WO2020155180A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020155180A1
WO2020155180A1 PCT/CN2019/074706 CN2019074706W WO2020155180A1 WO 2020155180 A1 WO2020155180 A1 WO 2020155180A1 CN 2019074706 W CN2019074706 W CN 2019074706W WO 2020155180 A1 WO2020155180 A1 WO 2020155180A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal device
range
pattern
frequency domain
Prior art date
Application number
PCT/CN2019/074706
Other languages
English (en)
French (fr)
Inventor
史志华
陈文洪
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020217025228A priority Critical patent/KR20210122253A/ko
Priority to CN202110850413.9A priority patent/CN113596876B/zh
Priority to EP24162090.5A priority patent/EP4366224A2/en
Priority to JP2021544600A priority patent/JP7339348B2/ja
Priority to PCT/CN2019/074706 priority patent/WO2020155180A1/zh
Priority to CN201980074276.5A priority patent/CN112997561A/zh
Priority to EP19913521.1A priority patent/EP3883319B1/en
Publication of WO2020155180A1 publication Critical patent/WO2020155180A1/zh
Priority to US17/389,080 priority patent/US11368965B2/en
Priority to US17/830,284 priority patent/US11758575B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the embodiments of the present application relate to the field of communications, and specifically relate to a wireless communication method, terminal device, and network device.
  • interference has always been an important problem that plagues terminal equipment. For example, if adjacent user equipment (User Equipment, UEs) belonging to different base stations adopt the same uplink and downlink configuration, one of the UEs may be interfered by signals sent by other base stations. For another example, if different uplink and downlink configurations are adopted between adjacent UEs, the uplink and downlink transmissions of the adjacent UEs may not be synchronized, which may cause the UE that is performing downlink reception to be interfered by the UE that is performing uplink transmission.
  • UEs User Equipment
  • the terminal equipment may measure the energy of the received signal on time-frequency resources to achieve the purpose of interference control.
  • the terminal device may perform interference measurement or received energy measurement.
  • the embodiments of the present application provide a wireless communication method, terminal device, and network device, which are beneficial to reduce the waste of frequency domain resources, thereby improving the performance of the terminal device.
  • a wireless communication method includes: a terminal device determines a first frequency domain resource within a resource block RB that can be used for interference measurement or received energy measurement; Perform interference measurement or received energy measurement on a frequency domain resource.
  • a wireless communication method includes: a network device sends configuration information to a terminal device, where the configuration information is used to indicate a resource block RB that can be used for interference measurement or received energy measurement.
  • the first frequency domain resource is provided.
  • a terminal device which is used to execute the method in the foregoing first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing any one of the above-mentioned first aspect to the second aspect or a method in each implementation manner thereof.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a chip is provided for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the second aspect or any of its implementation modes method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the methods in each of its implementation modes.
  • the terminal device determines the first frequency domain resource within the pre-configured RB range to perform interference measurement or received energy measurement.
  • the first frequency domain resource is less than the RB range, the first frequency domain If the frequency domain resources other than the resources are used for normal signal transmission, the waste of frequency domain resources can be reduced, thereby improving the performance of the terminal device.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a scenario to which an embodiment of the present application is applicable.
  • FIG. 3 is a schematic block diagram of a wireless communication method provided by an embodiment of the present application.
  • Fig. 4a is a schematic diagram of the RB range in an embodiment of the present application.
  • Fig. 4b is another schematic diagram of the RB range in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of RB grouping in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of multiple patterns corresponding to the RB range in an embodiment of the present application.
  • FIG. 7 is another schematic diagram of multiple patterns corresponding to the RB range in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of multiple patterns corresponding to RB in an embodiment of the present application.
  • Fig. 9 is a schematic diagram of RB grouping indicated by a bitmap in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of RBs in an RB group indicated by a bitmap in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of frequency domain resources combined by at least one pattern in the RB range indicated by a bitmap in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of frequency domain resources combined with at least one pattern in an RB indicated by a bitmap in an embodiment of the present application.
  • FIG. 13 is another schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 16 is another schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 17 is another schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution LTE
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • NR New Radio
  • 5G System etc.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as sparse code multiple access (SCMA) systems, low density signatures (Low Density Signature, LDS) system, etc.
  • SCMA sparse code multiple access
  • LDS Low Density Signature
  • SCMA system and LDS system can also be called other names in the communication field; further, the technical solutions of the embodiments of this application can be applied to multi-carriers using non-orthogonal multiple access technology Transmission systems, such as non-orthogonal multiple access technology Orthogonal Frequency Division Multiplexing (OFDM), Filter Bank Multi-Carrier (FBMC), Generalized Frequency Division Multiplexing (Generalized Frequency Division Multiplexing) Frequency Division Multiplexing (GFDM), filtered orthogonal frequency division multiplexing (Filtered-OFDM, F-OFDM) systems, etc.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FBMC Filter Bank Multi-Carrier
  • Generalized Frequency Division Multiplexing Generalized Frequency Division Multiplexing
  • GFDM Frequency Division Multiplexing
  • Filtered-OFDM Frequency Division Multiplexing
  • F-OFDM filtered orthogonal frequency division multiplexing
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network devices gNB in 5G networks, or network devices in the future evolution of public land mobile networks (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices
  • the communication system 100 further includes at least one terminal device 120 located within the coverage area of the network device 110.
  • terminal equipment includes, but is not limited to, User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, Terminal, wireless communication equipment, user agent or user device.
  • UE User Equipment
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., are not limited in the embodiment of the present invention.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiment of the present application.
  • the interference to the terminal device may include Type 1 and Type 2.
  • UE1-1 and UE1-2 belong to the cell covered by gNB1, UE2-1 and UE2-2 belong to the cell covered by gNB2, and UE3-1 and UE3-2 belong to the cell covered by gNB3. If neighboring cells all use the same uplink and downlink configuration, when UE1-2 receives downlink signals, other cells are also transmitting downlink signals (if there is transmission), and there will be no uplink signal transmission.
  • UE1-2 It will only be interfered by signals sent by other gNBs, that is, Type1 interference; if relatively dynamic uplink and downlink configuration is supported, for example, UE3-2's current business is mainly for uploading data traffic, then gNB3 may configure more uplink resources for For UE3-2 transmission, when the uplink and downlink transmission directions of UE1-2 and UE3-2 are different, Type 2 interference may occur. That is, when UE1-2 is receiving downlink data transmission, it is interfered by the uplink signal sent by UE3-2, and the Type 2 interference measurement can be called cross-link interference (CLI) measurement.
  • CLI cross-link interference
  • CLI measurement is not only limited to between the terminal and the terminal, but can also be used in other similar situations, such as between network equipment and network equipment.
  • FIG. 3 shows a schematic block diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 3, the method 200 may include some or all of the following content:
  • the terminal device determines a first frequency domain resource within a pre-configured resource block RB range.
  • S220 The terminal device performs interference measurement or received energy measurement on the first frequency domain resource.
  • the first frequency domain resource or resource block RB range is for the corresponding Orthogonal Frequency Division Multiplexing (OFDM) symbol. That is, the first frequency domain resource or the resource block RB range refers to frequency domain resources on one or more OFDM symbols, rather than all time frequency domain resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the network device may pre-appoint a resource block (Resource Block, RB) range for the terminal device configuration or agreement for the terminal device to perform interference measurement or receive energy measurement within the RB range.
  • the network device may configure the terminal device with at least two of the start RB information, the end RB information, and the RB number information of the RB range.
  • the resource block range may be a bandwidth part (Bandwidth Part, BWP) range.
  • the terminal device can determine a frequency domain resource within the RB range, perform interference measurement or received energy measurement, for example, perform Received Signal Strength Indication (RSSI) measurement to obtain the RSSI value, where the RSSI value refers to the measurement The linear average value of the total received power measured by the UE on some OFDM symbols on the time resources and resource elements configured in the measurement bandwidth. Furthermore, the terminal device can report the measurement result to the network device.
  • RSSI Received Signal Strength Indication
  • the pre-configured RB range may not be used for interference measurement or received energy measurement. Only some of the frequency domain resources are used for interference measurement or received energy measurement. If the other part of the frequency domain resources is used for normal Signal transmission can reduce the waste of frequency domain resources, thereby improving the performance of terminal equipment.
  • the network device may also configure time domain information corresponding to the RB range.
  • the time domain information may include, for example, at least two of start symbol indication information, end symbol indication information, and the number of symbols.
  • the resource unit allocated by RB for traffic channel resources can be a time slot in the time domain, 12 subcarriers in the frequency domain, and a resource element (RE) can be 1 in the frequency domain.
  • Subcarriers that is, one RB may include 12 REs in the frequency domain.
  • RB may include two types, virtual resource block (Virtual Resource Element) and physical resource block (Physical Resource Block, PRB).
  • VRB is a virtual RB. When resources are allocated, they are allocated according to VRB, and then VRB is mapped to PRB.
  • the downlink data rate is generally higher than the uplink data rate.
  • some services or application software (such as backing up local data to the cloud) often require an upstream data rate higher than a downstream data rate.
