WO2023284485A1 - 信号传输方法及装置 - Google Patents

信号传输方法及装置 Download PDF

Info

Publication number
WO2023284485A1
WO2023284485A1 PCT/CN2022/099642 CN2022099642W WO2023284485A1 WO 2023284485 A1 WO2023284485 A1 WO 2023284485A1 CN 2022099642 W CN2022099642 W CN 2022099642W WO 2023284485 A1 WO2023284485 A1 WO 2023284485A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
transmission
channel transmission
target
ofdm symbol
Prior art date
Application number
PCT/CN2022/099642
Other languages
English (en)
French (fr)
Inventor
李胜钰
官磊
李锐杰
马蕊香
郭志恒
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22841125.2A priority Critical patent/EP4354997A1/en
Publication of WO2023284485A1 publication Critical patent/WO2023284485A1/zh
Priority to US18/411,215 priority patent/US20240155581A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communication technologies, and in particular to a signal transmission method and device.
  • the 5G communication system is committed to supporting higher system performance and will support multiple business types, different deployment scenarios and a wider spectrum range.
  • a variety of business types include enhanced mobile broadband (enhanced Mobile Broadband, eMBB), massive machine type communication (massive machine type communication, mMTC), ultra-reliable and low latency communications (ultra-reliable and low latency communications, URLLC), multimedia broadcast Multicast service (multimedia broadcast multicast service, MBMS) and positioning service, etc.
  • eMBB enhanced Mobile Broadband
  • massive machine type communication massive machine type communication
  • mMTC massive machine type communication
  • ultra-reliable and low latency communications ultra-reliable and low latency communications
  • URLLC ultra-reliable and low latency communications
  • multimedia broadcast Multicast service multimedia broadcast multicast service
  • MBMS multimedia broadcast multicast service
  • a wider spectrum range means that 5G will support a spectrum range up to 100GHz, which includes both the low-frequency part below 6 GHz and the high-frequency part above 6GHz up to 100GHz.
  • the traditional macro station deployment frequency band is usually a frequency division duplex (frequency division duplex, FDD) frame structure or a time division duplex (time division duplex, TDD) frame structure.
  • FDD frequency division duplex
  • TDD time division duplex
  • the uplink (or downlink) time slot transmission cannot be performed until all downlink (or uplink) time slot transmissions are completed, which will cause a problem of too long waiting time delay.
  • 5G NR introduces a self-contained frame structure, which divides a time slot into the first n downlink symbols, the middle s flexible symbols, and the last r uplink symbols.
  • the self-contained frame structure has the problems of high overhead for uplink and downlink switching and high overhead for demodulation reference signal (DMRS) for data transmission.
  • DMRS demodulation reference signal
  • a complementary frame structure design scheme is proposed.
  • the core of the scheme is to introduce another frequency band with a frame structure of nU:mF:rD on the basis of the existing frequency band with a frame structure of nD:mF:rU. complementary.
  • frequency bands can be dynamically selected to ensure no additional waiting delay.
  • the downlink transmission channel can be estimated through the uplink reference signal to improve spectrum efficiency.
  • terminal devices when the above two frequency bands with different frame structures are located in the same frequency band, terminal devices often do not have the ability to simultaneously receive downlink data and send uplink data, and cannot flexibly switch frequency bands and select transmission.
  • the embodiment of the present application provides a signal transmission method and device.
  • the requirements of the terminal for unidirectional transmission in the target OFDM symbol are met, and at the same time, the time-domain resources are guaranteed to be used for The current transmission is not used for waiting, which improves the utilization rate of transmission resources and reduces the waiting delay.
  • a signal transmission method comprising: receiving scheduling information of at least one carrier in a first carrier and a second carrier on a target OFDM symbol, the first carrier and the second carrier
  • the communication direction on the target OFDM symbol is opposite, and the communication direction includes uplink and downlink; the channel transmission of the target carrier is performed on the target OFDM symbol, and the target carrier is determined according to the scheduling information, and the first carrier and the second carrier are on the target OFDM symbol.
  • the target carrier for channel transmission on the target OFDM symbol is determined, so that when the channel transmission of the target carrier is performed on the target OFDM symbol, on the one hand, only one
  • the time domain resources are preferentially allocated to the carrier with the current transmission demand, instead of waiting for the transmission that has not yet arrived, which improves the utilization of transmission resources and reduces the waiting delay.
  • the scheduling information is TDD frame structure configuration information of the first carrier and/or the second carrier, or downlink control of the first carrier and/or the second carrier Information DCI.
  • the TDD frame structure configuration information is indicated by the network device through RRC signaling.
  • the first carrier and the second carrier are two carriers in one frequency band.
  • the one frequency band corresponds to one radio frequency filter.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or there is an uplink symbol on the target OFDM symbol Uplink channel transmission; and/or the communication direction being downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or there is a downlink symbol on the target symbol channel transmission.
  • the target carrier is one of the first carrier and the second carrier with channel transmission, including: if one of the first carrier and the second carrier has channel transmission, and the other carrier does not For channel transmission, the target carrier is a carrier with channel transmission.
  • the first carrier has channel transmission in the target OFDM symbol, the target carrier is the first carrier, the channel transmission of the first carrier is downlink channel transmission, and the downlink channel transmission includes at least one of the following: synchronization signal/broadcast channel Block SSB, physical downlink control channel PDCCH, physical downlink shared channel PDSCH or channel state information-reference signal CSI-RS; or, the first carrier has channel transmission on the target OFDM symbol, the target carrier is the first carrier, and the first carrier
  • the channel transmission is uplink channel transmission, and the uplink channel transmission includes at least one of the following: physical uplink shared channel PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH or uplink sounding reference signal SRS.
  • the target carrier is one of the first carrier and the second carrier with channel transmission, including: if both the first carrier and the second carrier have channel transmission on the target OFDM symbol, and the first The carrier includes channel transmission scheduled or triggered by downlink control information DCI, the second carrier includes channel transmission configured by system information or RRC signaling, and the target carrier is the first carrier.
  • the target OFDM when the first carrier has DCI scheduling or triggered channel transmission on the target OFDM symbol, and the second carrier has channel transmission configured by system information or RRC signaling on the target OFDM symbol, the target OFDM
  • the channel transmission of the first carrier on the symbol can enable the network device to temporarily schedule the channel transmission of the terminal device, and improve the flexibility of channel transmission configuration.
