WO2018028315A1 - 一种信道质量信息的反馈方法及装置 - Google Patents

一种信道质量信息的反馈方法及装置 Download PDF

Info

Publication number
WO2018028315A1
WO2018028315A1 PCT/CN2017/089588 CN2017089588W WO2018028315A1 WO 2018028315 A1 WO2018028315 A1 WO 2018028315A1 CN 2017089588 W CN2017089588 W CN 2017089588W WO 2018028315 A1 WO2018028315 A1 WO 2018028315A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel quality
quality information
unit carriers
unit
reference signals
Prior art date
Application number
PCT/CN2017/089588
Other languages
English (en)
French (fr)
Inventor
史桢宇
王艺
黄磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018028315A1 publication Critical patent/WO2018028315A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and apparatus for feeding back channel quality information.
  • LTE-Advanced Long Term Evolution Advanced
  • CA carrier aggregation
  • CCs component carriers
  • FIG. 1 carrier aggregation in LTE-Advanced supports aggregation of a series of different CC combinations, as shown in FIG. 1, including aggregation between CCs in the same frequency band, and adjacent or non-adjacent CC aggregations in the same frequency band. And CC aggregation in different frequency bands.
  • DFT-OFDM discrete Fourier transform-orthogonal frequency division multiplexing
  • OFDM orthogonal frequency division multiplexing
  • a DFT Discrete Fourier Transform
  • LTE Long Term Evolution
  • IEEE Institute of Electrical and Electronics Engineers 802.11
  • the DFT-OFDM signal standard is recorded as DFT-S-OFDM (digital Fourier transform spread OFDM), SC-DFT-OFDM Single carrier digital Fourier transform orthogonal frequency-division multiplex (Single Carrier Digital Fourier Transform Orthogonal Frequency Division Multiplexing) signal or SC-FDMA (single carrier frequency division multiple access) signal, which is usually referred to as short
  • DFT-S-OFDM digital Fourier transform spread OFDM
  • SC-DFT-OFDM Single carrier digital Fourier transform orthogonal frequency-division multiplex Single Carrier Digital Fourier Transform Orthogonal Frequency Division Multiplexing
  • SC-FDMA single carrier frequency division multiple access
  • a plurality of data symbols to be transmitted such as QAM (quadrature amplitude modulation) symbols
  • the OFDM unit then performs OFDM processing on the mapped multiple symbols, including IFFT (inverse fast Fourier transformation), parallel/serial conversion, and cyclic prefix.
  • IFFT inverse fast Fourier transformation
  • the single-carrier signal adds DFT transform before the OFDM processing.
  • the output signal maintains a peak-to-average power ratio (PAPR) similar to the data symbol of the DFT input.
  • PAPR peak-to-average power ratio
  • the DFT unit inputs the QAM symbol, and the QAM symbol maintains a lower PAPR, so the signal processed by the DFT-OFDM still maintains a lower PAPR.
  • the mode of selecting the MCS is usually that the user equipment measures the downlink signal, and then feeds back a channel quality indicator (CQI) to select the MCS.
  • CQI channel quality indicator
  • the UE uploads a CQI in units of one unit carrier or smaller sub-band.
  • the base station selects an appropriate MCS for each CC or a smaller sub-band. Data transfer.
  • the prior art method of reporting CQI is a scheduling unit in which the CQI of the subband is the smallest, and the largest scheduling unit is in units of each CC.
  • the advantage is that the scheduling is relatively flexible, and the appropriate frequency band can be selected for the transmission data, but it is not suitable for selecting a unified MCS for the overall bandwidth after carrier aggregation, which is disadvantageous for reducing the PAPR after carrier aggregation.
  • the prior art The way of reporting CQI is due to the unit of CC, resulting in a large system overhead.
  • the invention provides a method and a device for feeding back channel quality information, so as to facilitate feedback of channel quality information of the overall bandwidth after carrier aggregation.
  • the present invention provides a method for feeding back channel quality information, including:
  • a unit carrier can correspond to one or more reference signals.
  • the determining, according to the reference signals of the multiple unit carriers, the channel quality information of the plurality of unit carriers after aggregation includes:
  • the overall channel quality information is a minimum value of channel quality information of each unit carrier.
  • the channel quality information of each component carrier may be a signal to noise ratio, a signal to interference and noise ratio, or a received signal strength indication, if the overall channel quality information is a channel quality indicator defined by the 3GPP (3rd Generation Partnership Project) standard.
  • the CQI also needs to obtain the corresponding CQI as the overall channel quality information after carrier aggregation according to the obtained average value, weighted average value or minimum value.
  • the channel quality information of each unit carrier is the CQI defined by the 3GPP standard, it is also required to use the average value, the weighted average value, or the minimum value of the obtained average value as the channel quality information after carrier aggregation.
  • the determining, according to the reference signals of the multiple unit carriers, the channel quality information of the plurality of unit carriers after aggregation includes:
  • the overall channel quality information is the average value, the weighted average value, or the minimum value; or the overall channel quality information is the average value, the weighted average value, or the minimum value.
  • the calculation process does not need to calculate the channel quality information of each component carrier, and only calculates the overall channel quality information after carrier aggregation, thereby saving computational overhead.
  • the channel quality parameter may be a signal to noise ratio, a signal to interference and noise ratio, or a received signal strength indication. If the overall channel quality information is a channel quality indicator CQI defined by the 3GPP standard, the weighted average may also be obtained according to the obtained average value. Or the minimum value lookup table obtains the corresponding CQI as the overall channel quality information after carrier aggregation.
  • the determining, according to the reference signal of the multiple unit carriers, the channel quality information after the aggregation of the multiple unit carriers is further included:
  • the reporting mode indication information is used to report that only the aggregated channel quality information is reported, or the aggregated channel quality information and channel quality information of each component carrier are reported;
  • the overall channel quality information can save overhead; in addition, the reporting mode indication information is advantageous for selecting different reporting modes according to different needs.
  • reporting manner indication information indicates that the aggregated channel quality information and the channel quality information of each unit carrier are reported, the sequence numbers of the respective unit carriers are also reported to facilitate the identification of channel quality information of different unit carriers.
  • the above method is performed by the receiving end, the receiving end is a mobile device, and the transmitting end may be a network device, such as a base station, or a mobile device.
  • the channel quality information is a signal to noise ratio, a signal to interference and noise ratio, a received signal strength indicator or a channel quality indicator.
  • a method for feeding back channel quality information includes:
  • the optimal channel quality information is sent to the transmitting end.
  • a unit carrier can correspond to one or more reference signals on one beam.
  • the scheme essentially calculates the channel quality information after carrier aggregation on each beam, and then takes the optimal channel quality information as the overall channel quality information and reports it.
  • the channel quality information after the aggregation of the multiple unit carriers on each beam is determined according to the reference signals of the multiple unit carriers on the multiple beams respectively:
  • each beam calculates channel quality information of each unit carrier and channel quality information of the plurality of unit carriers after aggregation.
  • the method provided by the foregoing aspects is performed by the receiving end, and the receiving end may be a user equipment, and the sending end may be a network device, such as a base station, a wireless access point, or the like, or may be a user equipment.
  • the receiving end may be a user equipment
  • the sending end may be a network device, such as a base station, a wireless access point, or the like, or may be a user equipment.
  • a feedback device for channel quality information includes:
  • a receiving module configured to receive a reference signal of multiple unit carriers sent by the transmitting end;
  • a processing module configured to determine, according to the reference signals of the multiple unit carriers, overall channel quality information after the aggregation of the multiple unit carriers;
  • a sending module configured to send the overall channel quality information to the sending end.
  • processing module is specifically configured to:
  • the overall channel quality information is the average or weighted average
  • the overall channel quality information is a minimum value of channel quality information of each unit carrier
  • the overall channel quality information is the average value, the weighted average value, or the minimum value; or the overall channel quality information is the average value, the weighted average value, or the minimum value.
  • the receiving module is further configured to receive reporting manner indication information sent by the sending end;
  • the reporting mode indication information is used to indicate that only the aggregated channel quality information is reported, or the aggregated channel quality information and channel quality information of each component carrier are reported.
  • the feedback device of the channel quality information corresponds to the method execution body of the first aspect, and the corresponding function module performs corresponding steps, specifically the receiving device.
  • a fourth aspect provides a feedback device for channel quality information, including:
  • a receiving module configured to receive a reference signal of multiple unit carriers sent by the transmitting end on multiple beams
  • a processing module determining, according to the reference signals of the multiple unit carriers on the multiple beams, channel quality information after the aggregation of the multiple unit carriers on each beam;
  • the sending module is configured to send the optimal channel quality information to the sending end.
  • processing module is specifically configured to:
  • the aggregated channel quality information of the plurality of unit carriers on each beam is respectively calculated according to channel quality information of the plurality of unit carriers on the respective beams.
  • the sending module is further configured to send the beam information corresponding to the optimal channel quality information to the sending end.
  • the feedback device of the channel quality information corresponds to the method execution body of the second aspect, and the corresponding function module performs corresponding steps, specifically the receiving device.
