WO2024067617A1 - 资源配置的方法及装置 - Google Patents

资源配置的方法及装置 Download PDF

Info

Publication number
WO2024067617A1
WO2024067617A1 PCT/CN2023/121655 CN2023121655W WO2024067617A1 WO 2024067617 A1 WO2024067617 A1 WO 2024067617A1 CN 2023121655 W CN2023121655 W CN 2023121655W WO 2024067617 A1 WO2024067617 A1 WO 2024067617A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
subband
time domain
domain position
frequency
Prior art date
Application number
PCT/CN2023/121655
Other languages
English (en)
French (fr)
Inventor
刘云峰
郭志恒
宋兴华
谢信乾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067617A1 publication Critical patent/WO2024067617A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications, and more specifically, to a method and device for resource configuration.
  • a subband full duplex (SBFD) scheme is proposed to improve the uplink coverage performance of the time division duplexing (TDD) system.
  • Full duplex means that in the TDD system, network equipment uses different subbands for uplink and downlink transmission, so that information can be received and sent in one time slot or one orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • CC component carrier
  • the present application provides a method and device for resource configuration, which can improve the flexibility of time-frequency resource configuration in a sub-band full-duplex scenario.
  • a method for resource configuration is provided.
  • the method may be executed by a terminal device, or may be executed by a component of the terminal device (eg, a chip or a circuit), without limitation.
  • the method may include: a terminal device receives first indication information from a network device, the first indication information is used to indicate first time-frequency resource configuration information in multiple sets of time-frequency resource configuration information, each set of time-frequency resource configuration information in the multiple sets of time-frequency resource configuration information includes frequency domain configuration parameters and time domain configuration parameters of one or more subbands in a first carrier, and the first time-frequency resource configuration information includes first frequency domain configuration parameters and first time domain configuration parameters for a first subband in the first carrier; the terminal device determines a first time domain position, a frequency domain position of L subbands in the first carrier, and a symbol type of the L subbands at the first time domain position based on the first frequency domain configuration parameters and the first time domain configuration parameters, where L ⁇ 1 and L is an integer.
  • the above scheme indicates the first time-frequency resource configuration information in multiple sets of time-frequency resource configuration information to the terminal device through the network device, realizes the dynamic indication of time-frequency resource configuration information for the sub-band full-duplex scheme, can improve the flexibility of time-frequency resource configuration, and improves the resource configuration process of the sub-band full-duplex scheme.
  • the first carrier further includes a second subband, L>1, and the L subbands include the first subband and the second subband.
  • the terminal device can determine the time-frequency distribution of other subbands (ie, the above-mentioned second subband) in the first carrier according to the first time domain configuration parameter and the first frequency domain configuration parameter of the first subband, thereby saving overhead.
  • the L subbands are all subbands included in the first carrier.
  • the first sub-band may include at least one sub-band
  • the second sub-band may also include at least one sub-band
  • the first carrier also includes a second subband, L>1, and the L subbands include the first subband and the second subband;
  • the first time domain position includes one or more time units, and the first subband and the second subband on each of the one or more time units do not overlap in the frequency domain;
  • the one or more time units include a first symbol, and the symbol type of the first subband in the first symbol is different from the symbol type of the second subband in the first symbol.
  • the above scheme increases the uplink transmission resources available to the terminal device at the first time domain position, which can effectively improve the uplink transmission coverage and reduce the uplink transmission delay.
  • the first indication information includes an index of the first time-frequency resource configuration information.
  • the first indication information includes an index of the first frequency domain configuration parameter and/or an index of the first time domain configuration parameter.
  • the above scheme can flexibly determine the number of indexes included in the first indication information according to the number of groups of frequency domain configuration parameters and the number of groups of time domain configuration parameters, thereby saving overhead. It should be understood that when there is only one group of time domain configuration parameters among the multiple sets of time-frequency resource configuration parameters, that is, the first time domain configuration parameters, the first indication information may not include the index of the first time domain configuration parameters. Similarly, when there is only one group of frequency domain configuration parameters among the multiple sets of time-frequency resource configuration parameters, that is, the first frequency domain configuration parameters, the first indication information may not include the index of the first frequency domain configuration parameters.
  • the first carrier also includes a second subband, L>1, and the L subbands include the first subband and the second subband; the terminal device determines the first time domain position, the frequency domain position, and the symbol type of the L subbands at the first time domain position of the L subbands in the first carrier according to the first frequency domain configuration parameter and the first time domain configuration parameter, including: the terminal device determines the frequency domain position of the first subband according to the first frequency domain configuration parameter; the terminal device determines the second subband according to the frequency domain position of the first subband and the frequency domain position of the first carrier.
  • the terminal device determines the time domain position of the first subband according to the first time domain configuration parameter, and the time domain position of the first subband includes the first time domain position; the terminal device determines the symbol type of the first subband at the first time domain position as uplink or flexible according to the first time domain configuration parameter; the terminal device determines the time domain position of the second subband according to the time slot format configuration of the first carrier, and the time domain position of the second subband includes the first time domain position; the terminal device determines the symbol type of the second subband at the first time domain position as downlink or flexible according to the time slot format configuration of the first carrier.
  • the above scheme provides a specific implementation method for the terminal device to determine the time-frequency distribution of other subbands (i.e., the second subband mentioned above) in the first carrier based on the first time domain configuration parameters and the first frequency domain configuration parameters of the first subband, thereby further improving the resource configuration process of the subband full-duplex scheme.
  • the first time-frequency resource configuration information when there is a protection bandwidth between the first subband and the second subband, also includes frequency domain configuration parameters of the protection bandwidth; the terminal device determines the frequency domain position of the second subband based on the frequency domain position of the first subband and the frequency domain position of the first carrier, including: the terminal device determines the frequency domain position of the protection bandwidth based on the frequency domain configuration parameters of the protection bandwidth; the terminal device determines the frequency domain position of the second subband based on the frequency domain position of the first subband, the frequency domain position of the first carrier, and the frequency domain position of the protection bandwidth.
  • the first time-frequency resource configuration information in view of the situation where there is a protection bandwidth between the first sub-band and the second sub-band, the first time-frequency resource configuration information also needs to include the frequency domain configuration parameters of the protection bandwidth, further improving the resource configuration process of the sub-band full-duplex scheme.
  • the first time domain configuration parameter is used to indicate the time domain position of the flexible symbol and the uplink symbol; the terminal device determines the first time domain position of the first subband according to the first time domain configuration parameter, including: the terminal device determines the time domain position of the flexible symbol and the time domain position of the uplink symbol according to the first time domain configuration parameter; the terminal device determines the first time domain position according to the time domain position of the flexible symbol and the time domain position of the uplink symbol.
  • the first time domain configuration parameter can specifically indicate the time domain position of the first subband by indicating the time domain positions of the flexible symbol and the uplink symbol, thereby further improving the resource configuration process of the subband full-duplex scheme.
  • the first time domain configuration parameter is used to indicate the time domain position of the flexible symbol; the terminal device determines the first time domain position of the first subband according to the first time domain configuration parameter, including: the terminal device determines the time domain position of the flexible symbol according to the first time domain configuration parameter; the terminal device determines the first time domain position according to the time domain position of the flexible symbol.
  • all symbols of the first subband at the first time domain position are flexible symbols.
  • the first time domain configuration parameter can specifically indicate the time domain position of the first subband by indicating the time domain position of the flexible symbol, further improving the resource configuration process of the subband full-duplex scheme.
  • the first frequency domain configuration parameter when the first time domain position includes multiple time units, the first frequency domain configuration parameter includes X groups of frequency domain configuration parameters, each group of frequency domain configuration parameters in the X groups of frequency domain configuration parameters is used to indicate a frequency domain position, and the first time-frequency resource configuration information also includes a correspondence between each group of frequency domain configuration parameters and each time unit in the multiple time units, X ⁇ 2 and X is an integer; the terminal device determines the frequency domain position of the first sub-band according to the first frequency domain configuration parameter, including: the terminal device determines X types of frequency domain positions corresponding to the first sub-band according to the X groups of frequency domain configuration parameters; the terminal device determines X types of frequency domain positions corresponding to the first sub-band according to the X groups of frequency domain configuration parameters; The frequency domain position, the first time domain position and the corresponding relationship determine the frequency domain position of the first subband in each time unit.
  • the first time-frequency resource configuration information may explicitly indicate the corresponding relationship, for example, the first time-frequency resource configuration information includes indication information for indicating the corresponding relationship; or, the first time-frequency resource configuration information may implicitly indicate the corresponding relationship, for example, the first time-frequency resource configuration information also includes X groups of time domain configuration parameters, and the X groups of time domain configuration parameters correspond one to one with the X groups of frequency domain configurations. Each group of time domain configuration parameters in the X groups of time domain configuration parameters respectively indicates a time domain position in the first time domain position.
  • the granularity of the time domain position indicated by each group of time domain configuration parameters is different from the granularity of a time unit.
  • the corresponding relationship may also be the corresponding relationship between each group of frequency domain configuration parameters and each time domain position in the multiple time domain positions.
  • the network device in view of the situation that the frequency domain positions of some or all sub-bands in the first time domain position change between different time units, the network device will also specifically indicate to the terminal device the correspondence between different frequency domain positions and time domain positions of the first sub-band, so that the terminal device can more accurately determine the time-frequency distribution of the L sub-bands, further improving the resource allocation process of the sub-band full-duplex scheme.
  • the method also includes: the terminal device receives second indication information from the network device, the second indication information is used to indicate second time-frequency resource configuration information in the multiple sets of time-frequency resource configuration information, the second time-frequency resource configuration information includes a second time domain configuration parameter and a second frequency domain configuration parameter of the first subband, and the second time-frequency resource configuration information is not completely the same or is completely different from the first time-frequency resource configuration information; the terminal device determines the second time domain position, frequency domain position and symbol type of the P subbands in the first carrier according to the second time domain configuration parameter and the second frequency domain configuration parameter, where P ⁇ 1 and P is an integer.
  • the network device can also indicate other video resource configuration information (such as the second time-frequency resource configuration information) in the multiple sets of time-frequency resource configuration information through the second indication information, further improving the resource configuration process of the sub-band full-duplex solution.
  • other video resource configuration information such as the second time-frequency resource configuration information
  • the multiple sets of time-frequency resource configuration information are pre-configured in the terminal device, or the multiple sets of time-frequency resource configuration information are received by the terminal device from the network device.
  • the symbol type of the first subband at the first time domain position is uplink or flexible; the symbol type of the second subband at the first time domain position is downlink or flexible; the method also includes: the terminal device receives third indication information from the network device, and the third indication information is used to indicate the use of third time-frequency resource configuration information; the terminal device determines the third time domain position, frequency domain position of the first carrier and the symbol type of the first carrier at the third time domain position according to the third time-frequency resource configuration information, and the symbol type of the first carrier at the third time domain position is the same.
  • the above scheme proposes a specific implementation method for the situation where it is necessary to switch from a sub-band full-duplex system to a time-division duplex system, and improves the sub-band full-duplex system. For example, when the communication system is subject to excessive interference, resulting in the problem that the spectrum efficiency of the network is too low when the first sub-band is performing uplink transmission, the above scheme can reduce the problem of low spectrum efficiency caused by excessive interference.
  • the third indication information includes an index of the third time-frequency resource configuration information; or, the value of the third indication information is 0; or, the third indication information is a time slot format indication field in the downlink control information
  • the method also includes: the terminal device receives a wireless resource control configuration message from the network device, the wireless resource control configuration message includes time division duplex uplink and downlink configuration information, and the time slot format indication field specifically indicates that the uplink symbol in the first subband configured by the time division duplex uplink and downlink configuration information is modified to a downlink symbol or a flexible symbol.
  • the method also includes: the terminal device receives fourth indication information from the network device, and the fourth indication information is used to indicate the use of the first time-frequency resource configuration information; the terminal device determines the fourth time domain position, frequency domain position and symbol type of the S subbands in the first carrier according to the first time-frequency resource configuration information, S ⁇ 1.
  • the above scheme can realize the switching from the time division duplex system to the sub-band full-duplex system. So that after the interference to the communication system is reduced, it can return to the sub-band full-duplex system. Since the sub-band full-duplex system significantly improves the coverage of uplink transmission and reduces the delay of uplink transmission compared to the time-frequency duplex system; therefore, the above scheme can improve the coverage of uplink transmission of the communication system as much as possible and reduce the delay of uplink transmission while ensuring the spectrum efficiency of the communication system.
  • the fourth indication information includes an index of the first time-frequency resource configuration information; or, the value of the fourth indication information is 1; or, the fourth indication information is a time slot format indication field in the downlink control information
  • the method also includes: the terminal device receives a wireless resource control configuration message from the network device, the wireless resource control configuration message includes time division duplex uplink and downlink configuration information, and the time slot format indication field specifically indicates that the downlink symbol in the first subband in the first carrier configured by the time division duplex uplink and downlink configuration information is modified to an uplink symbol or a flexible symbol; or, the fourth indication information is a time slot format indication field in the downlink control information, and the fourth indication information specifically indicates a third time domain configuration parameter, and the terminal device receives the wireless resource control configuration message from the network device, and the wireless resource control configuration message includes time division duplex uplink and downlink configuration information.
  • a time-frequency resource configuration information determines the fifth time domain position, frequency domain position and symbol type of the S subbands in the first carrier at the fifth time domain position, including: the terminal device determines the fifth time domain position, frequency domain position and symbol type of the S subbands in the first carrier at the fifth time domain position according to the first frequency domain configuration parameters and the third time domain configuration parameters.
  • a method for resource configuration is provided, which can be executed by a network device, or can also be executed by a component (such as a chip or circuit) of the network device, without limitation.
  • the beneficial effects of the second aspect can refer to the beneficial effects of the first aspect.
  • the method may include: a network device generates first indication information, the first indication information is used to indicate first time-frequency resource configuration information in multiple sets of time-frequency resource configuration information, each set of time-frequency resource configuration information in the multiple sets of time-frequency resource configuration information includes frequency domain configuration parameters and time domain configuration parameters of one or more subbands in a first carrier, the first time-frequency resource configuration information includes first frequency domain configuration parameters and first time domain configuration parameters of a first subband in the first carrier, the first frequency domain configuration parameters and the first time domain configuration parameters are used to indicate a first time domain position, a frequency domain position of L subbands in the first carrier, and a symbol type of the L subbands at the first time domain position, L ⁇ 1 and L is an integer; the network device sends the first indication information to a terminal device.
  • the first carrier also includes a second subband, L>1, and the L subbands include the first subband and the second subband;
  • the first time domain position includes one or more time units, and the first subband and the second subband on each of the one or more time units do not overlap in the frequency domain;
  • the one or more time units include a first symbol, and the symbol type of the first subband in the first symbol is different from the symbol type of the second subband in the first symbol.
  • the first indication information includes an index of the first time-frequency resource configuration information; or, the first indication information includes an index of the first frequency domain configuration parameter and/or an index of the first time domain configuration parameter.
  • the first carrier also includes a second subband, L>1, and the L subbands include the first subband and the second subband; the first frequency domain configuration parameter and the first time domain configuration parameter are used to indicate the first time domain position, frequency domain position and symbol type of the L subbands in the first carrier at the first time domain position, including: the first frequency domain configuration parameter is used to determine the frequency domain position of the first subband; the first time domain configuration parameter is used to determine the time domain position of the first subband, and the time domain position of the first subband includes the first time domain position; the first time domain configuration parameter is also used to determine whether the symbol type of the first subband at the first time domain position is uplink or flexible.
  • the first time-frequency resource configuration information when a protection bandwidth exists between the first subband and the second subband, also includes frequency domain configuration parameters of the protection bandwidth.
  • the first time domain configuration parameter is used to indicate the time domain positions of the flexible symbol and the uplink symbol.
  • the first frequency domain configuration parameter when the first time domain position includes multiple time units, the first frequency domain configuration parameter includes X groups of frequency domain configuration parameters, each group of frequency domain configuration parameters in the X groups of frequency domain configuration parameters is used to indicate a frequency domain position, and the first time-frequency resource configuration information is further used to indicate a correspondence between each group of frequency domain configuration parameters and each time unit in the multiple time units, where X ⁇ 2 and X is an integer.
  • the method also includes: the network device sends second indication information to the terminal device, the second indication information is used to indicate second time-frequency resource configuration information in the multiple sets of time-frequency resource configuration information, the second time-frequency resource configuration information includes the second time domain configuration parameters and second frequency domain configuration parameters of the first subband, the second time-frequency resource configuration information is not completely the same or completely different from the first time-frequency resource configuration information, the second time domain configuration parameters and the second frequency domain configuration parameters are used to indicate the second time domain position, frequency domain position of the P subbands in the first carrier, and the symbol type of the P subbands at the second time domain position, P ⁇ 1 and P is an integer.
  • the method further includes: the network device sending the multiple sets of time-frequency resource configuration information to the terminal device.
  • the symbol type of the first subband at the first time domain position is uplink or flexible; the symbol type of the second subband at the first time domain position is downlink or flexible, and the method also includes: the network device sends a third indication information to the terminal device, the third indication information is used to indicate the use of third time-frequency resource configuration information, the third indication information is used to indicate the third time domain position, frequency domain position of the first carrier and the symbol type of the first carrier at the third time domain position, and the symbol type of the first carrier at the third time domain position is the same.
  • the third indication information includes an index of the third time-frequency resource configuration information; or, the value of the third indication information is 0; or, the third indication information is a time slot format indicator in the downlink control information.
  • the method also includes: the network device sends a wireless resource control configuration message to the terminal device, the wireless resource control configuration message includes time division duplex uplink and downlink configuration information, and the time slot format indication field specifically indicates that the uplink symbol in the first subband configured by the time division duplex uplink and downlink configuration information is modified to a downlink symbol or a flexible symbol.
  • the method also includes: the network device sends fourth indication information to the terminal device, the fourth indication information is used to indicate the use of the first time-frequency resource configuration information, the first time-frequency resource configuration information is used to indicate the fourth time domain position, frequency domain position of the S subbands in the first carrier and the symbol type of the S subbands at the fourth time domain position, S ⁇ 1.
  • the fourth indication information includes an index of the first time-frequency resource configuration information; or, the value of the fourth indication information is 1; or, the fourth indication information is a time slot format indication field in the downlink control information
  • the method also includes: the network device sends a wireless resource control configuration message to the terminal device, the wireless resource control configuration message includes time division duplex uplink and downlink configuration information, and the time slot format indication field specifically indicates that the downlink symbol in the first subband in the first carrier configured by the time division duplex uplink and downlink configuration information is modified to an uplink symbol or a flexible symbol; or, the fourth indication information is a time slot format indication field in the downlink control information, and the fourth indication information specifically indicates a third time domain configuration parameter, and the first frequency domain configuration parameter and the third time domain configuration parameter are used to indicate the fifth time domain position, frequency domain position of the S subbands in the first carrier, and the symbol type of the S subbands at the fifth time domain position.
  • a method for resource configuration is provided, which can be executed by a terminal device, or can also be executed by a component of the terminal device (such as a chip or circuit), without limitation.
  • the method may include: the terminal device determines the first time domain position, frequency domain position and symbol type of the L subbands in the first carrier according to the first time-frequency resource configuration information, the first time-frequency resource configuration information includes the first frequency domain configuration parameter and the first time domain configuration parameter of the first subband in the first carrier, the L subbands include the first subband and the second subband, wherein the first time domain position includes one or more time units, the first subband and the second subband in each of the one or more time units do not overlap in the frequency domain, L ⁇ 1 and L is an integer, the one or more time units include a first symbol, and the symbol type of the first subband in the first symbol is different from the symbol type of the second subband in the first symbol; the terminal device receives third indication information from the network device, the third indication information is used to indicate the use of third time-frequency resource configuration information; the terminal device determines the first time domain position, frequency domain position and symbol type of the first carrier in the first time domain position according to the third time-frequency resource configuration information, and the symbol
  • the above scheme proposes a specific implementation method for the situation where it is necessary to switch from a sub-band full-duplex system to a time-division duplex system, and improves the sub-band full-duplex system. For example, when the communication system is subject to excessive interference, resulting in the problem that the spectrum efficiency of the network is too low when the first sub-band is performing uplink transmission, the above scheme can reduce the problem of low spectrum efficiency caused by excessive interference.
  • the method also includes: the terminal device receives fourth indication information from the network device, and the fourth indication information is used to indicate the use of the first time-frequency resource configuration information; the terminal device determines the fourth time domain position, frequency domain position and symbol type of the S subbands in the first carrier according to the first time-frequency resource configuration information, S ⁇ 1.
  • the above scheme can realize the switching from the time division duplex system to the sub-band full-duplex system. So that after the interference to the communication system is reduced, it can return to the sub-band full-duplex system. Since the sub-band full-duplex system significantly improves the coverage of uplink transmission and reduces the delay of uplink transmission compared to the time-frequency duplex system; therefore, the above scheme can improve the coverage of uplink transmission of the communication system as much as possible and reduce the delay of uplink transmission while ensuring the spectrum efficiency of the communication system.
  • the third indication information includes an index of the third time-frequency resource configuration information; or, the third indication information includes an index of a third time domain configuration parameter, and the third time-frequency resource configuration information includes a third time domain configuration parameter and the first frequency domain configuration parameter.
  • the value of the third indication information is 0.
  • the third indication information is a time slot format indication field in the downlink control information
  • the method also includes: the terminal device receives a wireless resource control configuration message from the network device, the wireless resource control configuration message includes time division duplex uplink and downlink configuration information, and the time slot format indication field specifically indicates that the uplink symbols in one or more subbands in the first carrier configured with the time division duplex uplink and downlink configuration information are modified to downlink symbols or flexible symbols.
  • the fourth indication information includes an index of the first time-frequency resource configuration information.
  • the value of the fourth indication information is 1.
  • the fourth indication information is a time slot format indication field in the downlink control information
  • the method also includes: the terminal device receives a wireless resource control configuration message from the network device, the wireless resource control configuration message includes time division duplex uplink and downlink configuration information, and the time slot format indication field specifically indicates that the downlink symbols in one or more subbands in the first carrier configured by the time division duplex uplink and downlink configuration information are modified to uplink symbols or flexible symbols; or, the fourth indication information specifically indicates a third time domain configuration parameter, and the terminal device determines the fourth time domain position, frequency domain position and symbol type of the S subbands in the first carrier according to the first time-frequency resource configuration information, including: the terminal device determines the fourth time domain position, frequency domain position and symbol type of the S subbands in the first carrier according to the first frequency domain configuration parameter and the third time domain configuration parameter.
  • a method for resource configuration is provided, which can be executed by a network device, or can also be executed by a component (such as a chip or circuit) of the network device, without limitation.
  • the beneficial effects of the fourth aspect can refer to the beneficial effects of the third aspect.
  • the method may include: a network device sends first time-frequency resource configuration information to a terminal device, the first time-frequency resource configuration information is used to determine a first time domain position, a frequency domain position and a symbol type of the L subbands in a first carrier at the first time domain position, the first time-frequency resource configuration information includes a first frequency domain configuration parameter and a first time domain configuration parameter of the first subband in the first carrier, the L subbands include the first subband and the second subband, wherein the first time domain position includes one or more time units, the first subband and the second subband in each of the one or more time units do not overlap in the frequency domain, L ⁇ 1 and L is an integer, the one or more time units include a first symbol, and the symbol type of the first subband in the first symbol is different from the symbol type of the second subband in the first symbol; the network device sends third indication information to the terminal device, the third indication information is used to indicate the use of third time-frequency resource configuration information, the third time-frequency resource configuration information is used to
  • the method also includes: the network device sends fourth indication information to the terminal device, the fourth indication information is used to indicate the use of the first time-frequency resource configuration information, the first time-frequency resource configuration information is used to indicate the fourth time domain position, frequency domain position of the S subbands in the first carrier and the symbol type of the S subbands at the fourth time domain position, S ⁇ 1.
  • the third indication information includes an index of the third time-frequency resource configuration information; or, the third indication information includes an index of a third time domain configuration parameter, and the third time-frequency resource configuration information includes a third time domain configuration parameter and the first frequency domain configuration parameter.
  • the value of the third indication information is 0.
  • the third indication information is a time slot format indication field in the downlink control information
  • the method also includes: the network device sends a wireless resource control configuration message to the terminal device, the wireless resource control configuration message includes time division duplex uplink and downlink configuration information, and the time slot format indication field specifically indicates that the uplink symbols in one or more subbands in the first carrier configured with the time division duplex uplink and downlink configuration information are modified to downlink symbols or flexible symbols.
  • the fourth indication information includes an index of the first time-frequency resource configuration information.
  • the value of the fourth indication information is 1.
  • the fourth indication information is a time slot format indication field in the downlink control information
  • the method also includes: the network device sends a wireless resource control configuration message to the terminal device, the wireless resource control configuration message includes time division duplex uplink and downlink configuration information, and the time slot format indication field specifically indicates that the downlink symbols in one or more subbands in the first carrier configured by the time division duplex uplink and downlink configuration information are modified to uplink symbols or flexible symbols; or, the fourth indication information specifically indicates a third time domain configuration parameter, and the first time-frequency resource configuration information is used to indicate the fourth time domain position, frequency domain position of the S subbands in the first carrier, and the symbol type of the S subbands at the fourth time domain position, including: the first frequency domain configuration parameter and the third time domain configuration parameter determine the fourth time domain position, frequency domain position of the S subbands in the first carrier, and the symbol type of the S subbands at the fourth time domain position.
  • a communication device is provided, the device being used to execute the method in any possible implementation of the first to fourth aspects.
  • the device may include a unit and/or module, such as a processing unit and/or a communication unit, for executing the method in any possible implementation of the first to fourth aspects.
  • the device is a communication device (such as a network device or a terminal device).
  • the communication unit may be a transceiver or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, chip system or circuit for a communication device (such as a network device or a terminal device).
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit;
  • the processing unit may be at least one processor, processing circuit or logic circuit.
  • a communication device comprising: at least one processor, configured to execute a computer program or instruction stored in a memory, so as to execute the method in any possible implementation of the first aspect to the fourth aspect.
  • the device further comprises a memory, configured to store a computer program or instruction.
  • the device further comprises a communication interface, and the processor reads the computer program or instruction stored in the memory through the communication interface.
  • the apparatus is a communication device (such as a network device or a terminal device).
  • the device is a chip, a chip system or a circuit used in a communication device (such as a network device or a terminal device).
  • a processor for executing the methods provided in the above aspects.
  • a computer-readable storage medium which stores a program code executed by a user device, wherein the program code includes a method for executing any possible implementation of the first to fourth aspects above.
  • a computer program product comprising instructions, which, when executed on a computer, enables the computer to execute a method in any possible implementation of the first to fourth aspects.
  • a chip which includes a processor and a communication interface, and the processor reads instructions stored in a memory through the communication interface to execute any one of the methods provided in the first to fourth aspects above.
  • the chip may also include a memory, in which instructions are stored, and the processor is used to execute the instructions stored in the memory.
  • the processor is used to execute any one of the methods provided in the first to fourth aspects above.
  • FIG1 is a schematic diagram of a communication system provided in an embodiment of the present application.
  • FIG2 shows a schematic diagram of a sub-band full-duplex time slot and a non-sub-band full-duplex time slot.
  • FIG3 shows a schematic flow chart of a resource configuration method 200 proposed in the present application.
  • FIG. 4 is a schematic diagram showing several examples of a first carrier including a first sub-band and a second sub-band in the present application.
  • FIG5 is a schematic diagram showing that the frequency domain ranges of the first sub-band and the second sub-band at the first time domain position remain unchanged.
  • FIG6 is a schematic diagram showing the change of the frequency domain range of the first sub-band and the second sub-band at the first time domain position.
  • FIG. 7 is a schematic diagram showing a protection bandwidth existing between the first sub-band and the second sub-band.
  • FIG8 is a schematic diagram showing an example of time domain resources applicable to the present application.
  • FIG9 is a schematic diagram showing another example of time domain resources applicable to the present application.
  • FIG10 is a schematic diagram showing another example of time domain resources applicable to the present application when the first carrier includes subband #1 and subband #2.
  • FIG11 is a schematic diagram showing another example of time domain resources applicable to the present application when the first carrier includes subband #1 and subband #2.
  • FIG12 is a schematic diagram showing an example of time-frequency resources for downlink control information scheduling provided in the present application.
  • FIG13 is a schematic diagram showing an example of interference in the communication system provided by the present application.
  • FIG. 14 shows a schematic diagram of a resource configuration method 300 provided in the present application.
  • FIG15 shows a schematic diagram of an example of time-frequency resources provided in the present application.
  • FIG. 16 shows a schematic diagram of a resource configuration method 400 provided in the present application.
  • FIG17 shows a schematic diagram of a device 500 for resource configuration applicable to the present application.
  • FIG. 18 shows a schematic diagram of another device 600 for resource configuration applicable to the present application.
  • FIG19 shows a schematic diagram of a chip system 700 applicable to the present application.
  • 5G fifth generation
  • NR new radio
  • LTE long term evolution
  • IoT internet of things
  • WiFi wireless-fidelity
  • 3GPP 3rd generation partnership project
  • FIG1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system 100 includes at least one network device, such as the network device #0 shown in FIG1 ; the communication system 100 may also include at least one terminal device, such as the terminal device #0 and/or the terminal device #1 shown in FIG1 .
  • the network device #0 and the terminal device #0 may communicate via a wireless link to exchange information. It is understandable that the network device and the terminal device may also be referred to as a communication device.
  • a network device is a network-side device with wireless transceiver functions.
  • a network device may be a device in a radio access network (RAN) that provides wireless communication functions for terminal devices, and is called a RAN device.
  • the network device may be a base station, an evolved NodeB (eNodeB), a next generation NodeB (gNB) in a 5G mobile communication system, a base station that is subsequently evolved by 3GPP, a transmission reception point (TRP), an access node in a WiFi system, a wireless relay node, a wireless backhaul node, etc.
  • a communication system using different radio access technologies (RAT) the name of a device with a base station function may be different.
  • RAT radio access technologies
  • a network device may include one or more co-located or non-co-located transmission and reception points.
  • a network device may include one or more centralized units (CU), one or more distributed units (DU), or one or more CUs and one or more DUs.
  • CU centralized units
  • DU distributed units
  • the functions of CU can be implemented by one entity or different entities.
  • the functions of CU are further divided, that is, the control plane and the user plane are separated and implemented through different entities, namely the control plane CU entity (i.e., CU-CP entity) and the user plane CU entity (i.e., CU-UP entity).
  • the CU-CP entity and the CU-UP entity can be coupled with the DU to jointly complete the functions of the access network device.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of the radio resource control (RRC) and packet data convergence layer protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizing the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • Some functions of the wireless access network device can be implemented through multiple network function entities.
  • These network function entities can be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (e.g., a cloud platform).
  • the network device may also include an active antenna unit (AAU).
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the network device can be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into a network device in the access network (radio access network, RAN), and the CU can also be divided into a network device in the core network (core network, CN), and this application does not limit this.
  • the access network device can be a road side unit (RSU).
  • RSU road side unit
  • Multiple access network devices in the communication system can be base stations of the same type or different types.
  • the base station can communicate with the terminal device, or it can communicate with the terminal device through a relay station.
  • the device for realizing the function of the network device can be the network device itself, or a device that can support the network device to realize the function, such as a chip system or a combination device or component that can realize the function of the access network device, and the device can be installed in the network device.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • a user equipment is a user-side device with wireless transceiver functions. It can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above devices (such as a communication module, a modem, or a chip system, etc.).
  • the terminal equipment is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as: cellular communications, device-to-device (D2D) communications, V2X communications, machine-to-machine/machine-type communications (M2M/MTC) communications, Internet of Things, virtual reality (VR), augmented reality (AR), industrial control, self-driving, Remote medical, smart grid, smart furniture, smart office, smart wearable, smart transportation, smart city, drones, robots and other scenarios.
  • the terminal device can be a handheld terminal in cellular communication, a communication device in D2D, an IoT device in MTC, a surveillance camera in smart transportation and smart city, or a communication device on a drone, etc.
  • the terminal device is sometimes referred to as user equipment (UE), user terminal, user device, user unit, user station, terminal, access terminal, access station, UE station, remote station, mobile device or wireless communication device, etc.
  • the device for realizing the function of the terminal device can be a terminal device, or it can be a device that can support the terminal device to realize the function, such as a chip system or a combination device or component that can realize the function of the terminal device, and the device can be installed in the terminal device.
  • time domain symbol also called OFDM symbol. It should be noted that the time domain symbol can also be named in combination with other multiple access methods, which is not limited in the embodiment of the present application. The length of the time domain symbol can be different for different subcarrier spacings.
  • the symbols in a time slot may include three types, downlink (DL) symbols, uplink (UL) symbols and flexible (F) symbols.
  • Uplink symbols can only be used for uplink transmission, and downlink symbols can only be used for downlink transmission.
  • Flexible symbols have no fixed transmission direction and can be used for uplink or downlink transmission according to the instructions of control signaling.
  • the symbols in a time slot can be all downlink symbols, or all uplink symbols, or all flexible symbols, or a mixture of several symbols.
  • a time unit may be one or more time slots, or one or more symbols, or one or more subframes, or one or more half frames, or one or more frames, or one or more mini subframes, or one or more mini time slots, which is not limited in this application.
  • this application mainly introduces a time unit including one or more time slots as an example.
  • Carrier aggregation refers to the technology of aggregating multiple component carriers (CC) to obtain a carrier with a larger communication bandwidth.
  • CC component carriers
  • the carrier index of the secondary carrier and the cell identifier of the secondary cell working on the secondary carrier can be carried at the same time.
  • the carrier and the cell are equivalent concepts.
  • the terminal device accessing the carrier and the terminal device accessing the cell are equivalent concepts.
  • the bandwidth of the carrier can be understood as the communication bandwidth of the cell.
  • the carrier involved in the embodiment of the present application is CC.
  • a subband is a partial frequency band in a carrier, that is, one or more continuous physical resource blocks (PRBs) in the frequency domain.
  • PRBs physical resource blocks
  • a subband can also be understood as a frequency domain resource.
  • the SBFD scheme is proposed.
  • a carrier is divided into multiple non-overlapping subbands, and the transmission directions of different subbands can be different, that is, a carrier includes a non-overlapping first subband and a second subband, and the transmission directions of the first subband and the second subband are different.
  • the first subband and the second subband refer to two types of subbands with different transmission directions, and it does not mean that a carrier contains only two subbands.
  • a carrier includes subband #1 and subband #2, wherein the transmission directions of subband #1 and subband #2 are different.
  • a carrier includes subband #1, subband #2 and subband #3, wherein the transmission directions of subband #1 and subband #3 are the same; the transmission directions of subband #1 and subband #2 are different.
  • FIG2 shows a schematic diagram of an SBFD time slot and a non-SBFD time slot.
  • the frequency resources on the SBFD time slot include two or more sub-bands with different or non-identical transmission directions.
  • the time-frequency division of a typical SBFD scheme is shown in FIG2, where the horizontal axis represents the time domain and the vertical axis represents the frequency domain.
  • two rectangular blocks filled with vertical lines represent a group of time-frequency resources for downlink transmission
  • a rectangular block filled with horizontal lines represents a group of time-frequency resources for uplink transmission.
  • the time slots in the time domain range occupied by these three time-frequency resources are called SBFD time slots.
  • the transmission direction of all frequency domain resources on non-SBFD time slots is the same.
  • the unfilled rectangular blocks in FIG2 represent a group of time-frequency resources for uplink transmission, and the time slots in the time domain range occupied by them are called uplink time slots.
  • the transmission direction of all frequency domain resources on these time slots is uplink, and these time slots can be called non-SBFD time slots.
  • the SBFD time slot may include one or more time units, and the non-SBFD time slot may include one or more time units.
  • the uplink time slot in Figure 2 is not limited to only one time slot, and the SBFD time slot in Figure 2 is not limited to only one time slot.
  • the network device supports sub-band full-duplex, and the terminal device can recognize information related to the sub-band full-duplex, or it can be unable to recognize information related to the sub-band full-duplex.
  • the terminal device that cannot recognize information related to the sub-band full-duplex may also be referred to as a legacy terminal device in the present application.
  • the legacy terminal device cannot recognize information related to the sub-band full-duplex (e.g., the sub-band-level time-frequency resource indication/configuration in the present application). Configuration information), which can identify information of the TDD system.
  • a terminal device that can identify information related to sub-band full-duplex can receive data in one sub-band at one time and send data in another sub-band; or can only receive data in one sub-band or send data in another sub-band at one time, that is, it cannot send and receive data in different sub-bands at the same time.
  • network device #0 supports sub-band full-duplex
  • terminal device #0 supports sub-band full-duplex
  • terminal device #1 is a legacy terminal device.
  • Another possible implementation method is that at least one of the cells of terminal device CA is an SBFD cell.
  • SBFD cell As mentioned above, in the CA scenario, carriers and cells are equivalent concepts. Therefore, Figure 2 can also be understood as a schematic diagram of an example of an SBFD cell.
  • the transmission directions in the SBFD cell are all at the sub-band level.
  • cell #0 is a SBFD cell
  • terminal device #1 and terminal device #2 in the communication system 100 are both located within the coverage range of cell #0
  • terminal device #0 sends an uplink signal
  • terminal device #1 receives a downlink signal.
  • Another possible implementation method is a wireless communication system with half-duplex on the terminal device side.
  • this application mainly provides a solution for configuring time and frequency resources in the SBFD system from the following aspects. For example, semi-static SBFD time and frequency resource configuration and dynamic SBFD time and frequency resource indication are performed based on the time and frequency range at the subband level. Specifically, the semi-static SBFD time and frequency resource configuration can be divided into the frequency domain range configuration at the subband level and the time slot format configuration at the subband level.
  • Fig. 3 shows a schematic flow chart of a resource configuration method 200 proposed in the present application.
  • the method 200 includes the following steps.
  • the network device sends first indication information to the terminal device, and correspondingly, the terminal device receives the first indication information from the network device.
  • the first indication information is used to indicate the first time-frequency resource configuration information in multiple sets of time-frequency resource configuration information.
  • Each set of time-frequency resource configuration information in the multiple sets of time-frequency resource configuration information includes frequency domain configuration parameters and time domain configuration parameters of one or more subbands in the first carrier.
  • the first carrier here can refer to the relevant description of a CC in Figure 2.
  • the one or more subbands here can be understood as at least one subband of subband #1, subband #2, and subband #3 in Figure 2.
  • method 200 further includes: step 1-1, the network device sends a high-level signaling to the terminal device, and accordingly, the terminal device receives the high-level signaling from the network device, wherein the high-level signaling includes multiple sets of time-frequency resource configuration information.
  • method 200 further includes: step 1-2, the terminal device obtains multiple sets of time-frequency resource configuration information according to the protocol.
  • the first time-frequency resource configuration information includes a first frequency domain configuration parameter and a first time domain configuration parameter of a first subband in a first carrier.
  • the one or more subbands include the first subband.
  • the first subband can be at least one of subband #1, subband #2, and subband #3 in FIG. 2.
  • the time-frequency resource configuration information in this application may also be referred to as subband time-frequency configuration (subband time and frequency configuration), or may be other names.
  • subband time-frequency configuration subband time and frequency configuration
  • this application mainly uses the time-frequency resource configuration information as an example for explanation, but this application does not limit this.
  • the terminal device determines the first time domain position, frequency domain position and symbol type of the L subbands in the first carrier at the first time domain position according to the first frequency domain configuration parameter and the first time domain configuration parameter, where L ⁇ 1 and L is an integer.
  • the L subbands here may include the first subband mentioned above.
  • the first subband is subband #1 and subband #3 in FIG. 2, and the L subbands may be subband #2, or the L subbands may be subband #1, subband #2, and subband #3.
  • the frequency domain position of a time-frequency resource in the present application includes a bandwidth and a starting frequency domain position
  • the time domain position of a time-frequency resource in the present application and the symbol type of the time-frequency resource at the time domain position can be understood as the time slot format of the time-frequency resource.
  • the frequency domain position in the present application can also be understood as a frequency domain range.
  • the terminal device determines the frequency domain positions of L subbands in the first carrier according to the first frequency domain configuration parameters; determines the first time domain positions of the L subbands in the first carrier and the symbol types of the L subbands at the first time domain positions according to the first time domain configuration parameters.
  • the above scheme indicates the first time-frequency resource configuration information in multiple sets of time-frequency resource configuration information to the terminal device through the network device, realizes the dynamic indication of the time-frequency resource configuration information for the sub-band full-duplex scheme, and improves the resource configuration process of the sub-band full-duplex scheme.
  • the terminal device can determine the time-frequency distribution of other sub-bands (i.e., the above-mentioned second sub-band) in the first carrier according to the first time domain configuration parameter and the first frequency domain configuration parameter of the first sub-band, which can save overhead.
  • the first subband is used for uplink transmission, or the symbol type of the first subband at the first time domain position is uplink or flexible. That is, the first frequency domain configuration parameter only includes the frequency domain configuration parameter of the subband that can be used for uplink transmission; the first time domain configuration parameter only includes the time domain configuration parameter of the subband that can be used for uplink transmission.
  • the first carrier also includes a second subband, L>1, and the L subbands include The first subband and the second subband, the first time domain position includes a first symbol, and the symbol type of the first subband in the first symbol is different from the symbol type of the second subband in the first symbol.
  • the first symbol is any symbol at the first time domain position.
  • the second subband is a subband that can be used for downlink transmission, and the symbol type of the second subband at the first time domain position is downlink or flexible. For example, the following steps 2-1 to 2-5 can be used as an example of S202.
  • Step 2-1 The terminal device determines the frequency domain position of the first subband according to the first frequency domain configuration parameters.
  • the frequency domain position of the first sub-band may be understood as the frequency domain range occupied by the first sub-band.
  • step 2-2 the terminal device determines the frequency domain position of the second subband according to the frequency domain position of the first subband and the frequency domain position of the first carrier.
  • the frequency domain position of the first carrier can be understood as the frequency domain range occupied by the first carrier. Taking a time unit in the first time domain position as an example, in this time unit, the terminal device subtracts the frequency domain range occupied by the first sub-band from the frequency domain range of the frequency band occupied by the first carrier to obtain the frequency domain range occupied by the second sub-band.
