is enhanced.
  • the above-mentioned uplink data signal is, for example, a PUSCH, or a signal carried by a PUSCH, or the uplink data signal corresponds to a nominal type B PUSCH repetition, or the uplink data signal corresponds to an actual type B PUSCH repetition:
  • the above-mentioned uplink control signal is, for example, the PUCCH or a signal carried by the PUCCH, and this application is not limited to this.
  • partial overlap refers to: complete overlap or partial overlap.
  • partial overlap can be understood as the overlapping part of the time domain resources of the two signals has at least one symbol.
  • the subcarrier spacing (SCS) corresponding to the above more than one uplink control signal is the same, and the subcarrier spacing of the above uplink data signal is greater than or equal to the subcarrier spacing of the above more than one uplink control signal. Carrier spacing.
  • the above-mentioned uplink control information may be HARQ-ACK information, or SR information, or CSI information, or any combination of the foregoing, and the present application is not limited to this.
  • the terminal device does not send the above-mentioned more than one uplink control signal, but sends the above-mentioned uplink data signal, and the uplink data signal multiplexes the uplink corresponding to the above-mentioned more than one uplink control signal. Control information. Therefore, multiplexing the UCI carried by all PUCCHs with the PUSCH can avoid discarding a part of UCI and ensure system performance.
  • the sequence of the bits corresponding to the uplink control information during multiplexing is the same as the sequence of the time domain resources corresponding to the uplink control signal corresponding to the uplink control information. That is, for UCIs of the same type, the sequence of the UCI bits during multiplexing is determined according to the sequence of the corresponding PUCCH in the time domain.
  • the terminal device does not send the above-mentioned more than one uplink control signal, but sends the above-mentioned uplink data signal.
  • the uplink data signal is multiplexed with the above-mentioned more than one uplink control signal.
  • the uplink control information included in the uplink control signal is, for UCIs of the same type, the PUSCH only multiplexes the UCI corresponding to the PUCCH with the earliest time domain resource among the more than one PUCCH. As a result, only a part of the UCI (the most urgent) is put into the PUSCH, which reduces the demand for UE processing capacity and reduces the cost. At the same time, it can keep a part of the UCI as much as possible to avoid discarding a part of the UCI and ensure system performance. .
  • the terminal device does not send the above-mentioned uplink data signal, but sends the above-mentioned more than one uplink control signal. Therefore, since PUSCH does not need to be sent, each PUCCH can be sent in the indicated sub-slot, thereby reducing the time delay of control information.
  • the terminal device may regard the reception of the first indication information and the second indication information as an error, that is, the terminal device does not expect to receive the above-mentioned first indication information and the above-mentioned second indication. information. Therefore, when the terminal device receives the above-mentioned first indication information and the above-mentioned second indication information, this situation is regarded as an error case. In this case, the terminal device may or may not send the corresponding uplink signal, and the Therefore, the demand for the processing capacity of the terminal device can be reduced, and the production cost can be reduced.
  • Figures 7a and 7b are schematic diagrams of uplink data signal (PUSCH) and uplink control signal (PUCCH) in a time slot.
  • PUSCH uplink data signal
  • PUCCH uplink control signal
  • a 14-symbol slot is divided into 7 2-symbol sub-slots.
  • PUCCH#1 is sent in sub-slot #1
  • PUCCH#2 is sent in sub-slot #3
  • PUCCH#3 is sent in sub-slot #4.
  • UCI information contained in each PUCCH a situation is shown in Figure 7a.
  • PUCCH#1, PUCCH#2, and PUCCH#3 respectively include HARQ-ACK information (or SR information, or the same type of CSI-RS). Information); in another case, as shown in Figure 7b, PUCCH#1 and PUCCH#2 respectively contain HARQ-ACK information (it may also contain SR information or CSI-RS information of the same type).
  • the UE does not send PUCCH#1+PUCCH#2+PUCCH#3, and the UE sends PUSCH#1.
  • PUSCH#1 includes HARQ-ACK information of all PUCCHs that overlap with PUSCH#1, that is, (if any) HARQ-ACK information bits of PUCCH#1, PUCCH#2, and PUCCH#3.
  • the sequence of UCI bits during multiplexing can be determined according to the sequence of PUCCH time domain resources.
  • the order of HARQ-ACK information bits is: (if it exists) PUCCH#1 Corresponding HARQ-ACK information bit ⁇ (if present) HARQ-ACK information bit corresponding to PUCCH#2 ⁇ (if present) HARQ-ACK information bit corresponding to PUCCH#3.
  • the UE does not send PUCCH#1+PUCCH#2+PUCCH#3, and the UE sends PUSCH#1.
  • PUSCH#1 includes HARQ-ACK information of the earliest PUCCH overlapping with PUSCH#1.
  • the earliest PUCCH including HARQ-ACK UCI in the time domain can be determined according to the sequence of PUCCH time domain resources. For example, since the time domain sequence corresponding to PUCCH is: PUCCH#1 ⁇ PUCCH#2 ⁇ PUCCH#3, in PUSCH#1, the earliest PUCCH that includes HARQ-ACK information is PUCCH#1.
  • PUSCH#1 includes HARQ-ACK information corresponding to PUCCH#1.
  • the UE does not send PUSCH#1, and the UE sends PUCCH#1+PUCCH#2+PUCCH#3.
  • the UE regards the above situation as an error case. That is to say, a UE does not expect: receiving indication information for PUSCH transmission; receiving indication information for sending more than one PUCCH; time domain resources corresponding to the PUSCH and the more than one PUCCH The time domain resources corresponding to each PUCCH overlap; the time unit corresponding to the PUCCH is less than 14 symbols; the more than one PUCCH includes the same type of UCI; the time domain resources corresponding to the more than one PUCCH respectively Corresponding to different time units.
  • the previous example is based on the above-mentioned more than one uplink control signal that all satisfy the UCI multiplexing condition, that is, the more than one uplink control signal indicated by the second indication information is different from the first indication information.
  • the indicated uplink data signal satisfies an uplink control information (UCI) multiplexing condition (condition).
  • UCI uplink control information
  • condition of UCI multiplexing is, for example, the timeline requirement of UCI multiplexing.
  • Figures 8a and 8b are another schematic diagrams of an uplink data signal (PUSCH) and an uplink control signal (PUCCH) in a time slot.
  • PUSCH uplink data signal
  • PUCCH uplink control signal
  • a 14-symbol slot is divided into 7 2-symbol sub-slots.
  • PUCCH#1 is sent in sub-slot #1
  • PUCCH#2 is sent in sub-slot #3
  • PUCCH#3 is sent in sub-slot #4
  • PUCCH#4 is sent in sub-slot #5.
  • PUCCH#1 and PUSCH#1 do not meet the conditions of UCI multiplexing.
  • PUCCH#2, PUCCH#3, PUCCH#4 and PUSCH#1 meet UCI multiplexing conditions.
  • UCI information contained in each PUCCH a situation is shown in Figure 8a.
  • PUCCH#1, PUCCH#2, PUCCH#3, and PUCCH#4 respectively include HARQ-ACK information (or SR information, or the same type).
  • CSI-RS information another case is shown in Figure 8b, PUCCH#1, PUCCH#2, PUCCH#3 respectively contain HARQ-ACK information (also can contain SR information, or the same type of CSI-RS information ).
  • the UE does not send PUCCH#2+PUCCH#3+PUCCH#4, and the UE sends PUSCH#1.
  • PUSCH#1 includes all the HARQ-ACK information of PUCCH overlapping with PUSCH#1 that meets the conditions of UCI multiplexing, that is, (if present) the HARQ-ACK information of PUCCH#2, PUCCH#3, and PUCCH#4 bits.
  • the sequence of UCI bits during multiplexing can be determined according to the sequence of PUCCH time domain resources. For example, since the time domain sequence corresponding to PUCCH that meets the conditions of UCI multiplexing is: PUCCH#2 ⁇ PUCCH#3 ⁇ PUCCH#4, therefore, in PUSCH#1, the sequence of HARQ-ACK information bits is: (If present) HARQ-ACK information bit corresponding to PUCCH#2 ⁇ (if present) HARQ-ACK information bit corresponding to PUCCH#3 ⁇ (if present) HARQ-ACK information bit corresponding to PUCCH#4.
  • the UE does not send PUCCH#2+PUCCH#3+PUCCH#4, and the UE sends PUSCH#1.
  • PUSCH#1 includes HARQ-ACK information of the earliest PUCCH overlapping with PUSCH#1 that meets the conditions of UCI multiplexing.
  • the earliest PUCCH including HARQ-ACK UCI in the time domain may be determined according to the sequence of PUCCH time domain resources. For example, since the PUCCH corresponding to the conditions of UCI multiplexing corresponds to the time domain sequence: PUCCH#2 ⁇ PUCCH#3 ⁇ PUCCH#4, therefore, in PUSCH#1, the earliest PUCCH that includes HARQ-ACK information is PUCCH #2, PUSCH#1 includes HARQ-ACK information corresponding to PUCCH#2.
  • the UE does not send PUSCH#1, and the UE sends PUCCH#2+PUCCH#3+PUCCH#4.
  • the UE does not send PUCCH#1 either, because PUCCH#1 and PUSCH#1 do not meet the conditions of UCI multiplexing.
  • the UE regards the above situation as an error case. That is to say, a UE does not expect: receiving indication information for PUSCH transmission; receiving indication information for sending more than one PUCCH; time domain resources corresponding to the PUSCH and the more than one PUCCH The time domain resources corresponding to each PUCCH overlap; the time unit corresponding to the PUCCH is less than 14 symbols; the more than one PUCCH includes the same type of UCI; the time domain resources corresponding to the more than one PUCCH respectively Corresponding to different time units; the PUCCH indicated by the indication information for sending more than one PUCCH and the PUSCH respectively satisfy the UCI multiplexing condition.
  • the sending mechanism of the uplink signal is enhanced.
  • the embodiment of the second aspect of the present application provides an uplink signal receiving method, which is described from the network side. This method is network-side processing corresponding to the method of the embodiment of the first aspect, and the same content as the embodiment of the first aspect will not be repeated.
  • FIG. 9 is a schematic diagram of an uplink signal receiving method according to an embodiment of the present application. As shown in FIG. 9, the method includes:
  • a network device sends first indication information and second indication information to a terminal device, where the first indication information indicates uplink data signal transmission, and the second indication information indicates more than one uplink control signal transmission.
  • the time domain resource corresponding to the data signal overlaps with the time domain resource corresponding to each uplink control signal in the more than one uplink control signal, and each uplink control signal in the more than one uplink control signal
  • the length of the time unit corresponding to the signal is less than 14 symbols
  • the more than one uplink control signal includes the same type of uplink control information (UCI), and each uplink control signal of the more than one uplink control signal
  • the corresponding time domain resources correspond to different time units respectively;
  • the network device receives an uplink control signal and/or an uplink data signal sent by the terminal device, where the uplink data signal multiplexes at least one uplink control information included in the uplink control signal.
  • the above-mentioned uplink data signal is, for example, a PUSCH, or a signal carried by a PUSCH, or the uplink data signal corresponds to a nominal type B PUSCH repetition, or the uplink data signal corresponds to an actual type B PUSCH repetition:
  • the above-mentioned uplink control signal is, for example, the PUCCH or a signal carried by the PUCCH, and this application is not limited to this.
  • the uplink data signal multiplexes the uplink control information included in the more than one uplink control signal, and the sequence of the bits corresponding to the uplink control information during multiplexing is different from that of the uplink control information.
  • the sequence of the time domain resources corresponding to the uplink control signals corresponding to the uplink control information is the same.
  • the uplink data signal multiplexes the uplink control information included in the uplink control signal with the earliest time domain resource among the more than one uplink control signals.
  • the more than one uplink control signal indicated by the second indication information and the uplink data signal indicated by the first indication information satisfy uplink control information (UCI) multiplexing. conditions of.
  • UCI uplink control information
  • the subcarrier spacing of the uplink data signal is greater than or equal to the subcarrier spacing of the more than one uplink control signal.
  • the uplink control information is at least one of the following: HARQ-ACK information, SR information, and CSI information.
  • the sending mechanism of the uplink signal is enhanced.
  • the UE actually sends at least one PUSCH repetition multiplexed with HARQ-ACK information.
  • the DCI includes a Downlink Assignment Index (DAI, Downlink Assignment Index) field, the UE cannot determine how to use this field.
  • DCI Downlink Assignment Index
  • FIG. 10 is a schematic diagram of an uplink signal processing method according to an embodiment of the present application. As shown in FIG. 10, the method includes:
  • the terminal device receives indication information, the indication information indicates transmission of an uplink data signal, the indication information includes a DAI field, and the uplink data signal includes at least one type B PUSCH repetition multiplexed with HARQ-ACK information;
  • the terminal device performs one of the following processes: sending the uplink data signal according to the indication information, wherein the DAI field is applicable to all (all) or any (any) multiplexing of the HARQ- The type B PUSCH repetition of the ACK information; the uplink data signal is sent according to the indication information, where the DAI domain is applicable to the first type B PUSCH repetition multiplexed with the HARQ-ACK information in the time domain; The reception of the instruction information is regarded as an error.
  • the applicable range of the indication of the DAI domain is clarified, and the transmission mechanism of the uplink signal is enhanced.
  • the foregoing uplink data signal is, for example, the PUSCH or a signal carried by the PUSCH, and the present application is not limited thereto.
  • the above type B PUSCH repetition is a nominal type B PUSCH repetition.
  • the indication in the DAI domain applies to all or any nominal type B PUSCH repetition that reuses HARQ-ACK information, which can ensure the reliability of the corresponding HARQ-ACK information and improve system performance.
  • the indication in the DAI domain is only applicable to the first nominal type B PUSCH repetition that reuses HARQ-ACK information in the time domain.
  • the nominal type B PUSCH repetition after the nominal type B PUSCH repetition may not be mandatory, and the HARQ-ACK information is reused At the same time, the same DAI indication is also used. Thereby reducing the scheduling restrictions of the system and improving the flexibility of the system.
  • the above type B PUSCH repetition is the actual type B PUSCH repetition.
  • the indication in the DAI domain applies to all or any actual type B PUSCH repetition that reuses HARQ-ACK, which can ensure the reliability of the corresponding HARQ-ACK information and improve system performance.
  • the indication in the DAI domain is only applicable to the first actual type B PUSCH repetition that reuses HARQ-ACK in the time domain.
  • the PUSCH after the PUSCH may not be restricted when multiplexing HARQ-ACK information.
  • the same DAI indication is also used to improve The flexibility of the system.
  • treating the reception of the indication information as an error means that the terminal device does not expect to receive the indication information.
  • the UE does not expect that one or more type B PUSCH repetitions corresponding to one PUSCH are multiplexed with HARQ-ACK information respectively.
  • type B PUSCH repetition can be nominal type B PUSCH repetition or actual type B PUSCH repetition. Therefore, by specifying the above error case, the UE does not have to deal with the multiplexing of HARQ-ACK information at the same time with more than one actual type B PUSCH repetition corresponding to the same PUSCH, thereby reducing the requirements for UE capabilities and reducing The production cost.
  • FIG. 11 is a schematic diagram of an uplink data signal (PUSCH) in a time slot.
  • the UE when the UE receives a PUSCH transmission instruction (the above-mentioned instruction information), it transmits the corresponding PUSCH.
  • the PUSCH transmission indication may include: the start symbol of the first repetition of the PUSCH is the third symbol; the time domain length L of the PUSCH (corresponding to a single type B PUSCH repetition) is 2 symbols (symbol ), the length can be considered as the nominal (nominal) length, that is, in actual transmission, the length may be equal to or less than the length; the number of repetitions of the PUSCH is 4, and the number of repetitions can be considered as the number of nominal (nominal) repetitions. That is, the actual number of repetitions may not be equal to the number of repetitions.
  • the PUSCH transmission actually corresponds to 4 type B PUSCH repetitions, which are respectively denoted as PUSCH#rep1, PUSCH#rep2, PUSCH#rep3, PUSCH#rep4.
  • PUSCH#rep1 multiplexes HARQ-ACK information
  • PUSCH#rep4 multiplexes HARQ-ACK information.
  • the DAI field can be applied to PUSCH#rep1 and PUSCH#rep4, or only to PUSCH#rep1, or the UE can also regard the above situation as an error case, that is, the UE does not expect: Multiplexing HARQ-ACK information in a nominal type B PUSCH repetition; and the corresponding DCI indication/scheduling information includes the DAI field.