  • the unit carriers in the foregoing methods and apparatuses may be ordinary carriers, and the transmitting end and the receiving end are respectively a wireless access device and a user equipment, or a user equipment and a wireless access device; or may be user equipments.
  • the signal processing method and device provided by the present invention according to the reference signals of the plurality of component carriers, determining overall channel quality information after the aggregation of the plurality of component carriers, and transmitting the overall channel quality information to the transmitting end It is beneficial to select a unified MCS for the overall bandwidth after carrier aggregation, which is beneficial to reducing the PAPR after carrier aggregation and improving the reliability of wireless signal transmission.
  • FIG. 1 is a schematic diagram of spectrum occupancy of multiple carriers.
  • FIG. 2 is a schematic flow chart of a single carrier signal processing method.
  • FIG. 3 is a schematic flowchart of a method for feeding back channel quality information according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a method for feeding back channel quality information according to another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for feeding back channel quality information according to still another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a feedback device for providing channel quality information according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a feedback apparatus for providing channel quality information according to another embodiment of the present invention.
  • a wireless access network may include different network elements in different systems.
  • the network elements of the LTE (Long Term Evolution) and the LTE-A (LTE Advanced) radio access network include an eNB (eNodeB, evolved base station), and a WLAN (wireless local area network)/Wi-Fi network element includes Access Point (AP), etc.
  • eNB eNodeB, evolved base station
  • WLAN wireless local area network
  • Wi-Fi Wireless Fidelity
  • Other wireless networks may also use a solution similar to the embodiment of the present invention, but the related modules in the base station system may be different, and the embodiment of the present invention is not limited.
  • user equipment includes but is not limited to a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset).
  • MS Mobile Station
  • Mobile Terminal mobile terminal
  • Mobile Telephone mobile Telephone
  • handset mobile phone
  • the portable device the user equipment can communicate with one or more core networks via a radio access network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN radio access network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
  • each user equipment can occupy one physical resource block (PRB) of one carrier or multiple PRBs in a spectrum to transmit data.
  • PRB physical resource block
  • Each PRB includes 12 consecutive subcarriers.
  • the length of 14 OFDM symbols is included, that is, the length of time of 1 ms.
  • the channel quality information may include a signal-to-noise ratio (SNR) of the received signal, or The information of the signal to interference plus noise ratio (SINR) may further include a corresponding CQI value obtained by SNR/SINR.
  • SNR signal-to-noise ratio
  • SINR signal-to-noise ratio
  • SINR signal to interference plus noise ratio
  • the feedback channel quality information can be used to select the MCS, which can be used to perform beam selection indication in a high frequency system, and can save feedback.
  • the main process of the base station and the UE signaling exchange is as shown in FIG. 3, and the method includes:
  • the UE receives the reference signal sent by the base station, and further, receives the reporting manner indication information sent by the base station.
  • the base station sends the reference signal and the indication information to the UE, and the order of transmission is not limited.
  • the reporting mode indication information is used to indicate the manner in which the UE performs the reporting of the channel quality information. For example, in the embodiment of the present invention, one bit is used to indicate the selection of the channel quality information reporting manner, and an existing message, such as the 3GPP standard, may be used. Reserved bits in downlink control information (DCI), or reserved bits in a frame control field in the IEEE 802.11 standard, for carrying the bits.
  • DCI downlink control information
  • the first one is the coexistence mode. That is, the UE will report the sequence number and corresponding channel quality information of each CC and the channel quality information of the entire bandwidth after CC aggregation.
  • the second way is The UE only reports the channel quality information of the entire bandwidth after the CC is aggregated.
  • the first mode can be represented by 0, and the second mode can be represented by 1; the base station can select which reporting mode to use according to the data transmission mode and actual needs.
  • the base station may not send the indication information. If not, the first mode or the second mode may be adopted by default according to requirements.
  • the UE selects the manner of the reported channel quality information according to the indication information of the base station or the default setting. If it is the first type of reporting, the UE needs to report the sequence number of each unit carrier and the corresponding channel quality information, and the channel quality information of the entire bandwidth, that is, the overall channel quality information after carrier aggregation. If the second reporting mode is used, the UE only needs to report an overall channel quality information.
  • the UE calculates channel quality information on each CC according to the reference signal sent by the base station; each CC may have one or more reference signals.
  • the channel quality information on each CC may be first calculated based on the reference signals of the respective carriers;
  • the overall channel quality information after carrier aggregation is calculated.
  • the overall CQ after polymerization can pass This formula is obtained. Specifically, the overall channel quality information is obtained by averaging the channel quality information of each CC, and if the aggregated channel quality information CQ (including the CQ on each CC) refers to the channel quality indicator in the 3GPP standard.
  • CQI the average value needs to be an integer, which can be rounded up or down.
  • the rounded CQ is used as the overall CQI after carrier aggregation; the CQ on each CC can also be rounded up as the CQI of each CC.
  • the calculation method is CQ n of each component, and after multiplying a weighting coefficient ⁇ n , the obtained average value is added; as in the above method 1), if the channel quality information CQ is the channel quality indicator in the 3GPP standard For CQI, you need to take an integer, which can be rounded up or down. The rounded CQ is used as the overall CQI after carrier aggregation.
  • the weighting factor ⁇ n here may be determined by different factors, such as at least one of the following, such as: the frequency of the CC, the bandwidth occupied by the CC, the priority of the data, and the like.
  • the CQs of the N CCs may also be channel quality parameters such as SNR, SINR, and RSSI.
  • the calculated average value, weighted average value, or minimum value may be directly used as the channel quality information after carrier aggregation. According to the calculation result, the CQI defined by the 3GPP can be obtained as the overall channel quality information after carrier aggregation.
  • the UE reports the channel quality information that is calculated by the carrier aggregation to the base station.
  • the UE may select the manner of the reported channel quality information according to the indication information of the base station in 301. If it is the first type of reporting, the UE needs to report the sequence number of each CC and the corresponding channel quality information, and the channel quality information of the entire bandwidth after carrier aggregation, that is, the overall channel quality information after carrier aggregation. If the second reporting mode is used, the UE only needs to report the overall channel quality information after a carrier aggregation.
  • step 301 If the default setting is taken in step 301, the channel quality information required by the default setting is reported.
  • the base station After receiving the channel quality information reported by the UE, the base station selects an appropriate MCS or performs scheduling between the UEs. This step is a prior art and will not be described again.
  • the following embodiment is another way of reporting channel quality information, which is a simplification of the above embodiment. Because in the reporting method of the channel quality information in the following embodiments, only the upper Reporting an overall channel quality information. Therefore, it is not necessary to calculate the channel quality information of each CC. Therefore, the channel quality information of the entire bandwidth can be directly calculated from the reference signals received on the respective unit carriers, that is, after carrier aggregation. Overall channel quality information.
  • the UE receives the reference signal sent by the base station, and further, receives the reporting manner indication information sent by the base station.
  • the step is the same as the step 301, and is not described in detail.
  • the reporting mode indication information indicates that the UE only reports the channel quality information of the entire bandwidth after the CC is aggregated; or the base station does not send the indication information, and the default setting only reports the entire bandwidth of the CC aggregation. Channel quality information.
  • the UE only needs to report an overall channel quality information, that is, the overall channel quality information after the carrier aggregation.
  • the UE calculates the overall channel quality information after the carrier is aggregated, and reports the information to the base station.
  • step 401 If the default setting is taken in step 401, the channel quality information required by the default setting is reported.
  • the overall SNR after carrier aggregation can pass This formula is obtained. Specifically, the overall SNR value is an average value of all SNR values obtained for multiple reference signals on multiple CCs; then, based on the overall SNR value, overall channel quality information after carrier aggregation can be obtained; if channel quality The information is an SNR value.
  • the overall SNR value is used as the overall channel quality information; if the channel quality information is a CQI value, for example, in the 3GPP protocol, the SNR value is used to obtain the SNR value by looking up the table.
  • An integer as the overall channel quality information.
  • Weighted average is the SNR n,m measured for each reference signal on each CC. After multiplying a weighting coefficient ⁇ n , the summed sum is taken as the overall SNR value after carrier aggregation, and here