  • the uplink channel transmission when the channel transmission scheduled or triggered by the downlink control information DCI is an uplink channel transmission, the uplink channel transmission includes at least one of the following: PUSCH, carrying an automatic repeat request-acknowledgment response HARQ-ACK of a dynamically scheduled PDSCH PUCCH, PUCCH carrying aperiodic channel state information A-CSI, aperiodic SRS, PRACH; when the channel transmission scheduled or triggered by downlink control information DCI is downlink channel transmission, the downlink channel transmission includes at least one of the following: PDSCH, non-periodic Periodic CSI-RS.
  • the downlink channel transmission when the channel transmission configured by system information or RRC signaling is downlink transmission, includes at least one of the following: PDCCH, semi-persistent scheduling SPS PDSCH, periodic or semi-persistent channel state information-reference signal CSI -RS, SSB; when the channel transmission configured by system information or RRC signaling is uplink transmission, the downlink channel transmission includes one or more of the following: PUSCH, PUCCH carrying the configuration of HARQ-ACK of SPS PDSCH, carrying scheduling request SR PUCCH, PUCCH carrying periodic CSI or semi-persistent CSI, periodic or semi-persistent SRS, PRACH.
  • both the first carrier and the second carrier have channel transmission on the target OFDM symbol
  • the method further includes: determining that the DCIs corresponding to transmission B and transmission A satisfy the first relationship, where transmission A is the first carrier For channel transmission on the target OFDM symbol, transmission B is the channel transmission of the second carrier on the target OFDM symbol.
  • the first relationship includes: the distance between the start time of the first symbol of transmission B and the end time of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or the distance between the start moment of the first symbol of the target OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the second preset duration.
  • the DCI corresponding to the transmission A of the first carrier on the target OFDM symbol and the transmission B of the second carrier on the target OFDM symbol satisfy the first relationship, ensuring that the terminal device can know the transmission A before performing the transmission B Scheduling information, so as to know the existence of transmission A, so that the terminal device can discard transmission B in time to avoid channel conflicts.
  • the calculation method of the first preset duration or the second preset duration is:
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1
  • d 1 takes the value of 0, 1 or 2 OFDM symbol lengths
  • T proc,2 is the terminal device The minimum processing time from receiving DCI to sending the PUSCH scheduled by the DCI.
  • a signal transmission method comprising: sending scheduling information of at least one carrier in the first carrier and the second carrier on the target OFDM symbol, the first carrier and the second carrier
  • the communication direction on the target OFDM symbol is opposite, and the communication direction includes uplink and downlink; the channel transmission of the target carrier is performed on the target OFDM symbol, and the target carrier is determined according to the scheduling information, and the first carrier and the second carrier are on the target OFDM symbol.
  • the time Domain resources are preferentially allocated to carriers that currently have transmission needs, rather than waiting for transmissions that have not yet arrived, which improves the utilization of transmission resources.
  • the scheduling information is TDD frame structure configuration information of the first carrier and/or the second carrier, or downlink control of the first carrier and/or the second carrier Information DCI.
  • the TDD frame structure configuration information is indicated by the network device through RRC signaling.
  • the first carrier and the second carrier are two carriers in one frequency band.
  • the one frequency band corresponds to one radio frequency filter.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or there is an uplink symbol on the target symbol Channel transmission; and/or the communication direction being downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or there is a downlink channel on the target symbol transmission.
  • the target carrier is one of the first carrier and the second carrier with channel transmission, including: if one of the first carrier and the second carrier has channel transmission, and the other carrier does not For channel transmission, the target carrier is a carrier with channel transmission.
  • the target carrier is the first carrier
  • the channel transmission of the first carrier is downlink channel transmission
  • the downlink channel transmission includes at least one of the following: synchronization signal/broadcast Channel block SSB, physical downlink control channel PDCCH, physical downlink shared channel PDSCH or channel state information-reference signal CSI-RS; or, the first carrier has channel transmission on the target OFDM symbol, the target carrier is the first carrier, the first carrier
  • the channel transmission is uplink channel transmission
  • the uplink channel transmission includes at least one of the following: physical uplink shared channel PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH or uplink sounding reference signal SRS.
  • the target carrier is one of the first carrier and the second carrier with channel transmission, including: if both the first carrier and the second carrier have channel transmission on the target OFDM symbol, and the first The carrier includes channel transmission scheduled or triggered by downlink control information DCI, the second carrier includes channel transmission configured by system information or RRC signaling, and the target carrier is the first carrier.
  • the target OFDM when the first carrier has DCI scheduling or triggered channel transmission on the target OFDM symbol, and the second carrier has channel transmission configured by system information or RRC signaling on the target OFDM symbol, the target OFDM
  • the channel transmission of the first carrier on the symbol can enable the network device to temporarily schedule the channel transmission of the terminal device, and improve the flexibility of channel transmission configuration.
  • the uplink channel transmission when the channel transmission scheduled or triggered by the downlink control information DCI is an uplink channel transmission, the uplink channel transmission includes at least one of the following: PUSCH, carrying an automatic repeat request-acknowledgment response HARQ-ACK of a dynamically scheduled PDSCH PUCCH, PUCCH carrying aperiodic channel state information A-CSI, aperiodic SRS, PRACH; when the channel transmission scheduled or triggered by downlink control information DCI is downlink channel transmission, the downlink channel transmission includes at least one of the following: PDSCH, non-periodic Periodic CSI-RS.
  • the downlink channel transmission when the channel transmission configured by system information or RRC signaling is downlink transmission, includes at least one of the following: PDCCH, semi-persistent scheduling SPS PDSCH, periodic or semi-persistent channel state information-reference signal CSI -RS, SSB; when the channel transmission configured by system information or RRC signaling is uplink transmission, the downlink channel transmission includes one or more of the following: PUSCH, PUCCH carrying the configuration of HARQ-ACK of SPS PDSCH, carrying scheduling request SR PUCCH, PUCCH carrying periodic CSI or semi-persistent CSI, periodic or semi-persistent SRS, PRACH.
  • a signal transmission method comprising: receiving scheduling information of at least one carrier in a first carrier set on a target OFDM symbol, the first carrier set includes a first carrier and a second carrier, and the first carrier Corresponding to the first TDD frame structure configuration, the second carrier corresponds to the second TDD frame structure configuration, the first carrier and the second carrier have opposite communication directions on the target OFDM symbol, and the communication direction includes uplink and downlink; refer to the carrier on the target OFDM symbol
  • the reference carrier is determined according to the scheduling information, and one of the carriers in the first carrier set that has channel transmission on the target OFDM symbol.