  • the first time-frequency resource configuration information when there is a guard bandwidth (GB) between the first subband and the second subband, the first time-frequency resource configuration information also includes frequency domain configuration parameters of the guard bandwidth.
  • GB guard bandwidth
  • FIG7 shows a schematic diagram of the existence of a protection bandwidth between the first subband and the second subband.
  • a taking the first subband as subband #1 and the second subband as subband #2 as an example, there is a GB between subband #1 and subband #2.
  • a GB between subband #1 and subband #2.
  • subband #1 and subband #3 there is a GB1 between subband #1 and subband #2, and there is a GB2 between subband #2 and subband #3.
  • the terminal device determines the frequency domain position of the protection bandwidth according to the frequency domain configuration parameters of the protection bandwidth; the terminal device determines the frequency domain position of the second subband according to the frequency domain position of the first subband, the frequency domain position of the first carrier, and the frequency domain position of the protection bandwidth.
  • the frequency domain configuration parameters of the protection bandwidth will be introduced in detail in (1) of Scheme 2 below. Taking a time unit in the first time domain position as an example, in this time unit, the terminal device subtracts the frequency domain range occupied by the first subband and the frequency domain range occupied by the protection bandwidth from the frequency domain range of the frequency band occupied by the first carrier, and can obtain the frequency domain range occupied by the second subband.
  • the first time-frequency resource configuration information in view of the situation where there is a protection bandwidth between the first sub-band and the second sub-band, the first time-frequency resource configuration information also needs to include the frequency domain configuration parameters of the protection bandwidth, further improving the resource configuration process of the sub-band full-duplex scheme.
  • step 2-1 and step 2-2 will be described in detail with reference to a specific example.
  • step 2-3 the terminal device determines the time domain position of the first subband according to the first time domain configuration parameter, and the time domain position of the first subband includes the first time domain position.
  • the time domain position of the first subband is the first time domain position.
  • the first time domain configuration parameter is used to indicate the time domain position of the flexible symbol and the uplink symbol.
  • the terminal device determines the time domain position of the flexible symbol and the time domain position of the uplink symbol according to the first time domain configuration parameter; the terminal device determines the first time domain position according to the time domain position of the flexible symbol and the time domain position of the uplink symbol.
  • the first time domain configuration parameter can specifically indicate the time domain position of the first subband by indicating the time domain positions of the flexible symbol and the uplink symbol, thereby further improving the resource configuration process of the subband full-duplex scheme.
  • the first time domain configuration parameter is used to indicate the time domain position of the flexible symbol.
  • the terminal device determines the time domain position of the flexible symbol according to the first time domain configuration parameter, and the time domain position of the flexible symbol is the first time domain position.
  • the first time domain configuration parameter can specifically indicate the time domain position of the first subband by indicating the time domain position of the flexible symbol, further improving the resource configuration process of the subband full-duplex scheme.
  • the terminal device determines the time domain position of the second subband according to the time slot format configuration of the first carrier, and the time domain position of the second subband includes the first time domain position.
  • the time domain position of the second subband is the first time domain position.
  • the time slot format of the first carrier in all time slots can be configured with reference to the TDD-UL-DL-ConfigCommon and TDD-UL-DL-ConfigDedicated and other information elements in 3GPP TS 38.331, and the time slot format includes the symbol type of each symbol in the time slot.
  • the symbol type of the second subband at the first time domain position is downlink or flexible.
  • Step 2-5 The terminal device determines the symbol type of the first subband at the first time domain position according to the first time domain configuration parameter.
  • the first time domain configuration parameter indicates that the symbol type of the first subband at the first time domain position is uplink or flexible.
  • the first time domain position includes a first symbol, the symbol type of the first subband in the first symbol and the symbol type of the second subband in the first symbol.
  • the symbol types are different.
  • the first symbol may be any symbol at the first time domain position.
  • the above steps 2-1 to 2-5 provide specific implementation methods for the terminal device to determine the time-frequency distribution of other subbands (i.e., the above-mentioned second subband) in the first carrier based on the first time domain configuration parameters and the first frequency domain configuration parameters of the first subband, thereby further improving the resource configuration process of the sub-band full-duplex solution.
  • other subbands i.e., the above-mentioned second subband
  • the method 200 will be described in detail from the following aspects in combination with the accompanying drawings and examples.
  • the following aspects are described by taking the first carrier including the first subband and the second subband, and the L subbands including the first subband and the second subband as an example.
  • Solution 1 How does the first indication information indicate the first time-frequency resource configuration information, and accordingly, how does the terminal device determine the first time-frequency resource configuration information according to the first indication information.
  • Scheme 1 may also include, after S202, how the network device indicates to the terminal device other time-frequency resource configuration information (hereinafter referred to as the second time-frequency resource configuration information) in addition to the first time-frequency resource configuration information, and accordingly, how the terminal device determines the second time domain position, frequency domain position and symbol type of the P subbands in the first carrier according to the second time-frequency resource configuration information, where P ⁇ 1 and P is an integer.
  • the network device indicates to the terminal device other time-frequency resource configuration information (hereinafter referred to as the second time-frequency resource configuration information) in addition to the first time-frequency resource configuration information, and accordingly, how the terminal device determines the second time domain position, frequency domain position and symbol type of the P subbands in the first carrier according to the second time-frequency resource configuration information, where P ⁇ 1 and P is an integer.
  • Solution 2 possible examples of the first frequency domain configuration parameter and the first time domain configuration parameter in S201. Accordingly, in S202, (1) how does the terminal device determine the frequency domain position of the first sub-band and the frequency domain position of the second sub-band according to the first frequency domain configuration parameter; (2) how does the terminal device determine the time domain position of the first sub-band and the time domain position of the second sub-band according to the first time domain configuration parameter.
  • Solution three a message used to carry the first indication information.
  • the one or more subbands include a first subband.
  • the one or more subbands are the first subband.
  • each set of time-frequency resource configuration information in the multiple sets of time-frequency resource configuration information includes frequency domain configuration parameters and time domain configuration parameters of the first subband.
  • the multiple sets of time-frequency resource configuration information in S201 may all be sub-band-level time-frequency resource configuration information, or may all be time-frequency resource configuration information applicable to the SBFD system.
  • the sub-band-level time-frequency resource configuration information may be understood as the time-frequency resource configuration information including frequency domain configuration parameters or time domain configuration parameters corresponding to each sub-band in one or more sub-bands.
  • the time-frequency resource configuration information applicable to the SBFD system may be understood in conjunction with the following Example 1.
  • the first carrier also includes a second subband.
  • L>1 and the L subbands also include a first subband and a second subband.
  • the first time domain position includes one or more time units, and the first subband and the second subband on each of the one or more time units do not overlap in the frequency domain.
  • the one or more time units include a first symbol, and the symbol type of the first subband in the first symbol is different from the symbol type of the second subband in the first symbol.
  • symbol types include uplink, downlink, and flexible.
  • the first symbol is any symbol in the one or more time units.
  • FIG4 shows a schematic diagram of several examples of the first subband and the second subband included in the first carrier in the present application. It can be understood that in (a) of FIG4, subband #1 is used as an example of the second subband, and subband #2 is used as an example of the first subband; in (b) of FIG4, subband #1 is used as an example of the first subband, and subband #2 is used as an example of the second subband; in (c) of FIG4, subband #1 and subband #3 are used as examples of the second subband, and subband #2 is used as an example of the first subband.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • a rectangular block filled with a right dash represents a downlink time slot
  • a rectangular block without filling represents an uplink time slot
  • a rectangular block filled with a horizontal line and a rectangular block filled with a vertical line represent a first time domain position.
  • a rectangular block filled with a vertical line represents a group of time-frequency resources that are all or partly used for downlink transmission
  • a rectangular block filled with a horizontal line represents a group of time-frequency resources that are all or partly used for uplink transmission.
  • the rectangular blocks filled with vertical lines represent a group of time-frequency resources that are all used for downlink transmission; or, if all the symbols of subband #1 at the first time domain position include downlink symbols and flexible symbols, then the rectangular blocks filled with vertical lines represent a group of time-frequency resources that are partially used for downlink transmission.
  • the rectangular blocks filled with horizontal lines represent a group of time-frequency resources that are all used for uplink transmission; or, if all the symbols of subband #1 at the first time domain position include uplink symbols and flexible symbols, then the rectangular blocks filled with horizontal lines represent a group of time-frequency resources that are partially used for uplink transmission; or, if all the symbols of subband #1 at the first time domain position are flexible symbols, then the rectangular blocks filled with horizontal lines represent a group of time-frequency resources that may be partially used for uplink transmission. As shown in (a) of FIG.
  • the CC includes subband #1 and subband #2, and the symbol of subband #1 at the first time domain position includes uplink symbols and/or flexible symbols, and the symbol of subband #2 at the first time domain position includes downlink symbols and flexible symbols.
  • the CC includes subband #1 and subband #2, and the symbol of subband #1 at the first time domain position includes downlink symbols and flexible symbols, and the symbol of subband #2 at the first time domain position includes uplink symbols and/or flexible symbols.
  • the CC includes subband #1, subband #2, and subband #2.
  • symbols of subband #1 and subband #3 at the first time domain position include downlink symbols and flexible symbols
  • symbols of subband #2 at the first time domain position include uplink symbols and/or flexible symbols.
  • the frequency domain ranges of the first subband and the second subband may be constant or variable.
  • FIG. 5 and FIG. 6 corresponding to (c) in FIG. 4, in FIG. 5 and FIG. 6, subband #1 and subband #3 are used as an example of the second subband, and subband #2 is used as an example of the first subband. Take the first time domain position including time unit #2 to time unit #4 as an example.
  • FIG5 is a schematic diagram showing that the frequency domain ranges of the first subband and the second subband at the first time domain position remain unchanged.
  • the frequency domain range of subband #2 is (f1, f2).
  • FIG6 is a schematic diagram showing the change of the frequency domain range of the first subband and the second subband at the first time domain position.
  • the frequency domain range of subband #2 is (f1, f2); at time unit #3, the frequency domain range of subband #2 is (f3, f4). Therefore, the frequency domain range of subband #2 at the first time domain position is changed. In other words, the frequency domain range of subband #2 is not completely the same between time units. Therefore, according to the frequency domain position of subband #2 and the frequency domain position of the first carrier, it can be determined that the frequency domain range of subband #1 at the first time domain position also changes.
  • Solution 1 How does the first indication information indicate the first time-frequency resource configuration information in multiple sets of time-frequency resource configuration information, and accordingly, how does the terminal device determine the first time-frequency resource configuration information according to the first indication information.
  • the first indication information includes an index, and the terminal device determines the first time-frequency resource configuration information according to the index.
  • the first indication information may directly include the index of the first time-frequency resource configuration information, or may also include an index indicating the first frequency domain configuration parameter and/or the first time domain configuration parameter respectively.
  • the first indication information includes an index of the first time-frequency resource configuration information.
  • the first example is introduced below in two cases according to different ways in which the terminal device obtains multiple sets of time-frequency resource configuration information.
  • an index is also configured for each set of time-frequency resource configuration information in the high-level signaling.
  • the network device indicates the set of time-frequency resource configuration information by indicating the index of the set of time-frequency resource configuration information.
  • each set of time-frequency resource configuration information in the K sets of time-frequency resource configuration information includes an index k, a set of frequency domain configuration parameters and a set of time domain configuration parameters. 1 ⁇ k ⁇ K, K ⁇ 2, k and K are both integers.
  • the kth set of time-frequency resource configuration information can be, for example:
  • the frequency domain configuration parameter #k is the frequency domain configuration parameter included in each set of time-frequency resource configuration information
  • the time domain configuration parameter #k is the time domain configuration parameter included in each set of time-frequency resource configuration information.
  • the frequency domain configuration parameter #k and the time domain configuration parameter #k will be introduced in the second solution below.
  • the first frequency domain configuration parameter and the first time domain configuration parameter are frequency domain configuration parameter #2 and time domain configuration parameter #2, respectively.
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to the frequency domain configuration parameter #2 and the time domain configuration parameter #2.
  • the first time domain position includes multiple time units.
  • each set of time-frequency resource configuration information in the K sets of time-frequency resource configuration information includes an index k, and X k groups of frequency domain configuration parameters and a group of time domain configuration parameters.
  • the index k is used to indicate the kth set of time-frequency resource configuration information in the K sets of time-frequency resource configuration information.
  • Each set of time-frequency resource configuration information also includes the correspondence between each group of frequency domain configuration parameters in the X k groups of frequency domain configuration parameters and each time unit in the multiple time units.
  • each set of time-frequency resource configuration information may only indicate the correspondence between X k -1 groups of frequency domain configuration parameters and each time unit in the multiple time units, and the terminal device may determine the correspondence between a group of frequency domain configuration parameters in the X k groups that are not indicated to have a correspondence and one or more time units in the multiple time units.
  • 1 ⁇ k ⁇ K, K ⁇ 2, X k ⁇ 2, k and K are both integers.
  • the kth set of time-frequency resource configuration information may be, for example:
  • the frequency domain configuration parameter j#k is the jth group of frequency domain configuration parameters included in each set of time-frequency resource configuration information.
  • the frequency domain configuration parameter 1#k is the first group of frequency domain configuration parameters included in each set of time-frequency resource configuration information
  • the frequency domain configuration parameter 2#k is the second group of frequency domain configuration parameters included in each set of time-frequency resource configuration information
  • the time domain configuration parameter #k is the time domain configuration parameter included in each set of time-frequency resource configuration information.
  • the frequency domain configuration parameter j#k will be introduced in Solution 2 below.
  • bitmap j configuring bitmap j to indicate the correspondence between the jth group of frequency domain configuration parameters and each time unit in multiple time units is a possible method (1) given in this application.
  • Example 2-2-1 taking the first carrier including subband #1 to subband #3 shown in Figure 6 as an example, taking the first subband as subband #2 as an example, the first time-frequency resource configuration information needs to include 2 groups of frequency domain configuration parameters, wherein the first group of frequency domain configuration parameters is used to indicate the frequency domain range (f1, f2), and the second group of frequency domain configuration parameters is used to indicate the frequency domain range (f3, f4).
  • the frequency domain range of subband #2 in time unit #3 is (f3, f4)
  • the frequency domain range of subband #2 in time unit #2 and time unit #4 is (f1, f2).
  • the following is an example indicating the correspondence between the first group of frequency domain configuration parameters and each time unit in the first time domain position.
  • bitmap1:01010 is used to indicate the correspondence between the first group of frequency domain configuration parameters and time units #1 to #5.
  • the time domain configuration: ⁇ time domain configuration parameter #k ⁇ information may not be configured, and the 5 bits in bitmap1 correspond to the first carrier's time slot format configuration period containing 5 time slots.
  • 01010 corresponds to time units #1 to time units #5 respectively
  • 1 indicates that the frequency domain range of subband #2 in the time unit is determined according to the first group of frequency domain configuration parameters
  • 0 indicates that the frequency domain range of subband #2 in the time unit is not determined according to the first group of frequency domain configuration parameters or is determined according to the second group of frequency domain configuration parameters.
  • bitmap1:101 is used to indicate the correspondence between the first group of frequency domain configuration parameters and time units #2 to #4, and time units #2 to #4 may be determined according to time domain configuration parameter #k.
  • 101 corresponds to time unit #2 to time unit #4 respectively
  • 1 indicates that the frequency domain range of subband #2 in the time unit is determined according to the first group of frequency domain configuration parameters
  • 0 indicates that the frequency domain range of subband #2 in the time unit is not determined according to the first group of frequency domain configuration parameters or is determined according to the second group of frequency domain configuration parameters.
  • the correspondence between the second group of frequency domain configuration parameters and each time unit in the first time domain position can refer to the above two methods, or it can also be not indicated.
  • the situation in which the first time-frequency resource configuration information does not indicate the correspondence between the second group of frequency domain configuration parameters and each time unit in the first time domain position can be understood as implicitly indicating the correspondence between the second group of frequency domain configuration parameters and each time unit in the first time domain position. It should be understood that since the first time-frequency resource configuration information only includes two groups of frequency domain configuration parameters, after the network device indicates the correspondence between the first group of frequency domain configuration parameters and each time unit in the first time domain position, the terminal device can determine the correspondence between the second group of frequency domain configuration parameters and each time unit in the first time domain position.
  • a time unit is a symbol or a micro-time slot
  • a time slot includes multiple symbols or multiple micro-time slots
  • the first time unit and the Z time slots have an intersection.
  • the zth bit in the configuration bitmap j indicates whether the symbol of the zth time slot among the Z overlaps with the first time unit adopts the jth group of frequency domain configuration parameters. If the symbol overlapping the zth time slot with the first time unit is symbol #2-14, the zth bit is 1, indicating that the symbol #2-14 in the zth time slot adopts the jth group of frequency domain configuration parameters.
  • the first carrier is shown in FIG6.
  • the first time-frequency resource configuration information is:
  • the first frequency domain configuration parameter includes frequency domain configuration parameter 1#3 and frequency domain configuration parameter 2#3, and the first time domain configuration parameter is time domain configuration parameter #3.
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier, and the symbol type of the L subbands at the first time domain position according to frequency domain configuration parameter 1#3 and frequency domain configuration parameter 2#3, time domain configuration parameter #3, and bitmap1#3.
  • the present application does not limit the configuration method of the correspondence between each group of frequency domain configuration parameters in the X k groups of frequency domain configuration parameters and each time unit in the multiple time units.
  • the first time domain position includes multiple time units.
  • each set of time-frequency resource configuration information in the K sets of time-frequency resource configuration information includes an index k, and X k groups of frequency domain configuration parameters and a group of time domain configuration parameters.
  • the index k is used to indicate the kth set of time-frequency resource configuration information in the K sets of time-frequency resource configuration information.
  • the kth set of time-frequency resource configuration information can be, for example:
  • the kth set of time-frequency resource configuration information includes the time domain range where each group of frequency domain configuration parameters in the X k groups of frequency domain configuration parameters is located.
  • the time domain position j#k indicated by the time domain configuration parameter j#k corresponds one-to-one to the frequency domain configuration parameter j#k.
  • the time domain configuration parameter j#k indicates the time domain range corresponding to the frequency domain configuration parameter j#k.
  • the time domain configuration parameter j#k is used to indicate at least two parameters of the starting symbol, length and end symbol of the time domain position j#k.
  • the time domain configuration parameter j#k includes a parameter h, which is used to indicate at least two parameters of the starting symbol, length and end symbol of the time domain position j#k.
  • the time domain range where the frequency domain configuration parameter j#k is located can be indicated by configuring H parameters h respectively.
  • the first carrier is shown in FIG6.
  • the first time-frequency resource configuration information is:
  • the first frequency domain configuration parameter includes frequency domain configuration parameter 1#3 and frequency domain configuration parameter 2#3
  • the first time domain configuration parameter includes time domain configuration parameter 1#3 and time domain configuration parameter 2#3.
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier, and the symbol type of the L subbands at the first time domain position according to frequency domain configuration parameter 1#3 and frequency domain configuration parameter 2#3, time domain configuration parameter 1#3 and time domain configuration parameter 2#3.
  • the first time domain position includes multiple time units.
  • each set of time-frequency resource configuration information in the K sets of time-frequency resource configuration information includes an index k, and one or more sets of frequency domain configuration parameters and a set of time domain configuration parameters.
  • K 1 sets of time-frequency resource configuration information include X k sets of frequency domain configuration parameters and a set of time domain configuration parameters
  • KK 1 sets of time-frequency resource configuration information include a set of frequency domain configuration parameters and a set of time domain configuration parameters.
  • K 1 sets of time-frequency resource configuration information please refer to Example 2-2 or the corresponding description of Example 2-2
  • KK 1 sets of time-frequency resource configuration information please refer to the corresponding description of Example 2-1.
  • the terminal device when executing the above steps 1-2, obtains multiple sets of time-frequency resource configuration information and the index of each set of time-frequency resource configuration information.
  • the network device indicates the set of time-frequency resource configuration information by indicating the index of the set of time-frequency resource configuration information.
  • the first indication information includes an index and a set of time-frequency resource configuration information indicated by the index.
  • Example 3-1 When the frequency domain ranges of the first subband and the second subband at the first time domain position remain unchanged, multiple sets of time-frequency resource configuration information and the index of each set of time-frequency resource configuration information can be presented in the form of a table.
  • Example 3-1-1 multiple sets of time-frequency resource configuration information and the index of each set of time-frequency resource configuration information are shown in Table 1.
  • the kth set of time-frequency resource configuration information includes frequency domain configuration parameters and time domain configuration parameters, for example, the frequency domain configuration parameter is frequency domain configuration parameter #k, the time domain configuration parameter is time domain configuration parameter #k, 1 ⁇ k ⁇ K, K ⁇ 2, k and K are both integers.
  • the first carrier is shown in Figure 5, and the index carried by the first indication information in S201 is 2, then the first time-frequency resource configuration information is time-frequency resource configuration information #2.
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to the frequency domain configuration parameter #2 and the time domain configuration parameter #2.
  • Example 3-1-2 multiple sets of time-frequency resource configuration information and the index of each set of time-frequency resource configuration information are shown in Table 2.
  • the kth set of time-frequency resource configuration information is shown, where the kth set of time-frequency resource configuration information includes a time domain configuration parameter #a and a frequency domain configuration parameter #b, where 1 ⁇ k ⁇ K, K ⁇ 2, k and K are both integers, and a and b are both positive integers.
  • time domain configuration parameters and the number of frequency domain configuration parameters, and the combination of time domain configuration parameters and frequency domain configuration parameters in Table 2 are only examples and do not limit the present application.
  • the correspondence between the time domain configuration parameters, the frequency domain configuration parameters, and the index presented in the form of Table 2 is only an example, and the correspondence can also be presented in other forms.
  • the first carrier is shown in FIG5 , and the index carried by the first indication information in S201 is 3.
  • the first time-frequency resource configuration information includes frequency domain configuration parameter #2 and time domain configuration parameter #1.
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to the frequency domain configuration parameter #2 and the time domain configuration parameter #1.
  • the first time domain position includes multiple time units.
  • the first indication information may include at least two indexes in Table 2.
  • the first indication information implicitly indicates the correspondence between the frequency domain configuration parameters and one or more time units in the first time domain position.
  • the first indication information includes indexes 1 and 4.
  • the first indication information implicitly indicates that the frequency domain configuration parameter #1 corresponds to the time domain position #1 determined according to the time domain configuration parameter #1, and the frequency domain configuration parameter #2 corresponds to the time domain position #2 determined according to the time domain configuration parameter #2. Both time domain position #1 and time domain position #2 are included in the one or more time units. For another example, the at least two indexes correspond to the same time domain configuration parameters, and the frequency domain configuration parameters are different.
  • the first indication information also includes information #a for indicating the correspondence between the frequency domain configuration parameters and one or more time units in the first time domain position. For example, the information #a may indicate the corresponding relationship by referring to the relevant schemes of the above-mentioned possible implementation method (1) and possible implementation method (2), or the information #a may also indicate the corresponding relationship in other ways, which is not limited in this application.
  • the first carrier is shown in FIG6
  • the first indication information in S201 includes the index of the frequency domain configuration parameter and the index of the time domain configuration parameter, which are 3 and 3 respectively.
  • the first time-frequency resource configuration information includes time domain configuration parameter #1, frequency domain configuration parameter #1, and frequency domain configuration parameter #2.
  • the terminal device determines the first time domain position, the frequency domain position of the L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to the time domain configuration parameter #1, the frequency domain configuration parameter #1, and the frequency domain configuration parameter #2.
  • method 200 may further include: the terminal device receives second indication information #1 from the network device, the second indication information #1 is used to indicate second time-frequency resource configuration information in multiple sets of time-frequency resource configuration information, the second time-frequency resource configuration information includes a second time domain configuration parameter and a second frequency domain configuration parameter for the first subband, and the second time-frequency resource configuration information is not completely the same as or completely different from the first time-frequency resource configuration information.
  • the terminal device determines the second time domain position, frequency domain position and symbol type of the P subbands in the first carrier according to the second time domain configuration parameter and the second frequency domain configuration parameter, where P ⁇ 1 and P is an integer.
  • the second indication information may include an index of the second time-frequency resource configuration information.
  • the second indication information may refer to the above introduction of the first indication information
  • the second time-frequency resource configuration information may refer to the above introduction of the first time-frequency resource configuration information.
  • the first indication information and the second indication information include different indexes.
  • P may be equal to L or may not be equal to L, which is not limited in this application.
  • method 200 may further include: the terminal device receives second indication information #2 from the network device, the second indication information #2 is used to indicate a second time domain configuration parameter of the first subband, and the second time domain configuration parameter is different from the first time domain configuration parameter.
  • the terminal device determines the second time domain position, frequency domain position and symbol type of the P subbands in the first carrier according to the first frequency domain configuration parameter and the second time domain configuration parameter, where P ⁇ 1 and P is an integer.
  • the second time domain configuration parameters here can refer to the introduction of the first time domain configuration parameters above.
  • P can be equal to L may not be equal to L, which is not limited in this application.
  • the second indication information #2 can dynamically indicate the time domain position or time slot format of different subbands in the first carrier.
  • the second indication information #2 is a time slot format indicator (SFI) field.
  • the second indication information #2 is a time slot format indicator field in the downlink control information format 2-0.
  • the second indication information #2 may also be other information with similar functions, which is not limited in this application.
  • the first indication information includes an index of a first frequency domain configuration parameter and/or an index of a first time domain configuration parameter.
  • the first indication information includes an index of a first frequency domain configuration parameter and an index of a first time domain configuration parameter.
  • the terminal device determines the first frequency domain configuration parameter and the first time domain configuration parameter according to the index of the first frequency domain configuration parameter and the index of the first time domain configuration parameter.
  • the first indication information when there is no need to indicate the index of the first time domain configuration parameter, includes the index of the first frequency domain configuration parameter.
  • the time domain configuration parameters included in each set of time-frequency resource configuration information obtained by the terminal device are the same.
  • the terminal device only obtains one set of time domain configuration parameters, such as only the first row and the second row in Table 2.
  • the first indication information when there is no need to indicate the index of the first frequency domain configuration parameter, includes the index of the first time domain configuration parameter.
  • the frequency domain configuration parameters included in each set of time-frequency resource configuration information obtained by the terminal device are the same.
  • the terminal device only obtains one set of frequency domain configuration parameters, such as only the first column and the second column in Table 2.
  • the second example is introduced below in two cases according to different ways in which the terminal device obtains multiple sets of time-frequency resource configuration information.
  • the high-level signaling when executing the above step 1-1, also configures an index for each set of time domain configuration parameters and each set of frequency domain configuration parameters.
  • the network device indicates the set of time-frequency resource configuration information by indicating the index of the time domain configuration parameter and/or the frequency domain configuration parameter.
  • high-level signaling configures M groups of frequency domain configuration parameters, configures N groups of time domain configuration parameters, and configures K sets of time-frequency resource configuration information.
  • the M groups of frequency domain configuration parameters are indicated by indexes 1 to M, respectively
  • the N groups of time domain configuration parameters are indicated by indexes 1 to N, respectively.
  • the kth set of time-frequency resource configuration information configures the index of the mth set of frequency domain configuration parameters, for example, m, and the index of the nth set of time domain configuration parameters.
  • the high-level signaling also includes the correspondence between m and the frequency domain configuration parameters, and the correspondence between n and the time domain configuration parameters.
  • 1 ⁇ m ⁇ M, 1 ⁇ n ⁇ N, 1 ⁇ k ⁇ K, M ⁇ 1, N ⁇ 1, K ⁇ 2, and m, n, k, M, N, and K are all integers.
  • Example 5-1 At the first time domain position, when the frequency domain ranges of the first subband and the second subband remain unchanged, the kth set of time-frequency resource configuration information may be, for example:
  • the frequency domain configuration parameters corresponding to index m and the time domain configuration parameters corresponding to index n will be introduced in the following scheme 2.
  • the kth set of time-frequency resource configuration information may not include: subband time and frequency configuration index: k.
  • the terminal device determines the first time domain position and frequency domain position of the L subbands in the first carrier according to the frequency domain configuration parameters corresponding to index 3 and the time domain configuration parameters corresponding to index 2, and the symbol type of the L subbands at the first time domain position.
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to the first time-frequency resource configuration information corresponding to index 3.
  • the kth or mth set of time-frequency resource configuration information can be, for example: subband time and frequency configuration ⁇ frequency domain configuration index: m ⁇
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to the frequency domain configuration parameter corresponding to index 3 and the time domain configuration parameter #1.
  • the network device may not configure the frequency domain configuration parameters in each set of time-frequency resource configuration, but only needs to configure the time domain configuration parameters.
  • the nth set of time domain configuration parameters combined with frequency domain configuration parameter #1 can obtain the nth set of time-frequency resource configuration information.
  • the kth or nth set of time-frequency resource configuration information can be, for example: subband time and frequency configuration ⁇ time domain configuration index: n ⁇
  • subband time configuration ⁇ time domain configuration index: n ⁇
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to the time domain configuration parameter corresponding to index 2 and time domain configuration parameter #1.
  • Example 5-2 In the case where the frequency domain ranges of the first subband and the second subband change at the first time domain position, the kth set of time-frequency resource configuration information in the K sets of time-frequency resource configuration information includes the index of at least X k groups of frequency domain configuration parameters, and the correspondence between each group of frequency domain configuration parameters and each time unit in multiple time units.
  • the kth set of time-frequency resource configuration information also includes the index of a group of time domain configuration parameters.
  • the kth set of time-frequency resource configuration information may only indicate the correspondence between X k -1 groups of frequency domain configuration parameters and each time unit in multiple time units, and the terminal device may determine the correspondence between a group of frequency domain configuration parameters in the X k groups that are not indicated to have a correspondence and one or more time units in multiple time units.
  • 1 ⁇ k ⁇ K, K ⁇ 2, X k ⁇ 2, k and K are both integers.
  • the kth set of time-frequency resource configuration information may be, for example:
  • mj is the index of the jth group of frequency domain configuration parameters included in the kth set of time-frequency resource configuration information.
  • m1 is the index of the first group of frequency domain configuration parameters included in each set of time-frequency resource configuration information
  • m2 is the index of the second group of frequency domain configuration parameters included in each set of time-frequency resource configuration information
  • n is the index of the time domain configuration parameters included in each set of time-frequency resource configuration information.
  • bitmap j configuring bitmap j to indicate the correspondence between the jth group of frequency domain configuration parameters and each time unit in a plurality of time units is a possible method given in the present application.
  • X k -1 sets of bitmaps are configured to indicate the time unit where the X k sets of frequency domain resources are located. The following describes the indication method in detail in conjunction with Example 5-2-1.
  • Example 5-2-1 taking the first carrier including subband #1 to subband #3 shown in Figure 6 as an example, taking the first subband as subband #2 as an example, the first time-frequency resource configuration information needs to include 2 groups of frequency domain configuration parameters, wherein the first group of frequency domain configuration parameters is used to indicate the frequency domain range (f1, f2), and the second group of frequency domain configuration parameters is used to indicate the frequency domain range (f3, f4).
  • the frequency domain range of subband #2 in time unit #3 is (f3, f4)
  • the frequency domain range of subband #2 in time unit #2 and time unit #4 is (f1, f2).
  • the following is an example indicating the correspondence between the first group of frequency domain configuration parameters and each time unit in the first time domain position.
  • bitmap1:01010 is used to indicate the correspondence between the first group of frequency domain configuration parameters and time unit #1 to time unit #5.
  • 01010 corresponds to time unit #1 to time unit #5 respectively
  • 1 indicates that the frequency domain range of subband #2 in the time unit is determined according to the first group of frequency domain configuration parameters
  • 0 indicates that the frequency domain range of subband #2 in the time unit is not determined according to the first group of frequency domain configuration parameters or is determined according to the second group of frequency domain configuration parameters.
  • bitmap1:101 is used to indicate the correspondence between the first group of frequency domain configuration parameters and time unit #2 to time unit #4.
  • 101 corresponds to time unit #2 to time unit #4 respectively
  • 1 indicates that the frequency domain range of subband #2 in the time unit is determined according to the first group of frequency domain configuration parameters
  • 0 indicates that the frequency domain range of subband #2 in the time unit is not determined according to the first group of frequency domain configuration parameters or is determined according to the second group of frequency domain configuration parameters.
  • the correspondence between the second group of frequency domain configuration parameters and each time unit in the first time domain position can refer to the above two methods, or it can also be not indicated.
  • the situation where the first time-frequency resource configuration information does not indicate the correspondence between the second group of frequency domain configuration parameters and each time unit in the first time domain position can be understood as implicitly indicating the correspondence between the second group of frequency domain configuration parameters and each time unit in the first time domain position.
  • the terminal device can determine the correspondence between the second group of frequency domain configuration parameters and each time unit in the first time domain position.
  • the first carrier is shown in FIG6.
  • the first frequency domain configuration parameter includes two groups of frequency domain configuration parameters corresponding to indexes 4 and 2, or the first frequency domain configuration parameter includes the fourth group and the second group of m groups of frequency domain configuration parameters.
  • the first time domain configuration parameter is the time domain configuration parameter corresponding to index 3, or the first time domain configuration parameter includes the third group of time domain configuration parameters among n groups of time domain configuration parameters.
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to the two groups of frequency domain configuration parameters corresponding to indexes 4 and 2, the time domain configuration parameter corresponding to index 3 and bitmap1#3.
  • the kth set of time-frequency resource configuration information can be obtained by combining the jth set of frequency domain configuration parameters with the time domain configuration parameter #1.
  • the kth set of time-frequency resource configuration information can be, for example:
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to the two groups of frequency domain configuration parameters and time domain configuration parameter #1 corresponding to indexes 2 and 4, as well as bitmap1#1 and bitmap2#1.
  • the kth set of time-frequency resource configuration information includes index k
  • it can also be applied to the first example of scheme one, where the first indication information indicates the index of the first time-frequency resource configuration information.
  • the terminal device obtains multiple sets of time-frequency resource configuration information according to the protocol, or the terminal device pre-configures multiple sets of time-frequency resource configuration information.
  • the frequency domain configuration parameters and time domain configuration parameters included in each set of time-frequency resource configuration information in the multiple sets of time-frequency resource configuration information can be shown in Table 3 and Table 4, respectively.
  • Table 3 shows the correspondence between M groups of frequency domain configuration parameters and indexes
  • Table 4 shows the correspondence between N groups of time domain configuration parameters and indexes.
  • 1 ⁇ m ⁇ M, 1 ⁇ n ⁇ N, M ⁇ 1, N ⁇ 1, M and N are both integers.
  • each set of time domain configuration parameters in Table 3 is combined with frequency domain configuration parameter #1 to form M sets of time-frequency resource configuration information.
  • each set of frequency domain configuration parameters in Table 4 is combined with time domain configuration parameter #1 to form N sets of time-frequency resource configuration information.
  • Example 6-1 at the first time domain position, when the frequency domain range of the first subband and the second subband remains unchanged, for example, the kth set of time-frequency resource configuration information in K sets of time-frequency resource configuration information may include time domain configuration parameter #n and frequency domain configuration parameter #m, 1 ⁇ k ⁇ K, K ⁇ 2.
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to the time domain configuration parameter #2 and the frequency domain configuration parameter #3.
  • time domain configuration parameter #1 only one set of time domain configuration parameters is configured, such as time domain configuration parameter #1.
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier, and the symbol type of the L subbands at the first time domain position according to frequency domain configuration parameter #3 and time domain configuration parameter #1.
  • the terminal device determines the first time domain position, frequency domain position of the L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to time domain configuration parameter #2 and time domain configuration parameter #1.
  • the kth set of time-frequency resource configuration information may include one or more time domain configuration parameters in Table 4 and at least two frequency domain configuration parameters in Table 3.
  • the kth set of time-frequency resource configuration information includes the index of one time domain configuration parameter in Table 4 and the index of at least two frequency domain configuration parameters in Table 3
  • the kth set of time-frequency resource configuration information also needs to additionally indicate the correspondence between at least two frequency domain positions indicated by at least two groups of frequency domain configuration parameters and each time unit in the time domain position indicated by the one time domain configuration parameter.
  • the kth set of time-frequency resource configuration information includes the index of multiple time domain configuration parameters in Table 4 and the index of at least two frequency domain configuration parameters in Table 3, the kth set of time-frequency resource configuration information also needs to additionally indicate the correspondence between at least two frequency domain positions indicated by at least two groups of frequency domain configuration parameters and each time domain position in the multiple time domain positions indicated by the multiple time domain configuration parameters.
  • method 200 may further include: the terminal device receives second indication information #1 from the network device, the second indication information #1 is used to indicate second time-frequency resource configuration information in multiple sets of time-frequency resource configuration information, the second time-frequency resource configuration information includes a second time domain configuration parameter and a second frequency domain configuration parameter for the first subband, and the second time-frequency resource configuration information is not completely the same as or completely different from the first time-frequency resource configuration information.
  • the terminal device determines the second time domain position, frequency domain position and symbol type of the P subbands in the first carrier according to the second time domain configuration parameter and the second frequency domain configuration parameter, where P ⁇ 1 and P is an integer.
  • the second indication information #1 may include an index of a second time domain configuration parameter and/or an index of a second frequency domain configuration parameter.
  • the second indication information #1 may refer to the above introduction to the first indication information, and the index of the second time domain configuration parameter and the index of the second frequency domain configuration parameter may also refer to the above introduction to the index of the first time domain configuration parameter and the index of the first frequency domain configuration parameter.
  • the first indication information and the second indication information #1 include different indexes.
  • P may be equal to L or not equal to L, which is not limited in this application.
  • method 200 may further include: the terminal device receives second indication information #1 from the network device, the second indication information #1 is used to indicate second time-frequency resource configuration information in multiple sets of time-frequency resource configuration information, the second time-frequency resource configuration information includes a second time domain configuration parameter and a second frequency domain configuration parameter for the first subband, and the second time-frequency resource configuration information is not completely the same as or completely different from the first time-frequency resource configuration information.
  • the terminal device determines the second time domain position, frequency domain position and symbol type of the P subbands in the first carrier according to the second time domain configuration parameter and the second frequency domain configuration parameter, where P ⁇ 1 and P is an integer.
  • the second indication information may include an index of the second time-frequency resource configuration information.
  • the second indication information may refer to the above introduction of the first indication information
  • the second time-frequency resource configuration information may refer to the above introduction of the first time-frequency resource configuration information.
  • the first indication information and the second indication information include different indexes.
  • P may be equal to L or may not be equal to L, which is not limited in this application.
  • method 200 may further include: the terminal device receives second indication information #2 from the network device, the second indication information #2 is used to indicate a second time domain configuration parameter of the first subband, and the second time domain configuration parameter is different from the first time domain configuration parameter.
  • the terminal device determines the second time domain position, frequency domain position and symbol type of the P subbands in the first carrier according to the first frequency domain configuration parameter and the second time domain configuration parameter, where P ⁇ 1 and P is an integer.
  • the second time domain configuration parameter here can refer to the introduction of the first time domain configuration parameter above.
  • P can be equal to L or not equal to L, which is not limited in this application.
  • the second indication information #2 can dynamically indicate the time domain position or time slot format of one or more subbands in the first carrier.
  • the second indication information #2 can only include the index of the second time domain configuration parameter in the multiple groups of time domain configuration parameters.
  • the second indication information #2 is a time slot format indication field, which is used to indicate the second time domain configuration parameter of the first subband.
  • the second indication information #2 is a time slot format indication field in the downlink control information format 2-0.
  • the second indication information #2 may also be other information with similar functions, which is not limited in this application.
  • Solution 2 Possible examples of frequency domain configuration parameters and time domain configuration parameters of the first subband in Solution 1.
  • FIG4 shows three cases of first carriers applicable to the present application.
  • the first carriers applicable to the present application include but are not limited to the above three cases.
  • the time slot format configuration of the second subband is the same as the time slot format configuration at the cell level or the carrier level.
  • the time slot format configuration at the carrier level here can refer to the TDD-UL-DL-ConfigCommon and TDD-UL-DL-ConfigDedicated information elements in 3GPP TS 38.331. Therefore, in order to determine the time-frequency configuration of different subbands, each set of time-frequency resource configuration information in multiple sets of time-frequency resource configuration information may not indicate the time slot format of the second subband.
  • the time slot format of the first subband includes the time domain position and the symbol type of the first subband at the time domain position.
  • the frequency domain position (including bandwidth and starting frequency domain position) of the first carrier is known.
  • the frequency domain position of the first subband can be obtained according to the frequency domain position of the first subband.
  • the frequency domain position of the second subband can be obtained according to the frequency domain position of the first subband and the frequency domain position of the GB. Therefore, each set of time-frequency resource configuration information in the resource configuration information may not indicate the frequency domain position of the second subband.
  • the first carrier includes subband #1 and subband #2.
  • the frequency domain configuration parameters of the first subband may include at least two of information #1, information #2, and information #3.
  • information #1, information #2, and information #3 are given below in combination with Table 5 and Table 6.
  • the frequency domain configuration parameters of the first subband include information #1, information #2, and information #3 in Table 5.
  • Table 5 gives 5 examples of information #1, information #2, and information #3, respectively.
  • the frequency domain configuration parameters of the first subband include information #1 and information #3 in Table 6. Table 6 gives 4 examples of information #1 and information #3, respectively.
  • the first carrier includes subband #1, subband #2, and subband #3.
  • the frequency domain configuration parameters of the first subband include one or more of information #4, information #5, information #6, and information #7. Tables 7 and 8 below give information #4, information #5, information #6, and information #7.
  • information #6 and information #7 Several possible examples of information #6 and information #7. Specifically, in case 1, there is a GB between the first subband and the second subband, that is, there is a GB1 between subband #1 and subband #2, and there is a GB2 between subband #2 and subband #3 (for example, as shown in (b) in Figure 7).
  • the bandwidth of subband #1 is different from the bandwidth of subband #3, the bandwidth of GB1 is different from the bandwidth of GB2, and the frequency domain configuration parameters of the first subband include information #4, information #5, information #6, and information #7 in Table 7.
  • the bandwidth of subband #1 is the same as that of subband #3, the bandwidth of GB1 is different from that of GB2, and the frequency domain configuration parameters of the first subband include at least one of information #4 and information #5, information #6, and information #7 in Table 7.
  • the bandwidth of subband #1 is different from that of subband #3, the bandwidth of GB1 is the same as that of GB2, and the frequency domain configuration parameters of the first subband include at least one of information #6 and information #7, information #4, and information #5.
  • the bandwidth of subband #1 is the same as that of subband #3, the bandwidth of GB1 is the same as that of GB2, and the frequency domain configuration parameters of the first subband include at least one of information #6 and information #7, and at least one of information #4 and information #5.
  • Case 2 There is no GB between the first subband and the second subband.
  • the bandwidth of subband #1 and subband #2 are different, and the frequency domain configuration parameters of the first subband include information #4 and information #5 in Table 8.
  • the bandwidth of subband #1 and subband #2 are the same, and the frequency domain configuration parameters of the first subband include information #4 and/or information #5 in Table 8.
  • the form of the information included in the frequency domain configuration parameter of the first subband can refer to the above-mentioned multiple possible examples.
  • the frequency domain configuration parameter of the first subband includes the bandwidth of subband #1 and information #3 for indicating that the first subband is subband #2 or subband #1.
  • the terminal device obtains K sets of time-frequency resource configuration information by step 1-1 or step 1-2, and the frequency domain configuration parameters of the first subband included in the K sets of time-frequency resource configuration information have a total of 3 groups, namely frequency domain configuration parameter #1, frequency domain configuration parameter #2 and frequency domain configuration parameter #3.
  • the bandwidth of subband #1 included in frequency domain configuration parameter #1 is a resource blocks (resource block, RB)