  • the weighting factor ⁇ n may be determined by different factors, such as at least one of the following, such as: the frequency of the CC where the reference signal is located, the bandwidth of the CC where the reference signal is located, and the priority of the data of the CC where the reference signal is located. The same as above; if the channel quality information is the SNR value, the overall SNR value is used as the overall channel quality information. If the channel quality information is a CQI value, for example, in the 3GPP protocol, the overall SNR value is used to check The table obtains an integer as the overall channel quality information.
  • the channel quality information is an SNR value
  • the SNR value is used as the overall channel quality information.
  • the channel quality information is a CQI value, for example, in the 3GPP protocol, an integer obtained by the look-up table method is used as the SNR value.
  • Overall channel quality information is a CQI value, for example, in the 3GPP protocol.
  • the channel quality information of one CC is calculated, and can be applied to the corresponding embodiment of step 302 to calculate channel quality information of a single CC.
  • the channel quality parameter is taken as an example of SNR, and the channel quality parameter may also be SINR, RSSI (received signal strength indicator), etc.
  • SINR SINR
  • RSSI received signal strength indicator
  • the channel quality parameter is not limited to the above three types, and may also be There are other parameters, the specific algorithm is similar, and will not be detailed.
  • the base station After receiving the channel quality information reported by the UE, the base station selects an appropriate MCS or performs scheduling between the UEs. This step is a prior art and will not be described again.
  • the step of calculating the channel quality information of each CC by using the reference signal is omitted on the UE side, and instead, the channel quality information of the overall bandwidth can be directly calculated by the reference signal. Thereby reducing the overhead.
  • Another embodiment of the present invention is directed to scenarios that require beamforming transmission, such as for high frequency systems with a spectrum above 6 GHz.
  • each CC has multiple beams; then the base station transmits a reference signal in each beam direction of each CC. After receiving the reference signal, the UE calculates a channel quality information for each beam of each CC, and then calculates the channel quality information after carrier aggregation of each beam, and selects the channel quality information of the carrier aggregation to be optimal. The beam, and then the optimal beam number and the channel quality information are fed back to the base station.
  • the channel quality information mode after the carrier aggregation is calculated for one beam, and step 402 in the foregoing embodiment.
  • the calculation is performed using the method of step 402, respectively. Referring to Figure 5, the method includes:
  • the UE receives, by the base station, a reference signal on multiple beams that are sent to multiple CCs.
  • each CC has 3 beams, and for 3 beams of 2 CCs, there are 6 sets of reference signals; of course, the number of beams may be 1, there are 2 sets of reference signals, and then The two embodiments are similar; for each beam, each CC can have one or more reference signals.
  • the base station may also send a report mode indication information, indicating two types of report mode, or adopt a certain report mode by default.
  • a report mode indication information indicating two types of report mode, or adopt a certain report mode by default.
  • the UE calculates channel quality information of each CC on each beam.
  • each CC calculates the channel quality information according to the above method. For example, if there are 2 CCs and each CC has 3 beams, a total of 6 channel quality information is obtained.
  • the UE calculates aggregated channel quality information of multiple CCs on each beam, selects a beam with the best channel quality information, and feeds the channel quality information to the base station.
  • the UE After calculating a channel quality information for each beam of each CC, the UE further calculates channel quality information on each beam after multiple CCs are superimposed, selects a beam with the best channel quality information, and then corresponding beam number. And the corresponding channel quality information is fed back to the base station, and of course, the sequence number of the CC is also reported.
  • the calculation method of the channel quality information after the multiple CCs are superposed is referred to the corresponding calculation method in step 302 or 402. Said.
  • the base station can select an appropriate beam and a suitable MCS for data transmission based on the optimal channel quality information.
  • the algorithm for calculating the overall channel quality information by using the channel quality information of each CC on each beam can be calculated by using the methods mentioned in the above two embodiments, and several beams are calculated several times. Finally, the optimal channel quality information is selected. This embodiment facilitates selecting the beam of the optimal quality in the multi-beam scenario.
  • the above embodiments describe the signaling exchange between the base station and the UE. Since the uplink and downlink can be considered peer-to-peer, it can also be used for the MCS during the transmission between the user terminal and the base station. select. Only the base station in the above method flow needs to be replaced by the UE, and the UE is replaced by the base station, and the signaling flow is sent from one UE to the base station, and the others remain unchanged; in addition, the above solution is also applicable between the two user terminals. For the transmission, only the base station in the above method flow needs to be replaced by the UE, and the signaling flow is sent from one UE to another UE.
  • channel quality information for reporting the overall bandwidth is provided, and a unified MCS may be selected for the entire bandwidth, thereby reducing the PAPR of the transmitted data.
  • the user can reduce the reported data overhead without feedback of the channel quality information of each CC on each beam.
  • the unified channel quality information is calculated not only for the selection of the MCS, but also for selecting the optimal beam.
  • the base station in the foregoing method embodiments may be other wireless access devices, such as a medium AP in a WIFI system; the user equipment may be any mobile device, such as a mobile phone, a notebook computer, a vehicle mobile device, or a VR (virtual reality) device.
  • An AR (Augmented Reality) device or the like, corresponding to the method execution body of the foregoing embodiment, the present invention further provides a signal processing device. Referring to FIG. 6, the device includes:
  • a feedback device for channel quality information comprising:
  • the receiving module 601 is configured to receive a reference signal of multiple unit carriers sent by the sending end.
  • the processing module 602 is configured to determine, according to the reference signals of the multiple unit carriers, overall channel quality information after the aggregation of the multiple unit carriers;
  • the sending module 603 is configured to send the whole channel quality information to the sending end.
  • the processing module is specifically configured to:
  • the overall channel quality information is the average or weighted average; or
  • the overall channel quality information is a minimum value of channel quality information of each unit carrier.
  • the overall channel quality information is the average value, the weighted average value, or the minimum value; or the overall channel quality information is the average value, the weighted average value, or the minimum value.
  • the receiving module is further configured to receive reporting manner indication information sent by the sending end;
  • the reporting mode indication information is used to indicate that only the aggregated channel quality information is reported, or the aggregated channel quality information and channel quality information of each component carrier are reported.
  • the user equipment such as the UE, in the method embodiment of FIG. 3 and FIG. 4 may also be other types of user equipment; each module performs corresponding steps, and may refer to the method embodiment.
  • a feedback device for channel quality information including:
  • the receiving module 601 is configured to receive a reference signal of multiple unit carriers sent by the transmitting end on multiple beams.
  • the processing module 602 determining, according to the reference signals of the multiple component carriers on the multiple beams, the channel quality information after the aggregation of the multiple component carriers on each beam;
  • the sending module 603 is configured to send the optimal channel quality information to the sending end.
  • the processing module is specifically configured to:
  • the aggregated channel quality information of the plurality of unit carriers on each beam is respectively calculated according to channel quality information of the plurality of unit carriers on the respective beams.
  • the sending module is further configured to send the beam information corresponding to the optimal channel quality information to the sending end.
  • the foregoing device corresponds to the user equipment in the method embodiment of FIG. 5, such as the UE, and may be other types of user equipment, and each module performs corresponding steps, and may refer to the method embodiment.
  • the foregoing device embodiments are the receiving end. If the receiving end is a user equipment, the transmitting end is a wireless access device, such as a base station; if the receiving end is a wireless access device, the transmitting end is a user terminal; the receiving end and the transmitting end are also Can be user devices.
  • the receiving end is a user equipment
  • the transmitting end is a wireless access device, such as a base station
  • the receiving end is a wireless access device
  • the transmitting end is a user terminal
  • the receiving end and the transmitting end are also Can be user devices.
  • the device embodiment has another form of embodiment.
  • the processor 702, the receiver 701, the transmitter 703, the receiver 701 can implement the corresponding functions of the receiving module 601, and the processor 702 is configured to execute various types of devices.
  • the processing flow for example, can handle the corresponding functions of the module 602.
  • the transmitter 703 can implement the corresponding function of the transmitting module 603.
  • the specific implementation may adopt various flexible design manners, and the corresponding functions of the respective devices may be further referred to the method embodiments, and the present invention is not limited.
  • the various components of the device of Figure 7 are coupled together by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the processor may be a central processing unit (“CPU"), and the processor may also be another general-purpose processor, a digital signal processor (digital signal processor, DSP), application-specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be Ignore, or not execute.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种信道质量信息的反馈方法及装置,该方法包括,接收发送端发送的多个单元载波的参考信号;根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息;将所述整体的信道质量信息发送给发送端。本发明提供信道质量信息的反馈方法有利于为载波聚合后的整体带宽选择一个统一的调制编码方式MCS,进一步的,有利于降低载波聚合后的峰均功率比PAPR,提高了无线信号传输的可靠性。