  • Fig. 12 is another schematic diagram of an uplink data signal (PUSCH) in a time slot.
  • PUSCH uplink data signal
  • the PUSCH transmission indication may include: the start symbol of the first repetition of the PUSCH is the 7th symbol; the time domain length L of the PUSCH (corresponding to a single type B PUSCH repetition) is 5 symbols (symbol ), the length can be considered as the nominal (nominal) length, that is, in actual transmission, the length may be equal to or less than the length; the number of repetitions of the PUSCH is 3, and the number of repetitions can be considered as the number of nominal (nominal) repetitions. That is, the actual number of repetitions may not be equal to the number of repetitions.
  • the PUSCH transmission actually corresponds to 4 type B PUSCH repetitions, which are respectively recorded as PUSCH#rep1, PUSCH#rep2, PUSCH#rep3, PUSCH#rep4.
  • PUSCH#rep2 multiplexed HARQ-ACK information
  • PUSCH#rep3 multiplexed HARQ-ACK information
  • PUSCH#rep4 multiplexed HARQ-ACK information.
  • the actual number of repetitions is more than the nominal number of repetitions. The reason is: the second nominal PUSCH repetition, because it crossed the boundary of the time slot, split into two actual repetitions.
  • the DAI field can be applied to PUSCH#rep2, PUSCH#rep3, PUSCH#rep4, or only to PUSCH#rep2, or the UE can also treat the above situation as an error case, that is, the UE does not Expectation: More than one actual type B PUSCH repetition multiplexes HARQ-ACK information respectively; and the corresponding DCI indication/scheduling information includes the DAI field.
  • the sending mechanism of the uplink signal is enhanced.
  • the embodiment of the fourth aspect of the present application provides an uplink signal receiving method, which is described from the network side. This method is network-side processing corresponding to the method of the embodiment of the third aspect, and the same content as the embodiment of the third aspect will not be repeated.
  • FIG. 13 is a schematic diagram of an uplink signal receiving method according to an embodiment of the present application. As shown in FIG. 13, the method includes:
  • the network device sends instruction information to the terminal device, the instruction information indicates uplink data signal transmission, the uplink data signal includes at least one type B PUSCH repetition multiplexed with HARQ-ACK information, and the instruction information includes a downlink allocation index (DAI, Downlink Assignment Index) field, the DAI field is applicable to all or any type B PUSCH repetition where the HARQ-ACK information is multiplexed, or the DAI field is applicable to the first multiplexing in the time domain
  • DAI Downlink allocation index
  • the DAI field is applicable to all or any type B PUSCH repetition where the HARQ-ACK information is multiplexed
  • the DAI field is applicable to the first multiplexing in the time domain
  • the network device receives the uplink data signal sent by the terminal device.
  • the above type B PUSCH repetition is a nominal type B PUSCH repetition.
  • the indication in the DAI domain applies to all or any nominal type B PUSCH repetition that reuses HARQ-ACK information, which can ensure the reliability of the corresponding HARQ-ACK information and improve system performance.
  • the indication in the DAI domain is only applicable to the first nominal type B PUSCH repetition that reuses HARQ-ACK information in the time domain.
  • the nominal type B PUSCH repetition after the nominal type B PUSCH repetition may not be mandatory, and the HARQ-ACK information is reused At the same time, the same DAI indication is also used. Thereby reducing the scheduling restrictions of the system and improving the flexibility of the system.
  • the above type B PUSCH repetition is the actual type B PUSCH repetition.
  • the indication in the DAI domain applies to all or any actual type B PUSCH repetition that reuses HARQ-ACK, which can ensure the reliability of the corresponding HARQ-ACK information and improve system performance.
  • the indication in the DAI domain is only applicable to the first actual type B PUSCH repetition that reuses HARQ-ACK in the time domain.
  • the PUSCH after the PUSCH may not be restricted when multiplexing HARQ-ACK information.
  • the same DAI indication is also used to improve The flexibility of the system.
  • the sending mechanism of the uplink signal is enhanced.
  • the uplink signal processing method of the embodiment of the present application is proposed, so that the UE can correctly send the corresponding uplink signal when receiving the foregoing scheduling instruction.
  • FIG. 14 is a schematic diagram of an uplink signal processing method according to an embodiment of the present application. As shown in FIG. 14, the method includes:
  • the terminal device receives first indication information and second indication information, where the first indication information indicates the transmission of an uplink data signal corresponding to more than one type B PUSCH repetition, and the second indication information indicates that the corresponding repetition number is greater than 1.
  • the terminal device performs one of the following processes: the terminal device sends the uplink data signal, and does not send all or part of the uplink control signal; the terminal device sends the uplink control signal, and , Not sending all or part of the uplink data signal; the terminal device regards the reception of the first indication information and the second indication information as an error.
  • the terminal device when the terminal device receives the foregoing first instruction information and the second instruction, it sends an uplink data signal without sending an uplink control signal, or does not send part of the uplink control signal, or sends an uplink control signal without sending an uplink control signal. Sending the uplink data signal or not sending part of the uplink data signal, or regarding the reception of the above-mentioned first indication information and the second indication information as an error. As a result, the corresponding uplink signal can be transmitted correctly, and the transmission mechanism of the uplink signal is enhanced.
  • the above-mentioned uplink data signal is, for example, a PUSCH or a signal carried by a PUSCH;
  • the above-mentioned uplink control signal is, for example, a PUCCH or a signal carried by a PUCCH, and the present application is not limited thereto.
  • that the terminal device does not send part of the uplink control signal means that the terminal device does not send the uplink control signal in a specific time unit; the specific time unit refers to: in the specific time unit, the uplink control signal
  • the time domain resource corresponding to the data signal overlaps the time domain resource corresponding to the uplink control signal.
  • the time domain resource corresponding to the uplink data signal refers to the time domain resource corresponding to the actual type B PUSCH repetition corresponding to the uplink data signal, or the nominal ( nominal)type B PUSCH repetition corresponding to the time domain resources.
  • the uplink control signal is not sent, or part of the uplink control signal is not sent, so that PUSCH repetition and PUCCH repetition cannot be sent because they overlap in the time domain, thereby ensuring the reliability of the uplink data signal .
  • that the terminal device does not send part of the uplink data signal means that the terminal device does not send a specific type B PUSCH repetition in the uplink data signal; the specific type B PUSCH repetition means: the specific type B PUSCH repetition
  • the time domain resource corresponding to the type B PUSCH repetition overlaps the time domain resource corresponding to the uplink control signal.
  • the time domain resource corresponding to the type B PUSCH repetition refers to the time domain resource corresponding to the actual type B PUSCH repetition, or the time domain resource corresponding to the nominal type B PUSCH repetition .
  • the uplink control signal is sent, the uplink data signal is not sent, or part of the uplink data signal is not sent, which prevents the PUCCH repetition from being unable to be sent because it overlaps with the time domain resources of the PUSCH repetition, thereby ensuring the reliability of the uplink control signal .
  • the PUSCH repetition can be sent, thereby ensuring the reliability of the uplink data signal at the same time.
  • the nominal type B PUSCH repetition and the PUCCH repetition overlap in the time domain, one or more transmissions corresponding to the nominal PUSCH repetition are not sent. The description of this behavior can minimize the modification of existing standards, avoid the impact of excessive standardization, and reduce the cost of standardization manpower and time.
  • the terminal device regards the reception of the above-mentioned first indication information and the above-mentioned second indication information as an error, which means that the terminal device does not expect to receive the above-mentioned first indication information and the above-mentioned second indication information. Therefore, by specifying the above error case, the UE does not need to handle multiple PUCCH repetitions and nominal/actual type B PUSCH repetitions that overlap in the time domain, thereby reducing the requirements on UE capabilities and reducing production costs.
  • Figure 15 is a schematic diagram of the uplink data signal (PUSCH) and uplink control signal (PUCCH) in a time slot.
  • PUSCH uplink data signal
  • PUCCH uplink control signal
  • a 14-symbol time slot is divided into There are two 7-symbol sub-slots. Among them, the first PUCCH repetition PUCCH#rep1 is sent in time slot #0 sub-slot #0; the corresponding PUCCH second repetition PUCCH#rep2 is sent in time slot #0 sub-slot #1.
  • the start symbol of the first repetition of the PUSCH is the 6th symbol;
  • the time domain length L of the PUSCH is 6 symbols (symbol), the length can be considered as the nominal length, that is, when actually transmitting, The length may be equal to or less than the length;
  • the number of repetitions of the PUSCH is 3, and the number of repetitions can be considered as the number of nominal repetitions, that is, the actual number of repetitions may not be equal to the number of repetitions.
  • PUSCH transmission actually corresponds to 4 type B PUSCH repetitions, which are respectively denoted as PUSCH#rep1, PUSCH#rep2, PUSCH#rep3, PUSCH#rep4. It should be noted that the actual number of repetitions is more than the nominal number of repetitions. The reason is: the second nominal PUSCH repetition, because it crossed the boundary of the time slot, split into two actual repetitions.
  • PUCCH#rep1 and PUCCH#rep2 overlap with PUSCH#rep1 and PUSCH#rep2 in the time domain, respectively.
  • the UE sends PUCCH#rep1 and PUCCH#rep2, and also sends PUSCH#rep3, but does not send the actual PUSCH repetition overlapping with PUCCH repetition, that is, does not send PUSCH#rep1 and PUSCH#rep2.
  • PUSCH#rep4 one scheme of the UE is to choose to transmit, and the other scheme is to choose not to transmit. Therefore, the problem that PUCCH#rep1 and PUCCH#rep2 cannot be transmitted because they overlap with the time domain resources of PUSCH#rep1 and PUSCH#rep2 is avoided, thereby ensuring the reliability of the uplink control signal.
  • the PUSCH repetition can be sent, thereby ensuring the reliability of the uplink data signal and reducing the data delay.
  • the UE sends PUCCH#rep1 and PUCCH#rep2, but does not send a nominal PUSCH repetition overlapping with PUCCH repetition, that is, does not send PUSCH#rep1, PUSCH#rep2, and PUSCH#rep3.
  • PUSCH#rep4 one scheme of the UE is to choose to send, and the other is to choose not to send. Therefore, it is avoided that PUCCH#rep1 and PUCCH#rep2 cannot be transmitted because they overlap with the time domain resources of PUSCH#rep1, PUSCH#rep2, and PUSCH#rep3, thereby ensuring the reliability of the uplink control signal.
  • the UE sends PUSCH#rep1, PUSCH#rep2, and PUSCH#rep3 without sending PUCCH#rep1 and PUCCH#rep2 in the corresponding sub-slots.
  • PUSCH#rep4 one scheme of the UE is to choose to send, and the other is to choose not to send. This avoids the problem that PUSCH#rep1, PUSCH#rep2, PUSCH#rep3 and PUCCH#rep1 and PUCCH#rep2 cannot be transmitted because they overlap in the time domain, thereby ensuring the reliability of uplink data transmission and reducing data delay .
  • the UE regards the above situation as an error case. For example, the UE does not expect: According to the corresponding indication information, PUSCH#rep1 and PUSCH#rep2 (the first and second actual type B PUSCH repetition) overlap with PUCCH#rep1 and PUCCH#rep2 in the time domain; or, PUSCH #rep1, PUSCH#rep2 and PUSCH#rep3 (the first and second nominal type B PUSCH repetition) overlap with PUCCH#rep1 and PUCCH#rep2 in the time domain. Therefore, by specifying the above error case, the UE does not need to deal with multiple PUCCH repetitions and type B PUSCH repetitions overlapping in the time domain, thereby reducing the requirements on UE capabilities and reducing production costs.
  • the sending mechanism of the uplink signal is enhanced.
  • the embodiment of the sixth aspect of the present application provides an uplink signal receiving method, which is described from the network side. This method is applied to a network device, which is a network-side processing corresponding to the method of the embodiment of the fifth aspect, and the same content as the embodiment of the fifth aspect will not be repeated.
  • FIG. 16 is a schematic diagram of an uplink signal receiving method according to an embodiment of the sixth aspect of the present application. As shown in FIG. 16, the method includes:
  • the network device sends first indication information and second indication information to a terminal device, where the first indication information indicates the sending of an uplink data signal corresponding to more than one type B PUSCH repetition, and the second indication information indicates the corresponding number of repetitions Sending an uplink control signal greater than 1, and the time domain resource corresponding to the uplink data signal overlaps with the time domain resource corresponding to the uplink control signal;
  • the network device receives the uplink data signal and/or the uplink control signal sent by the terminal device.
  • the time domain resource corresponding to the uplink data signal refers to the time domain resource corresponding to the actual type B PUSCH repetition corresponding to the uplink data signal.
  • the time domain resource corresponding to the uplink data signal refers to the time domain resource corresponding to the nominal type B PUSCH repetition corresponding to the uplink data signal.
  • the sending mechanism of the uplink signal is enhanced.
  • the embodiment of the seventh aspect of the present application provides an uplink signal processing apparatus.
  • the apparatus may be, for example, a terminal device, or may also be one or some components or components configured in the terminal device.
  • FIG. 17 is a schematic diagram of an uplink signal processing device 1700 according to an embodiment of the present application. Since the principle of the device to solve the problem is similar to the method of the embodiment of the first aspect, the specific implementation can refer to the method of the embodiment of the first aspect. The implementation of the same content will not be repeated. As shown in FIG. 17, the device 1700 includes: a receiving unit 1701 and a processing unit 1702.
  • the receiving unit 1701 is configured to receive first indication information and second indication information, the first indication information indicating uplink data signal transmission, and the second indication information indicating more than one uplink control signal transmission; wherein, the uplink data signal
  • the corresponding time domain resources overlap with the time domain resources corresponding to each uplink control signal in the more than one uplink control signals; and, each uplink control signal in the more than one uplink control signals,
  • the length of the corresponding time unit is less than 14 symbols respectively;
  • the more than one uplink control signal includes the same type of uplink control information (UCI); each uplink control signal of the more than one uplink control signal corresponds to The time domain resources correspond to different time units.
  • UCI uplink control information
  • the processing unit 1702 is configured to perform one of the following processing:
  • the uplink data signal multiplexes at least one uplink control information included in the uplink control signal, and does not send the more than one uplink control signal;
  • the reception of the first indication information and the second indication information is regarded as an error.
  • the processing unit 1702 regards the reception of the first indication information and the second indication information as an error, which means that the processing unit 1702 does not expect to receive the first indication information and the second indication information. Instructions.
  • the subcarrier spacing (SCS) of the uplink data signal is greater than or equal to the subcarrier spacing of the more than one uplink control signal. And, the subcarrier spacing of the more than one uplink control signal is the same.
  • the multiplexing of the uplink data signal with at least one uplink control information included in the uplink control signal includes: the uplink data signal multiplexing the uplink control information included in the more than one uplink control signal Uplink control information.
  • the sequence of the bits corresponding to the uplink control information during multiplexing is the same as the sequence of the time domain resources corresponding to the uplink control signal corresponding to the uplink control information.
  • the multiplexing of the uplink data signal with at least one uplink control information included in the uplink control signal includes: when the uplink data signal is multiplexed with the more than one uplink control signal The uplink control information included in the earliest uplink control signal of the domain resource.
  • the more than one uplink control signal indicated by the second indication information and the uplink data signal indicated by the first indication information satisfy uplink control information (UCI) multiplexing.
  • UCI uplink control information
  • the uplink control information is at least one of the following: HARQ-ACK information, SR information, and CSI information.
  • FIG. 18 is a schematic diagram of an uplink signal processing device 1800 according to an embodiment of the present application. Since the principle of the device to solve the problem is similar to the method of the embodiment of the third aspect, the specific implementation can refer to the method of the embodiment of the third aspect. The implementation of the same content will not be repeated. As shown in FIG. 18, the device 1800 includes: a receiving unit 1801 and a processing unit 1802.
  • the receiving unit 1801 is configured to receive indication information, the indication information indicating transmission of an uplink data signal, the indication information includes a Downlink Assignment Index (DAI, Downlink Assignment Index) field, and the uplink data signal includes at least one HARQ-ACK multiplexed The type of information B PUSCH repetition.
  • DAI Downlink Assignment Index
  • DAI Downlink Assignment Index
  • the processing unit 1802 is configured to perform one of the following processing:
  • the DAI field is applicable to all or any type B PUSCH repetition multiplexed with the HARQ-ACK information
  • the reception of the instruction information is regarded as an error.
