WO2021197225A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2021197225A1
WO2021197225A1 PCT/CN2021/083257 CN2021083257W WO2021197225A1 WO 2021197225 A1 WO2021197225 A1 WO 2021197225A1 CN 2021083257 W CN2021083257 W CN 2021083257W WO 2021197225 A1 WO2021197225 A1 WO 2021197225A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource set
resource
frequency domain
value
downlink control
Prior art date
Application number
PCT/CN2021/083257
Other languages
English (en)
French (fr)
Inventor
张铭
余政
王俊伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021197225A1 publication Critical patent/WO2021197225A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • enhanced mobile broadband (eMBB) scenarios enhanced mobile broadband (eMBB) scenarios
  • ultra-reliable and low-latency communications (URLLC) scenarios ultra-reliable and low-latency communications
  • massive machine-type communications massive machine type communications, mMTC
  • eMBB scenarios include: ultra-high-definition video, augmented reality (AR), virtual reality (VR), etc.
  • the main characteristics of these services are large transmission data volume and high transmission rate.
  • URLLC scenarios include: wireless control in industrial manufacturing or production processes, motion control of unmanned vehicles and unmanned aircraft, and tactile interaction applications such as remote repair and remote surgery.
  • the main feature of these services is the ultra-high transmission requirements. Reliability and low latency, less data transmission and burstiness.
  • mMTC scenarios include: smart grid distribution automation, wearable device communications, and smart cities. The main features of these services are the large number of networked devices and the small amount of data transmitted.
  • the terminal devices in the mMTC scenario need to meet low-cost and The need for relatively long standby time.
  • terminal devices have different requirements for mobile communication systems.
  • the embodiments of the present application provide a communication method and device for a terminal device to obtain control information suitable for this type of terminal device, so as to implement communication between the network device and this type of terminal device.
  • an embodiment of the present application provides a communication method, including: receiving downlink control information from a network device, where the downlink control information includes a first modulation and coding scheme MCS field; when the value of the first MCS field is the first When the value is one, it is determined that the downlink control information is used to schedule data transmission of the first type of terminal equipment; or, when the value of the first MCS field is not the first value, or when the first MCS field When the value of is the second value, it is determined that the downlink control information is used for scheduling data transmission of the second type of terminal device.
  • the network device can send their respective downlink control information for different types of terminal devices. For example, sending downlink control information with a smaller scheduling bandwidth for the first type terminal device, or sending downlink control information with a larger bandwidth scheduling for the second type terminal device, so as to meet the scheduling requirements of different types of terminal devices.
  • an embodiment of the present application also provides a communication method, including: sending downlink control information to a terminal device, where the downlink control information includes a first modulation and coding scheme MCS field; when the downlink control information is used for scheduling the second When the data transmission of a terminal device of a type is determined, the value of the first MCS field is determined to be the first value; or, when the downlink control information is used to schedule data transmission of a terminal device of the second type, the first MCS is determined The value of the field is not the first value, or it is determined that the value of the first MCS field is the second value.
  • the value of the first MCS field is the first value, including: the value of all bits of the first MCS field is 1.
  • the first MCS field in the downlink control information is used to indicate that the downlink control information is used to schedule data transmission for the first type of terminal equipment or the second type of terminal equipment, including: passing the special bit status of the first MCS field (such as The special bit status may be that the status of all bits in the first MCS field is all 1s), indicating that the first type of terminal device schedules data transmission.
  • This method uses all the bits in the first MCS field to indicate, and the false alarm probability is low.
  • the downlink control information when used to schedule data transmission of the first type of terminal equipment, the downlink control information further includes a second MCS field, and the second MCS field is used to indicate MCS for data transmission of the first type of terminal equipment.
  • the downlink control information may include a first MCS field, and the downlink control information may also add a second MCS field to indicate the MCS for data transmission scheduled for the first type of terminal device.
  • determining that the downlink control information is used to schedule data transmission of the first type of terminal equipment includes: When the value of the most significant bit of the field is 1, it is determined that the downlink control information is used to schedule data transmission of the first type of terminal equipment; or, when the value of the first MCS field is not the first value, or When the value of the first MCS field is the second value, determining that the downlink control information is used to schedule the data transmission of the second type of terminal equipment includes: when the value of the most significant bit of the first MCS field is 0 When determining that the downlink control information is used for scheduling data transmission of the second type of terminal equipment.
  • the most significant bit of the first MCS field is 1, it is indicated as the first type of terminal equipment to schedule data transmission.
  • This way of indicating is simple, and the first MCS field can be used to indicate the first type of terminal equipment MCS for scheduled data transmission.
  • the network device can indicate the MCS of the data transmission of the first type of terminal device through at least one bit other than the highest bit in the first MCS field, so that the network device can indicate the MCS.
  • the first MCS field includes 5 bits.
  • an embodiment of the present application provides a communication method, including: receiving downlink control information from a network device; when the downlink control information is scrambled by a first scrambling sequence, determining that the downlink control information is used for scheduling the second Data transmission of a terminal device of a type; or, when the downlink control information is scrambled by a second scrambling sequence, it is determined that the downlink control information is used to schedule data transmission of a terminal device of the second type.
  • the terminal device determines whether the downlink control information is the terminal device scheduling data transmission according to the used scrambling sequence when analyzing the downlink control information, so that the terminal device can correctly obtain the downlink control sent by the network device to the terminal device. information.
  • the network device can send their respective downlink control information for different types of terminal devices. For example, sending downlink control information with a smaller scheduling bandwidth for the first type terminal device, or sending downlink control information with a larger bandwidth scheduling for the second type terminal device, so as to meet the scheduling requirements of different types of terminal devices.
  • an embodiment of the present application provides a communication method, including: sending downlink control information to a terminal device; when the downlink control information is used to schedule data transmission of a first type of terminal device, using a first scrambling sequence pair The downlink control information is scrambled; or, when the downlink control information is used to schedule data transmission of the second type of terminal equipment, the second scrambling sequence is used to scramble the downlink control information.
  • the initialization parameter used to generate the first scrambling sequence is a non-zero value
  • the initialization parameter used to generate the second scrambling sequence is equal to zero.
  • the network device can use a non-zero value as the initialization parameter, generate the first scrambling sequence through the scrambling sequence generator, and then use the first scrambling sequence to scramble the downlink control information to indicate the downlink through the first scrambling sequence The type of terminal equipment scheduled by the control information.
  • the network device can use zero as the initialization parameter, generate the second scrambling sequence through the scrambling sequence generator, and then use the second scrambling sequence to scramble the downlink control information to indicate the downlink control information through the second scrambling sequence
  • the type of terminal equipment being scheduled may be a non-zero value or equal to zero, so that the terminal device determines whether the downlink control information is the terminal device scheduling data transmission according to the adopted scrambling sequence when analyzing the downlink control information .
  • an embodiment of the present application provides a communication method, including: receiving downlink control information from a network device, the downlink control information includes a first bit; when the value of the first bit is a third value, determining The downlink control information is used to schedule data transmission of a terminal device of the first type; or, when the value of the first bit is a fourth value, it is determined that the downlink control information is used to schedule data transmission of a terminal device of the second type .
  • the first bit in the downlink control information indicates that the downlink control information is used to schedule data transmission for the first type terminal device or the second type terminal device.
  • the indication method is simple, and the implementation complexity of terminal equipment and network equipment is low.
  • the network device can send downlink control information with different characteristics for different types of terminal devices. For example, sending downlink control information with a larger scheduling bandwidth for the first type terminal device, or sending downlink control information with a larger bandwidth scheduling for the second type terminal device, so as to meet the scheduling requirements of different types of terminal devices.
  • an embodiment of the present application provides a communication method, including: sending downlink control information to a terminal device, where the downlink control information includes a first bit; when the downlink control information is used to schedule a terminal device of the first type During data transmission, it is determined that the value of the first bit is the third value; or, when the downlink control information is used to schedule data transmission of the second type of terminal equipment, it is determined that the value of the first bit is the fourth value.
  • an embodiment of the present application provides a communication method, including: receiving configuration information of a control resource set from a network device, where the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the second resource set The configuration information of; the first control channel is monitored on the resources of the candidate control channel set, where the resources of the candidate control channel set include resources in the first resource set and resources in the second resource set.
  • the control channel for scheduling data transmission for the terminal device is sent on the first resource set and the second resource set, and the terminal device receives the information on the first resource set and the second resource set in the two time domain resources respectively .
  • the first resource set and the second resource set are determined according to the control resource set.
  • the terminal device is a first-type terminal device, and when the bandwidth capability of the first-type terminal device is less than the bandwidth of the configured control resource set, it can also receive the control channel sent by the network device without affecting the control resource set and search The flexibility of space configuration.
  • the control resource set is used for the second type of terminal device to receive control information.
  • an embodiment of the present application provides a communication method, including: sending configuration information of a control resource set to a terminal device, where the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the second resource set Send the first control channel on the resources of the candidate control channel set, wherein the resources of the candidate control channel set include resources in the first resource set and resources in the second resource set.
  • the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the configuration information of the second resource set, including: the configuration information of the control resource set indicates the first control The frequency domain resource position of the resource set, wherein the frequency domain position of the s-th frequency domain resource in the first resource set is offset from the frequency domain position of the t-th frequency domain resource in the first control resource set Is the first offset, and the offset of the frequency domain position of the rth frequency domain resource in the second resource set relative to the frequency domain position of the pth frequency domain resource in the first resource set is the Two offsets, wherein said s, said t, said r, and said p are integers greater than zero.
  • the offset of the frequency domain position of the s-th frequency domain resource in the first resource set from the frequency domain position of the t-th frequency domain resource in the first control resource set is the first offset.
  • the first offset is a predetermined value or a value notified by the network device to the terminal device.
  • the s-th frequency domain resource in the first resource set may be any resource in the first resource set.
  • the offset of the frequency domain position of the r-th frequency domain resource in the second resource set relative to the frequency domain position of the p-th frequency domain resource in the first resource set is the second offset.
  • the second offset is a predetermined value or a value notified by the network device to the terminal device.
  • the p-th frequency domain resource in the first resource set may be any resource in the first resource set.
  • the r-th frequency domain resource in the second resource set may be any resource in the second resource set.
  • the first offset is an integer multiple of N/M, where N is the number of frequency domain resource units included in the first control resource set, and the M Is a positive integer, and the / is a division sign.
  • the frequency domain resource unit is a resource unit that controls the collection of resources in the frequency domain.
  • the frequency domain resource unit may be one of the following information: control channel unit, resource block, resource unit, resource block group, resource unit group, Subcarrier spacing.
  • N is the number of frequency domain resource units included in the first control resource set, for example, the value of N is 48 or 96, and N can also take other values, which is not limited here.
  • the value of M can be 4 or 6, and other values can also be used, which is not limited here.
  • the bandwidth of the frequency domain of the first resource set is an integer multiple of N/M, for example, 1 time.
  • N/M cannot be divided evenly, N/M can be rounded up or down.
  • the integer multiple and the integer multiple in the previous paragraph may be the same or different.
  • the second offset is an integer multiple of N/E, where N is the number of frequency domain resource units included in the first control resource set, and E Is a positive integer, and the / is a division sign.
  • E can be a positive integer, and there are many ways to take the value of E.
  • the value of E can be 4 or 6, and E can also take other values, which are not limited here.
  • the frequency domain bandwidth of the second resource set is an integer multiple of N/E, for example, 1 time.
  • N/E cannot be divided evenly, N/E can be rounded up or down.
  • the integer multiple and the integer multiple in the previous paragraph may be the same or different.
  • the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the configuration information of the second resource set, including: the configuration information of the control resource set indicates the first control The frequency domain resource position of the resource set, wherein the frequency domain position of the v-th frequency domain resource in the first resource set is offset from the frequency domain position of the w-th frequency domain resource in the first control resource set Is the third offset, and the offset of the frequency domain position of the x-th frequency domain resource in the second resource set relative to the frequency domain position of the y-th frequency domain resource in the first control resource set is fourth The offset, wherein the v, the w, the x, and the y are integers greater than zero.
  • the frequency domain position of the v-th frequency domain resource in the first resource set is offset from the frequency domain position of the w-th frequency domain resource in the first control resource set as the third offset.
  • the third offset is a predetermined value or a value notified by the network device to the terminal device.
  • the v-th frequency domain resource in the first resource set may be any resource in the first resource set.
  • the offset of the frequency domain position of the x-th frequency domain resource in the second resource set from the frequency domain position of the y-th frequency domain resource in the first control resource set is the fourth offset.
  • the fourth offset is a predetermined value or a value notified by the network device to the terminal device.
  • the xth frequency domain resource in the second resource set may be any resource in the second resource set.
  • the third offset is an integer multiple of N/F, where N is the number of frequency domain resource units included in the first control resource set, and F Is a positive integer, and the / is a division sign.
  • N is the number of frequency domain resource units included in the first control resource set.
  • the value of N is 48 or 96.
  • N can also take other values, which is not limited here.
  • F can be a positive integer, and there are many ways to take the value of F.
  • the value of F can be 4 or 6, and F can also take other values, which are not limited here.
  • the bandwidth of the frequency domain of the first resource set is an integer multiple of N/F, for example, 1 time.
  • N/F cannot be divided evenly, N/F can be rounded up or down.
  • the integer multiple and the integer multiple in the previous paragraph may be the same or different.
  • the fourth offset is an integer multiple of N/G, where N is the number of frequency domain resource units included in the first control resource set, and G Is a positive integer, and the / is a division sign.
  • N is the number of frequency domain resource units included in the first control resource set.
  • the value of N is 48 or 96. N can also take other values, which is not limited here.
  • the frequency domain bandwidth of the second resource set is an integer multiple of N/G, for example, 1 time.
  • N/G cannot be divided evenly, N/G can be rounded up or down.
  • the integer multiple and the integer multiple in the previous paragraph may be the same or different.
  • the first resource set includes N/H frequency domain resource units in the frequency domain, where N is the number of frequency domain resource units included in the first control resource set ,
  • the H is a positive integer, and the / is a division sign.
  • N is the number of frequency domain resource units included in the first control resource set, for example, the value of N is 48 or 96, and N may also take other values, which is not limited here.
  • H can be a positive integer, and there are many ways to take the value of H.
  • the value of H can be 4 or 6, and H can also take other values, which are not limited here.
  • the bandwidth of the frequency domain of the first resource set is an integer multiple of N/H, for example, 1 time.
  • N/H cannot be divided evenly, N/H can be rounded up or down.
  • the integer multiple and the integer multiple in the previous paragraph may be the same or different.
  • the second resource set includes N/U frequency domain resource units in the frequency domain, where N is the number of frequency domain resource units included in the first control resource set ,
  • the U is a positive integer, and the / is a division sign.
  • N is the number of frequency domain resource units included in the first control resource set, for example, the value of N is 48 or 96, and N may also take other values, which is not limited here.
  • U can be a positive integer, and there are many ways to take the value of U.
  • the value of U can be 4 or 6, and U can also take other values, which are not limited here.
  • the frequency domain bandwidth of the second resource set is an integer multiple of N/U, for example, 1 time.
  • N/U cannot be divided evenly, N/U can be rounded up or down.
  • the integer multiple and the integer multiple in the previous paragraph may be the same or different.
  • control resource set can be CORESET 0, and the search space can be Search Space 0.
  • the method further includes: receiving configuration information of a search space from the network device, where the configuration information of the search space is used to indicate the time domain position of the first resource set and the The time domain location of the second resource set.
  • the method further includes: sending configuration information of the search space to the terminal device, where the configuration information of the search space is used to indicate the time domain position of the first resource set and the time domain position of the second resource set .
  • the network device can indicate the time domain position of the first resource set and the second resource set through the configuration information of the search space.
  • the terminal device can obtain the time domain position of the first resource set and the time domain position of the second resource set through the configuration information of the search space after the terminal device receives the configuration information of the search space.
  • the terminal device may use the first resource set and the second resource set to monitor the first control channel to determine the first control channel sent by the network device.
  • the configuration information of the search space is used to indicate the time domain position of the first resource set and the time domain position of the second resource set, including: configuration information of the search space Indicates the time domain position of the first search space; the offset of the time domain position of the Tsth time domain resource in the first resource set relative to the time domain position of the Ttth time domain resource in the first search space Is the fifth offset, and the offset of the time domain position of the Tr th time domain resource in the second resource set relative to the time domain position of the Te th time domain resource in the first resource set is sixth Offset, the Ts, the Tt, the Tr, and the Te are integers greater than 0; or, the time domain position of the Tvth time domain resource in the first resource set is relative to the first resource set.
  • the offset of the time domain position of the Twth time domain resource in a search space is the seventh offset
  • the time domain position of the Txth time domain resource in the second resource set is relative to the first search space
  • the offset of the time domain position of the Tyth time domain resource in is the eighth offset
  • the Tv, the Tw, the Tx, and the Ty are integers greater than zero.
  • the number of time domain resource units included in the first resource set is equal to the number of time domain resource units included in the first control resource set.
  • the number of time domain resource units included in the first resource set is equal to the number of time domain resource units included in the first control resource set, so that network devices and terminal devices can easily determine the time domain included in the first resource set
  • the number of resource units simplifies the processing complexity of network equipment and terminal equipment.
  • the number of time domain resource units included in the second resource set is equal to the number of time domain resource units included in the first control resource set.
  • the number of time domain resource units included in the second resource set is equal to the number of time domain resource units included in the first control resource set, so that network equipment and terminal equipment can easily determine the time domain included in the second resource set
  • the number of resource units simplifies the processing complexity of network equipment and terminal equipment.
  • a device in a ninth aspect, may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a transceiver module.
  • a transceiver module configured to receive downlink control information from a network device, where the downlink control information includes the first modulation and coding mode MCS field;
  • the processing module is configured to determine that the downlink control information is used to schedule data transmission of the first type of terminal device when the value of the first MCS field is the first value; or, when the value of the first MCS field is not When it is the first value, or when the value of the first MCS field is the second value, it is determined that the downlink control information is used for scheduling data transmission of a second type of terminal device.
  • the specific content included in the downlink control information can refer to the specific description of the downlink control information in the first aspect, which is not specifically limited here.
  • a device in a tenth aspect, may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the second aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a transceiver module.
  • a transceiver module configured to send downlink control information to a terminal device, where the downlink control information includes the first modulation and coding mode MCS field;
  • the processing module is configured to determine that the value of the first MCS field is the first value when the downlink control information is used for scheduling data transmission of the first type of terminal equipment; or, when the downlink control information is used for scheduling the first value During data transmission of the second type terminal device, it is determined that the value of the first MCS field is not the first value, or the value of the first MCS field is determined to be the second value.
  • the specific content included in the downlink control information may refer to the specific description of the downlink control information in the second aspect, which is not specifically limited here.
  • a device in an eleventh aspect, may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the third aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a transceiver module.
  • the transceiver module is used to receive downlink control information from the network equipment;
  • the processing module is configured to determine that the downlink control information is used to schedule data transmission of the first type of terminal equipment when the downlink control information is scrambled by the first scrambling sequence; or, when the downlink control information is scrambled by the second scrambling sequence; When the scrambling sequence is scrambled, it is determined that the downlink control information is used for scheduling data transmission of the second type of terminal equipment.
  • the initialization parameter used to generate the first scrambling sequence is a non-zero value
  • the initialization parameter used to generate the second scrambling sequence is equal to zero
  • a device in a twelfth aspect, may be a network device, or a device in a network device, or a device that can be matched and used with the network device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the fourth aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a transceiver module.
  • the transceiver module is used to send downlink control information to the terminal device;
  • the processing module is configured to use the first scrambling sequence to scramble the downlink control information when the downlink control information is used for scheduling data transmission of the first type of terminal equipment; or, when the downlink control information is used for When scheduling the data transmission of the second type of terminal equipment, the second scrambling sequence is used to scramble the downlink control information.
  • a device in a thirteenth aspect, may be a terminal device, or a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the fifth aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a transceiver module.
  • a transceiver module configured to receive downlink control information from a network device, where the downlink control information includes the first bit;
  • the processing module is configured to determine that the downlink control information is used to schedule data transmission of the first type of terminal equipment when the value of the first bit is the third value; or, when the value of the first bit is the fourth value Value, it is determined that the downlink control information is used to schedule data transmission of the second type of terminal device.
  • a device may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the sixth aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a transceiver module.
  • a transceiver module configured to send downlink control information to a terminal device, where the downlink control information includes the first bit
  • the processing module is configured to determine that the value of the first bit is the third value when the downlink control information is used to schedule the data transmission of the first type of terminal equipment; or, when the downlink control information is used to schedule the second During data transmission of the type terminal device, it is determined that the value of the first bit is the fourth value.
  • a device in a fifteenth aspect, may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the seventh aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a transceiver module.
  • a transceiver module configured to receive configuration information of a control resource set from a network device, where the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the configuration information of the second resource set;
  • the processing module is configured to use the transceiver module to monitor the first control channel on the resources of the candidate control channel set, wherein the resources of the candidate control channel set include resources in the first resource set and resources in the second resource set H.
  • a device may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the eighth aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a transceiver module.
  • a transceiver module configured to send configuration information of a control resource set to a terminal device, where the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the configuration information of the second resource set;
  • the processing module is configured to use the transceiver module to send the first control channel on the resources of the candidate control channel set, wherein the resources of the candidate control channel set include resources in the first resource set and the second resource set Resources in.
  • an embodiment of the present application provides a device including a processor, configured to implement the method described in the first aspect, the third aspect, the fifth aspect, or the seventh aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the first aspect, the third aspect, the fifth aspect, or the seventh aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the device can be a network device.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to use the communication interface to execute the steps in the foregoing first aspect, third aspect, fifth aspect, or seventh aspect, which is not specifically limited here.
  • an embodiment of the present application provides a device, which includes a processor, configured to implement the method described in the second, fourth, sixth, or eighth aspect above.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the device can be a terminal device.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to use the communication interface to execute the steps in the foregoing second aspect, fourth aspect, sixth aspect, or eighth aspect, which is not specifically limited here.
  • an embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method described in any one of the first aspect to the eighth aspect.
  • the embodiments of the present application also provide a computer program product, including instructions, which when run on a computer, cause the computer to execute the method described in any one of the first aspect to the eighth aspect.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a memory, configured to implement the method described in any one of the first aspect to the eighth aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a system, which includes the device described in the ninth aspect and the device described in the tenth aspect; or,
  • the system includes the device described in the eleventh aspect and the device described in the twelfth aspect; or,
  • the system includes the device described in the thirteenth aspect and the device described in the fourteenth aspect; or,
  • the system includes the device according to the fifteenth aspect and the device according to the sixteenth aspect; or,
  • the system includes the device described in the seventeenth aspect and the device described in the eighteenth aspect.
  • FIG. 1 is a schematic diagram of the interaction flow of a communication method provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a frame structure of downlink control information provided by an embodiment of this application;
  • FIG. 3 is a schematic diagram of the interaction flow of a communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of the interaction flow of a communication method provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of non-interleaving mapping between CCE and REG in the control information with aggregation level 2 provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of the interleaving mapping between CCE and REG in the control information of aggregation level 2 provided by an embodiment of the application;
  • FIG. 7a is a schematic diagram of the mapping relationship between aggregation levels and CCEs provided by an embodiment of this application.
  • FIG. 7b is a schematic diagram of the mapping relationship between aggregation levels and CCEs provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the interaction flow of a communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of the composition structure of a terminal device according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of the composition structure of a network device provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of the composition structure of a terminal device according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of the composition structure of a network device provided by an embodiment of this application.
  • the embodiments of the present application provide a communication method and device for a terminal device to obtain control information suitable for this type of terminal device, so as to implement communication between the network device and this type of terminal device.
  • LTE long term evolution
  • WiFi wireless-fidelity
  • future communication systems a system that integrates multiple communication systems, etc., which are not limited in the embodiment of the present application.
  • 5G can also be called new radio (NR).
  • the technical solutions provided by the embodiments of the present application can be applied to various communication scenarios, for example, can be applied to one or more of the following communication scenarios: eMBB, URLLC, mMTC, device-to-device (D2D) communication , Vehicle to everything (V2X) communication, vehicle to vehicle (V2V) communication, and Internet of things (IoT), etc.
  • eMBB enhanced mobile broadband
  • URLLC enhanced mobile broadband
  • mMTC massive machine-to-device
  • D2D device-to-device
  • V2X Vehicle to everything
  • V2V vehicle to vehicle
  • IoT Internet of things
  • the wireless communication system includes communication equipment, and the communication equipment can use air interface resources for wireless communication.
  • the communication device may include a network device and a terminal device, and the network device may also be referred to as a network side device.
  • the air interface resources may include at least one of time domain resources, frequency domain resources, code resources, and space resources.
  • at least one may also be described as one or more, and the plurality may be two, three, four or more, which is not limited in the embodiments of the present application.
  • a wireless communication system includes two communication devices, a first communication device and a second communication device, respectively, where the first communication device may be a network device, and the second communication device may be a terminal device.
  • "/" can indicate that the associated objects before and after are in an "or” relationship, for example, A/B can indicate A or B, and in formula calculation, “/" can indicate a division symbol , N/M means N divided by M, N and M each means a numerical value; "and/or” can be used to describe the three relationships of associated objects, for example, A and/or B, which can mean: A alone exists, There are three cases of A and B at the same time, and B alone, where A and B can be singular or plural.
  • words such as “first”, “second”, “A”, and “B” may be used to distinguish technical features with the same or similar functions.
  • the words “first”, “second”, “A”, “B”, etc. do not limit the quantity and order of execution, and the words “first”, “second”, “A”, “B”, etc. are also It is not necessarily different.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations, and any embodiment or design solution described as “exemplary” or “for example” shall not be interpreted It is more preferable or more advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner to facilitate understanding.
  • the terminal device involved in the embodiments of this application can also be called a terminal, which can be a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; or can be deployed on water (such as Ships, etc.); or can be deployed in the air (for example, on airplanes, balloons, or satellites, etc.).
  • the terminal device may be a user equipment (UE), where the UE includes a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, or a computing device.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • Or terminal equipment can be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart The wireless terminal in the power grid, the wireless terminal in the smart city, or the wireless terminal in the smart home (smart home), etc.
  • the device used to realize the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to realize the function, such as a chip system, the device may be installed in the terminal device, or the device It can be used with terminal equipment.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device for realizing the functions of the terminal equipment is the terminal equipment as an example to specifically describe the technical solutions provided by the embodiments of the present application.
  • the terminal device in the mMTC scenario may be a reduced capacity (REDCAP) terminal device.
  • the REDCAP terminal device may also be referred to as a light terminal device.
  • the REDCAP terminal equipment in the NR system has lower capabilities compared to the traditional terminal equipment.
  • the REDCAP terminal equipment has one or more of the following characteristics compared to the traditional terminal equipment: it supports a narrower bandwidth and a configured antenna Fewer numbers, lower maximum transmit power supported, lower duplex capability (for example, traditional terminal equipment supports full-duplex frequency division duplex, REDCAP terminal equipment supports half-duplex frequency division duplex), and data processing capabilities Weaker (for example, REDCAP terminal equipment can process less data than traditional terminal equipment in the same time, or REDCAP terminal equipment can process the same data longer than traditional terminal equipment), so REDCAP terminal equipment and Traditional terminal equipment may require different system information, a dedicated access network, and/or control channels with different performance.
  • the traditional terminal device may be a non-REDCAP terminal device, and the non-REDCAP terminal device mainly supports eMBB services and/or URLLC services.
  • traditional terminal equipment can be regarded as high-capacity terminal equipment or terminal equipment with unlimited capabilities.
  • the traditional terminal device can be replaced with a terminal device that will be introduced in the future and has a higher capability than the REDCAP terminal device.
  • the network equipment involved in the embodiments of the present application includes a base station (BS), which may be a device that is deployed in a wireless access network and can communicate with terminal equipment wirelessly.
  • the base station may have many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the base station involved in the embodiment of the present application may be a base station in a 5G mobile communication system or a base station in LTE, where the base station in the 5G mobile communication system may also be referred to as a transmission reception point (TRP) Or gNB.
  • TRP transmission reception point
  • gNB transmission reception point
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system, the device may be installed in the network device, or the device It can be used with network equipment.
  • the device for realizing the functions of the network equipment is the network equipment as an example to specifically describe the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application can be applied to wireless communication between communication devices.
  • the wireless communication between communication devices may include: wireless communication between a network device and a terminal device, wireless communication between a network device and a network device, or wireless communication between a terminal device and a terminal device.
  • wireless communication may also be simply referred to as "communication”
  • communication may also be described as "data transmission”, "information transmission” or “transmission”.
  • This technical solution can be used for wireless communication between a scheduling entity and a subordinate entity, where the scheduling entity can allocate resources for the subordinate entity.
  • the first type of terminal equipment and the second type of terminal equipment may represent two different types of terminal equipment.
  • the first type of terminal device may be a terminal device used in an industrial wireless sensor network (IWSN)
  • the second type of terminal device may be a terminal device used in video surveillance (Video Surveillance).
  • the first type terminal device may be a type 1 terminal device with reduced capability
  • the second type terminal device may be a type 2 terminal device with reduced capability and a non-reduced terminal device.
  • the first type of terminal device may be a terminal device for industrial wireless sensor networks
  • the second type of terminal device may be a terminal device for video surveillance and an enhanced mobile broadband (eMBB) terminal device.
  • eMBB enhanced mobile broadband
  • the embodiment of the application proposes a communication method, which is suitable for communication scenarios between network devices and multiple types of terminal devices, and can provide independent control information for different types of terminal devices, for example, can provide independent control information for REDCAP terminal devices , So as to meet the communication requirements of various types of terminal equipment.