Description

一种信道质量信息的反馈方法及装置 技术领域
本发明涉及无线通信领域,更具体地,涉及一种信道质量信息的反馈方法及装置。
背景技术
在LTE-Advanced(Long Term Evolution Advanced)中,为了支持更高的上下行峰值速率,需要更大的传输带宽,然而在实际中很少有连续的大的可用带宽。由此,LTE-Advanced采用载波聚合(carrier aggregation,CA)技术将多个单元载波(component carrier,CC)聚合起来达到更高的带宽传输。除了可以提高带宽,采用载波聚合技术的另一个好处在于可以有效利用离散的频谱。目前LTE-Advanced中的载波聚合支持聚合一系列不同的CC组合,如图1所示,包括在相同的频带内的CC之间的聚合,在相同频带内相邻或不相邻的CC聚合,以及不同频带内的CC聚合。
DFT-OFDM(discrete Fourier transform-orthogonal frequency division multiplexing,离散傅立叶变换-正交频分复用)信号区别于传统的OFDM(orthogonal frequency division multiplexing,正交频分复用)信号,是信号在OFDM处理之前增加了DFT(discrete Fourier transform,离散傅立叶变换)变换,目前已经在LTE(Long Term Evolution,长期演进)移动通信系统和IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师学会)802.11系统中使用,如用于LTE系统的上行传输,DFT-OFDM信号标准中记录为DFT-S-OFDM(digital Fourier transform spread OFDM,数字傅里叶变换扩展正交频分复用)信号,SC-DFT-OFDM(single carrier digital Fourier transform orthogonal frequency-division multiplex,单载波数字傅里叶变换正交频分复用)信号或SC-FDMA(single carrier frequency division multiple access,单载波FDMA)信号,实际中通常被简称为单载波信号,是5G移动通信系统的候选波形之一。单载波信号的基带处理过程,如图2所示,针对多个要发送的数据符号,如QAM(quadrature amplitude modulation,正交幅度调制)符号,首先经过DFT单元进行离散傅立叶变换DFT,输出多个DFT变换后的符号到映射单元,映射单元把所述多个DFT变换后的符号映射到多个连续 子载波上,然后OFDM单元对映射后的多个符号进行OFDM处理,包括IFFT(inverse fast Fourier transformation,快速傅立叶反变换)、并/串变换以及加循环前缀等。
单载波信号由于是信号在OFDM处理之前增加了DFT变换,利用DFT和IFFT的变换特性,输出的信号保持和DFT输入的数据符号相近的峰均功率比(peak-to-average power ratio,PAPR)。另外,无线通信系统中,DFT单元输入的是QAM符号,QAM符号保持有较低的PAPR,因此经过所述DFT-OFDM处理后的信号仍然保持较低的PAPR。
只有一个载波的情况下,由于所分配的子载波都是连续的,能够保证DFT-OFDM处理后输出的信号有较低的PAPR。但是存在多个载波聚合的场景下,特别是多个载波在频谱上不连续,现有的DFT-OFDM信号处理过程输出的信号不再保持低PAPR。这是因为每个载波上采用上述单载波信号处理技术后,多个载波输出的多个单载波信号叠加后,将产生较高的PAPR。为了降低输出的PAPR,可以对于单载波处理过程可以进行一定的优化设计。一种优化设计方法可以是在整个载波聚合的输入上都采用同样的调制编码方案(modulation and coding scheme,MCS)。
在现有的LTE中,选择MCS的方式通常是用户设备测量下行的信号,然后反馈一个信道质量指示(channel quality indicator,CQI)来选择MCS。在非聚合的每个载波上,以一个单元载波或者更小的子带为单位,UE上传一个CQI,根据CQI的指示,基站来为每个CC或者是更小的子带选择合适的MCS来进行数据传输。
现有技术的上报CQI的方式是以子带的CQI为最小的调度单元,最大的调度单元是以每个CC为单位。其优点在于调度相对灵活,此外也可以为传输数据选择适合的频带,但不利于为载波聚合后的整体带宽选择一个统一的MCS,从而不利于降低载波聚合后的PAPR,进一步的,现有技术的上报CQI的方式由于以CC为单位,导致系统开销较大。
发明内容
本发明提出一种信道质量信息的反馈方法及装置,以利于反馈载波聚合之后的整体带宽的信道质量信息。
第一方面,本发明提供一种信道质量信息的反馈方法,包括:
接收发送端发送的多个单元载波的参考信号;根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息;将所述整体的信道质量信息发送给发送端。
一个单元载波可以对应一个或多个参考信号。
结合第一方面,其中,根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息包括:
根据各个单元载波的参考信号分别确定各个单元载波的信道质量信息;计算所述多个单元载波的信道质量信息的平均值或加权平均值;所述整体的信道质量信息为所述平均值或加权平均值;或
根据各个单元载波的参考信号分别确定各个单元载波的信道质量信息;所述整体的信道质量信息为所述各个单元载波的信道质量信息的最小值。
各个单元载波的信道质量信息可以为信噪比,信号干扰噪声比或接收信号强度指示,如果整体的信道质量信息是3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)标准定义的信道质量指示CQI,还需要根据得到的所述平均值,加权平均值或最小值查表得到对应的CQI作为载波聚合后整体的信道质量信息。
如果各个单元载波的信道质量信息为3GPP标准定义的CQI,还需要根据得到的所述平均值,加权平均值或最小值取整值作为载波聚合后整体的信道质量信息。
结合第一方面,其中,根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息包括:
将所述多个单元载波在各个参考信号上得到的信道质量参数的和取平均值或加权平均值,或将多个单元载波在多个参考信号上得到的信道质量参数取最小值;所述整体的信道质量信息为所述平均值、加权平均值或最小值;或所述整体的信道质量信息为所述平均值、加权平均值或最小值取整值。
该计算过程相比上面的方法,不需要计算各个单元载波的信道质量信息,只计算载波聚合后整体的信道质量信息,节省了计算上的开销。
所述信道质量参数可以为信噪比,信号干扰噪声比或接收信号强度指示,如果整体的信道质量信息是3GPP标准定义的信道质量指示CQI,还可以根据得到的所述平均值,加权平均值或最小值查表得到对应的CQI作为载波聚合后整体的信道质量信息。
结合上述各个方面,其中,根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息之前还包括:
接收发送端发送的上报方式指示信息;
所述上报方式指示信息用于指示只上报所述聚合后的整体的信道质量信息,或上报所述聚合后的整体的信道质量信息以及各个单元载波的信道质量信息;只上报所述聚合后的整体的信道质量信息可以节省开销;另外,该上报方式指示信息有利于根据不同的需要选择不同的上报方式。
如果上报方式指示信息指示上报所述聚合后的整体的信道质量信息以及各个单元载波的信道质量信息,则还需要上报各个单元载波的序号,以利于识别不同单元载波的信道质量信息。
上述方法由接收端执行,接收端为移动设备,发送端可以为网络设备,如基站,也可以为移动设备。
结合上述各个方面,其中,所述信道质量信息为信噪比,信号干扰噪声比,接收信号强度指示或信道质量指示。
第二方面,提供一种信道质量信息的反馈方法,包括:
接收发送端发送的多个单元载波在多个波束上的参考信号;
根据所述多个单元载波在多个波束上的参考信号分别确定在每个波束上所述多个单元载波聚合后的信道质量信息;
将最优信道质量信息发送给发送端。
一个单元载波在一个波束上可以对应一个或多个参考信号。
该方案本质上是计算每个波束上载波聚合后的信道质量信息,然后取最优的信道质量信息作为整体的信道质量信息并上报。
结合第二方面,其中,根据所述多个单元载波在多个波束上的参考信号分别确定在每个波束上所述多个单元载波聚合后的信道质量信息包括:
根据所述多个单元载波在多个波束上的参考信号分别确定每个单元载波在每个波束上的信道质量信息;根据多个单元载波在各个波束上的信道质量信息分别计算每个波束上所述多个单元载波聚合后的信道质量信息。