  • different operations often have different requirements for uplink and downlink data rates. For example, uploading videos for sharing requires higher uplink data rates, while watching videos shared by friends requires higher The downlink data rate.
  • the wireless network maintains fixed or semi-static uplink and downlink resource allocation (for example, fixed uplink and downlink slot configuration in the LTE/NR system), It will not be able to optimally match the service transmission in a short time, resulting in inefficient use of resources and the UE experience cannot be further improved.
  • fixed or semi-static uplink and downlink resource allocation for example, fixed uplink and downlink slot configuration in the LTE/NR system
  • a method of dynamically adjusting the uplink and downlink transmission directions can be adopted. For example, the amount of downlink data in the current cell or UE increases, and the network can use more resources for downlink transmission (for example, use more slots for downlink transmission).
  • the NR system has indicated a flexible slot format.
  • part of the symbol symbol
  • part of the symbol is configured for downlink (Downlink, D)
  • part of the symbol is configured as flexible (F)
  • part of the symbol is configured for uplink ( Uplink, U).
  • Some configurations supported in the current NR protocol are shown in Table 1.
  • Table 1 includes some time slot formats. For example, in Format 20, the first two symbols of a slot are configured as D, and the last symbol is configured as U. The 11 symbols in the middle are configured as F.
  • CLI may be caused. Or if the time slot format does not change, CLI may also be generated.
  • all symbols in a time slot are configured as F, that is, format 2 in Table 1.
  • the gNB1 in Figure 2 uses this time slot for the downlink transmission of UE1-2, and gNB3 uses this time slot for the uplink transmission of UE3-2, which will also generate CLI.
  • Step 1 The network device can send related configurations to the terminal device, for example, configuration of measurement resources or configuration of reported values.
  • Step 2 The terminal device can perform related measurements according to the measurement configuration, and report the measurement result to the network device according to the configuration of the reported value.
  • Step 3 The network device can determine whether it is necessary to modify the uplink and downlink transmissions based on the received report information, so as to avoid interference to the terminal device.
  • step 3 the network may not perform any processing after receiving the reported information.
  • the terminal device may receive first information of the network device, and the first information may be used to indicate at least one RB within the range of the RB, and the terminal device may determine the first frequency according to the at least one RB indicated by the first information. Domain resources. Or the terminal device may not receive the first information, that is to say, the network device does not indicate at least one RB within the RB range, then the terminal device can according to the at least one RB within the RB range agreed by the protocol (that is, the terminal device defaults At least one RB), and determine the first frequency domain resource.
  • a RBs may be used as a group to group a certain frequency domain range.
  • the certain frequency domain range may be a part of the bandwidth of the system, or the entire bandwidth of the system, or a bandwidth part (Bandwidth Part).
  • BWP bandwidth part
  • the RB range can include one RB group or multiple RB groups, for example, the RB range can include one or more incomplete RB groups, as shown in Figure 4a,
  • the RB range can also include one or more complete RB groups, as shown in Figure 4b.
  • the first information may indicate at least one RB group, and the terminal device may determine the first frequency domain resource in combination with the RB range.
  • the first frequency domain resource may include the frequency domain resources in the RB group included in the RB range.
  • the first information indicates a specific RB in an RB group
  • the terminal device may combine frequency domain resources of the specific RB indicated by the first information in each RB group within the RB range, Determine the first frequency domain resource.
  • the entire frequency domain range includes 20 RBs. With 4 RBs as a group, it can be divided into 5 RB groups in total.
  • the RB range can be 16 RBs in the middle of the entire frequency domain range.
  • the information indicates the first RB in an RB group, then the frequency domain resources combined by the specific RB indicated by the first information in each RB group within the RB range include the 3rd, 7th, 11th, and 15th RBs in the RB range .
  • the network device does not indicate a specific RB in an RB group to the terminal device, then the terminal device can be based on the specific RB (that is, the terminal device Default RB), determine the first frequency domain resource.
  • the default RB in an RB group may be the first RB in an RB group.
  • the first frequency domain resource may be determined by the 3rd, 7th, 11th, and 15th RBs in the RB range shown in FIG. 5
  • the default RB in an RB group may also include all RBs in an RB group.
  • grouping may be performed only within the RB range, and each RB group may include the same or different number of RBs.
  • the number of RBs included in the first RB group and the last RB group may be smaller than that of the middle RB group
  • the number of RBs included, and the middle RB group may include the same number of RBs.
  • the grouping can be agreed in advance by the protocol or pre-configured by the network device.
  • the network device may send first information to the terminal device, and the first information indicates at least one RB group.
  • grouping may be performed only within the RB range, and each RB group only includes the same number of RBs, the network device may send first information to the terminal device, and the first information indicates a specific RB in an RB group.
  • the foregoing grouping may also start from common resource block 0 (common resource block 0), or the network device may also indicate the starting RB of a group to the terminal device.
  • the number of RBs included in the above-mentioned one RB group may be agreed by a protocol and is a fixed value; or may also be agreed by a protocol and is related to the bandwidth range, for example, the number of RBs included in different bandwidths, one RB
  • the number of RBs included in the group can also be different; or it can be directly configured by the network device; or it can also be related to the RB range configured by the network device.
  • the RB range indicated by the network includes X RBs
  • one RB group can include X RB.
  • the number of RBs included in an RB group may also be the size of a resource block group (Resource Block Group, RBG).
  • RBG Resource Block Group
  • the size of the RBG can be as shown in Table 2.
  • the RB range can also be represented by a pattern.
  • the RB range may correspond to B patterns, and the combination of the B patterns may constitute the entire RB range.
  • the network device may configure the B patterns to the terminal device in advance, or the B patterns may also be pre-arranged and stored in the terminal device by the agreement Internally, the network device may send first information to the terminal device, and the first information may indicate at least one of the patterns, and the terminal device may determine the first frequency domain resource according to the at least one pattern indicated by the first information within the RB range.
  • the RB range includes 12 RBs, and the RB range corresponds to 4 patterns, and the shaded part in each pattern indicates that it can be used for interference measurement or received energy measurement.
  • the combination of the shaded parts of each of the 4 patterns can represent the entire RB range.
  • the 1, 5, and 9 RBs in pattern 1, the 2, 6 and 10 RBs in pattern 2, the 3, 7 and 11 RBs in pattern 3, and the 4, 8 and 12 RBs in pattern 4 are available to perform interference measurement or receive energy measurement.
  • the terminal device can determine the first frequency domain resource through the 1, 3, 5, 7, 9 and 11 RBs within the RB range.
  • the B patterns corresponding to the RB range may come from one or more pattern sets. As shown in FIG. 7, the RB range corresponds to 7 patterns, where patterns 1 to 4 are from one pattern set, and patterns 5 and 6 It comes from a pattern set, and pattern 7 is a pattern set.
  • the at least one pattern indicated by the first information may come from one pattern set or multiple pattern sets. For example, if the first information indicates patterns 1 to 3, then at least one pattern indicated by the first information belongs to the same pattern set. For another example, if the first information indicates pattern 2, pattern 5, and pattern 7, then at least one pattern indicated by the first information belongs to a different pattern set.
  • the terminal device may use at least one RB within the RB range indicated by the first information or all frequency domain resources on the default at least one RB within the RB range for interference measurement or received energy measurement. That is, the terminal device may determine at least one RB within the RB range indicated by the first information or all frequency domain resources on the default at least one RB within the RB range as the first frequency domain resource. Or the terminal device may also determine at least one RB in the RB range indicated by the first information or a part of the frequency domain resources in the default at least one RB in the RB range as the first frequency domain resource. For example, the terminal device may also be combined with the second information sent by the network device, where the second information is used to indicate a specific RE on an RB.
  • the terminal device may determine the frequency domain resource combined by the specific RE on each RB in the at least one RB determined in the foregoing manner within the RB range as the first frequency domain resource. For example, the terminal device may combine the first information and the second information to determine the first frequency domain resource. That is, the terminal device may determine the frequency domain resource combined by the at least one RE indicated by the second information on each of the at least one RB indicated by the first information within the RB range as the first frequency domain resource.
  • the network device does not send the second information to the terminal device, and the terminal device can combine an RB with a RE agreed by a protocol (default).
  • the terminal device may determine the frequency domain resource combined by the default RE on each RB in the at least one RB determined in the foregoing manner within the RB range as the first frequency domain resource.
  • the default RE may be, for example, the first RE of each RB, or all REs on each RB (that is, 12 REs).
  • the terminal device may also determine the first frequency domain resource only according to a specific RE on an RB or a default RE on an RB indicated by the second information. For example, the terminal device may determine the frequency domain resource combined by the specific RE indicated by the second information or the default RE on each RB within the entire RB range as the first frequency domain resource. At this time, it can also be considered that the first information indicates all RBs in the entire RB range.
  • the RE combination in the RB can also be represented by a pattern.
  • One pattern is used to indicate at least one RE that can be used for measurement by the terminal device.
  • one RB corresponds to D patterns, and the combination of the D patterns can form one RB.
  • the network device may configure the D patterns to the terminal device in advance, or the D patterns may also be agreed upon by the protocol.
  • the network device may send second information to the terminal device, and the second information may indicate at least one pattern, then the terminal device may set the information indicated by the second information on each of the at least one RB within the RB range determined by any of the above methods.