  • the type B PUSCH repetition is the actual type B PUSCH repetition.
  • the type B PUSCH repetition is the nominal type B PUSCH repetition.
  • the processing unit 1802 regards the reception of the instruction information as an error, which means that the processing unit 1802 does not expect to receive the instruction information.
  • FIG. 19 is a schematic diagram of an uplink signal processing device 1900 according to an embodiment of the present application. Since the principle of the device to solve the problem is similar to the method of the embodiment of the fifth aspect, the specific implementation can refer to the method of the embodiment of the fifth aspect. The implementation of the same content will not be repeated. As shown in FIG. 19, the device 1900 includes: a receiving unit 1901 and a processing unit 1902.
  • the receiving unit 1901 is configured to receive first indication information and second indication information, where the first indication information indicates the sending of an uplink data signal corresponding to more than one type B PUSCH repetition, and the second indication information indicates that the corresponding repetition number is greater than 1. And the time domain resources corresponding to the uplink data signal overlap with the time domain resources corresponding to the uplink control signal.
  • the processing unit 1902 is configured to perform one of the following processing:
  • the reception of the first indication information and the second indication information is regarded as an error.
  • the time domain resource corresponding to the uplink data signal refers to the time domain resource corresponding to the actual type B PUSCH repetition corresponding to the uplink data signal.
  • the time domain resource corresponding to the uplink data signal refers to the time domain resource corresponding to the nominal type B PUSCH repetition corresponding to the uplink data signal.
  • the time domain resource corresponding to the type B PUSCH repetition refers to the time domain resource corresponding to the actual type B PUSCH repetition.
  • the time domain resource corresponding to the type B PUSCH repetition refers to the time domain resource corresponding to the nominal type B PUSCH repetition.
  • the processing unit 1902 regards the reception of the first indication information and the second indication information as an error, which means that the processing unit 1902 does not expect to receive the first indication information and the second indication information. Instructions.
  • the sending mechanism of the uplink signal is enhanced.
  • the embodiment of the eighth aspect of the present application provides an uplink signal receiving device.
  • the device may be, for example, a network device, or may be some or some components or components configured in the network device.
  • FIG. 20 is a schematic diagram of the uplink signal receiving device 2000 of this embodiment. Since the principle of the device to solve the problem is similar to the method of the embodiment of the second aspect, its specific implementation can refer to the implementation of the method of the embodiment of the second aspect. , The same content will not be repeated. As shown in FIG. 20, the device 2000 includes: a sending unit 2001 and a receiving unit 2002.
  • the sending unit 2001 is configured to send first indication information and second indication information to a terminal device, where the first indication information indicates sending of an uplink data signal, and the second indication information indicates sending more than one uplink control signal, wherein the The time domain resource corresponding to the uplink data signal overlaps with the time domain resource corresponding to each uplink control signal in the more than one uplink control signal, and each uplink control signal in the more than one uplink control signal overlaps.
  • the length of the time unit corresponding to the control signal is less than 14 symbols
  • the more than one uplink control signal includes the same type of uplink control information (UCI), and each uplink control signal of the more than one uplink control signal
  • the corresponding time domain resources respectively correspond to different time units.
  • the receiving unit 2002 is configured to receive an uplink control signal and/or an uplink data signal sent by the terminal device, where the uplink data signal multiplexes at least one uplink control information included in the uplink control signal.
  • the uplink data signal multiplexes the uplink control information included in the more than one uplink control signal, and the sequence of the bits corresponding to the uplink control information during multiplexing is different from that of the uplink control information.
  • the sequence of the time domain resources corresponding to the uplink control signals corresponding to the uplink control information is the same.
  • the uplink data signal multiplexes the uplink control information included in the uplink control signal with the earliest time domain resource among the more than one uplink control signals.
  • the more than one uplink control signal indicated by the second indication information and the uplink data signal indicated by the first indication information satisfy uplink control information (UCI) multiplexing. conditions of.
  • UCI uplink control information
  • the subcarrier spacing of the uplink data signal is greater than or equal to the subcarrier spacing of the more than one uplink control signal.
  • the uplink control information is at least one of the following: HARQ-ACK information, SR information, and CSI information.
  • FIG. 21 is a schematic diagram of the uplink signal receiving device 2100 of this embodiment. Since the principle of the device to solve the problem is similar to the method of the embodiment of the fourth aspect, its specific implementation can refer to the implementation of the method of the embodiment of the fourth aspect. , The same content will not be repeated. As shown in FIG. 21, the device 2100 includes: a sending unit 2101 and a receiving unit 2102.
  • the sending unit 2101 is configured to send indication information to a terminal device, the indication information instructing uplink data signal transmission, the uplink data signal includes at least one type B PUSCH repetition multiplexed with HARQ-ACK information, and the indication information includes downlink allocation Index (DAI, Downlink Assignment Index) field, the DAI field is applicable to all or any type B PUSCH repetition where the HARQ-ACK information is multiplexed, or the DAI field is applicable to the first multiplexing in the time domain The type B PUSCH repetition of the HARQ-ACK information.
  • DAI downlink allocation Index
  • the receiving unit 2102 is configured to receive the uplink data signal sent by the terminal device.
  • the type B PUSCH repetition is the actual type B PUSCH repetition.
  • the type B PUSCH repetition is the nominal type B PUSCH repetition.
  • FIG. 22 is a schematic diagram of the uplink signal receiving device 2200 of this embodiment. Since the principle of the device to solve the problem is similar to the method of the embodiment of the sixth aspect, its specific implementation can refer to the implementation of the method of the embodiment of the sixth aspect. , The same content will not be repeated. As shown in FIG. 22, the device 2200 includes: a sending unit 2201 and a receiving unit 2202.
  • the sending unit 2201 is configured to send first indication information and second indication information to a terminal device, where the first indication information indicates the sending of an uplink data signal corresponding to more than one type B PUSCH repetition, and the second indication information indicates the corresponding repetition
  • the number of uplink control signal transmissions is greater than 1, and the time domain resource corresponding to the uplink data signal overlaps with the time domain resource corresponding to the uplink control signal.
  • the receiving unit 2202 is configured to receive an uplink data signal and/or an uplink control signal sent by the terminal device.
  • the time domain resource corresponding to the uplink data signal refers to the time domain resource corresponding to the actual type B PUSCH repetition corresponding to the uplink data signal.
  • the time domain resource corresponding to the uplink data signal refers to the time domain resource corresponding to the nominal type B PUSCH repetition corresponding to the uplink data signal.
  • the sending mechanism of the uplink signal is enhanced.
  • FIG. 23 is a schematic diagram of the communication system 2300.
  • the communication system 2300 includes a network device 2301 and a terminal device 2302.
  • FIG. 23 Only one terminal device and one network device are used as an example for description, but the embodiment of the present application is not limited to this.
  • the network device 2301 and the terminal device 2302 may perform existing service or service transmission that can be implemented in the future.
  • these services may include, but are not limited to: enhanced mobile broadband (eMBB), large-scale machine type communication (mMTC), high-reliability and low-latency communication (URLLC), and Internet of Vehicles (V2X) communication, and so on.
  • eMBB enhanced mobile broadband
  • mMTC large-scale machine type communication
  • URLLC high-reliability and low-latency communication
  • V2X Internet of Vehicles
  • the network device 2301 sends first indication information and second indication information to the terminal device 2302, the first indication information indicating uplink data signal transmission, and the second indication information indicating more than one uplink control signal transmission ,
  • the time domain resource corresponding to the uplink data signal overlaps with the time domain resource corresponding to each of the more than one uplink control signals; and, the more than one uplink control signal
  • Each uplink control signal in the corresponding time unit is less than 14 symbols in length; the more than one uplink control signal includes the same type of uplink control information (UCI); the more than one uplink control signal
  • the time domain resources corresponding to each uplink control signal correspond to different time units.
  • the terminal device 2302 receives the first indication information and the second indication information, and performs one of the following processes: sending the uplink data signal, the uplink data signal multiplexed with at least one uplink included in the uplink control signal Channel control information, and the more than one uplink control signal is not sent; the more than one uplink control signal is sent, and the uplink data signal is not sent; the first indication information and the second indication information are The reception is regarded as an error.
  • the network device 2301 receives the uplink control signal and/or the uplink data signal sent by the terminal device 2302.
  • the network device 2301 sends indication information to the terminal device 2302, where the indication information indicates uplink data signal transmission, and the indication information includes a downlink assignment index (DAI, Downlink Assignment Index) field, and the uplink data signal includes At least one type B PUSCH repetition multiplexed with HARQ-ACK information.
  • DAI Downlink Assignment Index
  • the terminal device 2302 receives the above-mentioned indication information, and performs one of the following processes: sending the uplink data signal according to the indication information, wherein the DAI field is applicable to all or any multiplexed HARQ-ACK information type B PUSCH repetition; send the uplink data signal according to the indication information, where the DAI domain is applicable to the first type B PUSCH repetition multiplexed with the HARQ-ACK information in the time domain; Receipt of instructions is regarded as an error.
  • the network device 2301 receives the uplink data signal sent by the terminal device 2302.
  • the network device 2301 sends first indication information and second indication information to the terminal device 2302, where the first indication information indicates the sending of uplink data signals corresponding to more than one type B PUSCH repetition, and the second indication information
  • the indication information indicates the transmission of an uplink control signal with a corresponding repetition number greater than 1, and the time domain resource corresponding to the uplink data signal overlaps with the time domain resource corresponding to the uplink control signal.
  • the terminal device 2302 receives the above-mentioned first indication information and the second indication information, and performs one of the following processes: sending the uplink data signal, and not sending all or part of the uplink control signal; sending the uplink control signal And, not all or part of the uplink data signal is sent; the reception of the first indication information and the second indication information is regarded as an error.
  • the network device 2301 receives the uplink data signal and/or the uplink control signal sent by the terminal device 2302.
  • the embodiment of the present application also provides a terminal device.
  • the terminal device may be, for example, a UE, but the present application is not limited to this, and may also be other devices.
  • FIG. 24 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 2400 may include a processor 2401 and a memory 2402; the memory 2402 stores data and programs, and is coupled to the processor 2401. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace this structure to implement telecommunication functions or other functions.
  • the processor 2401 may be configured to execute a program to implement the uplink signal processing method according to the embodiment of the first aspect or the third aspect or the fifth aspect.
  • the terminal device 2400 may further include: a communication module 2403, an input unit 2404, a display 2405, and a power supply 2406. Among them, the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the terminal device 2400 does not necessarily include all the components shown in FIG. 24, and the above-mentioned components are not necessary; in addition, the terminal device 2400 may also include components not shown in FIG. There is technology.
  • the embodiment of the present application also provides a network device.
  • the network device may be, for example, a base station (gNB), but the present application is not limited to this, and may also be other network devices.
  • gNB base station
  • FIG. 25 is a schematic diagram of a structure of a network device according to an embodiment of the present application.
  • the network device 2500 may include: a processor (such as a central processing unit CPU) 2501 and a memory 2502; the memory 2502 is coupled to the processor 2501.
  • the memory 2502 can store various data; in addition, it also stores information processing programs, which are executed under the control of the central processing unit 2501.
  • the processor 2501 may be configured to execute a program to implement the uplink signal receiving method according to the embodiment of the second aspect or the fourth aspect or the sixth aspect.
  • the network device 2500 may further include: a transceiver 2503, an antenna 2504, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the network device 2500 does not necessarily include all the components shown in FIG. 25; in addition, the network device 2500 may also include components not shown in FIG. 25, and the prior art can be referred to.
  • the embodiments of the present application also provide a computer-readable program, wherein when the program is executed in the terminal device, the program causes the computer to execute the implementation of the first aspect or the third aspect or the fifth aspect in the terminal device.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the uplink described in the embodiment of the first aspect or the third aspect or the fifth aspect in a terminal device. Signal processing method.
  • the embodiments of the present application also provide a computer-readable program, wherein when the program is executed in a network device, the program causes a computer to execute the implementation of the second aspect or the fourth aspect or the sixth aspect in the network device.
  • the uplink signal receiving method described in the example is described in the example.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the uplink described in the embodiment of the second invention or the fourth aspect or the sixth aspect in a network device. Signal receiving method.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • This application relates to such a computer-readable program, when the program is executed by a logic component, the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, etc.
  • This application also relates to storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the drawings can be implemented as general-purpose processors, digital signal processors (DSPs) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, and multiple micro-processing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • An uplink signal processing method wherein the method includes:
  • the terminal device receives first indication information and second indication information, where the first indication information indicates uplink data signal transmission, and the second indication information indicates more than one uplink control signal transmission; wherein,
  • the time domain resource corresponding to the uplink data signal overlaps with the time domain resource corresponding to each of the more than one uplink control signals;
  • the length of the time unit corresponding to each of the more than one uplink control signals is less than 14 symbols
  • the more than one uplink control signal includes the same type of uplink control information (UCI);
  • the time domain resources corresponding to each uplink control signal of the more than one uplink control signal respectively correspond to different time units
  • the terminal device performs one of the following processing:
  • the terminal device Sending, by the terminal device, the uplink data signal where the uplink data signal multiplexes at least one uplink control information included in the uplink control signal, and does not send the more than one uplink control signal;
  • the terminal device sends the more than one uplink control signal, and does not send the uplink data signal;
  • the terminal device regards the reception of the first indication information and the second indication information as an error.
  • the uplink data signal is a PUSCH, or a signal carried by a PUSCH, or the uplink data signal corresponds to a nominal type B PUSCH repetition, or the uplink data signal corresponds to In an actual type B PUSCH repetition;
  • the uplink control signal is, for example, PUCCH or a signal carried by PUCCH.
  • the terminal device does not expect to receive the first indication information and the second indication information.
  • the subcarrier spacing (SCS, subcarrier spacing) of the uplink data signal is greater than or equal to the subcarrier spacing of the more than one uplink control signal.
  • the uplink data signal multiplexes the uplink control information included in the more than one uplink control signal.
  • the uplink data signal multiplexes the uplink control information included in the uplink control signal with the earliest time domain resource among the more than one uplink control signals.
  • the uplink control information is at least one of the following: HARQ-ACK information, SR information, and CSI information.
  • An uplink signal receiving method wherein the method includes:
  • the network device sends first indication information and second indication information to the terminal device, where the first indication information indicates uplink data signal transmission, and the second indication information indicates more than one uplink control signal transmission, wherein the uplink data signal
  • the corresponding time domain resource overlaps with the time domain resource corresponding to each uplink control signal in the more than one uplink control signal, and each uplink control signal in the more than one uplink control signal is The length of the corresponding time unit is respectively less than 14 symbols, the more than one uplink control signal includes the same type of uplink control information (UCI), and each uplink control signal of the more than one uplink control signal corresponds to Time domain resources correspond to different time units;
  • UCI uplink control information
  • the network device receives an uplink control signal and/or an uplink data signal sent by the terminal device, where the uplink data signal multiplexes at least one uplink control information included in the uplink control signal.
  • the uplink data signal is PUSCH, or a signal carried by PUSCH, or the uplink data signal corresponds to a nominal type B PUSCH repetition, or the uplink data signal corresponds to In an actual type B PUSCH repetition;
  • the uplink control signal is, for example, PUCCH or a signal carried by PUCCH.
  • the uplink data signal multiplexes the uplink control information included in the more than one uplink control signal, and the bit corresponding to the uplink control information is multiplexed
  • the time sequence is the same as the sequence of time domain resources corresponding to the uplink control signal corresponding to the uplink control information.
  • the subcarrier interval of the uplink data signal is greater than or equal to the subcarrier interval of the more than one uplink control signal.
  • the uplink control information is at least one of the following: HARQ-ACK information, SR information, and CSI information.
  • An uplink signal processing method wherein the method includes:
  • the terminal device receives indication information, the indication information instructs the transmission of an uplink data signal, the indication information includes a Downlink Assignment Index (DAI, Downlink Assignment Index) field, and the uplink data signal includes at least one type multiplexed with HARQ-ACK information B PUSCH repetition;
  • DAI Downlink Assignment Index
  • the terminal device performs one of the following processing:
  • the DAI field is applicable to all or any type B PUSCH repetition multiplexed with the HARQ-ACK information
  • the reception of the instruction information is regarded as an error.
  • the type B PUSCH repetition is the actual type B PUSCH repetition.