  • REDCAP terminal equipment and traditional terminal equipment need to access the network through different system information, so they need to receive their own required system information according to different control information.
  • REDCAP terminal equipment and traditional terminal equipment require different bandwidths for data reception, so different types of terminal equipment need to be provided with different control information.
  • the method when the method is applied to a URLLC terminal device, it can provide independent control information for the URLLC terminal device.
  • the method when the method is used for eMBB terminal equipment, independent control information can be provided for the eMBB terminal equipment.
  • FIG. 1 is a schematic diagram of an interaction process between a network device and a terminal device according to an embodiment of this application.
  • steps 101 to 103 are explained from the side of the network device, and steps 111 to Step 113 is described from the side of the terminal device.
  • the interactive process shown in Figure 1 mainly includes the following steps:
  • the network device sends downlink control information (downlink control information, DCI) to the terminal device, and the downlink control information includes a first modulation and coding scheme (modulation and coding scheme, MCS) field.
  • DCI downlink control information
  • MCS modulation and coding scheme
  • the fields in the DCI may also be referred to as domains or information fields in the DCI.
  • the first MCS field in the DCI may also be referred to as the first MCS field or the first MCS information field.
  • the network device can generate downlink control information, and the downlink control information can be carried by a physical downlink control channel (PDCCH).
  • the downlink control information is used to schedule the physical downlink shared channel (PDSCH).
  • the downlink control information indicates the time domain resources, frequency domain resources, modulation and coding methods and other parameters required to receive the PDSCH, and the terminal device receives it from the network device After the downlink control information, the terminal equipment receives the PDSCH according to the above-mentioned parameters indicated by the downlink control information.
  • the downlink control information scheduling PDSCH has the same meaning as the downlink control information scheduling downlink data transmission.
  • scheduling downlink data transmission may be referred to as scheduling data transmission for short.
  • the PDSCH may carry a system information block (system information block, SIB).
  • SIB system information block
  • the SIB is used to carry public information in the cell where the terminal device is located, and the public information includes system information and other public information required by the terminal device to access the network device.
  • the terminal device can access the network device in the cell and communicate with the network device.
  • the system information in the cell may be sent through multiple SIBs, and different SIBs carry different system information.
  • SIB1 carries system information that the terminal device needs to know before accessing the network
  • other system information blocks (such as SIB2 to SIB9) carry system information that the terminal device does not need to know before accessing the network.
  • the PDSCH may carry a paging message, or a random access response, etc., which is not limited in the embodiment of the present application.
  • the network device may include the first MCS field in the downlink control information, and the first MCS field is used to indicate which type it is.
  • the terminal equipment schedules data transmission.
  • the first MCS field included in the downlink control information may be a newly added field in the downlink control information, it may also be a reserved field in the downlink control information, or an original field in the downlink control information, which is not done here. limited.
  • the downlink control information can be used to schedule data transmission of different types of terminal devices, and for the convenience of description, it can also be referred to as the downlink control information, which can be used to schedule different types of terminal devices.
  • the first MCS field included in the downlink control information may indicate the type of terminal equipment scheduled by the downlink control information.
  • the downlink control information may be used for scheduling system information, or for scheduling random access response messages, or for scheduling paging messages , Or used to schedule other public messages, which are used to schedule all terminal devices or multiple terminal devices in the cell, which is not limited here.
  • the first MCS field is used to indicate that when downlink control information schedules different types of terminal devices, the value of the first MCS field is different.
  • the network device may determine the value of the first MCS field through the following step 102 or step 103.
  • the network device can determine to perform the subsequent step 102 or step 103 according to different types of terminal devices scheduled by the downlink control information. Specifically, the need can be determined according to the type of terminal device that needs to be scheduled for the downlink control information in the actual application scenario. The specific steps performed.
  • the network device determines that the value of the first MCS field is the first value; or,
  • the network device determines that the value of the first MCS field is not the first value, or determines that the value of the first MCS field is the second value.
  • a transmission time interval for example, in a subframe or a time slot
  • the network device can be each of the above types
  • For the control information execute the aforementioned step 101 to step 103 respectively.
  • the downlink control information is used to schedule the PDSCH.
  • the downlink control information indicates the PDSCH transmission parameters such as time domain resources, frequency domain resources, and modulation and coding schemes.
  • the terminal device receives the PDSCH according to the transmission parameter indicated by the downlink control information.
  • the downlink control information can be used to schedule data transmission of at least two different types of terminal devices.
  • the downlink control information can be used to schedule data transmission of a first type of terminal device, or can be used to schedule data transmission of a second type of terminal device.
  • the first type of terminal equipment and the second type of terminal equipment respectively represent different types of terminal equipment.
  • downlink control information to schedule data transmission of two different types of terminal equipment is just a possible example.
  • the downlink control information can also be used to schedule data transmission of three different types of terminal equipment, or to schedule data of more types of terminal equipment. Transmission is not limited here.
  • the downlink control information when used to schedule data transmission of one type of terminal equipment, it can also be described as: the downlink control information is used to schedule one type of terminal equipment.
  • the first type of terminal device and the second type of terminal device have multiple implementation manners, which are described below with examples.
  • the terminal device of the first type may be a terminal device used for the Internet of Things, or a REDCAP terminal device.
  • the second type of terminal device may be an enhanced mobile broadband (eMBB) terminal device, or a low latency and high reliability (URLLC) terminal device.
  • eMBB enhanced mobile broadband
  • URLLC low latency and high reliability
  • the first type of terminal device is a type 1 of a reduced-capacity terminal device
  • the second type of terminal device is a type 2 of a reduced-capacity terminal device.
  • the first type of terminal equipment is a terminal equipment used in an industrial wireless sensor network (IWSN), and the second type of terminal equipment is a terminal equipment used in video surveillance (Video Surveillance).
  • the first type of terminal device is type 1 of the terminal device with reduced capability
  • the second type of terminal device is the type 2 of terminal device with reduced capability and the terminal device with no reduced capability.
  • the first type of terminal device is a terminal device for industrial wireless sensor networks
  • the second type of terminal device is a terminal device for video surveillance and an enhanced mobile broadband (eMBB) terminal device.
  • eMBB enhanced mobile broadband
  • the characteristic information of different types of terminal devices are different.
  • the characteristic information of the terminal device can be embodied in the parameter values of one or more of the following parameters: maximum bandwidth (maximum bandwidth, MAX BW), minimum bandwidth, application scenario, peak rate, maximum modulation Order, duplex capability, number of antennas, processing time (delay), reliability requirements (such as required block error rate or bit error rate), whether to support supplementary uplink (SUL), whether to support carrier aggregation ( carrier aggregation, CA), and CA capabilities.
  • the values of one or more parameters of different types of terminal devices are different.
  • the type of terminal device can be expressed as the characteristic information of the terminal device.
  • the maximum modulation order can refer to the order corresponding to the maximum quadrature amplitude modulation (maximum quadrature amplitude modulation, MAX QAM), for example, the maximum modulation order can be 16 quadrature amplitude modulation (quadrature amplitude modulation, QAM), 64QAM , Or 256QAM, etc.
  • Application scenarios may include one or more of the following scenarios: industrial wireless sensor network (industry wireless sensor network, IWSN), camera (camera) scene, wearable (wearable) scene, video surveillance scene, and so on. The application scenarios may also not be restricted, and the feature information may be not limited at this time.
  • CA capability may refer to the maximum number of carriers that the terminal device can support when the terminal device supports CA.
  • Duplex capability can refer to: when the modulation mode of the communication system is frequency division duplex (frequency division duplex, FDD), whether the terminal equipment supports the ability to send and receive signals at the same time, including half-duplex frequency division duplex (half-duplex FDD) And full-duplex frequency division duplex (full-duplex FDD) two capabilities.
  • FDD frequency division duplex
  • half-duplex FDD means that the terminal device does not support simultaneous signal transmission and reception, that is, the terminal device supports time-division receiving and sending of signals
  • full-duplex FDD means that the terminal device supports simultaneous transmission and reception of signals.
  • Table 1 below shows the types of terminal equipment and corresponding characteristic information.
  • the value of the first MCS field when used to indicate data transmission of different types of terminal devices scheduled by the downlink control information, the value of the first MCS field is different.
  • the value of the first MCS field may be the first value.
  • the first value may be a pre-configured value, or the value of the first MCS field may not be the first value.
  • the value of the first MCS field may be divided by the first value. Values other than the first value, for example, other values than the first value may be the second value.
  • the correspondence between the type of the terminal device scheduled by the downlink control information and the value of the first MCS field in the downlink control information may be pre-configured. That is, the corresponding relationship is known in advance by the network device and the terminal device. Or, the network device may indicate the corresponding relationship to the terminal device through signaling before sending the downlink control information. That is, before the network device determines the downlink control information, the network device knows the corresponding relationship, and before the terminal device interprets the downlink control information, the terminal also knows the corresponding relationship. Then when the network device determines the downlink control information, since the network device knows the type of the terminal device to be scheduled, the network device can determine the value of the first MCS field according to the type of the terminal device to be scheduled.
  • the terminal device can know the type of the received downlink control information, so that the terminal device can perform correct operations. For example, for a first-type terminal device, when it receives a downlink control message, if it is determined according to the first MCS field in the downlink control information that the downlink control information is used to schedule the first-type terminal device, the first-type terminal device may Interpret the downlink control information correctly, and use the downlink control information to receive the PDSCH; if the first type of terminal equipment determines that the downlink control information is used to schedule the second type of terminal equipment according to the first MCS field in the downlink control information, The type terminal device can discard the downlink control information, so as to prevent the first type terminal device from receiving the PDSCH incorrectly.
  • the network device uses different values carried in the first MCS field in the downlink control information to indicate the type of terminal device scheduled by the downlink control information.
  • the correspondence between the type of terminal equipment scheduled by the downlink control information and the value of the first MCS field can be implemented in many ways. For example, when the downlink control information is used to schedule data transmission of the first type of terminal equipment, the first MCS is determined The value of the field is the first value; or, when the downlink control information is used to schedule the data transmission of the second type terminal device, it is determined that the value of the first MCS field is not the first value, or the value of the first MCS field is determined to be the first value. Two values.
  • the first value may be a value determined according to the bit status of the first MCS field
  • the second value may be a value determined according to the bit status of the first MCS field
  • the second value is not equal to the first value
  • the value of the first MCS field is the first value, including: the value of all bits of the first MCS field is 1.
  • the first value is the value indicated by the first MCS field when the values of all bits of the first MCS field are 1, for example, the first MCS field is 5 bits, then the first value corresponds to the bit of the first MCS field
  • the status is 11111.
  • the second value may be a value other than the first value, for example, the second value is 00000 to 00100, any one of a total of 5 bit states. Or the second value is from 00000 to 01001, any of the 10 bit states. Or the second value is from 00000 to 01110, any of the 14 bit states.
  • the network device determines that the value of all bits of the first MCS field is 1, it is used as the first value, which can simplify the way of identifying the first MCS field, and facilitate the network device to indicate to the terminal device that the downlink control information is scheduled.
  • the type of terminal equipment is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to the first MCS field.
  • the value of the first MCS field as the first value includes: the value of X bits in the first MCS field are all 1, and the value of X is less than or equal to that included in the first MCS field. Number of bits.
  • the position of the X bits included in the first MCS field may be predefined, or it may be a network device through radio resource control (radio resource control, RRC) signaling, system messages, and media access control (media access control). , MAC) control element (CE), DCI, etc. notified to the terminal device.
  • RRC radio resource control
  • RRC radio resource control
  • CE media access control
  • DCI DCI, etc. notified to the terminal device.
  • the number of bits included in the first MCS field is 5 bits, and the value of X can be equal to 4, that is, the first value is 1 for all 4 bits in the first MCS field, and these 4 bits are The upper 4 bits in the first MCS field, or the value of X can be equal to 3, that is, the first value is the value of all 3 bits in the first MCS field, and these 3 bits are the first MCS field The top 3 digits in the middle. There are no restrictions on the value of X here.
  • the value of the first MCS field indicates MCS of this PDSCH.
  • the MCS of the PDSCH may be used to indicate the modulation and coding mode of the PDSCH and the corresponding coding rate. For example, Table 2 below shows the modulation and coding mode and corresponding coding rate of the PDSCH corresponding to different MCS field values.
  • the value of the MCS field Modulation coding method Target encoding rate R ⁇ [1024] 0 2 30 1 2 40 2 2 50 3 2 64 4 2 78 5 2 99 6 2 120 7 2 157 8 2 193 9 2 251 10 2 308 11 2 379 12 2 449 13 2 526 14 2 602 15 4 340 16 4 378 17 4 434 18 490 19 4 553 20 4 616 twenty one 6 438 twenty two 6 466 twenty three 6 517 twenty four 6 567 25 6 616 26 6 666 27 6 719 28 6 772 29 2 Reserved 30 4 reserved 31 6 reserved
  • R in Table 2 above represents the target encoding rate
  • 30, 40, 50, 64, etc. represent the result of multiplying the target encoding rate R by 1024, for example, the result obtained by dividing 30 by 1024 is the target encoding rate R.
  • FIG. 2 it is a schematic diagram of the frame structure of the downlink control information provided by the embodiments of the present application.
  • the downlink control information When the downlink control information is used to schedule data transmission of the first type of terminal equipment, the downlink control information further includes a second MCS field, and the second MCS field is used to indicate the MCS of the data transmission of the first type of terminal equipment.
  • the downlink control information may also indicate the MCS used by the terminal device during data transmission. If the downlink control information is used to schedule the data transmission of the first type of terminal device, the downlink control information also needs to indicate the first type of terminal MCS for data transmission of the device. Since the first MCS field included in the downlink control information is used to indicate the type of terminal equipment scheduled by the downlink control information, the downlink control information is used to indicate the MCS for data transmission. In addition to the first MCS field, the downlink control information may also include the first MCS field. Two MCS fields, the second MCS field is used to indicate the MCS of the data transmission of the first type of terminal equipment.
  • the network device can indicate the MCS of the data transmission of the first type of terminal device through the second MCS field, so that the terminal device can obtain the MCS configured by the network device by parsing the second MCS field carried in the downlink control information.
  • the downlink control information when used to schedule data transmission for the first type of terminal equipment, the downlink control information further includes the second MCS field.
  • the second MCS field includes 4 bits, or the second MCS field includes 2 bits, and the number of bits occupied by the second MCS field is not limited.
  • step 102 when the downlink control information is used to schedule data transmission of the first type of terminal equipment, determining that the value of the first MCS field is the first value includes: when the downlink control information is used to schedule the first value During data transmission of a type of terminal equipment, it is determined that the value of the most significant bit of the first MCS field is 1; or,
  • Step 103 When the downlink control information is used to schedule the data transmission of the second type of terminal equipment, it is determined that the value of the first MCS field is not the first value, or the value of the first MCS field is determined to be the second value, including: When the information is used to schedule data transmission for the second type of terminal device, it is determined that the value of the most significant bit of the first MCS field is 0.
  • the first MCS field has multiple bits. When the value of the most significant bit of the first MCS field is 1, it is determined that the value of the first MCS field is the first value. When the value of the most significant bit of the first MCS field is 0, it is determined that the value of the first MCS field is the second value.
  • the most significant bit of the first MCS field may be the first bit of the first MCS field counted from the left.
  • the first MCS field includes 5 bits.
  • the downlink control information is used to schedule data transmission for the first type of terminal device, and the value of the highest bit of the 5 bits is 1.
  • the downlink control information is used to schedule data transmission for the second type terminal equipment, and the value of the highest bit of the 5 bits is 0.
  • the number of bits included in the first MCS field is a possible implementation here, and the number of bits included in the first MCS field is not limited, and it depends on application scenarios.
  • At least one bit in the first MCS field is used to indicate the data transmission of the first type of terminal device. MCS, where at least one bit does not include the most significant bit of the first MCS field.
  • the downlink control information also needs to indicate the MCS of the data transmission of the first type terminal device.
  • the first MCS field may use bits other than the most significant bit to indicate the MCS of the data transmission of the first type of terminal device.
  • the first MCS field may use all bits except the most significant bit to indicate the MCS of the first type of terminal device. MCS for data transmission.
  • the network device can indicate the MCS of the data transmission of the first type of terminal device through at least one bit other than the highest bit in the first MCS field, so that the network device can indicate the MCS.
  • the first MCS field includes 5 bits. Downlink control information is used to schedule data transmission for the first type of terminal equipment, the bit status of the most significant bit of the first MCS field is 1, and the bit status of the 4 bits except the most significant bit in the first MCS field is used to indicate modulation Coding method MCS. Or, the bit status of 2 of the 4 bits except the most significant bit in the first MCS field is used to indicate the modulation and coding mode MCS.
  • Steps 101 to 103 describe the communication method provided by the embodiment of this application from the network device side, and then describe the communication method provided by the embodiment of this application from the terminal device side, which mainly includes the following steps:
  • the terminal device receives downlink control information from the network device, and the downlink control information includes the first MCS field.
  • the terminal device that performs step 111 may be a terminal device of the first type or a terminal device of the second type, which is not limited here.
  • the terminal device determines that the downlink control information is used to schedule the data transmission of the first type of terminal device; or,
  • the terminal device determines that the downlink control information is used to schedule the data transmission of the second type of terminal device.
  • the first type of terminal device receives downlink control information, and the first type of terminal device determines from the downlink control information that the value of the first MCS field is the first value, it uses the downlink control information to receive the PDSCH If the terminal device of the first type determines from the downlink control information that the value of the first MCS field is not the first value, or the value of the first MCS field is the second value, the downlink control information is not used to receive the PDSCH. If the second type terminal device receives downlink control information, and the second type terminal device determines from the downlink control information that the value of the first MCS field is the first value, it does not use the downlink control information to receive the PDSCH. If the second type The terminal device determines from the downlink control information that the value of the first MCS field is not the first value, or the value of the first MCS field is the second value, and then uses the downlink control information to receive the PDSCH.
  • the first MCS field in the downlink control information is used to indicate that the downlink control information is used to schedule data transmission for the first type of terminal equipment or the second type of terminal equipment, including: passing the special bit status of the first MCS field (such as The special bit status can be that the status of all bits in the first MCS field is all 1s), indicating that the first type of terminal equipment schedules data transmission.
  • This method uses all the bits in the first MCS field to indicate, and the false alarm probability is low.
  • a second MCS field may be added to indicate the MCS of the data transmission scheduled for the terminal device of the first type. Or, when the most significant bit of the first MCS field is 1, it indicates that the first type of terminal equipment is scheduled to transmit data. This method is simple, and the first MCS field can indicate the data transmission scheduled for the first type of terminal equipment. MCS.
  • the network device can send their respective downlink control information for different types of terminal devices. For example, sending downlink control information with a smaller scheduling bandwidth for the first type terminal device, or sending downlink control information with a larger bandwidth scheduling for the second type terminal device, so as to meet the scheduling requirements of different types of terminal devices.
  • FIG. 3 is a schematic diagram of an interaction process between a network device and a terminal device provided in an embodiment of this application.
  • the subsequent steps 301 to 303 are explained from the side of the network device.
  • the subsequent steps 311 to 313 are described from the terminal device side, and mainly include the following steps:
  • a network device sends downlink control information to a terminal device.
  • the network device may generate downlink control information, and the downlink control information includes multiple fields.
  • the downlink control information includes fields that indicate frequency domain resources, time domain resources, and modulation and coding methods required to receive PDSCH.
  • the network device may also use different scrambling sequences to scramble the downlink control information. Different scrambling sequences are used to instruct to schedule data transmission for different types of terminals.
  • the scrambling sequence performed on the downlink control information can indicate the type of terminal equipment scheduled by the downlink control information, so that independent downlink control information can be provided for different types of terminal equipment.
  • the network equipment uses different scrambling sequences to scramble the downlink control information.
  • the scrambling sequence and the type of terminal equipment scheduled by the downlink control information have a corresponding relationship.
  • the network device can determine which scrambling sequence to use to scramble the downlink control information through the following steps 302 and 303.
  • the network device uses the first scrambling sequence to scramble the downlink control information; or,
  • the network device uses the second scrambling sequence to scramble the downlink control information.
  • the downlink control information can be used to schedule data transmission of at least two different types of terminal equipment.
  • the downlink control information can be used to schedule data transmission of a first type of terminal equipment (for example, scheduling PDSCH), or can be used to schedule a second type of terminal equipment.
  • Type of data transmission for terminal equipment for example, scheduling PDSCH
  • the first type terminal device and the second type terminal device respectively represent different types of terminals. It is understandable that the use of downlink control information for scheduling data transmission of two different types of terminal equipment is only a possible example, and the downlink control information can also be used for scheduling data transmission of three different types of terminal equipment, or more The type of data transmission for terminal equipment is not limited here.
  • the network device may use different scrambling sequences to indicate the type of terminal device scheduled by the downlink control information.
  • the network equipment can configure the correspondence between the type of terminal equipment scheduled by the downlink control information and the scrambling sequence.
  • the network equipment determines the type of terminal equipment scheduled by the downlink control information, it can determine to use and The type of the scheduled terminal equipment corresponds to the scrambling sequence, so that independent control information can be provided for different types of terminal equipment.
  • the scrambling sequence generator may generate a first scrambling sequence and a second scrambling sequence, where the first scrambling sequence and the second scrambling sequence respectively represent two different scrambling sequences. If the downlink control information is used to schedule data transmission for the first type of terminal equipment, the downlink control information is scrambled by the first scrambling sequence. Or, if the downlink control information is used to schedule data transmission for the second type of terminal equipment, the downlink control information is scrambled by the second scrambling sequence. Therefore, when the terminal device analyzes the downlink control information, according to the scrambling sequence used for descrambling the downlink control information, it can determine whether the downlink control information is scheduled for data transmission by the terminal device.
  • the initialization parameter used to generate the first scrambling sequence is a non-zero value
  • the initialization parameter used to generate the second scrambling sequence is equal to zero
  • the network device can use a non-zero value as the initialization parameter, generate the first scrambling sequence through the scrambling sequence generator, and then use the first scrambling sequence to scramble the downlink control information to indicate the downlink through the first scrambling sequence The type of terminal equipment scheduled by the control information.
  • the network device can use zero as the initialization parameter, generate the second scrambling sequence through the scrambling sequence generator, and then use the second scrambling sequence to scramble the downlink control information to indicate the downlink control information through the second scrambling sequence The type of terminal equipment being scheduled.
  • the initialization parameter of the scrambling sequence in the embodiment of the present application may be a non-zero value or equal to zero, so that the terminal device determines whether the downlink control information is the terminal device scheduling data transmission according to the adopted scrambling sequence when analyzing the downlink control information .
  • the initialization parameter of the first scrambling sequence generated by the scrambling sequence generator is a non-zero value.
  • the initialization parameter of the second scrambling sequence generated by the scrambling sequence generator is equal to zero.
  • the initialization parameter for generating the first scrambling sequence may be system information-radio network temporary identifier (SI-RNTI), or the initialization parameter for generating the first scrambling sequence may be other types of wireless networks
  • SI-RNTI system information-radio network temporary identifier
  • RNTI radio network temporary identifier
  • Steps 301 to 303 describe the communication method provided by the embodiment of this application from the network device side, and then describe the communication method provided by the embodiment of this application from the terminal device side, which mainly includes the following steps:
  • the terminal device receives downlink control information from the network device.
  • a certain type of terminal device can determine whether the downlink control information is sent to that type of terminal device according to whether the respective scrambling sequence can be used to correctly descramble the downlink control information.
  • the terminal device that performs step 311 may be a terminal device of the first type or a terminal device of the second type, which is not limited here.
  • the terminal device determines that the downlink control information is used to schedule the data transmission of the first type of terminal device ;or,
  • the terminal device determines that the downlink control information is used to schedule the data transmission of the second type of terminal device .
  • the first type of terminal device receives downlink control information and determines that the downlink control information is scrambled by the first scrambling sequence, that is, if the downlink control information is successfully descrambled using the first scrambling sequence, the downlink control information is used
  • the first type terminal device determines that the downlink control information is not scrambled by the first scrambling sequence, that is, the downlink control information cannot be successfully descrambled using the first scrambling sequence, then the downlink control information is not used to receive the PDSCH.
  • the second type terminal device receives the downlink control information and determines that the downlink control information is not scrambled by the second scrambling sequence, that is, the downlink control information cannot be successfully descrambled using the second scrambling sequence, then the downlink control information is not used to receive For PDSCH, if it is determined that the downlink control information is scrambled by the second scrambling sequence, that is, the downlink control information is successfully descrambled using the second scrambling sequence, the downlink control information is used to receive the PDSCH.
  • the terminal device determines whether the downlink control information is scheduled for data transmission by the terminal device according to the used scrambling sequence, so that the terminal device correctly obtains the downlink control information sent by the network device to the terminal device.
  • the network device can send their respective downlink control information for different types of terminal devices. For example, sending downlink control information with a smaller scheduling bandwidth for the first type terminal device, or sending downlink control information with a larger bandwidth scheduling for the second type terminal device, so as to meet the scheduling requirements of different types of terminal devices.
  • FIG. 4 is a schematic diagram of an interaction process between a network device and a terminal device provided in an embodiment of this application.
  • the subsequent steps 401 to 403 are explained from the side of the network device.
  • the subsequent steps 411 to 413 are described from the terminal device side, and mainly include the following steps:
  • the network device sends downlink control information to the terminal device, and the downlink control information includes the first bit.
  • the network device may generate downlink control information, and the downlink control information includes multiple fields.
  • the downlink control information includes fields that indicate frequency domain resources, time domain resources, and modulation and coding methods required to receive PDSCH.
  • the network device may also include a first bit in the downlink control information, and the first bit is used to indicate which type of terminal device is scheduled for data transmission.
  • the first bit included in the downlink control information may be a newly added bit in the downlink control information, a reserved bit in the downlink control information, or an original bit in the downlink control information, which is not limited here. .
  • the downlink control information can be used to schedule data transmission of different types of terminal devices.
  • the first bit included in the downlink control information can indicate the type of terminal equipment scheduled by the downlink control information, so that independent control information can be provided for different types of terminal equipment.
  • the first bit when the first bit is used to indicate different types of terminal devices scheduled by downlink control information, the value of the first bit is different.
  • the network device may determine the value of the first bit through the following step 402 or step 403.
  • the network device may determine to perform the subsequent step 402 or 403 according to different types of terminal devices scheduled by the downlink control information, which may be specifically determined according to the types of terminal devices that need to be scheduled for the downlink control information in the actual application scenario.
  • the network device determines that the value of the first bit is the third value; or,
  • the network device determines that the value of the first bit is the fourth value.
  • the third value is 1 and the fourth value is 0; or, the third value is 0 and the fourth value is 1.
  • the downlink control information may be used to schedule data transmission of at least two different types of terminal equipment.
  • the downlink control information may be used to schedule data transmission of a first type of terminal equipment.
  • the downlink control information can be used to schedule the data transmission of the second type of terminal equipment.
  • the first type terminal device and the second type terminal device respectively represent different types of terminals. It is understandable that the use of downlink control information for scheduling data transmission of two different types of terminal equipment is only a possible example, and the downlink control information can also be used for scheduling data transmission of three different types of terminal equipment, or more
  • the type of data transmission for terminal equipment is not limited here.
  • the value of the first bit when used to indicate different types of terminal equipment for downlink control information scheduling, the value of the first bit is different, and the value of the first bit may be 1, for example, the value of the first bit
  • the value can be a value other than 1, for example, a value other than 1 can be 0.
  • the corresponding relationship between the type of the terminal device scheduled by the downlink control information and the value of the first bit may be predefined. That is, the corresponding relationship is known in advance by the network device and the terminal. Or, the network device may indicate the corresponding relationship to the terminal device through signaling before sending the downlink control information. That is, before the network device determines the downlink control information, the network device knows the corresponding relationship, and before the terminal device interprets the downlink control information, the terminal device also knows the corresponding relationship. Then, when the network device determines the type of terminal device scheduled by the downlink control information, it can determine the value of the first bit, so that it can provide independent control information for different types of terminal devices.
  • the correspondence between the type of the terminal equipment scheduled by the downlink control information and the value of the first bit can be implemented in multiple ways. For example, when the downlink control information is used to schedule the data transmission of the first type of terminal equipment, the value of the first bit is determined to be the third value; or, when the downlink control information is used to schedule the data transmission of the second type of terminal equipment, the first bit is determined to be the third value. The value of one bit is the fourth value.
  • the network device determines that the value of the first bit is the fourth value; or, when the downlink control information When the information is used to schedule data transmission of the second type of terminal device, the network device determines that the value of the first bit is the third value.
  • This implementation is similar to step 402 and step 403, and will not be repeated here.
  • Steps 401 to 403 describe the communication method provided by the embodiment of the present application from the network device side, and then describe the communication method provided by the embodiment of the present application from the terminal device side, which mainly includes the following steps:
  • the terminal device receives downlink control information from the network device, and the downlink control information includes the first bit.
  • the terminal device that performs step 411 may be a terminal device of the first type or a terminal device of the second type, which is not limited here.
  • the terminal device determines that the downlink control information is used to schedule the data transmission of the terminal device of the first type; or,
  • the terminal device determines that the downlink control information is used to schedule data transmission of the second type of terminal device.
  • the third value is 1 and the fourth value is 0; or, the third value is 0 and the fourth value is 1.
  • the downlink control information is used to receive the PDSCH, and if the first bit in the downlink control information is If the value of is not the third value, or the value of the first bit is the fourth value, the downlink control information is not used to receive the PDSCH.
  • the second type terminal device receives the downlink control information, if the value of the first bit in the downlink control information is the third value, or the value of the first bit is not the fourth value, the downlink control information is not used to receive the PDSCH, If the value of the first bit in the downlink control information is the fourth value, the downlink control information is used to receive the PDSCH.