  • the information #3 included in frequency domain configuration parameter #1 indicates that the first subband is subband #2.
  • the bandwidth of subband #1 included in frequency domain configuration parameter #2 is b RBs
  • information #3 included in frequency domain configuration parameter #2 indicates that the first subband is subband #2.
  • the bandwidth of subband #1 included in frequency domain configuration parameter #3 is c RBs
  • information #3 included in frequency domain configuration parameter #2 indicates that the first subband is subband #2.
  • a, b and c are all integers greater than or equal to 1.
  • the first frequency domain configuration parameter in S201 is frequency domain configuration parameter #2.
  • the terminal device determines the frequency domain position of the first subband according to the first frequency domain configuration parameter. Specifically, the terminal device determines the starting frequency domain position of subband #2 according to the starting frequency domain position of the first carrier and the bandwidth of subband #1, and determines the bandwidth of subband #2 according to the bandwidth of the first carrier and the bandwidth of subband #1, thereby determining the frequency domain position of subband #2.
  • Figure 8 shows a schematic diagram of an example of time domain resources applicable to the present application.
  • Subband #1 and subband #3 are examples of the second subband
  • subband #2 is an example of the first subband.
  • the black-filled rectangle located in time unit #2 is the flexible symbol included in subband #2 (for the convenience of explanation, it is called flexible symbol #1)
  • the left-strikethrough-filled rectangle located in time unit #4 is Subband #3 and subband #1 respectively include flexible symbols (for convenience of explanation, referred to as flexible symbol #2).
  • Other schematic methods in FIG8 are the same as those in FIG4 (c), and specific reference may be made to the relevant description of FIG4 (c).
  • the present application provides multiple representations of the time domain configuration parameters of the first subband.
  • the time domain configuration parameter of the first subband is used to indicate symbols or time units with different symbol types between the first subband and the second subband.
  • the time units with different symbol types between subband #2 and subband #1, or subband #2 and subband #3 in Figure 8 are time unit #2, time unit #3, and time unit #4.
  • the time domain configuration parameter of the first subband may be time division duplex uplink and downlink configuration information at the UE level.
  • the time division duplex uplink and downlink configuration information also includes information #b.
  • the information #b is used to indicate that the time division duplex uplink and downlink configuration information is the time division duplex uplink and downlink configuration information of the first subband.
  • the time division duplex uplink and downlink configuration information may indicate the symbol type of the second symbol as uplink or flexible, wherein the second symbol is a symbol with a symbol type indicated as downlink in the time slot format configuration at the cell level or the carrier level.
  • the time domain configuration parameters of the first subband are used to configure at least two of the starting time domain position, length and ending time domain position of the uplink symbol of the first subband at the first time domain position.
  • the time domain configuration parameters of the first subband are used to configure at least two of the starting time domain position, length and ending time domain position of the flexible symbol of the first subband at the first time domain position.
  • the symbols between the flexible symbol of the first subband at the first time domain position and the first uplink time slot are all uplink symbols, that is, the rectangular block filled with horizontal lines in Figure 8 represents the uplink symbol included in the first time domain position of the first subband.
  • the first uplink time slot here is the uplink time slot with the smallest interval between the flexible symbol.
  • the time domain resource corresponding to time unit #5 is the first uplink time slot.
  • the understanding of the uplink time slot can refer to the corresponding description of Figure 2.
  • Figure 8 can be understood as a period in the periodic time domain resources applicable to this application.
  • the first uplink time slot can also be understood as an uplink time slot within a period with the flexible symbol. In the period shown in Figure 8, the first uplink time slot is time unit #5 in Figure 8.
  • the time domain configuration parameter of the first subband is used to configure the starting time domain position or the ending time domain position of the flexible symbol of the first subband at the first time domain position.
  • the time domain configuration parameter of the first subband may not indicate T1.
  • the length of T2 may be determined by the time slot format at the cell level.
  • Figure 8 can be understood as a period in the periodic time domain resources applicable to the present application.
  • the network device needs to configure 10 time units of time domain resources for the terminal device, and every 5 time units are one period.
  • the network device can only configure the time domain resources of the first period, and the terminal device determines the configuration of the time domain resources of the second period based on the configuration of the time domain resources of the first period.
  • the first time-frequency resource configuration information does not include the time domain configuration parameters of the displayed first subband, and the time domain configuration parameters of the first subband are implicitly indicated by the frequency domain configuration parameters of the first subband.
  • the terminal device determines the frequency domain position of the first subband according to the frequency domain configuration parameters of the first subband, the terminal device determines that the symbol type of the first subband on the second symbol is all uplink or all flexible, wherein the second symbol is a symbol configured as non-uplink transmission in the time slot format configuration of the first carrier.
  • the second symbol can be understood as a symbol configured as non-uplink transmission in time unit #1 to time unit #4 according to the time slot configuration format of the first carrier.
  • FIG9 shows a schematic diagram of another example of time domain resources applicable to the present application.
  • the multiple time units included in the first time domain position may be continuous (as shown in FIG8 ) or discontinuous (as shown in FIG9 ).
  • the first time domain position includes two discontinuous time periods as an example for explanation.
  • the first time domain position includes a first time domain position #1 and a first time domain position #2, wherein the first time domain position #1 includes 3 time units, and the first time domain position #2 includes 2 time units.
  • the time domain configuration parameter of the first subband is used to indicate symbols or time units with different symbol types between the first subband and the second subband.
  • the time units with different symbol types between subband #2 and subband #1, or between subband #2 and subband #3 in Figure 9 are time unit #2, time unit #3, time unit #4, time unit #8 and time unit #9.
  • the time domain configuration parameter of the first subband may be time division duplex uplink and downlink configuration information at the UE level.
  • the time division duplex uplink and downlink configuration information also includes information #b.
  • the information #b is used to indicate that the time division duplex uplink and downlink configuration information is the time division duplex uplink and downlink configuration information of the first subband.
  • the time division duplex uplink and downlink configuration information may indicate the symbol type of the second symbol as uplink or flexible, wherein the second symbol is a symbol with a symbol type indicated as downlink in the time slot format configuration at the cell level or the carrier level.
  • the time domain configuration parameter of the first subband is used to configure at least two of the starting time domain position, length and ending time domain position of the uplink symbol of the first subband at the first time domain position.
  • the time domain configuration parameter of the first subband is used to configure the first subband at the first At least two of the starting time domain position, length and ending time domain position of the uplink symbol at time domain position #1.
  • the time domain configuration parameters of the first subband are used to configure at least two of the starting time domain position, length and ending time domain position of the uplink symbol of the first subband at the first time domain position #2.
  • the time domain configuration parameters of the first subband are used to configure at least two of the starting time domain position, length and end time domain position of the flexible symbol of the first subband at the first time domain position.
  • the first time domain position includes the first time domain position #1 and the first time domain position #2.
  • the time domain configuration parameters of the first subband are used to configure at least two of the starting time domain position, length and end time domain position of the flexible symbol #1 of the first subband at the first time domain position #1.
  • the time domain configuration parameters of the first subband are used to configure the starting time domain position and T1 of the black-filled rectangular blocks in time units #1 to time units #5 in Figure 9.
  • the time domain configuration parameters of the first subband are also used to configure at least two of the starting time domain position, length and end time domain position of the flexible symbol of the first subband at the first time domain position #2.
  • the symbols between the flexible symbol of the first subband at the first time domain position #1 and the first uplink time slot are all uplink symbols, that is, the rectangular block filled with horizontal lines in Figure 9 represents the uplink symbols included in the first subband at the first time domain position #1.
  • the first uplink time slot here is the uplink time slot with the smallest interval between the flexible symbols.
  • the time domain resource corresponding to time unit #5 is the first uplink time slot.
  • the understanding of the uplink time slot can refer to the corresponding description of Figure 2.
  • the first time slot is the time domain resource corresponding to time unit #10.
  • the time domain configuration parameters of the first subband are used to configure the starting time domain positions of the flexible symbols of the first subband at the first time domain position #1 and the first time domain position #2.
  • the length of T2 may be determined by the time slot format at the cell level.
  • Example 9-2’ and Example 9-3’ since the first time domain position #1 and the first time domain position #2 are not arranged periodically in time, in Example 9-2’ and Example 9-3’, the positions of the flexible symbols or uplink symbols of subband #2 at the first time domain position #1 and the first time domain position #2 need to be indicated respectively.
  • the form of the information included in the time domain configuration parameters of the first subband can refer to the above-mentioned multiple possible examples.
  • the time domain configuration parameters of the first subband include the starting time domain position and length of the uplink symbol of the first subband at the first time domain position.
  • the terminal device obtains N groups of time domain configuration parameters by step 1-1 or step 1-2.
  • the terminal device obtains K sets of time-frequency resource configuration information by step 1-1 or step 1-2, and the time domain configuration parameters of the first subband included in the K sets of time-frequency resource configuration information have a total of 3 groups, namely time domain configuration parameter #1, time domain configuration parameter #2 and time domain configuration parameter #3.
  • the starting time domain position included in the time domain configuration parameter #1 is the third symbol of the time unit #2, and the length is 12 symbols.
  • the starting time domain position included in the time domain configuration parameter #2 is the first symbol of the time unit #2, and the length is 10 symbols.
  • the starting time domain position included in the time domain configuration parameter #3 is the 12th symbol of the time unit #1, and the length is 10 symbols.
  • the first time domain configuration parameter in S201 is the time domain configuration parameter #2.
  • the terminal device determines the time domain position of the first subband according to the first time domain configuration parameter. Specifically, the terminal device determines the time domain position of the first subband according to the starting time domain position and length of the first subband.
  • Figures 10 and 11 are schematic diagrams of another example of time domain resources applicable to the present application when the first carrier includes subband #1 and subband #2. Similarly, in the first time domain position in Figures 10 and 11, the black-filled rectangle represents the flexible symbol #1, and the left-line-filled rectangle represents the flexible symbol #2.
  • the other schematic methods in Figures 10 and 11 are the same as (a) in Figure 4 and (b) in Figure 4, respectively. For details, please refer to the relevant description above.
  • Figures 8 to 11 are all illustrated by taking the case where the frequency domain range of the first subband in different time units at the first time domain position remains unchanged as an example, and the above-mentioned time domain configuration parameters of the first subband are also applicable to the case where the frequency domain range of the first subband in different time units at the first time domain position changes.
  • Solution three a message used to carry the first indication information.
  • the first indication information is carried in system information block 1 (SIB1).
  • SIB1 system information block 1
  • the first indication information is carried in downlink control information (DCI).
  • DCI downlink control information
  • the first indication information may be carried in an existing bit in the DCI, or, the first indication information may be carried in a newly added bit in the DCI, or, Part of the first indication information is carried in existing bits of the DCI, and the other part of the first indication information is carried in newly added bits of the DCI.
  • the existing bits in the above-mentioned DCI may be redundant bits in the DCI.
  • DCI has redundant bits when scheduling the physical uplink shared channel (PUSCH) where the SBFD time slot is located. The following will introduce the redundant bits that may be generated for scheduling the PUSCH where the SBFD time slot is located with reference to specific examples.
  • Figure 12 shows a schematic diagram of an example of the time-frequency resources of DCI scheduling provided by the present application.
  • Figure 12 takes the time-frequency resources corresponding to time unit #3 and time unit #5 in Figure 8 as an example for illustration.
  • subband #1, subband #2 and subband #3 correspond to subband #1, subband #2 and subband #3 in Figure 8 respectively;
  • the vertical axis is the time domain, time unit #3 and time unit #5 correspond to time unit #3 and time unit #5 in Figure 8 respectively, wherein time unit #3 belongs to the SBFD time slot, and time unit #5 belongs to the UL time slot.
  • subband #1 includes 3 resource block groups (RBGs)
  • subband #2 includes 4 RBGs
  • subband #3 includes 3 RBGs.
  • the rectangle filled with right dashes represents DL RBG
  • the rectangle filled with the intersection of horizontal and vertical lines represents the RBG scheduled by DCI
  • the rectangle filled with the intersection of left and right dashes represents the unscheduled RBG.
  • the scheduling of the time-frequency resources in Figure 12 is indicated by bitmap, and 1 bit is used to indicate 1 RBG.
  • the bit value of 1 represents that the RBG is scheduled, and the bit value of 0 represents that the RBG is not scheduled.
  • the number of RBs contained in 1 RBG is determined according to the bandwidth part (BWP) and the high-level configuration, and the number of RBGs included in a subband is determined according to the bandwidth of the subband and the number of RBs included in the RBG.
  • BWP bandwidth part
  • the 10 RBGs corresponding to time unit #5 are all UL RBGs, and 10 bits are required to indicate the UL frequency domain resources.
  • 1110011100 is used to indicate the frequency domain resources corresponding to time unit #5 in Figure 12.
  • 4 RBGs are UL RBGs, so 4 bits are needed to indicate the frequency domain resources corresponding to #3.
  • 1110 is used to indicate the frequency domain resources corresponding to time unit #3 in Figure 12.
  • the frequency domain resource allocation (FDRA) method can be used to indicate the frequency domain range occupied by UL.
  • the number of bits required to indicate the UL time slot in the FDRA method is related to the bandwidth of the BWP. For example, if the number of RBs in the BWP is R, the number of bits required is R ⁇ 1 and R is an integer.
  • the number of bits required to indicate the SBFD time slot in FDRA mode is related to the bandwidth of the UL subband corresponding to the SBFD time slot.
  • the UL subband corresponding to the SBFD time slot can be understood as the first subband corresponding to the first time domain position in solution 1, or can be understood as subband #2 in Figure 8.
  • the number of bits required in the SBFD time slot may be less than the number of bits required in the UL time slot.
  • the number of bits required to schedule DL RBGs in SBFD time slots is less than the number of bits required to schedule DL RBGs in DL time slots, because DCI only needs to represent the frequency domain resources used for downlink transmission in the SBFD time slot. Therefore, DCI has redundant bits when scheduling the physical downlink shared channel (PDSCH) where the SBFD time slot is located.
  • PDSCH physical downlink shared channel
  • the way DCI schedules type 0 PDSCH to generate redundant bits is similar to type 0 PUSCH, and DCI schedules type 1 PDSCH and type 1 PUSCH is similar.
  • the remaining bits may be indicated by newly added bits in the DCI.
  • the first indication information is carried in a media access control control element (MAC CE).
  • MAC CE media access control control element
  • the first indication information adds new indication information or uses a new MAC CE for indication.
  • the method 200' provided by the present application is introduced below.
  • the method 200' includes S201' and S202'.
  • the network device sends the first indication information #1 to the terminal device, and correspondingly, the terminal device receives the first indication information #1 from the network device.
  • the first indication information #1 is used to indicate the first time-frequency resource configuration information #1.
  • the first time-frequency resource configuration information #1 does not belong to the above-mentioned time-frequency resource configuration information applicable to the SBFD system, but belongs to the time-frequency resource configuration information applicable to the TDD system.
  • the multiple sets of time-frequency resource configuration information in method 200 may also include the first time-frequency resource configuration information #1 here.
  • the time-frequency resource configuration information applicable to the TDD system can also be understood as the time-frequency resource configuration information at the cell level or the carrier level.
  • the time-frequency resource configuration information applicable to the TDD system can be TDD-UL-DL-ConfigCommon and Alternatively, the time-frequency resource configuration information applicable to the TDD system in the present application can be understood in conjunction with the following example 10.
  • Example 10 when the first time-frequency resource configuration information #1 is time-frequency resource configuration information applicable to a TDD system, the first carrier #1 includes the second subband #1, L>1, and the L subbands include the first subband #1 and the second subband #1.
  • the first time domain position includes one or more time units, and the first subband #1 and the second subband #1 in each of the one or more time units do not overlap in the frequency domain.
  • the one or more time units include a first symbol #1, and the symbol type of the first subband #1 in the first symbol #1 is the same as the symbol type of the second subband #1 in the first symbol #1.
  • the first indication information #1 includes the index of the first time-frequency resource configuration information #1.
  • the multiple sets of time-frequency resource configuration information in S201' include an index of the first time-frequency resource configuration information #1, and the first time-frequency resource configuration information #1 does not include the time domain configuration parameters and frequency domain configuration parameters of the first subband #1.
  • the terminal device determines the time slot format and frequency domain position of the first carrier #1 using the time-frequency resource configuration information applicable to the TDD system according to the first indication information #1.
  • the multiple sets of time-frequency resource configuration information in S201' include an index of the first time-frequency resource configuration information #1, and the first time-frequency resource configuration information #1 includes the time slot format configuration and frequency domain configuration parameters of the first carrier #1.
  • the terminal device determines the time slot format and frequency domain position of the first carrier #1 using the time-frequency resource configuration information applicable to the TDD system according to the first indication information #1.
  • the first indication information #1 includes an index of a third time domain configuration parameter.
  • the third time domain configuration parameter may be a time slot format configuration applicable to a TDD system, such as TDD-UL-DL-ConfigCommon and TDD-UL-DL-ConfigDedicated in 3GPP TS 38.331.
  • the multiple sets of time-frequency resource configuration information in S201' do not include the index of the first time-frequency resource configuration information #1, but include the index of the third time domain configuration parameter.
  • the terminal device determines the time slot format and frequency domain position of the first carrier #1 using the time-frequency resource configuration information applicable to the TDD system according to the first indication information #1.
  • Solution 4 When the terminal device uses the first time-frequency resource configuration information #2 for the first subband #2 in the first carrier #2, how does the network device instruct the terminal device to use the third time-frequency resource configuration information for the first carrier #2, and accordingly, how does the terminal device use the third time-frequency resource configuration information according to the instruction of the network device.
  • Solution 5 After Solution 4, how does the network device instruct the terminal device to use the first time-frequency resource configuration information #2 for the first subband #2 in the first carrier #2.
  • FIG13 is a schematic diagram showing an example of interference in a communication system provided by the present application. It should be understood that in the SBFD scheme, uplink and downlink transmissions can exist simultaneously on one symbol, resulting in cross-link interference (CLI) between terminals (UE-UE). As shown in FIG13, taking the communication between terminal device #0 and terminal device #1 and the same network device #0 as an example, the UL link between terminal device #0 and network device #0 interferes with the DL link between network device #0 and terminal device #1, i.e., UE-UE CLI. UE-UE CLI can exist between UEs in the same cell or between UEs in different cells.
  • CLI cross-link interference
  • the UE-UE CLI interference When the distance between UE-UE CLI terminal devices is close, the UE-UE CLI interference is large, which will have a greater impact on the downlink performance.
  • network device #0 or network device #1 may also have self-interference (SI).
  • SI self-interference
  • the UL sub-band In the case of severe self-interference or severe inter-site cell-cell CLI interference in a communication system supporting the SBFD solution, the UL sub-band will be subject to excessive interference, resulting in low spectrum efficiency of the network when the UL sub-band performs uplink transmission.
  • the problem of low spectrum efficiency caused by CLI and SI can be reduced by switching the communication system from the SBFD system to the TDD system.
  • the switching from SBFD to TDD system in the present application can be understood as, when the terminal device uses the first time-frequency resource configuration information applicable to the SBFD system to determine the time domain position, frequency domain position and symbol type of the one or more subbands in the time domain position of the first carrier; then the network device indicates to the terminal device the third time-frequency resource configuration information applicable to the TDD system, or the carrier-level or cell-level time-frequency resource configuration information.
  • the first time-frequency resource configuration information can also be understood as the subband-level time-frequency resource configuration information
  • the third time-frequency resource configuration information can also be understood as the carrier-level or cell-level time-frequency resource configuration information.
  • the third time-frequency resource configuration information does not include frequency domain configuration parameters and time domain configuration parameters for one or more subbands in the first carrier.
  • the switching from SBFD to TDD system in the present application can also be understood as making the subbands that can be used for uplink transmission in the first carrier have the same time slot format as other subbands that cannot be used for uplink transmission.
  • Solution 4 When the terminal device uses the first time-frequency resource configuration information #1 for the first subband #1 in the first carrier #1, how does the network device instruct the terminal device to use the third time-frequency resource configuration information for the first carrier #1, and accordingly, how does the terminal device use the third time-frequency resource configuration information according to the instruction of the network device.
  • FIG. 14 shows a schematic diagram of a resource configuration method 300 provided in the present application.
  • the terminal device determines the first time domain position #2, frequency domain position #2 and symbol type of the Y subbands in the first time domain position #2 of the Y subbands in the first carrier #2 according to the first time-frequency resource configuration information #2.
  • the first time-frequency resource configuration information #2 includes the first frequency domain configuration parameter #2 and the first time domain configuration parameter #2 of the first subband #2 in the first carrier #2, and the Y subbands include the first subband #2 and the second subband #2, wherein the first time domain position #2 includes one or more time units #2, and the first subband #2 and the second subband #2 on each time unit #2 in the one or more time units #2 do not overlap in the frequency domain, Y>1 and Y is an integer, and the one or more time units #2 include the first symbol #2, and the symbol type of the first subband #2 in the first symbol #2 is different from the symbol type of the second subband #2 in the first symbol #2.
  • method 200 when method 300 is combined with method 200, method 200 can be understood as a specific example of S301. That is, the first time-frequency resource configuration information #2, the first carrier #2, the first subband #2, the second subband #2, the time unit #2, and the first symbol #2 in S301 can be understood as the first time-frequency resource configuration information, the first carrier, the first subband, the second subband, the time unit, and the first symbol in method 200, respectively.
  • the first subband #2 here can be understood as one or more subbands in the first carrier #2.
  • the first time-frequency resource configuration information #2 may be received by the terminal device from the network device, or may be pre-configured in the terminal device.
  • the network device sends third indication information to the terminal device, and correspondingly, the terminal device receives the third indication information from the network device.
  • the third indication information is used to indicate the use of the third time-frequency resource configuration information.
  • the third indication information is used to indicate that the subband that can be used for uplink transmission in the first carrier #2 is configured with the same time slot format as the subband that cannot be used for uplink transmission (e.g., the subband used for downlink transmission).
  • the third indication information is used to indicate that the subband that can be used for uplink transmission in the first carrier #2 is used for downlink transmission.
  • the third indication information includes an index of the third time-frequency resource configuration information.
  • the index of the third time-frequency resource configuration information here may be a preconfigured value.
  • the index of the third time-frequency resource configuration information here may be either a preconfigured value or a value that is different from the indexes of the multiple sets of time-frequency resource configuration information in method 200.
  • the third indication information includes an index of a third time domain configuration parameter, where the third time domain configuration parameter may be a time slot format configuration of TDD.
  • the third indication information may be carried in DCI.
  • the third indication information is 1-bit indication information.
  • the value of the third indication information is 0 or UL.
  • the third indication information may be carried in DCI, SIB1 or MAC-CE.
  • the third indication information carried in DCI is taken as an example for introduction.
  • the third indication information is 1-bit information newly added in the DCI.
  • the third indication information is a redundant bit in the DCI.
  • the method of generating the redundant bit in the DCI can refer to the description corresponding to the case where the DCI indicates the PDSCH or PUSCH where the SBFD time slot is located in Scheme 3.
  • a new bit is added to the DCI as the third indication information.
  • the third indication information indicates that starting from the time when the DCI scheduled resources are located, the resources where the first subband in the rate matching resources (rateMatchPattern) are located are not reserved for the subsequent time. It should be understood that the reserved rate matching resources cannot be used for downlink transmission. Not reserving the resources where the first subband in the rate matching resources is located can be understood as that the resources where the first subband is located can be used for downlink transmission.
  • the third indication information is the SFI in the downlink control information.
  • the SFI specifically indicates that the uplink symbol in the first subband #2 configured by the time division duplex uplink and downlink configuration (tdd-UL-DL-configuration) information is modified to a downlink symbol or a flexible symbol.
  • the SFI also specifically indicates that the flexible symbols in one or more subbands configured by the time division duplex uplink and downlink configuration information are modified to downlink symbols.
  • subband #2 includes uplink symbols (black filled rectangles) and flexible symbols (horizontally filled rectangles) at the first time domain position.
  • the time division duplex uplink and downlink configuration configures uplink symbols and flexible symbols for subband #2.
  • the flexible symbol in subband #2 is modified to a downlink symbol
  • the uplink symbol in subband #2 included in the time where T2 is located is modified to a flexible symbol
  • the uplink symbol in subband #2 included in the time where T0-T2 is located is modified to a flexible symbol.
  • the first carrier #2 modified according to the indication of SFI is shown in FIG15.
  • the first time domain position in FIG15 In the figure, the rectangle filled with right strokes represents the descending symbol, and the rectangle filled with left strokes represents the flexible symbol.
  • the time division duplex uplink and downlink configuration is carried in a radio resource control configuration message
  • the time division duplex uplink and downlink time slot configuration is a radio resource control configuration message received by the terminal device from the network device.
  • the time division duplex uplink and downlink configuration includes cell-level and UE-level configuration information.
  • the terminal device determines the first time domain position, frequency domain position and symbol type of the first carrier at the first time domain position according to the third time-frequency resource configuration information, and the symbol type of the first carrier at the first time domain position is the same.
  • the above scheme proposes a specific implementation method for the situation where it is necessary to switch from a sub-band full-duplex system to a time-division duplex system, and improves the sub-band full-duplex system. For example, when the communication system is subject to excessive interference, resulting in the problem that the spectrum efficiency of the network is too low when the first sub-band is performing uplink transmission, the above scheme can reduce the problem of low spectrum efficiency caused by excessive interference.
  • Solution 5 After S303 in Solution 4, how does the network device instruct the terminal device to use the first time-frequency resource configuration information #2 for the first subband #2 in the first carrier #2.
  • the communication system after the communication system is switched to the TDD system, it can also switch back to the SBFD system after the SI or CLI in the communication system is reduced.
  • the network device can measure the SL or CLI through flexible symbols, and if the measured value of the SI is less than or equal to the first threshold, and the measured value of the CLI is less than or equal to the second threshold, the communication system can be switched back to the SBFD system.
  • FIG. 16 shows a schematic diagram of a resource configuration method 400 provided in the present application.
  • the network device sends fourth indication information to the terminal device, and the terminal device receives the fourth indication information from the network device, where the fourth indication information is used to indicate the use of the first time-frequency resource configuration information #2.
  • the fourth indication information may explicitly indicate the use of the first time-frequency resource configuration information #2, or may implicitly indicate the use of the first time-frequency resource configuration information #2.
  • the time-frequency resource configuration information applicable to the SBFD system used last time is adopted.
  • the time-frequency resource configuration information applicable to the SBFD system used by the terminal device is the first time-frequency resource configuration information #2. Therefore, the terminal device determines that the fourth indication information is used to indicate the use of the first time-frequency resource configuration information #2.
  • the fourth indication information may refer to the description of the first indication information in method 200 .
  • the value of the fourth indication information is 1 or DL.
  • the fourth indication information may be carried in DCI, SIB1 or MAC-CE.
  • the fourth indication information is carried in DCI as an example for introduction.
  • the fourth indication information is 1-bit information newly added in the DCI.
  • the fourth indication information is a redundant bit in the DCI.
  • the method of generating the redundant bit in the DCI can refer to the description corresponding to the case where the DCI indicates the PDSCH or PUSCH where the SBFD time slot is located in Scheme 3.
  • a new bit is added to the DCI as the fourth indication information.
  • the fourth indication information is the SFI in the downlink control information. It should be understood that after S303 in the fourth solution is executed, the first subband #2 includes downlink symbols and flexible symbols.
  • the fourth indication information specifically indicates that the downlink symbols in the first subband #2 configured by the time division duplex uplink and downlink configuration information are modified to uplink symbols or flexible symbols.
  • the SFI also specifically indicates that the flexible symbols in the first subband #2 configured by the time division duplex uplink and downlink configuration information are modified to uplink symbols.
  • the time division duplex uplink and downlink configuration is carried in a radio resource control configuration message
  • the time division duplex uplink and downlink time slot configuration is a radio resource control configuration message received by the terminal device from the network device.
  • the time division duplex uplink and downlink configuration includes cell-level and UE-level configuration information.
  • the terminal device determines the fourth time domain position and frequency domain position of S subbands in the first carrier according to the first time-frequency resource configuration information #2, and the symbol type of the S subbands at the fourth time domain position, where S ⁇ 1.
  • S may be equal to L or may not be equal to L.
  • the S subbands include the first subband #2.
  • the above method 200 provides a scheme for the network device to dynamically indicate a set of time-frequency resource configuration information to the terminal device from multiple sets of time-frequency resource configurations.
  • the following provides a scheme in which the terminal device directly determines the first frequency domain position #3 of the T subbands, the time domain configuration #3, and the symbol type of the T subbands at the first time domain position #3 according to the set of time-frequency resource configuration information (hereinafter referred to as the first time-frequency resource configuration information #3 for convenience of explanation) when the terminal device obtains a set of time-frequency resource configurations.
  • Step 3-1 the terminal device obtains the first time-frequency resource configuration information #3.
  • the first time-frequency resource configuration information #3 includes a first frequency domain configuration parameter #3 and a first time domain configuration parameter #3 of a first subband #3 in a first carrier #3.
  • Method 1 The network device sends the first time-frequency resource configuration information #3 to the terminal device through high-layer signaling, and correspondingly, the terminal device receives the first time-frequency resource configuration information #3 from the network device.
  • Method 2 The terminal device obtains the first time-frequency resource configuration information #3 according to the protocol, or the terminal device pre-configures the first time-frequency resource configuration information #3.
  • the first time-frequency resource configuration information #3 can be configured in the form of the example of the kth set of time-frequency resource configuration information in the first example of solution 1 or the second example of solution 1.
  • Step 3-2 the terminal device determines the first time domain position, frequency domain position and symbol type of the T subbands in the first carrier at the first time domain position according to the first frequency domain configuration parameter #3 and the first time domain configuration parameter #3, where T ⁇ 1 and T is an integer.
  • step 3-2 may also refer to the examples or descriptions related to S202. The difference is that the first frequency domain configuration parameter and the first time domain configuration parameter in S202 are replaced by the first frequency domain configuration parameter #3 and the first time domain configuration parameter #3 in step 3-2.
  • the above scheme can realize the switching from the time division duplex system to the sub-band full-duplex system. So that after the interference to the communication system is reduced, it can return to the sub-band full-duplex system. Since the sub-band full-duplex system significantly improves the coverage of uplink transmission and reduces the delay of uplink transmission compared to the time-frequency duplex system; therefore, the above scheme can improve the coverage of uplink transmission of the communication system as much as possible and reduce the delay of uplink transmission while ensuring the spectrum efficiency of the communication system.
  • the terminal device receives second indication information #3 from the network device, where the second indication information #3 is used to indicate a second time domain configuration parameter #1 of the first subband #3, where the second time domain configuration parameter #1 is different from the first time domain configuration parameter #3.
  • the terminal device determines the second time domain position #1, the frequency domain position of the O subbands in the first carrier, and the symbol type of the O subbands at the second time domain position #1 according to the first frequency domain configuration parameter #3 and the second time domain configuration parameter #1, where O ⁇ 1 and O is an integer.
  • the second time domain configuration parameter #1 here can refer to the introduction of the first time domain configuration parameter #3 above.
  • O may be equal to T or not equal to T, which is not limited in this application.
  • the second indication information #3 can dynamically indicate the time domain position or time slot format of different subbands in the first carrier.
  • the second indication information #3 is an SFI field.
  • the second indication information #3 is a time slot format indication field in the downlink control information format 2-0.
  • the second indication information #3 may also be other information with similar functions, which is not limited in this application.
  • the schemes described above are applicable to terminal devices that can identify the above-mentioned first to fourth indication information, that is, terminal devices that can identify information related to sub-band full-duplex.
  • the communication system to which methods 200 and 300 are applicable is also compatible with terminal devices that cannot identify the above-mentioned first to fourth indication information, that is, terminal devices that cannot identify information related to sub-band full-duplex, such as what may be referred to as legacy UEs.
  • legacy UEs For example, in Figure 1, in an SBFD cell, terminal device #0 supports the SBFD scheme, and terminal device #1 does not support the SBFD scheme.
  • the following describes in detail how the legacy UE determines the time-frequency resource distribution of the first carrier according to the indication of the network device.
  • Step 4-1 The network device sends a radio resource control configuration message to the terminal device, and correspondingly, the terminal device receives the radio resource control configuration message from the network device.
  • the radio resource control configuration message indicates a first reserved rate matching resource (rateMatchPattern).
  • Step 4-2 The network device sends a radio resource control reconfiguration message to the terminal device, and correspondingly, the terminal device receives the radio resource control reconfiguration message from the network device.
  • the radio resource control reconfiguration message indicates the second reserved rate matching resource. Furthermore, the first reserved rate matching resource includes the first frequency domain resource, and the second reserved rate matching resource does not include the first frequency domain resource.
  • the first frequency domain resource here can be understood as the first subband in method 200, or the first subband #2 in method 300, or the first subband #3 in method 400.
  • the first reserved rate matching resource and the second reserved rate matching resource are both at a cell level or at a partial bandwidth level.
  • step 4-3 the terminal device determines a first frequency domain resource for transmitting downlink data based on the first reserved rate matching resource and the second reserved rate matching resource.
  • the embodiments of the present application also provide corresponding devices, which include modules for executing the corresponding methods in the above-mentioned method embodiments.
  • the module can be software, hardware, or a combination of software and hardware. It can be understood that the technical features described in the above-mentioned method embodiments are also applicable to the following device embodiments. Therefore, the contents not described in detail can be referred to the above method embodiments, and for the sake of brevity, they will not be repeated here.
  • Fig. 17 shows a schematic diagram of a device 500 for resource configuration applicable to the present application.
  • the device 500 includes a transceiver unit 510, which can be used to implement corresponding communication functions.
  • the transceiver unit 510 can also be called a communication interface or a communication unit.
  • the device 500 may further include a processing unit 520, and the processing unit 520 may be used for performing data processing.
  • the device 500 also includes a storage unit, which can be used to store instructions and/or data, and the processing unit 520 can read the instructions and/or data in the storage unit so that the device implements the actions performed by the communication device (such as a terminal device, or a network device) in the aforementioned method embodiments.
  • a storage unit which can be used to store instructions and/or data
  • the processing unit 520 can read the instructions and/or data in the storage unit so that the device implements the actions performed by the communication device (such as a terminal device, or a network device) in the aforementioned method embodiments.
  • the device 500 can be used to execute the actions performed by the communication device (such as a terminal device, or a network device) in the above method embodiments.
  • the device 500 can be a component of the communication device (such as a terminal device, or a network device)
  • the transceiver unit 510 is used to execute the transceiver-related operations on the communication device (such as a terminal device, or a network device) side in the above method embodiments
  • the processing unit 520 is used to execute the processing-related operations on the communication device (such as a terminal device, or a network device) side in the above method embodiments.
  • the device 500 is used to execute the actions performed by the terminal device in each of the above method embodiments.
  • the transceiver unit 510 is used to receive first indication information from a network device, where the first indication information is used to indicate first time-frequency resource configuration information in multiple sets of time-frequency resource configuration information, where each set of time-frequency resource configuration information in the multiple sets of time-frequency resource configuration information includes frequency domain configuration parameters and time domain configuration parameters of one or more subbands in a first carrier, and the first time-frequency resource configuration information includes first frequency domain configuration parameters and first time domain configuration parameters for a first subband in the first carrier; the processing unit 520 is used to determine a first time domain position, a frequency domain position of L subbands in the first carrier, and a symbol type of the L subbands at the first time domain position based on the first frequency domain configuration parameters and the first time domain configuration parameters, where L ⁇ 1 and L is an integer.
  • the processing unit 520 is used to determine the first time domain position, the frequency domain position of L subbands in the first carrier and the symbol type of the L subbands at the first time domain position according to the first time-frequency resource configuration information, the first time-frequency resource configuration information includes the first frequency domain configuration parameter and the first time domain configuration parameter of the first subband in the first carrier, the L subbands include the first subband and the second subband, wherein the first time domain position includes one or more time units, and the first subband and the second subband on each time unit of the one or more time units are in the frequency domain.
  • L ⁇ 1 and L is an integer
  • the one or more time units include a first symbol, the symbol type of the first subband in the first symbol is different from the symbol type of the second subband in the first symbol
  • the transceiver unit 510 is used to receive a third indication information from a network device, the third indication information is used to indicate the use of third time-frequency resource configuration information
  • the processing unit 520 is also used to determine the first time domain position, frequency domain position of the first carrier and the symbol type of the first carrier at the first time domain position according to the third time-frequency resource configuration information, and the symbol type of the first carrier at the first time domain position is the same.
  • the device 500 is used to execute the actions performed by the network device in each of the above method embodiments.
  • the processing unit 520 is used to generate first indication information, where the first indication information is used to indicate first time-frequency resource configuration information in multiple sets of time-frequency resource configuration information, each set of time-frequency resource configuration information in the multiple sets of time-frequency resource configuration information includes frequency domain configuration parameters and time domain configuration parameters of one or more subbands in the first carrier, and the first time-frequency resource configuration information includes first frequency domain configuration parameters and first time domain configuration parameters of the first subband in the first carrier, the first frequency domain configuration parameters and the first time domain configuration parameters are used to indicate a first time domain position, a frequency domain position of L subbands in the first carrier, and a symbol type of the L subbands at the first time domain position, where L ⁇ 1 and L is an integer; the transceiver unit 510 is used to send the first indication information to the terminal device.
  • the transceiver unit 510 is used for the network device to send first time-frequency resource configuration information to the terminal device, where the first time-frequency resource configuration information is used to determine the first time domain position, frequency domain position of L subbands in the first carrier, and the symbol type of the L subbands at the first time domain position, and the first time domain resource configuration information includes the first frequency domain configuration parameter and the first time domain configuration parameter of the first subband in the first carrier, the L subbands include the first subband and the second subband, wherein the first time domain position includes one or more time units, and each of the one or more time units has a first frequency domain configuration parameter and a first time domain configuration parameter.
  • the first subband and the second subband do not overlap in the frequency domain, L ⁇ 1 and L is an integer, the one or more time units include a first symbol, and the symbol type of the first subband in the first symbol is different from the symbol type of the second subband in the first symbol; the transceiver unit 510 is also used to send a third indication information to the terminal device, the third indication information is used to indicate the use of third time-frequency resource configuration information, the third time-frequency resource configuration information is used to indicate the first time domain position, frequency domain position of the first carrier and the symbol type of the first carrier at the first time domain position, and the symbol type of the first carrier at the first time domain position is the same.
  • the apparatus 500 is embodied in the form of a functional unit.
  • the term "unit” may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor, or a processor for executing one or more software or firmware.
  • the processor (such as a shared processor, a dedicated processor or a group processor, etc.) and memory of the program, merged logic circuits and/or other suitable components that support the described functions.
  • the device 500 can be specifically the terminal device in the above embodiment, and can be used to execute the various processes and/or steps corresponding to the terminal device in the above method embodiments, or the device 500 can be specifically the network device in the above embodiment, and can be used to execute the various processes and/or steps corresponding to the network device in the above method embodiments. To avoid repetition, it will not be repeated here.
  • the apparatus 500 of each of the above-mentioned schemes has the function of implementing the corresponding steps executed by the terminal device in the above-mentioned method, or the apparatus 500 of each of the above-mentioned schemes has the function of implementing the corresponding steps executed by the network device in the above-mentioned method.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor, respectively performing the sending and receiving operations and related processing operations in each method embodiment.
  • the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor, respectively performing the sending and receiving operations and related processing operations in each method embodiment.
  • the transceiver unit 510 may also be a transceiver circuit (for example, may include a receiving circuit and a sending circuit), and the processing unit may be a processing circuit.
  • the device in FIG. 17 may be a network element or device in the aforementioned embodiment, or may be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input and output circuit or a communication interface; the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip. This is not limited here.
  • Fig. 18 shows a schematic diagram of another device 600 for resource configuration applicable to the present application.
  • the device 600 includes a processor 610, the processor 610 is coupled to a memory 620, the memory 620 is used to store computer programs or instructions and/or data, and the processor 610 is used to execute the computer program or instructions stored in the memory 620, or read the data stored in the memory 620, so as to execute the methods in the above method embodiments.
  • processors 610 there are one or more processors 610 .
  • the memory 620 is one or more.
  • the memory 620 is integrated with the processor 610 or provided separately.
  • the device 600 further includes a transceiver 630, and the transceiver 630 is used for receiving and/or sending signals.
  • the processor 610 is used for controlling the transceiver 630 to receive and/or send signals.
  • the apparatus 600 is used to implement the operations performed by the terminal device in the above method embodiments.
  • the processor 610 is used to execute the computer program or instructions stored in the memory 620 to implement the relevant operations of the terminal device in the above various method embodiments. For example, the method performed by the terminal device or UE in any one of the embodiments shown in Figures 3 to 16.
  • the device 600 is used to implement the operations performed by the network device in the above various method embodiments.
  • the processor 610 is used to execute the computer program or instructions stored in the memory 620 to implement the relevant operations of the network device in the above various method embodiments.
  • processors mentioned in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory mentioned in the embodiments of the present application can be a volatile memory and/or a non-volatile memory.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM) or a flash memory.
  • the volatile memory can be a random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM includes the following forms: static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous link DRAM (SLDRAM), and direct rambus RAM (DR RAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous link DRAM
  • DR RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate Or transistor logic devices, discrete hardware components, the memory (storage module) can be integrated in the processor.
  • memory described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • FIG19 shows a schematic diagram of a chip system 700 applicable to the present application.
  • the chip system 700 (or also referred to as a processing system) includes a logic circuit 710 and an input/output interface 620.
  • the logic circuit 710 can be a processing circuit in the chip system 700.
  • the logic circuit 710 can be coupled to the storage unit and call the instructions in the storage unit so that the chip system 700 can implement the methods and functions of each embodiment of the present application.
  • the input/output interface 620 can be an input/output circuit in the chip system 700, outputting information processed by the chip system 700, or inputting data or signaling information to be processed into the chip system 700 for processing.
  • the logic circuit 710 is coupled to the input/output interface 620, and the logic circuit 710 can send a message to the network device through the input/output interface 620, and the message can be generated by the logic circuit 710; or the input/output interface 620 can input the message from the network device to the logic circuit 710 for processing.
  • the logic circuit 710 is coupled to the input/output interface 620, and the logic circuit 710 can send a message to the terminal device through the input/output interface 620, and the message can be generated by the logic circuit 710; or the input/output interface 620 can input the message from the terminal device to the logic circuit 710 for processing.
  • the chip system 700 is used to implement the operations performed by the terminal device in the above method embodiments.
  • the logic circuit 710 is used to implement the processing-related operations performed by the terminal device in the above method embodiments, such as the processing-related operations performed by the terminal device or UE in the embodiments shown in any one of Figures 3 to 16;
  • the input/output interface 620 is used to implement the sending and/or receiving-related operations performed by the terminal device in the above method embodiments, such as the sending and/or receiving-related operations performed by the terminal device or UE in the embodiments shown in any one of Figures 3 to 16.
  • the chip system 700 is used to implement the operations performed by the network device in the above method embodiments.
  • the logic circuit 710 is used to implement the processing-related operations performed by the network device in the above method embodiments, such as the processing-related operations performed by the network device or the base station in the embodiments shown in any one of Figures 3 to 16;
  • the input/output interface 720 is used to implement the sending and/or receiving-related operations performed by the network device in the above method embodiments, such as the sending and/or receiving-related operations performed by the network device or the base station in the embodiments shown in any one of Figures 3 to 16.
  • An embodiment of the present application also provides a computer-readable storage medium on which are stored computer instructions for implementing the methods executed by a terminal device or a network device in the above-mentioned method embodiments.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device or the network device in each embodiment of the above method.
  • An embodiment of the present application also provides a computer program product, comprising instructions, which, when executed by a computer, implement the methods performed by a terminal device or a network device in the above-mentioned method embodiments.
  • the embodiment of the present application also provides a communication system, which includes the terminal device and the network device in the above embodiments.
  • the system includes the terminal device and the network device in any one of the embodiments shown in Figures 3 to 16.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network or other programmable devices.
  • the computer can be a personal computer, a server, or a network device, etc.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions can be transmitted from a website site, a computer, a server or a data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more available media.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state disk (SSD), etc.
  • the aforementioned available media include, but are not limited to: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种资源配置的方法和装置,该方法包括:网络设备通过第一指示信息向终端设备指示多套时频资源配置信息中的第一时频资源配置信息。多套时频资源配置信息中的每套时频资源配置信息包括第一载波中的一个或多个子带的频域配置参数和时域配置参数。第一时频资源配置信息包括第一载波中的第一子带的第一频域配置参数和第一时域配置参数。终端设备根据第一频域配置参数和第一时域配置参数确定第一载波中的L个子带的第一时域位置、频域位置以及L个子带在第一时域位置的符号类型,L≥1且L为整数。本申请提供的方法和装置,能够针对子带全双工方案实现时频资源配置信息的动态指示,完善子带全双工方案的资源配置流程。