该计算过程中,针对单个波束,计算每个单元载波的信道质量信息及所述多个单元载波聚合后的信道质量信息和第一方面的方法相同;每个波束分别采用第一方面的计算方法计算即可。
结合第二方面,进一步包括,将所述最优信道质量信息对应的波束信息 发送给发送端。
上述各方面提供的方法由接收端来执行,接收端可以是用户设备,发送端可以是网络设备,如,基站,无线接入点等,也可以是用户设备。
第三方面,一种信道质量信息的反馈装置,包括:
接收模块:用于接收发送端发送的多个单元载波的参考信号;
处理模块:用于根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息;
发送模块,用于将所述整体的信道质量信息发送给发送端。
结合第三方面,其中,所述处理模块具体用于:
根据各个单元载波的参考信号分别确定各个单元载波的信道质量信息;
计算所述多单元载波的信道质量信息的平均值或加权平均值;所述整体的信道质量信息为所述平均值或加权平均值;或
根据各个单元载波的参考信号分别确定各个单元载波的信道质量信息;所述整体的信道质量信息为所述各个单元载波的信道质量信息的最小值;或
将所述多个单元载波在各个参考信号上得到的信道质量参数的和取平均值或加权平均值,或将多个单元载波在多个参考信号上得到的信道质量参数取最小值;所述整体的信道质量信息为所述平均值、加权平均值或最小值;或所述整体的信道质量信息为所述平均值、加权平均值或最小值取整值。
结合上述方面,其中:
所述接收模块还用于接收发送端发送的上报方式指示信息;
所述上报方式指示信息用于指示只上报所述聚合后的整体的信道质量信息,或上报所述聚合后的整体的信道质量信息以及各个单元载波的信道质量信息。
该信道质量信息的反馈装置对应第一方面的方法执行主体,相应的功能模块执行相应的步骤,具体为接收端装置。
第四方面,提供一种信道质量信息的反馈装置,包括:
接收模块:用于接收发送端发送的多个单元载波在多个波束上的参考信号;
处理模块:根据所述多个单元载波在多个波束上的参考信号分别确定在每个波束上所述多个单元载波聚合后的信道质量信息;
发送模块:用于将最优信道质量信息发送给发送端。
结合第四方面,其中,所述处理模块具体用于:
根据所述多个单元载波在多个波束上的参考信号分别确定每个单元载波在每个波束上的信道质量信息;
根据多个单元载波在各个波束上的信道质量信息分别计算每个波束上所述多个单元载波聚合后的信道质量信息。
结合第四方面,其中,所述发送模块还用于将所述最优信道质量信息对应的波束信息发送给发送端。
该信道质量信息的反馈装置对应第二方面的方法执行主体,相应的功能模块执行相应的步骤,具体为接收端装置。
上述各方法及装置中的单元载波可以为普通的载波,发送端与接收端分别为无线接入设备和用户设备,或用户设备和无线接入设备;也可以均为用户设备。
本发明提供的信号处理方法及装置,由于根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息,并将所述整体的信道质量信息发送给发送端,有利于为载波聚合后的整体带宽选择一个统一的MCS,有利于降低载波聚合后的PAPR,提高了无线信号传输的可靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中对应要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为多个载波在频谱上的占用示意图。
图2是单载波信号处理方法的流程示意图。
图3是本发明实施例提供信道质量信息的反馈方法流程示意图。
图4是本发明另一实施例提供信道质量信息的反馈方法流程示意图。
图5是本发明又一实施例提供信道质量信息的反馈方法流程示意图。
图6是本发明实施例提供信道质量信息的反馈装置示意图。
图7是本发明另一实施例提供信道质量信息的反馈装置示意图。
具体实施方式
本发明实施例可以用于各种基于OFDM技术的的无线网络。无线接入网络在不同的系统中可包括不同的网元。例如,LTE(Long Term Evolution)和LTE-A(LTE Advanced)中无线接入网络的网元包括eNB(eNodeB,演进型基站),WLAN(wireless local area network)/Wi-Fi的网元包括接入点(Access Point,AP)等。其它无线网络也可以使用与本发明实施例类似的方案,只是基站系统中的相关模块可能有所不同,本发明实施例并不限定。
还应理解,在本发明实施例中,用户设备(UE,User Equipment)包括但不限于移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
LTE系统中,允许有多个载波做载波聚合,参与载波聚合的载波个数最多8个,每个载波的带宽可能是1.4MHz,5MHz,10MHz,20MHz,不同带宽可以任意组合。LTE上行链路中,每个用户设备可以占用一个载波中的一个PRB(physical resource block)物理资源块或者多个在频谱上连续的PRB来传输数据,每个PRB包括12个连续子载波,时间上包括14个OFDM符号长度,即1ms的时间长度。
在以下的实施例介绍中会具体介绍基站和UE之间信令流程。同时,在流程中,也加入了整体带宽的信道信息的几种计算方法,加以保护。由于在LTE和IEEE标准中对上报的信息定义稍有不同,统一用信道质量信息来表示,这里的信道质量信息既可以包含接收信号的信噪比(signal-to-noise ratio,SNR),或者信干噪比(signal to interference plus noise ratio,SINR)的信息,又可以包含通过SNR/SINR得到的对应的CQI值等。反馈的信道质量信息可以用于选择MCS,在高频系统中,可以用来进行波束选择指示,并且可以节省反馈量。
以LTE的下行链路数据传输为例,基站和UE信令交换的主要流程如图3所示,该方法包括:
301,UE接收基站发送参考信号,进一步的,还可以接收基站发送的上报方式指示信息;
基站将参考信号和指示信息发送给UE,发送顺序没有限制。上报方式指示信息用于指示UE采用何种方式进行上报信道质量信息;例如:本发明实施例用1比特用于指示信道质量信息上报方式的选择,可以用现有的消息,比如3GPP标准中的下行控制信息(DCI,downlink control information)中的预留比特,或者IEEE 802.11标准中的帧控制字段(frame control field)中的预留比特,来用于携带该比特。在这里我们主要考虑两种上报方式,第一种是共存的方式,即UE将上报各个CC的序号和对应的信道质量信息,以及CC聚合后的整个带宽的信道质量信息;第二种方式是UE只上报CC聚合后的整个带宽的信道质量信息。比如,可以用0表示第一种方式,用1表示第二种方式;基站可以根据数据的发送方式和实际需求选择使用哪种上报方式。
另外,基站可以不发送指示信息,如果不发送,可以根据需要,默认设置采用所述第一种方式或第二种方式。
UE根据基站的指示信息或默认设置,对于上报的信道质量信息的方式进行选择。如果是第一种上报方式,UE需要上报每个单元载波的序号和对应的信道质量信息,以及整个带宽的信道质量信息,即,载波聚合后整体的信道质量信息。如果是第二种上报方式,UE只需要上报一个整体的信道质量信息即可。
302,根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息;
首先,UE根据基站发送的参考信号计算各个CC上的信道质量信息;每个CC可以有1个或多个参考信号。
在UE侧,接收到基站发来的参考信号和上报方式指示信息后,首先基于各个载波的参考信号可以计算出每个CC上的信道质量信息;
然后在各个CC的信道质量信息的基础上计算出载波聚合后整体的信道质量信息。
在本实施例中给出了对于整体的信道质量信息的计算方法,假设一共有N个CC进行聚合,这里用CQ来表示信道质量信息,对于每个CC,可以基于参考信号得到了一个CQn,其中n=1,2,3…N,N个CC共得到N个CQ,这里的CQ可以是3GPP定义的信道质量指示CQI;那么可以有以下几种算法得到载波聚合后整体的信道质量信息:
1)平均值。聚合后整体的CQ可以通过
Figure PCTCN2017089588-appb-000001
这个式子得到。具体的,整体的信道质量信息是每个CC的信道质量信息的和求平均值得到,如果这个聚合后整体信道质量信息CQ(包括各个CC上的CQ)指的是3GPP标准中的信道质量指示CQI,则还需要对平均值取整数,向上或向下取整均可,将取整后的CQ作为载波聚合后整体的CQI;各个CC上的CQ也可以取整作为各个CC的CQI。
2)加权平均值。表达式可以写作
Figure PCTCN2017089588-appb-000002