  • the first bit in the downlink control information indicates that the downlink control information is used to schedule data transmission for the first type terminal device or the second type terminal device through the first bit in the embodiment of the present application.
  • the indication method is simple, and the implementation complexity of terminal equipment and network equipment is low.
  • the network device can send downlink control information with different characteristics for different types of terminal devices. For example, sending downlink control information with a larger scheduling bandwidth for the first type terminal device, or sending downlink control information with a larger bandwidth scheduling for the second type terminal device, so as to meet the scheduling requirements of different types of terminal devices.
  • the embodiment of the present application proposes a communication method, which is suitable for a communication scenario between a network device and a terminal device.
  • the terminal device is a terminal device with limited bandwidth capability.
  • the method configures dedicated resources for the terminal device with limited bandwidth capability, so that the terminal device can monitor the control channel for scheduling data transmission in the dedicated resource.
  • the control information may be PDCCH, EPDCCH or other types of physical layer downlink control channels.
  • the terminal device When the terminal device detects the control channel, it monitors a set of candidate control channels on the control resource set (CORESET) according to the search space (Search Space, SS). The terminal device uses the RNTI pair corresponding to the control channel that it expects to receive on the control channel.
  • the bearer DCI performs blind detection.
  • the search space of the PDCCH may be configured or instructed by the network device for the terminal device through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the network device can configure one or more search spaces for the terminal device.
  • the RRC signaling may be specific to the terminal device, or it may be shared with other terminal devices (common), which is not limited in the embodiment of the present application.
  • the network device can configure the terminal device with the type of the search space being a public search space or a terminal device-specific search space.
  • the network device can also configure one or more of the following parameters of the search space for the terminal device: aggregation level size, number of candidate PDCCHs, detection period, time domain resource location, and the format of the DCI transmitted in the search space.
  • the format of DCI in a common search space can be configured as 0_0 and 1_0.
  • the format of the DCI in a terminal device specific search space may be configured as 0_1 and 1_1, or the format of the DCI in a terminal device specific search space may be configured as 0_0 and 1_0.
  • the time domain resource location includes: the first time unit (such as a time slot) offset of the search space in the detection period, the number of consecutive first time units occupied by the search space in the detection period, and each first time unit The offset of the second time unit (such as the symbol) of the search space in a time unit, and the number of second time units occupied by the search space in each first time unit.
  • the first time unit such as a time slot
  • the second time unit such as the symbol
  • the frequency domain resource location of the search space and the number of second time units in the search space in each first time unit can be configured in the following manner: the network device indicates the control resource set corresponding to the search space for the terminal device (control resource set, CORESET), the parameters of the CORESET can be regarded as the parameters of the search space, and the control resource set can also be referred to as the control resource set.
  • the network device indicates at least one of the following parameters of the CORESET through a master information block (MIB) or RRC signaling: frequency domain resource location, and the number of second time units of the CORESET in each first time unit.
  • MIB master information block
  • RRC signaling frequency domain resource location, and the number of second time units of the CORESET in each first time unit.
  • one CORESET may correspond to one search space, or may correspond to multiple different search spaces, which is not limited in the embodiment of the present application.
  • the search space A corresponds to CORESET A, which occupies 3 symbols in the time domain.
  • the detection cycle of search space A is 10 time slots
  • the offset of search space A in the detection cycle is 3 time slots
  • the continuous time slots occupied by search space A in the detection cycle are 2 time slots, each time slot
  • the symbol offset of the search space A in the slot is 3 symbols.
  • the frequency domain resource position of search space A is CORESET A's frequency domain resource position
  • the time domain resource position of search space A is: in every 10 timeslots, in the fourth and fifth timeslots In each slot, starting from the third symbol, the time domain resources of search space A occupy a total of 3 symbols.
  • the time-frequency resource obtained from the position of the frequency domain resource and the position of the time domain resource in the search space A may be referred to as the time-frequency resource indicated by the search space A and CORESET A.
  • the MIB is carried in a physical broadcast channel (PBCH).
  • the network device may periodically send the PBCH together with a synchronization signal (synchronization signal, SS) to the terminal device.
  • PBCH and SS are the information that the terminal equipment needs to receive when accessing the cell.
  • CORESET 0 can be configured with 1 to 3 orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and the number of resource blocks that can be configured with CORESET 0 in the frequency domain is ⁇ 24,48,96 ⁇ Any one of them.
  • OFDM orthogonal frequency division multiplexing
  • the resources of a control channel include: one or more control channel elements (CCE) in a control resource set.
  • CCE control channel elements
  • the number of CCEs that carry a control channel is called the aggregation level of the control channel.
  • a CCE is composed of 6 consecutive resource element groups (REG) in the time domain and the frequency domain.
  • REG resource element groups
  • one REG is composed of one OFDM symbol in the time domain and 12 subcarriers in the frequency domain.
  • the CCE to REG mapping method in the control resource set includes two kinds of interleaving and non-interleaving.
  • FIG. 5 a schematic diagram of the non-interleaved mapping between CCE and REG in the control channel with aggregation level 2 provided by this embodiment of the application.
  • the binding of REG0, REG1, REG2, REG3, REG4, and REG5 is called a REG bundle.
  • REG6, REG7, REG8, REG9, REG10, REG11 and CCE1 have a mapping relationship
  • REG12, REG13, REG14, REG15, REG16, REG17 and CCE2 have a mapping relationship
  • REG18, REG19, REG20, REG21, REG22, REG23 and CCE3 have a mapping relationship
  • the aggregation level of one control channel is 2, and CCE0 and CCE1 are used to carry one control channel PDCCH.
  • FIG. 6 it is a schematic diagram of the interleaving mapping between CCE and REG in the control channel with aggregation level 2 provided by this embodiment of the application.
  • REGs are an interleaving granularity, called REG bundling, and the interleaving depth is 2.
  • the aggregation level of one control channel is 2, and CCE0 and CCE1 are used to carry one control channel PDCCH.
  • control channels of different aggregation levels include one or more candidate location resources on the control resource set. For example, on CORESET 0, a control channel with an aggregation level of 4 corresponds to 4 candidate location resources, a control channel with an aggregation level of 8 corresponds to 2 candidate location resources, and a control channel with an aggregation level of 16 corresponds to 1 candidate location resource.
  • FIG. 7a a schematic diagram of a mapping relationship between candidate location resources of control channels of different aggregation levels (AL) and CCEs provided in an embodiment of this application.
  • the control resource set configured by a network device for a terminal device can include CORESET0 to CORESET3.
  • CORESET0 As an example, assuming that CORESET 0 consists of 48 resource blocks in the frequency domain and 3 OFDM in the time domain.
  • CCEs with the same filling pattern in Figure 7a are used to carry the same control channel.
  • One REG bundle includes 6 REGs, and the 144 REGs can get 24 REG bundles.
  • the REGbundle index is 0 to 23
  • the AL of the control channel is 16
  • the REGbundle indexes forming the 16 CCEs are 0-7 and 12-19.
  • the AL of the control channel is 8
  • the REG bundle indexes forming the 8 CCEs are 0-3 and 12-15.
  • the REG bundle indexes that make up the 8 CCEs are 4-7 and 16-19.
  • the REG bundle indexes that make up the 4 CCEs are: 0-1 and 12-13, or 2-3 and 14-15, or 6-7 and 18-19, or 8-9 and 20 ⁇ 21.
  • the CCEs that make up the control channel are equally divided into two parts, which are respectively mapped on the control resource set. If the bandwidth capability of the terminal device is less than the bandwidth of CORESET 0, the terminal device may not be able to monitor the complete control channel. For example, if the bandwidth capability of the terminal device is 1/2 of the bandwidth of CORESET 0, only half of the control channel can be received by the terminal device. Exemplarily, for the control channel with AL equal to 16, the terminal device can only receive REG bundles with indexes 0 to 7 on CORESET 0, or the terminal device can only receive REG bundles with indexes 12 to 19 on CORESET 0. Therefore, it is necessary to configure dedicated control channel transmission resources for terminal devices with limited bandwidth capabilities.
  • FIG. 7b a schematic diagram of the mapping relationship between candidate location resources of control channels of different ALs and CCEs provided in an embodiment of this application.
  • the control resource set consists of 96 resource blocks in the frequency domain and 3 OFDM symbols in the time domain.
  • the CCEs with the same filling pattern in Figure 7b are used to carry the same control channel.
  • One REG bundle includes 6 REGs, and the 288 REGs can obtain 48 REG bundles.
  • the indexes of the REGbundle forming the 16 CCEs are 0-7 and 24-31.
  • the AL of the control channel is 8
  • the REG bundle indexes that make up the 8 CCEs are 0 to 3 and 24 to 27.
  • the REG bundle indexes that make up 8 CCEs are 12-15 and 36-39.
  • the AL of the control channel is 4, the REG bundle indexes that make up the 4 CCEs are: 0-1 and 24-25, or 6-7 and 30-31, or 12-13 and 36-37, or 18-19 and 42 ⁇ 43.
  • the bandwidth capability of the terminal device with limited bandwidth is greater than or equal to 1/2 or 1/4 of the bandwidth of the control resource set.
  • the network device may send the control channel for scheduling data transmission to the terminal device on the resources corresponding to the first resource set and the second resource set, that is, divide the larger resource used for sending the control channel into multiple smaller resources.
  • the terminal device is a first type of terminal device, and the control channel used for scheduling data transmission may also be referred to as the first control channel.
  • the first resource set and the second resource set are resources in different time domain resource units.
  • the time domain resource unit may be one of the following resource units: radio frame, subframe, symbol, time window, and time slot.
  • the first resource set is in the first time slot Nx
  • the second resource set is in the second time slot Nx+Ky, where Nx and Ky are integers, and Ky is greater than zero.
  • the frequency domain resources of the first resource set and the second resource set may be the same or different.
  • the resource sizes of the first resource set and the second resource set are the same.
  • the first resource set and the second resource set may be resources in the control resource set or resources outside the control resource set.
  • the first control channel aggregation level is 8, and 4 CCEs on the first resource set and 4 CCEs on the second resource set are used to transmit the first control channel.
  • the first type terminal device receives the information on the first resource set in the first time domain resource unit, and receives the information on the second resource set in the second time domain resource unit.
  • the first type terminal device receives the information on the first resource set twice. Obtain the complete first control channel from the information.
  • control channel transmission in the embodiment of the present application is sending or receiving. If one end of the communication implements transmission as sending, the opposite end of the communication implements reception.
  • the sizes of the first resource set and the second resource set are divided as follows.
  • the division basis is: the bandwidth of the first resource set and the bandwidth of the second resource set are respectively less than or equal to the bandwidth supported by the first type of terminal device; the control channels sent on the first resource set and the second resource set support multiple aggregation levels;
  • the first resource set and the second resource set do not occupy the candidate position resources of the control channel of the traditional terminal device on the control resource set as much as possible.
  • the traditional terminal device may be an eMBB terminal device or a URLLC terminal device.
  • the control resource set includes N resource blocks in the frequency domain.
  • the control resource set includes B symbols in the time domain. Among them, for N equal to 48 or 96, and B equal to 1 or 2, the candidate position resources of the control channel of the traditional terminal device occupy the entire control resource set. If the first resource set and the second resource set are resources in the control resource set, the first resource set and the second resource set need to reuse a part of the candidate location resources of the control channel of the traditional terminal device.
  • control resource set includes 8 CCEs.
  • the control resource set is equally divided into 4 resources, each resource includes 2 CCEs, and the first resource set and the second resource set each include only one resource. or,
  • control resource set includes 16 CCEs.
  • the control resource set is equally divided into 4 resources, each resource includes 2 CCEs, and the first resource set and the second resource set each include only one resource. or,
  • the control resource set includes 24 CCEs. If the control resource set is equally divided into 4 resources, the first resource set and the second resource set each include one resource. Exemplarily, in Figure 7a, if the candidate location resources of the control channel of the first type of terminal device are in the control resource set, the first resource set and the second resource set occupying any two of the 4 resources will cause the traditional terminal The resource corresponding to a candidate control channel whose aggregation level of the device is 8 cannot be used. Therefore, in this embodiment, the control resource set is equally divided into 6 resources, and the first resource set and the second resource set each include only one resource, that is, 4 CCEs. When the REG bundle indexes occupied by the first resource set and the second resource set are 8-11 and 20-23, the candidate location resources of the control channel of the traditional terminal device are not affected.
  • control resource set includes 16 CCEs.
  • the control resource set is equally divided into 4 blocks of resources, and each block of resources includes 4 CCEs.
  • the first resource set and the second resource set each include only one resource. or,
  • the control resource set includes 32 CCEs.
  • the control resource set is equally divided into 4 blocks of resources, and each block of resources includes 8 CCEs.
  • the first resource set and the second resource set each include only one resource. or,
  • the control resource set includes 48 CCEs. If the control resource set is equally divided into 4 resources, the first resource set and the second resource set each include only 1 resource. Exemplarily, FIG. 8 shows candidate location resources of control channels of different ALs of traditional terminal equipment in this control resource set configuration, and CCEs of the same pattern constitute candidate resources of one control channel. If the candidate location resources of the control channel of the first type terminal device are in the control resource set, any two of the 4 resources occupied by the first resource set and the second resource set will affect at least the three control channel candidates of the traditional terminal device Location resources. Therefore, in this embodiment, the control resource set is equally divided into 6 resources, and the first resource set and the second resource set each include only one resource, that is, 8 CCEs. When the REG bundle indexes occupied by the first resource set and the second resource set are 16 to 23 and 40 to 47, only one candidate location resource of the control channel of the second type terminal device is affected.
  • the first resource set when the control resource set configurations are different, the first resource set includes only N/4 resource blocks in the frequency domain, and the second resource set includes only N/4 resource blocks in the frequency domain. Or the first resource set only includes N/6 resource blocks in the frequency domain, and the second resource set only includes N/6 resource blocks in the frequency domain.
  • FIG. 8 is a schematic diagram of an interaction process between a network device and a terminal device provided in an embodiment of this application.
  • the subsequent steps 801 to 802 are explained from the side of the network device.
  • the subsequent steps 811 to 812 are described from the terminal device side, and mainly include the following steps:
  • a network device sends configuration information of a control resource set to a terminal device, where the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the configuration information of the second resource set.
  • the terminal device receives configuration information of the control resource set from the network device, where the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the configuration information of the second resource set.
  • control resource set CORESET For the introduction of the control resource set CORESET, please refer to the previous article, which will not be repeated here.
  • the network device may generate configuration information of the control resource set, for example, the configuration information of the control resource set may be CORESET 0 configuration information.
  • the configuration information of the control resource set may indicate the frequency domain resource location, the frequency domain resource size, and the time domain resource size of the control resource set.
  • the network device may send the configuration information of the control resource set to the terminal device.
  • the network device may send the configuration information of the control resource set to the terminal device through radio resource control signaling or media access control signaling.
  • the terminal device may be a terminal device of the first type.
  • the network device may also configure three resource sets for the terminal device, or configure more resource sets, which is not limited here.
  • the network device may indicate the configuration information of the first resource set and the configuration information of the second resource set through the configuration information of the control resource set, so that after the terminal device receives the configuration information of the control resource set, the The terminal device can obtain the configuration information of the first resource set and the configuration information of the second resource set through the configuration information of the control resource set, so that the first control information can be monitored on the first resource set and the second resource set.
  • the terminal device may determine a fixed frequency domain resource location in the first resource set according to the configuration information of the first resource set, and may determine a fixed frequency domain resource position in the second resource set according to the configuration information of the second resource set Resource location.
  • the configuration information of the control resource set to indicate the configuration information of the first resource set and the configuration information of the second resource set, and an example will be described below.
  • the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the configuration information of the second resource set, including:
  • the configuration information of the control resource set indicates the frequency domain resource position of the first control resource set, where the frequency domain position of the s-th frequency domain resource in the first resource set is relative to the t-th frequency domain resource in the first control resource set.
  • the frequency domain position offset is the first offset
  • the frequency domain position of the r-th frequency domain resource in the second resource set is offset from the frequency domain position of the p-th frequency domain resource in the first resource set Is the second offset, where s, t, r, and p are integers greater than zero.
  • the configuration information of the control resource set indicates the frequency domain resource location of the first control resource set, for example, the configuration information of the control resource set indicates the starting frequency domain resource location of the first control resource set, or the configuration information of the control resource set indicates The location of any frequency domain resource in the first control resource set, or the configuration information of the control resource set indicates all frequency domain resource locations in the first control resource set, which is not limited here.
  • the first control resource set includes N frequency domain resources
  • the t-th frequency domain resource in the first control resource set may be any frequency domain resource in the first control resource set
  • the value of t may be 1 to N Any one of.
  • the configuration information of the control resource set indicates that the starting frequency domain resource position in the first control resource set is a resource block with index 0, and the terminal device determines the first control according to the starting frequency domain resource position in the first control resource set
  • the offset between the resources in the first resource set and the resources in the first control resource set so that the resources in the first resource set can be determined according to the resources in the first control resource set.
  • the offset of the frequency domain position of the s-th frequency domain resource in the first resource set from the frequency domain position of the t-th frequency domain resource in the first control resource set is the first offset.
  • the first offset is a predetermined value or a value notified by the network device to the terminal device.
  • the s-th frequency domain resource in the first resource set may be any resource in the first resource set.
  • the offset in the embodiment of the present application may be 0, a positive integer, or a negative integer, which is not limited in the embodiment of the present application.
  • a negative integer can indicate an offset in the direction of decreasing frequency
  • a positive integer can indicate an offset in the direction of increasing frequency
  • a negative integer can indicate an offset in the direction of increasing frequency
  • a positive integer can indicate a decrease in frequency. Small direction shift.
  • s, t, r, and p are integers greater than 0, and the specific values of s, t, r, and p are not limited.
  • the frequency of the sth frequency domain resource is The domain position may be the starting frequency domain position in the first resource set, and the index of the starting frequency domain position may be 0.
  • the meanings of the numbers represented by t, r, and p are similar to this, and will not be described one by one.
  • the aforementioned first offset and second offset may be values pre-configured in the system, or values notified by the network device to the terminal device through signaling, and the first offset and the second offset The method of determining can be the same or different, which is not limited here.
  • the first offset is an integer multiple of N/M, where N is the number of frequency domain resource units included in the first control resource set, and M is a positive integer, / Is the division symbol.
  • the frequency domain resource unit is a resource unit that controls the collection of resources in the frequency domain.
  • the frequency domain resource unit may be one of the following information: control channel unit, resource block, resource unit, resource block group, resource unit group, Subcarrier spacing.
  • N is the number of frequency domain resource units included in the first control resource set, for example, the value of N is 48 or 96, and N can also take other values, which is not limited here.
  • the first offset is an integer multiple of N/M, for example, the first offset is 1 or 2 times or i times the value obtained after N/M, and the value of i is a positive integer .
  • the result of N/M can be an integer. If the result of N/M is not an integer, the result of N/M can also be rounded up or down, which is not limited here.
  • the second offset is an integer multiple of N/E, where N is the number of frequency domain resource units included in the first control resource set, E is a positive integer, / Is the division symbol.
  • N is the number of frequency domain resource units included in the first control resource set.
  • the value of N is 48 or 96.
  • N can also take other values, which is not limited here.
  • E can be a positive integer, and there are many ways to take the value of E.
  • the value of E can be 4 or 6, and E can also take other values, which are not limited here.
  • the second offset is an integer multiple of N/E, for example, the second offset is 1 or 2 times or j times the value obtained after N/E, and the value of j is a positive integer .
  • the result of N/E can be an integer. If the result of N/E is not an integer, the result of N/E can also be rounded up or down, which is not limited here.
  • the network device determines the frequency domain resource positions (referred to as frequency domain positions) of the first resource set and the second resource set.
  • the control resource set includes N resource blocks in the frequency domain.
  • the indexes of the N resource blocks are ⁇ I 0 ,...,I N-1 ⁇ respectively.
  • N is an integer greater than zero.
  • M 4
  • M is equal to 6
  • the index of the starting frequency domain resource of the first resource set is Further
  • E is equal to 2
  • the index of the starting frequency domain resource of the second resource set is
  • the control resource set includes N resource blocks in the frequency domain.
  • the indexes of the N resource blocks are ⁇ I 0 ,...,I N-1 ⁇ .
  • N is an integer greater than zero.
  • M 4
  • M is equal to 6
  • E is equal to 2
  • the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the configuration information of the second resource set, including:
  • the configuration information of the control resource set indicates the frequency domain resource location of the first control resource set.
  • the offset of the frequency domain position of the v-th frequency domain resource in the first resource set relative to the frequency domain position of the w-th frequency domain resource in the first control resource set is the third offset
  • the offset of the frequency domain position of the xth frequency domain resource relative to the frequency domain position of the yth frequency domain resource in the first control resource set is the fourth offset, where v, w, x, and y are greater than An integer of 0.
  • the configuration information of the control resource set indicates the frequency domain resource location of the first control resource set, for example, the configuration information of the control resource set indicates the starting frequency domain resource location of the first control resource set, or the configuration information of the control resource set indicates The location of any frequency domain resource in the first control resource set, or the configuration information of the control resource set indicates all frequency domain resource locations in the first control resource set, which is not limited here.
  • the configuration information of the control resource set indicates the starting frequency domain resource location in the first control resource set, and the terminal device determines the position of the wth frequency domain resource in the first control resource set according to the starting frequency domain resource location in the first control resource set. Frequency domain position.
  • the wth frequency domain resource in the first control resource set may be any frequency domain resource in the first control resource set.
  • the y-th frequency domain resource in the first control resource set may be any frequency domain resource in the first control resource set.
  • the y-th frequency domain resource in the first control resource set can also be determined.
  • the w-th frequency domain resource in the first control resource set and the y-th frequency domain resource in the first control resource set may be the same frequency domain resource or different frequency domain resources, which is not limited in the embodiment of the present application.
  • the resources in the first resource set there is an offset between the resources in the first resource set and the resources in the first control resource set, so that the resources in the first resource set can be determined according to the resources in the first control resource set.
  • the frequency domain position of the v-th frequency domain resource in the first resource set is offset from the frequency domain position of the w-th frequency domain resource in the first control resource set as the third offset.
  • the third offset is a predetermined value or a value notified by the network device to the terminal device.
  • the v-th frequency domain resource in the first resource set may be any resource in the first resource set.
  • the offset between the resources in the second resource set and the resources in the first control resource set so that the resources in the second resource set can be determined according to the resources in the first control resource set.
  • the offset of the frequency domain position of the x-th frequency domain resource in the second resource set from the frequency domain position of the y-th frequency domain resource in the first control resource set is the fourth offset.
  • the fourth offset is a predetermined value or a value notified by the network device to the terminal device.
  • the xth frequency domain resource in the second resource set may be any resource in the second resource set.
  • v, w, x, and y are integers greater than 0, and the specific values of v, w, x, and y are not limited.
  • the value of the v-th frequency domain resource is The frequency domain position may be the starting frequency domain position in the first resource set, and the index of the starting frequency domain position may be 0.
  • the meanings of the numbers represented by w, x, and y are similar to this, and will not be described one by one.
  • the aforementioned third offset and fourth offset may be pre-configured values, or values notified by the network device to the terminal device through signaling, and the third offset and the fourth offset are determined
  • the methods can be the same or different, and are not limited here.
  • the configuration information of the control resource set may indicate the frequency domain resource position of the first control resource set, the frequency domain position of the first resource set and the frequency domain position of the second resource set, and the frequency domain position of the control resource set.
  • the relationship between includes any of the following:
  • the frequency domain resource location of the first resource set and the frequency domain resource location of the second resource set are included in the frequency domain resource location of the first control resource set; or,
  • the frequency domain resource location of the first resource set is included in the frequency domain resource location of the first control resource set, and the offset of the frequency domain resource location of the second resource set relative to the frequency domain resource location of the first resource set is an offset 1. That is, after offsetting the frequency domain resource position of the first resource set by offset 1, the frequency domain resource position of the second resource set can be obtained, and the frequency domain resources of the second resource set and the first control resource set may be Overlap, or the second resource set is outside the first control resource set; or,
  • the frequency domain resource location of the second resource set is included in the frequency domain resource location of the first control resource set, and the offset of the frequency domain resource location of the first resource set relative to the frequency domain resource location of the second resource set is an offset 2. That is, after offsetting the frequency domain resource position of the second resource set according to the offset 2, the frequency domain resource position of the first resource set can be obtained, and the frequency domain resources of the first resource set and the first control resource set may be Overlap, or the first resource set is outside the first control resource set; or,
  • the frequency domain resource location of the first resource set has an offset of 3 relative to the frequency domain resource location of the first control resource set, and the frequency domain resource location of the second resource set is relative to the frequency domain resource location of the first resource set
  • the offset of is an offset of 4. That is, after offsetting the frequency domain resource position of the first control resource set according to the offset 3, the frequency domain resource position of the first resource set can be obtained. After the frequency domain resource positions of the resource set are offset, the frequency domain resource positions of the second resource set can be obtained.
  • the frequency domain resources of the first resource set and the first control resource set may overlap, or the first resource set is outside the first control resource set, and the frequency domain resources of the second resource set and the first control resource set may overlap, Or the second resource set is outside the first control resource set; or,
  • the frequency domain resource position of the second resource set has an offset of 5 relative to the frequency domain resource position of the first control resource set, and the frequency domain resource position of the first resource set is relative to the frequency domain resource position of the second resource set
  • the offset of is an offset of 6, that is, after offsetting the frequency domain resource position of the first control resource set according to the offset 5, the frequency domain resource position of the second resource set can be obtained, and the second resource set is offset according to the offset 6.
  • the frequency domain resource position of the first resource set can be obtained.
  • the frequency domain resources of the first resource set and the first control resource set may overlap, or the first resource set is outside the first control resource set, and the frequency domain resources of the second resource set and the first control resource set may overlap, Or the second resource set is outside the first control resource set.
  • the unit of the offset may be a frequency domain resource unit, for example, the offset 1 may be 1 frequency domain resource unit or 3 frequency domain resource units, and the frequency domain resource unit may be one of the following parameters: resource block , Resource unit, resource block group, control channel unit, resource unit group.
  • the offset is equal to ⁇ 1, 2, 3, 4, 5, 6 ⁇ .
  • the third offset is an integer multiple of N/F, where N is the number of frequency domain resource units included in the first control resource set, F is a positive integer, / Is the division symbol.
  • N is the number of frequency domain resource units included in the first control resource set.
  • the value of N is 48 or 96.
  • N can also take other values, which is not limited here.
  • F can be a positive integer, and there are many ways to take the value of F.
  • the value of F can be 4 or 6, and F can also take other values, which are not limited here.
  • the third offset is an integer multiple of N/F, for example, the third offset is 1 or 2 times or k times the value obtained after N/F, and the value of k is a positive integer .
  • the result of N/F can be an integer. If the result of N/F is not an integer, the result of N/F can also be rounded up or down, which is not limited here.
  • the fourth offset is an integer multiple of N/G, where N is the number of frequency domain resource units included in the first control resource set, and G is a positive integer, / Is the division symbol.
  • N is the number of frequency domain resource units included in the first control resource set.
  • the value of N is 48 or 96.
  • N can also take other values, which is not limited here.
  • G can be a positive integer, and there are many ways to take the value of G.
  • the value of G can be 4 or 6, and G can also take other values, which are not limited here.
  • the fourth offset is an integer multiple of N/G, for example, the fourth offset is 1 or 2 times or q times the value obtained after N/G, and q is a positive integer.
  • the result of N/G can be an integer. If the result of N/G is not an integer, the result of N/G can also be rounded up or down, which is not limited here.
  • the network device determines the frequency domain resource positions (referred to as frequency domain positions) of the first resource set and the second resource set.
  • the control resource set includes N resource blocks in the frequency domain.
  • the indexes of the N resource blocks are ⁇ I 0 ,...,I N-1 ⁇ respectively.
  • N is an integer.
  • v, w, x, and y are all equal to N.
  • the control resource set includes N resource blocks in the frequency domain.
  • the indexes of the N resource blocks are ⁇ I 0 ,..., I N-1 ⁇ respectively.
  • N is an integer greater than zero.
  • the first resource set includes N/H frequency domain resource units in the frequency domain, where N is the number of frequency domain resource units included in the first control resource set, and H is a positive integer, / Is the division symbol.
  • N is the number of frequency domain resource units included in the first control resource set, for example, the value of N is 48 or 96, and N may also take other values, which is not limited here.
  • H can be a positive integer, and there are many ways to take the value of H.
  • the value of H can be 4 or 6, and H can also take other values, which are not limited here.
  • the frequency domain resource units included in the first resource set are N/H.
  • the result of N/H can be an integer. If the result of N/H is not an integer, the result of N/H can also be obtained. The result is rounded up or down, which is not limited here.
  • the second resource set includes N/U frequency domain resource units in the frequency domain, where N is the number of frequency domain resource units included in the first control resource set, and U is a positive integer, / Is the division symbol.
  • N is the number of frequency domain resource units included in the first control resource set, for example, the value of N is 48 or 96, and N may also take other values, which is not limited here.
  • U can be a positive integer, and there are many ways to take the value of U.
  • the value of U can be 4 or 6, and U can also take other values, which are not limited here.
  • the frequency domain resource units included in the second resource set are N/U.
  • the result of N/U can be an integer. If the result of N/U is not an integer, the result of N/U can also be obtained. The result is rounded up or down, which is not limited here.
  • the first communication device determines the time-frequency resource sizes of the first resource set and the second resource set according to the control resource set.
  • the control resource set includes N resource blocks in the frequency domain.