Description

资源配置的方法及装置
本申请要求于2022年9月30日提交中国专利局、申请号为202211217068.6、发明名称为“资源配置的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种资源配置的方法及装置。
背景技术
随着第五代移动通信技术新无线(new radio,NR)的快速发展,出现了多种多样的通信需求。为满足新兴业务的需求,提出了子带全双工(subband full duplex,SBFD)的方案来提升时分双工(time division duplexing,TDD)系统的上行覆盖性能。全双工(full duplex)是指在TDD系统中,网络设备通过上行传输和下行传输分别采用不同子带,从而实现在一个时隙或一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上既能接收又能发送信息。在SBFD方案中,一个分量载波(component carrier,CC)被分为多个子带;在一个OFDM符号上,不同子带的传输方向可以不同。
目前,针对在SBFD系统中如何进行时频资源的配置,并未给出具体方案。因此,在SBFD系统中如何进行时频资源的配置,成为亟待解决的问题。
发明内容
本申请提供一种资源配置的方法及装置,能够提高子带全双工场景下时频资源配置的灵活性。
第一方面,提供了一种资源配置的方法该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法可以包括:终端设备接收来自网络设备的第一指示信息,该第一指示信息用于在多套时频资源配置信息中指示第一时频资源配置信息,该多套时频资源配置信息中的每套时频资源配置信息包括第一载波中的一个或多个子带的频域配置参数和时域配置参数,该第一时频资源配置信息包括该第一载波中的第一子带的第一频域配置参数和第一时域配置参数;该终端设备根据该第一频域配置参数和该第一时域配置参数确定该第一载波中的L个子带的第一时域位置、频域位置以及该L个子带在该第一时域位置的符号类型,L≥1且L为整数。
上述方案,通过网络设备向终端设备在多套时频资源配置信息中指示第一时频资源配置信息,针对子带全双工方案实现了时频资源配置信息的动态指示,能够提高时频资源配置的灵活性,完善了子带全双工方案的资源配置流程。
可选地,该第一载波还包括第二子带,L>1,该L个子带包括该第一子带和该第二子带。
上述方案,终端设备能够根据第一子带的第一时域配置参数和第一频域配置参数确定第一载波中其他子带(即上述第二子带)的时频分布情况,能够节省开销。
可选地,该L个子带为第一载波包括的全部子带。
可选地,第一子带可以包括至少一个子带,第二子带也可以包括至少一个子带。
结合第一方面,在第一方面的某些实现方式中,该第一载波还包括第二子带,L>1,该L个子带包括该第一子带和该第二子带;该第一时域位置包括一个或多个时间单元,该一个或多个时间单元中的每个时间单元上的该第一子带和该第二子带在频域上不重叠;该一个或多个时间单元包括第一符号,该第一子带在该第一符号的符号类型与该第二子带在该第一符号的符号类型不同。
相比于时分双工方案中终端设备在一个符号上只能接收或发送的情况,上述方案在第一时域位置上,终端设备可用的上行传输资源增加,能够有效提升上行传输的覆盖,降低上行传输的时延。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息包括该第一时频资源配置信息的索引。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息包括该第一频域配置参数的索引和/或该第一时域配置参数的索引。
上述方案,能够根据频域配置参数的组数和时域配置参数的组数灵活地确定第一指示信息包括的索引数量,从而能够节省开销。应理解,当多套时频资源配置参数中的只有一组时域配置参数,即第一时域配置参数,时,第一指示信息可以不包括第一时域配置参数的索引。类似的,当多套时频资源配置参数中的只有一组频域配置参数,即第一频域配置参数,时,第一指示信息可以不包括第一频域配置参数的索引。
结合第一方面,在第一方面的某些实现方式中,该第一载波还包括第二子带,L>1,该L个子带包括该第一子带和该第二子带;该终端设备根据该第一频域配置参数和该第一时域配置参数确定该第一载波中的L个子带的第一时域位置、频域位置以及该L个子带在该第一时域位置的符号类型,包括:该终端设备根据该第一频域配置参数确定该第一子带的频域位置;该终端设备根据该第一子带的频域位置和该第一载波的频域位置确定该第二子带的频域位置;该终端设备根据该第一时域配置参数确定该第一子带的时域位置,该第一子带的时域位置包括该第一时域位置;该终端设备根据该第一时域配置参数确定该第一子带在该第一时域位置的符号类型为上行或灵活;该终端设备根据该第一载波的时隙格式配置确定该第二子带的时域位置,该第二子带的时域位置包括该第一时域位置;该终端设备根据该第一载波的时隙格式配置确定该第二子带在该第一时域位置的符号类型为下行或灵活。
上述方案,针对终端设备根据第一子带的第一时域配置参数和第一频域配置参数确定第一载波中其他子带(即上述第二子带)的时频分布情况,给出了具体实现方式,进一步完善了子带全双工方案的资源配置流程。
结合第一方面,在第一方面的某些实现方式中,该第一子带与该第二子带之间存在保护带宽的情况下,该第一时频资源配置信息还包括该保护带宽的频域配置参数;该终端设备根据该第一子带的频域位置和该第一载波的频域位置确定该第二子带的频域位置,包括:该终端设备根据该保护带宽的频域配置参数确定该保护带宽的频域位置;该终端设备根据该第一子带的频域位置、该第一载波的频域位置和该保护带宽的频域位置确定该第二子带的频域位置。
上述方案,针对第一子带与第二子带之间存在保护带宽的情况,第一时频资源配置信息还需要包括该保护带宽的频域配置参数,进一步完善了子带全双工方案的资源配置流程。
结合第一方面,在第一方面的某些实现方式中,该第一子带在该第一时域位置上包括灵活符号和上行符号的情况下,该第一时域配置参数用于指示该灵活符号和该上行符号的时域位置;该终端设备根据该第一时域配置参数确定该第一子带的第一时域位置,包括:该终端设备根据该第一时域配置参数确定该灵活符号的时域位置和该上行符号的时域位置;该终端设备根据该灵活符号的时域位置和该上行符号的时域位置确定该第一时域位置。
上述方案,针对第一子带在该第一时域位置上包括灵活符号和上行符号的情况,第一时域配置参数具体可以通过指示该灵活符号和该上行符号的时域位置来指示第一子带的时域位置,进一步完善了子带全双工方案的资源配置流程。
结合第一方面,在第一方面的某些实现方式中,该第一子带在该第一时域位置上包括灵活符号情况下,该第一时域配置参数用于指示该灵活符号的时域位置;该终端设备根据该第一时域配置参数确定该第一子带的第一时域位置,包括:该终端设备根据该第一时域配置参数确定该灵活符号的时域位置;该终端设备根据该灵活符号的时域位置确定该第一时域位置。
可选地,第一子带在第一时域位置上的全部符号都是灵活符号。
上述方案,针对第一子带在该第一时域位置上包括灵活符号的情况,第一时域配置参数具体可以通过指示该灵活符号的时域位置来指示第一子带的时域位置,进一步完善了子带全双工方案的资源配置流程。
结合第一方面,在第一方面的某些实现方式中,该第一时域位置包括多个时间单元的情况下,该第一频域配置参数包括X组频域配置参数,该X组频域配置参数中的每组频域配置参数用于指示一种频域位置,该第一时频资源配置信息还包括该每组频域配置参数与该多个时间单元中的每个时间单元的对应关系,X≥2且X为整数;该终端设备根据该第一频域配置参数确定该第一子带的频域位置,包括:该终端设备根据该X组频域配置参数确定该第一子带对应的X种频域位置;该终端设备根据该X 种频域位置、该第一时域位置和该对应关系确定该第一子带的在该每个时间单元的频域位置。
可选地,第一时频资源配置信息可以显示指示该对应关系,例如第一时频资源配置信息包括用于指示该对应关系的指示信息;或,第一时频资源配置信息可以隐式指示该对应关系,例如第一时频资源配置信息中,也包括X组时域配置参数,且X组时域配置参数与X组频域配置一一对应。X组时域配置参数中的每组时域配置参数分别指示第一时域位置中的一种时域位置。
可选地,每组时域配置参数指示的时域位置的粒度与一个时间单元的粒度不同。该对应关系也可以是每组频域配置参数与该多个时域位置中的每个时域位置的对应关系。
上述方案,针对第一时域位置上,部分或全部子带的频域位置在不同的时间单元间变化的情况,网络设备还会向终端设备具体指示第一子带的不同的频域位置与时域位置的对应关系,从而终端设备能够更准确地确定L个子带的时频分布,进一步完善了子带全双工方案的资源配置流程。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的第二指示信息,该第二指示信息用于在该多套时频资源配置信息中指示第二时频资源配置信息,该第二时频资源配置信息包括该第一子带的第二时域配置参数和第二频域配置参数,该第二时频资源配置信息与该第一时频资源配置信息不完全相同或完全不同;该终端设备根据该第二时域配置参数和该第二频域配置参数确定该第一载波中的P个子带的第二时域位置、频域位置以及该P个子带在该第二时域位置的符号类型,P≥1且P为整数。
上述方案,网络设备还可以通过第二指示信息指示多套时频资源配置信息中的其他视频资源配置信息(如第二时频资源配置信息),进一步完善了子带全双工方案的资源配置流程。
结合第一方面,在第一方面的某些实现方式中,该多套时频资源配置信息是预配置在该终端设备的,或者,该多套时频资源配置信息是该终端设备从该网络设备接收的。
结合第一方面,在第一方面的某些实现方式中,该第一子带在该第一时域位置的符号类型为上行或灵活;该第二子带在该第一时域位置的符号类型为下行或灵活;该方法还包括:该终端设备接收来自该网络设备的第三指示信息,该第三指示信息用于指示使用第三时频资源配置信息;该终端设备根据该第三时频资源配置信息确定该第一载波的第三时域位置、频域位置以及该第一载波在该第三时域位置的符号类型,该第一载波在该第三时域位置上的符号类型相同。
上述方案,针对需要从子带全双工系统切换到时分双工系统的情况,提出了具体的实现方式,完善了子带全双工系统。例如,在通信系统受到的干扰过大而导致第一子带进行上行传输时网络的频谱效率过低的问题时,通过上述方案,能够减少由于干扰过大导致的频谱效率过低的问题。
结合第一方面,在第一方面的某些实现方式中,该第三指示信息包括该第三时频资源配置信息的索引;或者,该第三指示信息的取值为0;或者,该第三指示信息为下行控制信息中的时隙格式指示字段,该方法还包括:该终端设备接收来自该网络设备的无线资源控制配置消息,该无线资源控制配置消息包括时分双工上下行配置信息,该时隙格式指示字段具体指示将该时分双工上下行配置信息配置的该第一子带中的上行符号修改为下行符号或灵活符号。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的第四指示信息,该第四指示信息用于指示使用该第一时频资源配置信息;该终端设备根据该第一时频资源配置信息确定该第一载波中的S个子带的第四时域位置、频域位置以及该S个子带在该第四时域位置的符号类型,S≥1。
上述方案,能够实现从时分双工系统在切换到子带全双工系统。以便于在通信系统受到的干扰减小之后,再回到子带全双工系统。由于子带全双工系统相对于时频双工系统明显提升了上行传输的覆盖,降低了上行传输的时延;因此,上述方案能够在保证通信系统的频谱效率的同时,尽可能提升通信系统的上行传输的覆盖,降低上行传输的时延。
结合第一方面,在第一方面的某些实现方式中,该第四指示信息包括该第一时频资源配置信息的索引;或者,该第四指示信息的取值为1;或者,该第四指示信息为下行控制信息中的时隙格式指示字段,该方法还包括:该终端设备接收来自该网络设备的无线资源控制配置消息,该无线资源控制配置消息包括时分双工上下行配置信息,该时隙格式指示字段具体指示将该时分双工上下行配置信息配置的该第一载波中的第一子带中的下行符号修改为上行符号或灵活符号;或者,该第四指示信息为下行控制信息中的时隙格式指示字段,该第四指示信息具体指示第三时域配置参数,该终端设备根据该第 一时频资源配置信息确定该第一载波中的S个子带的第五时域位置、频域位置以及该S个子带在该第五时域位置的符号类型,包括:该终端设备根据该第一频域配置参数和该第三时域配置参数确定该第一载波中的S个子带的第五时域位置、频域位置以及该S个子带在该第五时域位置的符号类型。
第二方面,提供了一种资源配置的方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。第二方面的有益效果可以参见第一方面的有益效果。
该方法可以包括:网络设备生成第一指示信息,该第一指示信息用于在多套时频资源配置信息中指示第一时频资源配置信息,该多套时频资源配置信息中的每套时频资源配置信息包括第一载波中的一个或多个子带的频域配置参数和时域配置参数,该第一时频资源配置信息包括该第一载波中的第一子带的第一频域配置参数和第一时域配置参数,该第一频域配置参数和该第一时域配置参数用于指示该第一载波中的L个子带的第一时域位置、频域位置以及该L个子带在该第一时域位置的符号类型,L≥1且L为整数;网络设备向终端设备发送该第一指示信息。
结合第二方面,在第二方面的某些实现方式中,该第一载波还包括第二子带,L>1,该L个子带包括该第一子带和该第二子带;该第一时域位置包括一个或多个时间单元,该一个或多个时间单元中的每个时间单元上的该第一子带和该第二子带在频域上不重叠;该一个或多个时间单元包括第一符号,该第一子带在该第一符号的符号类型与该第二子带在该第一符号的符号类型不同。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息包括该第一时频资源配置信息的索引;或者,该第一指示信息包括该第一频域配置参数的索引和/或该第一时域配置参数的索引。
结合第二方面,在第二方面的某些实现方式中,该第一载波还包括第二子带,L>1,该L个子带包括该第一子带和该第二子带;该第一频域配置参数和该第一时域配置参数用于指示该第一载波中的L个子带的第一时域位置、频域位置以及该L个子带在该第一时域位置的符号类型,包括:该第一频域配置参数用于确定该第一子带的频域位置;该第一时域配置参数用于确定该第一子带的时域位置,该第一子带的时域位置包括该第一时域位置;该第一时域配置参数还用于确定该第一子带在该第一时域位置的符号类型为上行或灵活。
结合第二方面,在第二方面的某些实现方式中,该第一子带与该第二子带之间存在保护带宽的情况下,该第一时频资源配置信息还包括该保护带宽的频域配置参数。
结合第二方面,在第二方面的某些实现方式中,该第一子带在该第一时域位置上包括灵活符号和上行符号的情况下,该第一时域配置参数用于指示该灵活符号和该上行符号的时域位置。
结合第二方面,在第二方面的某些实现方式中,该第一时域位置包括多个时间单元的情况下,该第一频域配置参数包括X组频域配置参数,该X组频域配置参数中的每组频域配置参数用于指示一种频域位置,该第一时频资源配置信息还用于指示该每组频域配置参数与该多个时间单元中的每个时间单元的对应关系,X≥2且X为整数。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第二指示信息,该第二指示信息用于在该多套时频资源配置信息中指示第二时频资源配置信息,该第二时频资源配置信息包括该第一子带的第二时域配置参数和第二频域配置参数,该第二时频资源配置信息与该第一时频资源配置信息不完全相同或完全不同,该第二时域配置参数和该第二频域配置参数用于指示该第一载波中的P个子带的第二时域位置、频域位置以及该P个子带在该第二时域位置的符号类型,P≥1且P为整数。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送该多套时频资源配置信息。
结合第二方面,在第二方面的某些实现方式中,该第一子带在该第一时域位置的符号类型为上行或灵活;该第二子带在该第一时域位置的符号类型为下行或灵活,该方法还包括:该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示使用第三时频资源配置信息,该第三指示信息用于指示该第一载波的第三时域位置、频域位置以及该第一载波在该第三时域位置的符号类型,该第一载波在该第三时域位置上的符号类型相同。
结合第二方面,在第二方面的某些实现方式中,该第三指示信息包括该第三时频资源配置信息的索引;或者,该第三指示信息的取值为0;或者,该第三指示信息为下行控制信息中的时隙格式指示字 段,该方法还包括:该网络设备向该终端设备发送无线资源控制配置消息,该无线资源控制配置消息包括时分双工上下行配置信息,该时隙格式指示字段具体指示将该时分双工上下行配置信息配置的该第一子带中的上行符号修改为下行符号或灵活符号。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第四指示信息,该第四指示信息用于指示使用该第一时频资源配置信息,该第一时频资源配置信息用于指示该第一载波中的S个子带的第四时域位置、频域位置以及该S个子带在该第四时域位置的符号类型,S≥1。
结合第二方面,在第二方面的某些实现方式中,该第四指示信息包括该第一时频资源配置信息的索引;或者,该第四指示信息的取值为1;或者,该第四指示信息为下行控制信息中的时隙格式指示字段,该方法还包括:该网络设备向该终端设备发送无线资源控制配置消息,该无线资源控制配置消息包括时分双工上下行配置信息,该时隙格式指示字段具体指示将该时分双工上下行配置信息配置的该第一载波中的第一子带中的下行符号修改为上行符号或灵活符号;或者,该第四指示信息为下行控制信息中的时隙格式指示字段,该第四指示信息具体指示第三时域配置参数,该第一频域配置参数和该第三时域配置参数用于指示该第一载波中的S个子带的第五时域位置、频域位置以及该S个子带在该第五时域位置的符号类型。
第三方面,提供了一种资源配置的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法可以包括:终端设备根据第一时频资源配置信息确定第一载波中的L个子带的第一时域位置、频域位置以及该L个子带在该第一时域位置的符号类型,该第一时频资源配置信息包括该第一载波中的第一子带的第一频域配置参数和第一时域配置参数,该L个子带包括该第一子带和第二子带,其中,该第一时域位置包括一个或多个时间单元,该一个或多个时间单元中的每个时间单元上的该第一子带和该第二子带在频域上不重叠,L≥1且L为整数,该一个或多个时间单元包括第一符号,该第一子带在该第一符号的符号类型与该第二子带在该第一符号的符号类型不同;该终端设备接收来自网络设备的第三指示信息,该第三指示信息用于指示使用第三时频资源配置信息;该终端设备根据该第三时频资源配置信息确定该第一载波的第一时域位置、频域位置以及该第一载波在该第一时域位置的符号类型,该第一载波在该第一时域位置上的符号类型相同。
上述方案,针对需要从子带全双工系统切换到时分双工系统的情况,提出了具体的实现方式,完善了子带全双工系统。例如,在通信系统受到的干扰过大而导致第一子带进行上行传输时网络的频谱效率过低的问题时,通过上述方案,能够减少由于干扰过大导致的频谱效率过低的问题。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的第四指示信息,该第四指示信息用于指示使用该第一时频资源配置信息;该终端设备根据该第一时频资源配置信息确定该第一载波中的S个子带的第四时域位置、频域位置以及该S个子带在该第四时域位置的符号类型,S≥1。
上述方案,能够实现从时分双工系统在切换到子带全双工系统。以便于在通信系统受到的干扰减小之后,再回到子带全双工系统。由于子带全双工系统相对于时频双工系统明显提升了上行传输的覆盖,降低了上行传输的时延;因此,上述方案能够在保证通信系统的频谱效率的同时,尽可能提升通信系统的上行传输的覆盖,降低上行传输的时延。
结合第三方面,在第三方面的某些实现方式中,该第三指示信息包括该第三时频资源配置信息的索引;或者,该第三指示信息包括第三时域配置参数的索引,该第三时频资源配置信息包括第三时域配置参数和该第一频域配置参数。
结合第三方面,在第三方面的某些实现方式中,该第三指示信息的取值为0。
结合第三方面,在第三方面的某些实现方式中,该第三指示信息为下行控制信息中的时隙格式指示字段,该方法还包括:该终端设备接收来自该网络设备的无线资源控制配置消息,该无线资源控制配置消息包括时分双工上下行配置信息,该时隙格式指示字段具体指示将该时分双工上下行配置信息配置的该第一载波中的一个或多个子带中的上行符号修改为下行符号或灵活符号。
结合第三方面,在第三方面的某些实现方式中,该第四指示信息包括该第一时频资源配置信息的索引。
结合第三方面,在第三方面的某些实现方式中,该第四指示信息的取值为1。
结合第三方面,在第三方面的某些实现方式中,该第四指示信息为下行控制信息中的时隙格式指示字段,该方法还包括:该终端设备接收来自该网络设备的无线资源控制配置消息,该无线资源控制配置消息包括时分双工上下行配置信息,该时隙格式指示字段具体指示将该时分双工上下行配置信息配置的该第一载波中的一个或多个子带中的下行符号修改为上行符号或灵活符号;或者,该第四指示信息具体指示第三时域配置参数,该终端设备根据该第一时频资源配置信息确定该第一载波中的S个子带的第四时域位置、频域位置以及该S个子带在该第四时域位置的符号类型,包括:该终端设备根据该第一频域配置参数和该第三时域配置参数确定该第一载波中的S个子带的第四时域位置、频域位置以及该S个子带在该第四时域位置的符号类型。
第四方面,提供了一种资源配置的方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。第四方面的有益效果可以参考第三方面的有益效果。
该方法可以包括:网络设备向终端设备发送第一时频资源配置信息,该第一时频资源配置信息用于确定第一载波中的L个子带的第一时域位置、频域位置以及该L个子带在该第一时域位置的符号类型,该第一时频资源配置信息包括该第一载波中的第一子带的第一频域配置参数和第一时域配置参数,该L个子带包括该第一子带和第二子带,其中,该第一时域位置包括一个或多个时间单元,该一个或多个时间单元中的每个时间单元上的该第一子带和该第二子带在频域上不重叠,L≥1且L为整数,该一个或多个时间单元包括第一符号,该第一子带在该第一符号的符号类型与该第二子带在该第一符号的符号类型不同;该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示使用第三时频资源配置信息,该第三时频资源配置信息用于指示该第一载波的第一时域位置、频域位置以及该第一载波在该第一时域位置的符号类型,该第一载波在该第一时域位置上的符号类型相同。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第四指示信息,该第四指示信息用于指示使用该第一时频资源配置信息,该第一时频资源配置信息用于指示该第一载波中的S个子带的第四时域位置、频域位置以及该S个子带在该第四时域位置的符号类型,S≥1。
结合第四方面,在第四方面的某些实现方式中,该第三指示信息包括该第三时频资源配置信息的索引;或者,该第三指示信息包括第三时域配置参数的索引,该第三时频资源配置信息包括第三时域配置参数和该第一频域配置参数。
结合第四方面,在第四方面的某些实现方式中,该第三指示信息的取值为0。
结合第四方面,在第四方面的某些实现方式中,该第三指示信息为下行控制信息中的时隙格式指示字段,该方法还包括:该网络设备向该终端设备发送无线资源控制配置消息,该无线资源控制配置消息包括时分双工上下行配置信息,该时隙格式指示字段具体指示将该时分双工上下行配置信息配置的该第一载波中的一个或多个子带中的上行符号修改为下行符号或灵活符号。
结合第四方面,在第四方面的某些实现方式中,该第四指示信息包括该第一时频资源配置信息的索引。
结合第四方面,在第四方面的某些实现方式中,该第四指示信息的取值为1。
结合第四方面,在第四方面的某些实现方式中,该第四指示信息为下行控制信息中的时隙格式指示字段,该方法还包括:该网络设备向该终端设备发送无线资源控制配置消息,该无线资源控制配置消息包括时分双工上下行配置信息,该时隙格式指示字段具体指示将该时分双工上下行配置信息配置的该第一载波中的一个或多个子带中的下行符号修改为上行符号或灵活符号;或者,该第四指示信息具体指示第三时域配置参数,该第一时频资源配置信息用于指示该第一载波中的S个子带的第四时域位置、频域位置以及该S个子带在该第四时域位置的符号类型,包括:该第一频域配置参数和该第三时域配置参数确定该第一载波中的S个子带的第四时域位置、频域位置以及该S个子带在该第四时域位置的符号类型。
第五方面,提供一种通信装置,该装置用于执行上述第一方面至第四方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第四方面任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为通信设备(如网络设备,又如终端设备)。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于通信设备(如网络设备,又如终端设备)的芯片、芯片系统或电路。当该装置为用于通信设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第六方面,提供一种通信装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第四方面任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为通信设备(如网络设备,又如终端设备)。
在另一种实现方式中,该装置为用于通信设备(如网络设备,又如终端设备)的芯片、芯片系统或电路。
第七方面,提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第八方面,提供一种计算机可读存储介质,该计算机可读介质存储用户设备执行的程序代码,该程序代码包括用于执行上述第一方面至第四方面任一种可能实现方式中的方法。
第九方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第四方面任一种可能实现方式中的方法。
第十方面,提供一种芯片,该芯片包括处理器与通信接口,该处理器通过该通信接口读取存储器上存储的指令,执行上述第一方面至第四方面提供的任一方法。
可选地,作为一种实现方式,该芯片还可以包括存储器,该存储器中存储有指令,该处理器用于执行该存储器上存储的指令,当该指令被执行时,该处理器用于执行上述第一方面至第四方面提供的任一方法。
附图说明
图1是本申请实施例提供的一种通信系统示意图。
图2示出了子带全双工时隙和非子带全双工时隙的示意图。
图3示出了本申请提出的一种资源配置的方法200的示意性流程图。
图4示出了本申请中第一载波中包括第一子带和第二子带的几种示例的示意图。
图5示出了在第一时域位置上第一子带和第二子带的频域范围不变的示意图。
图6示出了在第一时域位置上第一子带和第二子带的频域范围变化的示意图。
图7示出了第一子带和第二子带之间存在保护带宽的示意图。
图8示出了本申请适用的时域资源的一例的示意图。
图9示出了本申请适用的时域资源的又一例的示意图。
图10示出了第一载波包括子带#1和子带#2的情况下,本申请适用的时域资源的又一例的示意图。
图11示出了第一载波包括子带#1和子带#2的情况下,本申请适用的时域资源的又一例的示意图。
图12示出了本申请提供的下行控制信息调度的时频资源的一例的示意图。
图13示出了本申请提供的通信系统存在干扰的一例的示意图。
图14示出了本申请提供的资源配置的方法300的示意图。
图15示出了本申请提供的时频资源的一例的示意图。
图16示出了本申请提供的资源配置的方法400的示意图。
图17示出了一种本申请适用的用于资源配置的装置500的示意图。
图18示出了另一种本申请适用的用于资源配置的装置600的示意图。
图19示出了一种本申请适用的芯片系统700的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如,第五代(5th generation,5G),新无线(new radio,NR),长期演进(long term evolution,LTE),物联网(internet of things,IoT),无线保真(wireless-fidelity,WiFi),第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的无线通信,或未来可能出现的其他无线通信等。
图1是本申请实施例提供的一种通信系统示意图。该通信系统100中包括至少一个网络设备,例如图1所示的网络设备#0;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备#0和/或终端设备#1。该网络设备#0与终端设备#0可通过无线链路通信,进而交互信息。可以理解的是,网络设备和终端设备也可以被称为通信设备。
网络设备是一种具有无线收发功能的网络侧设备。网络设备可以是无线接入网(radio access network,RAN)中为终端设备提供无线通信功能的装置,称为RAN设备。例如,该网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、3GPP后续演进的基站、发送接收点(transmission reception point,TRP)、WiFi系统中的接入节点、无线中继节点、无线回传节点等。在采用不同的无线接入技术(radio access technology,RAT)的通信系统中,具备基站功能的设备的名称可能会有所不同。例如,LTE系统中可以称为eNB或eNodeB,5G系统或NR系统中可以称为gNB,本申请对基站的具体名称不作限定。网络设备可以包含一个或多个共站址或非共站址的发送接收点。再如,网络设备可以包括一个或多个集中式单元(central unit,CU)、一个或多个分布式单元(distributed unit,DU)、或一个或多个CU和一个或多个DU。示例性地,CU的功能可以由一个实体或者不同的实体来实现。例如,CU的功能进行进一步切分,即将控制面和用户面分离并通过不同实体来实现,分别为控制面CU实体(即CU-CP实体)和用户面CU实体(即CU-UP实体),CU-CP实体和CU-UP实体可以与DU相耦合,共同完成接入网设备的功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。这样可以通过多个网络功能实体来实现无线接入网设备的部分功能。这些网路功能实体可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。网络设备还可以包括有源天线单元(active antenna unit,简称AAU)。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。又如,车到一切(vehicle to everything,V2X)技术中,接入网设备可以为路侧单元(road side unit,RSU)。通信系统中的多个接入网设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。本申请实施例中,用于实现网络设备功能的装置可以是网络设备本身,也可以是能够支持网络设备实现该功能的装置,例如芯片系统或可实现接入网设备功能的组合器件、部件,该装置可以被安装在网络设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
终端设备(user equipment,UE)是一种具有无线收发功能的用户侧设备,可以是固定设备,移动设备、手持设备(例如手机)、可穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。终端设备用于连接人,物,机器等,可广泛用于各种场景,例如:蜂窝通信、设备到设备(device-to-device,D2D)通信、V2X通信中的、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)通信、物联网、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、 远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景。示例性的,终端设备可以是蜂窝通信中的手持终端,D2D中的通信设备,MTC中的物联设备,智能交通和智慧城市中的监控摄像头,或,无人机上的通信设备等。终端设备有时可称为用户设备(user equipment,UE)、用户终端、用户装置、用户单元、用户站、终端、接入终端、接入站、UE站、远方站、移动设备或无线通信设备等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或可实现终端设备功能的组合器件、部件,该装置可以被安装在终端设备中。
为便于理解本申请实施例,首先对本申请中涉及的概念及相关流程进行介绍。
1、符号(symbol):时域符号的简称,也可以称为OFDM符号。需要说明的是,时域符号还可以与其他多址方式结合命名,本申请实施例不做限定。针对不同的子载波间隔,时域符号长度可以不同。
应理解,一个时隙(slot)内的符号可能包括3种类型,下行(downlink,DL)符号,上行(uplink,UL)符号和灵活(flexible,F)符号。上行符号只能用于上行传输,下行符号只能用于下行传输。灵活符号没用确定的传输方向,可以根据控制信令的指示用于进行上行传输或者下行传输。一个时隙的符号可以全是下行符号,或者全是上行符号,或者全是灵活符号,也可以是几种符号的混合。
2、时间单元:一个时间单元可以为一个或多个时隙,或者一个或多个符号,或者一个或多个子帧,或者一个或多个半帧,或者一个或多个帧,或者一个或多个迷你子帧,或者一个或多个迷你时隙,本申请对此不做限定。为了方便说明,本申请中主要以一个时间单元包括一个或多个时隙为例进行介绍。
3、载波聚合:载波聚合(carrier aggregation,CA)是指将多个分量载波(component carrier,CC)进行聚合处理,从而获得更大通信带宽的载波的技术。在载波聚合的场景中,当为终端设备配置辅载波时,可以同时携带辅载波的载波索引与工作在该辅载波的辅小区的小区标识。在这种情况下,载波与小区是等同的概念。譬如,终端设备接入载波和终端设备接入小区是等同的概念。其中,载波的带宽可以理解为小区的通信带宽。本申请实施例中涉及的载波为CC。
4、子带:子带为一个载波中的部分频带,即,频域上的一个或多个连续的物理资源块(physical resource block,PRB)。本申请中,子带也可以理解为频域资源。
5、子带全双工(subband full duplex,SBFD)、SBFD时隙
为了克服TDD系统中的下行链路与上行链路之间的频域资源分配不平衡的问题,即用于DL传输的频域资源多,用于UL传输的频域资源少的问题,提出SBFD的方案。在SBFD方案中,一个载波被分为多个不重叠的子带,不同子带的传输方向可以不同,即一个载波上包括不重叠的第一子带和第二子带,第一子带和第二子带的传输方向不同。需要说明的是,第一子带和第二子带是指传输方向不同的两种类型子带,并不表示一个载波中只包含两个子带。举例来说,一个载波包括子带#1和子带#2,其中,子带#1和子带#2的传输方向不相同。或者,如图2所示,一个载波包括子带#1、子带#2和子带#3,其中,子带#1和子带#3的传输方向相同;子带#1与子带#2的传输方向不相同。