  • the type B PUSCH repetition is the nominal type B PUSCH repetition.
  • An uplink signal receiving method wherein the method includes:
  • the network device sends instruction information to the terminal device, the instruction information instructs the transmission of an uplink data signal, the uplink data signal includes at least one type B PUSCH repetition multiplexed with HARQ-ACK information, and the instruction information includes a downlink allocation index (DAI). , Downlink Assignment Index) field, the DAI field is applicable to all or any type B PUSCH repetition where the HARQ-ACK information is multiplexed, or the DAI field is applicable to the first repetition in the time domain where the HARQ-ACK information is multiplexed.
  • DAI downlink allocation index
  • the network device receives the uplink data signal sent by the terminal device.
  • the type B PUSCH repetition is the actual type B PUSCH repetition.
  • the type B PUSCH repetition is the nominal type B PUSCH repetition.
  • An uplink signal processing method wherein the method includes:
  • the terminal device receives first indication information and second indication information, where the first indication information indicates the transmission of an uplink data signal corresponding to more than one type B PUSCH repetition, and the second indication information indicates the uplink control corresponding to the number of repetitions greater than 1. Signal transmission, and the time domain resource corresponding to the uplink data signal overlaps with the time domain resource corresponding to the uplink control signal;
  • the terminal device performs one of the following processing:
  • the terminal device regards the reception of the first indication information and the second indication information as an error.
  • the uplink control signal within a specific time unit is not sent; wherein, in the specific time unit, the time domain resource corresponding to the uplink data signal overlaps with the time domain resource corresponding to the uplink control signal.
  • the specific type B PUSCH repetition in the uplink data signal is not sent; wherein, the time domain resource corresponding to the specific type B PUSCH repetition overlaps the time domain resource corresponding to the uplink control signal.
  • the time domain resource corresponding to the actual type B PUSCH repetition corresponding to the uplink data signal is not limited to the actual type B PUSCH repetition.
  • the time domain resource corresponding to the nominal type B PUSCH repetition corresponding to the uplink data signal is not limited.
  • the actual type B PUSCH repetition corresponding to the time domain resource is the actual type B PUSCH repetition corresponding to the time domain resource.
  • An uplink signal receiving method wherein the method includes:
  • the network device sends first indication information and second indication information to the terminal device, where the first indication information indicates the sending of uplink data signals corresponding to more than one type B PUSCH repetition, and the second indication information indicates that the corresponding number of repetitions is greater than 1.
  • the uplink control signal is sent in the uplink control signal, and the time domain resource corresponding to the uplink data signal overlaps the time domain resource corresponding to the uplink control signal;
  • the network device receives the uplink data signal and/or the uplink control signal sent by the terminal device.
  • the time domain resource corresponding to the actual type B PUSCH repetition corresponding to the uplink data signal is not limited to the actual type B PUSCH repetition.
  • the time domain resource corresponding to the nominal type B PUSCH repetition corresponding to the uplink data signal is not limited.
  • a terminal device comprising a memory and a processor, the memory storing a computer program, and the processor is configured to execute the computer program to implement any of appendix 1 to 8, 15 to 18, 22 to 29 The uplink signal processing method described in one item.
  • a network device comprising a memory and a processor, the memory storing a computer program, and the processor is configured to execute the computer program to implement any of the following notes 9 to 14, 19 to 21, 30 to 32 The uplink signal receiving method described in one item.
  • a communication system including terminal equipment and network equipment, wherein:
  • the terminal device is configured to execute the method described in any one of supplementary notes 1 to 8, and the network device is configured to execute the method described in any one of supplementary notes 9 to 14; or
  • the terminal device is configured to execute the method described in any one of Supplements 15 to 18, and the network device is configured to execute the method described in any one of Supplements 19 to 21; or
  • the terminal device is configured to execute the method described in any one of Supplements 22 to 29, and the network device is configured to execute the method described in any one of Supplements 30 to 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种上行信号处理方法、装置和通信系统,该方法包括:终端设备接收指示上行数据信号发送的第一指示信息和指示多于一个上行控制信号发送的第二指示信息,其中,上行数据信号所对应的时域资源与每个上行控制信号所对应的时域资源分别重叠;并且,每个上行控制信号所对应的时间单位的长度分别小于14个符号;多于一个上行控制信号包括相同类型的上行链路控制信息;每个上行控制信号所对应的时域资源分别对应不同的时间单位;终端设备执行以下处理的其中一种:发送上行数据信号不发送多于一个上行控制信号;发送多于一个上行控制信号不发送上行数据信号;将对第一指示信息和第二指示信息的接收视为错误。

Description

上行信号处理方法、装置和系统 技术领域
本申请涉及通信领域。
背景技术
在Rel-16(版本16)中,为了满足URLLC(Ultra Reliable Low Latency Communications。超可靠低时延通信)高可靠、低时延的需求,需要增强上行信号的发送机制。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
为了增强上行信号的发送机制,本申请实施例提供了一种上行信号处理方法、装置和系统,以增强上行信号的发送机制。
根据本申请实施例的一个方面,提供一种上行信号处理方法,其中,所述方法包括:
终端设备接收第一指示信息和第二指示信息,所述第一指示信息指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送;其中,所述上行数据信号所对应的时域资源,与所述多于一个上行控制信号中的每个上行控制信号所对应的时域资源分别重叠;并且,所述多于一个上行控制信号中的每个上行控制信号,所对应的时间单位的长度分别小于14个符号;所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI);所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位;
所述终端设备执行以下处理的其中一种:
所述终端设备发送所述上行数据信号,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息,并且不发送所述多于一个上行控制信号;
所述终端设备发送所述多于一个上行控制信号,并且不发送所述上行数据信号;
所述终端设备将对所述第一指示信息和所述第二指示信息的接收视为错误。
根据本申请实施例的另一个方面,提供一种上行信号处理装置,配置于终端设备,其中,所述装置包括:
接收单元,其接收第一指示信息和第二指示信息,所述第一指示信息指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送;其中,所述上行数据信号所对应的时域资源,与所述多于一个上行控制信号中的每个上行控制信号所对应的时域资源分别重叠;并且,所述多于一个上行控制信号中的每个上行控制信号,所对应的时间单位的长度分别小于14个符号;所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI);所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位;
处理单元,其执行以下处理的其中一种:
发送所述上行数据信号,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息,并且不发送所述多于一个上行控制信号;
发送所述多于一个上行控制信号,并且不发送所述上行数据信号;
将对所述第一指示信息和所述第二指示信息的接收视为错误。
根据本申请实施例的一个方面,提供一种上行信号接收方法,其中,所述方法包括:
网络设备向终端设备发送第一指示信息和第二指示信息,所述第一指示信息指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送,其中,所述上行数据信号所对应的时域资源,与所述多于一个上行控制信号中的每个上行控制信号所对应的时域资源分别重叠,并且,所述多于一个上行控制信号中的每个上行控制信号所对应的时间单位的长度分别小于14个符号,所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI),所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位;
所述网络设备接收所述终端设备发送的上行控制信号和/或上行数据信号,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息。
根据本申请实施例的另一个方面,提供一种上行信号接收装置,配置于网络设备,其中,所述装置包括:
发送单元,其向终端设备发送第一指示信息和第二指示信息,所述第一指示信息 指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送,其中,所述上行数据信号所对应的时域资源,与所述多于一个上行控制信号中的每个上行控制信号所对应的时域资源分别重叠,并且,所述多于一个上行控制信号中的每个上行控制信号所对应的时间单位的长度分别小于14个符号,所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI),所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位;
接收单元,其接收所述终端设备发送的上行控制信号和/或上行数据信号,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息。
根据本申请实施例的一个方面,提供一种上行信号处理方法,其中,所述方法包括:
终端设备接收指示信息,所述指示信息指示上行数据信号发送,所述指示信息包括下行分配索引(DAI,Downlink Assignment Index)域,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition;
所述终端设备执行以下处理的其中一种:
根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于所有或任何复用了所述HARQ-ACK信息的type B PUSCH repetition;
根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition;
将对所述指示信息的接收视为错误。
根据本申请实施例的另一个方面,提供一种上行信号处理装置,配置于终端设备,其中,所述装置包括:
接收单元,其接收指示信息,所述指示信息指示上行数据信号发送,所述指示信息包括下行分配索引(DAI,Downlink Assignment Index)域,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition;
处理单元,其执行以下处理的其中一种:
根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于所有或任何复用了所述HARQ-ACK信息的type B PUSCH repetition;
根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition;
将对所述指示信息的接收视为错误。
根据本申请实施例的一个方面,提供一种上行信号接收方法,其中,所述方法包括:
网络设备向终端设备发送指示信息,所述指示信息指示上行数据信号发送,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition,所述指示信息包括下行分配索引(DAI,Downlink Assignment Index)域,所述DAI域适用于所有或任何复用了所述HARQ-ACK信息的type B PUSCH repetition,或者,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition;
所述网络设备接收所述终端设备发送的所述上行数据信号。
根据本申请实施例的另一个方面,提供一种上行信号接收装置,配置于网络设备,其中,所述装置包括:
发送单元,其向终端设备发送指示信息,所述指示信息指示上行数据信号发送,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition,所述指示信息包括下行分配索引(DAI,Downlink Assignment Index)域,所述DAI域适用于所有或任何复用了所述HARQ-ACK信息的type B PUSCH repetition,或者,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition;
接收单元,其接收所述终端设备发送的所述上行数据信号。
根据本申请实施例的一个方面,提供一种上行信号处理方法,其中,所述方法包括:
终端设备接收第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号所对应的时域资源与所述上行控制信号所对应的时域资源重叠;
所述终端设备执行以下处理的其中一种:
所述终端设备发送所述上行数据信号,并且,不发送全部或部分所述上行控制信号;
所述终端设备发送所述上行控制信号,并且,不发送全部或部分所述上行数据信 号;
所述终端设备将对所述第一指示信息和所述第二指示信息的接收视为错误。
根据本申请实施例的另一个方面,提供一种上行信号处理装置,配置于终端设备,其中,所述装置包括:
接收单元,其接收第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号所对应的时域资源与所述上行控制信号所对应的时域资源重叠;
处理单元,其执行以下处理的其中一种:
所述终端设备发送所述上行数据信号,并且,不发送全部或部分所述上行控制信号;
所述终端设备发送所述上行控制信号,并且,不发送全部或部分所述上行数据信号;
所述终端设备将对所述第一指示信息和所述第二指示信息的接收视为错误。
根据本申请实施例的一个方面,提供一种上行信号接收方法,其中,所述方法包括:
网络设备向终端设备发送第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号对应的时域资源与所述上行控制信号对应的时域资源重叠;
所述网络设备接收所述终端设备发送的上行数据信号和/或上行控制信号。