  • the determined reference carrier is a carrier with channel transmission, so that when the channel transmission is performed on the target OFDM symbol according to the priority principle of the reference carrier, the time domain resources can be used Priority is allocated to carriers that currently have transmission needs, rather than waiting for transmissions that have not yet arrived, which improves the utilization of transmission resources and reduces waiting delays.
  • the TDD frame structure is indicated by the network device through RRC signaling.
  • the first carrier and the second carrier are two carriers in one frequency band.
  • the one frequency band corresponds to one radio frequency filter.
  • all carriers in the first carrier set are located in a same frequency band.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or the target OFDM symbol There is uplink channel transmission on the network; and/or the communication direction is downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or, the There is downlink channel transmission on the target symbol.
  • the reference carrier is one of the carriers in the first set of carriers that have channel transmission on the target OFDM symbol, including: the reference carrier is in the first set of carriers and have channel transmission on the target OFDM symbol, and the carrier with the smallest carrier ID.
  • the reference carrier is one of the carriers in the first carrier set that has channel transmission on the target OFDM symbol, including: when the first carrier has downlink control information DCI scheduling or triggering on the target OFDM symbol For channel transmission, when the second carrier has system information or channel transmission configured by RRC signaling on the target OFDM symbol, the reference carrier is the first carrier.
  • the first carrier set includes a first carrier subset and a second carrier subset
  • the reference carrier is one of the carriers in the first carrier set that have channel transmission on the target OFDM symbol, including: When the carriers on the first carrier subset have channel transmission of downlink control information DCI scheduling or triggering on the target OFDM symbol, the carriers on the second carrier subset have channel transmission of system information or RRC signaling configuration on the target OFDM symbol
  • the reference carrier is the carrier with the smallest carrier ID in the first carrier subset.
  • the method before the channel transmission of the reference carrier on the target OFDM symbol, the method further includes: determining that the DCIs corresponding to the transmission B and the transmission A satisfy the first relationship, where the transmission A is the first carrier in the target OFDM symbol Transmission B is the channel transmission of the second carrier on the target OFDM symbol.
  • the first relationship includes: the distance between the start time of the first symbol of transmission B and the end time of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or the distance between the start moment of the first symbol of the target OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to the transmission A is greater than or equal to the second preset duration.
  • the DCI corresponding to the transmission A of the first carrier on the target OFDM symbol and the transmission B of the second carrier on the target OFDM symbol satisfy the first relationship, ensuring that the terminal device can know the transmission A before performing the transmission B Scheduling information, so as to know the existence of transmission A, so that the terminal device can discard transmission B in time to avoid channel conflicts.
  • the calculation method of the first preset duration or the second preset duration is:
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1
  • d 1 takes the value of 0, 1 or 2 OFDM symbol lengths
  • T proc,2 is the terminal device The minimum processing time from receiving DCI to sending the PUSCH scheduled by the DCI.
  • a signal transmission method includes: sending scheduling information of at least one carrier in the first carrier set on the target OFDM symbol of the orthogonal frequency division multiplexing technology, the first carrier set includes The first carrier and the second carrier, the first carrier and the second carrier have opposite communication directions on the target OFDM symbol, and the communication direction includes uplink and downlink; the channel transmission of the reference carrier is performed on the target OFDM symbol, and the reference carrier is determined according to the scheduling information , one of the carriers in the first carrier set that has channel transmission on the target OFDM symbol.
  • the determined reference carrier is a carrier with channel transmission, so that when the channel transmission is performed on the target OFDM symbol according to the priority principle of the reference carrier, the time domain resources can be used Priority is allocated to carriers that currently have transmission needs, rather than waiting for transmissions that have not yet arrived, which improves the utilization of transmission resources and reduces waiting delays.
  • the TDD frame structure is indicated by the network device through RRC signaling.
  • all carriers in the first carrier set are located in a same frequency band.
  • the reference carrier is one of the carriers in the first carrier set that has channel transmission on the target OFDM symbol, including: when the first carrier has downlink control information DCI scheduling or triggering on the target OFDM symbol For channel transmission, when the second carrier has system information or channel transmission configured by RRC signaling on the target OFDM symbol, the reference carrier is the first carrier.
  • the method before the channel transmission of the reference carrier on the target OFDM symbol, the method further includes: determining that the DCIs corresponding to the transmission B and the transmission A satisfy the first relationship, where the transmission A is the first carrier in the target OFDM symbol Transmission B is the channel transmission of the second carrier on the target OFDM symbol.
  • the first relationship includes: the distance between the start time of the first symbol of transmission B and the end time of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or the distance between the start moment of the first symbol of the target OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to the transmission A is greater than or equal to the second preset duration.
  • the DCI corresponding to the transmission A of the first carrier on the target OFDM symbol and the transmission B of the second carrier on the target OFDM symbol satisfy the first relationship, ensuring that the terminal device can know the transmission A before performing the transmission B Scheduling information, so as to know the existence of transmission A, so that the terminal device can discard transmission B in time to avoid channel conflicts.
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1
  • d 1 takes the value of 0, 1 or 2 OFDM symbol lengths
  • T proc,2 is the terminal device The minimum processing time from receiving DCI to sending the PUSCH scheduled by the DCI.
  • a communication device which includes: a transceiver module, configured to receive scheduling information on at least one carrier of the first carrier and the second carrier on the target OFDM symbol, the first carrier Contrary to the communication direction of the second carrier on the target OFDM symbol, the communication direction includes uplink and downlink; the transceiver module is also used for channel transmission of the target carrier on the target OFDM symbol, the target carrier is determined according to the scheduling information, the first carrier and one of the second ones of the carriers having channel transmissions on the target OFDM symbol.
  • the scheduling information is TDD frame structure configuration information of the first carrier and/or the second carrier, or is downlink control information DCI of the first carrier and/or the second carrier.
  • the first carrier and the second carrier are two carriers in one frequency band.
  • one frequency band corresponds to one radio frequency filter.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or there is an uplink symbol on the target OFDM symbol Uplink channel transmission; and/or the communication direction being downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or there is a downlink symbol on the target symbol channel transmission.
  • the target carrier is one of the first carrier and the second carrier with channel transmission, including: if one of the first carrier and the second carrier has channel transmission, and the other carrier does not For channel transmission, the target carrier is a carrier with channel transmission.
  • the target carrier is one of the first carrier and the second carrier with channel transmission, including: if both the first carrier and the second carrier have channel transmission on the target OFDM symbol, and the first The carrier includes channel transmission scheduled or triggered by downlink control information DCI, the second carrier includes channel transmission configured by system information or RRC signaling, and the target carrier is the first carrier.