图2示出了SBFD时隙和非SBFD时隙的示意图。SBFD时隙上的频率资源包括2个及2个以上传输方向不同或不完全相同的子带。示例的,一种典型的SBFD方案的时频划分如图2所示,其中横轴代表时域,纵轴代表频域。图2中以一个CC为例,用竖线填充的两个长方块代表一组用于下行传输的时频资源,用横线填充的一个长方块代表一组用于上行传输的时频资源,这三块时频资源所占时域范围中的时隙称为SBFD时隙。非SBFD时隙上的所有频域资源的传输方向一致。示例的,图2中无填充的长方块代表一组用于上行传输的时频资源,其所占时域范围内的时隙称为上行时隙,这些时隙上的所有频域资源的传输方向都为上行,这些时隙可以称为非SBFD时隙。
需要说明的是,本申请中SBFD时隙可以包括一个或多个时间单元,非SBFD时隙可以包括一个或多个时间单元。例如,图2中的上行时隙并不限制只有一个时隙,图2中的SBFD时隙也不限制只有一个时隙。
下面结合图1和图2,给出本申请适用的通信系统的示例。一种可能的实现方式,在通信系统100中,网络设备支持子带全双工,终端设备可以识别子带全双工相关的信息,也可以无法识别子带全双工相关的信息。无法识别子带全双工相关的信息的终端设备在本申请中也可以称为传统(legacy)终端设备,legacy终端设备不能识别子带全双工相关的信息(例如本申请中的子带级别的时频资源指示/配 置信息),能识别TDD系统的信息。可以识别子带全双工相关的信息的终端设备,可以在一个时刻在一个子带接收数据,且在另一个子带发送数据;或者在一个时刻仅能在一个子带接收数据或者在另一个子带发送数据,即无法在不同的子带同时收发。例如,网络设备#0支持子带全双工,终端设备#0支持子带全双工,终端设备#1为legacy终端设备。另一种可能的实现方式,终端设备CA的小区中至少有一个小区为SBFD小区。如上所述,在CA场景中,载波和小区是等同的概念。因此,图2也可以理解为SBFD小区的一例的示意图。相比于TDD小区的传输方向为小区级别,SBFD小区中的传输方向都是子带级别的。比如,小区#0为SBFD小区,通信系统100中的终端设备#1和终端设备#2均位于小区#0的覆盖范围内,终端设备#0发送上行信号,终端设备#1接收下行信号。再一种可能的实现方式,终端设备侧半双工的无线通信系统。
随着第五代移动通信技术新无线(new radio,NR)的快速发展,出现了多种多样的通信需求。为满足新兴业务的需求,提出了子带全双工(subband full duplex,SBFD)的方案来提升时分双工(time division duplexing,TDD)系统的上行覆盖性能。目前,针对在SBFD系统中如何进行时频资源的配置,并未给出具体方案。有鉴于此,本申请主要从以下几个方面给出在SBFD系统中进行时频资源的配置的方案。比如基于子带级别的时频范围进行半静态SBFD时频资源配置及动态SBFD时频资源指示。具体的,半静态SBFD时频资源配置可分为子带级别的频域范围配置和子带级别的时隙格式配置。
图3示出了本申请提出的一种资源配置的方法200的示意性流程图。方法200包括以下步骤。
S201,网络设备向终端设备发送第一指示信息,相应地,终端设备接收来自网络设备的第一指示信息。
其中,第一指示信息用于在多套时频资源配置信息中指示第一时频资源配置信息。多套时频资源配置信息中的每套时频资源配置信息包括第一载波中的一个或多个子带的频域配置参数和时域配置参数。作为一个示例,这里的第一载波可以参照图2中的一个CC的相关描述。相应地,这里的一个或多个子带可以理解为图2中的子带#1、子带#2、子带#3中的至少一个子带。
可选地,在S201之前,方法200还包括:步骤1-1,网络设备向终端设备发送高层信令,相应地,终端设备接收来自网络设备的高层信令,该高层信令中包括多套时频资源配置信息。或者,方法200还包括:步骤1-2,终端设备根据协议规定获取多套时频资源配置信息。
在S201中,第一时频资源配置信息包括第一载波中的第一子带的第一频域配置参数和第一时域配置参数。可以理解为是,上述一个或多个子带包括第一子带。作为一个示例,第一子带可以是图2中的子带#1、子带#2、子带#3中的至少一个子带。
本申请中的时频资源配置信息还可以称为子带时频配置(subband time and frequency configuration),或者还可以是其他名称。为了方便说明,本申请主要以时频资源配置信息为例进行说明,但本申请对此不做限定。
S202,终端设备根据第一频域配置参数和第一时域配置参数确定第一载波中的L个子带的第一时域位置、频域位置以及L个子带在第一时域位置的符号类型,L≥1且L为整数。
应理解,这里的L个子带可以包括上述第一子带。例如,第一子带为图2中的子带#1和子带#3,L个子带可以为子带#2,或者,L个子带可以为子带#1、子带#2和子带#3。
示例性地,本申请中的一个时频资源的频域位置包括带宽和起始频域位置,本申请中一个时频资源的时域位置和该时频资源在该时域位置上的符号类型可以理解为该时频资源的时隙格式。或者,本申请中的频域位置还可以理解为频域范围。
具体地,终端设备根据第一频域配置参数确定第一载波中的L个子带的频域位置;根据第一时域配置参数确定第一载波中的L个子带的第一时域位置以及L个子带在第一时域位置的符号类型。
上述方案,通过网络设备向终端设备在多套时频资源配置信息中指示第一时频资源配置信息,针对子带全双工方案实现了时频资源配置信息的动态指示,完善了子带全双工方案的资源配置流程。终端设备能够根据第一子带的第一时域配置参数和第一频域配置参数确定第一载波中其他子带(即上述第二子带)的时频分布情况,能够节省开销。
一种可能的实现方式中,第一子带用于上行传输,或者,第一子带在第一时域位置上的符号类型为上行或灵活。即,第一频域配置参数只包括可用于上行传输的子带的频域配置参数;第一时域配置参数只包括可用于上行传输的子带的时域配置参数。第一载波还包括第二子带,L>1,L个子带包括 第一子带和第二子带,第一时域位置包括第一符号,第一子带在第一符号的符号类型与第二子带在第一符号的符号类型不同。可选地,第一符号为第一时域位置上的任一个符号。第二子带为可以用于下行传输的子带,第二子带在第一时域位置上的符号类型为下行或灵活。例如,下面的步骤2-1至步骤2-5可以作为S202的一个示例。
步骤2-1,终端设备根据第一频域配置参数确定第一子带的频域位置。
其中,第一子带的频域位置可以理解为第一子带所占据的频域范围。
步骤2-2,终端设备根据第一子带的频域位置和第一载波的频域位置确定第二子带的频域位置。
第一载波的频域位置可以理解为第一载波所占据的频域范围。以第一时域位置中的一个时间单元为例,在该时间单元上,终端设备将第一载波所占据的频带的频域范围减去第一子带所占据的频域范围,可以获得第二子带所占据的频域范围。
可选地,第一子带与第二子带之间存在保护带宽(guard band,GB)的情况下,第一时频资源配置信息还包括保护带宽的频域配置参数。
图7示出了第一子带和第二子带之间存在保护带宽的示意图。例如,图7中的(a)中,以第一子带为子带#1,第二子带为子带#2为例,子带#1与子带#2之间存在GB。例如,图7中的(b)中,以第一子带为子带#2,第二子带为子带#1和子带#3为例,子带#1与子带#2之间存在GB1,子带#2与子带#3之间存在GB2。作为步骤2-2的一个示例,终端设备根据保护带宽的频域配置参数确定保护带宽的频域位置;终端设备根据第一子带的频域位置、第一载波的频域位置和保护带宽的频域位置确定第二子带的频域位置。其中,保护带宽的频域配置参数会在下文的方案二中的(1)进行详细介绍。以第一时域位置中的一个时间单元为例,在该时间单元上,终端设备将第一载波所占据的频带的频域范围减去第一子带所占据的频域范围和保护带宽所占据的频域范围,可以获得第二子带所占据的频域范围。
上述方案,针对第一子带与第二子带之间存在保护带宽的情况,第一时频资源配置信息还需要包括该保护带宽的频域配置参数,进一步完善了子带全双工方案的资源配置流程。
在下文的方案二中的(1)会结合具体示例详细介绍步骤2-1和步骤2-2。
步骤2-3,终端设备根据第一时域配置参数确定第一子带的时域位置,第一子带的时域位置包括第一时域位置。可选地,第一子带的时域位置即为第一时域位置。在下文的方案二中的(2)会结合具体示例详细介绍步骤2-3。
可选地,第一子带在第一时域位置上包括灵活符号和上行符号的情况下,第一时域配置参数用于指示灵活符号和上行符号的时域位置。作为步骤2-3的一个示例,终端设备根据第一时域配置参数确定灵活符号的时域位置和上行符号的时域位置;终端设备根据灵活符号的时域位置和上行符号的时域位置确定第一时域位置。
上述方案,针对第一子带在该第一时域位置上包括灵活符号和上行符号的情况,第一时域配置参数具体可以通过指示该灵活符号和该上行符号的时域位置来指示第一子带的时域位置,进一步完善了子带全双工方案的资源配置流程。
可选地,第一子带在第一时域位置上仅包括灵活符号的情况下,第一时域配置参数用于指示灵活符号的时域位置。作为步骤2-3的一个示例,终端设备根据第一时域配置参数确定灵活符号的时域位置,该灵活符号的时域位置即为第一时域位置。
上述方案,针对第一子带在该第一时域位置上包括灵活符号的情况,第一时域配置参数具体可以通过指示该灵活符号的时域位置来指示第一子带的时域位置,进一步完善了子带全双工方案的资源配置流程。
步骤2-4,终端设备根据第一载波的时隙格式配置确定第二子带的时域位置,第二子带的时域位置包括第一时域位置。可选地,第二子带的时域位置即为第一时域位置。具体可以参照3GPP TS 38.331中的TDD-UL-DL-ConfigCommon和TDD-UL-DL-ConfigDedicated等信元来配置第一载波的在所有时隙的时隙格式,所述时隙格式包括时隙的每个符号的符号类型。第二子带的在第一时域位置的符号类型为下行或灵活。
步骤2-5,终端设备根据第一时域配置参数确定第一子带在第一时域位置的符号类型。
其中,第一时域配置参数指示第一子带在第一时域位置的符号类型为上行或灵活。
应理解,第一时域位置包括第一符号,第一子带在第一符号的符号类型与第二子带在第一符号的 符号类型不同。可选地,第一符号可以为第一时域位置上的任一个符号。
上述步骤2-1至步骤2-5,针对终端设备根据第一子带的第一时域配置参数和第一频域配置参数确定第一载波中其他子带(即上述第二子带)的时频分布情况,给出了具体实现方式,进一步完善了子带全双工方案的资源配置流程。
具体地,下面还将结合附图和示例,主要从以下几个方面详细介绍方法200。其中,以第一载波中包括第一子带和第二子带,L个子带包括第一子带和第二子带为例介绍以下几个方面。
方案一、第一指示信息如何指示第一时频资源配置信息,相应地,终端设备如何根据第一指示信息确定第一时频资源配置信息。
可选地,方案一还可以包括,在S202之后,网络设备如何向终端设备指示除了第一时频资源配置信息以外的其他时频资源配置信息(下称第二时频资源配置信息),相应地,终端设备如何根据第二时频资源配置信息确定第一载波中的P个子带的第二时域位置、频域位置以及P个子带在第二时域位置的符号类型,P≥1且P为整数。
方案二、S201中第一频域配置参数和第一时域配置参数的可能的示例。相应地,S202中,(1)终端设备如何根据第一频域配置参数确定所述第一子带的频域位置和所述第二子带的频域位置;(2)终端设备如何根据所述第一时域配置参数确定所述第一子带的时域位置和所述第二子带的时域位置。
方案三、用于承载第一指示信息的消息。
在S201中,上述一个或多个子带包括第一子带。一种可能的实现方式中,上述一个或多个子带即为第一子带。换句话说,多套时频资源配置信息中的每套时频资源配置信息均包括第一子带的频域配置参数和时域配置参数。
应理解,S201中的多套时频资源配置信息均可以是子带级别的时频资源配置信息,或均可以是适用于SBFD系统的时频资源配置信息。其中,子带级别的时频资源配置信息可以理解为该时频资源配置信息包括分别与一个或多个子带中的每个子带对应子带对应的频域配置参数或时域配置参数。其中,适用于SBFD系统的时频资源配置信息可以结合下述示例1进行理解。
示例1,第一载波还包括第二子带。L>1,L个子带也包括第一子带和第二子带。第一时域位置包括一个或多个时间单元,一个或多个时间单元中的每个时间单元上的第一子带和第二子带在频域上不重叠。一个或多个时间单元包括第一符号,第一子带在第一符号的符号类型与第二子带在第一符号的符号类型不同。
应理解,符号类型包括上行、下行和灵活。
可选地,第一符号为该一个或多个时间单元中的任一符号。
图4示出了本申请中第一载波中包括第一子带和第二子带的几种示例的示意图。可以理解的是,图4中的(a)中,子带#1作为第二子带的一种示例,子带#2作为第一子带的一种示例;图4中的(b)中,子带#1作为第一子带的一种示例,子带#2作为第二子带的一种示例;图4中的(c)中,子带#1和子带#3作为第二子带的一种示例,子带#2作为第一子带的一种示例。其中,横轴代表时域,纵轴代表频域。以一个CC为例,右划线填充的长方块代表下行时隙,无填充的长方块代表上行时隙,由横线填充的长方块和竖线填充的长方块代表第一时域位置。第一时域位置中,用竖线填充的长方块代表一组全部或部分用于下行传输的时频资源,用横线填充的长方块代表一组全部或部分用于上行传输的时频资源。需要说明的是,以图4中的(a)为例,子带#1在第一时域位置的所有符号中如果全都是下行符号,那么用竖线填充的长方块代表一组全部用于下行传输的时频资源;或者,子带#1在第一时域位置的所有符号包括下行符号和灵活符号,那么用竖线填充的长方块代表一组部分用于下行传输的时频资源。子带#2在第一时域位置的所有符号中如果全都是上行符号,那么用横线填充的长方块代表一组全部用于上行传输的时频资源;或者,子带#1在第一时域位置的所有符号包括上行符号和灵活符号,那么用横线填充的长方块代表一组部分用于上行传输的时频资源;或者,子带#1在第一时域位置的所有符号为灵活符号,那么用横线填充的长方块代表一组可能部分用于上行传输的时频资源。如图4中的(a)所示,该CC中包括子带#1和子带#2,子带#1在第一时域位置上的符号包括上行符号和/或灵活符号,子带#2在第一时域位置上的符号包括下行符号和灵活符号。如图4中的(b)所示,该CC中包括子带#1和子带#2,子带#1在第一时域位置上的符号包括下行符号灵活符号,子带#2在第一时域位置上的符号包括上行符号和/或灵活符号。如图4中的(c)所示,该CC中包括子带#1、子带#2和子 带#3,子带#1和子带#3在第一时域位置上的符号包括下行符号和灵活符号,子带#2在第一时域位置上的符号包括上行符号/或灵活符号。
还应理解,第一时域位置上,第一子带和第二子带的频域范围可以是不变的,也可以是变化的。下面分别以图5和图6为例进行介绍。与图4中的(c)对应,图5和图6中,子带#1和子带#3作为第二子带的一种示例,子带#2作为第一子带的一种示例。以第一时域位置包括时间单元#2至时间单元#4为例。
图5示出了在第一时域位置上第一子带和第二子带的频域范围不变的示意图。子带#2的频域范围为(f1,f2)。从而,根据子带#2的频域位置和第一载波的频域位置可以确定第一时域位置上子带#1的频域范围也不变。
图6示出了在第一时域位置上第一子带和第二子带的频域范围变化的示意图。在时间单元#2和时间单元#4上,子带#2的频域范围为(f1,f2);在时间单元#3上,子带#2的频域范围为(f3,f4)。因此,在第一时域位置上子带#2上的频域范围是变化的,换句话说,时间单元间子带#2的频域范围不完全相同。从而,根据子带#2的频域位置和第一载波的频域位置可以确定第一时域位置上子带#1的频域范围也变化。
方案一、第一指示信息如何在多套时频资源配置信息中指示第一时频资源配置信息,相应地,终端设备如何根据第一指示信息确定第一时频资源配置信息。
第一指示信息包括索引,终端设备根据索引确定第一时频资源配置信息。其中,第一指示信息可以直接包括第一时频资源配置信息的索引,或者,也可以包括分别指示第一频域配置参数和/或第一时域配置参数的索引。
作为方案一的第一个示例,第一指示信息包括第一时频资源配置信息的索引。下面根据终端设备获取多套时频资源配置信息的不同方式,分两种情况介绍该第一个示例。
情况一,在执行上述步骤1-1的情况下,高层信令中还为每套时频资源配置信息配置了索引。网络设备通过指示一套时频资源配置信息的索引来指示该套时频资源配置信息。下面介绍每套时频资源配置信息的示例,以及介绍第一指示信息包括索引,及该索引指示的一套时频资源配置信息的示例。
示例2-1,第一时域位置上第一子带和第二子带的频域范围不变的情况下,K套时频资源配置信息中的每套时频资源配置信息包括一个索引k,以及一组频域配置参数和一组时域配置参数。1≤k≤K,K≥2,k和K均为整数。第k套时频资源配置信息例如可以是:
其中,频域配置参数#k即为每套时频资源配置信息中包括的频域配置参数,时域配置参数#k即为每套时频资源配置信息中包括的时域配置参数。频域配置参数#k和时域配置参数#k会在下文方案二中进行介绍。
作为方法200的一个示例,第一载波如图5所示,在S201中的第一指示信息承载的索引为k=2,则第一时频资源配置信息为:
第一频域配置参数和第一时域配置参数分别为频域配置参数#2和时域配置参数#2。S202中,终端设备根据频域配置参数#2和时域配置参数#2确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
示例2-2,第一时域位置包括多个时间单元。第一时域位置上,第一子带和第二子带的频域范围变化的情况下,K套时频资源配置信息中的每套时频资源配置信息包括一个索引k,以及Xk组频域配置参数和一组时域配置参数。其中,索引k用于指示K套时频资源配置信息中的第k套时频资源配置信息每套时频资源配置信息还包括Xk组频域配置参数中的每组频域配置参数与多个时间单元中的每个时间单元的对应关系。可选地,每套时频资源配置信息可以仅指示Xk-1组频域配置参数与多个时间单元中的每个时间单元的对应关系,终端设备可以确定Xk组中未被指示对应关系的一组频域配置参数与多个时间单元中的一个或多个时间单元的对应关系。其中,1≤k≤K,K≥2,Xk≥2,k和K均为整数。第k套时频资源配置信息例如可以是:
其中,1≤j≤Xk,j为整数。频域配置参数j#k即为每套时频资源配置信息中包括的第j组频域配置参数。例如,频域配置参数1#k即为每套时频资源配置信息中包括的第1组频域配置参数,频域配置参数2#k即为每套时频资源配置信息中包括的第2组频域配置参数,时域配置参数#k即为每套时频资源配置信息中包括的时域配置参数。下文会在方案二中介绍频域配置参数j#k。
其中,配置bitmap j用于指示第j组频域配置参数与多个时间单元中的每个时间单元的对应关系为本申请给出的可能的方式(1)。可选地,配置Xk-1套bitmap来指示出Xk套频域资源所在的时间单元。下面结合示例2-2-1详细介绍该指示方式。
示例2-2-1,以第一载波包括图6所示的子带#1至子带#3为例,以第一子带为子带#2为例,第一时频资源配置信息需要包括2组频域配置参数,其中,第1组频域配置参数用于指示频域范围(f1,f2),第2组频域配置参数用于指示频域范围(f3,f4)。如图6所示,第一时域位置中,子带#2在时间单元#3的频域范围为(f3,f4),子带#2在时间单元#2和时间单元#4的频域范围为(f1,f2)。下面给出指示第1组频域配置参数与第一时域位置中的每个时间单元的对应关系的示例。例如,用bitmap1:01010指示第1组频域配置参数与时间单元#1至时间单元#5的对应关系,可选的,此时time domain configuration:{时域配置参数#k}信息可不配置,bitmap1中的5bit对应第一载波的时隙格式配置的周期中包含5个时隙。其中,01010分别对应时间单元#1至时间单元#5,1表示子带#2在该时间单元上的频域范围根据第1组频域配置参数确定,0表示子带#2在该时间单元上的频域范围不根据第1组频域配置参数确定或根据第2组频域配置参数确定。再例如,用bitmap1:101指示第1组频域配置参数与时间单元#2至时间单元#4的对应关系,时间单元#2至时间单元#4可根据时域配置参数#k确定。其中,101分别对应时间单元#2至时间单元#4,1表示子带#2在该时间单元上的频域范围根据第1组频域配置参数确定,0表示子带#2在该时间单元上的频域范围不根据第1组频域配置参数确定或根据第2组频域配置参数确定。第2组频域配置参数与第一时域位置中的每个时间单元的对应关系可以参照前述两种方式,或者也可以不指示。第一时频资源配置信息不指示第2组频域配置参数与第一时域位置中的每个时间单元的对应关系的情况可以理解为隐式指示出第2组频域配置参数与第一时域位置中的每个时间单元的对应关系。应理解,由于第一时频资源配置信息只包括2组频域配置参数,网络设备指示出第1组频域配置参数与第一时域位置中的每个时间单元的对应关系之后,终端设备能够确定第2组频域配置参数与第一时域位置中的每个时间单元的对应关系。
下面给出本申请提供的用于指示频域配置参数与时间单元的对应的关系的可能的方式(2):一个时间单元为符号或者微时隙,一个时隙包括多个符号或多个微时隙,第一时间单元和Z个时隙有交集。配置bitmap j中的第z比特指示Z个中的第z时隙与第一时间单元交叠的符号是否采用第j组频域配置参数。如第z个时隙与第一时间单元交叠的符号为符号#2-14,第z比特为1,指示第z时隙中的符号#2-14采用第j组频域配置参数。
作为方法200的一个示例,第一载波如图6所示,在S201中的第一指示信息承载的索引为3,X3=2的情况下,则第一时频资源配置信息为:
第一频域配置参数包括频域配置参数1#3和频域配置参数2#3,第一时域配置参数为时域配置参数#3。S202中,终端设备根据频域配置参数1#3和频域配置参数2#3、时域配置参数#3以及bitmap1#3确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
需要说明的是,本申请对于Xk组频域配置参数中的每组频域配置参数与多个时间单元中的每个时间单元的对应关系的配置方法不做限定。
示例2-3,第一时域位置包括多个时间单元。第一时域位置上,第一子带和第二子带的频域范围变化的情况下,K套时频资源配置信息中的每套时频资源配置信息包括一个索引k,以及Xk组频域配置参数和一组时域配置参数。其中,索引k用于指示K套时频资源配置信息中的第k套时频资源配置信息。第k套时频资源配置信息例如可以是:
其中,第k套时频资源配置信息包括Xk组频域配置参数中的每组频域配置参数所在的时域范围。时域配置参数j#k指示的时域位置j#k与频域配置参数j#k一一对应。时域配置参数j#k指示了频域配置参数j#k所对应的时域范围。如时域配置参数j#k用于指示时域位置j#k的起始符号、长度和结束符号中的至少2个参数。可选地,时域配置参数j#k包括参数h,该参数h用于指示时域位置j#k的起始符号、长度和结束符号中的至少2个参数。可选地,当时域位置j#k包括H个时域上不连续的时域位置时,可通过分别配置H个参数h来指示频域配置参数j#k所在时域范围。由上可知,示例2-3中的时频资源配置信息中不需要位图信息来指示第一子带的时域位置与频域位置的对应关系。
作为方法200的一个示例,第一载波如图6所示,在S201中的第一指示信息承载的索引为3,X3=2的情况下,则第一时频资源配置信息为:
第一频域配置参数包括频域配置参数1#3和频域配置参数2#3,第一时域配置参数为包括时域配置参数1#3和时域配置参数2#3。S202中,终端设备根据频域配置参数1#3和频域配置参数2#3、时域配置参数1#3和时域配置参数2#3确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
示例2-4,第一时域位置包括多个时间单元。第一时域位置上,第一子带和第二子带的频域范围变化的情况下,K套时频资源配置信息中的每套时频资源配置信息包括一个索引k,以及一组或多组频域配置参数和一组时域配置参数。例如K套时频资源配置信息中有K1套时频资源配置信息中包括Xk组频域配置参数和一组时域配置参数,K套时频资源配置信息中有K-K1套时频资源配置信息包括一组频域配置参数和一组时域配置参数。1≤K1≤K,K≥2,Xk≥2,K1和K均为整数
具体地,K1套时频资源配置信息具体可以参见示例2-2或示例2-2对应的描述,K-K1套时频资源配置信息具体可以参见示例2-1对应的描述。
情况二,在执行上述步骤1-2的情况下,终端设备获取了多套时频资源配置信息及每套时频资源配置信息的索引。网络设备通过指示一套时频资源配置信息的索引来指示该套时频资源配置信息。下面介绍第一指示信息包括索引,及该索引指示的一套时频资源配置信息的示例。
示例3-1,第一时域位置上第一子带和第二子带的频域范围不变的情况下,多套时频资源配置信息及每套时频资源配置信息的索引可以通过表格的形式呈现。
示例3-1-1,多套时频资源配置信息及每套时频资源配置信息的索引如表1所示。其中,第k套时频资源配置信息包括频域配置参数和时域配置参数,例如频域配置参数为频域配置参数#k,时域配置参数为时域配置参数#k,1≤k≤K,K≥2,k和K均为整数。
表1
需要说明的是,用表1的形式呈现多套时频资源配置信息及每套时频资源配置信息的索引的对应关系仅为示例,该对应关系还可以以其他形式呈现。另外,表4中的时频资源配置信息的个数仅为示例,不对本申请造成限定。
作为方法200的一个示例,第一载波如图5所示,在S201中的第一指示信息承载的索引为2,则第一时频资源配置信息为时频资源配置信息#2。S202中,终端设备根据频域配置参数#2和时域配置参数#2确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
示例3-1-2,多套时频资源配置信息及每套时频资源配置信息的索引如表2所示。其中,k用于指 示第k套时频资源配置信息,第k套时频资源配置信息包括时域配置参数#a和频域配置参数#b,1≤k≤K,K≥2,k和K均为整数,a和b均为正整数。
表2
需要说明的是,表2中的时域配置参数的个数和频域配置参数的个数、时域配置参数和频域配置参数的组合仅为示例,不对本申请造成限定。另外,用表2的形式呈现时域配置参数、频域配置参数和索引的对应关系仅为示例,该对应关系还可以以其他形式呈现。
作为方法200的一个示例,第一载波如图5所示,在S201中的第一指示信息承载的索引为3,则根据表2,第一时频资源配置信息包括频域配置参数#2和时域配置参数#1。S202中,终端设备根据频域配置参数#2和时域配置参数#1确定第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
示例3-2,第一时域位置包括多个时间单元。第一时域位置上,第一子带和第二子带的频域范围变化的情况下,第一指示信息可以包括表2中的至少两个索引。例如,在该至少两个索引对应的时域配置参数不同,频域配置参数也不同的情况下,可以理解为第一指示信息隐式指示频域配置参数与第一时域位置中的一个或多个时间单元的对应关系。例如,第一指示信息包括索引1和4。则第一指示信息隐式指示频域配置参数#1与根据时域配置参数#1确定的时域位置#1对应,频域配置参数#2与根据时域配置参数#2确定的时域位置#2对应。时域位置#1和时域位置#2均包含于该一个或多个时间单元。再例如,该至少两个索引对应时域配置参数相同,频域配置参数是不一样的。第一指示信息还包括用于指示频域配置参数与第一时域位置中的一个或多个时间单元的对应关系的信息#a。例如,该信息#a可以参照上述可能的实现方式(1)和可能的实现方式(2)的相关方案来指示对应关系,或者,该信息#a还可以通过其他方式指示该对应关系,本申请对此不做限定。
作为方法200的一个示例,第一载波如图6所示,在S201中的第一指示信息包括频域配置参数的索引和时域配置参数的索引分别为3和3,则根据表2,第一时频资源配置信息包括时域配置参数#1、频域配置参数#1和频域配置参数#2。S202中,终端设备根据时域配置参数#1、频域配置参数#1和频域配置参数#2确定第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
可选地,在方案一的第一个示例中,方法200还可以包括:终端设备接收来自网络设备的第二指示信息#1,第二指示信息#1用于在多套时频资源配置信息中指示第二时频资源配置信息,第二时频资源配置信息包括第一子带的第二时域配置参数和第二频域配置参数,第二时频资源配置信息与第一时频资源配置信息不完全相同或完全不同。终端设备根据第二时域配置参数和第二频域配置参数确定第一载波中的P个子带的第二时域位置、频域位置以及P个子带在第二时域位置的符号类型,P≥1且P为整数。
其中,第二指示信息可以包括第二时频资源配置信息的索引。第二指示信息可以参照上文关于第一指示信息的介绍,第二时频资源配置信息可以参照上文关于第一时频资源配置信息的介绍。第一指示信息与第二指示信息包括的索引不同。这里的P可以等于L也可以不等于L,本申请不限定。
可选地,在方案一的第一个示例中,方法200还可以包括:终端设备接收来自网络设备的第二指示信息#2,第二指示信息#2用于指示第一子带的第二时域配置参数,第二时域配置参数与第一时域配置参数不同。终端设备根据第一频域配置参数和第二时域配置参数确定第一载波中的P个子带的第二时域位置、频域位置以及P个子带在第二时域位置的符号类型,P≥1且P为整数。
其中,这里的第二时域配置参数可以参照上文关于第一时域配置参数的介绍。这里的P可以等于 L也可以不等于L,本申请不限定。第二指示信息#2能够动态指示第一载波中不同子带的时域位置或者时隙格式。例如,第二指示信息#2为时隙格式指示(slot format indicator,SFI)字段,可选地,第二指示信息#2为下行控制信息格式2-0中的时隙格式指示字段。或者,第二指示信息#2也可以是具备类似功能的其他信息,本申请不做限定。
作为方案一的第二个示例,第一指示信息包括第一频域配置参数的索引和/或第一时域配置参数的索引。
示例4-1,第一指示信息包括第一频域配置参数的索引和第一时域配置参数的索引。终端设备根据第一频域配置参数的索引和第一时域配置参数的索引确定第一频域配置参数和第一时域配置参数。
示例4-2,在不需要指示第一时域配置参数的索引的情况下,第一指示信息包括第一频域配置参数的索引。例如,在步骤1-1或步骤1-2中,终端设备获取的多套时频资源配置信息中的每套时频资源配置信息包括的时域配置参数均相同。或者,在步骤1-1或步骤1-2中,终端设备只获取到一组时域配置参数,例如表2中仅有第一行和第二行。
示例4-3,在不需要指示第一频域配置参数的索引的情况下,第一指示信息包括第一时域配置参数的索引。例如,在步骤1-1或步骤1-2中,终端设备获取的多套时频资源配置信息中的每套时频资源配置信息包括的频域配置参数均相同。或者,在步骤1-1或步骤1-2中,终端设备只获取到一组频域配置参数,例如表2中仅有第一列和第二列。
下面根据终端设备获取多套时频资源配置信息的不同方式,分两种情况介绍该第二个示例。
情况一,在执行上述步骤1-1的情况下,高层信令中还为每组时域配置参数和每组频域配置参数分别配置了索引。网络设备通过指示时域配置参数和/或频域配置参数的索引指示该套时频资源配置信息。下面分别介绍每套时频资源配置信息的示例,以及介绍第一指示信息包括索引,及该索引指示的一套时频资源配置信息的示例。
例如,高层信令配置M组频域配置参数,配置N组时域配置参数,配置K套时频资源配置信息。例如,M组频域配置参数分别用索引1至M指示,N组时域配置参数分别用索引1至N指示。以第k套时频资源配置信息指示采用第m组频域配置参数,第n组时域配置参数为例,第k套时频资源配置信息中配置第m套频域配置参数的索引,例如m,以及第n套时域配置参数的索引。高层信令中还包括m与频域配置参数的对应关系,n与时域配置参数的对应关系。1≤m≤M,1≤n≤N,1≤k≤K,M≥1,N≥1,K≥2,m、n、k、M、N和K均为整数。
示例5-1,第一时域位置上,第一子带和第二子带的频域范围不变的情况下,第k套时频资源配置信息例如可以是:
或者,
其中,索引m对应的频域配置参数和索引n对应的时域配置参数会在下文方案二中进行介绍。或者,第k套时频资源配置信息中也可以不包括:subband time and frequency configuration index:k。
作为方法200的一个示例,第一载波如图5所示,在S201中的第一指示信息承载的索引为m和n,且m=3,n=2。则S202中,终端设备根据索引3对应的频域配置参数,索引2对应的时域配置参数确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
需要说明的是,作为方法200的一个示例,对于第k套时频资源配置信息中包括索引k的情况,也可以适用于方案一的第一个示例中,第一指示信息指示第一时频资源配置信息的索引的方案。例如,在S201中的第一指示信息承载的索引为k,且k=3。则S202中,终端设备根据索引3对应的第一时频资源配置信息确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
可选的,N=1时,只配置一组时域配置参数,例如时域配置参数#1。则网络设备可以在每套时频资源配置中不配置时域配置参数,只需配置频域配置参数。可以理解的是,第m组频域配置参数结合时域配置参数#1即可得到第m套时频资源配置信息。则K=M,m和k可以理解为同一个参数。第k套或第m套时频资源配置信息例如可以是:
subband time and frequency configuration
{
frequency domain configuration index:m
}
或者,
subband frequency configuration
{
frequency domain configuration index:m
}
作为方法200的一个示例,第一载波如图5所示,在S201中的第一指示信息承载的索引为m,且m=3。则S202中,终端设备根据索引3对应的频域配置参数和时域配置参数#1确定第一载波中的L个子带的第一时域位置、频域位置以及L个子带在所述第一时域位置的符号类型。
可选的,M=1时,只配置一组频域配置参数,例如频域配置参数#1。则网络设备可以在每套时频资源配置中不配置频域配置参数,只需配置时域配置参数。可以理解的是,第n组时域配置参数结合频域配置参数#1即可得到第n套时频资源配置信息。则K=N,n和k可以理解为同一个参数。第k套或第n套时频资源配置信息例如可以是:
subband time and frequency configuration
{
time domain configuration index:n
}
或者,
subband time configuration
{
time domain configuration index:n
}
作为方法200的一个示例,第一载波如图5所示,在S201中的第一指示信息承载的索引为n,且n=2。则S202中,终端设备根据索引2对应的时域配置参数和时域配置参数#1确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
示例5-2,第一时域位置上,第一子带和第二子带的频域范围变化的情况下,K套时频资源配置信息中的第k套时频资源配置信息包括至少Xk组频域配置参数的索引,以及,每组频域配置参数与多个时间单元中的每个时间单元的对应关系。可选地,第k套时频资源配置信息还包括一组时域配置参数的索引。可选地,第k套时频资源配置信息可以仅指示Xk-1组频域配置参数与多个时间单元中的每个时间单元的对应关系,终端设备可以确定Xk组中未被指示对应关系的一组频域配置参数与多个时间单元中的一个或多个时间单元的对应关系。其中,1≤k≤K,K≥2,Xk≥2,k和K均为整数。第k套时频资源配置信息例如可以是:

或者,
其中,1≤j≤Xk,j为整数。mj即为第k套时频资源配置信息中包括的第j组频域配置参数的索引。例如,m1即为每套时频资源配置信息中包括的第1组频域配置参数的索引,m2即为每套时频资源配置信息中包括的第2组频域配置参数的索引,n即为每套时频资源配置信息中包括的时域配置参数的索引。下文会在方案二中介绍第一子带的频域配置参数和第一子带的时域配置参数。其中,配置bitmap j用于指示第j组频域配置参数与多个时间单元中的每个时间单元的对应关系,为本申请给出的一种可能的方式。可选地,配置Xk-1套bitmap来指示出Xk套频域资源所在的时间单元。下面结合示例5-2-1详细介绍该指示方式。
示例5-2-1,以第一载波包括图6所示的子带#1至子带#3为例,以第一子带为子带#2为例,第一时频资源配置信息需要包括2组频域配置参数,其中,第1组频域配置参数用于指示频域范围(f1,f2),第2组频域配置参数用于指示频域范围(f3,f4)。如图6所示,第一时域位置中,子带#2在时间单元#3的频域范围为(f3,f4),子带#2在时间单元#2和时间单元#4的频域范围为(f1,f2)。下面给出指示第1组频域配置参数与第一时域位置中的每个时间单元的对应关系的示例。例如,用bitmap1:01010指示第1组频域配置参数与时间单元#1至时间单元#5的对应关系。其中,01010分别对应时间单元#1至时间单元#5,1表示子带#2在该时间单元上的频域范围根据第1组频域配置参数确定,0表示子带#2在该时间单元上的频域范围不根据第1组频域配置参数确定或根据第2组频域配置参数确定。再例如,用bitmap1:101指示第1组频域配置参数与时间单元#2至时间单元#4的对应关系。其中,101分别对应时间单元#2至时间单元#4,1表示子带#2在该时间单元上的频域范围根据第1组频域配置参数确定,0表示子带#2在该时间单元上的频域范围不根据第1组频域配置参数确定或根据第2组频域配置参数确定。第2组频域配置参数与第一时域位置中的每个时间单元的对应关系可以参照前述两种方式,或者也可以不指示。第一时频资源配置信息不指示第2组频域配置参数与第一时域位置中的每个时间单元的对应关系的情况可以理解为隐式指示出第2组频域配置参数与第一时域位置中的每个时间单元的对应关系。应理解,由于第一时频资源配置信息只包括2组频域配置参数,网络设备指示出第1组频域配置参数与第一时域位置中的每个时间单元的对应关系之后,终端设备能够确定第2组频域配置参数与第一时域位置中的每个时间单元的对应关系。
作为方法200的一个示例,第一载波如图6所示,在S201中的第一指示信息承载的索引为m1、bitmap1、n、m2,且m1=4,m2=2,n=3,bitmap1为bitmap1#3的情况下,则第一时频资源配置信息为:
或者,
第一频域配置参数包括索引4和2对应的2组频域配置参数,或者,第一频域配置参数包括m组频域配置参数中的第4组和第2组。第一时域配置参数为索引3对应的时域配置参数,或者,第一时域配置参数包括n组时域配置参数中的第3组时域配置参数。S202中,终端设备根据索引4和2对应的2组频域配置参数、索引3对应的时域配置参数以及bitmap1#3确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
或者,第一指示信息指示索引k,k=3,可以参照方案一的第一个示例中对应的方案。
可选的,N=1时,只配置一组时域配置参数,例如时域配置参数#1,即时域配置参数只有一个索引,或者时频资源配置信息可以不需要指示时域配置参数的索引。则网络设备可以在每套时频资源配置中不配置时域配置参数,只需配置频域配置参数。可以理解的是,j组频域配置参数结合时域配置参数#1即可得到第k套时频资源配置信息。第k套时频资源配置信息例如可以是:
或者,