根据本申请实施例的另一个方面,提供一种上行信号接收装置,配置于网络设备,其中,所述装置包括:
发送单元,其向终端设备发送第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号对应的时域资源与所述上行控制信号对应的时域资源重叠;
接收单元,其接收所述终端设备发送的上行数据信号和/或上行控制信号。
本申请实施例的有益效果之一在于:根据本申请实施例,能够增强上行信号的发 送机制。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是时隙的一种划分方式的示意图;
图2是时隙的另一种划分方式的示意图;
图3是Type B PUSCH repetition的一个示意图;
图4是Type B PUSCH repetition的另一个示意图;
图5是Type B PUSCH repetition的再一个示意图;
图6是本申请第一方面的实施例的上行信号处理方法的示意图;
图7a和图7b是一个时隙中的上行数据信号和上行控制信号的一个示意图;
图8a和图8b是一个时隙中的上行数据信号和上行控制信号的另一个示意图;
图9是本申请第二方面的实施例的上行信号接收方法的示意图;
图10是本申请第三方面的实施例的上行信号处理方法的示意图;
图11是一个时隙中的上行数据信号的示意图;
图12是一个时隙中的上行数据信号的另一个示意图;
图13是本申请第四方面的实施例的上行信号接收方法的示意图;
图14是本申请第五方面的实施例的上行信号处理方法的示意图;
图15是一个时隙中的上行数据信号和上行控制信号的再一个示意图;
图16是本申请第六方面的实施例的上行信号接收方法的示意图;
图17是本申请第七方面的实施例的上行信号处理装置的一个示意图;
图18是本申请第七方面的实施例的上行信号处理装置的另一个示意图;
图19是本申请第七方面的实施例的上行信号处理装置的再一个示意图;
图20是本申请第八方面的实施例的上行信号接收装置的一个示意图;
图21是本申请第八方面的实施例的上行信号接收装置的另一个示意图;
图22是本申请第八方面的实施例的上行信号接收装置的再一个示意图;
图23是本申请第九方面的实施例的通信系统的示意图;
图24是本申请第九方面的实施例的终端设备的示意图;
图25是本申请第九方面的实施例的网络设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下 文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机, 等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
为了使本申请实施例清晰易懂,下面对本申请实施例涉及的一些概念和定义进行说明。
在本申请实施例中,“时隙/子时隙”的一种理解的方式,是指上行信号用作参考或对应(with reference to/associated)的时隙或子时隙,或者说是“上行时隙/子时隙”。此外,在本申请实施例中,“符号”的一种理解的方式,是指上行信号用作参考或对应(with reference to/associated)的符号,或者说是“上行符号”。
在本申请实施例中,基于子时隙(subslot)的上行信号发送是指终端设备根据相应的指示信息在某个子时隙发送上行信号。一般而言,“一个上行信号在一个子时隙中发送”是指,至少该上行信号的起始符号在该子时隙中。既可以是该上行信号的起始符号至结束符号在该子时隙中;也可以是该上行信号的起始符号在该子时隙中,而该上行信号的结束符号不在该子时隙中(在之后的子时隙中)。本申请实施例中,以前者(上行信号的起始与结束符号都在同一个子时隙中)为例进行说明。
在本申请实施例中,子时隙的时域长度小于14符号。
终端设备接收到网络设备发送的配置信息(例如,subslotLengthForPUCCH)。其中,该配置信息指示了基于子时隙的上行信号(例如,PUCCH feedback)所对应的子时隙长度。另外,该长度单位是符号。一般来说,该指示信息所指示的子时隙长度可以是7个符号,或2个符号。图1是时隙的一种划分方式的示意图(对应于子时隙的长度为7个符号),如图1所示,一个14符号的时隙分为两个7符号的子时隙。其中,上行信号#1在子时隙#0中发送,而上行信号#2在子时隙#1中发送。图2是时隙的另一种划分方式的示意图(对应于子时隙的长度为2个符号),如图2所示,一个14符号的时隙分为七个2符号的子时隙。其中,上行信号#1在子时隙#1中发送,而上行信号#2在子时隙#4中发送。
另一方面,为了同时满足低时延和覆盖性的要求,NR(New Radio,新无线)引入了更灵活的PUSCH repetition(上行共享信道重复)的方式。该方式能够使相邻的 PUSCH repetition之间的最小时域间隔为0符号,称为type B PUSCH repetition或者PUSCH repetition type B。
Type B PUSCH repetition对应的指示信息,至少包括以下之一:
第一次PUSCH repetition的起始符号;
PUSCH对应的长度,或者,可以理解为单次PUSCH repetition的长度,该长度的单位为符号(symbol);
重复次数;以及
Invalid symbol(s)pattern(无效符号的图样),也可以理解为无效符号所在的时域位置。
图3是Type B PUSCH repetition的一个示意图,如图3所示,当终端设备接收到一个PUSCH发送指示后,发送相应的PUSCH。其中,所述PUSCH指示包括:
该PUSCH的第一次repetition的起始符号为第3个符号;
该PUSCH的时域长度L为2符号(symbol),该长度可以认为是名义(nominal)长度,也即实际发送时,实际发送的长度可能等于或小于该名义长度;
该PUSCH的重复次数为4,该重复次数可以认为是名义(nominal)重复次数,也即实际的重复次数可能不等于该名义重复次数。
在图3的示例中,PUSCH的发送实际对应四次type B PUSCH repetition,分别记为PUSCH#rep1,PUSCH#rep2,PUSCH#rep3,PUSCH#rep4。
图4是Type B PUSCH repetition的另一个示意图,如图4所示,当终端设备接收到一个PUSCH发送指示后,发送相应的PUSCH。其中,所述PUSCH指示包括:
该PUSCH的第一次repetition的起始符号为第7个符号;
该PUSCH的时域长度L为5符号(symbol),该长度可以认为是名义(nominal)长度,也即实际发送时,该长度可能等于或小于该长度;
该PUSCH的重复次数为3,该重复次数可以认为是名义(nominal)重复次数,也即实际的重复次数可能不等于该重复次数;
在图4的示例中,PUSCH的发送实际对应4次type B PUSCH repetition,分别记为PUSCH#rep1,PUSCH#rep2,PUSCH#rep3,PUSCH#rep4。
在图4的示例中,实际重复次数相较于名义重复次数多。其原因是:第二次名义的PUSCH repetition,由于跨越了时隙的边界,分裂为两个实际的repetition,即: PUSCH#rep2,PUSCH#rep3。
图5是Type B PUSCH repetition的再一个示意图,如图5所示,当终端设备接收到一个PUSCH发送指示后,发送相应的PUSCH。其中,所述PUSCH指示包括:
该PUSCH的第一次repetition的起始符号为第7个符号;
该PUSCH的时域长度L为5符号(symbol),该长度可以认为是名义(nominal)长度,也即实际发送时,该长度可能等于或小于该长度;
该PUSCH的重复次数为3,该重复次数可以认为是名义(nominal)重复次数,也即实际的重复次数可能不等于该重复次数;
Invalid symbol为:时隙#0的最后一个符号以及时隙#1的第三个符号。
在图5的示例中,PUSCH的发送实际对应四次type B PUSCH repetition,分别记为PUSCH#rep1,PUSCH#rep2,PUSCH#rep3,PUSCH#rep4。
在图5的示例中,实际重复次数相较于名义重复次数多。其原因是:第二次名义的PUSCH repetition,由于跨越了时隙的边界,分裂为两个实际的repetition,即:PUSCH#rep2,PUSCH#rep3。而且,根据invalid symbol指示,时隙#0的最后一个符号以及时隙#1的第三个符号不能用于发送PUSCH,因此PUSCH#rep2,PUSCH#rep3的时域长度相较于图4的示例更短。
在本申请实施例的下述说明中,上行信号可以具有相同的优先级,也可以具有不同的优先级。
下面结合附图对本申请的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
第一方面的实施例
发明人发现,当一个UE收到一个用于上行数据信号发送的指示信息,并且收到多于一个用于上行控制信号(PUCCH)发送的指示信息,并且,所述PUCCH所对应的时间单位小于14个符号,所述多于一个PUCCH包括相同类型的UCI,所述多于一个PUCCH所对应的时域资源分别对应不同的时间单位。由于UE可能没有能力在同一时间发送大于一个上行信号的能力,尤其是同时发送上行数据信号和上行控制信号的能力,因此,在这种情况下,当大于一个(被指示的)上行信号的时域资源发生重叠(冲突)时,UE最多只能发送其中的一个上行信号。但是,目前而言,对于 上述的场景,没有解决方案能够说明该UE应该发送哪个信号;即使能确定该UE发送哪个上行信号,也可能无法确定该上行信号包括哪些信息。
针对上述问题,提出了本申请第一方面的实施例的上行信号处理方法,以便UE能够在接收到上述调度指示的情况下,能够正确地发送相应的上行信号。
本申请第一方面的实施例提供了一种上行信号处理方法,从终端设备侧进行说明。图6是本申请实施例的上行信号处理方法的示意图,请参照图6,该方法包括:
601:终端设备接收第一指示信息和第二指示信息,所述第一指示信息指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送;所述上行数据信号所对应的时域资源与所述多于一个上行控制信号中的每个上行控制信号所对应的时域资源分别重叠;并且,所述多于一个上行控制信号中的每个上行控制信号所对应的时间单位的长度分别小于14个符号;所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI);所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位;
602:所述终端设备执行以下处理的其中一种:所述终端设备发送所述上行数据信号,所述上行数据信号复用了(multiplexed)至少一个所述上行控制信号所包括的上行链路控制信息,并且不发送所述多于一个上行控制信号;所述终端设备发送所述多于一个上行控制信号,并且不发送所述上行数据信号;所述终端设备将对所述第一指示信息和所述第二指示信息的接收视为错误。
根据本申请实施例的上述方法,终端设备在接收到上述第一指示信息和第二指示时,发送复用了上行控制信号所包括的上行链路控制信息的上行数据信号而不发送上行控制信号,或者发送上行控制信号而不发送上行数据信号,或者将对上述第一指示信息和第二指示信息的接收视为错误。由此,能够正确地发送相应的上行信号,增强了上行信号的发送机制。
在本申请实施例中,上述上行数据信号例如为PUSCH,或者PUSCH承载的信号,或者所述上行数据信号对应于一个名义的type B PUSCH repetition,或者所述上行数据信号对应于一个实际的type B PUSCH repetition;上述上行控制信号例如为PUCCH,或者PUCCH承载的信号,本申请不限于此。
在本申请实施例中,上述重叠是指:完全重叠或部分重叠。这里,部分重叠可以理解为两个信号的时域资源的重叠部分至少有一个符号。
在本申请实施例中,上述多于一个上行控制信号对应的子载波间隔(SCS,subcarrier spacing)都是相同的,上述上行数据信号的子载波间隔大于或等于上述多于一个上行控制信号的子载波间隔。
在本申请实施例中,上述上行链路控制信息(UCI)可以是HARQ-ACK信息,也可以是SR信息,还可以是CSI信息,或者上述任意组合,本申请不限于此。
在一些实施例中,如前所述,终端设备不发送上述多于一个上行控制信号,而是发送上述上行数据信号,该上行数据信号复用了上述多于一个上行控制信号对应的上行链路控制信息。由此,将所有的PUCCH承载的UCI与PUSCH复用,可以避免丢弃一部分UCI,保证系统性能。
在这个实施例中,上述上行链路控制信息对应的比特在复用时的先后顺序与上述上行链路控制信息所对应的上行控制信号所对应的时域资源的先后顺序相同。也即,对于类型相同的UCI,根据对应的PUCCH在时域的先后顺序,确定UCI bit在复用时的先后顺序。
在一些实施例中,如前所述,终端设备不发送上述多于一个上行控制信号,而是发送上述上行数据信号,该上行数据信号复用了上述多于一个上行控制信号中时域资源最早的上行控制信号所包括的上行链路控制信息。也即,对于类型相同的UCI,所述PUSCH仅复用所述多于一个PUCCH中时域资源最早的PUCCH对应的UCI。由此,仅将一部分(最紧急的)UCI放入PUSCH中,降低了对UE处理能力的需求,降低了成本,与此同时还能尽可能的保留一部分UCI可以避免丢弃一部分UCI,保证系统性能。
在一些实施例中,如前所述,终端设备不发送上述上行数据信号,而是发送上述多于一个上行控制信号。由此,由于不需要发送PUSCH,每个PUCCH都可以在指示的子时隙完成发送,从而可以降低控制信息的时延。
在一些实施例中,如前所述,终端设备可以将对第一指示信息和第二指示信息的接收视为错误,也就是说,终端设备不期待接收上述第一指示信息和上述第二指示信息。由此,当终端设备接收到上述第一指示信息和上述第二指示信息时,将这种情况视为error case,在这种情况下,终端设备可以发送也可以不发送对应的上行信号,由此,可以降低对终端设备处理能力的需求,降低了生产成本。
下面结合附图对本申请实施例的方法进行说明。
图7a和图7b是一个时隙中的上行数据信号(PUSCH)和上行控制信号(PUCCH)的一个示意图。如图7a和图7b所示,对于基于子时隙发送的PUCCH而言,将一个14符号的时隙分为7个2符号的子时隙。其中,PUCCH#1在子时隙#1中发送,PUCCH#2在子时隙#3中发送,而PUCCH#3在子时隙#4中发送。对于各PUCCH所包含的UCI信息,一种情况如图7a所示,PUCCH#1,PUCCH#2,PUCCH#3分别包含HARQ-ACK信息(也可以分别包含SR信息,或相同类型的CSI-RS信息);另一种情况如图7b所示,PUCCH#1,PUCCH#2分别包含HARQ-ACK信息(也可以分别包含SR信息,或相同类型的CSI-RS信息)。
在一些实施例中,UE不发送PUCCH#1+PUCCH#2+PUCCH#3,UE发送PUSCH#1。PUSCH#1包括所有与PUSCH#1重叠的PUCCH的HARQ-ACK信息,也即(如果存在的话)PUCCH#1与PUCCH#2以及PUCCH#3的HARQ-ACK information bits。此外,UCI bit在复用时的先后顺序可以根据PUCCH时域资源的先后顺序确定。例如,由于PUCCH对应的时域先后顺序为:PUCCH#1→PUCCH#2→PUCCH#3,因此,在PUSCH#1中,HARQ-ACK information bit的先后顺序为:(如果存在的话)PUCCH#1对应的HARQ-ACK information bit→(如果存在的话)PUCCH#2对应的HARQ-ACK information bit→(如果存在的话)PUCCH#3对应的HARQ-ACK information bit。
在一些实施例中,UE不发送PUCCH#1+PUCCH#2+PUCCH#3,UE发送PUSCH#1。PUSCH#1包括最早的与PUSCH#1重叠的PUCCH的HARQ-ACK信息。此外,时域上最早的包括HARQ-ACK UCI的PUCCH可以根据PUCCH时域资源的先后顺序确定。例如,由于PUCCH对应的时域先后顺序为:PUCCH#1→PUCCH#2→PUCCH#3,因此,在PUSCH#1中,最早的包括HARQ-ACK信息的PUCCH为PUCCH#1。PUSCH#1中包括PUCCH#1所对应的HARQ-ACK信息。
在一些实施例中,UE不发送PUSCH#1,UE发送PUCCH#1+PUCCH#2+PUCCH#3。
在一些实施例中,UE将上述情况视为error case。也就是说,一个UE不期待:收到用于PUSCH发送的指示信息;收到用于多于一个PUCCH发送的指示信息;所述PUSCH所对应的时域资源与所述多于一个PUCCH中的每个PUCCH所对应的时域资源分别重叠;所述PUCCH所对应的时间单位小于14个符号;所述多于一个 PUCCH包括相同类型的UCI;所述多于一个PUCCH所对应的时域资源分别对应不同的时间单位。
前面的示例是以上述多于一个上行控制信号全部满足UCI复用的条件为例,也即,所述第二指示信息所指示的所述多于一个上行控制信号分别与所述第一指示信息所指示的所述上行数据信号满足上行链路控制信息(UCI)复用的条件(condition)。这里,UCI复用的条件例如为:UCI复用的时间线要求(timeline requirement),关于其含义,可以参考相关技术。在一些实施例中,除了上述满足UCI复用条件的上行控制信号,还存在不满足UCI复用条件的上行控制信号,在本申请实施例中,仅考虑满足UCI复用条件的上行控制信号。
下面进一步结合附图对本申请实施例的方法进行说明。
图8a和图8b是一个时隙中的上行数据信号(PUSCH)和上行控制信号(PUCCH)的另一个示意图。如图8a和图8b所示,对于基于子时隙发送的PUCCH而言,将一个14符号的时隙分为7个2符号的子时隙。其中,PUCCH#1在子时隙#1中发送,PUCCH#2在子时隙#3中发送,PUCCH#3在子时隙#4中发送,PUCCH#4在子时隙#5中发送。其中,PUCCH#1与PUSCH#1之间不满足UCI复用的条件。PUCCH#2,PUCCH#3,PUCCH#4分别与PUSCH#1之间满足UCI复用的条件。对于各PUCCH所包含的UCI信息,一种情况如图8a所示,PUCCH#1,PUCCH#2,PUCCH#3,PUCCH#4分别包含HARQ-ACK信息(也可以分别包含SR信息,或相同类型的CSI-RS信息);另一种情况如图8b所示,PUCCH#1,PUCCH#2,PUCCH#3分别包含HARQ-ACK信息(也可以分别包含SR信息,或相同类型的CSI-RS信息)。
在一些实施例中,UE不发送PUCCH#2+PUCCH#3+PUCCH#4,UE发送PUSCH#1。其中,PUSCH#1包括所有满足UCI复用的条件的与PUSCH#1重叠的PUCCH的HARQ-ACK信息,也即(如果存在的话)PUCCH#2,PUCCH#3以及PUCCH#4的HARQ-ACK information bits。
在这些实施例中,UCI bit在复用时的先后顺序可以根据PUCCH时域资源的先后顺序确定。例如,由于由于满足UCI复用的条件的PUCCH对应的时域先后顺序为:PUCCH#2→PUCCH#3→PUCCH#4,因此,在PUSCH#1中,HARQ-ACK information bit的先后顺序为:(如果存在的话)PUCCH#2对应的HARQ-ACK information bit→(如果存在的话)PUCCH#3对应的HARQ-ACK information bit→(如果存在的话) PUCCH#4对应的HARQ-ACK information bit。
在一些实施例中,UE不发送PUCCH#2+PUCCH#3+PUCCH#4,UE发送PUSCH#1。其中,PUSCH#1包括满足UCI复用的条件的最早的与PUSCH#1重叠的PUCCH的HARQ-ACK信息。
在这些实施例中,时域上最早的包括HARQ-ACK UCI的PUCCH可以根据PUCCH时域资源的先后顺序确定。例如,由于满足UCI复用的条件的PUCCH对应的时域先后顺序为:PUCCH#2→PUCCH#3→PUCCH#4,因此,在PUSCH#1中,最早的包括HARQ-ACK信息的PUCCH为PUCCH#2,PUSCH#1中包括PUCCH#2所对应的HARQ-ACK信息。
在一些实施例中,UE不发送PUSCH#1,UE发送PUCCH#2+PUCCH#3+PUCCH#4。这里,UE也不发送PUCCH#1,原因是,PUCCH#1与PUSCH#1不满足UCI复用的条件。
在一些实施例中,UE将上述情况视为error case。也就是说,一个UE不期待:收到用于PUSCH发送的指示信息;收到用于多于一个PUCCH发送的指示信息;所述PUSCH所对应的时域资源与所述多于一个PUCCH中的每个PUCCH所对应的时域资源分别重叠;所述PUCCH所对应的时间单位小于14个符号;所述多于一个PUCCH包括相同类型的UCI;所述多于一个PUCCH所对应的时域资源分别对应不同的时间单位;所述用于多于一个PUCCH发送的指示信息所指示的PUCCH分别与所述PUSCH满足UCI复用的条件。
根据本申请实施例的方法,增强了上行信号的发送机制。
第二方面的实施例
本申请第二方面的实施例提供了一种上行信号接收方法,从网络侧进行说明。该方法是与第一方面的实施例的方法对应的网络侧的处理,其中与第一方面的实施例相同的内容不再重复说明。
图9是本申请实施例的上行信号接收方法的示意图,如图9所示,该方法包括:
901:网络设备向终端设备发送第一指示信息和第二指示信息,所述第一指示信息指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送,其中,所述上行数据信号所对应的时域资源,与所述多于一个上行控制信号中的每个上行控 制信号所对应的时域资源分别重叠,并且,所述多于一个上行控制信号中的每个上行控制信号所对应的时间单位的长度分别小于14个符号,所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI),所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位;
902:所述网络设备接收所述终端设备发送的上行控制信号和/或上行数据信号,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息。