  • the control resource set includes B symbols in the time domain, and the indexes of the N resource blocks are ⁇ I 0 ,...,I N-1 ⁇ respectively.
  • the first resource set includes N/4 resource blocks in the frequency domain, and the first resource set includes B symbols in the time domain.
  • the second resource set includes N/4 resource blocks in the frequency domain, and the second resource includes B symbols in the time domain.
  • the first resource set includes N/6 resource blocks in the frequency domain, and the first resource set includes B symbols in the time domain.
  • the first resource set includes N/6 resource blocks in the frequency domain, and the first resource set includes B symbols in the time domain.
  • the network device may also perform the following steps: the network device sends configuration information of the search space to the terminal device, and the configuration information of the search space is used to indicate the time domain of the first resource set The location and the time domain location of the second resource set.
  • the terminal device may also perform the following steps: the terminal device receives configuration information of the search space from the network device, and the configuration information of the search space is used to indicate the time domain of the first resource set The location and the time domain location of the second resource set.
  • the network device may also generate configuration information of the search space.
  • the configuration information of the search space may be the configuration information of the search space set.
  • the search space includes a public search space and a dedicated search space, and provides configuration parameters such as PDCCH monitoring opportunities, CCE aggregation level, and DCI format to be detected.
  • the network device after the network device configures the above-mentioned first resource set and the second resource set for the terminal device, the network device can indicate the time domain position of the first resource set and the second resource set through the configuration information of the search space.
  • the terminal device can obtain the time domain position of the first resource set and the time domain position of the second resource set through the configuration information of the search space after the terminal device receives the configuration information of the search space.
  • the terminal device may use the first resource set and the second resource set to monitor the first control channel to determine the first control channel sent by the network device.
  • the configuration information of the search space used to indicate the time domain position of the first resource set and the time domain position of the second resource set includes:
  • the configuration information of the search space indicates the time domain position of the first search space (for example, Search Space 0);
  • the offset of the time domain position of the Tsth time domain resource in the first resource set from the time domain position of the Ttth time domain resource in the first search space is the fifth offset
  • the Trth in the second resource set The offset of the time domain position of each time domain resource relative to the time domain position of the Te th time domain resource in the first resource set is the sixth offset
  • Ts, Tt, Tr, and Te are integers greater than 0; or ,
  • the offset of the time domain position of the Tvth time domain resource in the first resource set relative to the time domain position of the Twth time domain resource in the first search space is the seventh offset
  • the offset of the time domain position of each time domain resource relative to the time domain position of the Ty-th time domain resource in the first search space is an eighth offset
  • Tv, Tw, Tx, and Ty are integers greater than 0.
  • the configuration information of the search space indicates the time domain position of the first search space, for example, the configuration information of the search space indicates the starting time domain position of the first search space, or the configuration information of the search space indicates any one of the first search spaces.
  • the time domain position of the resource, or the configuration information of the search space indicates all time domain positions of the first search space, which is not limited here.
  • the configuration information of the search space indicates the time domain position of the Tt-th time domain resource in the first search space, or the configuration information of the search space indicates the starting time domain position in the first search space.
  • the starting time domain position determines the time domain position of the Tt-th time domain resource in the first search space.
  • the Tt-th time domain resource in the first search space may be any time domain resource in the first search space.
  • the time domain resources in the first resource set there is an offset between the time domain resources in the first resource set and the time domain resources in the first search space, so that the time domain resources in the first resource set can be determined according to the time domain resources in the first search space .
  • the offset of the time domain position of the Tsth time domain resource in the first resource set relative to the time domain position of the Ttth time domain resource in the first search space is a fifth offset, and the fifth offset
  • the amount is a predetermined value or a value notified by the network device to the terminal device.
  • the Ts-th time domain resource in the first resource set may be any resource in the first resource set.
  • the time domain resources in the second resource set there is an offset between the time domain resources in the second resource set and the time domain resources in the first resource set, so that the time domain resources in the second resource set can be determined according to the time domain resources in the first resource set .
  • the offset of the time domain position of the Tr th time domain resource in the second resource set relative to the time domain position of the Te th time domain resource in the first resource set is a sixth offset, and the sixth offset
  • the shift amount is a predetermined value or a value notified by the network device to the terminal device.
  • the Te th time domain resource in the first resource set may be any resource in the first resource set.
  • the Trth time domain resource in the second resource set may be any resource in the second resource set.
  • Ts, Tt, Tr, and Te are integers greater than 0, and the specific values of Ts, Tt, Tr, and Te are not limited.
  • the aforementioned fifth offset and sixth offset may be pre-configured values, or values notified by the network device to the terminal device through signaling, and the fifth offset and the sixth offset are determined The methods can be the same or different, and are not limited here.
  • the configuration information of the search space indicates the time domain position of the first search space, for example, the configuration information of the search space indicates the starting time domain position of the first search space, or the configuration information of the search space indicates any one of the first search spaces.
  • the time domain position of the resource, or the configuration information of the search space indicates all time domain positions of the first search space, which is not limited here.
  • the configuration information of the search space indicates the time domain position of the Tw-th time domain resource in the first search space, or the configuration information of the search space indicates the starting time domain position in the first search space.
  • the starting time domain position determines the time domain position of the Tw-th time domain resource in the first search space.
  • the Tw-th time domain resource in the first search space may be any time domain resource in the first search space.
  • the time domain resources in the first resource set there is an offset between the time domain resources in the first resource set and the time domain resources in the first search space, so that the time domain resources in the first resource set can be determined according to the time domain resources in the first search space .
  • the offset of the time domain position of the Tvth time domain resource in the first resource set relative to the time domain position of the Twth time domain resource in the first search space is the seventh offset, and the seventh offset
  • the amount is a predetermined value or a value notified by the network device to the terminal device.
  • the Tvth time domain resource in the first resource set may be any resource in the first resource set.
  • the time domain resources in the second resource set there is an offset between the time domain resources in the second resource set and the time domain resources in the first search space, so that the time domain resources in the second resource set can be determined according to the time domain resources in the first search space .
  • the offset of the time domain position of the Txth time domain resource in the second resource set relative to the time domain position of the Tyth time domain resource in the first search space is an eighth offset, and the eighth offset
  • the shift amount is a predetermined value or a value notified by the network device to the terminal device.
  • the Txth time domain resource in the second resource set may be any resource in the second resource set.
  • Tv, Tw, Tx, and Ty are integers greater than 0, and the specific values of Tv, Tw, Tx, and Ty are not limited.
  • the aforementioned seventh offset and eighth offset may be pre-configured values, or values notified by the network device to the terminal device through signaling, and the fifth offset and the eighth offset are determined The methods can be the same or different, and are not limited here.
  • the number of time domain resource units included in the first resource set is equal to the number of time domain resource units included in the first control resource set.
  • the time domain resource unit is a resource unit that controls the set of resources in the time domain.
  • the time domain resource unit may be one of the following information: radio frame, subframe, symbol, time window, and time slot.
  • the time domain resource unit may be a time slot or a time domain symbol, which is not limited here, and the number of time domain resource units included in the first resource set is equal to the number of time domain resource units included in the first control resource set , So that the network device and the terminal device can conveniently determine the number of time domain resource units included in the first resource set, which simplifies the processing complexity of the network device and the terminal device.
  • the time domain start position or end position of the first resource set is pre-configured, and similarly, the time domain start position or time domain end position of the second resource set It may be pre-configured, and the time domain start position or end position of the first resource set and the time domain start position or end position of the first resource set can also be determined through the above method.
  • the number of time domain resource units included in the second resource set is equal to the number of time domain resource units included in the first control resource set.
  • the time domain resource unit may be a time slot or a time domain symbol, etc., which is not limited here.
  • the number of time domain resource units included in the second resource set is equal to the number of time domain resource units included in the first control resource set. Number, so that the network device and the terminal device can easily determine the number of time domain resource units included in the second resource set, which simplifies the processing complexity of the network device and the terminal device.
  • the first communication device determines the time domain positions of the first resource set and the second resource set.
  • the start time unit or end time unit of the search space set is N1, and the start time unit or end time unit of the first resource set is N1+K1.
  • the start time unit or end time unit of the second resource set is N1+L1.
  • K1 is a predetermined integer or an integer notified in advance
  • L1 is a predetermined integer or an integer notified in advance.
  • the network device sends the first control channel on the resources of the candidate control channel set, where the resources of the candidate control channel set include resources in the first resource set and resources in the second resource set.
  • the network device sends the configuration information of the control resource set to the terminal device. After that, the network device determines a candidate control channel set, and the resources of the candidate control channel set include resources in the first resource set and resources in the second resource set. The network device may use the resources in the first resource set and the resources in the second resource set as resources of the candidate control channel set, and the network device may use the resources in the first resource set and the resources in the second resource set to send the first control channel. Since the network device in the embodiment of the present application can use resources in two resource sets or more resource sets to send the first control channel to the terminal device, so that the terminal device can use resources in two resource sets or more resource sets. Listen to the first control channel.
  • the terminal device monitors the first control channel on the resources of the candidate control channel set, where the resources of the candidate control channel set include resources in the first resource set and resources in the second resource set.
  • the terminal device may determine the resources in the first resource set according to the configuration information of the first resource set, and may determine the resources in the second resource set according to the configuration information of the second resource set. After that, the terminal device determines a candidate control channel set, and the resources of the candidate control channel set include resources in the first resource set and resources in the second resource set.
  • the terminal device can use the resources in the first resource set and the resources in the second resource set as the resources of the candidate control channel set, and the terminal device can use the resources in the first resource set and the resources in the second resource set to monitor the first control channel. Since the network device in the embodiment of the present application can use resources in two resource sets or more resource sets to send the first control channel to the terminal device, so that the terminal device can use resources in two resource sets or more resource sets. Listen to the first control channel.
  • the resources of the blind detection control channel of the first type of terminal equipment and the second type of terminal equipment are different.
  • the control channel for scheduling data transmission for the first type of terminal device is sent on the first resource set and the second resource set, and the terminal device receives the information on the first resource set and the second resource set in the two time domain resources, respectively.
  • the first resource set and the second resource set are determined according to the control resource set.
  • the bandwidth capability of the first type of terminal device is less than the bandwidth of the configured control resource set, it can also receive the control channel sent by the network device without affecting the flexibility of the configuration of the control resource set and search space.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of network equipment, terminal equipment, and interaction between the network equipment and the terminal equipment.
  • the network device and the terminal may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • the communication device 900 may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • FIG. 9 shows that the communication device 900 is a terminal device 900 as an example.
  • the terminal device 900 may include: a transceiver module 901 and a processing module 902.
  • a transceiver module configured to receive downlink control information from a network device, where the downlink control information includes the first modulation and coding mode MCS field;
  • the processing module is configured to determine that the downlink control information is used to schedule data transmission of the first type of terminal device when the value of the first MCS field is the first value; or, when the value of the first MCS field is not When it is the first value, or when the value of the first MCS field is the second value, it is determined that the downlink control information is used for scheduling data transmission of a second type of terminal device.
  • the transceiver module is used to receive downlink control information from the network equipment;
  • the processing module is configured to determine that the downlink control information is used to schedule data transmission of the first type of terminal equipment when the downlink control information is scrambled by the first scrambling sequence; or, when the downlink control information is scrambled by the second scrambling sequence; When the scrambling sequence is scrambled, it is determined that the downlink control information is used for scheduling data transmission of the second type of terminal equipment.
  • the initialization parameter used to generate the first scrambling sequence is a non-zero value
  • the initialization parameter used to generate the second scrambling sequence is equal to zero
  • a transceiver module configured to receive downlink control information from a network device, where the downlink control information includes the first bit;