  • the uplink channel transmission when the channel transmission scheduled or triggered by the downlink control information DCI is an uplink channel transmission, the uplink channel transmission includes at least one of the following: PUSCH, carrying an automatic repeat request-acknowledgment response HARQ-ACK of a dynamically scheduled PDSCH PUCCH, PUCCH carrying aperiodic channel state information A-CSI, aperiodic SRS, PRACH; when the channel transmission scheduled or triggered by downlink control information DCI is downlink channel transmission, the downlink channel transmission includes at least one of the following: PDSCH, non-periodic Periodic CSI-RS.
  • the apparatus further includes a processing module, configured to: determine that the DCIs corresponding to transmission B and transmission A satisfy the first relationship, where transmission A is a channel transmission of the first carrier on the target OFDM symbol, and transmission B is the channel transmission of the second carrier on the target OFDM symbol.
  • the first relationship includes: the distance between the start time of the first symbol of transmission B and the end time of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or the distance between the start moment of the first symbol of the target OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the second preset duration.
  • the calculation method of the first preset duration or the second preset duration is:
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1
  • d 1 takes the value of 0, 1 or 2 OFDM symbol lengths
  • T proc,2 is the terminal device The minimum processing time from receiving DCI to sending the PUSCH scheduled by the DCI.
  • a signal transmission device which includes: a transceiver module, configured to send scheduling information on at least one carrier of the first carrier and the second carrier on the target OFDM symbol of the orthogonal frequency division multiplexing technology, the first The communication direction of the carrier and the second carrier is opposite on the target OFDM symbol, and the communication direction includes uplink and downlink; the transceiver module is also used to perform channel transmission of the target carrier on the target OFDM symbol, the target carrier is determined according to the scheduling information, and the first One of the carrier and the second carrier on which the channel transmits on the target OFDM symbol.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or there is an uplink symbol on the target symbol Channel transmission; and/or the communication direction being downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or there is a downlink channel on the target symbol transmission.
  • the target carrier is the first carrier
  • the channel transmission of the first carrier is downlink channel transmission
  • the downlink channel transmission includes at least one of the following: synchronization signal/broadcast Channel block SSB, physical downlink control channel PDCCH, physical downlink shared channel PDSCH or channel state information-reference signal CSI-RS; or, the first carrier has channel transmission on the target OFDM symbol, the target carrier is the first carrier, the first carrier
  • the channel transmission is uplink channel transmission
  • the uplink channel transmission includes at least one of the following: physical uplink shared channel PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH or uplink sounding reference signal SRS.
  • the target carrier is one of the first carrier and the second carrier with channel transmission, including: if both the first carrier and the second carrier have channel transmission on the target OFDM symbol, and the first The carrier includes channel transmission scheduled or triggered by downlink control information DCI, the second carrier includes channel transmission configured by system information or RRC signaling, and the target carrier is the first carrier.
  • the downlink channel transmission when the channel transmission configured by system information or RRC signaling is downlink transmission, includes at least one of the following: PDCCH, semi-persistent scheduling SPS PDSCH, periodic or semi-persistent channel state information-reference signal CSI -RS, SSB; when the channel transmission configured by system information or RRC signaling is uplink transmission, the downlink channel transmission includes one or more of the following: PUSCH, PUCCH carrying the configuration of HARQ-ACK of SPS PDSCH, carrying scheduling request SR PUCCH, PUCCH carrying periodic CSI or semi-persistent CSI, periodic or semi-persistent SRS, PRACH.
  • the apparatus further includes a processing module, configured to: determine that the DCIs corresponding to transmission B and transmission A satisfy the first relationship, where transmission A is a channel transmission of the first carrier on the target OFDM symbol, and transmission B is the channel transmission of the second carrier on the target OFDM symbol.
  • the first relationship includes: the distance between the start time of the first symbol of transmission B and the end time of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or the distance between the start moment of the first symbol of the target OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the second preset duration.
  • the calculation method of the first preset duration or the second preset duration is:
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1
  • d 1 takes the value of 0, 1 or 2 OFDM symbol lengths
  • T proc,2 is the terminal device The minimum processing time from receiving DCI to sending the PUSCH scheduled by the DCI.
  • a signal transmission device which includes: a transceiver module, configured to receive scheduling information on a target OFDM symbol of at least one carrier in a first carrier set, the first carrier set includes the first carrier and the second The carrier, the first carrier and the second carrier have opposite communication directions on the target OFDM symbol, and the communication direction includes uplink and downlink; the transceiver module is also used for channel transmission of the reference carrier on the target OFDM symbol, and the reference carrier is determined according to the scheduling signal , one of the carriers in the first carrier set that has channel transmission on the target OFDM symbol.
  • the TDD frame structure is indicated by the network device through RRC signaling.
  • the first carrier and the second carrier are two carriers in one frequency band.
  • one frequency band corresponds to one radio frequency filter.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or the target OFDM symbol There is uplink channel transmission on the network; and/or the communication direction is downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or, the There is downlink channel transmission on the target symbol.
  • the reference carrier is one of the carriers in the first set of carriers that have channel transmission on the target OFDM symbol, including: the reference carrier is in the first set of carriers and have channel transmission on the target OFDM symbol, and the carrier with the smallest carrier ID.
  • the first carrier set includes a first carrier subset and a second carrier subset
  • the reference carrier is one of the carriers in the first carrier set that have channel transmission on the target OFDM symbol, including: When the carriers on the first carrier subset have channel transmission of downlink control information DCI scheduling or triggering on the target OFDM symbol, the carriers on the second carrier subset have channel transmission of system information or RRC signaling configuration on the target OFDM symbol
  • the reference carrier is the carrier with the smallest carrier ID in the first carrier subset.
  • the apparatus further includes a processing module, configured to: determine that the DCIs corresponding to transmission B and transmission A satisfy the first relationship, where transmission A is a channel transmission of the first carrier on the target OFDM symbol, and transmission B is the channel transmission of the second carrier on the target OFDM symbol.
  • the first relationship includes: the distance between the start time of the first symbol of transmission B and the end time of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or the distance between the start moment of the first symbol of the target OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to the transmission A is greater than or equal to the second preset duration.
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1
  • d 1 takes the value of 0, 1 or 2 OFDM symbol lengths
  • T proc,2 is the terminal device The minimum processing time from receiving DCI to sending the PUSCH scheduled by the DCI.
  • the first carrier and the second carrier are two carriers in one frequency band.
  • one frequency band corresponds to one radio frequency filter.
  • all carriers in the first carrier set are located in a same frequency band.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or there is an uplink symbol on the target OFDM symbol Uplink channel transmission; and/or the communication direction being downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or there is a downlink symbol on the target symbol channel transmission.