作为方法200的一个示例,第一载波如图6所示,在S201中的第一指示信息承载的索引为m1和m2,且m1=4,m2=2,k=1。则S202中,终端设备根据索引2和4对应的2组频域配置参数和时域配置参数#1,以及,bitmap1#1和bitmap2#1确定第一载波中的L个子带的第一时域位置、频域位置以及L个子带在所述第一时域位置的符号类型。
需要说明的是,作为方法200的一个示例,对于第k套时频资源配置信息中包括索引k的情况,也可以适用于方案一的第一示例中,第一指示信息指示第一时频资源配置信息的索引的方案。
情况二,与上述步骤1-2对应,终端设备根据协议获取了多套时频资源配置信息,或者,终端设备预配置了多套时频资源配置信息。例如,多套时频资源配置信息中的每套时频资源配置信息包括的频域配置参数和时域配置参数分别可以如表3和表4所示。具体地,表3示出了M组频域配置参数与索引的对应关系,表4示出了N组时域配置参数与索引的对应关系。并且,1≤m≤M,1≤n≤N,M≥1,N≥1,M和N均为整数。例如,N=1时,表4只有第一行和第二行,则表3中的每组时域配置参数均与频域配置参数#1组合成M套时频资源配置信息。再例如,M=1时,表3只有第一行和第二行,则表4中的每组频域配置参数均与时域配置参数#1组合成N套时频资源配置信息。
表3
需要说明的是,用表3的形式呈现多套频域配置参数及每套频域配置参数的索引的对应关系仅为示例,该对应关系还可以以其他形式呈现。另外,表3中的频域配置参数的个数仅为示例,不对本申请造成限定。
表4
需要说明的是,用表3的形式呈现多套时域配置参数及每套时域配置参数的索引的对应关系仅为示例,该对应关系还可以以其他形式呈现。另外,表4中的时域配置参数的个数仅为示例,不对本申请造成限定。
示例6-1,第一时域位置上,第一子带和第二子带的频域范围不变的情况下,例如K套时频资源配置信息中的第k套时频资源配置信息例如可以包括时域配置参数#n和频域配置参数#m,1≤k≤K,K≥2。
作为方法200的一个示例,第一载波如图5所示,在S201中的第一指示信息承载的索引为m和n, 且m=3,n=2。即,第一指示信息指示的第一时频资源配置信息包括时域配置参数#2和频域配置参数#3。则S202中,终端设备根据时域配置参数#2和频域配置参数#3确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
可选的,N=1时,只配置一组时域配置参数,例如时域配置参数#1。作为方法200的一个示例,第一载波如图5所示,在S201中的第一指示信息承载的索引为m,且m=3。即,第一指示信息指示的第一时频资源配置信息包括频域配置参数#3。则S202中,终端设备根据频域配置参数#3和时域配置参数#1确定第一载波中的L个子带的第一时域位置、频域位置以及L个子带在所述第一时域位置的符号类型。
可选的,M=1时,只配置一组频域配置参数,例如频域配置参数#1。作为方法200的一个示例,第一载波如图5所示,在S201中的第一指示信息承载的索引为n,且n=2。即,第一指示信息指示的第一时频资源配置信息包括时域配置参数#2。则S202中,终端设备根据时域配置参数#2和时域配置参数#1确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型。
示例6-2,第一时域位置上,第一子带和第二子带的频域范围变化的情况下,例如第k套时频资源配置信息可以包括表4中的一个或多个时域配置参数和表3中的至少两个频域配置参数。可选地,对于第k套时频资源配置信息包括表4中的一个时域配置参数的索引和表3中的至少两个频域配置参数的索引的情况,第k套时频资源配置信息还需要额外指示至少两组频域配置参数指示的至少两个频域位置与该一个时域配置参数指示的时域位置中的每个时间单元的对应关系。可选地,对于第k套时频资源配置信息包括表4中的多个时域配置参数的索引和表3中的至少两个频域配置参数的索引的情况,第k套时频资源配置信息还需要额外指示至少两组频域配置参数指示的至少两个频域位置与该多个时域配置参数指示的多个时域位置中的每个时域位置的对应关系。
可选地,在方案一的第二个示例中,方法200还可以包括:终端设备接收来自网络设备的第二指示信息#1,第二指示信息#1用于在多套时频资源配置信息中指示第二时频资源配置信息,第二时频资源配置信息包括第一子带的第二时域配置参数和第二频域配置参数,第二时频资源配置信息与第一时频资源配置信息不完全相同或完全不同。终端设备根据第二时域配置参数和第二频域配置参数确定第一载波中的P个子带的第二时域位置、频域位置以及P个子带在第二时域位置的符号类型,P≥1且P为整数。
其中,第二指示信息#1可以包括第二时域配置参数的索引和/或第二频域配置参数的索引。第二指示信息#1可以参照上文关于第一指示信息的介绍,第二时域配置参数的索引和第二频域配置参数的索引也可以参照上文关于第一时域配置参数的索引和第一频域配置参数的索引的介绍。且第一指示信息与第二指示信息#1包括的索引不同。这里的P可以等于L也可以不等于L,本申请不限定。
可选地,在方案一的第一个示例中,方法200还可以包括:终端设备接收来自网络设备的第二指示信息#1,第二指示信息#1用于在多套时频资源配置信息中指示第二时频资源配置信息,第二时频资源配置信息包括第一子带的第二时域配置参数和第二频域配置参数,第二时频资源配置信息与第一时频资源配置信息不完全相同或完全不同。终端设备根据第二时域配置参数和第二频域配置参数确定第一载波中的P个子带的第二时域位置、频域位置以及P个子带在第二时域位置的符号类型,P≥1且P为整数。
其中,第二指示信息可以包括第二时频资源配置信息的索引。第二指示信息可以参照上文关于第一指示信息的介绍,第二时频资源配置信息可以参照上文关于第一时频资源配置信息的介绍。第一指示信息与第二指示信息包括的索引不同。这里的P可以等于L也可以不等于L,本申请不限定。
可选地,在方案一的第二个示例中,方法200还可以包括:终端设备接收来自网络设备的第二指示信息#2,第二指示信息#2用于指示第一子带的第二时域配置参数,第二时域配置参数与第一时域配置参数不同。终端设备根据第一频域配置参数和第二时域配置参数确定第一载波中的P个子带的第二时域位置、频域位置以及P个子带在第二时域位置的符号类型,P≥1且P为整数。
其中,这里的第二时域配置参数可以参照上文关于第一时域配置参数的介绍。这里的P可以等于L也可以不等于L,本申请不限定。第二指示信息#2能够动态指示第一载波中一个或多个子带的时域位置或者时隙格式。例如,第二指示信息#2可以仅包括多组时域配置参数中的第二时域配置参数的索 引。再例如,第二指示信息#2为时隙格式指示字段,用于指示第一子带的第二时域配置参数。可选地,第二指示信息#2为下行控制信息格式2-0中的时隙格式指示字段。或者,第二指示信息#2也可以是具备类似功能的其他信息,本申请不做限定。
方案二、方案一中的第一子带的频域配置参数和时域配置参数的可能的示例。
图4示出了本申请适用的第一载波的3种情况。关于图4的介绍可以参照上文示例1中相关的内容。本申请适用的第一载波包括但不限于上述3种情况。
应理解,一般的,第二子带的时隙格式配置和小区级别或载波级别的时隙格式配置相同,例如这里的载波级别的的时隙格式配置可以参照3GPP TS 38.331中的TDD-UL-DL-ConfigCommon和TDD-UL-DL-ConfigDedicated等信元。因此,为确定不同子带的时频配置,多套时频资源配置信息中的每套时频资源配置信息可不指示第二子带的时隙格式。本申请中第一子带的时隙格式包括时域位置和第一子带在该时域位置上的符号类型。还应理解,第一载波的频域位置(包括带宽和起始频域位置)是已知的。一般的,如果确定了第一子带的频域位置,可以根据第一子带的频域位置得到第二子带的频域位置。可选地,第一子带和第二子带之间存在GB的情况下,如果确定了第一子带的频域位置,可以根据第一子带的频域位置和GB的频域位置得到第二子带的频域位置。因此,资源配置信息中的每套时频资源配置信息可不指示第二子带的频域位置。
(1)第一子带的频域配置参数的可能的示例。
对于图4中的(a)和图4中的(b)的情况,第一载波包括子带#1和子带#2。第一子带的频域配置参数可以包括信息#1、信息#2和信息#3中的至少两项。下面结合表5和表6给出信息#1、信息#2和信息#3的几种可能的示例。具体地,情况一,第一子带与第二子带之间存在GB,即子带#1与子带#2之间存在GB(例如图7中的(a)所示)。第一子带的频域配置参数包括表5中的信息#1、信息#2和信息#3。表5分别给出了信息#1、信息#2和信息#3的5个示例。情况二,第一子带与第二子带之间不存在GB。第一子带的频域配置参数包括表6中的信息#1和信息#3。表6分别给出了信息#1和信息#3的4个示例。
表5
表6
对于图4中的(c)的情况,第一载波包括子带#1、子带#2和子带#3。第一子带的频域配置参数包括信息#4、信息#5、信息#6和信息#7中的一项或多项。下面结表7和表8给出信息#4、信息#5、信息 #6和信息#7的几种可能的示例。具体地,情况一,第一子带与第二子带之间存在GB,即子带#1与子带#2之间存在GB1,子带#2和子带#3之间存在GB2(例如图7中的(b)所示)。例如,子带#1带宽和子带#3带宽不同,GB1带宽和GB2带宽不同,第一子带的频域配置参数包括表7中信息#4、信息#5、信息#6和信息#7。再例如,子带#1与子带#3的带宽相同,GB1带宽和GB2带宽不同,第一子带的频域配置参数包括表7中信息#4和信息#5中的至少一个、信息#6和信息#7。再例如,子带#1与子带#3的带宽不同,GB1带宽和GB2带宽相同,第一子带的频域配置参数包括信息#6和信息#7中的至少一个、信息#4和信息#5。再例如,子带#1与子带#3的带宽相同,GB1带宽和GB2带宽相同,第一子带的频域配置参数包括息#6和信息#7中的至少一个,以及,信息#4和信息#5中的至少一个。情况二,第一子带与第二子带之间不存在GB。例如,子带#1和子带#2的带宽不同,第一子带的频域配置参数包括表8中信息#4、信息#5。例如,子带#1和子带#2的带宽相同,第一子带的频域配置参数包括表8中信息#4和/或信息#5。
表7
表8
第一子带的频域配置参数包括的信息的形式可以参见上述多种可能的示例。以示例7-6中的一种示例为例,第一子带的频域配置参数包括子带#1带宽和用于指示第一子带为子带#2或子带#1的信息#3。例如,终端设备通过步骤1-1或步骤1-2的方式获取M组频域配置参数。以M=3为例,3组频域配置参数分别为频域配置参数#1、频域配置参数#2和频域配置参数#3。或者,终端设备通过步骤1-1或步骤1-2的方式获取K套时频资源配置信息,该K套时频资源配置信息中包括的第一子带的频域配置参数一共有3组,分别为频域配置参数#1、频域配置参数#2和频域配置参数#3。其中,频域配置参数#1包括的子带#1带宽为a个资源块(resource block,RB),频域配置参数#1包括的信息#3指示第一子带为子带#2。频域配置参数#2包括的子带#1带宽为b个RB,频域配置参数#2包括的信息#3指示第一子带为子带#2。频域配置参数#3包括的子带#1带宽为c个RB,频域配置参数#2包括的信息#3指示第一子带为子带#2。其中,a、b和c均为大于或等于1的整数。作为一个示例,S201中第一频域配置参数为频域配置参数#2。S202中,终端设备根据第一频域配置参数确定第一子带的频域位置。具体地,终端设备根据第一载波的起始频域位置和子带#1带宽确定子带#2的起始频域位置,根据第一载波的带宽和子带#1带宽确定子带#2的带宽,从而确定了子带#2的频域位置。
(2)第一子带的时域配置参数的可能的示例。
图8示出了本申请适用的时域资源的一例的示意图。如图8所示,以第一载波包括3个子带为例。子带#1和子带#3作为第二子带的示例,子带#2作为第一子带的示例。其中,以第一时域位置包括时间单元#2、时间单元#3和时间单元#4为例。第一时域位置中,位于时间单元#2的黑色填充的长方块为子带#2包括的灵活符号(为了方便说明,称为灵活符号#1),位于时间单元#4的左划线填充的长方块为 子带#3和子带#1分别包括的灵活符号(为了方便说明,称为灵活符号#2)。图8中其他示意方式与图4中的(c)相同,具体可以参见图4中的(c)的相关描述。结合图8,本申请提供第一子带的时域配置参数的多种表示形式。
示例9-1,第一子带的时域配置参数用于指示第一子带和第二子带的符号类型不同的符号或时间单元。图8中的子带#2与子带#1,或,子带#2与子带#3的符号类型不同的时间单元,即为时间单元#2、时间单元#3、时间单元#4。例如,第一子带的时域配置参数可以是UE级别的时分双工上下行配置信息。可选的,该时分双工上下行配置信息中还包括信息#b。该信息#b用于指示该时分双工上下行配置信息为第一子带的时分双工上下行配置信息。该时分双工上下行配置信息可将第二符号的符号类型指示为上行或灵活,其中,第二符号为小区级别或载波级别的时隙格式配置中指示的符号类型为下行的符号。
示例9-2,第一子带的时域配置参数用于配置第一子带在第一时域位置的上行符号的起始时域位置、长度和结束时域位置中的至少2个。示例性,图8中横线填充的长方块的起始时域位置和T0。可选的,此时小区级别或载波级别的时隙格式配置中的灵活符号个数和第一子带中灵活符号的个数相同,即T1=T2。
示例9-3,第一子带的时域配置参数用于配置第一子带在第一时域位置的灵活符号的起始时域位置、长度和结束时域位置中的至少2个。示例性,图8中黑色填充的长方块的起始时域位置和T1。可以理解的是,第一子带在第一时域位置的灵活符号与第一上行时隙之间的符号均为上行符号,即图8中横线填充的长方块代表第一子带在第一时域位置包括的上行符号。这里的第一上行时隙为与灵活符号之间间隔最小的上行时隙。在时间单元#1至时间单元#5对应的时域资源中,时间单元#5对应的时域资源为第一上行时隙。其中,对于上行时隙的理解可以参照图2对应的说明。可选地,图8可以理解为本申请适用的周期性时域资源中的一个周期。第一上行时隙还可以理解为与该灵活符号在一个周期内的上行时隙。在图8所示的周期中,第一上行时隙为图8中的时间单元#5。
可选地,第一子带与第二子带在第一时域位置上的灵活符号的长度均相等的情况下,第一子带的时域配置参数用于配置第一子带在第一时域位置的灵活符号的起始时域位置或结束时域位置。具体地,T1=T2的情况下,第一子带的时域配置参数可以不指示T1。并且,T2的长度可以通过小区级别的时隙格式确定。
可选地,图8可以理解为本申请适用的周期性时域资源中的一个周期。例如,网络设备要给终端设备配置10个时间单元的时域资源,每5个时间单元为一个周期。网络设备可以只配置第一个周期的时域资源,终端设备根据第一个周期的时域资源的配置确定第二个周期的时域资源的配置。
在(2)的另一种实现方式中,第一时频资源配置信息不包括显示的第一子带的时域配置参数,第一子带的时域配置参数由第一子带的频域配置参数隐式指示。例如,在终端设备根据第一子带的频域配置参数确定出第一子带的频域位置后,终端设备确定第一子带在第二符号上的符号类型均为上行或均为灵活,其中,第二符号为第一载波的时隙格式配置中配置为非上行传输的符号。示例性地,第二符号可以理解为时间单元#1至时间单元#4中根据第一载波的时隙配置格式配置为非上传传输的符号。
图9示出了本申请适用的时域资源的又一例的示意图。第一时域位置包括的多个时间单元,可以是连续的(如图8所示),也可以是不连续的(如图9所示)。如图9所示,以第一时域位置包括不连续的两段时间为例进行说明。第一时域位置包括第一时域位置#1和第一时域位置#2,其中,第一时域位置#1包括3个时间单元,第一时域位置#2包括2个时间单元。
示例9-1’,第一子带的时域配置参数用于指示第一子带和第二子带的符号类型不同的符号或时间单元。图9中的子带#2与子带#1,或,子带#2与子带#3的符号类型不同的时间单元,即为时间单元#2、时间单元#3、时间单元#4、时间单元#8和时间单元#9。例如,第一子带的时域配置参数可以是UE级别的时分双工上下行配置信息。可选的,该时分双工上下行配置信息中还包括信息#b。该信息#b用于指示该时分双工上下行配置信息为第一子带的时分双工上下行配置信息。该时分双工上下行配置信息可将第二符号的符号类型指示为上行或灵活,其中,第二符号为小区级别或载波级别的时隙格式配置中指示的符号类型为下行的符号。
示例9-2’,第一子带的时域配置参数用于配置第一子带在第一时域位置的上行符号的起始时域位置、长度和结束时域位置中的至少2个。具体地,第一子带的时域配置参数用于配置第一子带在第一 时域位置#1的上行符号的起始时域位置、长度和结束时域位置中的至少2个。示例性地,图9中时间单元#1至时间单元#5中横线填充的长方块的起始时域位置和T0。第一子带的时域配置参数用于配置第一子带在第一时域位置#2的上行符号的起始时域位置、长度和结束时域位置中的至少2个。示例性地,图9中时间单元#6至时间单元#10中横线填充的长方块的起始时域位置和T0’。可选的,此时小区级别或载波级别的时隙格式配置中的灵活符号个数和第一子带中灵活符号的个数相同,即T1=T2。
示例9-3’,第一子带的时域配置参数用于配置第一子带在第一时域位置的灵活符号的起始时域位置、长度和结束时域位置中的至少2个。以图9为例,第一时域位置包括第一时域位置#1和第一时域位置#2。具体地,第一子带的时域配置参数用于配置第一子带在第一时域位置#1的灵活符号#1的起始时域位置、长度和结束时域位置中的至少2个。示例性地,第一子带的时域配置参数用于配置图9中时间单元#1至时间单元#5中黑色填充的长方块的起始时域位置和T1。第一子带的时域配置参数还用于配置第一子带在第一时域位置#2的灵活符号的起始时域位置、长度和结束时域位置中的至少2个。示例性地,图9中时间单元#6至时间单元#10中黑色填充的长方块的起始时域位置和T1’。可以理解的是,以第一时域位置#1为例,第一子带在第一时域位置#1的灵活符号与第一上行时隙之间的符号均为上行符号,即图9中横线填充的长方块代表第一子带在第一时域位置#1包括的上行符号。这里的第一上行时隙为与灵活符号之间间隔最小的上行时隙。在时间单元#1至时间单元#10对应的时域资源中,时间单元#5对应的时域资源为第一上行时隙。其中,对于上行时隙的理解可以参照图2对应的说明。类似的,以第一时域位置#2为例,第一时隙为时间单元#10对应的时域资源。
可选地,第一子带与第二子带在第一时域位置上的灵活符号的长度均相等的情况下,第一子带的时域配置参数用于配置第一子带在第一时域位置#1和第一时域位置#2的灵活符号的起始时域位置。具体地,T1=T1’=T2的情况下,第一子带的时域配置参数用于配置第一子带在第一时域位置#1和第一时域位置#2的灵活符号的起始时域位置,第一子带的时域配置参数可以不指示T1和T1’。并且T2的长度可以通过小区级别的时隙格式确定。
可以理解的是,由于第一时域位置#1和第一时域位置#2在时间上并不是周期性排列的,从而在示例9-2’和示例9-3’中,子带#2在第一时域位置#1和第一时域位置#2上的灵活符号或上行符号的位置需要分别进行指示。
第一子带的时域配置参数包括的信息的形式可以参见上述多种可能的示例。以示例9-2为例,第一子带的时域配置参数包括第一子带在第一时域位置的上行符号的起始时域位置和长度。例如,终端设备通过步骤1-1或步骤1-2的方式获取N组时域配置参数。以N=3为例,3组时域配置参数分别为时域配置参数#1、时域配置参数#2和时域配置参数#3。或者,终端设备通过步骤1-1或步骤1-2的方式获取K套时频资源配置信息,该K套时频资源配置信息中包括的第一子带的时域配置参数一共有3组,分别为时域配置参数#1、时域配置参数#2和时域配置参数#3。其中,时域配置参数#1包括的起始时域位置为时间单元#2的第3个符号,长度为12个符号。时域配置参数#2包括的起始时域位置为时间单元#2的第1个符号,长度为10个符号。时域配置参数#3包括的起始时域位置为时间单元#1的第12个符号,长度为10个符号。作为一个示例,S201中第一时域配置参数为时域配置参数#2。S202中,终端设备根据第一时域配置参数确定第一子带的时域位置。具体地,终端设备根据第一子带的起始时域位置和长度确定第一子带的时域位置。
图10和图11给出了第一载波包括子带#1和子带#2的情况下,本申请适用的时域资源的又一例的示意图。类似的,图10和图11中的第一时域位置中,黑色填充的长方块代表灵活符号#1,左划线填充的长方块代表灵活符号#2。图10和图11中其他示意方式分别与图4中的(a)和图4中的(b)相同,具体可以参见上文的相关描述。
需要说明的是,图8至图11中均以第一子带在第一时域位置中的不同的时间单元上的频域范围不变为例进行示意,上述第一子带的时域配置参数同样适用于第一子带在第一时域位置中的不同的时间单元上的频域范围变化的情况。
方案三、用于承载第一指示信息的消息。
例如,第一指示信息承载于系统信息块1(system information block 1,SIB1)中。
再例如,第一指示信息承载于下行控制信息(downlink control information,DCI)中。具体地,第一指示信息可以承载于DCI中的现有比特中,或,第一指示信息可以承载于DCI中的新增比特中,或, 第一指示信息的一部分信息承载于DCI的现有比特中,另一部分信息承载DCI的新增比特中。
可选的,上述DCI中的现有比特可以是DCI中的冗余bit。应理解,网络设通过DCI进行资源调度时,调度SBFD时隙中的UL资源块(resource block,RB)需要的比特数少于调度UL时隙中的UL RB需要的比特数。因此,DCI在调度SBFD时隙所在的物理上行共享信道(physical uplink shared channel,PUSCH)时存在冗余比特。下面将结合具体示例介绍用于调度SBFD时隙所在的PUSCH可能产生的冗余比特。
以DCI调度类型(type)0的PUSCH资源为例,可以采用位图的方式来指示UL时域资源占用的频域范围。图12示出了本申请提供的DCI调度的时频资源的一例的示意图。图12中以图8中的时间单元#3和时间单元#5对应的时频资源为例进行示意。其中,横坐标为频域,子带#1、子带#2和子带#3分别和图8中的子带#1、子带#2和子带#3对应;纵坐标为时域,时间单元#3和时间单元#5分别与图8中的时间单元#3和时间单元#5对应,其中,时间单元#3属于SBFD时隙,时间单元#5属于UL时隙。如图12所示,假设子带#1包括3个资源块组(resource block group,RBG),子带#2包括4个RBG,子带#3包括3个RBG。右划线填充的长方块代表DL RBG,横线和竖线的交叉线填充的长方块代表DCI调度的RBG,左划线和右划线的交叉线填充长方块代表未调度的RBG。用bitmap的方式指示图12中的时频资源的调度情况,用1比特指示1个RBG,比特值取1代表该RBG被调度,比特值取0代表该RBG未被调度。1个RBG包含的RB数根据部分带宽(bandwidth part,BWP)和高层配置确定,一个子带包括的RBG数根据该子带的带宽和RBG包括的RB数确定。时间单元#5对应的10个RBG均为UL RBG,需要10比特指示UL频域资源,例如用1110011100指示图12中的时间单元#5对应的频域资源。时间单元#3对应的10个RBG中,有4个RBG为UL RBG,因此需要4bit指示#3对应的频域资源,例如用1110指示图12中的时间单元#3对应的频域资源。
以DCI调度type1的PUSCH资源为例,可以采用频域资源分配(frequency domain resource allocation,FDRA)的方式指示UL占用的频域范围。用FDRA方式指示UL时隙需要的比特数和BWP的带宽相关。例如,BWP的RB个数为R,则需要的比特位数为R≥1且R为整数。用FDRA方式指示SBFD时隙需要的比特数和SBFD时隙对应的UL子带的带宽相关。例如,SBFD时隙对应的UL子带可以理解为方案一中第一时域位置对应的第一子带,或者,可以理解为图8中的子带#2。例如,UL子带包括RB个数为R0,则需要的比特位数为R0≥1且R0为整数。考虑到SBFD时隙中UL子带的RB个数小于BWP的RB个数,即R0<R,可知在SBFD时隙需要的比特位数可能小于UL时隙需要的比特位数。
可选地,网络设通过DCI进行资源调度时,调度SBFD时隙中的DL RBG需要的比特数少于调度DL时隙中的DL RBG需要的比特数,因为DCI仅需表征在SBFD时隙用于下行传输的频域资源。因此,DCI在调度SBFD时隙所在的物理下行共享信道(physical downlink shared channel,PDSCH)时存在冗余比特。DCI调度type 0的PDSCH产生冗余比特的方式和type 0的PUSCH类似,DCI调度type1的PDSCH和type1的PUSCH类似。
在通过上述方式产生的冗余比特位数不够的情况下,剩余的比特可通过DCI中的新增比特来进行指示。
再例如,第一指示信息承载于介质访问控制层控制单元(media access control control element,MAC CE)中。可选地,第一指示信息新增指示信息或采用新的MAC CE来指示。
下面介绍本申请提供的方法200’。方法200’包括S201’和S202’。
S201’,网络设备向终端设备发送第一指示信息#1,相应地,终端设备接收来自网络设备的第一指示信息#1。
其中,第一指示信息#1用于指示第一时频资源配置信息#1。区别在于:第一时频资源配置信息#1中不属于上述适用于SBFD系统的时频资源配置信息,而属于适用于TDD系统的时频资源配置信息。可选地,方法200中的多套时频资源配置信息也可以包括这里的第一时频资源配置信息#1。其中,适用于TDD系统的时频资源配置信息还可以理解为小区级别或载波级别的时频资源配置信息。适用于TDD系统的时频资源配置信息可以是3GPP TS 38.331中的TDD-UL-DL-ConfigCommon和 TDD-UL-DL-ConfigDedicated等信元。或者,本申请中适用于TDD系统的时频资源配置信息可以结合下述示例10进行理解。
示例10,第一时频资源配置信息#1为适用于TDD系统的时频资源配置信息的情况下,第一载波#1包括第二子带#1,L>1,L个子带包括第一子带#1和第二子带#1。第一时域位置包括一个或多个时间单元,一个或多个时间单元中的每个时间单元上的第一子带#1和第二子带#1在频域上不重叠。一个或多个时间单元包括第一符号#1,第一子带#1在第一符号#1的符号类型与第二子带#1在第一符号#1的符号类型相同。
示例10-1,所述第一指示信息#1包括第一时频资源配置信息#1的索引。
可选地,S201’中的多套时频资源配置信息包括第一时频资源配置信息#1的索引,且第一时频资源配置信息#1中不包括第一子带#1的时域配置参数和频域配置参数。S202’,终端设备根据第一指示信息#1确定使用适用于TDD系统的时频资源配置信息确定第一载波#1的时隙格式和频域位置。
可选地,S201’中的多套时频资源配置信息包括第一时频资源配置信息#1的索引,且第一时频资源配置信息#1中包括第一载波#1的时隙格式配置和频域配置参数。S202’,终端设备根据第一指示信息#1确定使用适用于TDD系统的时频资源配置信息确定第一载波#1的时隙格式和频域位置。
示例10-2,所述第一指示信息#1包括第三时域配置参数的索引。例如,第三时域配置参数可以是适用于TDD系统的时隙格式配置,例如,3GPP TS 38.331中的TDD-UL-DL-ConfigCommon和TDD-UL-DL-ConfigDedicated等信元。
可选地,S201’中的多套时频资源配置信息不包括第一时频资源配置信息#1的索引,包括第三时域配置参数的索引。S202’,终端设备根据第一指示信息#1确定使用适用于TDD系统的时频资源配置信息确定第一载波#1的时隙格式和频域位置。
下面结合附图和示例详细介绍方案四和方案五。具体地,本申请中的方案四和方案五的方案可以单独实施,也可以与方法200结合实施。
方案四、在终端设备使用针对第一载波#2中的第一子带#2的第一时频资源配置信息#2的情况下,网络设备如何指示终端设备使用针对第一载波#2的第三时频资源配置信息,相应地,终端设备如何根据网络设备的指示使用第三时频资源配置信息。
方案五、在方案四之后,网络设备如何指示终端设备使用针对第一载波#2中的第一子带#2的第一时频资源配置信息#2。
图13示出了本申请提供的通信系统存在干扰的一例的示意图。应理解,SBFD方案中,一个符号上可以同时存在上行和下行传输,从而导致终端与终端(UE-UE)间的交叉链路干扰(cross link interference,CLI)。如图13所示,以终端设备#0与终端设备#1分别与同一个网络设备#0通信为例,终端设备#0与网络设备#0之间的UL链路对网络设备#0与终端设备#1之间的DL链路的存在干扰,即UE-UE CLI。UE-UE CLI可以存在于同一个小区的UE之间,也可以存在于不同小区的UE之间。在存在UE-UE CLI终端设备间距离较近时,UE-UE CLI干扰较大,从而会对下行性能造成较大影响。并且,上述场景中还可能存在网络设备#1的DL信号对于网络设备#0的UL信号的干扰,产生杂波(clutter),此干扰可称作站间小区与小区间的交叉链路干扰(inter site cell-cell CLI)。此外,网络设备#0或网络设备#1还可能存在自干扰(self-interference,SI)。在支持SBFD方案的通信系统中自干扰严重或者inter site cell-cell CLI干扰严重的情况下,会使得UL子带受到的干扰过大,而使得UL子带进行上行传输时网络的频谱效率过低。一种可能的实现方式中,可以通过通信系统从SBFD系统切换至TDD系统来减少有CLI和SI带来的频谱效率过低的问题。
应理解,本申请中的从SBFD切换至TDD系统,可以理解为,在终端设备使用适用于SBFD系统的第一时频资源配置信息确定第一载波中的一个或多个子带的时域位置、频域位置以及该一个或多个子带在该时域位置的符号类型的情况下;随后网络设备向终端设备指示适用于TDD系统的第三时频资源配置信息,或者,载波级别或小区级别的时频资源配置信息。其中,第一时频资源配置信息还可以理解为子带级别的时频资源配置信息,第三时频资源配置信息还可以理解为载波级别或小区级别的时频资源配置信息。换句话说,第三时频资源配置信息并不包括针对第一载波中的一个或多个子带的频域配置参数和时域配置参数。本申请中的从SBFD切换至TDD系统,还可以理解为,使得第一载波中可用于上行传输的子带与其他不可用于上行传输的子带的时隙格式相同。
方案四、在终端设备使用针对第一载波#1中的第一子带#1的第一时频资源配置信息#1的情况下,网络设备如何指示终端设备使用针对第一载波#1的第三时频资源配置信息,相应地,终端设备如何根据网络设备的指示使用第三时频资源配置信息。
图14示出了本申请提供的资源配置的方法300的示意图。
S301,终端设备根据第一时频资源配置信息#2确定第一载波#2中的Y个子带的第一时域位置#2、频域位置#2以及Y个子带在第一时域位置#2的符号类型。
其中,第一时频资源配置信息#2包括第一载波#2中的第一子带#2的第一频域配置参数#2和第一时域配置参数#2,Y个子带包括第一子带#2和第二子带#2,其中,第一时域位置#2包括一个或多个时间单元#2,一个或多个时间单元#2中的每个时间单元#2上的第一子带#2和第二子带#2在频域上不重叠,Y>1且Y为整数,一个或多个时间单元#2包括第一符号#2,第一子带#2在第一符号#2的符号类型与第二子带#2在第一符号#2的符号类型不同。
一种可能的实现方式中,在方法300和方法200结合的情况下,方法200可以理解为S301的一种具体示例。即S301中的第一时频资源配置信息#2、第一载波#2、第一子带#2、第二子带#2和时间单元#2、第一符号#2均可以分别理解为方法200中的第一时频资源配置信息、第一载波、第一子带、第二子带和时间单元、第一符号。
另一种可能的实现方式中,方法300单独实施的情况下,这里的第一子带#2可以理解为第一载波#2中的一个或多个子带。
可选地,第一时频资源配置信息#2可以是终端设备从网络设备接收的,也可以是预配置在终端设备的。
S302,网络设备向终端设备发送第三指示信息,相应地,终端设备接收来自网络设备的第三指示信息。
其中,第三指示信息用于指示使用第三时频资源配置信息。或者,第三指示信息用于指示第一载波#2中的可用于上行传输的子带与不可用于上行传输的子带(例如用于下行传输的子带)的时隙格式配置相同。可选地,第一载波#2中的不同的子带之间也不需要设置GB,即GB的带宽为0。或者,第三指示信息用于指示第一载波#2中的可用于上行传输的子带用于下行传输。
例如,第三指示信息包括第三时频资源配置信息的索引。方法300单独实施的情况下,这里第三时频资源配置信息的索引可以是预配置的一个值。方法300与方法200结合的情况下,这里第三时频资源配置信息的索引既可以是预配置的一个值,也可以是与方法200中的多套时频资源配置信息的索引均不同的一个值。或者,第三指示信息包括第三时域配置参数的索引,这里的第三时域配置参数可以是TDD的时隙格式配置。可选地,第三指示信息可以承载于DCI中。
再例如,第三指示信息为1比特指示信息。例如第三指示信息的取值为0或UL。第三指示信息可以承载于DCI、SIB1或MAC-CE中。以第三指示信息承载于DCI中为例进行介绍。
可选地,第三指示信息为DCI中新增的1比特信息。
可选地,第三指示信息为DCI中的冗余比特。DCI中冗余比特的产生方式可以参考方案三中,DCI指示SBFD时隙所在的PDSCH或PUSCH的情况对应的描述。或者,当冗余比特已经被占用的情况下,在DCI中新增比特作为第三指示信息。
可选地,第三指示信息指示从DCI调度的资源所在的时间开始,往后的时间都不预留速率匹配资源(rateMatchPattern)中的第一子带所在的资源。应理解,预留的速率匹配资源不可用于下行传输。不预留速率匹配资源中第一子带所在的资源,可以理解为,第一子带所在的资源可用于下行传输。
再例如,第三指示信息为下行控制信息中的SFI。SFI具体指示将时分双工上下行配置(tdd-UL-DL-configuration)信息配置的第一子带#2中的上行符号修改为下行符号或灵活符号。可选地,SFI具体还指示将时分双工上下行配置信息配置的一个或多个子带中的灵活符号修改为下行符号。示例性地,如图8所示,以第一子带为子带#2为例,子带#2在第一时域位置上包括上行符号(黑色填充的长方块)和灵活符号(横线填充的长方块)。可以理解的是,在图8中,时分双工上下行配置为子带#2配置了上行符号和灵活符号。根据SFI的指示,将子带#2中的灵活符号修改为下行符号,将子带#2中的与T2所在的时间包括的上行符号修改为灵活符号,将子带#2中的与T0-T2所在的时间包括的上行符号修改为灵活符号。根据SFI的指示修改后的第一载波#2如图15所示。图15中的第一时域位置 中,右划线填充的长方块代表下行符号,左划线填充的长方块代表灵活符号。
示例性地,时分双工上下行配置承载于无线资源控制配置消息中,该时分双工上下行时隙配置是终端设备接收来自网络设备的无线资源控制配置消息。时分双工上下行配置包括小区级别的和UE级别的配置信息。
S303,终端设备根据第三时频资源配置信息确定第一载波的第一时域位置、频域位置以及第一载波在第一时域位置的符号类型,第一载波在第一时域位置上的符号类型相同。
上述方案,针对需要从子带全双工系统切换到时分双工系统的情况,提出了具体的实现方式,完善了子带全双工系统。例如,在通信系统受到的干扰过大而导致第一子带进行上行传输时网络的频谱效率过低的问题时,通过上述方案,能够减少由于干扰过大导致的频谱效率过低的问题。
方案五、在方案四中的S303之后,网络设备如何指示终端设备使用针对第一载波#2中的第一子带#2的第一时频资源配置信息#2。
应理解,如上文所述,通信系统切换至TDD系统后,还可以在通信系统中的SI或CLI减小后再切换回SBFD系统。例如,网络设备可以通过灵活符号对SL或CLI进行测量,如果SI的测量值小于或等于第一阈值,CLI的测量值小于或等于第二阈值,则通信系统可以切换回SBFD系统。
图16示出了本申请提供的资源配置的方法400的示意图。
S401,网络设备向终端设备发送第四指示信息,终端设备接收来自网络设备的第四指示信息,第四指示信息用于指示使用第一时频资源配置信息#2。
应理解,第四指示信息可以显示指示使用第一时频资源配置信息#2,也可以隐式指示使用第一时频资源配置信息#2。例如,终端设备接收到第四指示信息后,则采用上一次使用的适用于SBFD系统的时频资源配置信息。并且在方案五之前,终端设备使用的适用于SBFD系统的时频资源配置信息为第一时频资源配置信息#2。因此终端设备确定第四指示信息用于指示使用第一时频资源配置信息#2。
例如,第四指示信息可以参见方法200中对于第一指示信息的描述。
再例如,第四指示信息的取值为1或DL。第四指示信息可以承载于DCI、SIB1或MAC-CE中。以第四指示信息承载于DCI中为例进行介绍。
可选地,第四指示信息为DCI中新增的1比特信息。
可选地,第四指示信息为DCI中的冗余比特。DCI中冗余比特的产生方式可以参考方案三中,DCI指示SBFD时隙所在的PDSCH或PUSCH的情况对应的描述。或者,当冗余比特已经被占用的情况下,在DCI中新增比特作为第四指示信息。
再例如,第四指示信息为下行控制信息中的SFI。应理解,方案四中的S303执行之后,第一子带#2中包括下行符号和灵活符号。第四指示信息具体指示将时分双工上下行配置信息配置的第一子带#2中的下行符号修改为上行符号或灵活符号。可选地,SFI具体还指示将时分双工上下行配置信息配置的第一子带#2中的灵活符号修改为上行符号。
示例性地,时分双工上下行配置承载于无线资源控制配置消息中,该时分双工上下行时隙配置是终端设备接收来自网络设备的无线资源控制配置消息。时分双工上下行配置包括小区级别的和UE级别的配置信息。
S402,终端设备根据第一时频资源配置信息#2确定第一载波中的S个子带的第四时域位置、频域位置以及S个子带在第四时域位置的符号类型,S≥1。S可以等于L也看可以不等于L。其中,该S个子带包括第一子带#2。
应理解,上述方法200中给出了网络设备在多套时频资源配置中向终端设备动态指示一套时频资源配置信息的方案。下面给出终端设备获取一套时频资源配置的情况下,终端设备直接根据该一套时频资源配置信息(为了方便说明,下面称为第一时频资源配置信息#3)确定T个子带的第一频域位置#3、时域配置#3和该T个子带在第一时域位置#3的符号类型的方案。
步骤3-1,终端设备获取了第一时频资源配置信息#3。
第一时频资源配置信息#3包括第一载波#3中的第一子带#3的第一频域配置参数#3和第一时域配置参数#3。
方式一,网络设备通过高层信令向终端设备发送第一时频资源配置信息#3,相应地,终端设备接收来自网络设备的第一时频资源配置信息#3。
方式二,终端设备根据协议获取第一时频资源配置信息#3,或,终端设备预配置了第一时频资源配置信息#3。
例如,第一时频资源配置信息#3分别可以参照方案一的第一个示例或方案一的第二示例中的第k套时频资源配置信息的示例的形式进行配置。区别在于:第一时频资源配置信息#3对应的条件为k=K=1,k和K均为整数;方案一需要满足条件:1≤k≤K,K≥2,k和K均为整数。
步骤3-2,终端设备根据第一频域配置参数#3和第一时域配置参数#3确定第一载波中的T个子带的第一时域位置、频域位置以及T个子带在第一时域位置的符号类型,T≥1且T为整数。
具体地,步骤3-2也可以参照S202相关的示例或说明。区别在于,将S202中的第一频域配置参数和第一时域配置参数替换为步骤3-2中的第一频域配置参数#3和第一时域配置参数#3。
上述方案,能够实现从时分双工系统在切换到子带全双工系统。以便于在通信系统受到的干扰减小之后,再回到子带全双工系统。由于子带全双工系统相对于时频双工系统明显提升了上行传输的覆盖,降低了上行传输的时延;因此,上述方案能够在保证通信系统的频谱效率的同时,尽可能提升通信系统的上行传输的覆盖,降低上行传输的时延。
可选地,步骤3-3,终端设备接收来自网络设备的第二指示信息#3,第二指示信息#3用于指示第一子带#3的第二时域配置参数#1,第二时域配置参数#1与第一时域配置参数#3不同。终端设备根据第一频域配置参数#3和第二时域配置参数#1确定第一载波中的O个子带的第二时域位置#1、频域位置以及O个子带在第二时域位置#1的符号类型,O≥1且O为整数。
其中,这里的第二时域配置参数#1可以参照上文关于第一时域配置参数#3的介绍。这里的O可以等于T也可以不等于T,本申请不限定。第二指示信息#3能够动态指示第一载波中不同子带的时域位置或者时隙格式。例如,第二指示信息#3为SFI字段。可选地,第二指示信息#3为下行控制信息格式2-0中的时隙格式指示字段。或者,第二指示信息#3也可以是具备类似功能的其他信息,本申请不做限定。
还应理解,上文所述方案(例如方法200、300和400)适用于能够识别上述第一指示信息至第四指示信息的终端设备,即可以识别子带全双工相关的信息的终端设备。方法200和方法300适用的通信系统也兼容不能识别上述第一指示信息至第四指示信息的终端设备,即不能识别子带全双工相关的信息的终端设备,例如可以称为传统(legacy)UE。例如,图1中,在一个SBFD小区中,终端设备#0支持SBFD方案,终端设备#1不支持SBFD方案。下面详细介绍legacy UE如何根据网络设备的指示确定第一载波的时频资源分布。
步骤4-1,网络设备向终端设备发送无线资源控制配置消息,相应地,终端设备接收来自网络设备的无线资源控制配置消息。
其中,无线资源控制配置消息指示第一预留速率匹配资源(rateMatchPattern)。
步骤4-2,网络设备向终端设备发送无线资源控制重配置消息,相应地,终端设备接收来自网络设备的无线资源控制重配置消息。
其中,无线资源控制重配置消息指示第二预留速率匹配资源。并且,第一预留速率匹配资源包括第一频域资源,第二预留速率匹配资源不包括第一频域资源。
示例性地,这里的第一频域资源可以理解为方法200中的第一子带,或者,方法300中的第一子带#2,或者,方法400中的第一子带#3。
可选地,第一预留速率匹配资源和第二预留速率匹配资源均为小区级别的或均为部分带宽级别的。
步骤4-3,终端设备根据第一预留速率匹配资源和第二预留速率匹配资源确定第一频域资源用于传输下行数据。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,该装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图17示出了一种本申请适用的用于资源配置的装置500的示意图。该装置500包括收发单元510,收发单元510可以用于实现相应的通信功能。收发单元510还可以称为通信接口或通信单元。
可选地,该装置500还可以包括处理单元520,处理单元520可以用于进行数据处理。
可选地,该装置500还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元520可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中通信设备(如终端设备,又如网络设备)执行的动作。
该装置500可以用于执行上文各个方法实施例中通信设备(如终端设备,又如网络设备)所执行的动作,这时,该装置500可以为通信设备(如终端设备,又如网络设备)的组成部件,收发单元510用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)侧的收发相关的操作,处理单元520用于执行上文方法实施例中通信设备(如终端设备,又如网络设备)侧的处理相关的操作。
作为一种设计,该装置500用于执行上文各个方法实施例中终端设备所执行的动作。
具体地,一种可能的实现方式中,收发单元510,用于接收来自网络设备的第一指示信息,该第一指示信息用于在多套时频资源配置信息中指示第一时频资源配置信息,该多套时频资源配置信息中的每套时频资源配置信息包括第一载波中的一个或多个子带的频域配置参数和时域配置参数,该第一时频资源配置信息包括该第一载波中的第一子带的第一频域配置参数和第一时域配置参数;处理单元520,用于根据该第一频域配置参数和该第一时域配置参数确定该第一载波中的L个子带的第一时域位置、频域位置以及该L个子带在该第一时域位置的符号类型,L≥1且L为整数。
具体地,另一种可能的实现方式中,处理单元520,用于根据第一时频资源配置信息确定第一载波中的L个子带的第一时域位置、频域位置以及该L个子带在该第一时域位置的符号类型,该第一时频资源配置信息包括该第一载波中的第一子带的第一频域配置参数和第一时域配置参数,该L个子带包括该第一子带和第二子带,其中,该第一时域位置包括一个或多个时间单元,该一个或多个时间单元中的每个时间单元上的该第一子带和该第二子带在频域上不重叠,L≥1且L为整数,该一个或多个时间单元包括第一符号,该第一子带在该第一符号的符号类型与该第二子带在该第一符号的符号类型不同;收发单元510,用于接收来自网络设备的第三指示信息,该第三指示信息用于指示使用第三时频资源配置信息;处理单元520,还用于根据该第三时频资源配置信息确定该第一载波的第一时域位置、频域位置以及该第一载波在该第一时域位置的符号类型,该第一载波在该第一时域位置上的符号类型相同。
可以理解的是,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
作为另一种设计,该装置500用于执行上文各个方法实施例中网络设备所执行的动作。
具体地,一种可能的实现方式中,处理单元520,用于生成第一指示信息,该第一指示信息用于在多套时频资源配置信息中指示第一时频资源配置信息,该多套时频资源配置信息中的每套时频资源配置信息包括第一载波中的一个或多个子带的频域配置参数和时域配置参数,该第一时频资源配置信息包括该第一载波中的第一子带的第一频域配置参数和第一时域配置参数,该第一频域配置参数和该第一时域配置参数用于指示该第一载波中的L个子带的第一时域位置、频域位置以及该L个子带在该第一时域位置的符号类型,L≥1且L为整数;收发单元510,用于向终端设备发送该第一指示信息。
具体地,另一种可能的实现方式中,收发单元510,用于网络设备向终端设备发送第一时频资源配置信息,该第一时频资源配置信息用于确定第一载波中的L个子带的第一时域位置、频域位置以及该L个子带在该第一时域位置的符号类型,该第一时频资源配置信息包括该第一载波中的第一子带的第一频域配置参数和第一时域配置参数,该L个子带包括该第一子带和第二子带,其中,该第一时域位置包括一个或多个时间单元,该一个或多个时间单元中的每个时间单元上的该第一子带和该第二子带在频域上不重叠,L≥1且L为整数,该一个或多个时间单元包括第一符号,该第一子带在该第一符号的符号类型与该第二子带在该第一符号的符号类型不同;该收发单元510,还用于向该终端设备发送第三指示信息,该第三指示信息用于指示使用第三时频资源配置信息,该第三时频资源配置信息用于指示该第一载波的第一时域位置、频域位置以及该第一载波在该第一时域位置的符号类型,该第一载波在该第一时域位置上的符号类型相同。
可以理解的是,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还可以理解的是,这里的装置500以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件 程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置500可以具体为上述实施例中的终端设备,可以用于执行上述各方法实施例中与终端设备对应的各个流程和/或步骤,或者,装置500可以具体为上述实施例中的网络设备,可以用于执行上述各方法实施例中与网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置500具有实现上述方法中终端设备所执行的相应步骤的功能,或者,上述各个方案的装置500具有实现上述方法中网络设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元510还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图17中的装置可以是前述实施例中的网元或设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图18示出了另一种本申请适用的用于资源配置的装置600的示意图。该装置600包括处理器610,处理器610与存储器620耦合,存储器620用于存储计算机程序或指令和/或数据,处理器610用于执行存储器620存储的计算机程序或指令,或读取存储器620存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器610为一个或多个。
可选地,存储器620为一个或多个。
可选地,该存储器620与该处理器610集成在一起,或者分离设置。
可选地,如图18所示,该装置600还包括收发器630,收发器630用于信号的接收和/或发送。例如,处理器610用于控制收发器630进行信号的接收和/或发送。
作为一种方案,该装置600用于实现上文各个方法实施例中由终端设备执行的操作。
例如,处理器610用于执行存储器620存储的计算机程序或指令,以实现上文各个方法实施例中终端设备的相关操作。例如,图3至图16中任一项所示实施例中的终端设备或UE执行的方法。
作为一种方案,该装置600用于实现上文各个方法实施例中由网络设备执行的操作。
例如,处理器610用于执行存储器620存储的计算机程序或指令,以实现上文各个方法实施例中网络设备的相关操作。例如,图3至图16中任一项所示实施例中的网络设备或基站执行的方法。
可以理解的是,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还可以理解的是,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门 或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图19示出了一种本申请适用的芯片系统700的示意图。该芯片系统700(或者也可以称为处理系统)包括逻辑电路710以及输入/输出接口(input/output interface)620。
其中,逻辑电路710可以为芯片系统700中的处理电路。逻辑电路710可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统700可以实现本申请各实施例的方法和功能。输入/输出接口620,可以为芯片系统700中的输入输出电路,将芯片系统700处理好的信息输出,或将待处理的数据或信令信息输入芯片系统700进行处理。
具体地,例如,若终端设备安装了该芯片系统700,逻辑电路710与输入/输出接口620耦合,逻辑电路710可通过输入/输出接口620向网络设备发送消息,该消息可以为逻辑电路710根据生成的;或者输入/输出接口620可将来自网络设备的消息输入至逻辑电路710进行处理。又如,若网络设备安装了该芯片系统700,逻辑电路710与输入/输出接口620耦合,逻辑电路710可通过输入/输出接口620向终端设备发送消息,该消息可以为逻辑电路710生成的;或者输入/输出接口620可将来自终端设备的消息输入至逻辑电路710进行处理。
作为一种方案,该芯片系统700用于实现上文各个方法实施例中由终端设备执行的操作。
例如,逻辑电路710用于实现上文方法实施例中由终端设备执行的处理相关的操作,如,图3至图16中任一项所示实施例中的终端设备或UE执行的处理相关的操作;输入/输出接口620用于实现上文方法实施例中由终端设备执行的发送和/或接收相关的操作,如,图3至图16中任一项所示实施例中的终端设备或UE执行的发送和/或接收相关的操作。
作为另一种方案,该芯片系统700用于实现上文各个方法实施例中由网络设备执行的操作。
例如,逻辑电路710用于实现上文方法实施例中由网络设备执行的处理相关的操作,如,图3至图16中任一项所示实施例中的网络设备或基站执行的处理相关的操作;输入/输出接口720用于实现上文方法实施例中由网络设备执行的发送和/或接收相关的操作,如,图3至图16中任一项所示实施例中的网络设备或基站执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由终端设备或网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由终端设备或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由终端设备或网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文各实施例中的终端设备和网络设备。例如,该系统包含图3至图16中任一项所示实施例中的终端设备和网络设备。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。 所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种资源配置的方法,其特征在于,包括:
    终端设备接收来自网络设备的第一指示信息,所述第一指示信息用于在多套时频资源配置信息中指示第一时频资源配置信息,所述多套时频资源配置信息中的每套时频资源配置信息包括第一载波中的一个或多个子带的频域配置参数和时域配置参数,所述第一时频资源配置信息包括所述第一载波中的第一子带的第一频域配置参数和第一时域配置参数;
    所述终端设备根据所述第一频域配置参数和所述第一时域配置参数确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型,L≥1且L为整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一载波还包括第二子带,L>1,所述L个子带包括所述第一子带和所述第二子带;
    所述第一时域位置包括一个或多个时间单元,所述一个或多个时间单元中的每个时间单元上的所述第一子带和所述第二子带在频域上不重叠;
    所述一个或多个时间单元包括第一符号,所述第一子带在所述第一符号的符号类型与所述第二子带在所述第一符号的符号类型不同。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一指示信息包括所述第一时频资源配置信息的索引;或者,
    所述第一指示信息包括所述第一频域配置参数的索引和/或所述第一时域配置参数的索引。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一载波还包括第二子带,L>1,所述L个子带包括所述第一子带和所述第二子带;
    所述终端设备根据所述第一频域配置参数和所述第一时域配置参数确定所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型,包括:
    所述终端设备根据所述第一频域配置参数确定所述第一子带的频域位置;
    所述终端设备根据所述第一子带的频域位置和所述第一载波的频域位置确定所述第二子带的频域位置;
    所述终端设备根据所述第一时域配置参数确定所述第一子带的时域位置,所述第一子带的时域位置包括所述第一时域位置;
    所述终端设备根据所述第一时域配置参数确定所述第一子带在所述第一时域位置的符号类型为上行或灵活;
    所述终端设备根据所述第一载波的时隙格式配置确定所述第二子带的时域位置,所述第二子带的时域位置包括所述第一时域位置;
    所述终端设备根据所述第一载波的时隙格式配置确定所述第二子带在所述第一时域位置的符号类型为下行或灵活。
  5. 根据权利要求4所述的方法,其特征在于,所述第一子带与所述第二子带之间存在保护带宽的情况下,所述第一时频资源配置信息还包括所述保护带宽的频域配置参数;
    所述终端设备根据所述第一子带的频域位置和所述第一载波的频域位置确定所述第二子带的频域位置,包括:
    所述终端设备根据所述保护带宽的频域配置参数确定所述保护带宽的频域位置;
    所述终端设备根据所述第一子带的频域位置、所述第一载波的频域位置和所述保护带宽的频域位置确定所述第二子带的频域位置。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一子带在所述第一时域位置上包括灵活符号和上行符号的情况下,所述第一时域配置参数用于指示所述灵活符号和所述上行符号的时域位置;
    所述终端设备根据所述第一时域配置参数确定所述第一子带的第一时域位置,包括:
    所述终端设备根据所述第一时域配置参数确定所述灵活符号的时域位置和所述上行符号的时域位置;
    所述终端设备根据所述灵活符号的时域位置和所述上行符号的时域位置确定所述第一时域位置。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述第一时域位置包括多个时间单元的情况下,所述第一频域配置参数包括X组频域配置参数,所述X组频域配置参数中的每组频域配置参数用于指示一种频域位置,所述第一时频资源配置信息还用于指示所述每组频域配置参数与所述多个时间单元中的每个时间单元的对应关系,X≥2且X为整数;
    所述终端设备根据所述第一频域配置参数确定所述第一子带的频域位置,包括:
    所述终端设备根据所述X组频域配置参数确定所述第一子带对应的X种频域位置;
    所述终端设备根据所述X种频域位置、所述第一时域位置和所述对应关系确定所述第一子带的在所述每个时间单元的频域位置。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于在所述多套时频资源配置信息中指示第二时频资源配置信息,所述第二时频资源配置信息包括所述第一子带的第二时域配置参数和第二频域配置参数,所述第二时频资源配置信息与所述第一时频资源配置信息不完全相同或完全不同;
    所述终端设备根据所述第二时域配置参数和所述第二频域配置参数确定所述第一载波中的P个子带的第二时域位置、频域位置以及所述P个子带在所述第二时域位置的符号类型,P≥1且P为整数。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述多套时频资源配置信息是预配置在所述终端设备的,或者,所述多套时频资源配置信息是所述终端设备从所述网络设备接收的。
  10. 根据权利要求2至9中任一项所述的方法,其特征在于,所述第一子带在所述第一时域位置的符号类型为上行或灵活;所述第二子带在所述第一时域位置的符号类型为下行或灵活,所述方法还包括:
    所述终端设备接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示使用第三时频资源配置信息;
    所述终端设备根据所述第三时频资源配置信息确定所述第一载波的第三时域位置、频域位置以及所述第一载波在所述第三时域位置的符号类型,所述第一载波在所述第三时域位置上的符号类型相同。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第三指示信息包括所述第三时频资源配置信息的索引;或者,
    所述第三指示信息的取值为0;或者,
    所述第三指示信息为下行控制信息中的时隙格式指示字段,所述方法还包括:
    所述终端设备接收来自所述网络设备的无线资源控制配置消息,所述无线资源控制配置消息包括时分双工上下行配置信息,所述时隙格式指示字段具体指示将所述时分双工上下行配置信息配置的所述第一子带中的上行符号修改为下行符号或灵活符号。
  12. 一种资源配置的方法,其特征在于,包括:
    网络设备生成第一指示信息,所述第一指示信息用于在多套时频资源配置信息中指示第一时频资源配置信息,所述多套时频资源配置信息中的每套时频资源配置信息包括第一载波中的一个或多个子带的频域配置参数和时域配置参数,所述第一时频资源配置信息包括所述第一载波中的第一子带的第一频域配置参数和第一时域配置参数,所述第一频域配置参数和所述第一时域配置参数用于指示所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型,L≥1且L为整数;
    网络设备向终端设备发送所述第一指示信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第一载波还包括第二子带,L>1,所述L个子带包括所述第一子带和所述第二子带;
    所述第一时域位置包括一个或多个时间单元,所述一个或多个时间单元中的每个时间单元上的所述第一子带和所述第二子带在频域上不重叠;
    所述一个或多个时间单元包括第一符号,所述第一子带在所述第一符号的符号类型与所述第二子带在所述第一符号的符号类型不同。
  14. 根据权利要求12或13所述的方法,其特征在于,
    所述第一指示信息包括所述第一时频资源配置信息的索引;或者,
    所述第一指示信息包括所述第一频域配置参数的索引和/或所述第一时域配置参数的索引。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述第一载波还包括第二子带,L>1,所述L个子带包括所述第一子带和所述第二子带;
    所述第一频域配置参数和所述第一时域配置参数用于指示所述第一载波中的L个子带的第一时域位置、频域位置以及所述L个子带在所述第一时域位置的符号类型,包括:
    所述第一频域配置参数用于确定所述第一子带的频域位置;
    所述第一时域配置参数用于确定所述第一子带的时域位置,所述第一子带的时域位置包括所述第一时域位置;
    所述第一时域配置参数还用于确定所述第一子带在所述第一时域位置的符号类型为上行或灵活。
  16. 根据权利要求15所述的方法,其特征在于,所述第一子带与所述第二子带之间存在保护带宽的情况下,所述第一时频资源配置信息还包括所述保护带宽的频域配置参数。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一子带在所述第一时域位置上包括灵活符号和上行符号的情况下,所述第一时域配置参数用于指示所述灵活符号和所述上行符号的时域位置。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述第一时域位置包括多个时间单元的情况下,所述第一频域配置参数包括X组频域配置参数,所述X组频域配置参数中的每组频域配置参数用于指示一种频域位置,所述第一时频资源配置信息还用于指示所述每组频域配置参数与所述多个时间单元中的每个时间单元的对应关系,X≥2且X为整数。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于在所述多套时频资源配置信息中指示第二时频资源配置信息,所述第二时频资源配置信息包括所述第一子带的第二时域配置参数和第二频域配置参数,所述第二时频资源配置信息与所述第一时频资源配置信息不完全相同或完全不同,所述第二时域配置参数和所述第二频域配置参数用于指示所述第一载波中的P个子带的第二时域位置、频域位置以及所述P个子带在所述第二时域位置的符号类型,P≥1且P为整数。
  20. 根据权利要求12至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送所述多套时频资源配置信息。
  21. 根据权利要求13至20中任一项所述的方法,其特征在于,所述第一子带在所述第一时域位置的符号类型为上行或灵活;所述第二子带在所述第一时域位置的符号类型为下行或灵活,所述方法还包括:
    所述网络设备向所述终端设备发送第三指示信息,所述第三指示信息用于指示使用第三时频资源配置信息,所述第三指示信息用于指示所述第一载波的第三时域位置、频域位置以及所述第一载波在所述第三时域位置的符号类型,所述第一载波在所述第三时域位置上的符号类型相同。
  22. 根据权利要求21所述的方法,其特征在于,
    所述第三指示信息包括所述第三时频资源配置信息的索引;或者,
    所述第三指示信息的取值为0;或者,
    所述第三指示信息为下行控制信息中的时隙格式指示字段,所述方法还包括:
    所述网络设备向所述终端设备发送无线资源控制配置消息,所述无线资源控制配置消息包括时分双工上下行配置信息,所述时隙格式指示字段具体指示将所述时分双工上下行配置信息配置的所述第一子带中的上行符号修改为下行符号或灵活符号。
  23. 一种资源配置的装置,其特征在于,包括:
    用于实现权利要求1至11中任一项所述方法的模块;或者,
    用于实现权利要求12至22中任一项所述方法的模块。
  24. 一种资源配置的装置,其特征在于,包括:
    处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行权利要求1至11中任一项所述的方法,或者,以使得所述装置执行权利要求12至22中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项所述的方法,或者,使得所述计算机执行如权利要求12至22中任一项所述的方法。
  26. 一种芯片,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于读取并执行所述存储器中存储的所述计算机程序,当所述计算机程序被执行时,所述处理器执行如权利要求1至11中任一项所述的方法,或者,所述处理器执行如权利要求12至22中任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至11中任一项所述的方法,或者,使得计算机执行如权利要求12至22中任一项所述的方法。
PCT/CN2023/121655 2022-09-30 2023-09-26 资源配置的方法及装置 WO2024067617A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211217068.6A CN117812735A (zh) 2022-09-30 2022-09-30 资源配置的方法及装置
CN202211217068.6 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067617A1 true WO2024067617A1 (zh) 2024-04-04