这里计算方式是每个分量的CQn,在乘上了一个加权系数αn后,相加求得的平均值;同上述方法1),如果这个信道质量信息CQ是3GPP标准中的信道质量指示CQI,则还需要取整数,向上或向下取整均可,将取整后的CQ作为载波聚合后整体的CQI。而这里的加权系数αn可以由不同因素来决定,这些因素包括以下至少一种,如:该CC所在的频点,该CC所占的带宽,数据的优先级等。
3)最小值。因为CQ值越小表示支持的MCS越低,数据的速率也越低,越能够保证性能。因此也可以选择所有CQ中最小的那个CQ值作为整体的信息质量信息。表达式可以写为CQ=min{CQ1,CQ2,...,CQN}。
上述方法中,N个CC的CQ也可以是SNR,SINR,RSSI等信道质量参数,可以采用上述方法将计算出的平均值,加权平均值或最小值直接作为载波聚合后整体的信道质量信息;也可以根据计算的结果通过查表得到3GPP定义的CQI作为载波聚合后整体的信道质量信息。
303,UE将计算得到载波聚合后整体的信道质量信息上报给基站。
UE可以根据301中基站的指示信息,对于上报的信道质量信息的方式进行选择。如果是第一种上报方式,UE需要上报每个CC的序号和相对应的信道质量信息,以及载波聚合后整个带宽的信道质量信息,即,载波聚合后整体的信道质量信息。如果是第二种上报方式,UE只需要上报一个载波聚合后整体的信道质量信息即可。
如果步骤301采取了默认设置,则上报默认设置需要的信道质量信息。
基站在接收到UE上报的信道质量信息后,选择合适的MCS或者进行UE之间的调度,该步骤为现有技术,不再赘述。
下面的实施例是另一种的信道质量信息的上报方式,是对于上述实施例的一种简化。因为在下面的实施例的信道质量信息的上报方式中,只需要上 报一个整体的信道质量信息,因此,计算得到各个CC的信道质量信息并不是必要的,所以也可以由各个单元载波上收到的参考信号直接计算整体带宽的信道质量信息,即,载波聚合后整体的信道质量信息。
具体流程如图4所示,包括:
401,UE接收基站发送参考信号,进一步的,还可以接收基站发送的上报方式指示信息;
该步骤同步骤301,不再详述;其中,上报方式指示信息指示UE只上报CC聚合后的整个带宽的信道质量信息;或者基站不发送指示信息,默认设置只上报CC聚合后的整个带宽的信道质量信息。
UE根据基站的指示信息或默认设置,只需要上报一个整体的信道质量信息即可,即载波聚合后整体的信道质量信息。
402,UE计算载波聚合后整体的信道质量信息,并上报给基站。
如果步骤401采取了默认设置,则上报默认设置需要的信道质量信息。
在本实施例中给出了对于这个整体的信道质量信息的计算方法,假设一共有N个CC进行聚合,这里用CQ来表示信道质量信息,在每个CC上有M个参考信号,其中N≥1,M≥1;针对每个参考信号,UE可以得到一个信道质量参数,如SNR值,因此,每个CC会得到M个SNR,N个CC的SNR表示为SNRn,m,其中n=1,2,3…,N,m=1,2,3,…,M。那么可以有以下几种算法:
1)平均值。载波聚合后整体的SNR可以通过
Figure PCTCN2017089588-appb-000003
这个式子得到。具体的,整体的SNR值是针对多个CC上多个参考信号得到的所有SNR值的平均值;然后可以基于所述整体的SNR值,得到一个载波聚合后整体的信道质量信息;如果信道质量信息是SNR值,例如在IEEE802.11系统中,则用这个整体的SNR值作为整体的信道质量信息;如果信道质量信息是CQI值,例如在3GPP协议中,则用这个SNR值通过查表得到的一个整数作为整体的信道质量信息。
2)加权平均值。表达式可以写作
Figure PCTCN2017089588-appb-000004
这里是每个CC上的每个参考信号测得的SNRn,m,在乘上了一个加权系数αn后,相加求和得的平均值作为载波聚合后整体的SNR值,而这里的加权系数αn可以由不同因 素来决定,这些因素包括以下至少一种,如:该参考信号所在的CC的频点,该参考信号所在的CC的带宽,该参考信号所在的CC的数据的优先级等;同上,如果信道质量信息是SNR值,则用这个整体的SNR值作为整体的信道质量信息,如果信道质量信息是CQI值,例如在3GPP协议中,则用这个整体的SNR值通过查表得到的一个整数作为整体的信道质量信息。
3)最小值。选择所有参考信号上测得的SNR中最低的那个SNR值作为整体的SNR值,表达式可以写为SNR=min{SNR1,1,SNR1,2,...,SNRN,M}。同上,如果信道质量信息是SNR值,则用这个SNR值作为整体的信道质量信息,如果信道质量信息是CQI值,例如在3GPP协议中,则用这个SNR值通过查表法得到的一个整数作为整体的信道质量信息。
上述各个计算方法中,如果N=1,则是计算1个CC的信道质量信息,可以应用到302步骤对应的实施例中,来计算单个CC的信道质量信息。
上述方法中的以信道质量参数为SNR为例进行说明,信道质量参数也可以为SINR,RSSI(received signal strength indicator,接收信号强度指示)等,当然,信道质量参数不限于上面三种,还可以有其它参数,具体算法类似,不再详述。
基站在接收到UE上报的信道质量信息后,选择合适的MCS或者进行UE之间的调度,该步骤为现有技术,不再赘述。
该实施例中,在UE侧省去了通过参考信号计算各个CC的信道质量信息的步骤,取而代之的是可以通过参考信号直接来计算整体带宽的信道质量信息。从而减小了开销。
本发明另一实施例主要针对需要波束成形传输的场景,例如针对频谱在6GHz以上的高频系统。以下行为例,如果存在多个CC,每个CC有多个波束;则基站在每个CC的各个波束方向上发送参考信号。UE在接收到参考信号之后,针对每个CC的每个波束计算出一个信道质量信息,然后计算出每个波束的载波聚合后的信道质量信息,并选出载波聚合的信道质量信息最优的波束,然后将最优波束号和此信道质量信息都反馈给基站,实际上,针对一个波束的计算载波聚合后的信道质量信息方式,和上述实施例中步骤402 类似,如果有多个波束则分别利用步骤402的方法进行计算。参考图5,该方法包括:
501,UE接收基站发送针对多个CC的多个波束上的参考信号;
比如:有2个CC,每个CC有3个波束,针对2个CC的3个波束则共有6组参考信号;当然波束的数量可能是1,则有2组参考信号,此时便和上面的两个实施例类似;针对每个波束,每个CC可以有1个或多个参考信号。
基站也可以发送上报方式指示信息,指示两种上报方式;或采取默认设置采用某种上报方式,具体的方式可以参考步骤301的描述,不在详述。
502,UE计算各个CC在各个波束上的信道质量信息;
如果采用第一种上报方式,针对每个波束,分别计算各个CC上的信道质量信息,针对单个CC,可以采用步骤302中相应的方法,或采用步骤402中相应的方法,此时N=1。在各个波束上,每个CC都按上述方法计算得到信道质量信息,比如:有2个CC,每个CC有3个波束,则共得到6个信道质量信息。
503,UE计算每个波束上多个CC聚合后的整体信道质量信息,选择信道质量信息最好的波束,并将该信道质量信息反馈给基站;
UE针对每个CC的每个波束计算出一个信道质量信息后,进一步计算出多个CC叠加以后每个波束上的信道质量信息,选出信道质量信息最好的波束,然后将对应的波束号和相应的信道质量信息反馈给基站,当然还可以上报CC的序号;针对每个波束,多个CC叠加后的信道质量信息的计算方式参考步骤302或402中相应的计算方法,这里不再详述。
基站可以基于此最优的信道质量信息选择合适的波束和合适的MCS进行数据传输。其中,在每一个波束上,由各CC的信道质量信息来计算整体的信道质量信息的算法,可以使用上面2个实施例中提到的方法进行计算,有个几个波束则计算几次,最后挑选出最优的信道质量信息,该实施例便于在多波束的场景下,挑选出最优质量的波束。
上述各个实施例中,都是以下行的传输为例进行描述的。上行部分是可以认为对等的。
上述各个实施例描述的都是基站和UE之间的信令交换,由于上下行可以认为是对等的,所以也可以用于用户终端与基站之间的传输过程中MCS的 选择。只需要把上述方法流程中基站换成UE,UE换成基站即可,信令的流程就是从一个UE发送到基站,其它都保持不变;另外,上述方案也适用于两个用户终端之间的传输,只需要把上述方法流程中基站换成UE即可,信令的流程就是从一个UE发送到另一个UE。
本发明实施例中提供上报整体带宽的信道质量信息,可以为整个带宽选择统一的MCS,从而降低发送数据的PAPR。此外,用只上传整体信道质量信息的方式,这样用户可以不用反馈每个CC在每个波束上的信道质量信息,可以减少上报的数据开销。最后一个实施例中,计算出统一的信道质量信息不仅可以用于MCS的选择,也可以用于选择最优的波束。
上述各方法实施例中基站可以是其它的无线接入设备,如WIFI系统的中AP等;用户设备可以是任意的移动设备,如手机,笔记本电脑,车载移动装置,VR(virtual reality)设备,AR(Augmented Reality)设备等,对应上述实施例的方法执行主体,本发明还提供一种信号处理装置,参考图6,该装置包括:
一种信道质量信息的反馈装置,包括:
接收模块601:用于接收发送端发送的多个单元载波的参考信号;
处理模块602:用于根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息;
发送模块603,用于将所述整体的信道质量信息发送给发送端。
其中,所述处理模块具体用于:
根据各个单元载波的参考信号分别确定各个单元载波的信道质量信息;
计算所述多单元载波的信道质量信息的平均值或加权平均值;
所述整体的信道质量信息为所述平均值或加权平均值;或
根据各个单元载波的参考信号分别确定各个单元载波的信道质量信息;
所述整体的信道质量信息为所述各个单元载波的信道质量信息的最小值;或
将所述多个单元载波在各个参考信号上得到的信道质量参数的和取平均值或加权平均值,或将多个单元载波在多个参考信号上得到的信道质量参数取最小值;所述整体的信道质量信息为所述平均值、加权平均值或最小值;或所述整体的信道质量信息为所述平均值、加权平均值或最小值取整值。
其中:
所述接收模块还用于接收发送端发送的上报方式指示信息;
所述上报方式指示信息用于指示只上报所述聚合后的整体的信道质量信息,或上报所述聚合后的整体的信道质量信息以及各个单元载波的信道质量信息。
上述装置对应图3,4的方法实施例中的用户设备,如UE,也可以是其它类型用户设备;各个模块分别执行相应的步骤,具体可以参考方法实施例。
针对第二个方法实施例方法执行主体,还公开了一种信道质量信息的反馈装置,包括:
接收模块601:用于接收发送端发送的多个单元载波在多个波束上的参考信号;
处理模块602:根据所述多个单元载波在多个波束上的参考信号分别确定在每个波束上所述多个单元载波聚合后的信道质量信息;
发送模块603:用于将最优信道质量信息发送给发送端。
其中,所述处理模块具体用于:
根据所述多个单元载波在多个波束上的参考信号分别确定每个单元载波在每个波束上的信道质量信息;
根据多个单元载波在各个波束上的信道质量信息分别计算每个波束上所述多个单元载波聚合后的信道质量信息。
其中,所述发送模块还用于将所述最优信道质量信息对应的波束信息发送给发送端。
上述装置对应图5的方法实施例中的用户设备,如UE,也可以是其它类型用户设备,各个模块分别执行相应的步骤,具体可以参考方法实施例。
上述各装置实施例为接收端,若接收端是用户设备,则发送端是无线接入设备,如基站;若接收端是无线接入设备,则发送端是用户终端;接收端与发送端也可以均为用户设备。
上述装置实施例还有另一个形式的实施例,参考图7,包括处理器702,接收器701,发射器703,接收器701可以实现接收模块601的相应功能;处理器702用于执行各类的处理流程,例如:可以处理模块602相应的功能。发射器703可以实现发送模块603的相应功能。具体的实现可以采用各类灵活的设计方式,各个器件相应的功能可以进一步的参考方法实施例,本发明不做限制。
可选地,图7中的设备的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示 意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种信道质量信息的反馈方法,包括:
    接收发送端发送的多个单元载波的参考信号;
    根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息;
    将所述整体的信道质量信息发送给发送端。
  2. 如权利要求1所述的方法,其中,根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息包括:
    根据各个单元载波的参考信号分别确定各个单元载波的信道质量信息;
    计算所述多个单元载波的信道质量信息的平均值或加权平均值;
    所述整体的信道质量信息为所述平均值或加权平均值;或
    根据各个单元载波的参考信号分别确定各个单元载波的信道质量信息;
    所述整体的信道质量信息为所述各个单元载波的信道质量信息的最小值。
  3. 如权利要求1所述的方法,其中,根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息包括:
    将所述多个单元载波在各个参考信号上得到的信道质量参数的和取平均值或加权平均值,或将多个单元载波在多个参考信号上得到的信道质量参数取最小值;
    所述整体的信道质量信息为所述平均值、加权平均值或最小值;或所述整体的信道质量信息为所述平均值、加权平均值或最小值取整值。
  4. 如权利要求1所述的方法,其中,根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息之前还包括:
    接收发送端发送的上报方式指示信息;
    所述上报方式指示信息用于指示只上报所述聚合后的整体的信道质量信息,或上报所述聚合后的整体的信道质量信息以及各个单元载波的信道质量信息。
  5. 如权利要求1-4任意一项所述的方法,其中,所述信道质量信息为信噪比,信号干扰噪声比,接收信号强度指示或信道质量指示。
  6. 一种信道质量信息的反馈方法,包括:
    接收发送端发送的多个单元载波在多个波束上的参考信号;
    根据所述多个单元载波在多个波束上的参考信号分别确定在每个波束上所述多个单元载波聚合后的信道质量信息;
    将最优信道质量信息发送给发送端。
  7. 如权利要求6所述的方法,其中,根据所述多个单元载波在多个波束上的参考信号分别确定在每个波束上所述多个单元载波聚合后的信道质量信息包括:
    根据所述多个单元载波在多个波束上的参考信号分别确定每个单元载波在每个波束上的信道质量信息;
    根据多个单元载波在各个波束上的信道质量信息分别计算每个波束上所述多个单元载波聚合后的整体的信道质量信息。
  8. 如权利要求6或7所述的方法,进一步包括,将所述最优信道质量信息对应的波束信息发送给发送端。
  9. 一种信道质量信息的反馈装置,包括:
    接收模块:用于接收发送端发送的多个单元载波的参考信号;
    处理模块:用于根据所述多个单元载波的参考信号确定所述多个单元载波聚合后的整体的信道质量信息;
    发送模块,用于将所述整体的信道质量信息发送给发送端。
  10. 如权利要求9所述的装置,其中,所述处理模块具体用于:
    根据各个单元载波的参考信号分别确定各个单元载波的信道质量信息;
    计算所述多单元载波的信道质量信息的平均值或加权平均值;
    所述整体的信道质量信息为所述平均值或加权平均值;或
    根据各个单元载波的参考信号分别确定各个单元载波的信道质量信息;
    所述整体的信道质量信息为所述各个单元载波的信道质量信息的最小值;或
    将所述多个单元载波在各个参考信号上得到的信道质量参数的和取平均值或加权平均值,或将多个单元载波在多个参考信号上得到的信道质量参数取最小值;所述整体的信道质量信息为所述平均值、加权平均值或最小值;或所述整体的信道质量信息为所述平均值、加权平均值或最小值取整值。
  11. 如权利要求9或10所述的装置,其中:
    所述接收模块还用于接收发送端发送的上报方式指示信息;
    所述上报方式指示信息用于指示只上报所述聚合后的整体的信道质量信息,或上报所述聚合后的整体的信道质量信息以及各个单元载波的信道质量信息。
  12. 一种信道质量信息的反馈装置,包括:
    接收模块:用于接收发送端发送的多个单元载波在多个波束上的参考信号;
    处理模块:根据所述多个单元载波在多个波束上的参考信号分别确定在每个波束上所述多个单元载波聚合后的信道质量信息;
    发送模块:用于将最优信道质量信息发送给发送端。
  13. 如权利要求12所述的装置,其中,所述处理模块具体用于:
    根据所述多个单元载波在多个波束上的参考信号分别确定每个单元载波在每个波束上的信道质量信息;
    根据多个单元载波在各个波束上的信道质量信息分别计算每个波束上所述多个单元载波聚合后的信道质量信息。
  14. 如权利要求12或13所述的装置,其中,所述发送模块还用于将所述最优信道质量信息对应的波束信息发送给发送端。
PCT/CN2017/089588 2016-08-08 2017-06-22 一种信道质量信息的反馈方法及装置 WO2018028315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610643529.4 2016-08-08
CN201610643529.4A CN107707286B (zh) 2016-08-08 2016-08-08 一种信道质量信息的反馈方法及装置