  • the reference carrier is one of the carriers in the first set of carriers that have channel transmission on the target OFDM symbol, including: the reference carrier is in the first set of carriers and have channel transmission on the target OFDM symbol, and the carrier with the smallest carrier ID.
  • the first relationship includes: the distance between the start time of the first symbol of transmission B and the end time of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or the distance between the start moment of the first symbol of the target OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to the transmission A is greater than or equal to the second preset duration.
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1
  • d 1 takes the value of 0, 1 or 2 OFDM symbol lengths
  • T proc,2 is the terminal device The minimum processing time from receiving DCI to sending the PUSCH scheduled by the DCI.
  • the embodiment of the present application provides a chip system
  • the chip system includes a processor, and may also include a memory, for implementing the method in the above-mentioned first aspect or any possible implementation manner of the first aspect , or a method for realizing the above-mentioned second aspect or any of the possible implementations of the second aspect, or a method for realizing the above-mentioned third aspect or any of the possible implementations of the third aspect, or
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the chip system further includes a transceiver.
  • the embodiments of the present application further provide a computer program product, including instructions, which, when run on a computer, cause the computer to execute the program described in the first aspect or in any possible implementation manner of the first aspect.
  • a computer program product including instructions, which, when run on a computer, cause the computer to execute the program described in the first aspect or in any possible implementation manner of the first aspect.
  • FIG. 3 is a schematic diagram of a self-contained frame structure provided by an embodiment of the present application.
  • FIG. 5 is a flow chart of a signal transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a first relationship between transmission A and transmission B provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a first relationship between another transmission A and transmission B provided by the embodiment of the present application.
  • FIG. 9 is a flow chart of a signal transmission method proposed in an embodiment of the present application.
  • FIG. 10 is a structural block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a structural block diagram of a communication device provided in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Multiple means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • the terminal equipment involved in the embodiments of the present invention may also be referred to as a terminal, user equipment (user equipment, UE), mobile station, mobile terminal, and the like.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • the embodiments of the present invention involve network equipment, which may also be referred to as wireless access network equipment.
  • the network equipment may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP),
  • FIG. 1 is a schematic structural diagram of a communication system provided by the embodiment of the present application.
  • the system includes 1 network equipment 101 and 6 terminal equipment , the six terminal devices are terminal device 102, terminal device 103, terminal device 104, terminal device 105, terminal device 106, terminal device 107, and so on.
  • the terminal device 102 is the vehicle
  • the terminal device 103 is the smart air conditioner
  • the terminal device 104 is the smart fuel dispenser
  • the terminal device 105 is the mobile phone
  • the terminal device 106 is the smart teacup
  • the terminal device 107 is the The printer is given as an example.
  • FIG. 2 is a schematic diagram of an information interaction process in a communication system provided by an embodiment of the present application.
  • the network device sends at least 2 Configuration information of two carriers; the network device sends indication information to the terminal device for configuring periodic configuration transmission on one or more of the at least two carriers, or activating semi-persistent transmission, or scheduling/triggering dynamic transmission ;
  • the terminal device determines the transmission carrier, transmission direction and transmission behavior from at least 2 carriers, where the transmission behavior refers to sending or Receive the corresponding transmission; the terminal device performs corresponding transmission or reception on the selected carrier according to the determination result.
  • OFDM orthogonal frequency division multiplexing
  • the top layer is the frequency band (band), followed by the component carrier (component carrier, CC), bandwidth part (bandwidth part, BWP), subband (subband, SB), resource
  • component carrier component carrier
  • BWP bandwidth part
  • subband subband
  • SC resource
  • the block resource block, RB
  • subcarrier subcarrier
  • Frequency band Band The frequency band refers to the regulations for the frequency range uniformly formulated by the International Telecommunication Union (ITU), and is generally named nxx.
  • band n78 corresponds to a total of 500MHz frequency band from 3.3G to 3.8G, and it is stipulated that it can only be in TDD mode.
  • Component carrier CC is the basic unit for operators to deploy frequency bands.
  • a frequency band contains multiple CCs, and a CC corresponds to a spectrum position in the frequency domain, including the starting position and bandwidth, for example, the bandwidth is 100MHz, 80MHz, 40MHz, 20MHz, 10MHz, 5MHz, etc., and both sides Usually includes a guard band.
  • the configuration of the frame structure is based on CC. That is to say, regardless of the dynamic TDD frame structure, the TDD frame structure in one CC is fixed, and the TDD frame structure of different CCs is fixed. The frame structure can be different.
  • Subband subband A BWP contains multiple RBs, which generally exceed the coherent bandwidth of the channel. Therefore, the concept of a subband is generally introduced during real data scheduling, transmission, and channel measurement.
  • a subband contains one or more RBs. For example, during channel measurement, it is often assumed that channels on one subband are the same, and during scheduling, it may also be assumed that precoding matrices on one subband are the same.
  • Resource block RB and subcarrier SC 1 RB contains 12 consecutive subcarriers SC, and 1 SC is the smallest frequency domain unit in LTE and NR systems, and can carry 1 modulation symbol.
  • a cell Cell will be associated with 1 downlink carrier and 1 uplink carrier, but for the TDD system, the downlink carrier and the uplink carrier share a TDD frame structure configuration, so the carrier and the cell can be interchanged without causing ambiguity. use.
  • the embodiment of the present application involves configuration of a TDD frame structure, and a method for configuring a frame structure in NR is introduced below.
  • TDD frame structure The basis of the TDD frame structure in NR is the transmission direction, and the minimum determination unit is the OFDM symbol.
  • the transmission direction on a symbol can be downlink (marked as D or DL), uplink (marked as U or UL), or flexible (marked as F) (also called special, marked as S), flexible
  • F flexible
  • the symbol indicates that downlink transmission and uplink transmission can be performed on this symbol, or it can be used for uplink and downlink switching.
  • Specific to the representation of the frame structure it is generally in units of time slots/symbols. For example, aD:bF:cU indicates that the uplink and downlink switching period of a TDD is a+b+c time slots, and the previous a time slots are downlink time slots.
  • Cell-level TDD frame structure configuration It can be indicated by high-level signaling tdd-UL-DL-ConfigurationCommon, which is carried in system information or cell-specific configuration information, and will include 1 subcarrier spacing SCS and 1 pattern (Pattern) .
  • the style is used to indicate the cycle, uplink, downlink, and the number of flexible time slots.
  • UE-level TDD frame structure configuration Indicated by high-layer signaling tdd-UL-DL-ConfigurationDedicated, which is a supplement to the above-mentioned tdd-UL-DL-ConfigurationCommon indicating frame structure.