Family

ID=90427558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121655 WO2024067617A1 (zh) 2022-09-30 2023-09-26 资源配置的方法及装置

Country Status (2)

Country Link
CN (1) CN117812735A (zh)
WO (1) WO2024067617A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150487A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 用于确定传输方向的方法和设备
WO2021207639A1 (en) * 2020-04-10 2021-10-14 Qualcomm Incorporated Support of iab operation in paired spectrum
WO2021242931A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques
WO2022014892A1 (ko) * 2020-07-14 2022-01-20 삼성전자 주식회사 무선 통신 시스템에서 상향링크-하향링크 설정 변경 방법 및 장치
CN114830723A (zh) * 2019-12-24 2022-07-29 高通股份有限公司 用于全双工用户装备的带宽操作
CN115004833A (zh) * 2020-02-04 2022-09-02 高通股份有限公司 用于全双工通信的先占指示

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150487A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 用于确定传输方向的方法和设备
CN114830723A (zh) * 2019-12-24 2022-07-29 高通股份有限公司 用于全双工用户装备的带宽操作
CN115004833A (zh) * 2020-02-04 2022-09-02 高通股份有限公司 用于全双工通信的先占指示
WO2021207639A1 (en) * 2020-04-10 2021-10-14 Qualcomm Incorporated Support of iab operation in paired spectrum
WO2021242931A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques
WO2022014892A1 (ko) * 2020-07-14 2022-01-20 삼성전자 주식회사 무선 통신 시스템에서 상향링크-하향링크 설정 변경 방법 및 장치

Also Published As

Publication number Publication date
CN117812735A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
US20200280981A1 (en) Method and apparatus for managing resource pool in wireless communication system
CN111148207B (zh) 一种功率余量报告的上报方法、获取方法及装置
US20210160852A1 (en) Resource configuration method and terminal device
EP3833129A1 (en) Method for transmitting configuration information and terminal device
JP7399190B2 (ja) 通信方法及び通信装置
JP7027440B2 (ja) アップリンク伝送方法、装置、端末装置、アクセスネットワーク装置及びシステム
WO2013082784A1 (en) Resource allocation by component carrier sub-bands
WO2022027308A1 (en) Enhanced configured grants
CN112311501A (zh) 通信方法和通信装置
WO2022027294A1 (en) Mobile devices and methods for implementing enhanced configured grants
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications
WO2024067617A1 (zh) 资源配置的方法及装置
CN112996114A (zh) 资源调度方法、装置、设备及存储介质
WO2023284485A1 (zh) 信号传输方法及装置
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2023134678A1 (zh) 通信方法和通信装置
WO2024094091A1 (zh) 子带配置的方法和通信装置
WO2024067656A1 (zh) 上行传输的方法和通信装置
WO2022102669A1 (ja) 端末
WO2023011372A1 (zh) 数据传输方法及装置
WO2023025301A1 (zh) 一种通信方法及通信装置
WO2021227071A1 (zh) 保护间隔的确定方法、设备及存储介质
WO2022153545A1 (ja) 端末及び無線通信方法
CN112996127B (zh) 资源调度方法、装置、设备及存储介质
WO2023065365A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870845

Country of ref document: EP

Kind code of ref document: A1