  • the frequency domain resource combined by the at least one pattern is determined as the first frequency domain resource. For example, as shown in FIG.
  • one RB corresponds to 12 patterns, and the combination of the shaded parts in each pattern can represent the entire RB.
  • the 6th RE in Pattern 7, the 7th RE in Pattern 7, the 8th RE in Pattern 8, the 9th RE in Pattern 9, the 10th RE in Pattern 10, and the 11th RE in Pattern 11 can be used for interference measurement or received energy measurement.
  • the terminal device can determine the frequency domain resources of the combination of the second, fourth, and sixth REs on each RB in at least one RB determined in the above manner within the RE range, It is the first frequency domain resource.
  • the D patterns corresponding to an RB may also come from one or more pattern sets. For details, please refer to the B patterns corresponding to the RB range, which is not repeated here for brevity.
  • the network device may indicate the foregoing various information through a bitmap.
  • the first information may include a first bitmap, and each bit in the first bitmap corresponds to one RB group.
  • the value of each bit in the first bitmap represents the state of an RB group. For example, if the value is 0, it means that the RB group is unavailable, and if the value is 1, it means that the RB group is available.
  • Fig. 9 shows the state of 4 RB groups corresponding to the first bitmap value of [1 0 1 0], where the first RB group and the third RB group can be used for interference measurement or received signal measurement.
  • the first information may include a second bitmap, each bit in the second bitmap corresponds to one RB in one RB group, and the value of each bit in the second bitmap represents the state of one RB. For example, if the value is 0, it means that the RB is not available, and if the value is 1, it means that the RB is available.
  • Figure 10 shows the state of the 4 RBs included in an RB group corresponding to the second bitmap with values [1 0 0] and [1 0 1 0], where [1 0 0 0] represents an RB group The first RB in is available, [1 0 1 0] indicates that the first and third RBs in an RB group are available.
  • the first information may include a third bitmap, each bit in the third bitmap may correspond to a pattern, and the value of each bit in the third bitmap represents the state of a pattern. For example, if the value is 0, it means that the pattern is not available, and if the value is 1, it means that the pattern is available.
  • FIG. 11 shows the state of 3 patterns corresponding to the value [1 1 1] of the third bitmap, where the 3 patterns are all available, and the combined frequency domain resources may be the entire RB range.
  • the second information may include a fourth bitmap, each of the fourth bitmaps may correspond to a pattern, and the value of each bit in the fourth bitmap represents the state of a pattern. For example, if the value is 0, it means that the pattern is not available, and if the value is 1, it means that the pattern is available.
  • FIG. 12 shows the state of 4 patterns corresponding to the value of [1 0 1 0] in the fourth bitmap, and the combined frequency domain resources may include the 1, 3, 5, 7, 9 and 11 REs.
  • the network device may not use bitmap to indicate the above-mentioned various information, or it may be directly indicated.
  • bitmap For example, as shown in Figure 7, there are 7 patterns in total, and the network device may indicate one of them by 3 bits. pattern. The grouping is similar, so I won’t describe too much here.
  • the network device may send third information to the terminal device, where the third information is used to indicate at least two of the start RB information of the RB range, the end RB information of the RB range, and the number of RBs included in the RB range.
  • the terminal device can determine the RB range according to the third information.
  • the start RB indicated by the third information may be included in the RB range or outside the RB range, and the end RB indicated by the third information may also be included in the RB range or outside the RB range.
  • the network device may determine the range of the BWP as the RB range.
  • the terminal device can determine the RB range according to the configuration of the BWP.
  • the above various information can be carried in various high-level or physical layer signaling such as radio resource control (Radio Resource Control, RRC), MAC signaling or downlink control information (DCI) signaling.
  • RRC Radio Resource Control
  • DCI downlink control information
  • the above-mentioned various information can be sent separately or combined.
  • the first information can be sent with the second information
  • the second information can be sent with the third information
  • the first information, the second information and the first information can be sent together.
  • Three messages can be sent together.
  • the terminal device may perform interference measurement or received energy measurement on the first frequency domain resource determined in the above manner to obtain a measurement value, for example, RSSI value or Reference Signal Received Power (RSRP) Value etc.
  • the terminal device can directly report the measurement value to the network device, or can report the value used to indicate the size of the measurement value to the network device, thereby reducing signaling overhead.
  • the terminal device needs to determine the reported value sent to the network device according to the RSSI value obtained by measurement.
  • the RSSI value can be divided into multiple measurement intervals according to the size of the RSSI value, and each measurement interval corresponds to a reported value.
  • the mapping relationship between the multiple measurement intervals and the reported value may be as shown in Table 3.
  • the measurement interval may be divided at equal intervals.
  • the measurement interval to which the minimum RSSI value belongs and the measurement interval to which the maximum RSSI value belongs may be excluded.
  • the measurement interval may be at intervals of 1 dBm to improve reporting accuracy, or may be greater than or equal to 2 dBm at intervals to reduce signaling overhead. For example, if the measured RSSI value is -99.5, the terminal device can report the reported value 0 to the network device. For another example, if the measured RSSI value is -24, the terminal device can report the reported value 76 to the network device.
  • the interval of the measurement interval can be configured by the network device.
  • the form of the reported value can be agreed upon by the agreement, and the order of the reported value in Table 3 can also be changed.
  • RSSI ⁇ -100 and -25 ⁇ RSSI can correspond to reported value 0 and reported value 1
  • RSSI ⁇ -100 and -25 ⁇ RSSI can also correspond to reported value 75 and reported value 76, as long as one measurement interval corresponds to one Just report the value.
  • the critical value of two adjacent measurement intervals in Table 3 may include any one of the two measurement intervals.
  • -27 ⁇ RSSI ⁇ -26 and -26 ⁇ RSSI ⁇ -25 can be changed to -27 ⁇ RSSI ⁇ -26 and -26 ⁇ RSSI ⁇ -25.
  • the upper boundary value -25 and the lower boundary value -100 in Table 3 can be adjusted, that is, can be expanded or reduced, and two or one of the upper boundary value and the lower boundary value can be configured by the network device.
  • the network device can flexibly determine the dynamic range according to the application scenario. For example, if the range in Table 3 is expanded, a larger range of measurement values can be reported, and if the range in Table 3 is reduced, the transmission resources required for reporting may be saved.
  • multiple measurement intervals may also be divided by at least one gate.
  • the network device can be configured with one or more thresholds, or one or more thresholds can be agreed upon by an agreement, and the RSSI value is divided into multiple intervals according to the one or more thresholds.
  • Table 4 shows multiple measurement intervals and multiple Another mapping relationship of reported values, where thre, thre+x, thre+2x, and thre+3x can be considered as thresholds. Thre can also be considered as a threshold, and x can be an interval agreed upon by a protocol or configured by a network device.
  • the RSSI value can be divided into two measurement intervals, one is the measurement interval greater than or equal to the threshold, the other is the measurement interval less than the threshold, and the other is greater than or equal to the threshold.
  • the measurement interval of the threshold value corresponds to one reported value
  • the measurement interval less than the threshold value corresponds to another reported value.
  • the network device for example, the corresponding reported value is reported. This can reduce the cost of reporting resources.
  • the terminal device can also take the threshold value thre as the starting value, and determine the mapping relationship according to the protocol agreement or the interval x of the network configuration, as shown in Table 4, where the other boundary value can be assumed to be -25, or it can be thre +N*x, N can also be a positive integer agreed by the protocol or configured by the network device.
  • the order of reported values in Table 4 can also be changed.
  • the critical value of two adjacent measurement intervals in Table 4 may also include any one of the two measurement intervals.
  • the terminal device may send the above determined report value to the network device through RRC signaling, MAC control element (CE) signaling, or physical uplink control channel (PUCCH).
  • RRC Radio Resource Control
  • CE MAC control element
  • PUCCH physical uplink control channel
  • the network device After the network device receives the reported value of the terminal device, it can determine the uplink and downlink transmission mode according to the measured value indicated by the reported value. For example, if the RSSI value reported by the UE is large, the network device can schedule or configure , To avoid interference caused by other devices to the UE; if the RSSI value reported by the UE is small, the network device can schedule the resources corresponding to the UE without affecting the performance of the UE.
  • FIG. 13 is a schematic block diagram of a wireless communication method 300 according to an embodiment of this application. As shown in FIG. 13, the method 300 includes some or all of the following content:
  • the network device sends configuration information to the terminal device, where the configuration information is used to indicate a first frequency domain resource within a pre-configured resource block RB, and the first frequency domain resource is used for the terminal device to perform interference measurement Or receive energy measurement.
  • the configuration information includes first information, and the first information is used to indicate at least one RB within the RB range.
  • the first information is used to indicate at least one RB group, the RB group includes A RBs, and A is a positive integer.
  • the first information is used to indicate at least one RB in an RB group, the RB group includes A RBs, and A is a positive integer.
  • A is determined by at least one of the following information: protocol agreement information, network configuration information, and the RB range.
  • the RB range corresponds to B patterns
  • the first information is used to indicate at least one pattern among the B patterns, and one pattern is used to indicate that at least one pattern is used for
  • the measured RB and B are positive integers.
  • the B patterns are composed of C pattern sets, and the at least one pattern includes a pattern set in the C pattern sets or patterns in a plurality of pattern sets, C Is a positive integer.
  • the first information includes a first bitmap, and at least one of the RB groups is represented by the value of each bit in the first bitmap.
  • the first information includes a second bitmap, and at least one RB in the RB group is represented by the value of each bit in the second bitmap.