在本申请实施例中,上述上行数据信号例如为PUSCH,或者PUSCH承载的信号,或者所述上行数据信号对应于一个名义的type B PUSCH repetition,或者所述上行数据信号对应于一个实际的type B PUSCH repetition;上述上行控制信号例如为PUCCH,或者PUCCH承载的信号,本申请不限于此。
在一些实施例中,所述上行数据信号复用了所述多于一个上行控制信号所包括的上行链路控制信息,所述上行链路控制信息对应的比特在复用时的先后顺序与所述上行链路控制信息对应的上行控制信号所对应的时域资源的先后顺序相同。
在一些实施例中,所述上行数据信号复用了所述多于一个上行控制信号中时域资源最早的上行控制信号所包括的上行链路控制信息。
在一些实施例中,所述第二指示信息所指示的所述多于一个上行控制信号分别与所述第一指示信息所指示的所述上行数据信号满足上行链路控制信息(UCI)复用的条件。
在一些实施例中,所述上行数据信号的子载波间隔大于或等于所述多于一个上行控制信号的子载波间隔。
在一些实施例中,所述上行链路控制信息为以下至少一种:HARQ-ACK信息,SR信息,CSI信息。
根据本申请实施例的方法,增强了上行信号的发送机制。
第三方面的实施例
发明人发现,当UE接收到一个DCI指示信息,对应着type B PUSCH repetition transmission。UE实际发送了至少一个复用了HARQ-ACK信息的PUSCH repetition。这时,当该DCI包含下行分配索引(DAI,Downlink Assignment Index)域时,UE无法确定该域如何使用。
针对上述问题,提出了本申请第三方面的实施例的上行信号处理方法。
本申请第三方面的实施例提供一种上行信号处理方法,从终端设备侧进行说明。图10是本申请实施例的上行信号处理方法的示意图,如图10所示,该方法包括:
1001:终端设备接收指示信息,所述指示信息指示上行数据信号发送,所述指示信息包括DAI域,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition;
1002:所述终端设备执行以下处理的其中一种:根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于所有(all)或任何(any)复用了所述HARQ-ACK信息的type B PUSCH repetition;根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition;将对所述指示信息的接收视为错误。
根据本申请实施例的方法,明确了DAI域的指示所适用的范围,增强了上行信号的发送机制。
在本申请实施例中,上述上行数据信号例如为PUSCH,或者PUSCH承载的信号,本申请不限于此。
在一些实施例中,上述type B PUSCH repetition是名义的(nominal)type B PUSCH repetition。DAI域的指示适用所有或任何复用HARQ-ACK information的nominal type B PUSCH repetition,可以保证相应的HARQ-ACK信息的可靠性,提升系统性能。DAI域的指示仅适用于时域上第一个复用HARQ-ACK information的nominal type B PUSCH repetition,可以不强制该nominal type B PUSCH repetition之后的nominal type B PUSCH repetition,在复用HARQ-ACK信息时,也使用相同的DAI指示。从而减少系统的调度限制,提升系统的灵活性。
在一些实施例中,上述type B PUSCH repetition是实际的(actual)type B PUSCH repetition。DAI域的指示适用所有或任何复用HARQ-ACK的actual type B PUSCH repetition,可以保证相应的HARQ-ACK信息的可靠性,提升系统性能。DAI域的指示仅适用于时域上第一个复用HARQ-ACK的actual type B PUSCH repetition,可以不限制该PUSCH之后的PUSCH复用HARQ-ACK信息时,也使用相同的DAI指示,从而提升系统的灵活性。
在一些实施例中,将对所述指示信息的接收视为错误,是指,该终端设备不期待 接收上述指示信息。例如,UE不期待:对应于一个PUSCH的一个或多于一个的type B PUSCH repetition分别复用HARQ-ACK information。这里,type B PUSCH repetition可以是nominal type B PUSCH repetition,也可以是actual type B PUSCH repetition。由此,通过规定上述error case,可以使得UE不必处理多个对应于同一个PUSCH的多于一个actual type B PUSCH repetition同时复用HARQ-ACK information的情况,从而降低了对UE能力的要求,降低了生产成本。
下面结合附图对本申请实施例的方法进行说明。
图11是一个时隙中的上行数据信号(PUSCH)的一个示意图,如图11所示,当UE接收到一个PUSCH发送指示(上述指示信息)后,发送相应的PUSCH。其中,所述PUSCH发送指示可以包括:该PUSCH的第一次repetition的起始符号为第3个符号;该PUSCH(所对应的单次type B PUSCH repetition)的时域长度L为2符号(symbol),该长度可以认为是名义(nominal)长度,也即实际发送时,该长度可能等于或小于该长度;该PUSCH的重复次数为4,该重复次数可以认为是名义(nominal)重复次数,也即实际的重复次数可能不等于该重复次数。
如图11所示,所述的PUSCH的发送实际对应4次type B PUSCH repetition,分别记为PUSCH#rep1,PUSCH#rep2,PUSCH#rep3,PUSCH#rep4。其中,PUSCH#rep1复用了HARQ-ACK信息,PUSCH#rep4复用了HARQ-ACK信息。
在图11的示例中,DAI域可以适用于PUSCH#rep1和PUSCH#rep4,也可以仅适用于PUSCH#rep1,或者,UE也可以将上述情况视为error case,也即,UE不期待:多于一个nominal type B PUSCH repetition分别复用HARQ-ACK information;并且,对应的DCI指示/调度信息包括DAI域。
图12是一个时隙中的上行数据信号(PUSCH)的另一个示意图,如图12所示,当UE接收到一个PUSCH发送指示(上述指示信息)后,发送相应的PUSCH。其中,所述PUSCH发送指示可以包括:该PUSCH的第一次repetition的起始符号为第7个符号;该PUSCH(所对应的单次type B PUSCH repetition)的时域长度L为5符号(symbol),该长度可以认为是名义(nominal)长度,也即实际发送时,该长度可能等于或小于该长度;该PUSCH的重复次数为3,该重复次数可以认为是名义(nominal)重复次数,也即实际的重复次数可能不等于该重复次数。
如图12所示,所述的PUSCH的发送实际对应4次type B PUSCH repetition,分 别记为PUSCH#rep1,PUSCH#rep2,PUSCH#rep3,PUSCH#rep4。其中,PUSCH#rep2复用了HARQ-ACK信息,PUSCH#rep3复用了HARQ-ACK信息,PUSCH#rep4复用了HARQ-ACK信息。需要说明的是,实际重复次数相较于名义重复次数多。其原因是:第二次名义的PUSCH repetition,由于跨越了时隙的边界,分裂为两个实际的repetition。
在图12的示例中,DAI域可以适用于PUSCH#rep2,PUSCH#rep3,PUSCH#rep4,也可以仅适用于PUSCH#rep2,或者,UE也可以将上述情况视为error case,也即UE不期待:多于一个actual type B PUSCH repetition分别复用HARQ-ACK information;并且,对应的DCI指示/调度信息包括DAI域。
根据本申请实施例的方法,增强了上行信号的发送机制。
第四方面的实施例
本申请第四方面的实施例提供了一种上行信号接收方法,从网络侧进行说明。该方法是与第三方面的实施例的方法对应的网络侧的处理,其中与第三方面的实施例相同的内容不再重复说明。
图13是本申请实施例的上行信号接收方法的示意图,如图13所示,该方法包括:
1301:网络设备向终端设备发送指示信息,所述指示信息指示上行数据信号发送,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition,所述指示信息包括下行分配索引(DAI,Downlink Assignment Index)域,所述DAI域适用于所有或任何复用了所述HARQ-ACK信息的type B PUSCH repetition,或者,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition;
1302:所述网络设备接收所述终端设备发送的所述上行数据信号。
在一些实施例中,上述type B PUSCH repetition是名义的(nominal)type B PUSCH repetition。DAI域的指示适用所有或任何复用HARQ-ACK information的nominal type B PUSCH repetition,可以保证相应的HARQ-ACK信息的可靠性,提升系统性能。DAI域的指示仅适用于时域上第一个复用HARQ-ACK information的nominal type B PUSCH repetition,可以不强制该nominal type B PUSCH repetition之后的nominal type B PUSCH repetition,在复用HARQ-ACK信息时,也使用相同的DAI 指示。从而减少系统的调度限制,提升系统的灵活性。
在一些实施例中,上述type B PUSCH repetition是实际的(actual)type B PUSCH repetition。DAI域的指示适用所有或任何复用HARQ-ACK的actual type B PUSCH repetition,可以保证相应的HARQ-ACK信息的可靠性,提升系统性能。DAI域的指示仅适用于时域上第一个复用HARQ-ACK的actual type B PUSCH repetition,可以不限制该PUSCH之后的PUSCH复用HARQ-ACK信息时,也使用相同的DAI指示,从而提升系统的灵活性。
根据本申请实施例的方法,增强了上行信号的发送机制。
第五方面的实施例
发明人发现,当一个UE收到一个用于PUSCH发送指示,该PUSCH对应多于一个type B PUSCH repetition,并且,该UE收到一个用于PUCCH发送指示,该PUCCH对应至少两个PUCCH repetition,并且,所述PUSCH与所述至少两个PUCCH repetition在时域上发生重叠。由于UE没有能力在同一时间发送大于一个上行信号的能力,尤其是同时发送上行数据信号和上行控制信号的能力,因此,在这种情况下,当大于一个(被指示的)上行信号的时域资源发生重叠(冲突)时,UE最多只能发送其中的一个上行信号。但是,目前而言,没有解决方案能够说明该UE应该发送哪个信号;即使能确定该UE发送哪个上行信号,也可能无法确定该上行信号包括哪些信息。
针对上述问题提出了本申请实施例的上行信号处理方法,以便UE在接收到上述调度指示的情况下,能够正确地发送相应的上行信号。
本申请第五方面的实施例提供了一种上行信号处理方法,从终端设备侧进行说明。图14是本申请实施例的上行信号处理方法的示意图,如图14所示,该方法包括:
1401:终端设备接收第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号所对应的时域资源与所述上行控制信号所对应的时域资源重叠;
1402:所述终端设备执行以下处理的其中一种:所述终端设备发送所述上行数据信号,并且,不发送全部或部分所述上行控制信号;所述终端设备发送所述上行控制信号,并且,不发送全部或部分所述上行数据信号;所述终端设备将对所述第一指示 信息和所述第二指示信息的接收视为错误。
根据本申请实施例的上述方法,终端设备在接收到上述第一指示信息和第二指示时,发送上行数据信号而不发送上行控制信号或不发送部分上行控制信号,或者发送上行控制信号而不发送上行数据信号或不发送部分上行数据信号,或者将对上述第一指示信息和第二指示信息的接收视为错误。由此,能够正确地发送相应的上行信号,增强了上行信号的发送机制。
在本申请实施例中,上述上行数据信号例如为PUSCH,或者PUSCH承载的信号;上述上行控制信号例如为PUCCH,或者PUCCH承载的信号,本申请不限于此。
在一些实施例中,终端设备不发送部分上行控制信号是指:终端设备不发送在特定时间单位内的所述上行控制信号;该特定时间单位是指:在该特定时间单位中,所述上行数据信号所对应的时域资源与所述上行控制信号所对应的时域资源重叠。这里,所述上行数据信号对应的时域资源是指:所述上行数据信号对应的实际的(actual)type B PUSCH repetition所对应的时域资源,或者,所述上行数据信号对应的名义的(nominal)type B PUSCH repetition所对应的时域资源。
由此,由于发送上行数据信号,而不发送上行控制信号,或者不发送部分上行控制信号,避免了PUSCH repetition与PUCCH repetition因为在时域上重叠而无法发送,从而保证了上行数据信号的可靠性。
在一些实施例中,终端设备不发送部分所述上行数据信号的是指:终端设备不发送所述上行数据信号中特定的type B PUSCH repetition;该特定的type B PUSCH repetition是指:所述特定的type B PUSCH repetition所对应的时域资源与所述上行控制信号对应的时域资源重叠。这里,所述type B PUSCH repetition所对应的时域资源是指:实际的(actual)type B PUSCH repetition所对应的时域资源,或者,名义的(nominal)type B PUSCH repetition所对应的时域资源。
由此,由于发送上行控制信号,而不发送上行数据信号,或者不发送部分上行数据信号,避免了PUCCH repetition因为与PUSCH repetition的时域资源重叠而无法发送,从而保证了上行控制信号的可靠性。
并且,如果actual type B PUSCH repetition没有与PUCCH repetition在时域上重叠,则可以发送该PUSCH repetition,从而同时保证了上行数据信号的可靠性。此外,如果nominal type B PUSCH repetition与PUCCH repetition在时域上重叠,则不发送 该nominal PUSCH repetition所对应的一个或多于一个的传输。这种行为的描述可以最大限度地减少现有标准的修改,避免过多的标准化的影响,减少标准化人力、时间成本。
在一些实施例中,终端设备将对上述第一指示信息和上述第二指示信息的接收视为错误,是指:终端设备不期待接收上述第一指示信息和上述第二指示信息。由此,通过规定上述error case,UE无需处理多个PUCCH repetition与nominal/actual type B PUSCH repetition在时域发生重叠的情况,从而降低了对UE能力的要求,降低了生产成本。
下面结合附图对本申请实施例的方法进行说明。
图15是一个时隙中的上行数据信号(PUSCH)和上行控制信号(PUCCH)的一个示意图,如图15所示,对于基于子时隙发送的PUCCH而言,将一个14符号的时隙分为2个7符号的子时隙。其中,PUCCH的第1次重复PUCCH#rep1在时隙#0子时隙#0中发送;相应的PUCCH的第2次重复PUCCH#rep2在时隙#0子时隙#1中发送。另外,该PUSCH的第一次repetition的起始符号为第6个符号;该PUSCH的时域长度L为6符号(symbol),该长度可以认为是名义(nominal)长度,也即实际发送时,该长度可能等于或小于该长度;该PUSCH的重复次数为3,该重复次数可以认为是名义(nominal)重复次数,也即实际的重复次数可能不等于该重复次数。
此外,如图15所示,PUSCH的发送实际对应4次type B PUSCH repetition,分别记为PUSCH#rep1,PUSCH#rep2,PUSCH#rep3,PUSCH#rep4。需要说明的是,实际重复次数相较于名义重复次数多。其原因是:第二次名义的PUSCH repetition,由于跨越了时隙的边界,分裂为两个实际的repetition。
此外,如图15所示,PUCCH#rep1与PUCCH#rep2分别与PUSCH#rep1和PUSCH#rep2在时域上重叠。
在一些实施例中,UE发送PUCCH#rep1和PUCCH#rep2,也发送PUSCH#rep3,而不发送与PUCCH repetition重叠的actual PUSCH repetition,即不发送PUSCH#rep1和PUSCH#rep2。对于PUSCH#rep4,UE的一种方案是选择进行发送,另一种方案则是选择不进行发送。由此,避免了PUCCH#rep1和PUCCH#rep2因为与PUSCH#rep1和PUSCH#rep2的时域资源重叠而无法发送的问题,从而保证了上行控制信号的可靠性。并且,如果actual type B PUSCH repetition没有与PUCCH repetition在时域上重 叠,例如PUSCH#rep3,则可以发送该PUSCH repetition,从而同时保证了上行数据信号的可靠性,减少数据时延。
在一些实施例中,UE发送PUCCH#rep1和PUCCH#rep2,而不发送与PUCCH repetition重叠的nominal PUSCH repetition,即不发送PUSCH#rep1、PUSCH#rep2和PUSCH#rep3。此外,对于PUSCH#rep4,UE的一种方案是选择进行发送,另一种方案是选择不进行发送。由此,避免了PUCCH#rep1和PUCCH#rep2因为与PUSCH#rep1、PUSCH#rep2和PUSCH#rep3的时域资源重叠而无法发送,从而保证了上行控制信号的可靠性。并且,如果nominal type B PUSCH repetition与PUCCH repetition在时域上重叠,则不发送该nominal PUSCH repetition所对应的一个或多于一个的传输,即不发送PUSCH#rep2和PUSCH#rep3。这种行为的描述可以最大限度地减少现有标准的修改,避免过多的标准化的影响,减少标准化人力、时间成本。
在一些实施例中,UE发送PUSCH#rep1、PUSCH#rep2和PUSCH#rep3,而不在相应的子时隙发送PUCCH#rep1和PUCCH#rep2。此外,对于PUSCH#rep4,UE的一种方案是选择进行发送,另一种方案是选择不进行发送。由此,避免了PUSCH#rep1、PUSCH#rep2和PUSCH#rep3与PUCCH#rep1和PUCCH#rep2因为在时域上重叠而无法发送的问题,从而保证了上行数据发送的可靠性,减少数据时延。
在一些实施例中,UE将上述情况视为error case。例如,UE不期待:根据相应的指示信息,PUSCH#rep1和PUSCH#rep2(第一个和第二个实际的type B PUSCH repetition)与PUCCH#rep1以及PUCCH#rep2在时域重叠;或,PUSCH#rep1、PUSCH#rep2和PUSCH#rep3(第一个和第二个名义的type B PUSCH repetition)与PUCCH#rep1以及PUCCH#rep2在时域重叠。由此,通过规定上述error case,UE无需处理多个PUCCH repetition与type B PUSCH repetition在时域发生重叠的情况,从而降低了对UE能力的要求,降低了生产成本。
根据本申请实施例的方法,增强了上行信号的发送机制。
第六方面的实施例
本申请第六方面的实施例提供了一种上行信号接收方法,从网络侧进行说明。该方法应用于网络设备,其是对应第五方面的实施例的方法的网络侧的处理,其中与第五方面的实施例相同的内容不再重复说明。
图16是本申请第六方面的实施例的上行信号接收方法的示意图,如图16所示,该方法包括:
1601:网络设备向终端设备发送第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号对应的时域资源与所述上行控制信号对应的时域资源重叠;
1602:所述网络设备接收所述终端设备发送的上行数据信号和/或上行控制信号。
在一些实施例中,上行数据信号对应的时域资源是指,所述上行数据信号对应的实际的(actual)type B PUSCH repetition所对应的时域资源。
在一些实施例中,上行数据信号对应的时域资源是指,所述上行数据信号对应的名义的(nominal)type B PUSCH repetition所对应的时域资源。
根据本申请实施例的方法,增强了上行信号的发送机制。
第七方面的实施例
本申请第七方面的实施例提供了一种上行信号处理装置,该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。
图17是本申请实施例的上行信号处理装置1700的一个示意图,由于该装置解决问题的原理与第一方面的实施例的方法类似,因此其具体的实施可以参照第一方面的实施例的方法的实施,内容相同之处不再重复说明。如图17所示,该装置1700包括:接收单元1701和处理单元1702。
接收单元1701用于接收第一指示信息和第二指示信息,所述第一指示信息指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送;其中,所述上行数据信号所对应的时域资源,与所述多于一个上行控制信号中的每个上行控制信号所对应的时域资源分别重叠;并且,所述多于一个上行控制信号中的每个上行控制信号,所对应的时间单位的长度分别小于14个符号;所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI);所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位。
处理单元1702用于执行以下处理的其中一种:
发送所述上行数据信号,所述上行数据信号复用了至少一个所述上行控制信号所 包括的上行链路控制信息,并且不发送所述多于一个上行控制信号;
发送所述多于一个上行控制信号,并且不发送所述上行数据信号;
将对所述第一指示信息和所述第二指示信息的接收视为错误。
在一些实施例中,处理单元1702将对所述第一指示信息和所述第二指示信息的接收视为错误,是指:处理单元1702不期待接收所述第一指示信息和所述第二指示信息。
在一些实施例中,所述上行数据信号的子载波间隔(SCS,subcarrier spacing)大于或等于所述多于一个上行控制信号的子载波间隔。并且,该多于一个上行控制信号的子载波间隔相同。
在一些实施例中,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息,包括:所述上行数据信号复用了所述多于一个上行控制信号所包括的上行链路控制信息。
在一些实施例中,所述上行链路控制信息对应的比特在复用时的先后顺序与所述上行链路控制信息所对应的上行控制信号所对应的时域资源的先后顺序相同。
在一些实施例中,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息,包括:所述上行数据信号复用了所述多于一个上行控制信号中时域资源最早的上行控制信号所包括的上行链路控制信息。
在一些实施例中,所述第二指示信息所指示的所述多于一个上行控制信号分别与所述第一指示信息所指示的所述上行数据信号满足上行链路控制信息(UCI)复用的条件(condition)。
在一些实施例中,所述上行链路控制信息为以下至少一种:HARQ-ACK信息,SR信息,CSI信息。
图18是本申请实施例的上行信号处理装置1800的一个示意图,由于该装置解决问题的原理与第三方面的实施例的方法类似,因此其具体的实施可以参照第三方面的实施例的方法的实施,内容相同之处不再重复说明。如图18所示,该装置1800包括:接收单元1801和处理单元1802。
接收单元1801用于接收指示信息,所述指示信息指示上行数据信号发送,所述指示信息包括下行分配索引(DAI,Downlink Assignment Index)域,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition。
处理单元1802用于执行以下处理的其中一种:
根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于所有或任何复用了所述HARQ-ACK信息的type B PUSCH repetition;
根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition;
将对所述指示信息的接收视为错误。
在一些实施例中,所述type B PUSCH repetition是实际的type B PUSCH repetition。
在一些实施例中,所述type B PUSCH repetition是名义的type B PUSCH repetition。
在一些实施例中,处理单元1802将对所述指示信息的接收视为错误,是指:处理单元1802不期待接收所述指示信息。
图19是本申请实施例的上行信号处理装置1900的一个示意图,由于该装置解决问题的原理与第五方面的实施例的方法类似,因此其具体的实施可以参照第五方面的实施例的方法的实施,内容相同之处不再重复说明。如图19所示,该装置1900包括:接收单元1901和处理单元1902。
接收单元1901用于接收第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号所对应的时域资源与所述上行控制信号所对应的时域资源重叠。
处理单元1902用于执行以下处理的其中一种:
发送所述上行数据信号,并且,不发送全部或部分所述上行控制信号;
发送所述上行控制信号,并且,不发送全部或部分所述上行数据信号;
将对所述第一指示信息和所述第二指示信息的接收视为错误。
在一些实施例中,处理单元1902不发送部分所述上行控制信号是指,处理单元1902不发送在特定时间单位内的所述上行控制信号;其中,在所述特定时间单位中,所述上行数据信号所对应的时域资源与所述上行控制信号所对应的时域资源重叠。
在一些实施例中,处理单元1902不发送部分所述上行数据信号的是指,处理单元1902不发送所述上行数据信号中特定的type B PUSCH repetition;其中,所述特定的type B PUSCH repetition所对应的时域资源与所述上行控制信号对应的时域资源重叠。
在一些实施例中,所述上行数据信号对应的时域资源是指,所述上行数据信号对应的实际的type B PUSCH repetition所对应的时域资源。
在一些实施例中,所述上行数据信号对应的时域资源是指,所述上行数据信号对应的名义的type B PUSCH repetition所对应的时域资源。
在一些实施例中,所述type B PUSCH repetition所对应的时域资源是指,实际的type B PUSCH repetition所对应的时域资源。
在一些实施例中,所述type B PUSCH repetition所对应的时域资源是指,名义的type B PUSCH repetition所对应的时域资源。
在一些实施例中,处理单元1902将对所述第一指示信息和所述第二指示信息的接收视为错误,是指:处理单元1902不期待接收所述第一指示信息和所述第二指示信息。
根据本申请实施例,增强了上行信号的发送机制。
第八方面的实施例
本申请第八方面的实施例提供了一种上行信号接收装置,该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件。
图20是本实施例的上行信号接收装置2000的示意图,由于该装置解决问题的原理与第二方面的实施例的方法类似,因此其具体的实施可以参照第二方面的实施例的方法的实施,内容相同之处不再重复说明。如图20所示,该装置2000包括:发送单元2001和接收单元2002。
发送单元2001用于向终端设备发送第一指示信息和第二指示信息,所述第一指示信息指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送,其中,所述上行数据信号所对应的时域资源,与所述多于一个上行控制信号中的每个上行控制信号所对应的时域资源分别重叠,并且,所述多于一个上行控制信号中的每个上行控制信号所对应的时间单位的长度分别小于14个符号,所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI),所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位。
接收单元2002用于接收所述终端设备发送的上行控制信号和/或上行数据信号,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息。
在一些实施例中,所述上行数据信号复用了所述多于一个上行控制信号所包括的上行链路控制信息,所述上行链路控制信息对应的比特在复用时的先后顺序与所述上行链路控制信息对应的上行控制信号所对应的时域资源的先后顺序相同。
在一些实施例中,所述上行数据信号复用了所述多于一个上行控制信号中时域资源最早的上行控制信号所包括的上行链路控制信息。
在一些实施例中,所述第二指示信息所指示的所述多于一个上行控制信号分别与所述第一指示信息所指示的所述上行数据信号满足上行链路控制信息(UCI)复用的条件。
在一些实施例中,所述上行数据信号的子载波间隔大于或等于所述多于一个上行控制信号的子载波间隔。
在一些实施例中,所述上行链路控制信息为以下至少一种:HARQ-ACK信息,SR信息,CSI信息。
图21是本实施例的上行信号接收装置2100的示意图,由于该装置解决问题的原理与第四方面的实施例的方法类似,因此其具体的实施可以参照第四方面的实施例的方法的实施,内容相同之处不再重复说明。如图21所示,该装置2100包括:发送单元2101和接收单元2102。
发送单元2101用于向终端设备发送指示信息,所述指示信息指示上行数据信号发送,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition,所述指示信息包括下行分配索引(DAI,Downlink Assignment Index)域,所述DAI域适用于所有或任何复用了所述HARQ-ACK信息的type B PUSCH repetition,或者,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition。
接收单元2102用于接收所述终端设备发送的所述上行数据信号。
在一些实施例中,所述type B PUSCH repetition是实际的type B PUSCH repetition。
在一些实施例中,所述type B PUSCH repetition是名义的type B PUSCH repetition。
图22是本实施例的上行信号接收装置2200的示意图,由于该装置解决问题的原理与第六方面的实施例的方法类似,因此其具体的实施可以参照第六方面的实施例的方法的实施,内容相同之处不再重复说明。如图22所示,该装置2200包括:发送单元2201和接收单元2202。
发送单元2201用于向终端设备发送第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号对应的时域资源与所述上行控制信号对应的时域资源重叠。
接收单元2202用于接收所述终端设备发送的上行数据信号和/或上行控制信号。
在一些实施例中,所述上行数据信号对应的时域资源是指,所述上行数据信号对应的实际的type B PUSCH repetition所对应的时域资源。
在一些实施例中,所述上行数据信号对应的时域资源是指,所述上行数据信号对应的名义的type B PUSCH repetition所对应的时域资源。
根据本申请实施例,增强了上行信号的发送机制。
第九方面的实施例
本申请第九方面的实施例提供了一种通信系统,图23是该通信系统2300的示意图,如图23所示,该通信系统2300包括网络设备2301和终端设备2302,为简单起见,图23仅以一个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备2301和终端设备2302之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
在一些实施例中,网络设备2301向终端设备2302发送第一指示信息和第二指示信息,所述第一指示信息指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送,其中,所述上行数据信号所对应的时域资源,与所述多于一个上行控制信号中的每个上行控制信号所对应的时域资源分别重叠;并且,所述多于一个上行控制信号中的每个上行控制信号,所对应的时间单位的长度分别小于14个符号;所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI);所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位。终端设备2302接收第一指示信息和第二指示信息,并执行以下处理的其中一种:发送所述上行数据信号,所述上行数据信号复用了至少一个所述上行控制信号所包括的上 行链路控制信息,并且不发送所述多于一个上行控制信号;发送所述多于一个上行控制信号,并且不发送所述上行数据信号;将对所述第一指示信息和所述第二指示信息的接收视为错误。网络设备2301接收终端设备2302发送的上行控制信号和/或上行数据信号。
在一些实施例中,网络设备2301向终端设备2302发送指示信息,所述指示信息指示上行数据信号发送,所述指示信息包括下行分配索引(DAI,Downlink Assignment Index)域,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition。终端设备2302接收上述指示信息,并执行以下处理的其中一种:根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于所有或任何复用了所述HARQ-ACK信息的type B PUSCH repetition;根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition;将对所述指示信息的接收视为错误。网络设备2301接收终端设备2302发送的所述上行数据信号。
在一些实施例中,网络设备2301向终端设备2302发送第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号所对应的时域资源与所述上行控制信号所对应的时域资源重叠。终端设备2302接收上述第一指示信息和第二指示信息,并执行以下处理的其中一种:发送所述上行数据信号,并且,不发送全部或部分所述上行控制信号;发送所述上行控制信号,并且,不发送全部或部分所述上行数据信号;将对所述第一指示信息和所述第二指示信息的接收视为错误。网络设备2301接收终端设备2302发送的上行数据信号和/或上行控制信号。
本申请实施例还提供一种终端设备,该终端设备例如可以是UE,但本申请不限于此,还可以是其它的设备。
图24是本申请实施例的终端设备的示意图。如图24所示,该终端设备2400可以包括处理器2401和存储器2402;存储器2402存储有数据和程序,并耦合到处理器2401。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
例如,处理器2401可以被配置为执行程序而实现如第一方面或第三方面或第五 方面的实施例所述的上行信号处理方法。
如图24所示,该终端设备2400还可以包括:通信模块2403、输入单元2404、显示器2405、电源2406。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备2400也并不是必须要包括图24中所示的所有部件,上述部件并不是必需的;此外,终端设备2400还可以包括图24中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种网络设备,该网络设备例如可以是基站(gNB),但本申请不限于此,还可以是其它的网络设备。
图25是本申请实施例的网络设备的一个构成示意图。如图25所示,网络设备2500可以包括:处理器(例如中央处理器CPU)2501和存储器2502;存储器2502耦合到处理器2501。其中该存储器2502可存储各种数据;此外还存储信息处理的程序,并且在中央处理器2501的控制下执行该程序。
例如,处理器2501可以被配置为执行程序而实现如第二方面或第四方面或第六方面的实施例所述的上行信号接收方法。
此外,如图25所示,网络设备2500还可以包括:收发机2503和天线2504等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备2500也并不是必须要包括图25中所示的所有部件;此外,网络设备2500还可以包括图25中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行第一方面或第三方面或第五方面的实施例所述的上行信号处理方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行第一方面或第三方面或第五方面的实施例所述的上行信号处理方法。
本申请实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行第二方面或第四方面或第六方面的实施例所述的上行信号接收方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可 读程序使得计算机在网络设备中执行第二发明或第四方面或第六方面的实施例所述的上行信号接收方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本 申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1、一种上行信号处理方法,其中,所述方法包括:
终端设备接收第一指示信息和第二指示信息,所述第一指示信息指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送;其中,
所述上行数据信号所对应的时域资源,与所述多于一个上行控制信号中的每个上行控制信号所对应的时域资源分别重叠;并且,
所述多于一个上行控制信号中的每个上行控制信号,所对应的时间单位的长度分别小于14个符号;
所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI);
所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位;
所述终端设备执行以下处理的其中一种:
所述终端设备发送所述上行数据信号,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息,并且不发送所述多于一个上行控制信号;
所述终端设备发送所述多于一个上行控制信号,并且不发送所述上行数据信号;
所述终端设备将对所述第一指示信息和所述第二指示信息的接收视为错误。
1a、根据附记1所述的方法,其中,所述上行数据信号为PUSCH,或者PUSCH承载的信号,或者所述上行数据信号对应于一个名义的type B PUSCH repetition,或者所述上行数据信号对应于一个实际的type B PUSCH repetition;所述上行控制信号例如为PUCCH,或者PUCCH承载的信号。
2、根据附记1所述的方法,其中,所述终端设备将对所述第一指示信息和所述第二指示信息的接收视为错误,是指:
所述终端设备不期待接收所述第一指示信息和所述第二指示信息。
3、根据附记1所述的方法,其中,
所述上行数据信号的子载波间隔(SCS,subcarrier spacing)大于或等于所述多于一个上行控制信号的子载波间隔。
4、根据附记1所述的方法,其中,所述上行数据信号复用了至少一个所述上行 控制信号所包括的上行链路控制信息,包括:
所述上行数据信号复用了所述多于一个上行控制信号所包括的上行链路控制信息。
5、根据附记4所述的方法,其中,所述上行链路控制信息对应的比特在复用时的先后顺序与所述上行链路控制信息所对应的上行控制信号所对应的时域资源的先后顺序相同。
6、根据附记1所述的方法,其中,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息,包括:
所述上行数据信号复用了所述多于一个上行控制信号中时域资源最早的上行控制信号所包括的上行链路控制信息。
7、根据附记1所述的方法,其中,所述第二指示信息所指示的所述多于一个上行控制信号分别与所述第一指示信息所指示的所述上行数据信号满足上行链路控制信息(UCI)复用的条件(condition)。
8、根据附记1至7任一项所述的方法,其中,所述上行链路控制信息为以下至少一种:HARQ-ACK信息,SR信息,CSI信息。
9、一种上行信号接收方法,其中,所述方法包括:
网络设备向终端设备发送第一指示信息和第二指示信息,所述第一指示信息指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送,其中,所述上行数据信号所对应的时域资源,与所述多于一个上行控制信号中的每个上行控制信号所对应的时域资源分别重叠,并且,所述多于一个上行控制信号中的每个上行控制信号所对应的时间单位的长度分别小于14个符号,所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI),所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位;
所述网络设备接收所述终端设备发送的上行控制信号和/或上行数据信号,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息。
9a、根据附记9所述的方法,其中,所述上行数据信号为PUSCH,或者PUSCH承载的信号,或者所述上行数据信号对应于一个名义的type B PUSCH repetition,或者所述上行数据信号对应于一个实际的type B PUSCH repetition;所述上行控制信号例如为PUCCH,或者PUCCH承载的信号。
10、根据附记9所述的方法,其中,所述上行数据信号复用了所述多于一个上行控制信号所包括的上行链路控制信息,所述上行链路控制信息对应的比特在复用时的先后顺序与所述上行链路控制信息对应的上行控制信号所对应的时域资源的先后顺序相同。
11、根据附记9所述的方法,其中,所述上行数据信号复用了所述多于一个上行控制信号中时域资源最早的上行控制信号所包括的上行链路控制信息。
12、根据附记9所述的方法,其中,所述第二指示信息所指示的所述多于一个上行控制信号分别与所述第一指示信息所指示的所述上行数据信号满足上行链路控制信息(UCI)复用的条件。
13、根据附记9所述的方法,其中,
所述上行数据信号的子载波间隔大于或等于所述多于一个上行控制信号的子载波间隔。
14、根据附记9至13任一项所述的方法,其中,所述上行链路控制信息为以下至少一种:HARQ-ACK信息,SR信息,CSI信息。
15、一种上行信号处理方法,其中,所述方法包括:
终端设备接收指示信息,所述指示信息指示上行数据信号发送,所述指示信息包括下行分配索引(DAI,Downlink Assignment Index)域,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition;
所述终端设备执行以下处理的其中一种:
根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于所有或任何复用了所述HARQ-ACK信息的type B PUSCH repetition;
根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition;
将对所述指示信息的接收视为错误。
16、根据附记15所述的方法,其中,
所述type B PUSCH repetition是实际的type B PUSCH repetition。
17、根据附记15所述的方法,其中,