  • the processing module is configured to determine that the downlink control information is used to schedule data transmission of the first type of terminal equipment when the value of the first bit is the third value; or, when the value of the first bit is the fourth value Value, it is determined that the downlink control information is used to schedule data transmission of the second type of terminal device.
  • a transceiver module configured to receive configuration information of a control resource set from a network device, where the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the configuration information of the second resource set;
  • the processing module is configured to use the transceiver module to monitor the first control channel on the resources of the candidate control channel set, wherein the resources of the candidate control channel set include resources in the first resource set and resources in the second resource set H.
  • the transceiver module is further configured to receive configuration information of the search space from the network device, where the configuration information of the search space is used to indicate the time domain position of the first resource set and the second resource set Time domain location.
  • control resource set For the introduction of the control resource set, the first resource set, the second resource set, and the search space, reference may be made to the foregoing method embodiment, which will not be repeated here.
  • the first MCS field includes 5 bits.
  • the communication device 1000 may be a network device, a device in a network device, or a device that can be matched and used with a network device.
  • FIG. 10 shows that the communication apparatus 1000 is a network device 1000 as an example.
  • the network device 1000 may include: a transceiver module 1001 and a processing module 1002.
  • a transceiver module configured to send downlink control information to a terminal device, where the downlink control information includes the first modulation and coding mode MCS field;
  • the processing module is configured to determine that the value of the first MCS field is the first value when the downlink control information is used for scheduling data transmission of the first type of terminal equipment; or, when the downlink control information is used for scheduling the first value During data transmission of the second type terminal device, it is determined that the value of the first MCS field is not the first value, or the value of the first MCS field is determined to be the second value.
  • the transceiver module is used to send downlink control information to the terminal device;
  • the processing module is configured to use the first scrambling sequence to scramble the downlink control information when the downlink control information is used for scheduling data transmission of the first type of terminal equipment; or, when the downlink control information is used for When scheduling the data transmission of the second type of terminal equipment, the second scrambling sequence is used to scramble the downlink control information.
  • the initialization parameter used to generate the first scrambling sequence is a non-zero value
  • the initialization parameter used to generate the second scrambling sequence is equal to zero
  • a transceiver module configured to send downlink control information to a terminal device, where the downlink control information includes the first bit
  • the processing module is configured to determine that the value of the first bit is the third value when the downlink control information is used to schedule the data transmission of the first type of terminal equipment; or, when the downlink control information is used to schedule the second During data transmission of the type terminal device, it is determined that the value of the first bit is the fourth value.
  • a processing module configured to send configuration information of a control resource set to a terminal device through the transceiver module, where the configuration information of the control resource set is used to indicate the configuration information of the first resource set and the configuration information of the second resource set;
  • the processing module is configured to send the first control channel on the resources of the candidate control channel set through the transceiver module, wherein the resources of the candidate control channel set include resources in the first resource set and the second resource set Resources in.
  • the processing module is further configured to send configuration information of the search space to the terminal device through the transceiver module, and the configuration information of the search space is used to indicate the time domain position and the first resource set of the first resource set. 2. The time domain position of the resource collection.
  • control resource set For the introduction of the control resource set, the first resource set, the second resource set, and the search space, reference may be made to the foregoing method embodiment, which will not be repeated here.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • an apparatus 1100 provided in an embodiment of this application is used to implement the function of the terminal device in the foregoing method.
  • the device may be a terminal device, a device in a terminal device, or a device that can be matched with the terminal device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1100 includes at least one processor 1120, configured to implement the function of the terminal device in the method provided in the embodiment of the present application.
  • the processor 1120 may receive information such as downlink control information, configuration information of a control resource set, etc., and parse the foregoing information. For details, refer to the detailed description in the method example, which is not repeated here.
  • the device 1100 may further include at least one memory 1130 for storing program instructions and/or data.
  • the memory 1130 and the processor 1120 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1120 may operate in cooperation with the memory 1130.
  • the processor 1120 may execute program instructions stored in the memory 1130. At least one of the at least one memory may be included in the processor
  • the device 1100 may also include a communication interface.
  • the communication interface can be implemented in multiple ways.
  • the communication interface may be a transceiver, an interface, a bus, a circuit, a pin, or a device capable of implementing a transceiver function.
  • the communication interface is a transceiver.
  • 1110 is an example for description.
  • the transceiver 1110 is used to communicate with other devices through a transmission medium, so that the device used in the apparatus 1100 can communicate with other devices.
  • the other device may be a network device.
  • the processor 1120 uses the transceiver 1110 to send and receive data, and is used to implement the method executed by the terminal device described in the embodiments corresponding to FIG. 1, FIG. 3, FIG. 4, and FIG. 8.
  • the embodiment of the present application does not limit the specific connection medium between the transceiver 1110, the processor 1120, and the memory 1130.
  • the memory 1130, the processor 1120, and the transceiver 1110 are connected by a bus 1140.
  • the bus is represented by a thick line in FIG. 11.
  • the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • an apparatus 1200 provided by an embodiment of the application is used to implement the function of the network device in the foregoing method.
  • the device may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may be a chip system.
  • the apparatus 1200 includes at least one processor 1220, configured to implement the function of the network device in the method provided in the embodiment of the present application.
  • the processor 1220 may generate and send information such as downlink control information, configuration information of a control resource set, and so on. For details, refer to the detailed description in the method example, which is not repeated here.
  • the apparatus 1200 may further include at least one memory 1230 for storing program instructions and/or data.
  • the memory 1230 and the processor 1220 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1220 may operate in cooperation with the memory 1230.
  • the processor 1220 may execute program instructions stored in the memory 1230. At least one of the at least one memory may be included in the processor
  • the device 1200 may also include a communication interface.
  • the communication interface can be implemented in multiple ways.
  • the communication interface may be a transceiver, an interface, a bus, a circuit, or a device capable of implementing the transceiver function.
  • the communication interface is the transceiver 1212 as an example. It is explained that the transceiver 1212 is used to communicate with other devices through the transmission medium, so that the device used in the apparatus 1200 can communicate with other devices.
  • the other device may be a terminal device.
  • the processor 1220 uses the transceiver 1212 to send and receive data, and is used to implement the method executed by the network device described in the embodiments corresponding to FIG. 1, FIG. 3, FIG. 4, and FIG.
  • the embodiment of the present application does not limit the specific connection medium between the transceiver 1212, the processor 1220, and the memory 1230.
  • the memory 1230, the processor 1220, and the transceiver 1212 are connected by a bus 1240.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used in FIG. 12 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the technical solutions provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server, or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium.
  • the embodiments can be mutually cited.
  • the methods and/or terms between the method embodiments can be mutually cited, such as the functions and/or functions between the device embodiments.
  • Or terms may refer to each other, for example, functions and/or terms between the device embodiment and the method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种通信方法和装置,用于终端设备获取到适用于该类型终端设备的控制信息,实现网络设备和该类型终端设备之间的通信。方法包括:从网络设备接收下行控制信息,下行控制信息中包括第一调制编码方式MCS字段;当第一MCS字段的值为第一值时,确定下行控制信息用于调度第一类型终端设备的数据传输;或,当第一MCS字段的值不为第一值时,或当第一MCS字段的值为第二值时,确定下行控制信息用于调度第二类型终端设备的数据传输。

Description

一种通信方法和装置
本申请要求于2020年3月31日提交中国国家知识产权局、申请号为202010246563.4、发明名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法和装置。
背景技术
为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。例如5G移动通信系统中定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)场景、高可靠低时延通信(ultra reliable and low latency communications,URLLC)场景以及海量机器类通信(massive machine type communications,mMTC)场景。
示例性的,eMBB场景包括:超高清视频、增强现实(augmented reality,AR)、和虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率高。URLLC场景包括:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、和远程手术等触觉交互类应用,这些业务的主要特点是要求传输的超高可靠性和低延时,传输数据量较少以及具有突发性。mMTC场景包括:智能电网配电自动化、可穿戴设备的通信、和智慧城市等,这些业务的主要特点是联网设备数量巨大、且传输数据量较小,mMTC场景中的终端设备需要满足低成本和相对较长的待机时间的需求。
上述不同类型的应用场景下,终端设备对移动通信系统的需求也不同,尤其是如何调度适用于mMTC场景下的终端设备需要的控制信息,还不存在相应的解决方案。
发明内容
本申请实施例提供了一种通信方法和装置,用于终端设备获取到适用于该类型终端设备的控制信息,实现网络设备和该类型终端设备之间的通信。
为解决上述技术问题,本申请实施例提供以下技术方案:
第一方面,本申请实施例提供一种通信方法,包括:从网络设备接收下行控制信息,所述下行控制信息中包括第一调制编码方式MCS字段;当所述第一MCS字段的值为第一值时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,当所述第一MCS字段的值不为所述第一值时,或当所述第一MCS字段的值为第二值时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。在该方案中,网络设备能够为不同类型的终端设备发送它们各自的下行控制信息。例如,为第一类型终端设备发送调度带宽较小的下行控制信息,或为第二类型终端设备发送调度较大带宽的下行控制信息,从而可以满足不同类型的终端设备的调度需求。
第二方面,本申请实施例还提供一种通信方法,包括:向终端设备发送下行控制信息, 所述下行控制信息中包括第一调制编码方式MCS字段;当所述下行控制信息用于调度第一类型终端设备的数据传输时,确定所述第一MCS字段的值为第一值;或,当所述下行控制信息用于调度第二类型终端设备的数据传输时,确定所述第一MCS字段的值不为所述第一值,或确定所述第一MCS字段的值为第二值。
在一种可能的实现方式中,所述第一MCS字段的值为第一值,包括:所述第一MCS字段的所有比特位的值都为1。本申请实施例中通过下行控制信息中的第一MCS字段指示下行控制信息用于为第一类型终端设备或第二类型终端设备调度数据传输,包括:通过第一MCS字段的特殊比特状态(如特殊比特状态可以是第一MCS字段的所有比特的状态是全1状态),指示为第一类型终端设备调度数据传输,该方式用第一MCS字段的所有比特进行指示,虚警概率较低。
在一种可能的实现方式中,当所述下行控制信息用于调度第一类型终端设备的数据传输时,所述下行控制信息中还包括第二MCS字段,所述第二MCS字段用于指示所述第一类型终端设备的数据传输的MCS。本申请实施例中,下行控制信息中可以包括第一MCS字段,该下行控制信息中还可以增加第二MCS字段指示为第一类型终端设备调度的数据传输的MCS。
在一种可能的实现方式中,当所述第一MCS字段的值为第一值时,确定所述下行控制信息用于调度第一类型终端设备的数据传输,包括:当所述第一MCS字段的最高位比特的值为1时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,当所述第一MCS字段的值不为所述第一值时,或当所述第一MCS字段的值为第二值时,确定所述下行控制信息用于调度第二类型终端设备的数据传输,包括:当所述第一MCS字段的最高位比特的值为0时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。本申请实施例中,通过第一MCS字段的最高位比特为1时指示为第一类型终端设备调度数据传输,该方式指示方式简单,且通过第一MCS字段便可以指示为第一类型终端设备调度的数据传输的MCS。
在一种可能的实现方式中,当所述下行控制信息用于调度第一类型终端设备的数据传输时,所述第一MCS字段中的至少一个比特用于指示所述第一类型终端设备的数据传输的MCS,其中,所述至少一个比特中不包括所述第一MCS字段的最高位比特。本申请实施例中网络设备可以通过第一MCS字段中除最高位以外的至少一个比特指示第一类型终端设备的数据传输的MCS,实现了网络设备对MCS的指示。
在一种可能的实现方式中,所述第一MCS字段中包括5个比特。
第三方面,本申请实施例提供一种通信方法,包括:从网络设备接收下行控制信息;当所述下行控制信息被第一加扰序列加扰时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,当所述下行控制信息被第二加扰序列加扰时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。在该方案中,终端设备在解析下行控制信息时根据所采用的加扰序列确定出该下行控制信息是否为该终端设备调度数据传输,以便终端设备正确获得网络设备发送给该终端设备的下行控制信息。网络设备能够为不同类型的终端设备发送它们各自的下行控制信息。例如,为第一类型终端设备发送调度带宽较小的下行控制信息,或者或为第二类型终端设备发送调度较大带宽的下行控制信息,从而可以 满足不同类型的终端设备的调度需求。
第四方面,本申请实施例提供一种通信方法,包括:向终端设备发送下行控制信息;当所述下行控制信息用于调度第一类型终端设备的数据传输时,使用第一加扰序列对所述下行控制信息进行加扰;或,当所述下行控制信息用于调度第二类型终端设备的数据传输时,使用第二加扰序列对所述下行控制信息进行加扰。
在一种可能的实现方式中,用于产生所述第一加扰序列的初始化参数为非零值,用于产生所述第二加扰序列的初始化参数等于零。其中,网络设备可以使用非零值作为初始化参数,通过加扰序列发生器产生第一加扰序列,然后使用第一加扰序列对下行控制信息进行加扰,以通过第一加扰序列指示下行控制信息所调度的终端设备的类型。或,网络设备可以使用零作为初始化参数,通过加扰序列发生器产生第二加扰序列,然后使用第二加扰序列对下行控制信息进行加扰,以通过第二加扰序列指示下行控制信息所调度的终端设备的类型。本申请实施例中加扰序列的初始化参数可以为非零值或等于零,从而使得终端设备在解析下行控制信息时根据所采用的加扰序列确定出该下行控制信息是否为该终端设备调度数据传输。
第五方面,本申请实施例提供一种通信方法,包括:从网络设备接收下行控制信息,所述下行控制信息中包括第一比特;当所述第一比特的值为第三值时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,当所述第一比特的值为第四值时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。本申请实施例通过下行控制信息中的第一比特指示下行控制信息用于为第一类型终端设备或第二类型终端设备调度数据传输。指示方式简单,终端设备和网络设备实现的复杂度低。通过该方法,网络设备能够为不同类型的终端设备发送不同特征的下行控制信息。例如,为第一类型终端设备发送调度带宽较大的下行控制信息,或为第二类型终端设备发送调度较大带宽的下行控制信息,从而可以满足不同类型的终端设备的调度需求。
第六方面,本申请实施例提供一种通信方法,包括:向终端设备发送下行控制信息,所述下行控制信息中包括第一比特;当所述下行控制信息用于调度第一类型终端设备的数据传输时,确定所述第一比特的值为第三值;或,当所述下行控制信息用于调度第二类型终端设备的数据传输时,确定所述第一比特的值为第四值。
第七方面,本申请实施例提供一种通信方法,包括:从网络设备接收控制资源集的配置信息,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息;在候选控制信道集合的资源上监测第一控制信道,其中,所述候选控制信道集合的资源包括所述第一资源集合中的资源和所述第二资源集合中的资源。在该方案中,为终端设备调度数据传输的控制信道发送在第一资源集合和第二资源集合上,终端设备分别在两个时域资源中接收第一资源集合和第二资源集合上的信息。第一资源集合和第二资源集合根据控制资源集确定。示例性地,该终端设备为第一类型终端设备,第一类型终端设备的带宽能力小于配置的控制资源集的带宽时,也能够接收网络设备发送的控制信道,并且不影响控制资源集和搜索空间的配置的灵活性。可选地,该控制资源集用于第二类型终端设备接收控制信息。
第八方面,本申请实施例提供一种通信方法,包括:向终端设备发送控制资源集的配 置信息,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息;在候选控制信道集合的资源上发送第一控制信道,其中,所述候选控制信道集合的资源中包括所述第一资源集合中的资源和所述第二资源集合中的资源。
在一种可能的实现方式中,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息,包括:所述控制资源集的配置信息指示第一控制资源集的频域资源位置,其中,所述第一资源集合中的第s个频域资源的频域位置相对所述第一控制资源集中的第t个频域资源的频域位置的偏移为第一偏移量,所述第二资源集合中的第r个频域资源的频域位置相对于所述第一资源集合中的第p个频域资源的频域位置的偏移为第二偏移量,其中,所述s、所述t、所述r、和所述p为大于0的整数。在该方案中,第一资源集合中的资源和第一控制资源集中的资源之间存在偏移,从而可以根据第一控制资源集中的资源确定出第一资源集合中的资源。例如,第一资源集合中的第s个频域资源的频域位置相对第一控制资源集中的第t个频域资源的频域位置的偏移为第一偏移量。该第一偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第一资源集合中的第s个频域资源可以是第一资源集合中的任意一个资源。第二资源集合中的资源和第一资源集合中的资源之间存在偏移,从而可以根据第一资源集合中的资源确定出第二资源集合中的资源。例如,第二资源集合中的第r个频域资源的频域位置相对于第一资源集合中的第p个频域资源的频域位置的偏移为第二偏移量。该第二偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第一资源集合中的第p个频域资源可以是第一资源集合中的任意一个资源。第二资源集合中的第r个频域资源可以是第二资源集合中的任意一个资源。
在一种可能的实现方式中,所述第一偏移量为N/M的整数倍,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述M为正整数,所述/为相除符号。其中,频域资源单元是控制资源集合在频域上的资源单元,例如频域资源单元可以是如下信息中的一种:控制信道单元,资源块,资源单元,资源块组,资源单元组,子载波间隔。N为第一控制资源集中包括的频域资源单元的个数,例如N的取值为48或96,N还可以取其它数值,此处不做限定。M的取值可以为4或6,还可以取其他数值,此处不做限定。
在一种可能的实现中,所述第一资源集合的频域的带宽为N/M的整数倍,例如1倍。当N/M不能给整除时,可以对N/M进行上取值或者下取整。该整数倍和前一段落中的整数倍可以相同,也可以不同。通过上述方法,可以简易地实现第一资源集合的配置。
在一种可能的实现方式中,所述第二偏移量为N/E的整数倍,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述E为正整数,所述/为相除符号。具体的,E可以为正整数,E的取值方式有多种,例如E的取值可以为4或6等,E还可以取其它数值,此处不做限定。
在一种可能的实现中,所述第二资源集合的频域的带宽为N/E的整数倍,例如1倍。当N/E不能被整除时,可以对N/E进行上取值或者下取整。该整数倍和前一段落中的整数倍可以相同,也可以不同。通过上述方法,可以简易地实现第二资源集合的配置。
在一种可能的实现方式中,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息,包括:所述控制资源集的配置信息指示第一控制资源集的频域资源位置,其中,所述第一资源集合中的第v个频域资源的频域位置相对所述第一 控制资源集中的第w个频域资源的频域位置的偏移为第三偏移量,所述第二资源集合中的第x个频域资源的频域位置相对所述第一控制资源集中的第y个频域资源的频域位置的偏移为第四偏移量,其中,所述v、所述w、所述x、和所述y为大于0的整数。其中,第一资源集合中的资源和第一控制资源集中的资源之间存在偏移,从而可以根据第一控制资源集中的资源确定出第一资源集合中的资源。例如,第一资源集合中的第v个频域资源的频域位置相对第一控制资源集中的第w个频域资源的频域位置的偏移为第三偏移量。该第三偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第一资源集合中的第v个频域资源可以是第一资源集合中的任意一个资源。第二资源集合中的资源和第一控制资源集中的资源之间存在偏移,从而可以根据第一控制资源集中的资源确定出第二资源集合中的资源。例如,第二资源集合中的第x个频域资源的频域位置相对第一控制资源集中的第y个频域资源的频域位置的偏移为第四偏移量。该第四偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第二资源集合中的第x个频域资源可以是第二资源集合中的任意一个资源。
在一种可能的实现方式中,所述第三偏移量为N/F的整数倍,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述F为正整数,所述/为相除符号。其中,N为第一控制资源集中包括的频域资源单元的个数。例如,频域资源单元为资源块时,N的取值为48或96。N还可以取其它数值,此处不做限定。具体的,F可以为正整数,F的取值方式有多种,例如F的取值可以为4或6等,F还可以取其它数值,此处不做限定。
在一种可能的实现中,所述第一资源集合的频域的带宽为N/F的整数倍,例如1倍。当N/F不能给整除时,可以对N/F进行上取值或者下取整。该整数倍和前一段落中的整数倍可以相同,也可以不同。通过上述方法,可以简易地实现第一资源集合的配置。
在一种可能的实现方式中,所述第四偏移量为N/G的整数倍,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述G为正整数,所述/为相除符号。其中,N为第一控制资源集中包括的频域资源单元的个数。例如,频域资源单元为资源块时,N的取值为48或96。N还可以取其它数值,此处不做限定。
在一种可能的实现中,所述第二资源集合的频域的带宽为N/G的整数倍,例如1倍。当N/G不能给整除时,可以对N/G进行上取值或者下取整。该整数倍和前一段落中的整数倍可以相同,也可以不同。通过上述方法,可以简易地实现第二资源集合的配置。
在一种可能的实现方式中,所述第一资源集合在频域包括N/H个频域资源单元,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述H为正整数,所述/为相除符号。其中,N为第一控制资源集中包括的频域资源单元的个数,例如N的取值为48或96,N还可以取其它数值,此处不做限定。具体的,H可以为正整数,H的取值方式有多种,例如H的取值可以为4或6,H还可以取其它数值,此处不做限定。
在一种可能的实现中,所述第一资源集合的频域的带宽为N/H的整数倍,例如1倍。当N/H不能给整除时,可以对N/H进行上取值或者下取整。该整数倍和前一段落中的整数倍可以相同,也可以不同。通过上述方法,可以简易地实现第一资源集合的配置。
在一种可能的实现方式中,所述第二资源集合在频域包括N/U个频域资源单元,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述U为正整数,所述/为相 除符号。其中,N为第一控制资源集中包括的频域资源单元的个数,例如N的取值为48或96,N还可以取其它数值,此处不做限定。具体的,U可以为正整数,U的取值方式有多种,例如U的取值可以为4或6,U还可以取其它数值,此处不做限定。
在一种可能的实现中,所述第二资源集合的频域的带宽为N/U的整数倍,例如1倍。当N/U不能给整除时,可以对N/U进行上取值或者下取整。该整数倍和前一段落中的整数倍可以相同,也可以不同。通过上述方法,可以简易地实现第二资源集合的配置。
在一种可能的实现中,控制资源集可以是CORESET 0,搜索空间可以是Search Space 0。
在一种可能的实现方式中,所述方法还包括:从所述网络设备接收搜索空间的配置信息,所述搜索空间的配置信息用于指示所述第一资源集合的时域位置和所述第二资源集合的时域位置。
在一种可能的实现方式中,所述方法还包括:向终端设备发送搜索空间的配置信息,搜索空间的配置信息用于指示第一资源集合的时域位置和第二资源集合的时域位置。在本申请实施例中,网络设备为终端设备配置了上述的第一资源集合和第二资源集合之后,网络设备可以通过搜索空间的配置信息指示第一资源集合的时域位置和第二资源集合的时域位置,从而使得终端设备在接收到搜索空间的配置信息之后,终端设备可以通过该搜索空间的配置信息获取到第一资源集合的时域位置和第二资源集合的时域位置,从而终端设备可以使用第一资源集合和第二资源集合对第一控制信道进行监测,以确定出网络设备发送的第一控制信道。