  • the first information includes a third bitmap, and the at least one pattern is represented by the value of each bit in the third bitmap.
  • the configuration information includes second information, and the second information is used to indicate at least one resource element RE in one RB.
  • one RB corresponds to D patterns
  • the second information is used to indicate at least one pattern among the D patterns
  • one pattern is used to indicate at least one pattern used for measurement.
  • RE and D are positive integers.
  • the second information includes a fourth bitmap, and the at least one pattern is represented by the value of each bit in the fourth bitmap.
  • the configuration information includes third information, and the third information is used to indicate the start RB information of the RB range, the end RB information of the RB range, and the RB At least two types of RB number information included in the range.
  • the configuration information is carried in radio resource control RRC signaling.
  • the RB range is the range of the bandwidth part BWP.
  • the method further includes: the network device receives a reported value sent by the terminal device, and the reported value is used to instruct the terminal device to perform interference measurement or receive energy measurement.
  • the received signal strength indicates the RSSI value.
  • the method further includes: the network device sends a mapping relationship between multiple measurement intervals and multiple reported values to the terminal device, and the RSSI value belongs to the multiple Any measurement interval in the measurement interval.
  • the interval of each of the multiple measurement intervals except the measurement interval to which the minimum RSSI value belongs and the measurement interval to which the maximum RSSI value belongs is equal.
  • receiving the reported value sent by the terminal device by the network device includes: the network device receiving the reported value sent by the terminal device through radio resource control RRC signaling.
  • the network device receiving the reported value sent by the terminal device includes: the network device receiving all data sent by the terminal device through media access control MAC control element CE signaling. The reported value.
  • the receiving, by the network device, the reported value sent by the terminal device includes: the network device receiving the reported value sent by the terminal device through the physical uplink control channel PUCCH.
  • the multiple measurement intervals are divided by at least one threshold.
  • the interaction between the network device and the terminal device described by the network device and related characteristics and functions correspond to the related characteristics and functions of the terminal device. That is to say, what message the network device sends to the terminal device, and the terminal device receives the corresponding message from the network device.
  • the size of the sequence number of the foregoing processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the wireless communication method according to the embodiment of the present application is described in detail above.
  • the wireless communication device according to the embodiment of the present application will be described below in conjunction with FIG. 14 to FIG. 17.
  • the technical features described in the method embodiment are applicable to the following device implementation example.
  • FIG. 14 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine a first frequency domain resource within the pre-configured resource block RB range; and perform interference measurement or received energy measurement on the first frequency domain resource.
  • the terminal device further includes: a transceiving unit, configured to receive first information, where the first information is used to indicate at least one RB within the RB range; the processing unit Specifically used for: determining the first frequency domain resource according to the first information.
  • the processing unit is specifically configured to determine the first frequency domain resource according to at least one default RB within the RB range.
  • the first information is used to indicate at least one RB group, and the RB group includes A RBs, and the processing unit is specifically configured to: according to the reasons included in the RB range The RB group indicated by the first information determines the first frequency domain resource.
  • the first information is used to indicate at least one RB in an RB group
  • the RB group includes A RBs
  • the processing unit is specifically configured to: according to the RB range At least one RB indicated by the first information in each of the RB groups included in the RB group determines the first frequency domain resource, and A is a positive integer.
  • the processing unit is specifically configured to: determine the first frequency domain resource according to at least one default RB in each RB group included in the RB range, and the RB The group includes A RBs, and A is a positive integer.
  • the default at least one RB in the RB group includes the first RB in the RB group.
  • A is determined by at least one of the following information: protocol agreement information, network configuration information, and the RB range.
  • the RB range corresponds to B patterns
  • the first information is used to indicate at least one pattern among the B patterns
  • one pattern is used to indicate that at least one pattern is used for
  • the processing unit is specifically configured to: determine the first frequency domain resource according to the at least one pattern indicated by the first information within the RB range, and B is a positive integer.
  • the B patterns are composed of C pattern sets, and the at least one pattern includes a pattern set in the C pattern sets or patterns in a plurality of pattern sets, C Is a positive integer.
  • the first information includes a first bitmap, and at least one RB group is represented by the value of each bit in the first bitmap.
  • the first information includes a second bitmap, and at least one RB in an RB group is represented by the value of each bit in the second bitmap.
  • the first information includes a third bitmap, and the at least one pattern is represented by the value of each bit in the third bitmap.
  • the first information is carried in radio resource control RRC signaling.
  • the terminal device further includes: a transceiving unit, configured to receive second information, where the second information is used to indicate at least one resource element RE in one RB; the processing unit Specifically used for: determining the first frequency domain resource according to the second information.
  • the transceiving unit is further configured to: receive second information, where the second information is used to indicate at least one resource element RE in an RB; the processing unit is specifically configured to: Determine the first frequency domain resource according to the first information and the second information.
  • the processing unit is specifically configured to: combine the frequency of the at least one RE indicated by the second information in each of the at least one RB within the RB range
  • the domain resource is determined as the first frequency domain resource.
  • the processing unit is specifically configured to determine the first frequency domain resource according to at least one resource element RE defaulted in at least one RB within the RB range.
  • one RB corresponds to D patterns, at least one pattern of the D patterns in the second information, wherein one pattern is used to indicate at least one RE used for measurement
  • the processing unit is specifically configured to determine the frequency domain resource combined by the at least one pattern indicated by the second information in each of the at least one RB within the RB range as the first frequency domain Resource, D is a positive integer.
  • the second information includes a fourth bitmap, and the at least one pattern is represented by the value of each bit in the fourth bitmap.
  • the second information is carried in radio resource control RRC signaling.
  • the transceiver unit is further configured to: receive third information, where the third information is used to indicate the start RB information of the RB range and the end RB information of the RB range And at least two types of information about the number of RBs included in the RB range; and determining the RB range according to the third information.
  • the second information and the third information are carried in the same radio resource control RRC signaling.
  • the RB range is the range of the bandwidth part BWP.
  • the processing unit is further configured to determine the reported value to be sent to the network device according to the received signal strength indicator RSSI value obtained by measurement.
  • the processing unit is specifically configured to determine the reported value according to the measurement interval to which the RSSI value belongs and the mapping relationship between multiple measurement intervals and multiple reported values.
  • the interval of each of the multiple measurement intervals except the measurement interval to which the minimum RSSI value belongs and the measurement interval to which the maximum RSSI value belongs is equal.
  • the multiple measurement intervals are divided by at least one threshold.
  • the terminal device further includes: a transceiver unit, configured to send the reported value to the network device.
  • the transceiver unit is specifically configured to send the reported value to the network device through radio resource control RRC signaling.
  • the transceiving unit is specifically configured to: send the reported value to the network device through media access control MAC control element CE signaling.
  • the transceiver unit is specifically configured to send the reported value to the network device through the physical uplink control channel PUCCH.
  • the interference measurement or the received energy measurement includes cross-link interference CLI measurement.
  • the RB is a physical resource block PRB.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the terminal device 400 are used to implement the terminal in the method of FIG. For the sake of brevity, the corresponding process of the equipment will not be repeated here.
  • FIG. 15 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • the transceiver unit 510 is configured to send configuration information to a terminal device, where the configuration information is used to indicate a first frequency domain resource within a pre-configured resource block RB, and the first frequency domain resource is used by the terminal device to perform Interference measurement or received energy measurement.
  • the configuration information includes first information, and the first information is used to indicate at least one RB within the RB range.
  • the first information is used to indicate at least one RB group, the RB group includes A RBs, and A is a positive integer.
  • the first information is used to indicate at least one RB in an RB group, the RB group includes A RBs, and A is a positive integer.
  • A is determined by at least one of the following information: protocol agreement information, network configuration information, and the RB range.
  • the RB range corresponds to B patterns
  • the first information is used to indicate at least one pattern among the B patterns, and one pattern is used to indicate that at least one pattern is used for
  • the measured RB and B are positive integers.
  • the B patterns are composed of C pattern sets, and the at least one pattern includes a pattern set in the C pattern sets or patterns in a plurality of pattern sets, C Is a positive integer.
  • the first information includes a first bitmap, and at least one of the RB groups is represented by the value of each bit in the first bitmap.
  • the first information includes a second bitmap, and at least one RB in the RB group is represented by the value of each bit in the second bitmap.
  • the first information includes a third bitmap, and the at least one pattern is represented by the value of each bit in the third bitmap.