  • tdd-UL-DL-ConfigurationDedicated will contain a set of TDD-UL-DL-SlotConfig, each TDD-UL-DL-SlotConfig is used for configuration
  • the frame structure of one of the above N time slots may indicate that the symbols in the time slot are uplink or downlink.
  • tdd-UL-DL-ConfigurationDedicated can only rewrite attributes indicated as flexible symbols in tdd-UL-DL-ConfigurationCommon.
  • DCI dynamically indicates the TDD frame structure: UE can be configured to detect a DCI format (format), which can be used to indicate the TDD frame structure on a group of CCs, for example, DCI format 2_0, including indicating that each of the CCs in a group
  • DCI format 2_0 DCI format 2_0
  • the slot format combination on the CC, the reference subcarrier spacing index ⁇ ref , and the bit position of each CC in the DCI and other information, and the frame structure in each slot corresponds to a slot format indicator (slot format indicator, SFI ) value, the SFI has multiple values, and each value corresponds to a frame structure.
  • slot format indicator slot format indicator
  • the above cell-level TDD frame structure configuration and UE-level TDD frame structure configuration are indicated by high-level parameters, such as RRC signaling, and are semi-static configurations, where RRC signaling includes system information at the time of initial access and post-access RRC signaling.
  • RRC signaling includes system information at the time of initial access and post-access RRC signaling.
  • the self-contained frame structure introduced by 5G NR can be expressed as nD:mF:rU, meaning that a time slot contains n downlink (D) OFDM symbols, m flexible (F) symbols, and r uplink ( uplink, U) symbol.
  • nD:mF:rU meaning that a time slot contains n downlink (D) OFDM symbols, m flexible (F) symbols, and r uplink ( uplink, U) symbol.
  • FIG. 3 it is a schematic diagram of a self-contained frame structure provided by the embodiment of the present application.
  • a self-contained time slot Slot#n has 6 downlink OFDM symbols, 2 flexible OFDM symbols and 6 uplink OFDM symbols.
  • the self-contained frame structure has a very small uplink and downlink switching cycle, which will not cause too much waiting time delay.
  • the implementation of this frame structure is complex, including the introduction of very small scheduling granularity and very high scheduling specifications. Secondly, the introduction of very large uplink and downlink switching overhead. Finally, due to the small transmission granularity, the DMRS overhead of data transmission is also high. Very big.
  • FIG 4 is a schematic diagram of a complementary frame structure provided by the embodiment of this application, as shown in Figure 4, the core of this scheme is to use the existing frame On the basis of the frequency band with the structure nD:mF:rU, another frequency band with the frame structure nU:mF:rD is introduced to form a complement. In this way, there are downlink resources and uplink resources at any time. By dynamically selecting the frequency band, no additional waiting delay can be guaranteed. At the same time, since each frequency band has a TDD frame structure, the downlink transmission channel can be estimated through the uplink reference signal and the spectrum can be improved. efficiency.
  • the above frame structure configuration can be applied to a carrier aggregation (carrier aggregation, CA) scenario, that is, in a CA scenario, two carrier CCs are supported to be configured with different or even complementary frame structures.
  • CA carrier aggregation
  • the UE needs to support transmission on two CCs at the same time, that is, the UE has two sets of transceiver links and processing units, corresponding to two CCs.
  • the purpose of introducing a complementary TDD frame structure is to support lower latency. The UE only needs to switch between two frequency bands to ensure low latency, and does not need two sets of transceiver links and processing units. In addition, two sets of transceiver links and processing units will cause waste of processing devices and resources.
  • the terminal needs to support transmission on multiple CCs on a set of transceiver links and processing units.
  • the terminal equipment often does not have the ability to simultaneously receive downlink data and transmit uplink data. Therefore, it is necessary to specify the sending and receiving behavior of the terminal equipment to support more flexible frequency bands Switching and transmission selection better support the low-latency characteristics of services such as URLLC in the 5G communication system.
  • FIG. 5 is a flow chart of a signal transmission method provided in the embodiment of the present application. As shown in FIG. 5, the method includes the following steps:
  • the network device sends scheduling information of at least one of the first carrier and the second carrier on the target OFDM symbol of the orthogonal frequency division multiplexing technology, and correspondingly, the terminal device receives at least one of the first carrier and the second carrier. Scheduling information on the target Orthogonal Frequency Division Multiplexing technique OFDM symbols.
  • the first carrier and the second carrier have opposite communication directions on the target OFDM symbol, and the communication directions include uplink and downlink.
  • first frequency domain resource and the second frequency domain resource can also be described by the first BWP and the second BWP, or other frequency domain resources such as the first subband and the second subband, and the embodiment of the present application does not Do limited.
  • the first carrier and the second carrier are carriers capable of communication between the network device and the terminal device, wherein the scheduling information of the first carrier and the second carrier is information for allocating communication resources of the first carrier and the second carrier.
  • the scheduling information may include system information or RRC signaling configuration (semi-statically configured TDD frame structure) for configuring the frame structures of the first carrier and the second carrier, and may also include The dynamic signaling of the frame structure of the second carrier (semi-static and dynamic joint indication of the TDD frame structure), may also include dynamic indication signaling or high-level configuration information of transmission A on the first carrier and/or transmission B on the second carrier make.
  • the terminal device can send uplink data and/or signaling to the network device according to the configured frame structure, and the network device can also send downlink data and/or signaling to the terminal device according to the configured frame structure.
  • the scheduling information may also include DCI dynamically sent by the network device, such as DCI format 2_0, and the terminal device dynamically modifies the time slot format on the first carrier or the second carrier according to the detected DCI. If the transmission on the first carrier or the second carrier is scheduled or triggered by dynamic indication signaling, it is called dynamically scheduled or triggered transmission, such as DCI scheduled or triggered transmission, the transmission on the first carrier or the second carrier If it is a transmission configured by high-layer configuration signaling, it is called semi-persistent scheduling transmission or configuration transmission.
  • the communication directions of the first carrier and the second carrier on the target OFDM symbol can be determined according to the scheduling information.
  • the scheduling information is the TDD frame structure configuration of the first carrier and the second carrier
  • the first carrier corresponds to the first TDD frame structure configuration
  • the second carrier corresponds to the second TDD frame structure configuration
  • the TDD frame structure configuration indicates the corresponding carrier Time-division multiplexed transmission is performed on a specific frequency domain
  • the frame structure configuration may also include information such as the carrier's SCS, period, and pattern as described above.