所述type B PUSCH repetition是名义的type B PUSCH repetition。
18、根据附记15所述的方法,其中,将对所述指示信息的接收视为错误,是指: 所述终端设备不期待接收所述指示信息。
19、一种上行信号接收方法,其中,所述方法包括:
网络设备向终端设备发送指示信息,所述指示信息指示上行数据信号发送,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition,所述指示信息包括下行分配索引(DAI,Downlink Assignment Index)域,所述DAI域适用于所有或任何复用了所述HARQ-ACK信息的type B PUSCH repetition,或者,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition;
所述网络设备接收所述终端设备发送的所述上行数据信号。
20、根据附记19所述的方法,其中,
所述type B PUSCH repetition是实际的type B PUSCH repetition。
21、根据附记19所述的方法,其中,
所述type B PUSCH repetition是名义的type B PUSCH repetition。
22、一种上行信号处理方法,其中,所述方法包括:
终端设备接收第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号所对应的时域资源与所述上行控制信号所对应的时域资源重叠;
所述终端设备执行以下处理的其中一种:
所述终端设备发送所述上行数据信号,并且,不发送全部或部分所述上行控制信号;
所述终端设备发送所述上行控制信号,并且,不发送全部或部分所述上行数据信号;
所述终端设备将对所述第一指示信息和所述第二指示信息的接收视为错误。
23、根据附记22所述的方法,其中,不发送部分所述上行控制信号是指,
不发送在特定时间单位内的所述上行控制信号;其中,在所述特定时间单位中,所述上行数据信号所对应的时域资源与所述上行控制信号所对应的时域资源重叠。
24、根据附记22所述的方法,其中,不发送部分所述上行数据信号的是指,
不发送所述上行数据信号中特定的type B PUSCH repetition;其中,所述特定的 type B PUSCH repetition所对应的时域资源与所述上行控制信号对应的时域资源重叠。
25、根据附记22或23所述的方法,其中,所述上行数据信号对应的时域资源是指,
所述上行数据信号对应的实际的type B PUSCH repetition所对应的时域资源。
26、根据附记22或23所述的方法,其中,所述上行数据信号对应的时域资源是指,
所述上行数据信号对应的名义的type B PUSCH repetition所对应的时域资源。
27、根据附记24所述的方法,其中,所述type B PUSCH repetition所对应的时域资源是指,
实际的type B PUSCH repetition所对应的时域资源。
28、根据附记24所述的方法,其中,所述type B PUSCH repetition所对应的时域资源是指,
名义的type B PUSCH repetition所对应的时域资源。
29、根据附记22所述的方法,其中,所述终端设备将对所述第一指示信息和所述第二指示信息的接收视为错误,是指:所述终端设备不期待接收所述第一指示信息和所述第二指示信息。
30、一种上行信号接收方法,其中,所述方法包括:
网络设备向终端设备发送第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号对应的时域资源与所述上行控制信号对应的时域资源重叠;
所述网络设备接收所述终端设备发送的上行数据信号和/或上行控制信号。
31、根据附记30所述的方法,其中,所述上行数据信号对应的时域资源是指,
所述上行数据信号对应的实际的type B PUSCH repetition所对应的时域资源。
32、根据附记30所述的方法,其中,所述上行数据信号对应的时域资源是指,
所述上行数据信号对应的名义的type B PUSCH repetition所对应的时域资源。
33、一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至8、15至18、22至29任一项所述的上行信号处理方法。
34、一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记9至14、19至21、30至32任一项所述的上行信号接收方法。
35、一种通信系统,包括终端设备和网络设备,其中,
所述终端设备被配置为执行附记1至8任一项所述的方法,所述网络设备被配置为执行附记9至14任一项所述的方法;或者
所述终端设备被配置为执行附记15至18任一项所述的方法,所述网络设备被配置为执行附记19至21任一项所述的方法;或者
所述终端设备被配置为执行附记22至29任一项所述的方法,所述网络设备被配置为执行附记30至32任一项所述的方法。

Claims (20)

  1. 一种上行信号处理装置,其中,所述装置包括:
    接收单元,其接收第一指示信息和第二指示信息,所述第一指示信息指示上行数据信号发送,所述第二指示信息指示多于一个上行控制信号发送;其中,
    所述上行数据信号所对应的时域资源,与所述多于一个上行控制信号中的每个上行控制信号所对应的时域资源分别重叠;并且,
    所述多于一个上行控制信号中的每个上行控制信号,所对应的时间单位的长度分别小于14个符号;
    所述多于一个上行控制信号包括相同类型的上行链路控制信息(UCI);
    所述多于一个上行控制信号的每个上行控制信号所对应的时域资源分别对应不同的时间单位;
    处理单元,其执行以下处理的其中一种:
    发送所述上行数据信号,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息,并且不发送所述多于一个上行控制信号;
    发送所述多于一个上行控制信号,并且不发送所述上行数据信号;
    将对所述第一指示信息和所述第二指示信息的接收视为错误。
  2. 根据权利要求1所述的装置,其中,所述上行数据信号为PUSCH,或者PUSCH承载的信号,或者所述上行数据信号对应于一个名义的type B PUSCH repetition,或者所述上行数据信号对应于一个实际的type B PUSCH repetition;所述上行控制信号例如为PUCCH,或者PUCCH承载的信号。
  3. 根据权利要求1所述的装置,其中,所述处理单元将对所述第一指示信息和所述第二指示信息的接收视为错误,是指:
    所述处理单元不期待接收所述第一指示信息和所述第二指示信息。
  4. 根据权利要求1所述的装置,其中,
    所述上行数据信号的子载波间隔(SCS,subcarrier spacing)大于或等于所述多于一个上行控制信号的子载波间隔。
  5. 根据权利要求1所述的装置,其中,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息,包括:
    所述上行数据信号复用了所述多于一个上行控制信号所包括的上行链路控制信息。
  6. 根据权利要求5所述的装置,其中,所述上行链路控制信息对应的比特在复用时的先后顺序与所述上行链路控制信息所对应的上行控制信号所对应的时域资源的先后顺序相同。
  7. 根据权利要求1所述的装置,其中,所述上行数据信号复用了至少一个所述上行控制信号所包括的上行链路控制信息,包括:
    所述上行数据信号复用了所述多于一个上行控制信号中时域资源最早的上行控制信号所包括的上行链路控制信息。
  8. 根据权利要求1所述的装置,其中,所述第二指示信息所指示的所述多于一个上行控制信号分别与所述第一指示信息所指示的所述上行数据信号满足上行链路控制信息(UCI)复用的条件(condition)。
  9. 一种上行信号处理装置,其中,所述装置包括:
    接收单元,其接收指示信息,所述指示信息指示上行数据信号发送,所述指示信息包括下行分配索引(DAI,Downlink Assignment Index)域,所述上行数据信号包括至少一个复用了HARQ-ACK信息的type B PUSCH repetition;
    处理单元,其执行以下处理的其中一种:
    根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于所有或任何复用了所述HARQ-ACK信息的type B PUSCH repetition;
    根据所述指示信息发送所述上行数据信号,其中,所述DAI域适用于时域上第一个复用了所述HARQ-ACK信息的type B PUSCH repetition;
    将对所述指示信息的接收视为错误。
  10. 根据权利要求9所述的装置,其中,
    所述type B PUSCH repetition是实际的type B PUSCH repetition。
  11. 根据权利要求9所述的装置,其中,
    所述type B PUSCH repetition是名义的type B PUSCH repetition。
  12. 根据权利要求9所述的装置,其中,所述处理单元将对所述指示信息的接收视为错误,是指:所述处理单元不期待接收所述指示信息。
  13. 一种上行信号处理装置,其中,所述装置包括:
    接收单元,其接收第一指示信息和第二指示信息,所述第一指示信息指示对应多于一个type B PUSCH repetition的上行数据信号的发送,所述第二指示信息指示对应重复次数大于1的上行控制信号的发送,并且,所述上行数据信号所对应的时域资源与所述上行控制信号所对应的时域资源重叠;
    处理单元,其执行以下处理的其中一种:
    发送所述上行数据信号,并且,不发送全部或部分所述上行控制信号;
    发送所述上行控制信号,并且,不发送全部或部分所述上行数据信号;
    将对所述第一指示信息和所述第二指示信息的接收视为错误。
  14. 根据权利要求13所述的装置,其中,所述处理单元不发送部分所述上行控制信号是指,
    所述处理单元不发送在特定时间单位内的所述上行控制信号;其中,在所述特定时间单位中,所述上行数据信号所对应的时域资源与所述上行控制信号所对应的时域资源重叠。
  15. 根据权利要求13所述的装置,其中,所述处理单元不发送部分所述上行数据信号的是指,
    所述处理单元不发送所述上行数据信号中特定的type B PUSCH repetition;其中,所述特定的type B PUSCH repetition所对应的时域资源与所述上行控制信号对应的时域资源重叠。
  16. 根据权利要求13所述的装置,其中,所述上行数据信号对应的时域资源是指,
    所述上行数据信号对应的实际的type B PUSCH repetition所对应的时域资源。
  17. 根据权利要求13所述的装置,其中,所述上行数据信号对应的时域资源是指,
    所述上行数据信号对应的名义的type B PUSCH repetition所对应的时域资源。
  18. 根据权利要求15所述的装置,其中,所述type B PUSCH repetition所对应的时域资源是指,
    实际的type B PUSCH repetition所对应的时域资源。
  19. 根据权利要求15所述的装置,其中,所述type B PUSCH repetition所对应的时域资源是指,
    名义的type B PUSCH repetition所对应的时域资源。
  20. 根据权利要求13所述的装置,其中,所述处理单元将对所述第一指示信息和所述第二指示信息的接收视为错误,是指:所述处理单元不期待接收所述第一指示信息和所述第二指示信息。
PCT/CN2020/075059 2020-02-13 2020-02-13 上行信号处理方法、装置和系统 WO2021159381A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075059 WO2021159381A1 (zh) 2020-02-13 2020-02-13 上行信号处理方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075059 WO2021159381A1 (zh) 2020-02-13 2020-02-13 上行信号处理方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2021159381A1 true WO2021159381A1 (zh) 2021-08-19

Family

ID=77292882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075059 WO2021159381A1 (zh) 2020-02-13 2020-02-13 上行信号处理方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2021159381A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230078723A1 (en) * 2020-03-26 2023-03-16 Electronics And Telecommunications Research Institute Uplink transmission method for ultra-reliability and low-latency communication, and apparatus therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580816A (zh) * 2012-08-03 2014-02-12 中兴通讯股份有限公司 一种上行接收方法及装置
CN110149726A (zh) * 2018-02-12 2019-08-20 电信科学技术研究院有限公司 一种信息传输方法及终端
CN110474747A (zh) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 一种信号传输方法和装置、及终端
CN110505698A (zh) * 2018-05-18 2019-11-26 中兴通讯股份有限公司 信道配置方法及终端、存储介质、电子装置
EP3609104A1 (en) * 2018-08-09 2020-02-12 Panasonic Intellectual Property Corporation of America Flexible repetition of pusch mini-slots within a slot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580816A (zh) * 2012-08-03 2014-02-12 中兴通讯股份有限公司 一种上行接收方法及装置
CN110149726A (zh) * 2018-02-12 2019-08-20 电信科学技术研究院有限公司 一种信息传输方法及终端
CN110474747A (zh) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 一种信号传输方法和装置、及终端
CN110505698A (zh) * 2018-05-18 2019-11-26 中兴通讯股份有限公司 信道配置方法及终端、存储介质、电子装置
EP3609104A1 (en) * 2018-08-09 2020-02-12 Panasonic Intellectual Property Corporation of America Flexible repetition of pusch mini-slots within a slot

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MODERATOR (APPLE INC.): "Outcome of the preparation email discussion on PUSCH enhancements for NR eURLLC (AI 7.2.5.3)", 3GPP DRAFT; R1-2002731, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online Meeting ;20200420 - 20200430, 20 April 2020 (2020-04-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051876749 *
QUALCOMM INCORPORATED: "Remaining issues for multiplexing UCI on PUSCH", 3GPP DRAFT; R1-1802839, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 2 March 2018 (2018-03-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 13, XP051398252 *
SAMSUNG: "Remaining Issues on PUCCH", 3GPP DRAFT; R1-1808754 PUCCH, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Korea; 20180820 - 20180824, 11 August 2018 (2018-08-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051516127 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230078723A1 (en) * 2020-03-26 2023-03-16 Electronics And Telecommunications Research Institute Uplink transmission method for ultra-reliability and low-latency communication, and apparatus therefor
US11956825B2 (en) * 2020-03-26 2024-04-09 Electronics And Telecommunications Research Institute Uplink transmission method for ultra-reliability and low-latency communication, and apparatus therefor

Similar Documents

Publication Publication Date Title
US10277363B2 (en) Hybrid automatic repeat request acknowledgement transmission method, user equipment, and base station
JP7371761B2 (ja) 信号送信方法、装置及びシステム
US11502785B2 (en) Communication method, access network device, and terminal
US20210410124A1 (en) Signal reception or transmission method and apparatus and system
US11997686B2 (en) Transmission apparatus and method of feedback information
US11006438B2 (en) Signal transmission method, related apparatus, and system
US20220256554A1 (en) Wireless communication method and apparatus and communication system
WO2021159419A1 (zh) 信息传输方法及相关装置
JP7140261B2 (ja) コンテンションウィンドウの調整方法、装置及び通信システム
WO2019192153A1 (zh) 一种资源确定方法、指示方法及装置
US20190268919A1 (en) Data Multiplexing Apparatus and Method and Communication System
WO2022077410A1 (zh) 信息反馈方法以及装置
WO2021159381A1 (zh) 上行信号处理方法、装置和系统
WO2021056702A1 (zh) 上行信号的发送和接收方法以及装置
US20230024055A1 (en) Method and apparatus for transmitting data and communication system
WO2021031301A1 (zh) 信号发送和接收方法以及装置
JP7444291B2 (ja) サイドリンクフィードバック情報の送受信方法及び装置
WO2021159400A1 (zh) 无线通信方法、装置和系统
WO2022205447A1 (zh) 上行控制信息的发送方法、接收方法及其装置、通信系统
WO2023077355A1 (zh) 反馈信息的生成方法、装置和系统
WO2023010472A1 (zh) 半持续信道状态信息的上报方法、装置和系统
WO2019028775A1 (zh) 反馈信息的发送和接收方法、装置及通信系统
US20220217701A1 (en) Wireless communication method and apparatus and communication system
WO2024031696A1 (zh) 信道状态信息的上报方法和装置
WO2021226970A1 (zh) 信号接收方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918736

Country of ref document: EP

Kind code of ref document: A1