  • the configuration information includes second information, and the second information is used to indicate at least one resource element RE in one RB.
  • one RB corresponds to D patterns
  • the second information is used to indicate at least one pattern among the D patterns
  • one pattern is used to indicate at least one pattern used for measurement.
  • RE and D are positive integers.
  • the second information includes a fourth bitmap, and the at least one pattern is represented by the value of each bit in the fourth bitmap.
  • the configuration information includes third information, and the third information is used to indicate the start RB information of the RB range, the end RB information of the RB range, and the RB At least two types of RB number information included in the range.
  • the configuration information is carried in radio resource control RRC signaling.
  • the RB range is the range of the bandwidth part BWP.
  • the transceiving unit is further configured to: receive a reported value sent by the terminal device, where the reported value is used to instruct the terminal device to perform interference measurement or receive energy measurement
  • the signal strength indicates the RSSI value.
  • the transceiver unit is further configured to: send a mapping relationship between multiple measurement intervals and multiple reported values to the terminal device, where the RSSI value belongs to the multiple measurement intervals Any measurement interval in.
  • the interval of each of the multiple measurement intervals except the measurement interval to which the minimum RSSI value belongs and the measurement interval to which the maximum RSSI value belongs is equal.
  • the multiple measurement intervals are divided by at least one threshold.
  • the transceiving unit is specifically configured to receive the reported value sent by the terminal device through radio resource control RRC signaling.
  • the transceiving unit is specifically configured to receive the reported value sent by the terminal device through media access control MAC control element CE signaling.
  • the transceiving unit is specifically configured to receive the reported value sent by the terminal device through the physical uplink control channel PUCCH.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are to implement the network in the method of FIG. 13 respectively.
  • the corresponding process of the device will not be repeated here.
  • an embodiment of the present application also provides a terminal device 600.
  • the terminal device 600 may be the terminal device 400 in FIG. 14, which can be used to execute the content of the terminal device corresponding to the method 200 in FIG. .
  • the terminal device 600 shown in FIG. 16 includes a processor 610.
  • the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the terminal device 600 may further include a memory 620.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the terminal device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the terminal device 600 may be a terminal device of an embodiment of the present application, and the terminal device 600 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the terminal device 600 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • details are not described herein again.
  • the transceiver unit in the terminal device 400 may be implemented by the transceiver 630 in FIG. 16.
  • the processing unit in the terminal device 400 may be implemented by the processor 610 in FIG. 16.
  • an embodiment of the present application also provides a network device 700.
  • the network device 700 may be the network device 500 in FIG. 15, which can be used to execute the content of the network device corresponding to the method 300 in FIG. .
  • the network device 700 shown in FIG. 17 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the network device 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the network device 700 may further include a transceiver 730, and the processor 710 may control the transceiver 730 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 730 may include a transmitter and a receiver.
  • the transceiver 730 may further include an antenna, and the number of antennas may be one or more.
  • the network device 700 may be a network device of an embodiment of the present application, and the network device 700 may implement the corresponding processes implemented by the network device in each method of the embodiments of the present application. For brevity, details are not described herein again.
  • the processing unit in the network device 500 may be implemented by the processor 710 in FIG. 17.
  • the transceiving unit in the network device 500 may be implemented by the transceiver 730 in FIG. 17.
  • FIG. 18 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 800 shown in FIG. 18 includes a processor 810, and the processor 810 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 800 may further include a memory 820.
  • the processor 810 can call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the chip 800 may further include an input interface 830.
  • the processor 810 can control the input interface 830 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 800 may further include an output interface 840.
  • the processor 810 can control the output interface 840 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • chips mentioned in the embodiments of the present application may also be referred to as system-level chips, system-on-chips, system-on-chips, or system-on-chips.
  • FIG. 19 is a schematic block diagram of a communication system 900 according to an embodiment of the present application. As shown in FIG. 19, the communication system 900 includes a terminal device 910 and a network device 920.
  • the terminal device 910 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be Read-Only Memory (ROM), Programmable Read-Only Memory (Programmable ROM, PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), and Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the embodiment of the application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种无线通信的方法、终端设备和网络设备,该方法包括:终端设备在预配置的资源块RB范围内确定第一频域资源;所述终端设备在所述第一频域资源上,进行干扰测量或接收能量测量。本申请实施例的方法、终端设备和网络设备,有利于减少频域资源的浪费,从而提高了终端设备的性能。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在无线通信系统里,干扰一直是困扰终端设备的一个重要问题。例如,若属于不同基站下的相邻用户设备(User Equipment,UE)之间采用相同的上下行配置,那么其中一个UE可能会受到其他基站所发信号的干扰。再例如,若相邻UE之间采用不同的上下行配置,那么相邻UE的上行和下行传输可能不同步,这会导致正在进行下行接收的UE会受到正在进行上行发送的UE的干扰。
目前终端设备可能会在在时频资源上对接收信号的能量进行测量,以达到干扰控制的目的。但终端设备在哪些频域资源上可以进行干扰测量或接收能量测量还没有明确的方案。
发明内容
本申请实施例提供一种无线通信的方法、终端设备和网络设备,有利于减少频域资源的浪费,从而提高了终端设备的性能。
第一方面,提供了一种无线通信的方法,该方法包括:终端设备在能够用于干扰测量或接收能量测量的资源块RB范围内确定第一频域资源;所述终端设备在所述第一频域资源上,进行干扰测量或接收能量测量。
第二方面,提供了一种无线通信的方法,该方法包括:网络设备向终端设备发送配置信息,所述配置信息用于指示在能够用于干扰测量或接收能量测量的资源块RB范围内的第一频域资源。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第五方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第六方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,终端设备通过在预配置的RB范围内确定第一频域资源,以进行干扰测量或接收能量测量,在该第一频域资源小于RB范围的情况下,除第一频域资源之外的频域资源如果用来进行正常的信号传输,可以减少频域资源的浪费,从而提高终端设备的性能。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意图。
图2是本申请实施例适用的一种场景示意图。
图3是本申请实施例提供的无线通信的方法的示意性框图。
图4a是本申请实施例中RB范围的一种示意图。
图4b是本申请实施例中RB范围的另一种示意图。
图5是本申请实施例中RB分组的示意图。
图6是本申请实施例中RB范围对应的多个图样的示意图。
图7本申请实施例中RB范围对应的多个图样的另一示意图。
图8是本申请实施例中RB对应的多个图样的示意图。
图9是本申请实施例中通过比特图指示的RB分组的示意图。
图10是本申请实施例中通过比特图指示的一个RB分组中的RB的示意图。
图11是本申请实施例中通过比特图指示的RB范围内至少一个图样所组合的频域资源的示意图。
图12是本申请实施例中通过比特图指示的一个RB中至少一个图样所组合的频域资源的示意图。
图13是本申请实施例提供的无线通信的方法的另一种示意图。
图14是本申请实施例提供的终端设备的一种示意性框图。
图15是本申请实施例提供的网络设备的一种示意性框图。
图16是本申请实施例提供的终端设备的另一种示意性框图。
图17是本申请实施例提供的网络设备的另一种示意性框图。
图18是本申请实施例提供的一种芯片的示意性框图。
图19是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,SCMA)系统、低密度签名(Low Density Signature,LDS)系统等,当然SCMA系统和LDS系统在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、滤波器组多载波(Filter Bank Multi-Carrier,FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,GFDM)、滤波正交频分复用(Filtered-OFDM,F-OFDM)系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络设备gNB或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本发明实施例并不限定。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信 系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在无线通信系统里,干扰一直是困扰终端设备的一个重要问题。对终端设备的干扰可以包括类型(Type)1和Type2。以图2为例,图中UE1-1和UE1-2属于gNB1所覆盖的小区,UE2-1和UE2-2属于gNB2所覆盖的小区,UE3-1和UE3-2属于gNB3所覆盖的小区。如果相邻小区都采用相同的上下行配置,则当UE1-2接收下行信号时,其他小区也都在进行下行信号传输(如果有传输的话),不会有上行信号传输,因此,UE1-2只会受到其他gNB所发信号的干扰,也就是Type1干扰;如果支持相对动态的上下行配置,例如UE3-2当前业务主要是上传数据流量大,则gNB3可能会配置更多的上行资源用于UE3-2的传输,当UE1-2和UE3-2的上行和下行传输方向不一样时,可能会形成Type2干扰。即当UE1-2在接收下行数据传输时,受到UE3-2发送上行信号的干扰,Type2的干扰测量可以称为跨链路干扰(Cross-link interference,CLI)测量。
上述给出的例子是基于终端和终端之间。CLI测量不仅仅局限于终端和终端之间,还可以用于其他类似情况,例如网络设备和网络设备之间。
应理解,本申请实施例可以应用于上述CLI测量中,也可以应用于上述Type1的测量,还可以应用于其他干扰测量,虽然本申请实施例多处以CLI测量为例,但本领域技术人员理解,应对此不构成限定。
图3示出了本申请实施例的无线通信的方法200的示意性框图。如图3所示,该方法200可以包括以下部分或全部内容:
S210,终端设备在预配置的资源块RB范围内确定第一频域资源;
S220,所述终端设备在所述第一频域资源上,进行干扰测量或接收能量测量。
第一频域资源或资源块RB范围,都是针对对应的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号而言。即第一频域资源或资源块RB范围都是指1个或多个OFDM符号上的频域资源,而非所有时间上的频域资源。
具体地,网络设备可以为终端设备配置或者协议预先约定一个资源块(Resource Block,RB)范围,以用于终端设备在该RB范围内进行干扰测量或者接收能量测量。例如,网络设备可以向终端设备配置该RB范围的起始RB信息、结束RB信息和RB数目信息中的至少两种。或者,还可以例如所述资源块范围是带宽部分(Bandwidth Part,BWP)范围。终端设备可以在该RB范围内确定一个频域资源,进行干扰测量或者接收能量测量,例如进行接收信号强度指示(Received Signal Strength Indication,RSSI)测量,获得RSSI值,其中,RSSI值是指在测量时间资源上的某些OFDM符号以及在测量带宽内被配置的资源元素上通过UE进行测量得到的总接收功率的线性平均值。进而终端设备可以将测量得到的结果向网络设备上报。
对于终端设备来讲,预配置的RB范围可以不完全用来进行干扰测量或接收能量测量,只在其中一部分频域资源上进行干扰测量或接收能量测量,另一部分频域资源如果用来进行正常的信号传输,可以减少频域资源的浪费,从而提高终端设备的性能。
网络设备还可以配置和该RB范围相对应的时域信息,该时域信息例如可以包括起始符号指示信息、结束符号指示信息以及符号个数中的至少两种。
需要说明的是,RB为业务信道资源分配的资源单位,时域上可以是一个时隙,在频域上可以为12个子载波,一个资源元素(Resource Element,RE)在频域上可以是1个子载波,也就是说,一个RB在频域上可以包括12个RE。通常RB可以包括两种,虚拟资源块(Virtual Resource Element)和物理资源块(Physical Resource Block,PRB)。VRB是虚拟的RB,分配资源的时候,是按VRB来分配的,然后VRB再映射到PRB。
本申请实施例可以应用到上述CLI测量中。在此首先对CLI的引入以及CLI测量的必要性作一简单的介绍。
在终端设备上,不同的业务或者应用软件对于上行数据速率和下行数据速率的要求不同。例如手机观看电影时,一般下行数据速率高于上行数据速率。与之相反,一些业务或应用软件(例如把本地数据备份到云端)往往需要的上行数据速率高于下行数据速率。对于同一个业务或应用软件来说,不同的操作往往也会对上行和下行数据速率有不同要求,例如上传视频进行分享时需要更高的上行数 据速率,而观看朋友分享的视频是需要更高的下行数据速率。
基于上述实际业务或应用软件的情况,如果无线网络保持固定或者半静态的(semi-static)的上行和下行资源分配(例如,LTE/NR系统中固定的上下行时隙(slot)配置),则会在短时间内无法对业务传输进行最优的匹配,从而造成资源的低效利用,以及UE体验无法进一步提升。
为了解决上述问题,可以采用动态调整上行和下行传输方向(传输资源)的方法。例如当前小区或者UE的下行数据量增大,网络可以根据把更多的资源用于下行传输(例如,把更多的slot用于下行传输)。
NR系统已经指示灵活的slot格式(format),其中一个slot内部,部分符号(symbol)配置用于下行(Downlink,D),部分符号配置为灵活(flexible,F),部分符号配置用于上行(Uplink,U)。目前NR协议中支持的一些配置如表1所示,其中,表1包括部分时隙格式,例如,在Format 20中,一个slot的前2个symbol配置为D,最后1个symbol配置为U,中间的11个symbol配置为F。
表1 循环前缀的时隙格式
Figure PCTCN2019074706-appb-000001
Figure PCTCN2019074706-appb-000002
如果一个小区相对动态地更改时隙格式,或者基站针对某个或者某些UE更改其对应的时隙格式,则可能会引起CLI。或如果时隙格式不发生改变,也可能会产生CLI。例如一个时隙中所有符号配置为F,即表1中的格式2。图2中的gNB1把这个时隙用于UE1-2的下行传输,而gNB3把这个时隙用于UE3-2的上行传输,同样会产生CLI。
因此,就需要进行CLI测量,以此来控制上下行传输方向不同所引起的干扰,保证UE的性能。
在本申请实施例中,整体流程如下:
步骤一:网络设备可以给终端设备发送相关配置,例如,测量资源配置或者上报值的配置等。
步骤二:终端设备可以根据测量配置进行相关测量,并根据上报值的配置向网络设备上报测量结果。
步骤三:网络设备可以根据接收到的上报信息,确定是否需要对上下行传输进行更改,以此来避免终端设备受到的干扰。
其中上述部分步骤是可选的,例如步骤三,网络接收到上报信息,也可以不作任何处理。
可选地,终端设备可以接收网络设备的第一信息,该第一信息可以用于指示RB范围内的至少一个RB,进而终端设备可以根据第一信息指示的该至少一个RB,确定第一频域资源。或者终端设备也可能不接收所述第一信息,也就是说网络设备不指示RB范围内的至少一个RB,那么终端设备可以根据RB范围内由协议预先约定好的至少一个RB(即终端设备默认的至少一个RB),确定第一频域资源。
可选地,可以以A个RB为一组,对一定的频域范围进行分组,例如,该一定的频域范围可以是系统的一部分带宽,或者系统的全部带宽,或者是带宽部分(Bandwidth Part,BWP)范围,或者是其他包括RB范围的带宽,那么RB范围可以包括一个RB组或者多个RB组,例如,RB范围可以包括一个或多个不完整的RB组,如图4a所示,RB范围也可以包括一个或多个完整的RB组,如图4b所示。该第一信息可以指示至少一个RB组,终端设备可以结合RB范围,来确定第一频域资源。若第一信息指示的某个RB组在RB范围内不完整,那么第一频域资源可以包括RB范围内包括的该RB组中的频域资源。可选地,也可以基于上述分组,第一信息指示一个RB分组中的特定RB,那么终端设备可以根据RB范围内由每个RB分组中第一信息指示的特定RB所组合的频域资源,确定第一频域资源。例如,如图5所示,整个频域范围包括20个RB,以4个RB为一组,总共可以划分为5个RB组,RB范围可以整个频域范围中间的16个RB,若第一信息指示一个RB组中的第一个RB,那么RB范围内由每个RB分组中第一信息指示的特定RB所组合的频域资源包括RB范围内的第3、7、11和15个RB。可选地,也可以基于上述分组,网络设备不向终端设备指示一个RB分组中的特定RB,那么终端设备可以根据RB范围内由每个RB分组中协议预先约定好的特定RB(即终端设备默认的RB),确定第一频域资源。例如,一个RB组中默认的RB可以是一个RB组中的第一个RB,同样地,该第一频域资源可以由图5所示的RB范围内的第3、7、11和15确定,或者一个RB组中默认的RB也可以包括一个RB组中的所有RB。
可选地,也可以只在RB范围内进行分组,并且每个RB组可以包括相同或不同的RB数目,例如,第一个RB组和最后一个RB组包括的RB数可以小于中间的RB组包括的RB数,并且中间的RB组可以包括相同的RB数目。该分组可以提前由协议约定或者网络设备预配置。同样地,网络设备可以向终端设备发送第一信息,由第一信息指示其中的至少一个RB组。或者也可以只在RB范围内进行分组,并且每个RB组只包括相同的RB数目,网络设备可以向终端设备发送第一信息,由第一信息指示一个RB组中的特定RB。
可选地,上述分组也可以从公共资源块0(common resource block 0)起始,或者也可以由网络设备向终端设备指示一个分组的起始RB。
可选地,上述一个RB组包括的RB个数,例如上述A可以由协议约定,是一个固定的值;或者也可以由协议约定,与带宽范围有关,例如不同带宽包括的RB数,一个RB组包括的RB数也可以不同;或者还可以直接由网络设备配置;或者也可以是与网络设备配置的RB范围相关,例如,网络指示的 RB范围包括X个RB,那么一个RB组则可以包括X个RB。或者一个RB组中包括的RB个数也可以是一个资源块组(Resoure Block Group,RBG)的大小。其中,RBG的大小可以如表2所示。