  • the pattern of the carrier further includes that the carrier is an uplink symbol or a downlink symbol on the OFDM symbol, which is used to indicate the communication direction of the carrier.
  • the opposite communication direction of the first carrier and the second carrier on the target OFDM symbol includes two meanings, specifically as shown in Figure 6,
  • Figure 6 is a schematic diagram of a communication direction on a target OFDM symbol provided by the embodiment of the present application, the first The layer meaning is: the configuration of the first TDD frame structure on the target OFDM symbol is an uplink symbol, and the configuration of the second TDD frame structure on the target OFDM symbol is a downlink symbol.
  • the communication direction of the first TDD frame structure configuration of the first carrier (carrier #1) is uplink (U)
  • the communication direction of the second TDD frame structure configuration of the second carrier (carrier #2) The direction is downlink (D), and the communication direction of the two is opposite.
  • the first TDD frame structure configuration on the target OFDM symbol is a flexible symbol
  • the second TDD frame structure configuration on the target OFDM symbol is also a flexible symbol, but the two carriers are on the target OFDM symbol
  • the actual channel transmission direction is opposite.
  • the communication directions of the first TDD frame structure configuration and the second TDD frame structure configuration are flexible (F), but in the actual channel transmission, the first carrier is on the target OFDM symbol 2.
  • the second carrier has a downlink channel transmission on the target OFDM symbol 2, so the first TDD frame structure configuration and the second TDD frame structure configuration also have opposite communication directions on the target OFDM symbol 2.
  • the first TDD frame structure configuration on the target OFDM symbol is an uplink symbol
  • the second TDD frame structure configuration is a flexible symbol but the second carrier has a downlink channel transmission on the target OFDM symbol; or, on the target OFDM symbol
  • the first TDD frame structure configuration on symbols is flexible symbols and the second carrier has an uplink channel transmission on the target OFDM symbol
  • the second TDD frame structure configuration is downlink symbols.
  • the first carrier and the second carrier are carriers with the same SCS, which can ensure that the OFDM symbol duration on the first carrier and the second carrier time slot are the same, thereby ensuring that the first carrier and the second carrier can be in the same
  • the direction of transmission on the target OFDM symbol is reversed.
  • the network device performs channel transmission on the target carrier on the target OFDM symbol, and correspondingly, the terminal device performs channel transmission on the target carrier on the target OFDM symbol.
  • the target carrier is determined according to the scheduling information, and the target carrier is one of the first carrier and the second carrier on which a channel is transmitted on the target OFDM symbol.
  • Mode 1 one of the first carrier and the second carrier has a channel for transmission, and the other carrier does not have a channel for transmission, and the target carrier is a carrier with a channel for transmission.
  • the first carrier is determined as the target carrier.
  • the channel transmission on the first carrier may be downlink channel transmission, and the downlink channel transmission includes at least one of the following: synchronization signal/physical broadcast channel block (SS/PBCH Block, SSB), physical downlink control Channel (physical downlink control channel, PDCCH), physical downlink shared channel (physical downlink shared channel, PDSCH), or channel state information-reference signal (channel state information-reference signal, CSI-RS), etc.
  • SS/PBCH Block synchronization signal/physical broadcast channel block
  • PDCCH physical downlink control Channel
  • PDCCH physical downlink shared channel
  • CSI-RS channel state information-reference signal
  • Both the first carrier and the second carrier have channel transmission on the target OFDM symbol, and the first carrier includes channel transmission scheduled or triggered by downlink control information DCI, and the second carrier includes system information or RRC signaling configuration
  • the target carrier is the first carrier.
  • System information or channel transmission configured by radio resource control (radio resource control, RRC) signaling, for example, SSB, PRACH, or other channel transmission that may be configured for system information or RRC signaling.
  • RRC radio resource control
  • the system information can be transmitted through a master system information block (MasterInformationBlock, MIB) and a system information block 1 (SystemInformationBlock1, SIB1).
  • the TDD frame structure described above is configured through tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated, where the indicated downlink symbols, uplink symbols, or flexible symbols can be expressed as Semi-D, Semi-U, and Semi- F, and the Semi-F symbol can further configure downlink transmission or uplink transmission through RRC signaling, and the corresponding symbol is RRC-D or RRC-U.
  • the channel transmission of system information or RRC signaling configuration is multiple transmissions, that is, each system information configuration or RRC signaling configuration can be used for multiple channel transmissions of the same configuration parameters.
  • the network device configures a license-free PUSCH transmission to the terminal device through RRC signaling, indicating that the PUSCH is sent at the corresponding time-frequency position every cycle, and the license-free PUSCH is a configuration transmission .
  • system information or RRC signaling configures channel transmission as periodic transmission.
  • the channel transmission scheduled or triggered by the DCI on the first carrier may be downlink channel transmission, and the downlink channel transmission includes at least one of the following: PDSCH or CSI-RS.
  • the channel transmission configured by high-layer signaling (system information or RRC signaling) is a pre-configured channel transmission
  • the channel transmission dynamically scheduled by DCI may be a temporarily generated channel transmission to meet some special requirements or temporary affairs, so The latter may have higher priority.
  • the second carrier is channel transmission configured by high layer signaling and the first carrier is channel transmission dynamically scheduled by DCI
  • the first carrier is determined as the target carrier.
  • the above transmission process can be expressed as: the network device does not perform channel transmission on carriers other than the target carrier on the target OFDM symbol, and correspondingly, the terminal device does not perform channel transmission on the target OFDM symbol except the target carrier. Channel transmission of other carriers.
  • the network device does not perform channel transmission on the second carrier on the target OFDM symbol.
  • the channel transmission of the second carrier may be downlink channel transmission, and the downlink channel transmission includes at least one of the following: SSB, PDCCH, PDSCH, or CSI-RS.
  • the network device does not perform channel transmission of the second carrier on the target OFDM symbol.
  • the second carrier is uplink channel transmission or downlink channel transmission configured by system information or RRC signaling (opposite to the communication direction of the first carrier), as described above.
  • the method before performing channel transmission of the target carrier on the target OFDM symbol, the method further includes: determining that the DCIs corresponding to transmission B and transmission A satisfy the first relationship, where transmission A is the first carrier in the target OFDM symbol Transmission B is the channel transmission of the second carrier on the target OFDM symbol.
  • the first relationship may include: the distance between the start moment of the first symbol of transmission B and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or the target The distance between the start moment of the first symbol of the OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to the transmission A is greater than or equal to the second preset duration.
  • FIG. 7 is a schematic diagram of the first relationship between transmission A and transmission B provided by the embodiment of the present application.