在一种可能的实现方式中,所述搜索空间的配置信息用于指示所述第一资源集合的时域位置和所述第二资源集合的时域位置,包括:所述搜索空间的配置信息指示第一搜索空间的时域位置;所述第一资源集合中的第Ts个时域资源的时域位置相对所述第一搜索空间中的第Tt个时域资源的时域位置的偏移为第五偏移量,所述第二资源集合中的第Tr个时域资源的时域位置相对所述第一资源集合中的第Te个时域资源的时域位置的偏移为第六偏移量,所述Ts、所述Tt、所述Tr、和所述Te为大于0的整数;或,所述第一资源集合中的第Tv个时域资源的时域位置相对所述第一搜索空间中的第Tw个时域资源的时域位置的偏移为第七偏移量,所述第二资源集合中的第Tx个时域资源的时域位置相对所述第一搜索空间中的第Ty个时域资源的时域位置的偏移为第八偏移量,所述Tv、所述Tw、所述Tx、和所述Ty为大于0的整数。其中,第一资源集合中的时域资源和第一搜索空间中的时域资源之间存在偏移,从而可以根据第一搜索空间中的时域资源确定出第一资源集合中的时域资源。第二资源集合中的时域资源和第一资源集合中的时域资源之间存在偏移,从而可以根据第一资源集合中的时域资源确定出第二资源集合中的时域资源。
在一种可能的实现方式中,所述第一资源集合中包括的时域资源单元的个数等于所述第一控制资源集中包括的时域资源单元的个数。第一资源集合中包括的时域资源单元的个数等于第一控制资源集中包括的时域资源单元的个数,使得网络设备和终端设备可以方便的确定出第一资源集合中包括的时域资源单元的个数,简化网络设备和终端设备的处理复杂度。
在一种可能的实现方式中,所述第二资源集合中包括的时域资源单元的个数等于所述第一控制资源集中包括的时域资源单元的个数。第二资源集合中包括的时域资源单元的个 数等于第一控制资源集中包括的时域资源单元的个数,使得网络设备和终端设备可以方便的确定出第二资源集合中包括的时域资源单元的个数,简化网络设备和终端设备的处理复杂度。
第九方面,提供一种装置,该装置可以是终端设备,也可以是终端设备中的装置,或是能够和终端设备匹配使用的装置。一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和收发模块。示例性地,
收发模块,用于从网络设备接收下行控制信息,所述下行控制信息中包括第一调制编码方式MCS字段;
处理模块,用于当所述第一MCS字段的值为第一值时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,当所述第一MCS字段的值不为所述第一值时,或当所述第一MCS字段的值为第二值时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。
在一种可能的设计中,下行控制信息中包括的具体内容可以参见第一方面中针对下行控制信息的具体描述,此处不再具体限定。
第十方面,提供一种装置,该装置可以是网络设备,也可以是网络设备中的装置,或是能够和网络设备匹配使用的装置。一种设计中,该装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和收发模块。示例性地,
收发模块,用于向终端设备发送下行控制信息,所述下行控制信息中包括第一调制编码方式MCS字段;
处理模块,用于当所述下行控制信息用于调度第一类型终端设备的数据传输时,确定所述第一MCS字段的值为第一值;或,当所述下行控制信息用于调度第二类型终端设备的数据传输时,确定所述第一MCS字段的值不为所述第一值,或确定所述第一MCS字段的值为第二值。
在一种可能的设计中,下行控制信息中包括的具体内容可以参见第二方面中针对下行控制信息的具体描述,此处不再具体限定。
第十一方面,提供一种装置,该装置可以是终端设备,也可以是终端设备中的装置,或是能够和终端设备匹配使用的装置。一种设计中,该装置可以包括执行第三方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和收发模块。示例性地,
收发模块,用于从网络设备接收下行控制信息;
处理模块,用于当所述下行控制信息被第一加扰序列加扰时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,当所述下行控制信息被第二加扰序列加扰时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。
在一种可能的设计中,用于产生所述第一加扰序列的初始化参数为非零值,用于产生所述第二加扰序列的初始化参数等于零。
第十二方面,提供一种装置,该装置可以是网络设备,也可以是网络设备中的装置,或是能够和网络设备匹配使用的装置。一种设计中,该装置可以包括执行第四方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和收发模块。示例性地,
收发模块,用于向终端设备发送下行控制信息;
处理模块,用于当所述下行控制信息用于调度第一类型终端设备的数据传输时,使用第一加扰序列对所述下行控制信息进行加扰;或,当所述下行控制信息用于调度第二类型终端设备的数据传输时,使用第二加扰序列对所述下行控制信息进行加扰。
第十三方面,提供一种装置,该装置可以是终端设备,也可以是终端设备中的装置,或是能够和终端设备匹配使用的装置。一种设计中,该装置可以包括执行第五方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和收发模块。示例性地,
收发模块,用于从网络设备接收下行控制信息,所述下行控制信息中包括第一比特;
处理模块,用于当所述第一比特的值为第三值时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,当所述第一比特的值为第四值时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。
第十四方面,提供一种装置,该装置可以是网络设备,也可以是网络设备中的装置,或是能够和网络设备匹配使用的装置。一种设计中,该装置可以包括执行第六方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和收发模块。示例性地,
收发模块,用于向终端设备发送下行控制信息,所述下行控制信息中包括第一比特;
处理模块,用于当所述下行控制信息用于调度第一类型终端设备的数据传输时,确定所述第一比特的值为第三值;或,当所述下行控制信息用于调度第二类型终端设备的数据传输时,确定所述第一比特的值为第四值。
第十五方面,提供一种装置,该装置可以是终端设备,也可以是终端设备中的装置,或是能够和终端设备匹配使用的装置。一种设计中,该装置可以包括执行第七方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和收发模块。示例性地,
收发模块,用于从网络设备接收控制资源集的配置信息,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息;
处理模块,用于利用收发模块在候选控制信道集合的资源上监测第一控制信道,其中,所述候选控制信道集合的资源包括所述第一资源集合中的资源和所述第二资源集合中的资源。
第十六方面,提供一种装置,该装置可以是网络设备,也可以是网络设备中的装置, 或是能够和网络设备匹配使用的装置。一种设计中,该装置可以包括执行第八方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和收发模块。示例性地,
收发模块,用于向终端设备发送控制资源集的配置信息,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息;
处理模块,用于利用收发模块在候选控制信道集合的资源上发送第一控制信道,其中,所述候选控制信道集合的资源中包括所述第一资源集合中的资源和所述第二资源集合中的资源。
第十七方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面、第三方面、第五方面、或第七方面描述的方法。可选的,所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面、第三方面、第五方面、或第七方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,执行前述第一方面、第三方面、第五方面、或第七方面中的步骤中,此处不再具体限定。
第十八方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第二方面、第四方面、第六方面、或第八方面描述的方法。可选的,所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第二方面、第四方面、第六方面、或第八方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,其它设备可以为终端设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,执行前述第二方面、第四方面、第六方面、或第八方面中的步骤中,此处不再具体限定。
第十九方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面至第八方面任一方面所述的方法。
第二十方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面至第八方面任一方面所述的方法。
第二十一方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面至第八方面任一方面所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第二十二方面,本申请实施例提供了一种系统,所述系统包括第九方面所述的装置、和第十方面所述的装置;或,
所述系统包括第十一方面所述的装置、和第十二方面所述的装置;或,
所述系统包括第十三方面所述的装置、和第十四方面所述的装置;或,
所述系统包括第十五方面所述的装置、和第十六方面所述的装置;或,
所述系统包括第十七方面所述的装置、和第十八方面所述的装置。
附图说明
图1为本申请实施例提供的一种通信方法的交互流程示意图;
图2为本申请实施例提供的一种下行控制信息的帧结构示意图;
图3为本申请实施例提供的一种通信方法的交互流程示意图;
图4为本申请实施例提供的一种通信方法的交互流程示意图;
图5为本申请实施例提供的聚合等级为2的控制信息中CCE与REG的非交织映射示意图;
图6为本申请实施例提供的聚合等级为2的控制信息中CCE与REG的交织映射示意图;
图7a为本申请实施例提供的聚合等级与CCE之间的映射关系示意图;
图7b本申请实施例提供的聚合等级与CCE之间的映射关系示意图;
图8为本申请实施例提供的一种通信方法的交互流程示意图;
图9为本申请实施例提供的一种终端设备的组成结构示意图;
图10为本申请实施例提供的一种网络设备的组成结构示意图;
图11为本申请实施例提供的一种终端设备的组成结构示意图;
图12为本申请实施例提供的一种网络设备的组成结构示意图。
具体实施方式
本申请实施例提供了一种通信方法和装置,用于终端设备获取到适用于该类型终端设备的控制信息,实现网络设备和该类型终端设备之间的通信。
下面结合附图,对本申请的实施例进行描述。
本申请实施例提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、5G移动通信系统、无线保真(wireless-fidelity,WiFi)系统、未来的通信系统、或多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:eMBB、URLLC、mMTC、设备到设备(device-to-device,D2D)通信、车辆外联(vehicle to everything,V2X)通信、车辆到车辆(vehicle to vehicle,V2V)通信、和物联网(internet of things,IoT)等。
在无线通信系统中包括通信设备,通信设备间可以利用空口资源进行无线通信。其中,通信设备可以包括网络设备和终端设备,网络设备还可以称为网络侧设备。空口资源可以包括时域资源、频域资源、码资源和空间资源中的至少一个。在本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或更多个,本申请实施例不做限制。例如无线通信系统包括两个通信设备,分别为第一通信设备和第二通信设备,其中, 第一通信设备可以是网络设备,第二通信设备可以是终端设备。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B,而在公式计算中,“/”可以表示相除符号,N/M表示N除以M,N和M分别表示一种数值;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中,A,B可以是单数或复数。为了便于描述本申请实施例的技术方案,在本申请实施例中可以采用“第一”、“第二”、“A”、“B”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”、“A”、“B”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”、“A”、“B”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;或可以部署在水面上(如轮船等);或可以部署在空中(例如飞机、气球或卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。或终端设备可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中,或该装置可以和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中,以用于实现终端设备的功能的装置是终端设备为例,来具体描述本申请实施例提供的技术方案。
在mMTC场景下的终端设备可以是降低能力(reduced capbility,REDCAP)终端设备。其中,REDCAP终端设备还可以被称为轻型(light)终端设备。例如,NR系统中的REDCAP终端设备相对于传统的终端设备能力更低,例如该REDCAP终端设备相对于传统的终端设备具有以下特点中的一种或多种:支持更窄的带宽、配置的天线数更少、支持的最大发射功率更小、支持更低的双工能力(例如传统的终端设备支持全双工频分双工,REDCAP终端设备支持半双工频分双工)、和数据处理能力更弱(例如相同时间内REDCAP终端设备相比于传统的终端设备可以处理的数据更少,或处理相同数据时REDCAP终端设备相比于传统的终端设备处理时间更长),因此REDCAP终端设备和传统的终端设备可能需要不同的系统信息、专有的接入网络、和/或不同性能的控制信道等。其中,传统的终端设备可以是非REDCAP终端设备,该非REDCAP终端设备主要支持eMBB业务和/或URLLC业务。相对REDCAP终端设备,传统的终端设备可以看作是高能力终端设备或能力不受限的终端设备。可选地,传统的终端设备可以被替换为未来引进的、相对REDCAP终端设备是高能力的终端设备。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无 线接入网中能够和终端设备进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G移动通信系统中的基站或LTE中的基站,其中,5G移动通信系统中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中,或该装置可以和网络设备匹配使用。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备为例,来具体描述本申请实施例提供的技术方案。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线通信可以包括:网络设备和终端设备间的无线通信、网络设备和网络设备间的无线通信、或终端设备和终端设备间的无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。该技术方案可用于进行调度实体和从属实体间的无线通信,其中,调度实体可以为从属实体分配资源。本领域技术人员可以将本申请实施例提供的技术方案用于进行其它调度实体和从属实体间的无线通信,例如宏基站和微基站之间的无线通信,例如第一类型终端设备和第二类型终端设备间的无线通信。其中,第一类型终端设备和第二类型终端设备可表示不同类型的两种终端设备。例如,第一类型终端设备可以是用于工业无线传感网络(industry wireless sensor network,IWSN)的终端设备,第二类型终端设备可以是用于视频监控(Video Surveillance)的终端设备。或,第一类型终端设备可以是降低能力的终端设备的类型1,第二类型终端设备可以是降低能力的终端设备的类型2和非能力降低的终端设备。例如,第一类型终端设备可以是用于工业无线传感网络的终端设备,第二类型终端设备可以是用于视频监控的终端设备和增强移动宽带(eMBB)的终端设备。
本申请实施例提出一种通信方法,适用于网络设备和多种类型终端设备之间的通信场景,可以为不同类型的终端设备提供独立的控制信息,例如可以为REDCAP终端设备提供独立的控制信息,从而满足各种类型的终端设备的通信需求,例如,REDCAP终端设备和传统终端设备需要通过不同的系统信息来接入网络,所以需要根据不同的控制信息接收各自需要的系统信息。或者,REDCAP终端设备和传统终端设备对数据接收需要的带宽不同,所以需要为不同类型终端设备提供不同的控制信息。可选地,该方法用于URLLC终端设备时,可以为URLLC终端设备提供独立的控制信息。可选地,该方法用于eMBB终端设备时,可以为eMBB终端设备提供独立的控制信息。
请参阅图1所示,为本申请实施例提供的网络设备和终端设备之间的一种交互流程示意图,在该交互流程中,步骤101至步骤103从网络设备一侧进行说明,步骤111至步骤113从终端设备一侧进行说明。图1所示的交互流程主要包括如下步骤:
101、网络设备向终端设备发送下行控制信息(downlink control information,DCI),下行控制信息中包括第一调制编码方式(modulation and coding scheme,MCS)字段。
在本申请实施例中,DCI中的字段还可以称为DCI中的域或信息域。例如,DCI中的第一MCS字段也可以称为第一MCS域或第一MCS信息域。
网络设备可以生成下行控制信息,下行控制信息可以通过物理下行控制信道(physical  downlink control channel,PDCCH)承载。下行控制信息用于调度物理下行共享信道(physical downlink shared channel,PDSCH),例如下行控制信息指示了接收PDSCH需要的时域资源、频域资源、调制编码方式等参数,终端设备从网络设备接收到下行控制信息之后,终端设备根据下行控制信息指示的上述参数进行PDSCH的接收。
其中,PDSCH用于下行数据传输。下行控制信息调度PDSCH与下行控制信息调度下行数据传输的含义相同,另外调度下行数据传输可以简称为调度数据传输。例如,PDSCH可以承载系统信息块(system information block,SIB)。SIB用于承载终端设备所在的小区中的公共信息,该公共信息包括终端设备接入网络设备所需的系统信息和其他公共信息。例如根据该系统信息,终端设备可以在小区中接入网络设备,和网络设备进行通信。可选地,小区中的系统信息可以通过多个SIB发送,不同的SIB承载不同的系统信息。例如,SIB1承载终端设备接入网络前需要获知的系统信息,其他系统信息块(例如SIB2至SIB9)承载终端设备接入网络前不需要获知的系统信息。例如,PDSCH上可以承载寻呼消息、或随机接入响应等,本申请实施例不做限制。
本申请实施例中,为了能够指示下行控制信息用于为哪种类型的终端设备调度数据传输,网络设备可以在下行控制信息中包括第一MCS字段,通过第一MCS字段来指示为哪种类型终端设备调度数据传输。具体的,下行控制信息中包括的第一MCS字段可以是下行控制信息中新增的字段,还可以是下行控制信息中的保留字段,或是下行控制信息中的原有字段,此处不做限定。
在申请实施例中,下行控制信息可用于调度不同类型终端设备的数据传输,为描述方便也可以简称为下行控制信息可用于调度不同类型的终端设备。下行控制信息中包括的第一MCS字段可以指示下行控制信息所调度的终端设备类型,该下行控制信息可以用于调度系统信息,或用于调度随机接入响应消息,或用于调度寻呼消息,或用于调度其他公共消息,该公共消息用于调度小区中所有终端设备或多个终端设备,此处不做限定。本申请实施例中,第一MCS字段用于指示下行控制信息调度不同类型的终端设备时,第一MCS字段的值是不相同的。网络设备可以通过如下步骤102或步骤103确定第一MCS字段的值。本申请实施例中,网络设备可以根据下行控制信息调度的不同类型的终端设备确定执行后续步骤102或步骤103,具体可以根据实际应用场景中下行控制信息所需要调度的终端设备的类型来确定需要执行的具体步骤。
102、当下行控制信息用于调度第一类型终端设备的数据传输时,网络设备确定第一MCS字段的值为第一值;或,
103、当下行控制信息用于调度第二类型终端设备的数据传输时,网络设备确定第一MCS字段的值不为第一值,或确定第一MCS字段的值为第二值。
在一个传输时间间隔(transmission time interval,TTI)内,例如在一个子帧或一个时隙内,网络设备需要为终端设备发送多个上述类型的下行控制信息时,网络设备可以为每个上述类型的控制信息分别执行前述的步骤101至步骤103。
在一种可能的实现方式中,下行控制信息用于调度PDSCH,例如下行控制信息指示PDSCH的时域资源、频域资源、调制编码方式等传输参数,终端设备从网络设备接收到下行控制信息之后,终端设备根据下行控制信息指示的传输参数接收PDSCH。下行控制信息 可以用于调度至少两种不同类型终端设备的数据传输,例如下行控制信息可以用于调度第一类型终端设备的数据传输,或可以用于调度第二类型终端设备的数据传输。其中,第一类型终端设备和第二类型终端设备分别表示的不同类型的终端设备。下行控制信息用于调度两种不同类型终端设备的数据传输只是一种可能的举例方式,下行控制信息还可以用于调度三种不同类型终端设备的数据传输,或调度更多类型终端设备的数据传输,此处不做限定。在本申请实施例中,为了简化描述,当下行控制信息用于调度一种类型终端设备的数据传输时,还可以描述为:该下行控制信息用于调度一种类型的终端设备。
在本申请实施例中,第一类型终端设备和第二类型终端设备具有多种实现方式,接下来举例说明。例如第一类型终端设备可以是用于物联的终端设备,或是REDCAP终端设备。第二类型终端设备可以是增强移动宽带(eMBB)的终端设备,或低时延高可靠(URLLC)的终端设备。或,第一类型终端设备是降低能力的终端设备的类型1,第二类型终端设备是降低能力的终端设备的类型2。例如,第一类型终端设备是用于工业无线传感网络(industry wireless sensor network,IWSN)的终端设备,第二类型终端设备是用于视频监控(Video Surveillance)的终端设备。或,第一类型终端设备是降低能力的终端设备的类型1,第二类型终端设备是降低能力的终端设备的类型2和非能力降低的终端设备。例如,第一类型终端设备是用于工业无线传感网络的终端设备,第二类型终端设备是用于视频监控的终端和增强移动宽带(eMBB)的终端设备。
可选地,不同类型终端设备的特征信息是不相同的。对于一种类型的终端设备,该终端设备的特征信息可以体现为下述一种或多种参数的参数值:最大带宽(maximum bandwidth,MAX BW)、最小带宽、应用场景、峰值速率、最大调制阶数、双工能力、天线数量、处理时间(时延)、可靠性要求(例如所要求的误块率或误码率)、是否支持增补上行(supplementary uplink,SUL)、是否支持载波聚合(carrier aggregation,CA)、和CA能力。不同类型终端设备的一种或多种参数的值不同。终端设备的类型可以表述为终端设备的特征信息。
其中,最大调制阶数可以指:最大正交振幅调制(maximum quadrature amplitude modulation,MAX QAM)所对应的阶数,例如最大调制阶数可以是16正交振幅调制(quadrature amplitude modulation,QAM)、64QAM、或256QAM等。应用场景可以包括以下场景中的一种或多种:工业无线传感器网络(industry wireless sensor network,IWSN)、摄像(camera)场景、可穿戴(wearable)场景、和视频监控场景等等。也可以不限制应用场景,此时该特征信息可以为不限制(not limited)。CA能力可以指终端设备支持CA时,终端设备能够最大支持的载波数。双工能力可以指:当通信系统的调制方式为频分双工(frequency division duplex,FDD)时,终端设备是否支持同时收发信号的能力,主要包括半双工频分双工(half-duplex FDD)和全双工频分双工(full-duplex FDD)两种能力。其中,half-duplex FDD表示终端设备不支持同时收发信号,即终端设备支持时分地接收信号和发送信号,full-duplex FDD表示终端设备支持同时收发信号。
例如,下表1示出了终端设备的类型以及对应的特征信息,如表1所示,类型1的终端设备具有的特征信息包括:MAX BW=5兆赫兹(megahertz,MHz)或者10MHz,MAX QAM=16,应用于IWSN场景,类型3的终端设备具有的特征信息包括:MAX BW=20MHz,MAX QAM=16, 应用于camera场景等特征。
表1
类型 最大带宽 最大调制阶数 应用场景
1 MAX BW=5MHz MAX QAM=16 IWSN
2 MAX BW=10MHz MAX QAM=16 IWSN
3 MAX BW=20MHz MAX QAM=16 camera
4 MAX BW=20MHz MAX QAM=64 wearable
在本申请实施例中,第一MCS字段用于指示下行控制信息调度的不同类型的终端设备的数据传输时,第一MCS字段的值是不相同的。第一MCS字段的取值可以是第一值,例如第一值可以是预先配置的数值,或第一MCS字段的取值可以不是第一值,例如第一MCS字段的取值可以是除第一值以外的其它值,例如除第一值以外的其它值可以是第二值。
示例性的,在本申请实施例中,可以预配置下行控制信息所调度的终端设备的类型与该下行控制信息中第一MCS字段的值之间的对应关系。即,该对应关系是网络设备和终端设备预先知道的。或,网络设备可以在发送下行控制信息之前,通过信令向终端设备指示该对应关系。即,在网络设备确定下行控制信息之前,网络设备是知道该对应关系的,终端设备在解读下行控制信息之前,终端也是知道该对应关系的。那么当网络设备确定下行控制信息时,由于网络设备知道将要调度的终端设备的类型,网络设备可以根据所要调度的终端设备的类型确定出第一MCS字段的值。
通过下行控制信息中的第一MCS字段,使得终端设备可以知道所接收的下行控制信息的类型,从而可以使终端设备进行正确的操作。例如,对于一个第一类型终端设备,当其接收到一个下行控制信息,如果根据该下行控制信息中第一MCS字段确定该下行控制信息用于调度第一类型终端设备,第一类型终端设备可以对该下行控制信息进行正确解读,并利用该下行控制信息接收PDSCH;如果第一类型终端设备根据该下行控制信息中第一MCS字段确定该下行控制信息用于调度第二类型终端设备,第一类型终端设备可以丢弃该下行控制信息,从而避免该第一类型终端设备错误地接收PDSCH。
本申请实施例中,网络设备通过下行控制信息中第一MCS字段携带的不同值,用于指示下行控制信息调度的终端设备的类型。下行控制信息所调度的终端设备的类型与第一MCS字段的值之间的对应关系有多种实现方式,例如当下行控制信息用于调度第一类型终端设备的数据传输时,确定第一MCS字段的值为第一值;或,当下行控制信息用于调度第二类型终端设备的数据传输时,确定第一MCS字段的值不为第一值,或确定第一MCS字段的值为第二值。
其中,第一值可以是根据第一MCS字段的比特状态确定的数值,第二值可以是根据第一MCS字段的比特状态确定的数值,且第二数值不等于第一数值。
在本申请的一些实施例中,第一MCS字段的值为第一值,包括:第一MCS字段的所有比特位的值都为1。其中,第一值为第一MCS字段的所有比特位的值都为1时第一MCS字段指示的数值,例如第一MCS字段为5个比特,则第一值对应的第一MCS字段的比特状态为11111。第二数值可以是除第一值以外的其它值,例如第二值为00000至00100,共5种比特状态中的任意一个。或第二值为00000至01001,共10种比特状态中的任意一个。或 第二值为00000至01110,共14种比特状态中的任意一个。本申请实施例中,网络设备确定第一MCS字段的所有比特位的值都为1时作为第一值,可以简化识别第一MCS字段的方式,便于网络设备向终端设备指示下行控制信息所调度的终端设备的类型。
在本申请的另一些实施例中,第一MCS字段的值为第一值包括:第一MCS字段中的X个比特位的值都为1,X的取值小于等于第一MCS字段包括的比特数。
其中,X个比特在第一MCS字段包括的比特位置可以是预定义的,也可以是网络设备通过无线资源控制(radio resource control,RRC)信令、系统消息、媒体接入控制(media access control,MAC)控制元素(control element,CE)、DCI等通知给终端设备的。例如,第一MCS字段包括的比特数是5个比特,X的取值可以等于4,即第一值为第一MCS字段中的4个比特位的值都为1,且这4个比特为第一MCS字段中的高4位,或X的取值可以等于3,即第一值为第一MCS字段中的3个比特位的值都为1,且这3个比特为第一MCS字段中的高3位。对于X的取值方式,此处不做限定。
在本申请的一些实施例中,当下行控制信息用于调度第二类型终端设备的数据传输时,例如下行控制信息用于调度第二类型终端设备的PDSCH时,第一MCS字段的值指示了该PDSCH的MCS。在本申请实施例中,PDSCH的MCS可以用于指示PDSCH的调制编码方式和相应的编码速率。例如,下表2所示为不同的MCS字段的值对应的PDSCH的调制编码方式和相应的编码速率。
表2
MCS字段的值 调制编码方式 目标编码速率R×[1024]
0 2 30
1 2 40
2 2 50
3 2 64
4 2 78
5 2 99
6 2 120
7 2 157
8 2 193
9 2 251
10 2 308
11 2 379
12 2 449
13 2 526
14 2 602
15 4 340
16 4 378
17 4 434
18 4 490
19 4 553
20 4 616
21 6 438
22 6 466
23 6 517
24 6 567
25 6 616
26 6 666
27 6 719
28 6 772
29 2 保留(reserved)
30 4 reserved
31 6 reserved
其中,上述表2中的R表示目标编码速率,30、40、50、64等表示目标编码速率R乘以1024后的结果,例如30除以1024后得到的结果为目标编码速率R。
在本申请的一些实施例中,如图2所示,为本申请实施例提供的下行控制信息的帧结构示意图。当下行控制信息用于调度第一类型终端设备的数据传输时,下行控制信息中还包括第二MCS字段,第二MCS字段用于指示第一类型终端设备的数据传输的MCS。
示例性的,下行控制信息还可以指示终端设备在进行数据传输时所使用的MCS,若下行控制信息用于调度第一类型终端设备的数据传输,则下行控制信息还需要指示该第一类型终端设备的数据传输的MCS。由于下行控制信息中包括的第一MCS字段用于指示下行控制信息所调度的终端设备的类型,下行控制信息为了指示数据传输的MCS,下行控制信息 中除了包括第一MCS字段,还可以包括第二MCS字段,第二MCS字段用于指示第一类型终端设备的数据传输的MCS。本申请实施例中网络设备可以通过第二MCS字段指示第一类型终端设备的数据传输的MCS,从而使得终端设备可以通过解析下行控制信息中携带的第二MCS字段获取到网络设备配置的MCS。
举例说明如下,下行控制信息用于为第一类型终端设备调度数据传输时,下行控制信息还包括第二MCS字段。第二MCS字段包括4个比特,或第二MCS字段包括2个比特,对于第二MCS字段占用的比特数不做限定。
在本申请的一些实施例中,步骤102当下行控制信息用于调度第一类型终端设备的数据传输时,确定第一MCS字段的值为第一值,包括:当下行控制信息用于调度第一类型终端设备的数据传输时,确定第一MCS字段的最高位比特的值为1;或,
步骤103当下行控制信息用于调度第二类型终端设备的数据传输时,确定第一MCS字段的值不为第一值,或确定第一MCS字段的值为第二值,包括:当下行控制信息用于调度第二类型终端设备的数据传输时,确定第一MCS字段的最高位比特的值为0。
其中,第一MCS字段具有多个比特位。第一MCS字段的最高位比特的值为1时,确定第一MCS字段的值为第一值。第一MCS字段的最高位比特的值为0时,确定第一MCS字段的值为第二值。第一MCS字段的最高位比特可以是第一MCS字段从左数的第一个位置的比特。
在本申请的一些实施例中,第一MCS字段包括5个比特,例如下行控制信息用于为第一类型终端设备调度数据传输,5个比特中的最高位比特的值为1。或,下行控制信息用于为第二类型终端设备调度数据传输,5个比特的最高位比特的值为0。对于第一MCS字段包括的比特数此处是一种可能的实现方式,不限定第一MCS字段包括的比特数,具体取决于应用场景。
进一步的,在本申请的一些实施例中,当下行控制信息用于调度第一类型终端设备的数据传输时,第一MCS字段中的至少一个比特用于指示第一类型终端设备的数据传输的MCS,其中,至少一个比特中不包括第一MCS字段的最高位比特。
其中,若下行控制信息用于调度第一类型终端设备的数据传输,则下行控制信息还需要指示该第一类型终端设备的数据传输的MCS。例如第一MCS字段中的至少一个比特用于指示第一类型终端设备的数据传输的MCS,至少一个比特中不包括第一MCS字段的最高位比特。例如,第一MCS字段可以使用除最高位比特以外的其它比特指示第一类型终端设备的数据传输的MCS,例如第一MCS字段可以使用除最高位比特以外的所有比特指示第一类型终端设备的数据传输的MCS。本申请实施例中网络设备可以通过第一MCS字段中除最高位以外的至少一个比特指示第一类型终端设备的数据传输的MCS,实现了网络设备对MCS的指示。
例如,第一MCS字段包括5个比特。下行控制信息用于为第一类型终端设备调度数据传输,第一MCS字段的最高位比特的比特状态为1,第一MCS字段中除最高位比特以外的4个比特的比特状态用于指示调制编码方式MCS。或,第一MCS字段中除最高位比特以外的4个比特中的2个比特的比特状态用于指示调制编码方式MCS。
步骤101至步骤103从网络设备侧描述了本申请实施例提供的通信方法,接下来从终 端设备侧描述本申请实施例提供的通信方法,主要包括如下步骤:
111、终端设备从网络设备接收下行控制信息,下行控制信息中包括第一MCS字段。
针对下行控制信息的介绍可以参考前述步骤101中的描述,此处不再赘述。执行步骤111的终端设备可以是第一类型终端设备,也可以是第二类型终端设备,此处不做限定。
112、当第一MCS字段的值为第一值时,终端设备确定下行控制信息用于调度第一类型终端设备的数据传输;或,
113、当第一MCS字段的值不为第一值时,或当第一MCS字段的值为第二值时,终端设备确定下行控制信息用于调度第二类型终端设备的数据传输。
在本申请实施例中,若第一类型终端设备接收到下行控制信息,第一类型终端设备从下行控制信息中确定出第一MCS字段的值为第一值,则使用该下行控制信息接收PDSCH,若该第一类型终端设备从下行控制信息中确定出第一MCS字段的值不为第一值,或第一MCS字段的值为第二值,则不使用该下行控制信息接收PDSCH。若第二类型终端设备接收到下行控制信息,第二类型终端设备从下行控制信息中确定出第一MCS字段的值为第一值,则不使用该下行控制信息接收PDSCH,若该第二类型终端设备从下行控制信息中确定出第一MCS字段的值不为第一值,或第一MCS字段的值为第二值,则使用该下行控制信息接收PDSCH。
通过下行控制信息中的第一MCS字段指示该下行控制信息所调度的终端设备的类型、以及通过该下行控制信息指示PDSCH的MCS的方法,请参见上述步骤101至103中相应的描述,这里不再赘述。
本申请实施例中通过下行控制信息中的第一MCS字段指示下行控制信息用于为第一类型终端设备或第二类型终端设备调度数据传输,包括:通过第一MCS字段的特殊比特状态(如特殊比特状态可以是第一MCS字段的所有比特的状态是全1状态),指示为第一类型终端设备调度数据传输,该方式用第一MCS字段的所有比特进行指示,虚警概率较低,可以增加第二MCS字段指示为第一类型终端设备调度的数据传输的MCS。或通过第一MCS字段的最高位比特为1时指示为第一类型终端设备调度数据传输,该方式指示方式简单,且通过第一MCS字段便可以指示为第一类型终端设备调度的数据传输的MCS。
通过前述对通信方法的举例说明可知,网络设备能够为不同类型的终端设备发送它们各自的下行控制信息。例如,为第一类型终端设备发送调度带宽较小的下行控制信息,或为第二类型终端设备发送调度较大带宽的下行控制信息,从而可以满足不同类型的终端设备的调度需求。
请参阅图3所示,为本申请实施例提供的网络设备和终端设备之间的一种交互流程示意图,本申请实施例提供的通信方法,后续步骤301至步骤303从网络设备一侧进行说明,后续步骤311至步骤313从终端设备一侧进行说明,主要包括如下步骤:
301、网络设备向终端设备发送下行控制信息。
其中,网络设备可以生成下行控制信息,下行控制信息中包括多个字段,例如下行控制信息中包括指示接收PDSCH所需要的频域资源、时域资源、调制编码方式等字段。网络设备为了能够指示调度的终端设备的类型,网络设备还可以使用不同的加扰序列对下行控制信息进行加扰。通过不同的加扰序列来指示为不同类型的终端调度数据传输。
对下行控制信息进行的加扰序列可以指示下行控制信息所调度的终端设备的类型,从 而可以为不同类型的终端设备提供独立的下行控制信息。下行控制信息调度不同类型的终端设备时,网络设备采用不同的加扰序列对下行控制信息进行加扰。加扰序列和下行控制信息调度的终端设备的类型具有对应关系。网络设备可以通过如下步骤302和步骤303确定采用哪种加扰序列对下行控制信息进行加扰。其中,对于终端设备的类型的介绍和下行控制信息所调度的PDSCH的介绍,可以参考图1所示的方法中的相应描述,这里不再赘述。
302、当下行控制信息用于调度第一类型终端设备的数据传输时,网络设备使用第一加扰序列对下行控制信息进行加扰;或,
303、当下行控制信息用于调度第二类型终端设备的数据传输时,网络设备使用第二加扰序列对下行控制信息进行加扰。
具体的,下行控制信息可以用于调度至少两种不同类型终端设备的数据传输,例如下行控制信息可以用于调度第一类型终端设备的数据传输(例如调度PDSCH),或可以用于调度第二类型终端设备的数据传输(例如调度PDSCH)。其中,第一类型终端设备和第二类型终端设备分别表示的不同类型的终端。可以理解的是,下行控制信息用于调度两种不同类型终端设备的数据传输只是一种可能的举例方式,下行控制信息还可以用于调度三种不同类型终端设备的数据传输,或调度更多类型终端设备的数据传输,此处不做限定。
在本申请实施例中,网络设备可以采用不同的加扰序列对下行控制信息所调度的终端设备的类型进行指示。在本申请实施例中,网络设备可以配置下行控制信息调度的终端设备的类型与加扰序列之间的对应关系,当网络设备确定下行控制信息调度的终端设备的类型时,就可以确定采用与调度的终端设备的类型对应的加扰序列,从而可以为不同类型的终端设备提供独立的控制信息。
例如,加扰序列发生器可以产生第一加扰序列和第二加扰序列,其中,第一加扰序列和第二加扰序分别表示两种不同的加扰序列。若下行控制信息用于为第一类型终端设备调度数据传输,下行控制信息被第一加扰序列加扰。或,若下行控制信息用于为第二类型终端设备调度数据传输,下行控制信息被第二加扰序列加扰。从而使得终端设备在解析下行控制信息时根据解扰下行控制信息所采用的加扰序列,确定出该下行控制信息是否为该终端设备调度数据传输。
在本申请的一些实施例中,用于产生第一加扰序列的初始化参数为非零值,用于产生第二加扰序列的初始化参数等于零。
其中,网络设备可以使用非零值作为初始化参数,通过加扰序列发生器产生第一加扰序列,然后使用第一加扰序列对下行控制信息进行加扰,以通过第一加扰序列指示下行控制信息所调度的终端设备的类型。或,网络设备可以使用零作为初始化参数,通过加扰序列发生器产生第二加扰序列,然后使用第二加扰序列对下行控制信息进行加扰,以通过第二加扰序列指示下行控制信息所调度的终端设备的类型。本申请实施例中加扰序列的初始化参数可以为非零值或等于零,从而使得终端设备在解析下行控制信息时根据所采用的加扰序列确定出该下行控制信息是否为该终端设备调度数据传输。
举例说明如下,加扰序列发生器产生第一加扰序列的初始化参数为非零值。或,加扰序列发生器产生第二加扰序列的初始化参数等于零。
例如,产生第一加扰序列的初始化参数可以是系统信息无线网络临时标识(system  information-radio network temporary identifier,SI-RNTI),或产生第一加扰序列的初始化参数可以是其他类型的无线网络临时标识(radio network temporary identifier,RNTI),本申请实施例不做限制。
步骤301至步骤303从网络设备侧描述了本申请实施例提供的通信方法,接下来从终端设备侧描述本申请实施例提供的通信方法,主要包括如下步骤:
311、终端设备从网络设备接收下行控制信息。
关于下行控制信息的介绍可以参考上述步骤301中相应的描述,这里不再赘述。
某一类型的终端设备可以根据能否用各自的加扰序列正确解扰下行控制信息确定下行控制信息是否是发送给该种类型的终端设备。具体的,执行步骤311的终端设备可以是第一类型终端设备,也可以是第二类型终端设备,此处不做限定。
312、当下行控制信息被第一加扰序列加扰时,或当使用第一加扰序列对下行控制信息解扰成功时,终端设备确定下行控制信息用于调度第一类型终端设备的数据传输;或,
313、当下行控制信息被第二加扰序列加扰时,或当使用第二加扰序列对下行控制信息解扰成功时,终端设备确定下行控制信息用于调度第二类型终端设备的数据传输。
示例性地,若第一类型终端设备接收到下行控制信息,确定下行控制信息被第一加扰序列加扰,即使用第一加扰序列对下行控制信息解扰成功,则使用该下行控制信息接收PDSCH,若该第一类型终端设备确定下行控制信息不是被第一加扰序列加扰,即使用第一加扰序列不能对下行控制信息解扰成功,则不使用该下行控制信息接收PDSCH。若第二类型终端设备接收到下行控制信息,确定下行控制信息不是被第二加扰序列加扰,即使用第二加扰序列不能对下行控制信息解扰成功,则不使用该下行控制信息接收PDSCH,若确定下行控制信息被第二加扰序列加扰,即使用第二加扰序列对下行控制信息解扰成功,则使用该下行控制信息接收PDSCH。
关于加扰序列的介绍可以参见上述步骤301至303中相应的描述,此处不再赘述。