表2
BWP大小 配置1 配置2
1–36 2 4
37–72 4 8
73–144 8 16
145–275 16 16
可选地,也可以将RB范围通过图样来表示。例如,RB范围可以对应B个图样,该B个图样的组合可以构成整个RB范围,网络设备可以预先向终端设备配置该B个图样,或者该B个图样也可以由协议预先约定存储在终端设备内部,网络设备可以向终端设备发送第一信息,该第一信息可以指示其中至少一个图样,那么终端设备可以根据RB范围内由第一信息指示的至少一个图样来确定第一频域资源。例如,如图6所示,RB范围包括12个RB,并且RB范围对应4个图样,每个图样中的阴影部分表示可以用来进行干扰测量或接收能量测量。该4个图样中每个图样的阴影部分的组合可以表示整个RB范围。其中,图样1中第1、5和9个RB,图样2中第2、6和10个RB,图样3中第3、7和11个RB,图样4中第4、8和12个RB可用来进行干扰测量或者接收能量测量。若第一信息指示图样1和图样3,那么终端设备可以通过RB范围内第1、3、5、7、9和11个RB,确定第一频域资源。应理解,该RB范围对应的B个图样可以来自于一个或多个图样集合,如图7所示,RB范围对应7个图样,其中,图样1~4来自于一个图样集合,图样5和6来自于一个图样集合,图样7为一个图样集合。那么第一信息指示的至少一个图样,可以来自于其中一个图样集合或多个图样集合。例如,第一信息指示的是图样1至图样3,那么该第一信息指示的至少一个图样属于同一个图样集合。再例如,第一信息指示的是图样2、图样5和图样7,那么该第一信息指示的至少一个图样属于不同的图样集合。
应理解,终端设备可以将RB范围内由第一信息指示的至少一个RB或者RB范围内默认的至少一个RB上的所有频域资源都用来进行干扰测量或者接收能量测量。即终端设备可以将RB范围内由第一信息指示的至少一个RB或者RB范围内默认的至少一个RB上的所有频域资源,确定为第一频域资源。或者终端设备也可以将RB范围内由第一信息指示的至少一个RB或者RB范围内默认的至少一个RB中的部分频域资源,确定为第一频域资源。例如,终端设备还可以结合网络设备发送的第二信息,该第二信息用于指示一个RB上的特定RE。此时终端设备可以将RB范围内通过上述方式确定的至少一个RB中每个RB上的特定RE所组合的频域资源,确定为第一频域资源。例如,终端设备可以结合第一信息和第二信息,确定第一频域资源。即终端设备可以将RB范围内由第一信息指示的至少一个RB中的每个RB上由第二信息指示的至少一个RE所组合的频域资源,确定为第一频域资源。
再例如,网络设备不向终端设备发送第二信息,终端设备可以结合一个RB上由协议约定好的(默认的)RE。此时终端设备可以将RB范围内通过上述方式确定的至少一个RB中每个RB上默认的RE所组合的频域资源,确定为第一频域资源。默认的RE例如可以是每个RB的第一个RE,或者每个RB上的所有RE(即12个RE)。
可选地,终端设备也可以只根据上述第二信息指示的一个RB上的特定RE或者一个RB上默认的RE来确定第一频域资源。例如,终端设备可以将整个RB范围内的每个RB上由第二信息指示的特定RE或者默认的RE所组合的频域资源,确定为第一频域资源。此时,也可以认为第一信息指示的是整个RB范围内的所有RB。
可选地,也可以将RB中的RE组合通过图样来表示。一个图样用于指示至少一个可用于终端设备进行测量的RE。例如,一个RB对应D个图样,该D个图样的组合可以构成一个RB。网络设备可以预先向终端设备配置该D个图样,或者该D个图样也可以由协议约定好。网络设备可以向终端设备发送第二信息,该第二信息可以指示至少一个图样,那么终端设备可以将RB范围内通过上述任一方式确定的至少一个RB中每个RB上由第二信息指示的所述至少一个图样所组合的频域资源,确定为第一频域资源。例如,如图8所示,一个RB对应12个图样,每个图样中的阴影部分的组合可以表示整个RB。其中,图样1中的第1个RE,图样2中的第2个RE、图样3中的第3个RE、图样4中的第4个RE、图样5中的第5个RE、图样6中的第6个RE、图样7中的第7个RE、图样8中的第8个RE、图样9中的第9个RE、图样10中的第10个RE、图样11中的第11个RE、图样12中的第12个RE可用于进行干扰测量或者接收能量测量。如第一信息指示图样2、4和6,那么终端设备可以将RE范围内由上述方式确定的至少一个RB中每个RB上的第2、4和6个RE所组合的频域资源,确定为第一频域资源。同样地,一个RB上对应的D个图样也可以来自一个或多个图样集合, 具体可参见RB范围对应的B个图样,此处为了简洁,不再赘述。
可选地,网络设备可以通过比特图(bitmap)指示上述各种信息。例如,第一信息可以包括第一bitmap,第一bitmap中的每一位与一个RB组对应。并且第一bitmap中每一位的取值代表一个RB组的状态,例如,若取值为0,则表示该RB组不可用,若取值为1,则表示该RB组可用。图9示出了第一bitmap取值为[1 0 1 0]对应的4个RB组的状态,其中第一个RB组和第三个RB组可用于干扰测量或者接收信号测量。
再例如,第一信息可以包括第二bitmap,第二bitmap中的每一位与一个RB组中的一个RB对应,并且第二bitmap中每一位的取值代表了一个RB的状态。例如,若取值为0,则表示该RB不可用,若取值为1,则表示该RB可用。图10示出了第二bitmap取值为[1 0 0 0]和[1 0 1 0]对应的一个RB组中包括的4个RB的状态,其中,[1 0 0 0]表示一个RB组中的第一个RB可用,[1 0 1 0]表示一个RB组中的第一个和第三个RB可用。
再例如,第一信息可以包括第三bitmap,第三bitmap中的每一位可以与一个图样对应,并且第三bitmap中每一位的取值代表了一个图样的状态。例如,若取值为0,则表示该图样不可用,若取值为1,则表示该图样可用。图11示出了第三bitmap取值为[1 1 1]对应的3个图样的状态,其中,该3个图样均可用,其组合的频域资源可以是整个RB范围。
再例如,第二信息可以包括第四bitmap,该第四bitmap中的每一个可以与一个图样对应,并且第四bitmap中每一位的取值代表了一个图样的状态。例如,若取值为0,则表示该图样不可用,若取值为1,则表示该图样可用。图12示出了第四bitmap取值为[1 0 1 0]对应的4个图样的状态,其组合的频域资源可以包括第1、3、5、7、9和11个RE。
可选地,网络设备也可以不用通过bitmap来指示上述各种信息,也可以通过直接指示的方式,例如,如图7所示,共有7个图样,网络设备可以通过3比特来表示其中某个图样。分组类似,此处不作过多描述。
可选地,网络设备可以向终端设备发送第三信息,该第三信息用于指示RB范围的起始RB信息、RB范围的结束RB信息和RB范围内包括的RB数目信息中的至少两种,终端设备可以根据该第三信息,确定该RB范围。其中,第三信息指示的起始RB可以包括在RB范围之内或者在RB范围之外,第三信息指示的结束RB也可以包括在RB范围之内或者RB范围之外。
可选地,网络设备可以将BWP的范围确定为是RB范围。也就是说,终端设备可以根据BWP的配置,确定该RB范围。
以上各种信息可以承载在无线资源控制(Radio Resource Control,RRC)中、MAC信令或下行控制信息(downlink control information,DCI)信令等各种高层或物理层信令中。上述各种信息可以单独发送,也可以是合并在一起发送,例如,第一信息可以和第二信息一起发送,第二信息可以和第三信息一起发送,或者第一信息、第二信息和第三信息可以一起发送。
可选地,终端设备可以在通过以上方式确定的第一频域资源上,进行干扰测量或接收能量测量,从而获得测量值,例如,RSSI值或参考信号接收功率(Reference Signal Received Power,RSRP)值等。终端设备可以直接将测量值向网络设备上报,也可以将用于指示测量值大小的上报值向网络设备上,以此来减少信令开销。
例如,终端设备需要根据测量获得的RSSI值,确定向网络设备发送的上报值。可以根据RSSI值的大小将其划分为多个测量区间,并将每个测量区间对应一个上报值。该多个测量区间与上报值之间的映射关系可以如表3所示。
表3 映射关系一
上报值 测量的结果 单位
上报值0 RSSI<-100 dBm
上报值1 -100≤RSSI<-99 dBm
上报值2 -99≤RSSI<-98 dBm
上报值74 -27≤RSSI<-26 dBm
上报值75 -26≤RSSI<-25 dBm
上报值76 -25≤RSSI dBm
在表3中,该测量区间可以是等间隔划分的,可选地,最小RSSI值所属的测量区间和最大RSSI值所属的测量区间可以除外。该测量区间可以以1dBm为间隔,以提高上报精度,或者也可以大于或等于2dBm为间隔,以减少信令开销。例如,测得的RSSI值为-99.5,那么终端设备可以将上报值0上报给网络设备。再例如,测得的RSSI值为-24,那么终端设备可以将上报值76上报给网络设备。 该测量区间的间隔可以由网络设备配置。
可选地,上报值的形式可以由协议约定,并且该表3中的上报值的顺序也可以变化。例如,RSSI<-100和-25≤RSSI可以分别对应上报值0和上报值1,或者RSSI<-100和-25≤RSSI也可以分别对应上报值75和上报值76,只要一个测量区间对应一个上报值即可。
可选地,表3中相邻两个测量区间的临界值可以包括这两个测量区间中的任意一个测量区间。例如,-27≤RSSI<-26和-26≤RSSI<-25可以改变为-27≤RSSI≤-26和-26<RSSI<-25。
可选地,表3中的上边界值-25和下边界值-100可以调整,即可以扩大或者减小,并且上边界值和下边界值中的两个或者一个可以由网络设备配置。网络设备可以根据应用场景灵活地决定动态范围。例如,如果扩大表3中的范围,可以上报更大范围的测量值,如果减小表3中的范围,可能会节约上报需要的传输资源。
可选地,多个测量区间也可以由至少一个门划分。例如网络设备可以配置一个或多个门限,或者可以由协议约定一个或多个门限,根据该一个或多个门限将RSSI值划分为多个区间,表4示出了多个测量区间与多个上报值的另一种映射关系,其中thre、thre+x、thre+2x、thre+3x可以认为是门限值。也可以将thre认为是门限值,x可以由协议约定或者网络设备配置的间隔。
表4 映射关系二
上报值 测量的结果 单位
上报值0 thre≤RSSI<thre+x dBm
上报值1 thre+x≤RSSI<thre+2x dBm
上报值2 thre+2x≤RSSI<thre+3x dBm
上报值n -25≤RSSI dBm
具体地,当门限值只有一个时,可以将RSSI值划分为两个测量区间,一个是大于或等于该门限值的测量区间,一个是小于该门限值的测量区间,大于或等于该门限值的测量区间对应一个上报值,而小于该门限值的测量区间对应另外一个上报值。或者是只有当测量值大于门限值时,才向网络设备上报,例如上报对应的上报值。这样可以减少对上报资源的开销。
终端设备也可以以门限值thre为起点值,并根据协议约定或者网络配置的间隔x,确定映射关系可以如表4所示,其中可以假设另一个边界值为-25,或者也可以是thre+N*x,N也可以是由协议约定或者网络设备配置的正整数。
可选地,表4中的上报值的顺序也可以变化。表4中相邻两个测量区间的临界值也可以包括这两个测量区间中的任意一个测量区间。
可选地,终端设备可以通过RRC信令、MAC控制元素(Control Element,CE)信令或者是物理上行控制信道(Physical Uplink Control Channel,PUCCH)等向网络设备发送上述确定的上报值。
网络设备在接收到终端设备的上报值后,可以根据该上报值指示的测量值的大小,来确定上下行传输方式,例如,如果UE上报的RSSI值很大,则网络设备可以通过调度或者配置,避免其他设备对UE造成的干扰;若果UE上报的RSSI值很小,则网络设备可以调度UE对应的资源,也不会影响该UE的性能。
图13为本申请实施例提供的一种无线通信的方法300的示意性框图。如图13所示,该方法300包括以下部分或全部内容:
S310,网络设备向终端设备发送配置信息,所述配置信息用于指示在预配置的资源块RB范围内的第一频域资源,所述第一频域资源用于所述终端设备进行干扰测量或接收能量测量。
可选地,在本申请实施例中,所述配置信息包括第一信息,所述第一信息用于指示所述RB范围内的至少一个RB。
可选地,在本申请实施例中,所述第一信息用于指示至少一个RB组,所述RB组包括A个RB,A为正整数。
可选地,在本申请实施例中,所述第一信息用于指示一个RB组中的至少一个RB,所述RB组包括A个RB,A为正整数。
可选地,在本申请实施例中,A通过以下信息中的至少一种信息确定:协议约定信息、网络配置信息和所述RB范围。
可选地,在本申请实施例中,所述RB范围对应B个图样,所述第一信息用于指示所述B个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RB,B为正整数。
可选地,在本申请实施例中,所述B个图样由C个图样集合组成,所述至少一个图样包括所述C个图样集合中的一个图样集合或多个图样集合中的图样,C为正整数。
可选地,在本申请实施例中,所述第一信息包括第一比特图,至少一个所述RB组通过所述第一比特图中每一位的取值表示。
可选地,在本申请实施例中,所述第一信息包括第二比特图,所述RB组中的至少一个RB通过所述第二比特图中每一位的取值表示。
可选地,在本申请实施例中,所述第一信息包括第三比特图,所述至少一个图样通过所述第三比特图中每一位的取值表示。
可选地,在本申请实施例中,所述配置信息包括第二信息,所述第二信息用于指示一个RB中的至少一个资源元素RE。
可选地,在本申请实施例中,一个RB对应D个图样,所述第二信息用于指示所述D个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RE,D为正整数。
可选地,在本申请实施例中,所述第二信息包括第四比特图,所述至少一个图样通过所述第四比特图中每一位的取值表示。
可选地,在本申请实施例中,所述配置信息包括第三信息,所述第三信息用于指示所述RB范围的起始RB信息、所述RB范围的结束RB信息和所述RB范围内包括的RB数目信息中的至少两种。
可选地,在本申请实施例中,所述配置信息承载于无线资源控制RRC信令中。
可选地,在本申请实施例中,所述RB范围为带宽部分BWP的范围。
可选地,在本申请实施例中,所述方法还包括:所述网络设备接收所述终端设备发送的上报值,所述上报值用于指示所述终端设备进行干扰测量或接收能量测量获得的接收信号强度指示RSSI值。
可选地,在本申请实施例中,所述方法还包括:所述网络设备向所述终端设备发送多个测量区间与多个上报值之间映射关系,所述RSSI值属于所述多个测量区间中的任一测量区间。
可选地,在本申请实施例中,所述多个测量区间中除最小RSSI值所属的测量区间和最大RSSI值所属的测量区间之外的每个测量区间的间隔相等。
可选地,在本申请实施例中,所述网络设备接收所述终端设备发送的上报值,包括:所述网络设备接收所述终端设备通过无线资源控制RRC信令发送的所述上报值。
可选地,在本申请实施例中,所述网络设备接收所述终端设备发送的上报值,包括:所述网络设备接收所述终端设备通过媒体接入控制MAC控制元素CE信令发送的所述上报值。
可选地,在本申请实施例中,所述网络设备接收所述终端设备发送的上报值,包括:所述网络设备接收所述终端设备通过物理上行控制信道PUCCH发送的所述上报值。
可选地,在本申请实施例中,所述多个测量区间通过至少一个门限划分。
应理解,网络设备描述的网络设备与终端设备之间的交互及相关特性、功能等与终端设备的相关特性、功能相应。也就是说,网络设备向终端设备发送什么消息,终端设备从网络设备接收相应的消息。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的无线通信的方法,下面将结合图14至图17,描述根据本申请实施例的无线通信的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图14示出了本申请实施例的终端设备400的示意性框图。如图14所示,该终端设备400包括:
处理单元410,用于在预配置的资源块RB范围内确定第一频域资源;以及在所述第一频域资源上,进行干扰测量或接收能量测量。
可选地,在本申请实施例中,所述终端设备还包括:收发单元,用于接收第一信息,所述第一信息用于指示所述RB范围内的至少一个RB;所述处理单元具体用于:根据所述第一信息,确定所述第一频域资源。
可选地,在本申请实施例中,所述处理单元具体用于:根据所述RB范围内默认的至少一个RB,确定所述第一频域资源。
可选地,在本申请实施例中,所述第一信息用于指示至少一个RB组,所述RB组包括A个RB,所述处理单元具体用于:根据所述RB范围内包括的由所述第一信息指示的RB组,确定所述第一频域资源。
可选地,在本申请实施例中,所述第一信息用于指示一个RB组中的至少一个RB,所述RB组包括A个RB,所述处理单元具体用于:根据所述RB范围内包括的每个所述RB组中由所述第一信息指示的至少一个RB,确定所述第一频域资源,A为正整数。
可选地,在本申请实施例中,所述处理单元具体用于:根据所述RB范围内包括的每个RB组中默认的至少一个RB,确定所述第一频域资源,所述RB组包括A个RB,A为正整数。
可选地,在本申请实施例中,所述RB组中默认的至少一个RB包括所述RB组中的第一个RB。
可选地,在本申请实施例中,A通过以下信息中的至少一种信息确定:协议约定信息、网络配置信息和所述RB范围。
可选地,在本申请实施例中,所述RB范围对应B个图样,所述第一信息用于指示所述B个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RB,所述处理单元具体用于:根据所述RB范围内由所述第一信息指示的所述至少一个图样,确定所述第一频域资源,B为正整数。
可选地,在本申请实施例中,所述B个图样由C个图样集合组成,所述至少一个图样包括所述C个图样集合中的一个图样集合或多个图样集合中的图样,C为正整数。
可选地,在本申请实施例中,所述第一信息包括第一比特图,至少一个RB组通过所述第一比特图中每一位的取值表示。
可选地,在本申请实施例中,所述第一信息包括第二比特图,一个RB组中的至少一个RB通过所述第二比特图中每一位的取值表示。
可选地,在本申请实施例中,所述第一信息包括第三比特图,所述至少一个图样通过所述第三比特图中每一位的取值表示。
可选地,在本申请实施例中,所述第一信息承载于无线资源控制RRC信令中。
可选地,在本申请实施例中,所述终端设备还包括:收发单元,用于接收第二信息,所述第二信息用于指示一个RB中的至少一个资源元素RE;所述处理单元具体用于:根据所述第二信息,确定所述第一频域资源。
可选地,在本申请实施例中,所述收发单元还用于:接收第二信息,所述第二信息用于指示一个RB中的至少一个资源元素RE;所述处理单元具体用于:根据所述第一信息和所述第二信息,确定所述第一频域资源。
可选地,在本申请实施例中,所述处理单元具体用于:将所述RB范围内至少一个RB中每个RB中由所述第二信息指示的所述至少一个RE所组合的频域资源,确定为所述第一频域资源。
可选地,在本申请实施例中,所述处理单元具体用于:根据所述RB范围内至少一个RB中默认的至少一个资源元素RE,确定所述第一频域资源。
可选地,在本申请实施例中,一个RB对应D个图样,所述第二信息所述D个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量测量的RE,所述处理单元具体用于:将所述RB范围内至少一个RB中的每个RB中由所述第二信息指示的所述至少一个图样所组合的频域资源确定为所述第一频域资源,D为正整数。
可选地,在本申请实施例中,所述第二信息包括第四比特图,所述至少一个图样通过所述第四比特图中每一位的取值表示。
可选地,在本申请实施例中,所述第二信息承载于无线资源控制RRC信令中。
可选地,在本申请实施例中,所述收发单元还用于:接收第三信息,所述第三信息用于指示所述RB范围的起始RB信息、所述RB范围的结束RB信息和所述RB范围内包括的RB数目信息中的至少两种;根据所述第三信息,确定所述RB范围。
可选地,在本申请实施例中,所述第二信息和所述第三信息承载于同一个无线资源控制RRC信令中。
可选地,在本申请实施例中,所述RB范围为带宽部分BWP的范围。
可选地,在本申请实施例中,所述处理单元还用于:根据测量获得的接收信号强度指示RSSI值,确定向所述网络设备发送的上报值。
可选地,在本申请实施例中,所述处理单元具体用于:根据所述RSSI值所属的测量区间和多个测量区间与多个上报值之间的映射关系,确定所述上报值。
可选地,在本申请实施例中,所述多个测量区间中除最小RSSI值所属的测量区间和最大RSSI值所属的测量区间之外的每个测量区间的间隔相等。
可选地,在本申请实施例中,所述多个测量区间通过至少一个门限划分。
可选地,在本申请实施例中,所述终端设备还包括:收发单元,用于向所述网络设备发送所述上报值。
可选地,在本申请实施例中,所述收发单元具体用于:通过无线资源控制RRC信令向所述网络设备发送所述上报值。
可选地,在本申请实施例中,所述收发单元具体用于:通过媒体接入控制MAC控制元素CE信令向所述网络设备发送所述上报值。
可选地,在本申请实施例中,所述收发单元具体用于:通过物理上行控制信道PUCCH向所述网 络设备发送所述上报值。
可选地,在本申请实施例中,所述干扰测量或接收能量测量包括跨链路干扰CLI测量。
可选地,在本申请实施例中,所述RB是物理资源块PRB。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3方法中终端设备的相应流程,为了简洁,在此不再赘述。
图15示出了本申请实施例的网络设备500的示意性框图。如图15所示,该网络设备500包括:
收发单元510,用于向终端设备发送配置信息,所述配置信息用于指示在预配置的资源块RB范围内的第一频域资源,所述第一频域资源用于所述终端设备进行干扰测量或接收能量测量。
可选地,在本申请实施例中,所述配置信息包括第一信息,所述第一信息用于指示所述RB范围内的至少一个RB。
可选地,在本申请实施例中,所述第一信息用于指示至少一个RB组,所述RB组包括A个RB,A为正整数。
可选地,在本申请实施例中,所述第一信息用于指示一个RB组中的至少一个RB,所述RB组包括A个RB,A为正整数。
可选地,在本申请实施例中,A通过以下信息中的至少一种信息确定:协议约定信息、网络配置信息和所述RB范围。
可选地,在本申请实施例中,所述RB范围对应B个图样,所述第一信息用于指示所述B个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RB,B为正整数。
可选地,在本申请实施例中,所述B个图样由C个图样集合组成,所述至少一个图样包括所述C个图样集合中的一个图样集合或多个图样集合中的图样,C为正整数。
可选地,在本申请实施例中,所述第一信息包括第一比特图,至少一个所述RB组通过所述第一比特图中每一位的取值表示。
可选地,在本申请实施例中,所述第一信息包括第二比特图,所述RB组中的至少一个RB通过所述第二比特图中每一位的取值表示。
可选地,在本申请实施例中,所述第一信息包括第三比特图,所述至少一个图样通过所述第三比特图中每一位的取值表示。
可选地,在本申请实施例中,所述配置信息包括第二信息,所述第二信息用于指示一个RB中的至少一个资源元素RE。
可选地,在本申请实施例中,一个RB对应D个图样,所述第二信息用于指示所述D个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RE,D为正整数。
可选地,在本申请实施例中,所述第二信息包括第四比特图,所述至少一个图样通过所述第四比特图中每一位的取值表示。
可选地,在本申请实施例中,所述配置信息包括第三信息,所述第三信息用于指示所述RB范围的起始RB信息、所述RB范围的结束RB信息和所述RB范围内包括的RB数目信息中的至少两种。
可选地,在本申请实施例中,所述配置信息承载于无线资源控制RRC信令中。
可选地,在本申请实施例中,所述RB范围为带宽部分BWP的范围。
可选地,在本申请实施例中,所述收发单元还用于:接收所述终端设备发送的上报值,所述上报值用于指示所述终端设备进行干扰测量或接收能量测量获得的接收信号强度指示RSSI值。
可选地,在本申请实施例中,所述收发单元还用于:向所述终端设备发送多个测量区间与多个上报值之间映射关系,所述RSSI值属于所述多个测量区间中的任一测量区间。
可选地,在本申请实施例中,所述多个测量区间中除最小RSSI值所属的测量区间和最大RSSI值所属的测量区间之外的每个测量区间的间隔相等。
可选地,在本申请实施例中,所述多个测量区间通过至少一个门限划分。
可选地,在本申请实施例中,所述收发单元具体用于:接收所述终端设备通过无线资源控制RRC信令发送的所述上报值。
可选地,在本申请实施例中,所述收发单元具体用于:接收所述终端设备通过媒体接入控制MAC控制元素CE信令发送的所述上报值。
可选地,在本申请实施例中,所述收发单元具体用于:接收所述终端设备通过物理上行控制信道PUCCH发送的所述上报值。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图13方法中网络设备的相应流程, 为了简洁,在此不再赘述。
如图16所示,本申请实施例还提供了一种终端设备600,该终端设备600可以是图14中的终端设备400,其能够用于执行与图3中方法200对应的终端设备的内容。图16所示的终端设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图16所示,终端设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图16所示,终端设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该终端设备600可为本申请实施例的终端设备,并且该终端设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
一个具体的实施方式中,终端设备400中的收发单元可以由图16中的收发器630实现。终端设备400中的处理单元可以由图16中的处理器610实现。
如图17所示,本申请实施例还提供了一种网络设备700,该网络设备700可以是图15中的网络设备500,其能够用于执行与图13中方法300对应的网络设备的内容。图17所示的网络设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图17所示,网络设备700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,如图17所示,网络设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该网络设备700可为本申请实施例的网络设备,并且该网络设备700可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
一个具体的实施方式中,网络设备500中的处理单元可以由图17中的处理器710实现。网络设备500中的收发单元可以由图17中的收发器730实现。
图18是本申请实施例的芯片的示意性结构图。图18所示的芯片800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图18所示,芯片800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,该芯片800还可以包括输入接口830。其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片800还可以包括输出接口840。其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图19是本申请实施例提供的一种通信系统900的示意性框图。如图19所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或 者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (124)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备在预配置的资源块RB范围内确定第一频域资源;
    所述终端设备在所述第一频域资源上,进行干扰测量或接收能量测量。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一信息,所述第一信息用于指示所述RB范围内的至少一个RB;