Publications (1)

Publication Number Publication Date
WO2018028315A1 true WO2018028315A1 (zh) 2018-02-15

Family

ID=61162663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089588 WO2018028315A1 (zh) 2016-08-08 2017-06-22 一种信道质量信息的反馈方法及装置

Country Status (2)

Country Link
CN (1) CN107707286B (zh)
WO (1) WO2018028315A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436870B (zh) * 2020-08-28 2023-10-27 上海移远通信技术股份有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426225A (zh) * 2008-12-09 2009-05-06 中兴通讯股份有限公司 一种终端上报信道质量指示报告的方法
CN101615984A (zh) * 2009-08-07 2009-12-30 中兴通讯股份有限公司 载波聚合下周期性cqi反馈的方法和装置
CN101911753A (zh) * 2008-01-08 2010-12-08 株式会社Ntt都科摩 通过上行链路报告信道质量信息的方法、以及适合该方法的基站和用户装置
CN101998436A (zh) * 2009-08-14 2011-03-30 大唐移动通信设备有限公司 多载波系统的信道信息反馈方法和设备
US20120163208A1 (en) * 2010-12-28 2012-06-28 Motorola Mobility, Inc. Subband snr correction in a frequency selective scheduler

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835191B (zh) * 2010-04-19 2012-11-14 新邮通信设备有限公司 载波聚合通信系统的上行载波调度方法、基站和用户设备
US20110267948A1 (en) * 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
US9762372B2 (en) * 2010-06-15 2017-09-12 Texas Instruments Incorporated CSI reporting on PUSCH for carrier aggregation
CN102546132B (zh) * 2010-12-30 2014-09-03 华为技术有限公司 信道信噪比反馈的方法及装置
CN102638803B (zh) * 2012-03-26 2018-08-21 北京邮电大学 一种基于载波聚合的家庭基站间分布式干扰协调方法
US20160190707A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Antenna structure based on millimeter wave and operation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101911753A (zh) * 2008-01-08 2010-12-08 株式会社Ntt都科摩 通过上行链路报告信道质量信息的方法、以及适合该方法的基站和用户装置
CN101426225A (zh) * 2008-12-09 2009-05-06 中兴通讯股份有限公司 一种终端上报信道质量指示报告的方法
CN101615984A (zh) * 2009-08-07 2009-12-30 中兴通讯股份有限公司 载波聚合下周期性cqi反馈的方法和装置
CN101998436A (zh) * 2009-08-14 2011-03-30 大唐移动通信设备有限公司 多载波系统的信道信息反馈方法和设备
US20120163208A1 (en) * 2010-12-28 2012-06-28 Motorola Mobility, Inc. Subband snr correction in a frequency selective scheduler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "CQI feedback for LTE-A", 3GPP TSG RAN WG1 MEETING #59 R1-094544, 2 November 2009 (2009-11-02), XP050388959 *

Also Published As

Publication number Publication date
CN107707286B (zh) 2021-07-09
CN107707286A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
US11240793B2 (en) Control information obtaining method and apparatus
US10764884B2 (en) Method for sending or receiving physical downlink control channel and device
CN109392022B (zh) 传输数据的方法、终端设备和网络设备
CN110622454B (zh) 无线通信的方法和装置
WO2018082457A1 (zh) 配置参考信号的方法和装置
EP2443864B1 (en) Overhead reduction for multi-carrier transmission systems
US10911978B2 (en) Data transmission method, device, and communications system
WO2018127071A1 (zh) 一种发送参考信号的方法和通信设备
JP2011518524A (ja) 装置
WO2020221321A1 (zh) 通信方法以及通信装置
WO2016122763A1 (en) Aperiodic channel state information (csi) reporting for carrier aggregation
WO2017219788A1 (zh) 一种信号处理方法及装置
WO2022061622A1 (zh) 通信方法、通信设备、电子设备及计算机可读存储介质
US20110319113A1 (en) Base station apparatus and information transmitting method
WO2018098692A1 (zh) 一种降低无线信号的papr的方法及相关装置
WO2019191901A1 (en) Method and devices for resource allocation in a wireless communication system
WO2018171742A1 (zh) 无线通信的方法和装置
WO2015014125A1 (zh) 接入信道的方法和设备
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
US20200328786A1 (en) Communication Method, Network Device, and Terminal Device
WO2018028315A1 (zh) 一种信道质量信息的反馈方法及装置
JP6430641B2 (ja) 情報送信方法、アクセスポイントおよびユーザ装置
CN109495968B (zh) 用于进行数据传输的方法和装置
CN116114228A (zh) 通信方法、装置
CN111865519B (zh) 一种v2x通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838445

Country of ref document: EP

Kind code of ref document: A1