终端设备在解析下行控制信息时根据所采用的加扰序列确定出该下行控制信息是否为该终端设备调度数据传输,以便终端设备正确获得网络设备发送给该终端设备的下行控制信息。
通过前述对通信方法的举例说明可知,网络设备能够为不同类型的终端设备发送它们各自的下行控制信息。例如,为第一类型终端设备发送调度带宽较小的下行控制信息,或者或为第二类型终端设备发送调度较大带宽的下行控制信息,从而可以满足不同类型的终端设备的调度需求。
请参阅图4所示,为本申请实施例提供的网络设备和终端设备之间的一种交互流程示意图,本申请实施例提供的通信方法,后续步骤401至步骤403从网络设备一侧进行说明,后续步骤411至步骤413从终端设备一侧进行说明,主要包括如下步骤:
401、网络设备向终端设备发送下行控制信息,下行控制信息中包括第一比特。
其中,网络设备可以生成下行控制信息,下行控制信息中包括多个字段,例如下行控制信息中包括指示接收PDSCH所需要的频域资源、时域资源、调制编码方式等字段。网络设备为了能够指示调度的不同终端设备的类型,网络设备还可以在下行控制信息中包括第一比特,通过第一比特来指示为哪种类型的终端设备调度数据传输。
具体的,下行控制信息中包括的第一比特可以是下行控制信息中新增的比特,还可以是下行控制信息中的保留比特,或是下行控制信息中的原有比特,此处不做限定。
在申请实施例中,下行控制信息可用于调度不同类型终端设备的数据传输。下行控制信息中包括的第一比特可以指示下行控制信息调度的终端设备的类型,从而可以为不同类型的终端设备提供独立的控制信息。本申请实施例中,第一比特用于指示下行控制信息调度的不同类型的终端设备时,第一比特的值是不相同的。网络设备可以通过如下步骤402或步骤403确定第一比特的值。
本申请实施例中,网络设备可以根据下行控制信息调度的不同类型的终端设备确定执行后续步骤402或403,具体可以根据实际应用场景中下行控制信息所需要调度的终端设备的类型来确定。
402、当下行控制信息用于调度第一类型终端设备的数据传输时,网络设备确定第一比特的值为第三值;或,
403、当下行控制信息用于调度第二类型终端设备的数据传输时,网络设备确定第一比特的值为第四值。
可选的,第三值为1,第四值为0;或,第三值为0,第四值为1。
下行控制信息可以用于调度至少两种不同类型终端设备的数据传输,例如下行控制信息可以用于调度第一类型终端设备的数据传输。或下行控制信息可以用于调度第二类型终端设备的数据传输。其中,第一类型终端设备和第二类型终端设备分别表示的不同类型的终端。可以理解的是,下行控制信息用于调度两种不同类型终端设备的数据传输只是一种可能的举例方式,下行控制信息还可以用于调度三种不同类型终端设备的数据传输,或调度更多类型终端设备的数据传输,此处不做限定。其中,对于终端设备的类型的介绍和下行控制信息所调度的PDSCH的介绍,可以参考图1所示的方法中的相应描述,这里不再赘述。
在本申请实施例中,第一比特用于指示下行控制信息调度的不同类型的终端设备时,第一比特的值是不相同的,第一比特的取值可以是1,例如第一比特的取值可以是除1以外的其它值,例如除1以外的其它值可以是0。
具体的,在本申请实施例中,可以预定义下行控制信息调度的终端设备的类型与第一比特的值之间的对应关系。即,该对应关系是网络设备和终端预先知道的。或,网络设备可以在发送下行控制信息之前,通过信令向终端设备指示该对应关系。即,在网络设备确定下行控制信息之前,网络设备是知道该对应关系的,终端设备在解读下行控制信息之前,终端设备也是知道该对应关系的。那么当网络设备确定下行控制信息调度的终端设备的类型时,就可以确定出第一比特的值,从而可以为不同类型的终端设备提供独立的控制信息。
下行控制信息所调度的终端设备的类型与第一比特的值之间的对应关系有多种实现方式。例如当下行控制信息用于调度第一类型终端设备的数据传输时,确定第一比特的值为第三值;或,当下行控制信息用于调度第二类型终端设备的数据传输时,确定第一比特的值为第四值。
可以理解的是,在本申请的另一些实施例中,当下行控制信息用于调度第一类型终端设备的数据传输时,网络设备确定第一比特的值为第四值;或,当下行控制信息用于调度 第二类型终端设备的数据传输时,网络设备确定第一比特的值为第三值。这种实现方式与步骤402和步骤403相类似,此处不再赘述。
步骤401至步骤403从网络设备侧描述了本申请实施例提供的通信方法,接下来从终端设备侧描述本申请实施例提供的通信方法,主要包括如下步骤:
411、终端设备从网络设备接收下行控制信息,下行控制信息中包括第一比特。
关于下行控制信息和第一比特的介绍可以参考上述步骤401至403,此处不再赘述。
执行步骤411的终端设备可以是第一类型终端设备,也可以是第二类型终端设备,此处不做限定。
412、当第一比特的值为第三值时,终端设备确定下行控制信息用于调度第一类型终端设备的数据传输;或,
413、当第一比特的值为第四值时,终端设备确定下行控制信息用于调度第二类型终端设备的数据传输。
可选的,第三值为1,第四值为0;或,第三值为0,第四值为1。
示例性地,若第一类型终端设备接收到下行控制信息,如果下行控制信息中的第一比特的值为第三值,则使用该下行控制信息接收PDSCH,如果下行控制信息中的第一比特的值不为第三值,或第一比特的值为第四值,则不使用该下行控制信息接收PDSCH。若第二类型终端设备接收到下行控制信息,如果下行控制信息中的第一比特的值为第三值,或第一比特的值不为第四值,则不使用该下行控制信息接收PDSCH,如果下行控制信息中的第一比特的值为第四值,则使用该下行控制信息接收PDSCH。
通过前述对通信方法的举例说明可知,本申请实施例通过下行控制信息中的第一比特指示下行控制信息用于为第一类型终端设备或第二类型终端设备调度数据传输。指示方式简单,终端设备和网络设备实现的复杂度低。通过该方法,网络设备能够为不同类型的终端设备发送不同特征的下行控制信息。例如,为第一类型终端设备发送调度带宽较大的下行控制信息,或为第二类型终端设备发送调度较大带宽的下行控制信息,从而可以满足不同类型的终端设备的调度需求。
本申请实施例提出一种通信方法,适用于网络设备和终端设备之间的通信场景。该终端设备是带宽能力受限的终端设备,该方法为带宽能力受限的终端设备配置专用的资源,使该终端设备能够在专用的资源内监测调度数据传输的控制信道。其中,该控制信息可以是PDCCH、EPDCCH或其他类型的物理层下行控制信道。
终端设备检测控制信道时,在控制资源集(control resource set,CORESET)上根据搜索空间(Search Speace,SS)监测一组候选控制信道,终端设备使用期望接收的控制信道对应的RNTI对控制信道上承载的DCI进行盲检测。
在本申请实施例中,示例性地,PDCCH的搜索空间可以是网络设备通过无线资源控制(radio resource control,RRC)信令为终端设备配置或指示的。网络设备可以为终端设备配置一个或多个搜索空间。对于一个终端设备,该RRC信令可以是该终端设备特定的,也可以是能够和其他终端设备共享的(公共的),本申请实施例不做限制。
对于一个搜索空间,网络设备可以为终端设备配置该搜索空间的类型是公共搜索空间或者是终端设备特定搜索空间。此外,网络设备还可以为终端设备配置搜索空间的以下参 数中的一个或多个:聚合等级大小、候选PDCCH个数、检测周期、时域资源位置、搜索空间中传输的DCI的格式。例如,可以配置一个公共搜索空间中的DCI的格式为0_0和1_0。再例如,可以配置一个终端设备特定搜索空间中的DCI的格式为0_1和1_1,或配置一个终端设备特定搜索空间中的DCI的格式为0_0和1_0。其中,时域资源位置包括:该搜索空间在检测周期中的第一时间单元(如时隙)偏移、该搜索空间在检测周期中占用的连续的第一时间单元的个数、每个第一时间单元中该搜索空间的第二时间单元(如符号)偏移、每个第一时间单元中该搜索空间占用的第二时间单元个数。
可选地,该搜索空间的频域资源位置和每个第一时间单元中该搜索空间的第二时间单元个数可以通过以下方式配置:网络设备为终端设备指示该搜索空间对应的控制资源集(control resource set,CORESET),该CORESET的参数可以看做该搜索空间的参数,控制资源集也可以称为控制资源集合。网络设备通过主信息块(master information block,MIB)或RRC信令指示该CORESET的如下至少一种参数:频域资源位置、每个第一时间单元中该CORESET的第二时间单元个数。可选地,一个CORESET可以对应于一个搜索空间,也可以对应于多个不同的搜索空间,本申请实施例不做限制。
示例性地,搜索空间A对应于CORESET A,该CORESET A在时域占用3个符号。搜索空间A的检测周期为10个时隙,搜索空间A在检测周期中的偏移为3个时隙,搜索空间A在检测周期中占用的连续的时隙为2个时隙、每个时隙中搜索空间A的符号偏移为3个符号。则搜索空间A的频域资源位置为CORESET A的频域资源位置,搜索空间A的时域资源位置为:在每10个时隙中,在其中第4个时隙和第5个时隙的每个时隙中,从第3个符号开始,搜索空间A的时域资源共占用3个符号。由搜索空间A的频域资源位置和时域资源位置得到的时频资源可以称为由搜索空间A和CORESET A指示的时频资源。
在本申请实施例中,MIB承载在物理广播信道(physical broadcast channel,PBCH)中。网络设备可以将PBCH与同步信号(synchronization signal,SS)一起周期性地发送至终端设备。其中,PBCH和SS是终端设备接入小区时需要接收的信息。
例如,终端设备初始接入网络时,MIB中配置控制资源集CORESET 0和公共搜索空间Search Space0,终端设备在CORESET 0上根据Search Space 0盲检调度SIB1的控制信息。示例性的,CORESET 0在时域上可配置1至3个正交频分复用(orthogonalfrequency division multiplexing,OFDM)符号,CORESET 0在频域上可配置的资源块数量为{24,48,96}中的任意一种。
一个控制信道的资源包括:控制资源集中的一个或多个控制信道单元(control channel element,CCE)。承载一个控制信道的CCE个数称为控制信道的聚合等级。其中,一个CCE由时域和频域上的连续6个资源单元组(resource element group,REG)构成。其中,一个REG由时域上一个OFDM符号和频域上12个子载波构成。在控制资源集中CCE到REG的映射方式包括交织和非交织两种。
如图5所示,为本申请实施例提供的聚合等级为2的控制信道中CCE与REG的非交织映射示意图。REG0、REG1、REG2、REG3、REG4、REG5和CCE0存在映射关系,REG0、REG1、REG2、REG3、REG4和REG5绑定在一起称为一个REG捆绑(bundle)。REG6、REG7、REG8、REG9、REG10、REG11和CCE1存在映射关系,REG12、REG13、REG14、REG15、REG16、REG17 和CCE2存在映射关系,REG18、REG19、REG20、REG21、REG22、REG23和CCE3存在映射关系。示例性地,一个控制信道的聚合等级为2,CCE0和CCE1用于承载一个控制信道PDCCH。
如图6所示,为本申请实施例提供的聚合等级为2的控制信道中CCE与REG的交织映射示意图。6个REG为一个交织粒度,称为REG捆绑,交织深度为2。示例性地,一个控制信道的聚合等级为2,CCE0和CCE1用于承载一个控制信道PDCCH。
进一步地,不同聚合等级的控制信道在控制资源集上包括一个或多个候选位置资源。例如,CORESET 0上,聚合等级为4的控制信道对应4个候选位置资源,聚合等级为8的控制信道对应2个候选位置资源,聚合等级为16的控制信道对应1个候选位置资源。
如图7a所示,为本申请实施例提供的一种不同聚合等级(aggregation level,AL)的控制信道的候选位置资源与CCE之间的映射关系示意图。控制资源集有多种,例如网络设备给一个终端设备配置的控制资源集可以包括CORESET0至CORESET3,接下来以CORESET0为例,假设CORESET 0由频域的48个资源块和时域的3个OFDM符号组成,图7a中相同填充图案的CCE用于承载同一个控制信道。其中,该48个资源块和3个OFDM符号对应的资源中包括48×3=144个REG。一个REG bundle中包括6个REG,该144个REG可以得到24个REG bundle。例如REGbundle索引为0至23,控制信道的AL为16时,组成16个CCE的REG bundle索引为0~7和12~19。控制信道的AL为8时,组成8个CCE的REG bundle索引为0~3和12~15。或组成8个CCE的REG bundle索引为4~7和16~19。控制信道的AL为4时,组成4个CCE的REG bundle索引为:0~1和12~13,或2~3和14~15,或6~7和18~19,或8~9和20~21。由于CORESET 0上CCE到REG的映射是交织映射,且交织深度是2,所以组成控制信道的CCE被均分成为两个部分,分别映射在控制资源集上。若终端设备的带宽能力小于CORESET 0的带宽,终端设备可能无法监测到完整的控制信道。例如终端设备的带宽能力是CORESET 0的带宽的1/2,则只有一半的控制信道能够被终端设备接收。示例性地,对于AL等于16的控制信道,终端设备只能接收CORESET 0上索引为0~7的REG bundle,或终端设备只能接收CORESET 0上索引为12~19的REG bundle。因此需要为带宽能力受限的终端设备配置专用的发送控制信道的资源。
如图7b所示,为本申请实施例提供的一种不同AL的控制信道的候选位置资源与CCE之间的映射关系示意图。控制资源集由频域的96个资源块和时域的3个OFDM符号组成,图7b中相同填充图案的CCE用于承载同一个控制信道。其中,该96个资源块和3个OFDM符号对应的资源中包括96×3=288个REG。一个REG bundle中包括6个REG,该288个REG可以得到48个REG bundle。例如REGbundle的索引为0至47,控制信道的AL为16时,组成16个CCE的REG bundle索引为0~7和24~31。控制信道的AL为8时,组成8个CCE的REG bundle索引为0~3和24~27。或组成8个CCE的REG bundle索引为12~15和36~39。控制信道的AL为4时,组成4个CCE的REG bundle索引为:0~1和24~25,或6~7和30~31,或12~13和36~37,或18~19和42~43。
本申请实施例中,带宽受限的终端设备的带宽能力大于或等于控制资源集带宽的1/2或1/4。网络设备可以在第一资源集合和第二资源集合上共同对应的资源上为终端设备发送用于调度数据传输的控制信道,即将用于发送控制信道的较大资源分成多个较小的资源。示例性地,该终端设备为第一类型终端设备,用于调度数据传输的控制信道也可称为第一 控制信道。其中,针对第一类型终端设备的介绍可以参考前文,这里不再赘述。第一资源集合和第二资源集合是不同时域资源单元中的资源。其中,时域资源单元可以是如下资源单元中的一种:无线帧,子帧,符号,时间窗,时隙。例如,第一资源集合在第一时隙Nx中,第二资源集合在第二时隙Nx+Ky中,其中Nx、Ky是整数,且Ky大于0。其中,第一资源集合和第二资源集合的频域资源可以是相同的或不同的。可选的,第一资源集合和第二资源集合的资源大小相同。第一资源集合和第二资源集合可以是控制资源集内的资源,也可以是控制资源集外的资源。
示例性地,第一控制信道聚合等级为8,使用第一资源集合上的4个CCE和第二资源集合上的4个CCE发送第一控制信道。第一类型终端设备在第一时域资源单元中接收第一资源集合上的信息,并在第二时域资源单元中接收第二资源集合上的信息,第一类型终端设备在两次接收的信息中获取完整的第一控制信道。
需要说明的是,本申请实施例中控制信道传输是发送或接收。若通信的一端将传输实施为发送,则通信的对端则实施为接收。
本实施例中,根据控制资源集的不同配置,对第一资源集合和第二资源集合的大小进行以下划分。划分依据为:第一资源集合的带宽和第二资源集合的带宽分别小于或等于第一类型终端设备支持的带宽;第一资源集合和第二资源集合上发送的控制信道支持多种聚合等级;第一资源集合和第二资源集合尽可能不占据控制资源集上传统终端设备的控制信道的侯选位置资源。其中,传统终端设备可以是eMBB终端设备,或URLLC终端设备。
具体地,控制资源集在频域上包括N个资源块。控制资源集在时域上包括B个符号。其中,对于N等于48或96,且B等于1或2,传统终端设备的控制信道的候选位置资源占据全部控制资源集合。若第一资源集合和第二资源集合是控制资源集内的资源,则第一资源集合和第二资源集合需要复用一部分传统终端设备的控制信道的侯选位置资源。
示例性地,对于N=48,B=1,控制资源集包括8个CCE。将控制资源集平均分为4块资源,每块资源包括2个CCE,第一资源集合和第二资源集合分别只包括一块资源。或,
对于N=48,B=2,控制资源集包括16个CCE。将控制资源集平均分为4块资源,每块资源包括2个CCE,第一资源集合和第二资源集合分别只包括一块资源。或,
对于N=48,B=3,控制资源集包括24个CCE。若将控制资源集平均分为4块资源,第一资源集合和第二资源集合分别包括一块资源。示例性地,在图7a中,若第一类型终端设备的控制信道的候选位置资源在控制资源集中,第一资源集合和第二资源集合占据4块资源中的任意两块资源都会导致传统终端设备的聚合等级为8的一个候选控制信道对应的资源无法利用。因此本实施例中将控制资源集平均分为6块资源,第一资源集合和第二资源集合分别只包括一块资源,即4个CCE。当第一资源集合和第二资源集合占据的REG bundle索引为8~11和20~23时,不影响传统终端设备的控制信道的候选位置资源。
对于N=96,B=1,控制资源集包括16个CCE。将控制资源集平均分为4块资源,每块资源包括4个CCE。第一资源集合和第二资源集合分别只包括1块资源。或,
对于N=96,B=2,控制资源集包括32个CCE。将控制资源集平均分为4块资源,每块资源包括8个CCE。第一资源集合和第二资源集合分别只包括1块资源。或,
对于N=96,B=3,控制资源集包括48个CCE。若将控制资源集平均分为4块资源,第 一资源集合和第二资源集合分别只包括1块资源。示例性地,图8为这种控制资源集配置中,传统终端设备的不同AL的控制信道的候选位置资源,相同图案的CCE组成一个控制信道的候选资源。若第一类型终端设备的控制信道的候选位置资源在控制资源集中,第一资源集合和第二资源集合占据4块资源中的任意两块资源都会至少影响传统终端设备的三个控制信道的候选位置资源。因此本实施例中将控制资源集平均分为6块资源,第一资源集合和第二资源集合分别只包括一块资源,即8个CCE。当第一资源集合和第二资源集合占据的REG bundle索引为16~23和40~47时,只影响一个第二类型终端设备的控制信道的候选位置资源。
根据以上对控制资源集的划分,控制资源集配置不同时,第一资源集合在频域只包括N/4个资源块,第二资源集合在频域只包括N/4个资源块。或第一资源集合在频域只包括N/6个资源块,第二资源集合在频域只包括N/6个资源块。
请参阅图8所示,为本申请实施例提供的网络设备和终端设备之间的一种交互流程示意图,本申请实施例提供的通信方法,后续步骤801至步骤802从网络设备一侧进行说明,后续步骤811至步骤812从终端设备一侧进行说明,主要包括如下步骤:
801、网络设备向终端设备发送控制资源集的配置信息,控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息。
811、终端设备从网络设备接收控制资源集的配置信息,控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息。
针对控制资源集CORESET的介绍请参见前文,这里不再赘述。
其中,网络设备可以生成控制资源集的配置信息,例如控制资源集的配置信息可以是CORESET 0的配置信息。控制资源集的配置信息可以指示控制资源集的频域资源位置、频域资源大小和时域资源大小。网络设备可以向终端设备发送控制资源集的配置信息,例如网络设备通过无线资源控制信令或媒体接入控制信令,向终端设备发送控制资源集的配置信息。其中,该终端设备可以是第一类型终端设备。
可以理解的是,网络设备为终端设备配置两个资源集合只是一种可能的举例方式,网络设备还可以为终端设备配置三个资源集合,或配置更多的资源集合,此处不做限定。
在本申请实施例中,网络设备可以通过控制资源集的配置信息指示第一资源集合的配置信息和第二资源集合的配置信息,从而使得终端设备在接收到控制资源集的配置信息之后,该终端设备可以通过该控制资源集的配置信息获取到第一资源集合的配置信息和第二资源集合的配置信息,从而可以在第一资源集合和第二资源集合上监测第一控制信息。
终端设备可以根据第一资源集合的配置信息确定出第一资源集合中某个固定的频域资源位置,以及可以根据第二资源集合的配置信息确定出第二资源集合中某个固定的频域资源位置。
在本申请实施例中,控制资源集的配置信息指示第一资源集合的配置信息和第二资源集合的配置信息的方式有多种,接下来进行举例说明。
在本申请的一些实施例中,控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息,包括:
控制资源集的配置信息指示第一控制资源集的频域资源位置,其中,第一资源集合中 的第s个频域资源的频域位置相对第一控制资源集中的第t个频域资源的频域位置的偏移为第一偏移量,第二资源集合中的第r个频域资源的频域位置相对于第一资源集合中的第p个频域资源的频域位置的偏移为第二偏移量,其中,s、t、r、和p为大于0的整数。
具体的,控制资源集的配置信息指示第一控制资源集的频域资源位置,例如控制资源集的配置信息指示第一控制资源集的起始频域资源位置,或控制资源集的配置信息指示第一控制资源集中任意一个频域资源位置,或控制资源集的配置信息指示第一控制资源集的所有频域资源位置,此处不做限定。其中,第一控制资源集中包括N个频域资源,第一控制资源集中的第t个频域资源可以是第一控制资源集中的任意一个频域资源,t的取值可以为1至N中的任意一个。示例性地,控制资源集的配置信息指示第一控制资源集中的起始频域资源位置为索引为0的资源块,终端设备根据第一控制资源集中的起始频域资源位置确定第一控制资源集中的第t(t=2)个频域资源的频域位置为索引为1的资源块。
其中,第一资源集合中的资源和第一控制资源集中的资源之间存在偏移,从而可以根据第一控制资源集中的资源确定出第一资源集合中的资源。例如,第一资源集合中的第s个频域资源的频域位置相对第一控制资源集中的第t个频域资源的频域位置的偏移为第一偏移量。该第一偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第一资源集合中的第s个频域资源可以是第一资源集合中的任意一个资源。可选地,本申请实施例中的偏移量,例如第一偏移量、第二偏移量或者其他偏移量,可以是0、正整数或者负整数,本申请实施例不做限制。其中,负整数可以表示向频率减小的方向偏移,正整数可以表示向频率增大的方向偏移;或者,负整数可以表示向频率增大的方向偏移,正整数可以表示向频率减小的方向偏移。
其中,第二资源集合中的资源和第一资源集合中的资源之间存在偏移,从而可以根据第一资源集合中的资源确定出第二资源集合中的资源。例如,第二资源集合中的第r个频域资源的频域位置相对于第一资源集合中的第p个频域资源的频域位置的偏移为第二偏移量。该第二偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第一资源集合中的第p个频域资源可以是第一资源集合中的任意一个资源。第二资源集合中的第r个频域资源可以是第二资源集合中的任意一个资源。
需要说明的是,s、t、r、和p为大于0的整数,对s、t、r、和p的具体取值不做限定,例如s等于1,则第s个频域资源的频域位置可以是第一资源集合中的起始频域位置,该起始频域位置的索引可以是0,t、r、和p表示的个数含义与此类似,不再逐一说明。另外,前述的第一偏移量和第二偏移量可以是系统中预配置的数值,或是网络设备通过信令通知给终端设备的数值,且第一偏移量和第二偏移量的确定方式可以相同或不同,此处不做限定。
进一步的,在本申请的一些实施例中,第一偏移量为N/M的整数倍,其中,N为第一控制资源集中包括的频域资源单元的个数,M为正整数,/为相除符号。
其中,频域资源单元是控制资源集合在频域上的资源单元,例如频域资源单元可以是如下信息中的一种:控制信道单元,资源块,资源单元,资源块组,资源单元组,子载波间隔。N为第一控制资源集中包括的频域资源单元的个数,例如N的取值为48或96,N还可以取其它数值,此处不做限定。
具体的,M可以为正整数,M的取值方式有多种,例如M的取值可以为4或6等,M还可以取其它数值,此处不做限定。
可以理解的是,第一偏移量为N/M的整数倍,例如第一偏移量为N/M之后得到的数值的1倍或2倍或i倍等,i的取值为正整数。另外,N/M的结果可以是整数,若N/M得到的结果不是整数时,还可以对N/M得到的结果进行向上取整或向下取整,此处不做限定。
进一步的,在本申请的一些实施例中,第二偏移量为N/E的整数倍,其中,N为第一控制资源集中包括的频域资源单元的个数,E为正整数,/为相除符号。
其中,N为第一控制资源集中包括的频域资源单元的个数。例如N的取值为48或96。N还可以取其它数值,此处不做限定。
具体的,E可以为正整数,E的取值方式有多种,例如E的取值可以为4或6等,E还可以取其它数值,此处不做限定。
可以理解的是,第二偏移量为N/E的整数倍,例如第二偏移量为N/E之后得到的数值的1倍或2倍或j倍等,j的取值为正整数。另外,N/E的结果可以是整数,若N/E得到的结果不是整数时,还可以对N/E得到的结果进行向上取整或向下取整,此处不做限定。
举例说明如下,网络设备确定第一资源集合和第二资源集合的频域资源位置(简称频域位置)。
例如,s,t,r,p都等于1。控制资源集在频域上包括N个资源块。N个资源块的索引分别为{I 0,...,I N-1}。N为大于0的整数。
M等于4,则第一偏移量为
Figure PCTCN2021083257-appb-000001
(或者简写为
Figure PCTCN2021083257-appb-000002
),i=0,1,2,3,第一资源集合的起始频域资源的索引为
Figure PCTCN2021083257-appb-000003
进一步地,E等于2,则第二偏移量为
Figure PCTCN2021083257-appb-000004
(或者简写为
Figure PCTCN2021083257-appb-000005
),j=0,1,第二资源集合的起始频域资源的索引为
Figure PCTCN2021083257-appb-000006
或,M等于6,则第一偏移量为
Figure PCTCN2021083257-appb-000007
i=0,1,2,3,4,5,第一资源集合的起始频域资源的索引为
Figure PCTCN2021083257-appb-000008
进一步地,E等于2,则第二偏移量为
Figure PCTCN2021083257-appb-000009
j=0,1,第二资源集合的起始频域资源的索引为
Figure PCTCN2021083257-appb-000010
再例如,s、t、r和p都等于N。控制资源集在频域上包括N个资源块。N个资源块的索引为{I 0,…,I N-1}。N为大于0的整数。
M等于4,则第一偏移量为
Figure PCTCN2021083257-appb-000011
(或者简写为
Figure PCTCN2021083257-appb-000012
),i=0,1,2,3,第一资源集合的第N个资源块的索引为
Figure PCTCN2021083257-appb-000013
进一步地,E等于2,则第二偏移量为
Figure PCTCN2021083257-appb-000014
(或者简写为
Figure PCTCN2021083257-appb-000015
),j=0,1,第二资源集合的第N个资源块的索引为
Figure PCTCN2021083257-appb-000016
或,M等于6,则第一偏移量为
Figure PCTCN2021083257-appb-000017
(或者简写为
Figure PCTCN2021083257-appb-000018
),i=0,1,2,3,4,5,6,第一资源集合的第N个资源块的索引为
Figure PCTCN2021083257-appb-000019
进一步地,E等于2,则第二偏移量为
Figure PCTCN2021083257-appb-000020
(或 者简写为
Figure PCTCN2021083257-appb-000021
),j=0,1,第二资源集合的第N个资源块的索引为
Figure PCTCN2021083257-appb-000022
在本申请的一些实施例中,控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息,包括:
控制资源集的配置信息指示第一控制资源集的频域资源位置。其中,第一资源集合中的第v个频域资源的频域位置相对第一控制资源集中的第w个频域资源的频域位置的偏移为第三偏移量,第二资源集合中的第x个频域资源的频域位置相对第一控制资源集中的第y个频域资源的频域位置的偏移为第四偏移量,其中,v、w、x、和y为大于0的整数。
具体的,控制资源集的配置信息指示第一控制资源集的频域资源位置,例如控制资源集的配置信息指示第一控制资源集的起始频域资源位置,或控制资源集的配置信息指示第一控制资源集中任意一个频域资源位置,或控制资源集的配置信息指示第一控制资源集的所有频域资源位置,此处不做限定。例如控制资源集的配置信息指示第一控制资源集中的起始频域资源位置,终端设备根据第一控制资源集中的起始频域资源位置确定第一控制资源集中的第w个频域资源的频域位置。其中,第一控制资源集中的第w个频域资源可以是第一控制资源集中的任意一个频域资源。第一控制资源集中的第y个频域资源可以是第一控制资源集中的任意一个频域资源。同样的,还可以确定出第一控制资源集中的第y个频域资源。第一控制资源集中的第w个频域资源和第一控制资源集中的第y个频域资源可以是相同的频域资源,也可以是不同的频域资源,本申请实施例不做限制。
其中,第一资源集合中的资源和第一控制资源集中的资源之间存在偏移,从而可以根据第一控制资源集中的资源确定出第一资源集合中的资源。例如,第一资源集合中的第v个频域资源的频域位置相对第一控制资源集中的第w个频域资源的频域位置的偏移为第三偏移量。该第三偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第一资源集合中的第v个频域资源可以是第一资源集合中的任意一个资源。
其中,第二资源集合中的资源和第一控制资源集中的资源之间存在偏移,从而可以根据第一控制资源集中的资源确定出第二资源集合中的资源。例如,第二资源集合中的第x个频域资源的频域位置相对第一控制资源集中的第y个频域资源的频域位置的偏移为第四偏移量。该第四偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第二资源集合中的第x个频域资源可以是第二资源集合中的任意一个资源。
可以理解的是,上述v、w、x、和y为大于0的整数,对于v、w、x、和y的具体取值不做限定,例如w等于1,则第v个频域资源的频域位置可以是第一资源集合中的起始频域位置,该起始频域位置的索引可以是0,w、x、和y表示的个数含义与此类似,不再逐一说明。另外,前述的第三偏移量和第四偏移量可以是预配置的数值,或是网络设备通过信令通知给终端设备的数值,且第三偏移量和第四偏移量的确定方式可以相同或不同,此处不做限定。
举例说明如下,控制资源集的配置信息可以指示第一控制资源集的频域资源位置,第一资源集合的频域位置和第二资源集合的频域位置,和控制资源集的频域位置之间的关系包括以下几种中的任一种:
第一资源集合的频域资源位置和第二资源集合的频域资源位置包括于第一控制资源集的频域资源位置中;或,
第一资源集合的频域资源位置包括于第一控制资源集的频域资源位置中,第二资源集合的频域资源位置相对于第一资源集合的频域资源位置的偏移为偏移量1,即按照偏移量1对第一资源集合的频域资源位置进行偏移后可以得到第二资源集合的频域资源位置,第二资源集合和第一控制资源集的频域资源可以有重叠,或第二资源集合在第一控制资源集之外;或,
第二资源集合的频域资源位置包括于第一控制资源集的频域资源位置中,第一资源集合的频域资源位置相对于第二资源集合的频域资源位置的偏移为偏移量2,即按照偏移量2对第二资源集合的频域资源位置进行偏移后可以得到第一资源集的频域资源位置,第一资源集合和第一控制资源集的频域资源可以有重叠,或第一资源集合在第一控制资源集之外;或,
第一资源集合的频域资源位置相对于第一控制资源集的频域资源位置的偏移为偏移量3,第二资源集合的频域资源位置相对于第一资源集合的频域资源位置的偏移为偏移量4,即按照偏移量3对第一控制资源集的频域资源位置进行偏移后可以得到第一资源集合的频域资源位置,按照偏移量4对第一资源集合的频域资源位置进行偏移后可以得到第二资源集合的频域资源位置。第一资源集合和第一控制资源集的频域资源可以有重叠,或第一资源集合在第一控制资源集之外,第二资源集合和第一控制资源集的频域资源可以有重叠,或第二资源集合在第一控制资源集之外;或,
第二资源集合的频域资源位置相对于第一控制资源集的频域资源位置的偏移为偏移量5,第一资源集合的频域资源位置相对于第二资源集合的频域资源位置的偏移为偏移量6,即按照偏移量5对第一控制资源集的频域资源位置进行偏移后可以得到第二资源集合的频域资源位置,按照偏移量6对第二资源集合的频域资源位置进行偏移后可以得到第一资源集合的频域资源位置。第一资源集合和第一控制资源集的频域资源可以有重叠,或第一资源集合在第一控制资源集之外,第二资源集合和第一控制资源集的频域资源可以有重叠,或第二资源集合在第一控制资源集之外。
其中,偏移量的单位可以是频域资源单元,例如偏移量1可以是1个频域资源单元或者3个频域资源单元,频域资源单元可以为以下参量中的一种:资源块、资源单元、资源块组、控制信道单元、资源单元组。例如偏移量等于{1、2、3、4、5、6}。
进一步的,在本申请的一些实施例中,第三偏移量为N/F的整数倍,其中,N为第一控制资源集中包括的频域资源单元的个数,F为正整数,/为相除符号。
其中,N为第一控制资源集中包括的频域资源单元的个数。例如,频域资源单元为资源块时,N的取值为48或96。N还可以取其它数值,此处不做限定。具体的,F可以为正整数,F的取值方式有多种,例如F的取值可以为4或6等,F还可以取其它数值,此处不做限定。
可以理解的是,第三偏移量为N/F的整数倍,例如第三偏移量为N/F之后得到的数值的1倍或2倍或k倍等,k的取值为正整数。另外,N/F的结果可以是整数,若N/F得到的结果不是整数时,还可以对N/F得到的结果进行向上取整或向下取整,此处不做限定。
进一步的,在本申请的一些实施例中,第四偏移量为N/G的整数倍,其中,N为第一控制资源集中包括的频域资源单元的个数,G为正整数,/为相除符号。
其中,N为第一控制资源集中包括的频域资源单元的个数。例如,频域资源单元为资源块时,N的取值为48或96。N还可以取其它数值,此处不做限定。
具体的,G可以为正整数,G的取值方式有多种,例如G的取值可以为4或6等,G还可以取其它数值,此处不做限定。
可以理解的是,第四偏移量为N/G的整数倍,例如第四偏移量为N/G之后得到的数值的1倍或2倍或q倍等,q为正整数。另外,N/G的结果可以是整数,若N/G得到的结果不是整数时,还可以对N/G得到的结果进行向上取整或向下取整,此处不做限定。
举例说明如下,网络设备确定第一资源集合和第二资源集合的频域资源位置(简称频域位置)。
例如,v、w、x、和y都等于1。控制资源集在频域上包括N个资源块。N个资源块的索引分别为{I 0,...,I N-1}。N为整数。
F等于4,则第三偏移量为
Figure PCTCN2021083257-appb-000023
k=0,1,2,3,第一资源集合的起始频域资源的索引为
Figure PCTCN2021083257-appb-000024
进一步地,G等于4,则第四偏移量为
Figure PCTCN2021083257-appb-000025
q=0,1,2,3,第二资源集合的起始频域资源的索引为
Figure PCTCN2021083257-appb-000026
或,F等于6,则第三偏移量为
Figure PCTCN2021083257-appb-000027
k=0,1,2,3,4,5,第一资源集合的起始频域资源的索引为
Figure PCTCN2021083257-appb-000028
进一步地,G等于6,则第四偏移量为
Figure PCTCN2021083257-appb-000029
q=0,1,2,3,4,5,第二资源集合的起始频域资源的索引为
Figure PCTCN2021083257-appb-000030
再例如,v、w、x和y都等于N。控制资源集在频域上包括N个资源块。N个资源块的索引分别为{I 0,…,I N-1}。N为大于0的整数。
F等于4,则第三偏移量为
Figure PCTCN2021083257-appb-000031
(或者简写为
Figure PCTCN2021083257-appb-000032
),k=0,1,2,3,第一资源集合的第N个资源块的索引为
Figure PCTCN2021083257-appb-000033
进一步地,G等于4,则第四偏移量为
Figure PCTCN2021083257-appb-000034
(或者简写为
Figure PCTCN2021083257-appb-000035
),q=0,1,2,3,第二资源集合的第N个资源块的索引为
Figure PCTCN2021083257-appb-000036
或,F等于6,则第三偏移量为
Figure PCTCN2021083257-appb-000037
(或者简写为
Figure PCTCN2021083257-appb-000038
),k=0,1,2,3,4,5,第一资源集合的第N个资源块的索引为
Figure PCTCN2021083257-appb-000039
进一步地,G等于6,则第四偏移量为
Figure PCTCN2021083257-appb-000040
(或者简写为
Figure PCTCN2021083257-appb-000041
),q=0,1,2,3,4,5,第二资源集合的第N个资源块的索引为
Figure PCTCN2021083257-appb-000042
在本申请的一些实施例中,第一资源集合在频域包括N/H个频域资源单元,其中,N为第一控制资源集中包括的频域资源单元的个数,H为正整数,/为相除符号。
其中,N为第一控制资源集中包括的频域资源单元的个数,例如N的取值为48或96,N还可以取其它数值,此处不做限定。具体的,H可以为正整数,H的取值方式有多种,例如H的取值可以为4或6,H还可以取其它数值,此处不做限定。
可以理解的是,第一资源集合包括的频域资源单元为N/H,另外,N/H的结果可以是整数,若N/H得到的结果不是整数时,还可以对N/H得到的结果进行向上取整或向下取整,此处不做限定。
在本申请的一些实施例中,第二资源集合在频域包括N/U个频域资源单元,其中,N为第一控制资源集中包括的频域资源单元的个数,U为正整数,/为相除符号。
其中,N为第一控制资源集中包括的频域资源单元的个数,例如N的取值为48或96,N还可以取其它数值,此处不做限定。具体的,U可以为正整数,U的取值方式有多种,例如U的取值可以为4或6,U还可以取其它数值,此处不做限定。
可以理解的是,第二资源集合包括的频域资源单元为N/U,另外,N/U的结果可以是整数,若N/U得到的结果不是整数时,还可以对N/U得到的结果进行向上取整或向下取整,此处不做限定。
举例说明如下,第一通信设备根据控制资源集确定第一资源集合和第二资源集合的时频资源大小。
例如,控制资源集在频域上包括N个资源块。控制资源集在时域上包括B个符号,且N个资源块的索引分别为{I 0,...,I N-1}。B和N为正整数。例如N=48或96,且B=1或2。第一资源集合在频域上包括N/4个资源块,第一资源集合在时域上包括B个符号。第二资源集合在频域上包括N/4个资源块,第二资源在时域上包括B个符号。
例如,N=48或96,且B=3。第一资源集合在频域上包括N/6个资源块,第一资源集合在时域上包括B个符号。第一资源集合在频域上包括N/6个资源块,第一资源集合在时域上包括B个符号。
在本申请的一些实施例中,对于网络设备而言,网络设备还可以执行如下步骤:网络设备向终端设备发送搜索空间的配置信息,搜索空间的配置信息用于指示第一资源集合的时域位置和第二资源集合的时域位置。
在本申请的一些实施例中,对于终端设备而言,终端设备还可以执行如下步骤:终端设备从网络设备接收搜索空间的配置信息,搜索空间的配置信息用于指示第一资源集合的时域位置和第二资源集合的时域位置。
其中,网络设备还可以生成搜索空间的配置信息,例如搜索空间的配置信息可以是搜索空间集的配置信息。具体的,搜索空间包括公共搜索空间和专用搜索空间,提供了PDCCH的监听时机,CCE的聚合等级,需要检测的DCI格式等配置参数。
在本申请实施例中,网络设备为终端设备配置了上述的第一资源集合和第二资源集合之后,网络设备可以通过搜索空间的配置信息指示第一资源集合的时域位置和第二资源集合的时域位置,从而使得终端设备在接收到搜索空间的配置信息之后,终端设备可以通过该搜索空间的配置信息获取到第一资源集合的时域位置和第二资源集合的时域位置,从而终端设备可以使用第一资源集合和第二资源集合对第一控制信道进行监测,以确定出网络设备发送的第一控制信道。
进一步的,在本申请的一些实施例中,搜索空间的配置信息用于指示所述第一资源集合的时域位置和所述第二资源集合的时域位置,包括:
搜索空间的配置信息指示第一搜索空间(例如Search Space 0)的时域位置;
第一资源集合中的第Ts个时域资源的时域位置相对第一搜索空间的第Tt个时域资源的时域位置的偏移为第五偏移量,第二资源集合中的第Tr个时域资源的时域位置相对第一资源集合中的第Te个时域资源的时域位置的偏移为第六偏移量,Ts、Tt、Tr、和Te为大于0的整数;或,
第一资源集合中的第Tv个时域资源的时域位置相对第一搜索空间的第Tw个时域资源的时域位置的偏移为第七偏移量,第二资源集合中的第Tx个时域资源的时域位置相对第一搜索空间的第Ty个时域资源的时域位置的偏移为第八偏移量,Tv、Tw、Tx、和Ty为大于0的整数。
具体的,搜索空间的配置信息指示第一搜索空间的时域位置,例如搜索空间的配置信息指示第一搜索空间的起始时域位置,或搜索空间的配置信息指示第一搜索空间中任意一个资源的时域位置,或搜索空间的配置信息指示第一搜索空间的所有时域位置,此处不做限定。例如搜索空间的配置信息指示第一搜索空间中的第Tt个时域资源的时域位置,或搜索空间的配置信息指示第一搜索空间中的起始时域位置,根据第一搜索空间中的起始时域位置确定第一搜索空间中的第Tt个时域资源的时域位置。其中,第一搜索空间中的第Tt个时域资源可以是第一搜索空间中的任意一个时域资源。