    所述终端设备在预配置的资源块RB范围内确定第一频域资源,包括:
    所述终端设备根据所述第一信息,在所述RB范围内确定所述第一频域资源。
  3. 根据权利要求1所述的方法,其特征在于,所述终端设备在预配置的RB范围内确定第一频域资源,包括:
    所述终端设备根据所述RB范围内默认的至少一个RB,确定所述第一频域资源。
  4. 根据权利要求2所述的方法,其特征在于,所述第一信息用于指示至少一个RB组,所述RB组包括A个RB,所述终端设备根据所述第一信息,在所述RB范围内确定所述第一频域资源,包括:
    所述终端设备根据所述RB范围内由所述第一信息指示的RB组,确定所述第一频域资源,A为正整数。
  5. 根据权利要求2所述的方法,其特征在于,所述第一信息用于指示一个RB组中的至少一个RB,所述RB组包括A个RB,所述终端设备根据所述第一信息,在所述RB范围内确定所述第一频域资源,包括:
    所述终端设备根据所述RB范围内每个所述RB组中由所述第一信息指示的至少一个RB,确定所述第一频域资源,A为正整数。
  6. 根据权利要求3所述的方法,其特征在于,所述终端设备根据所述RB范围内默认的至少一个RB,确定所述第一频域资源,包括:
    所述终端设备根据所述RB范围内每个RB组中默认的至少一个RB,确定所述第一频域资源,所述RB组包括A个RB,A为正整数。
  7. 根据权利要求6所述的方法,其特征在于,所述RB组中默认的至少一个RB包括所述RB组中的第一个RB。
  8. 根据权利要求4至7中任一项所述的方法,其特征在于,A通过以下信息中的至少一种信息确定:协议约定信息、网络配置信息和所述RB范围。
  9. 根据权利要求2所述的方法,其特征在于,所述RB范围对应B个图样,所述第一信息用于指示所述B个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RB,所述终端设备根据所述第一信息,确定所述第一频域资源,包括:
    所述终端设备根据所述RB范围内由所述第一信息指示的所述至少一个图样,确定所述第一频域资源,B为正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述B个图样由C个图样集合组成,所述至少一个图样包括所述C个图样集合中的一个图样集合或多个图样集合中的图样,C为正整数。
  11. 根据权利要求4所述的方法,其特征在于,所述第一信息包括第一比特图,所述至少一个RB组通过所述第一比特图中每一位的取值表示。
  12. 根据权利要求5所述的方法,其特征在于,所述第一信息包括第二比特图,所述一个RB组中的至少一个RB通过所述第二比特图中每一位的取值表示。
  13. 根据权利要求9或10所述的方法,其特征在于,所述第一信息包括第三比特图,所述至少一个图样通过所述第三比特图中每一位的取值表示。
  14. 根据权利要求2、4、5、9、10、11、12和13中任一项所述的方法,其特征在于,所述第一信息承载于无线资源控制RRC信令中。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二信息,所述第二信息用于指示一个RB中的至少一个资源元素RE;
    所述终端设备在预配置的资源块RB范围内确定第一频域资源,包括:
    所述终端设备根据所述第二信息,确定所述第一频域资源。
  16. 根据权利要求2、4、5、9、10、11、12、13和14中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二信息,所述第二信息用于指示一个RB中的至少一个资源元素RE;
    所述终端设备根据所述第一信息,确定所述第一频域资源,包括:
    所述终端设备根据所述第一信息和所述第二信息,确定所述第一频域资源。
  17. 根据权利要求15所述的方法,其特征在于,所述终端设备根据所述第二信息,确定所述第一频域资源,包括:
    所述终端设备将所述RB范围内至少一个RB中每个RB中由所述第二信息指示的所述至少一个RE所组合的频域资源,确定为所述第一频域资源。
  18. 根据权利要求1至14中任一项所述的方法,其特征在于,所述终端设备在预配置的资源块RB范围内确定第一频域资源,包括:
    所述终端设备根据所述RB范围内至少一个RB中默认的至少一个资源元素RE,确定所述第一频域资源。
  19. 根据权利要求15至17中任一项所述的方法,其特征在于,一个RB对应D个图样,所述第二信息用于指示所述D个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RE。
  20. 根据权利要求19所述的方法,其特征在于,所述第二信息包括第四比特图,所述至少一个图样通过所述第四比特图中每一位的取值表示。
  21. 根据权利要求15、16、17和19中任一项所述的方法,其特征在于,所述第二信息承载于无线资源控制RRC信令中。
  22. 根据权利要求15、16、17、19、20和21中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第三信息,所述第三信息用于指示所述RB范围的起始RB信息、所述RB范围的结束RB信息和所述RB范围内包括的RB数目信息中的至少两种;
    所述终端设备根据所述第三信息,确定所述RB范围。
  23. 根据权利要求22所述的方法,其特征在于,所述第二信息和所述第三信息承载于同一个无线资源控制RRC信令中。
  24. 根据权利要求1至23中任一项所述的方法,其特征在于,所述RB范围为带宽部分BWP的范围。
  25. 根据权利要求1至24中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据测量获得的接收信号强度指示RSSI值,确定向所述网络设备发送的上报值。
  26. 根据权利要求25所述的方法,其特征在于,所述第一终端设备根据测量获得的接收信号强度指示RSSI值,确定向所述网络设备发送的上报值,包括:
    所述终端设备根据所述RSSI值所属的测量区间和多个测量区间与多个上报值之间的映射关系,确定所述上报值。
  27. 根据权利要求26所述的方法,其特征在于,所述多个测量区间中除最小RSSI值所属的测量区间和最大RSSI值所属的测量区间之外的每个测量区间的间隔相等。
  28. 根据权利要求26所述的方法,其特征在于,所述多个测量区间通过至少一个门限划分。
  29. 根据权利要求25至28中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送所述上报值。
  30. 根据权利要求29所述的方法,其特征在于,所述终端设备向所述网络设备发送所述上报值,包括:
    所述终端设备通过无线资源控制RRC信令向所述网络设备发送所述上报值。
  31. 根据权利要求29所述的方法,其特征在于,所述终端设备向所述网络设备发送所述上报值,包括:
    所述终端设备通过媒体接入控制MAC控制元素CE信令向所述网络设备发送所述上报值。
  32. 根据权利要求29所述的方法,其特征在于,所述终端设备向所述网络设备发送所述上报值,包括:
    所述终端设备通过物理上行控制信道PUCCH向所述网络设备发送所述上报值。
  33. 根据权利要求1至32中任一项所述的方法,其特征在于,所述干扰测量或接收能量测量包括跨链路干扰CLI测量。
  34. 根据权利要求1至33中任一项所述的方法,其特征在于,所述RB是物理资源块PRB。
  35. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送配置信息,所述配置信息用于指示在预配置的资源块RB范围内的第一频域资源,所述第一频域资源用于所述终端设备进行干扰测量或接收能量测量。
  36. 根据权利要求35所述的方法,其特征在于,所述配置信息包括第一信息,所述第一信息用 于指示所述RB范围内的至少一个RB。
  37. 根据权利要求36所述的方法,其特征在于,所述第一信息用于指示至少一个RB组,所述RB组包括A个RB,A为正整数。
  38. 根据权利要求36所述的方法,其特征在于,所述第一信息用于指示一个RB组中的至少一个RB,所述RB组包括A个RB,A为正整数。
  39. 根据权利要求37或38所述的方法,其特征在于,A通过以下信息中的至少一种信息确定:协议约定信息、网络配置信息和所述RB范围。
  40. 根据权利要求36所述的方法,其特征在于,所述RB范围对应B个图样,所述第一信息用于指示所述B个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RB,B为正整数。
  41. 根据权利要求40所述的方法,其特征在于,所述B个图样由C个图样集合组成,所述至少一个图样包括所述C个图样集合中的一个图样集合或多个图样集合中的图样,C为正整数。
  42. 根据权利要求37所述的方法,其特征在于,所述第一信息包括第一比特图,所述至少一个所述RB组通过所述第一比特图中每一位的取值表示。
  43. 根据权利要求38所述的方法,其特征在于,所述第一信息包括第二比特图,所述一个RB组中的至少一个RB通过所述第二比特图中每一位的取值表示。
  44. 根据权利要求40或41所述的方法,其特征在于,所述第一信息包括第三比特图,所述至少一个图样通过所述第三比特图中每一位的取值表示。
  45. 根据权利要求35至44中任一项所述的方法,其特征在于,所述配置信息包括第二信息,所述第二信息用于指示一个RB中的至少一个资源元素RE。
  46. 根据权利要求45所述的方法,其特征在于,一个RB对应D个图样,所述第二信息用于指示所述D个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RE,D为正整数。
  47. 根据权利要求45或46所述的方法,其特征在于,所述第二信息包括第四比特图,所述至少一个图样通过所述第四比特图中每一位的取值表示。
  48. 根据权利要求35至47中任一项所述的方法,其特征在于,所述配置信息包括第三信息,所述第三信息用于指示所述RB范围的起始RB信息、所述RB范围的结束RB信息和所述RB范围内包括的RB数目信息中的至少两种。
  49. 根据权利要求35至48中任一项所述的方法,其特征在于,所述配置信息承载于无线资源控制RRC信令中。
  50. 根据权利要求35至49中任一项所述的方法,其特征在于,所述RB范围为带宽部分BWP的范围。
  51. 根据权利要求35至50中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的上报值,所述上报值用于指示所述终端设备在所述第一频域资源进行干扰测量或接收能量测量获得的接收信号强度指示RSSI值。
  52. 根据权利要求51所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送多个测量区间与多个上报值之间映射关系,所述RSSI值属于所述多个测量区间中的任一测量区间。
  53. 根据权利要求52所述的方法,其特征在于,所述多个测量区间中除最小RSSI值所属的测量区间和最大RSSI值所属的测量区间之外的每个测量区间的间隔相等。
  54. 根据权利要求52所述的方法,其特征在于,所述多个测量区间通过至少一个门限划分。
  55. 根据权利要求51至54中任一项所述的方法,其特征在于,所述网络设备接收所述终端设备发送的上报值,包括:
    所述网络设备接收所述终端设备通过无线资源控制RRC信令发送的所述上报值。
  56. 根据权利要去51至54中任一项所述的方法,其特征在于,所述网络设备接收所述终端设备发送的上报值,包括:
    所述网络设备接收所述终端设备通过媒体接入控制MAC控制元素CE信令发送的所述上报值。
  57. 根据权利要求51至54中任一项所述的方法,其特征在于,所述网络设备接收所述终端设备发送的上报值,包括:
    所述网络设备接收所述终端设备通过物理上行控制信道PUCCH发送的所述上报值。
  58. 一种终端设备,其特征在于,所述终端设备包括:
    处理单元,用于在预配置的资源块RB范围内确定第一频域资源;以及
    在所述第一频域资源上,进行干扰测量或接收能量测量。
  59. 根据权利要求58所述的终端设备,其特征在于,所述终端设备还包括:
    收发单元,用于接收第一信息,所述第一信息用于指示所述RB范围内的至少一个RB;
    所述处理单元具体用于:
    根据所述第一信息,确定所述第一频域资源。
  60. 根据权利要求58所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述RB范围内默认的至少一个RB,确定所述第一频域资源。
  61. 根据权利要求50所述的终端设备,其特征在于,所述第一信息用于指示至少一个RB组,所述RB组包括A个RB,所述处理单元具体用于:
    根据所述RB范围内包括的由所述第一信息指示的RB组,确定所述第一频域资源,A为正整数。
  62. 根据权利要求59所述的终端设备,其特征在于,所述第一信息用于指示一个RB组中的至少一个RB,所述RB组包括A个RB,所述处理单元具体用于:
    根据所述RB范围内每个所述RB组中由所述第一信息指示的至少一个RB,确定所述第一频域资源,A为正整数。
  63. 根据权利要求60所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述RB范围内每个RB组中默认的至少一个RB,确定所述第一频域资源,所述RB组包括A个RB,A为正整数。
  64. 根据权利要求63所述的终端设备,其特征在于,所述RB组中默认的至少一个RB包括所述RB组中的第一个RB。
  65. 根据权利要求61至64中任一项所述的终端设备,其特征在于,A通过以下信息中的至少一种信息确定:协议约定信息、网络配置信息和所述RB范围。
  66. 根据权利要求59所述的终端设备,其特征在于,所述RB范围对应B个图样,所述第一信息用于指示所述B个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RB,所述处理单元具体用于:
    根据所述RB范围内由所述第一信息指示的所述至少一个图样,确定所述第一频域资源,B为正整数。
  67. 根据权利要求66所述的终端设备,其特征在于,所述B个图样由C个图样集合组成,所述至少一个图样包括所述C个图样集合中的一个图样集合或多个图样集合中的图样,C为正整数。
  68. 根据权利要求61所述的终端设备,其特征在于,所述第一信息包括第一比特图,所述至少一个RB组通过所述第一比特图中每一位的取值表示。
  69. 根据权利要求62所述的终端设备,其特征在于,所述第一信息包括第二比特图,所述一个RB组中的至少一个RB通过所述第二比特图中每一位的取值表示。
  70. 根据权利要求66或67所述的终端设备,其特征在于,所述第一信息包括第三比特图,所述至少一个图样通过所述第三比特图中每一位的取值表示。
  71. 根据权利要求59、61、62、66、67、68、69和70中任一项所述的终端设备,其特征在于,所述第一信息承载于无线资源控制RRC信令中。
  72. 根据权利要求58至71中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    收发单元,用于接收第二信息,所述第二信息用于指示一个RB中的至少一个资源元素RE;
    所述处理单元具体用于:
    根据所述第二信息,确定所述第一频域资源。
  73. 根据权利要求59、61、62、66、67、68、69、70和71中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收第二信息,所述第二信息用于指示一个RB中的至少一个资源元素RE;
    所述处理单元具体用于:
    根据所述第一信息和所述第二信息,确定所述第一频域资源。
  74. 根据权利要求72所述的终端设备,其特征在于,所述处理单元具体用于:
    将所述RB范围内至少一个RB中每个RB中由所述第二信息指示的所述至少一个RE所组合的频域资源,确定为所述第一频域资源。
  75. 根据权利要求58至72中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述RB范围内至少一个RB中默认的至少一个资源元素RE,确定所述第一频域资源。
  76. 根据权利要求72至74中任一项所述的终端设备,其特征在于,一个RB对应D个图样,所述第二信息用于指示所述D个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RE。
  77. 根据权利要求76所述的终端设备,其特征在于,所述第二信息包括第四比特图,所述至少一个图样通过所述第四比特图中每一位的取值表示。
  78. 根据权利要求72、73、74和76中任一项所述的终端设备,其特征在于,所述第二信息承载于无线资源控制RRC信令中。
  79. 根据权利要求72、73、74、76、77和78中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收第三信息,所述第三信息用于指示所述RB范围的起始RB信息、所述RB范围的结束RB信息和所述RB范围内包括的RB数目信息中的至少两种;
    根据所述第三信息,确定所述RB范围。
  80. 根据权利要求79所述的终端设备,其特征在于,所述第二信息和所述第三信息承载于同一个无线资源控制RRC信令中。
  81. 根据权利要求58至80中任一项所述的终端设备,其特征在于,所述RB范围为带宽部分BWP的范围。
  82. 根据权利要求58至81中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    根据测量获得的接收信号强度指示RSSI值,确定向所述网络设备发送的上报值。
  83. 根据权利要求82所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述RSSI值所属的测量区间和多个测量区间与多个上报值之间的映射关系,确定所述上报值。
  84. 根据权利要求83所述的终端设备,其特征在于,所述多个测量区间中除最小RSSI值所属的测量区间和最大RSSI值所属的测量区间之外的每个测量区间的间隔相等。
  85. 根据权利要求83所述的终端设备,其特征在于,所述多个测量区间通过至少一个门限划分。
  86. 根据权利要求82至85中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    收发单元,用于向所述网络设备发送所述上报值。
  87. 根据权利要求86所述的终端设备,其特征在于,所述收发单元具体用于:
    通过无线资源控制RRC信令向所述网络设备发送所述上报值。
  88. 根据权利要求86所述的终端设备,其特征在于,所述收发单元具体用于:
    通过媒体接入控制MAC控制元素CE信令向所述网络设备发送所述上报值。
  89. 根据权利要求86所述的终端设备,其特征在于,所述收发单元具体用于:
    通过物理上行控制信道PUCCH向所述网络设备发送所述上报值。
  90. 根据权利要求58至89中任一项所述的终端设备,其特征在于,所述干扰测量或接收能量测量包括跨链路干扰CLI测量。
  91. 根据权利要求58至90中任一项所述的终端设备,其特征在于,所述RB是物理资源块PRB。
  92. 一种网络设备,其特征在于,所述网络设备包括:
    收发单元,用于向终端设备发送配置信息,所述配置信息用于指示在预配置的资源块RB范围内的第一频域资源,所述第一频域资源用于所述终端设备进行干扰测量或接收能量测量。
  93. 根据权利要求92所述的网络设备,其特征在于,所述配置信息包括第一信息,所述第一信息用于指示所述RB范围内的至少一个RB。
  94. 根据权利要求93所述的网络设备,其特征在于,所述第一信息用于指示至少一个RB组,所述RB组包括A个RB,A为正整数。
  95. 根据权利要求93所述的网络设备,其特征在于,所述第一信息用于指示一个RB组中的至少一个RB,所述RB组包括A个RB,A为正整数。
  96. 根据权利要求94或95所述的网络设备,其特征在于,A通过以下信息中的至少一种信息确定:协议约定信息、网络配置信息和所述RB范围。
  97. 根据权利要求93所述的网络设备,其特征在于,所述RB范围对应B个图样,所述第一信息用于指示所述B个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RB,B为正整数。
  98. 根据权利要求97所述的网络设备,其特征在于,所述B个图样由C个图样集合组成,所述至少一个图样包括所述C个图样集合中的一个图样集合或多个图样集合中的图样,C为正整数。
  99. 根据权利要求94所述的网络设备,其特征在于,所述第一信息包括第一比特图,所述至少一个所述RB组通过所述第一比特图中每一位的取值表示。
  100. 根据权利要求95所述的网络设备,其特征在于,所述第一信息包括第二比特图,所述一个RB组中的至少一个RB通过所述第二比特图中每一位的取值表示。
  101. 根据权利要求97或98所述的网络设备,其特征在于,所述第一信息包括第三比特图,所述至少一个图样通过所述第三比特图中每一位的取值表示。
  102. 根据权利要求92至101中任一项所述的网络设备,其特征在于,所述配置信息包括第二信息,所述第二信息用于指示一个RB中的至少一个资源元素RE。
  103. 根据权利要求102所述的网络设备,其特征在于,一个RB对应D个图样,所述第二信息用于指示所述D个图样中的至少一个图样,其中,一个图样用于指示至少一个用于测量的RE,D为正整数。
  104. 根据权利要求102或103所述的网络设备,其特征在于,所述第二信息包括第四比特图,所述至少一个图样通过所述第四比特图中每一位的取值表示。
  105. 根据权利要求92至104中任一项所述的网络设备,其特征在于,所述配置信息包括第三信息,所述第三信息用于指示所述RB范围的起始RB信息、所述RB范围的结束RB信息和所述RB范围内包括的RB数目信息中的至少两种。
  106. 根据权利要求92至105中任一项所述的网络设备,其特征在于,所述配置信息承载于无线资源控制RRC信令中。
  107. 根据权利要求92至106中任一项所述的网络设备,其特征在于,所述RB范围为带宽部分BWP的范围。
  108. 根据权利要求92至107中任一项所述的网络设备,其特征在于,所述收发单元还用于:
    接收所述终端设备发送的上报值,所述上报值用于指示所述终端设备在所述第一频域资源进行干扰测量或接收能量测量获得的接收信号强度指示RSSI值。
  109. 根据权利要求108所述的网络设备,其特征在于,所述收发单元还用于:
    向所述终端设备发送多个测量区间与多个上报值之间映射关系,所述RSSI值属于所述多个测量区间中的任一测量区间。
  110. 根据权利要求109所述的网络设备,其特征在于,所述多个测量区间中除最小RSSI值所属的测量区间和最大RSSI值所属的测量区间之外的每个测量区间的间隔相等。
  111. 根据权利要求109所述的网络设备,其特征在于,所述多个测量区间通过至少一个门限划分。
  112. 根据权利要求108至111中任一项所述的网络设备,其特征在于,所述收发单元具体用于:
    接收所述终端设备通过无线资源控制RRC信令发送的所述上报值。
  113. 根据权利要去108至111中任一项所述的网络设备,其特征在于,所述收发单元具体用于:
    接收所述终端设备通过媒体接入控制MAC控制元素CE信令发送的所述上报值。
  114. 根据权利要求108至111中任一项所述的网络设备,其特征在于,所述收发单元具体用于:
    接收所述终端设备通过物理上行控制信道PUCCH发送的所述上报值。
  115. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至34中任一项所述的方法。
  116. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求35至57中任一项所述的方法。
  117. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至34中任一项所述的方法。
  118. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求35至57中任一项所述的方法。
  119. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至34中任一项所述的方法。
  120. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求35至57中任一项所述的方法。
  121. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至34中任一项所述的方法。
  122. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求35至57中任一项所述的方法。
  123. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至34中任一项所述的方法。
  124. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求35至57中任一项所述的方法。
PCT/CN2019/074706 2019-02-03 2019-02-03 无线通信的方法、终端设备和网络设备 WO2020155180A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020217025228A KR20210122253A (ko) 2019-02-03 2019-02-03 무선 통신 방법, 단말 디바이스 및 네트워크 디바이스
CN202110850413.9A CN113596876B (zh) 2019-02-03 2019-02-03 无线通信的方法、终端设备、网络设备、芯片和介质
EP24162090.5A EP4366224A2 (en) 2019-02-03 2019-02-03 Wireless communication method, terminal device and network device
JP2021544600A JP7339348B2 (ja) 2019-02-03 2019-02-03 無線通信方法、端末デバイス及びネットワークデバイス
PCT/CN2019/074706 WO2020155180A1 (zh) 2019-02-03 2019-02-03 无线通信的方法、终端设备和网络设备
CN201980074276.5A CN112997561A (zh) 2019-02-03 2019-02-03 无线通信的方法、终端设备和网络设备
EP19913521.1A EP3883319B1 (en) 2019-02-03 2019-02-03 Wireless communication method, terminal device and network device
US17/389,080 US11368965B2 (en) 2019-02-03 2021-07-29 Wireless communication method, terminal device and network device
US17/830,284 US11758575B2 (en) 2019-02-03 2022-06-01 Wireless communication method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074706 WO2020155180A1 (zh) 2019-02-03 2019-02-03 无线通信的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/389,080 Continuation US11368965B2 (en) 2019-02-03 2021-07-29 Wireless communication method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2020155180A1 true WO2020155180A1 (zh) 2020-08-06