其中,第一资源集合中的时域资源和第一搜索空间中的时域资源之间存在偏移,从而可以根据第一搜索空间中的时域资源确定出第一资源集合中的时域资源。例如,第一资源集合中的第Ts个时域资源的时域位置相对第一搜索空间中的第Tt个时域资源的时域位置的偏移为第五偏移量,该第五偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第一资源集合中的第Ts个时域资源可以是第一资源集合中的任意一个资源。
其中,第二资源集合中的时域资源和第一资源集合中的时域资源之间存在偏移,从而可以根据第一资源集合中的时域资源确定出第二资源集合中的时域资源。例如,第二资源集合中的第Tr个时域资源的时域位置相对于第一资源集合中的第Te个时域资源的时域位置的偏移为第六偏移量,该第六偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第一资源集合中的第Te个时域资源可以是第一资源集合中的任意一个资源。第二资源集合中的第Tr个时域资源可以是第二资源集合中的任意一个资源。
可以理解的是,上述Ts、Tt、Tr、和Te为大于0的整数,对于Ts、Tt、Tr、和Te的具体取值不做限定。另外,前述的第五偏移量和第六偏移量可以是预配置的数值,或是网络设备通过信令通知给终端设备的数值,且第五偏移量和第六偏移量的确定方式可以相同或不同,此处不做限定。
具体的,搜索空间的配置信息指示第一搜索空间的时域位置,例如搜索空间的配置信息指示第一搜索空间的起始时域位置,或搜索空间的配置信息指示第一搜索空间中任意一个资源的时域位置,或搜索空间的配置信息指示第一搜索空间的所有时域位置,此处不做限定。例如搜索空间的配置信息指示第一搜索空间中的第Tw个时域资源的时域位置,或搜索空间的配置信息指示第一搜索空间中的起始时域位置,根据第一搜索空间中的起始时域位置确定第一搜索空间中的第Tw个时域资源的时域位置。其中,第一搜索空间中的第Tw个时域资源可以是第一搜索空间中的任意一个时域资源。
其中,第一资源集合中的时域资源和第一搜索空间中的时域资源之间存在偏移,从而 可以根据第一搜索空间中的时域资源确定出第一资源集合中的时域资源。例如,第一资源集合中的第Tv个时域资源的时域位置相对第一搜索空间中的第Tw个时域资源的时域位置的偏移为第七偏移量,该第七偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第一资源集合中的第Tv个时域资源可以是第一资源集合中的任意一个资源。
其中,第二资源集合中的时域资源和第一搜索空间中的时域资源之间存在偏移,从而可以根据第一搜索空间中的时域资源确定出第二资源集合中的时域资源。例如,第二资源集合中的第Tx个时域资源的时域位置相对于第一搜索空间中的第Ty个时域资源的时域位置的偏移为第八偏移量,该第八偏移量是预先确定的数值或是网络设备通知给终端设备的数值。第二资源集合中的第Tx个时域资源可以是第二资源集合中的任意一个资源。
可以理解的是,上述Tv、Tw、Tx、和Ty为大于0的整数,对于Tv、Tw、Tx、和Ty的具体取值不做限定。另外,前述的第七偏移量和第八偏移量可以是预配置的数值,或是网络设备通过信令通知给终端设备的数值,且第五偏移量和第八偏移量的确定方式可以相同或不同,此处不做限定。
在本申请的一些实施例中,第一资源集合中包括的时域资源单元的个数等于第一控制资源集中包括的时域资源单元的个数。
其中,时域资源单元是控制资源集合在时域上的资源单元,例如时域资源单元可以是如下信息中的一种:无线帧,子帧,符号,时间窗,时隙。例如时域资源单元可以是时隙或时域符号等,此处不做限定,第一资源集合中包括的时域资源单元的个数等于第一控制资源集中包括的时域资源单元的个数,使得网络设备和终端设备可以方便的确定出第一资源集合中包括的时域资源单元的个数,简化网络设备和终端设备的处理复杂度。
需要说明的是,在本申请的一些实施例中,第一资源集合的时域起始位置或结束位置是预配置的,同样的,第二资源集合的时域起始位置或时域结束位置可以是预配置的,通过上述方法也可以确定出第一资源集合的时域起始位置或结束位置,以及确定出第一资源集合的时域起始位置或结束位置。
在本申请的一些实施例中,第二资源集合中包括的时域资源单元的个数等于第一控制资源集中包括的时域资源单元的个数。
其中,时域资源单元可以是时隙或时域符号等,此处不做限定,第二资源集合中包括的时域资源单元的个数等于第一控制资源集中包括的时域资源单元的个数,使得网络设备和终端设备可以方便的确定出第二资源集合中包括的时域资源单元的个数,简化网络设备和终端设备的处理复杂度。
举例说明如下,第一通信设备确定第一资源集合和第二资源集合的时域位置。
搜索空间集的起始时间单元或结束时间单元是N1,第一资源集合的起始时间单元或结束时间单元是N1+K1。第二资源集合的起始时间单元或结束时间单元是N1+L1。K1是预先规定的整数或预先通知的整数,L1是预先规定的整数或预先通知的整数。
例如,控制资源集在时域上包括3个符号,搜索空间的起始符号索引N1=0,K1=3,且L1=3,则第一资源集合的起始符号索引是N1+K1=3,第二资源集合的起始符号索引是N1+L1=3。
例如,控制资源集在时域上包括3个符号,搜索空间的起始符号索引N1=0,K1=0,且 L1=0,则第一资源集合的起始符号索引是N1+K1=0,第二资源集合的起始符号索引是N1+L1=0。
802、网络设备在候选控制信道集合的资源上发送第一控制信道,其中,候选控制信道集合的资源中包括第一资源集合中的资源和第二资源集合中的资源。
在本申请实施例中,网络设备向终端设备发送控制资源集的配置信息。之后,网络设备确定候选控制信道集合,该候选控制信道集合的资源中包括第一资源集合中的资源和第二资源集合中的资源。网络设备可以使用第一资源集合中的资源和第二资源集合中的资源作为候选控制信道集合的资源,网络设备可以利用第一资源集合中的资源和第二资源集合中的资源发送第一控制信道。由于本申请实施例中网络设备可以使用两个资源集合或者更多资源集合中的资源向终端设备发送第一控制信道,从而使得终端设备可以在两个资源集合或者更多资源集合中的资源上监听第一控制信道。
812、终端设备在候选控制信道集合的资源上监测第一控制信道,其中,候选控制信道集合的资源包括第一资源集合中的资源和第二资源集合中的资源。
在本申请实施例中,终端设备可以根据第一资源集合的配置信息确定出第一资源集合中的资源,以及可以根据第二资源集合的配置信息确定出第二资源集合中的资源。之后,终端设备确定候选控制信道集合,该候选控制信道集合的资源中包括第一资源集合中的资源和第二资源集合中的资源。终端设备可以使用第一资源集合中的资源和第二资源集合中的资源作为候选控制信道集合的资源,终端设备可以利用第一资源集合中的资源和第二资源集合中的资源监听第一控制信道。由于本申请实施例中网络设备可以使用两个资源集合或者更多资源集合中的资源向终端设备发送第一控制信道,从而使得终端设备可以在两个资源集合或者更多资源集合中的资源上监听第一控制信道。
通过前述对通信方法的举例说明可知,第一类型终端设备和第二类型终端设备盲检控制信道的资源不同。为第一类型终端设备调度数据传输的控制信道发送在第一资源集合和第二资源集合上,终端设备分别在两个时域资源中接收第一资源集合和第二资源集合上的信息。第一资源集合和第二资源集合根据控制资源集确定。第一类型终端设备的带宽能力小于配置的控制资源集的带宽时,也能够接收网络设备发送的控制信道,并且不影响控制资源集和搜索空间的配置的灵活性。
上述本申请提供的实施例中,分别从网络设备、终端设备、以及网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请实施例所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图9所示,本申请实施例提供的一种通信装置900。通信装置900可以是终端设备,也可以是终端设备中的装置,或是能够和终端设备匹配使用的装置。图9以通信装置900是终端设备900为例示出。终端设备900可以包括:收发模块901和处理模块902。
一种可能的实现中:
收发模块,用于从网络设备接收下行控制信息,所述下行控制信息中包括第一调制编码方式MCS字段;
处理模块,用于当所述第一MCS字段的值为第一值时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,当所述第一MCS字段的值不为所述第一值时,或当所述第一MCS字段的值为第二值时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。
关于所述第一MCS、第一值和第二值的介绍可以参考前文方法实施例,此处不再赘述。
一种可能的实现中:
收发模块,用于从网络设备接收下行控制信息;
处理模块,用于当所述下行控制信息被第一加扰序列加扰时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,当所述下行控制信息被第二加扰序列加扰时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。
在本申请的一些实施例中,用于产生所述第一加扰序列的初始化参数为非零值,用于产生所述第二加扰序列的初始化参数等于零。
一种可能的实现中:
收发模块,用于从网络设备接收下行控制信息,所述下行控制信息中包括第一比特;
处理模块,用于当所述第一比特的值为第三值时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,当所述第一比特的值为第四值时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。
一种可能的实现中:
收发模块,用于从网络设备接收控制资源集的配置信息,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息;
处理模块,用于利用收发模块在候选控制信道集合的资源上监测第一控制信道,其中,所述候选控制信道集合的资源包括所述第一资源集合中的资源和所述第二资源集合中的资源。
在本申请的一些实施例中,收发模块,还用于从所述网络设备接收搜索空间的配置信息,所述搜索空间的配置信息用于指示第一资源集合的时域位置和第二资源集合的时域位置。
关于控制资源集、第一资源集合、第二资源集合、和搜索空间的介绍可以参考前文方法实施例,此处不再赘述。
在本申请的一些实施例中,所述第一MCS字段中包括5个比特。
请参阅图10所示,本申请实施例提供的一种通信装置1000。通信装置1000可以是网 络设备,也可以是网络设备中的装置,或是能够和网络设备匹配使用的装置。图10以通信装置1000是网络设备1000为例示出。网络设备1000可以包括:收发模块1001和处理模块1002。
一种可能的实现中:
收发模块,用于向终端设备发送下行控制信息,所述下行控制信息中包括第一调制编码方式MCS字段;
处理模块,用于当所述下行控制信息用于调度第一类型终端设备的数据传输时,确定所述第一MCS字段的值为第一值;或,当所述下行控制信息用于调度第二类型终端设备的数据传输时,确定所述第一MCS字段的值不为所述第一值,或确定所述第一MCS字段的值为第二值。
关于所述第一MCS、第一值和第二值的介绍可以参考前文方法实施例,此处不再赘述。
一种可能的实现中:
收发模块,用于向终端设备发送下行控制信息;
处理模块,用于当所述下行控制信息用于调度第一类型终端设备的数据传输时,使用第一加扰序列对所述下行控制信息进行加扰;或,当所述下行控制信息用于调度第二类型终端设备的数据传输时,使用第二加扰序列对所述下行控制信息进行加扰。
在本申请的一些实施例中,用于产生所述第一加扰序列的初始化参数为非零值,用于产生所述第二加扰序列的初始化参数等于零。
一种可能的实现中:
收发模块,用于向终端设备发送下行控制信息,所述下行控制信息中包括第一比特;
处理模块,用于当所述下行控制信息用于调度第一类型终端设备的数据传输时,确定所述第一比特的值为第三值;或,当所述下行控制信息用于调度第二类型终端设备的数据传输时,确定所述第一比特的值为第四值。
一种可能的实现中:
处理模块,用于通过收发模块向终端设备发送控制资源集的配置信息,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息;
处理模块,用于通过收发模块在候选控制信道集合的资源上发送第一控制信道,其中,所述候选控制信道集合的资源中包括所述第一资源集合中的资源和所述第二资源集合中的资源。
在本申请的一些实施例中,处理模块,还用于通过收发模块向所述终端设备发送搜索空间的配置信息,所述搜索空间的配置信息用于指示第一资源集合的时域位置和第二资源集合的时域位置。
关于控制资源集、第一资源集合、第二资源集合、和搜索空间的介绍可以参考前文方法实施例,此处不再赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图11所示为本申请实施例提供的装置1100,用于实现上述方法中终端设备的功能。该装置可以是终端设备,也可以是终端设备中的装置,或者能够和终端设备匹配使用的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。装置1100包括至少一个处理器1120,用于实现本申请实施例提供的方法中终端设备的功能。示例性地,处理器1120可以接收下行控制信息、控制资源集的配置信息等等信息,并解析上述信息,具体参见方法示例中的详细描述,此处不做赘述。
装置1100还可以包括至少一个存储器1130,用于存储程序指令和/或数据。存储器1130和处理器1120耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1120可能和存储器1130协同操作。处理器1120可能执行存储器1130中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中
装置1100还可以包括通信接口,该通信接口有多种实现方式,例如通信接口可以是收发器、接口、总线、电路、管脚或者能够实现收发功能的装置,图11中以通信接口为收发器1110进行示例说明,收发器1110用于通过传输介质和其它设备进行通信,从而用于装置1100中的装置可以和其它设备进行通信。示例性地,该其它设备可以是网络设备。处理器1120利用收发器1110收发数据,并用于实现图1、图3、图4、图8对应的实施例中所述的终端设备所执行的方法。
本申请实施例中不限定上述收发器1110、处理器1120以及存储器1130之间的具体连接介质。本申请实施例在图11中以存储器1130、处理器1120以及收发器1110之间通过总线1140连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
如图12所示为本申请实施例提供的装置1200,用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是网络设备中的装置,或者能够和网络设备匹配使用的装置。其中,该装置可以为芯片系统。装置1200包括至少一个处理器1220,用于实现本申请实施例提供的方法中网络设备的功能。示例性地,处理器1220可以生成和发送下行控制信息、控制资源集的配置信息等等信息,具体参见方法示例中的详细描述,此处不做赘述。
装置1200还可以包括至少一个存储器1230,用于存储程序指令和/或数据。存储器1230和处理器1220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1220可能和存储器1230协同操作。处理器1220可能执行存储器1230中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中
装置1200还可以包括通信接口,该通信接口有多种实现方式,例如通信接口可以是收发器、接口、总线、电路或者能够实现收发功能的装置,图12中以通信接口为收发器1212进行示例说明,收发器1212用于通过传输介质和其它设备进行通信,从而用于装置1200中的装置可以和其它设备进行通信。示例性地,该其它设备可以是终端设备。处理器1220利用收发器1212收发数据,并用于实现图1、图3、图4、图8对应的实施例中所述的网 络设备所执行的方法。
本申请实施例中不限定上述收发器1212、处理器1220以及存储器1230之间的具体连接介质。本申请实施例在图12中以存储器1230、处理器1220以及收发器1212之间通过总线1240连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (51)

  1. 一种通信方法,其特征在于,包括:
    获得来自网络设备的下行控制信息,所述下行控制信息中包括第一调制编码方式MCS字段;
    当所述第一MCS字段的值为第一值时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,
    当所述第一MCS字段的值不为所述第一值时,或当所述第一MCS字段的值为第二值时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第一MCS字段的值为第一值,包括:
    所述第一MCS字段的所有比特位的值都为1。
  3. 根据权利要求1或2所述的方法,其特征在于,当所述下行控制信息用于调度第一类型终端设备的数据传输时,所述下行控制信息中还包括第二MCS字段,所述第二MCS字段用于指示所述第一类型终端设备的数据传输的MCS。
  4. 根据权利要求1所述的方法,其特征在于,
    当所述第一MCS字段的值为第一值时,确定所述下行控制信息用于调度第一类型终端设备的数据传输,包括:当所述第一MCS字段的最高位比特的值为1时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,
    当所述第一MCS字段的值不为所述第一值时,或当所述第一MCS字段的值为第二值时,确定所述下行控制信息用于调度第二类型终端设备的数据传输,包括:当所述第一MCS字段的最高位比特的值为0时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。
  5. 根据权利要求4所述的方法,其特征在于,当所述下行控制信息用于调度第一类型终端设备的数据传输时,所述第一MCS字段中的至少一个比特用于指示所述第一类型终端设备的数据传输的MCS,其中,所述至少一个比特中不包括所述第一MCS字段的最高位比特。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一MCS字段中包括5个比特。
  7. 一种通信方法,其特征在于,包括:
    输出要向终端设备发送的下行控制信息,所述下行控制信息中包括第一调制编码方式MCS字段;
    当所述下行控制信息用于调度第一类型终端设备的数据传输时,确定所述第一MCS字段的值为第一值;或,
    当所述下行控制信息用于调度第二类型终端设备的数据传输时,确定所述第一MCS字段的值不为所述第一值,或确定所述第一MCS字段的值为第二值。
  8. 根据权利要求7所述的方法,其特征在于,所述第一MCS字段的值为第一值,包括:
    所述第一MCS字段的所有比特位的值都为1。
  9. 根据权利要求7或8所述的方法,其特征在于,当所述下行控制信息用于调度第一类型终端设备的数据传输时,所述下行控制信息中还包括第二MCS字段,所述第二MCS字 段用于指示所述第一类型终端设备的数据传输的MCS。
  10. 根据权利要求7所述的方法,其特征在于,
    当所述下行控制信息用于调度第一类型终端设备的数据传输时,确定所述第一MCS字段的值为第一值,包括:当所述下行控制信息用于调度第一类型终端设备的数据传输时,确定所述第一MCS字段的最高位比特的值为1;或,
    当所述下行控制信息用于调度第二类型终端设备的数据传输时,确定所述第一MCS字段的值不为所述第一值,或确定所述第一MCS字段的值为第二值,包括:当所述下行控制信息用于调度第二类型终端设备的数据传输时,确定所述第一MCS字段的最高位比特的值为0。
  11. 根据权利要求10所述的方法,其特征在于,当所述下行控制信息用于调度第一类型终端设备的数据传输时,所述第一MCS字段中的至少一个比特用于指示所述第一类型终端设备的数据传输的MCS,其中,所述至少一个比特中不包括所述第一MCS字段的最高位比特。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述第一MCS字段包括5个比特。
  13. 一种通信方法,其特征在于,包括:
    获得来自网络设备的下行控制信息;
    当所述下行控制信息被第一加扰序列加扰时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,
    当所述下行控制信息被第二加扰序列加扰时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。
  14. 根据权利要求13所述的方法,其特征在于,用于产生所述第一加扰序列的初始化参数为非零值,用于产生所述第二加扰序列的初始化参数等于零。
  15. 一种通信方法,其特征在于,包括:
    输出要向终端设备发送的下行控制信息;
    当所述下行控制信息用于调度第一类型终端设备的数据传输时,使用第一加扰序列对所述下行控制信息进行加扰;或,
    当所述下行控制信息用于调度第二类型终端设备的数据传输时,使用第二加扰序列对所述下行控制信息进行加扰。
  16. 根据权利要求15所述的方法,其特征在于,用于产生所述第一加扰序列的初始化参数为非零值,用于产生所述第二加扰序列的初始化参数等于零。
  17. 一种通信方法,其特征在于,包括:
    获得来自网络设备的下行控制信息,所述下行控制信息中包括第一比特;
    当所述第一比特的值为第三值时,确定所述下行控制信息用于调度第一类型终端设备的数据传输;或,
    当所述第一比特的值为第四值时,确定所述下行控制信息用于调度第二类型终端设备的数据传输。
  18. 一种通信方法,其特征在于,包括:
    输出要向终端设备发送的下行控制信息,所述下行控制信息中包括第一比特;
    当所述下行控制信息用于调度第一类型终端设备的数据传输时,确定所述第一比特的值为第三值;或,
    当所述下行控制信息用于调度第二类型终端设备的数据传输时,确定所述第一比特的值为第四值。
  19. 一种通信方法,其特征在于,包括:
    获得来自网络设备的控制资源集的配置信息,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息;
    在候选控制信道集合的资源上监测第一控制信道,其中,所述候选控制信道集合的资源包括所述第一资源集合中的资源和所述第二资源集合中的资源。
  20. 根据权利要求19所述的方法,其特征在于,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息,包括:
    所述控制资源集的配置信息指示第一控制资源集的频域资源位置,其中,所述第一资源集合中的第s个频域资源的频域位置相对所述第一控制资源集中的第t个频域资源的频域位置的偏移为第一偏移量,所述第二资源集合中的第r个频域资源的频域位置相对于所述第一资源集合中的第p个频域资源的频域位置的偏移为第二偏移量,其中,所述s、所述t、所述r、和所述p为大于0的整数。
  21. 根据权利要求20所述的方法,其特征在于,所述第一偏移量为N/M的整数倍,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述M为正整数,所述/为相除符号。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第二偏移量为N/E的整数倍,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述E为正整数,所述/为相除符号。
  23. 根据权利要求19所述的方法,其特征在于,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息,包括:
    所述控制资源集的配置信息指示第一控制资源集的频域资源位置,其中,所述第一资源集合中的第v个频域资源的频域位置相对所述第一控制资源集中的第w个频域资源的频域位置的偏移为第三偏移量,所述第二资源集合中的第x个频域资源的频域位置相对所述第一控制资源集中的第y个频域资源的频域位置的偏移为第四偏移量,其中,所述v、所述w、所述x、和所述y为大于0的整数。
  24. 根据权利要求23所述的方法,其特征在于,所述第三偏移量为N/F的整数倍,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述F为正整数,所述/为相除符号。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第四偏移量为N/G的整数倍,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述G为正整数,所述/为相除符号。
  26. 根据权利要求20至25中任一项所述的方法,其特征在于,所述第一资源集合在频域包括N/H个频域资源单元,其中,所述N为所述第一控制资源集中包括的频域资源单元 的个数,所述H为正整数,所述/为相除符号。
  27. 根据权利要求20至26中任一项所述的方法,其特征在于,所述第二资源集合在频域包括N/U个频域资源单元,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述U为正整数,所述/为相除符号。
  28. 根据权利要求19至27中任一项所述的方法,其特征在于,所述方法还包括:
    从所述网络设备接收搜索空间的配置信息,所述搜索空间的配置信息用于指示所述第一资源集合的时域位置和所述第二资源集合的时域位置。
  29. 根据权利要求28所述的方法,其特征在于,所述搜索空间的配置信息用于指示所述第一资源集合的时域位置和所述第二资源集合的时域位置,包括:
    所述搜索空间的配置信息指示第一搜索空间的时域位置;
    所述第一资源集合中的第Ts个时域资源的时域位置相对所述第一搜索空间中的第Tt个时域资源的时域位置的偏移为第五偏移量,所述第二资源集合中的第Tr个时域资源的时域位置相对所述第一资源集合中的第Te个时域资源的时域位置的偏移为第六偏移量,所述Ts、所述Tt、所述Tr、和所述Te为大于0的整数;或,
    所述第一资源集合中的第Tv个时域资源的时域位置相对所述第一搜索空间中的第Tw个时域资源的时域位置的偏移为第七偏移量,所述第二资源集合中的第Tx个时域资源的时域位置相对所述第一搜索空间中的第Ty个时域资源的时域位置的偏移为第八偏移量,所述Tv、所述Tw、所述Tx、和所述Ty为大于0的整数。
  30. 根据权利要求20至29中任一项所述的方法,其特征在于,所述第一资源集合中包括的时域资源单元的个数等于所述第一控制资源集中包括的时域资源单元的个数。
  31. 根据权利要求20至30中任一项所述的方法,其特征在于,所述第二资源集合中包括的时域资源单元的个数等于所述第一控制资源集中包括的时域资源单元的个数。
  32. 一种通信方法,其特征在于,包括:
    输出要向终端设备发送的控制资源集的配置信息,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息;
    在候选控制信道集合的资源上发送第一控制信道,其中,所述候选控制信道集合的资源中包括所述第一资源集合中的资源和所述第二资源集合中的资源。
  33. 根据权利要求32所述的方法,其特征在于,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息,包括:
    所述控制资源集的配置信息指示第一控制资源集的频域资源位置,其中,所述第一资源集合中的第s个频域资源的频域位置相对所述第一控制资源集中的第t个频域资源的频域位置的偏移为第一偏移量,所述第二资源集合中的第r个频域资源的频域位置相对于所述第一资源集合中的第p个频域资源的频域位置的偏移为第二偏移量,其中,所述s.所述t、所述r、和所述p为大于0的整数。
  34. 根据权利要求33所述的方法,其特征在于,所述第一偏移量为N/M的整数倍,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述M为正整数,所述/为相除符号。
  35. 根据权利要求33或34所述的方法,其特征在于,所述第二偏移量为N/E的整数倍, 其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述E为正整数,所述/为相除符号。
  36. 根据权利要求32所述的方法,其特征在于,所述控制资源集的配置信息用于指示第一资源集合的配置信息和第二资源集合的配置信息,包括:
    所述控制资源集的配置信息指示第一控制资源集的频域资源位置,其中,所述第一资源集合中的第v个频域资源的频域位置相对所述第一控制资源集中的第w个频域资源的频域位置的偏移为第三偏移量,所述第二资源集合中的第x个频域资源的频域位置相对所述第一控制资源集中的第y个频域资源的频域位置的偏移为第四偏移量,其中,所述v、所述w、所述x、和所述y为大于0的整数。
  37. 根据权利要求36所述的方法,其特征在于,所述第三偏移量为N/F的整数倍,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述F为正整数,所述/为相除符号。
  38. 根据权利要求36或37所述的方法,其特征在于,所述第四偏移量为N/G的整数倍,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述G为正整数,所述/为相除符号。
  39. 根据权利要求33至38中任一项所述的方法,其特征在于,所述第一资源集合在频域包括N/H个频域资源单元,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述H为正整数,所述/为相除符号。
  40. 根据权利要求33至39中任一项所述的方法,其特征在于,所述第二资源集合在频域包括N/U个频域资源单元,其中,所述N为所述第一控制资源集中包括的频域资源单元的个数,所述U为正整数,所述/为相除符号。
  41. 根据权利要求32至40中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送搜索空间的配置信息,所述搜索空间的配置信息用于指示所述第一资源集合的时域位置和所述第二资源集合的时域位置。
  42. 根据权利要求41所述的方法,其特征在于,所述搜索空间的配置信息用于指示所述第一资源集合的时域位置和所述第二资源集合的时域位置,包括:
    所述搜索空间的配置信息指示第一搜索空间的时域位置;
    所述第一资源集合中的第Ts个时域资源的时域位置相对所述第一搜索空间的第Tt个时域资源的时域位置的偏移为第五偏移量,所述第二资源集合中的第Tr个时域资源的时域位置相对所述第一资源集合中的第Te个时域资源的时域位置的偏移为第六偏移量,所述Ts、所述Tt、所述Tr、和所述Te为大于0的整数;或,
    所述第一资源集合中的第Tv个时域资源的时域位置相对所述第一搜索空间的第Tw个时域资源的时域位置的偏移为第七偏移量,所述第二资源集合中的第Tx个时域资源的时域位置相对所述第一搜索空间的第Ty个时域资源的时域位置的偏移为第八偏移量,所述Tv.所述Tw、所述Tx、和所述Ty为大于0的整数。
  43. 根据权利要求33至42中任一项所述的方法,其特征在于,所述第一资源集合中包括的时域资源单元的个数等于所述第一控制资源集中包括的时域资源单元的个数。
  44. 根据权利要求33至43中任一项所述的方法,其特征在于,所述第二资源集合中包 括的时域资源单元的个数等于所述第一控制资源集中包括的时域资源单元的个数。
  45. 一种通信装置,其特征在于,用于实现如权利要求1至6、13至14、17、19至31中任一项所述的方法。
  46. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1至6、13至14、17、19至31中任一项所述的方法。
  47. 一种通信装置,其特征在于,用于实现如权利要求7至12、15至16、18、32至44中任一项所述的方法。
  48. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求7至12、15至16、18、32至44中任一项所述的方法。
  49. 一种通信系统,包括权利要求45或46所述的通信装置,和权利要求47或48所述的通信装置。
  50. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至44任一项所述的方法。
  51. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至44任一项所述的方法。
PCT/CN2021/083257 2020-03-31 2021-03-26 一种通信方法和装置 WO2021197225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010246563.4 2020-03-31
CN202010246563.4A CN113473606A (zh) 2020-03-31 2020-03-31 一种通信方法和装置

Publications (1)

Publication Number Publication Date
WO2021197225A1 true WO2021197225A1 (zh) 2021-10-07

Family

ID=77865721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083257 WO2021197225A1 (zh) 2020-03-31 2021-03-26 一种通信方法和装置

Country Status (2)

Country Link
CN (1) CN113473606A (zh)
WO (1) WO2021197225A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125775A1 (zh) * 2021-12-29 2023-07-06 维沃移动通信有限公司 数据处理方法、装置、通信设备及可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116800573A (zh) * 2022-03-11 2023-09-22 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335509A (zh) * 2012-05-22 2015-02-04 华为技术有限公司 用于延迟调度的系统和方法
CN105636203A (zh) * 2014-11-07 2016-06-01 上海贝尔股份有限公司 传输用于mtc ue的公共寻呼消息的方法和装置
WO2017078023A1 (ja) * 2015-11-02 2017-05-11 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN109392140A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种用于监听pdcch的方法、终端及网络设备
WO2019071368A1 (en) * 2017-10-09 2019-04-18 Lenovo (Beijing) Limited INDICATION FOR A TRANSMISSION SCHEME
CN110741705A (zh) * 2017-06-08 2020-01-31 Lg电子株式会社 无线通信系统中由终端执行的下行链路控制信道接收方法以及使用该方法的终端
US20200053580A1 (en) * 2018-08-09 2020-02-13 Lenovo (Singapore) Pte. Ltd. Downlink assignments for downlink control channels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10039088B2 (en) * 2012-01-26 2018-07-31 Samsung Electronics Co., Ltd. Method and apparatus for scheduling communication for low capability devices
CN103973403B (zh) * 2013-02-06 2018-02-23 中国移动通信集团公司 调制编码方案指示、下行数据接收方法及装置
US10944501B2 (en) * 2017-12-15 2021-03-09 Mediatek Singapore Pte. Ltd. Method and apparatus for determining modulation and coding scheme table in mobile communications
CN110830158B (zh) * 2018-08-10 2022-07-12 华为技术有限公司 传输上行控制信息的方法和通信装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335509A (zh) * 2012-05-22 2015-02-04 华为技术有限公司 用于延迟调度的系统和方法
CN105636203A (zh) * 2014-11-07 2016-06-01 上海贝尔股份有限公司 传输用于mtc ue的公共寻呼消息的方法和装置
WO2017078023A1 (ja) * 2015-11-02 2017-05-11 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN110741705A (zh) * 2017-06-08 2020-01-31 Lg电子株式会社 无线通信系统中由终端执行的下行链路控制信道接收方法以及使用该方法的终端
CN109392140A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种用于监听pdcch的方法、终端及网络设备
WO2019071368A1 (en) * 2017-10-09 2019-04-18 Lenovo (Beijing) Limited INDICATION FOR A TRANSMISSION SCHEME
US20200053580A1 (en) * 2018-08-09 2020-02-13 Lenovo (Singapore) Pte. Ltd. Downlink assignments for downlink control channels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125775A1 (zh) * 2021-12-29 2023-07-06 维沃移动通信有限公司 数据处理方法、装置、通信设备及可读存储介质

Also Published As

Publication number Publication date
CN113473606A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
JP7059393B2 (ja) ダウンリンク制御情報伝送方法
JP6985430B2 (ja) 制御情報伝送方法およびデバイス
RU2732508C1 (ru) Способ и устройство для передачи сигналов
US11363499B2 (en) Resource configuration method, apparatus, and system
US20210329647A1 (en) Method and apparatus for repeatedly transmitting control information in wireless communication system
US20230171722A1 (en) Synchronization signal block transmission method and communication apparatus
US20210258960A1 (en) Data transmission method and communications apparatus
WO2021204300A1 (zh) 控制信息传输方法
WO2021197225A1 (zh) 一种通信方法和装置
WO2021204107A1 (zh) 一种通信方法及装置
CN111601382B (zh) 一种数据传输方法及通信装置
WO2020048481A1 (zh) 通信方法及装置
US11258571B2 (en) Downlink control information transmission method, apparatus, and system
WO2020187132A1 (zh) 数据信道的传输方法及装置
WO2017076160A1 (zh) 信令配置及传输方法、站点、终端、计算机存储介质
US20230085474A1 (en) Communication method and apparatus
CN111182633B (zh) 一种通信方法及装置
WO2019157903A1 (zh) 一种资源配置方法及装置
WO2020098662A1 (zh) 发送和接收物理下行控制信道的方法以及通信装置
EP4142401A1 (en) Communication method and communication apparatus
US11856605B2 (en) Medium access control support for heterogenous physical layer data unit multiplexing
WO2024067617A1 (zh) 资源配置的方法及装置
WO2023206306A1 (zh) 数据接收方法、数据发送方法以及装置
JP6752967B2 (ja) ワイヤレス通信方法およびデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779550

Country of ref document: EP

Kind code of ref document: A1