Family

ID=71840717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074706 WO2020155180A1 (zh) 2019-02-03 2019-02-03 无线通信的方法、终端设备和网络设备

Country Status (6)

Country Link
US (2) US11368965B2 (zh)
EP (2) EP3883319B1 (zh)
JP (1) JP7339348B2 (zh)
KR (1) KR20210122253A (zh)
CN (2) CN112997561A (zh)
WO (1) WO2020155180A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4009564B1 (en) * 2020-12-03 2023-12-06 Hon Lin Technology Co., Ltd. Method for allocating wireless resources based on sensitivity to inter-cell interference and apparatus thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102783165A (zh) * 2007-10-16 2012-11-14 联发科技股份有限公司 蜂巢式正交频分多址接入系统中频率复用的干扰测量机制
CN103580835A (zh) * 2012-08-02 2014-02-12 中兴通讯股份有限公司 在干扰测量资源上进行干扰测量的方法及设备
CN104685918A (zh) * 2012-09-28 2015-06-03 高通股份有限公司 用于在无线通信中分配干扰测量资源的随机化过程

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956828B1 (ko) * 2008-11-13 2010-05-11 엘지전자 주식회사 반(半)-지속적 스케줄링의 비활성화를 지시하는 방법 및 이를 이용한 장치
CN102238732A (zh) * 2010-04-28 2011-11-09 中兴通讯股份有限公司 一种正交频分复用系统的无线资源分配、调度方法和装置
ES2665563T3 (es) * 2012-11-26 2018-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Métodos y nodos de red de radio para medir la interferencia
US9407302B2 (en) 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
KR102271072B1 (ko) * 2014-03-20 2021-06-30 삼성전자 주식회사 무선통신 시스템에서 네트워크 지원 간섭 제거 및 억제 기술을 위한 간섭정보 전송 방법 및 장치
KR101877393B1 (ko) * 2014-05-09 2018-07-12 인텔 아이피 코포레이션 참조 신호 수신 품질(rsrq) 측정들에 대한 보고 기법들
US9955462B2 (en) * 2014-09-26 2018-04-24 Qualcomm Incorporated Ultra-low latency LTE control data communication
KR102531157B1 (ko) * 2014-11-14 2023-05-09 인터디지탈 패튼 홀딩스, 인크 비인가 대역에서의 롱 텀 에볼루션(lte) 동작을 위한 채널 측정 및 보고 메커니즘을 위한 방법 및 프로시져
US9974039B2 (en) * 2015-12-21 2018-05-15 Intel IP Corporation User equipment and method for measurement of side-link reference signal received power (S-RSRP)
BR112018016097A2 (pt) * 2016-02-08 2019-01-02 Ericsson Telefon Ab L M método, dispositivo sem fio, nó de rede, produto de programa de computador, e, mídia legível por computador.
CN108811102A (zh) * 2017-05-04 2018-11-13 株式会社Ntt都科摩 干扰协调信息交互方法、减轻交叉链路干扰的方法和基站
CN108809454B (zh) * 2017-05-05 2020-06-16 华为技术有限公司 干扰测量方法和设备
TWI687061B (zh) * 2017-05-05 2020-03-01 聯發科技股份有限公司 行動通訊中跨鏈路干擾測量方法及設備
CN109392005B (zh) * 2017-08-11 2021-07-09 华为技术有限公司 一种信号强度测量的方法、相关装置以及系统
WO2019051242A2 (en) * 2017-09-08 2019-03-14 Convida Wireless, Llc COMMUNICATION MANAGEMENT USING DOWNLINK COMMAND INFORMATION
US10945149B1 (en) * 2019-09-20 2021-03-09 Qualcomm Incorporated Time domain behavior and QCL relation for SINR measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102783165A (zh) * 2007-10-16 2012-11-14 联发科技股份有限公司 蜂巢式正交频分多址接入系统中频率复用的干扰测量机制
CN103580835A (zh) * 2012-08-02 2014-02-12 中兴通讯股份有限公司 在干扰测量资源上进行干扰测量的方法及设备
CN104685918A (zh) * 2012-09-28 2015-06-03 高通股份有限公司 用于在无线通信中分配干扰测量资源的随机化过程

Also Published As

Publication number Publication date
JP7339348B2 (ja) 2023-09-05
US11368965B2 (en) 2022-06-21
US20220295502A1 (en) 2022-09-15
CN113596876A (zh) 2021-11-02
CN113596876B (zh) 2022-12-20
US20210360644A1 (en) 2021-11-18
EP3883319B1 (en) 2024-03-27
CN112997561A (zh) 2021-06-18
EP3883319A1 (en) 2021-09-22
EP3883319A4 (en) 2021-12-22
US11758575B2 (en) 2023-09-12
KR20210122253A (ko) 2021-10-08
EP4366224A2 (en) 2024-05-08
JP2022524713A (ja) 2022-05-10

Similar Documents

Publication Publication Date Title
US10764884B2 (en) Method for sending or receiving physical downlink control channel and device
US11464019B2 (en) Downlink control information transmission method, device and network equipment
US11483820B2 (en) Data transmission method, terminal device, and network device
US20210160852A1 (en) Resource configuration method and terminal device
CN114826512B (zh) 一种dmrs绑定窗口确定方法、装置及存储介质
WO2018202012A1 (zh) 确定时隙格式的方法、终端设备和网络设备
WO2021027898A1 (zh) 信息确定方法和装置
WO2020051774A1 (zh) 通信方法、终端设备和网络设备
WO2020164151A1 (zh) 无线通信方法、终端设备和网络设备
WO2019095232A1 (zh) 资源指示方法、装置及通信系统
US20210211175A1 (en) Method for feeding back and receiving information, and device
CN113424618A (zh) 一种通信方法、装置及计算机可读存储介质
TW202008827A (zh) 資源配置的方法、終端設備和網路設備
WO2020087545A1 (zh) 一种上行控制信息确定方法和通信设备
CN109219968B (zh) 一种csi-rs传输方法及网络设备
US11758575B2 (en) Wireless communication method, terminal device and network device
WO2020107409A1 (zh) 一种通信方法、终端设备和网络设备
WO2020000299A1 (zh) 调度资源的方法、终端设备和网络设备
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2020143051A1 (zh) Bwp切换的方法和设备
WO2020087467A1 (zh) 无线通信的方法、终端设备和网络设备
JP7484934B2 (ja) リソース確定方法、リソーススケジューリング方法及び装置
WO2023159646A1 (zh) 一种无线通信方法及设备
CN113207161B (zh) 一种信号传输方法及装置、终端、网络设备
WO2020210962A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019913521

Country of ref document: EP

Effective date: 20210615

ENP Entry into the national phase

Ref document number: 2021544600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217025228

Country of ref document: KR

Kind code of ref document: A