  • the last symbol of the PDCCH where the DCI corresponding to transmission A is located The end time is t1
  • the start time of transmitting the first symbol of B is t2
  • t2-t1 T1 ⁇ the first preset duration.
  • the formula for calculating the first preset duration may be:
  • T 1 ⁇ *T proc,2 +d 1 (1)
  • FIG. 8 is a schematic diagram of the first relationship between another transmission A and transmission B provided by the embodiment of the present application.
  • the calculation formula of the second preset duration may also be formula (1). It should be noted that, assuming that the target OFDM symbol is multiple symbols, then r2 is the starting moment of the first symbol in the target OFDM symbol, assuming that the target OFDM symbol is one symbol, then r2 is the starting moment of the target OFDM symbol .
  • the above process can ensure that the terminal device can know the scheduling information of transmission A before transmission B, so as to know the existence of transmission A, so that the terminal device can discard transmission B in time to avoid channel conflict.
  • the first preset duration or the second preset duration is shorter than when the first carrier and the second carrier are located in the same frequency band, because
  • the terminal device can be configured with two different sets of transceiver links in different frequency bands, so the transmission on the first carrier and the second carrier can be prepared in advance. Since the first preset duration or the second preset duration is shorter, the network device has higher flexibility in scheduling the transmission A.
  • the above-mentioned channel transmissions are potential transmissions configured by high-layer signaling or DCI scheduling.
  • the network device may send downlink transmission to the terminal equipment (UE), and the UE needs to try to receive the downlink transmission on this time-frequency resource.
  • UE terminal equipment
  • the network device may send a PDCCH to the UE on the PDCCH time-frequency resource, carrying DCI, and the UE needs to perform PDCCH detection on the PDCCH time-frequency resource;
  • PDSCH contains RRC signaling Configured semi-persistent scheduling (Semi-persistent Scheduling, SPS) PDSCH transmission and DCI dynamic scheduling PDSCH transmission
  • SPS semi-persistent Scheduling
  • the network device may send PDSCH transmission to the UE in the SPS PDSCH time-frequency resource, and the terminal device needs to try to receive the SPS PDSCH.
  • the UE may send uplink transmission to the network device, and the network device needs to try to receive the uplink transmission on this time-frequency resource.
  • the PUSCH transmission includes a configured grant (CG) PUSCH configured by RRC signaling and a PUSCH dynamically scheduled by DCI.
  • CG configured grant
  • the UE may send uplink transmissions at these locations, or may not send uplink transmissions due to some reasons. For example, when the upper layer does not send a data block, the physical layer will not perform uplink transmission on the corresponding time-frequency resource.
  • the target carrier determined according to the scheduling information is one of the carriers including effective channel transmission, where the effective The channel transmission means that in the carrier, in addition to the transmission configured by high-level signaling or DCI dynamic scheduling, the network device or terminal device actually performs channel transmission.
  • the terminal device After determining the target carrier, the terminal device performs channel transmission on the target carrier on the target OFDM symbol, that is, transmits data and/or signals on the target carrier on the target OFDM symbol according to the communication direction of the target carrier. If the channel transmission on the target carrier is uplink channel transmission, the terminal device sends data and/or signals to the network device on the target carrier, and the network device receives the above data and/or signals on the target carrier; if the channel transmission on the target carrier For downlink channel transmission, the network device sends data and/or signals on the target carrier, and the terminal device receives the data and/or signal sent by the network device on the target carrier.
  • Reference carrier reference carrier priority principle. Since one CC corresponds to one cell in the TDD system, the reference carrier can also be understood as a reference cell (Ref.Cell). For each OFDM symbol, one reference carrier is determined from a group of CCs configured by the UE, except for the reference carrier Carriers outside the cell are called other carriers, which can also be understood as other cells. Ref.Cell can be different for different symbols. For a symbol, Ref.Cell is indicated as Semi-D, or Semi-U, or Semi-F on this symbol and has a configured transmission (ie RRC-D or RRC-U), and is a Cell that meets these conditions The Cell with the smallest Cell ID.
  • the downlink symbol, uplink symbol, or flexible symbol indicated only by tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated is called: semi-static downlink symbol (Semi-D)/semi-static uplink symbol (Semi-U)/Semi-static flexible symbol (Semi-F), if downlink transmission or uplink transmission is configured through RRC signaling on the Semi-F symbol, the corresponding symbol is RRC-D or RRC-U.
  • Downlink transmission or uplink transmission dynamically scheduled through DCI is marked as Dynamic-D/Dynamic-U.
  • conflict rules have low flexibility, do not consider the different urgency and priority of URLLC transmission and eMBB transmission, and are not very friendly to URLLC applications.
  • FIG. 9 is a flow chart of a signal transmission method proposed in the embodiment of the present application. As shown in FIG. 9, the method includes the following steps:
  • the first carrier set includes a first carrier and a second carrier, the first carrier corresponds to the first TDD frame structure configuration, the second carrier corresponds to the second TDD frame structure configuration, and the first carrier and the second carrier are in the target OFDM symbol
  • the uplink communication direction is opposite, and the communication direction includes uplink and downlink.
  • the first set of carriers is used to represent a set of frequency domain resources, which can be referred to as the first set of frequency domain resources, and multiple carriers in the first set of carriers are used to represent a set of frequency domain resources.
  • Multiple frequency domain resources In the case where the multiple frequency domain resources are multiple carriers, the multiple carriers may belong to one frequency band, or may belong to multiple frequency bands; optionally, the frequency domain resources may be BWP, and the first frequency domain resource set includes multiple BWPs, and the multiple BWPs may belong to one carrier, or may belong to multiple carriers; optionally, the frequency domain resources are subbands, the first frequency domain resource set includes multiple subbands, and the Multiple subbands may belong to one BWP or multiple BWPs.
  • the frequency domain resource is used as an example for illustration below, that is, the first frequency domain resource set is the first carrier set, the first frequency domain resource is the first carrier, and the second frequency domain resource is the second carrier.
  • the first frequency domain resource set can be described by the first BWP set
  • the first frequency domain resource and the second frequency domain resource can be described by the first BWP and the second BWP
  • the first frequency domain resource set can be described by The first subband set
  • the first frequency domain resource and the second frequency domain resource may be described by other frequency domain resources such as the first subband and the second subband, which are not limited in this embodiment of the present application.
  • the TDD frame structure is a semi-statically configured TDD frame structure.
  • the TDD frame structure is a frame structure indicated jointly by semi-static and dynamic.
  • the network device sends to the terminal device the scheduling information of at least one carrier in the first carrier set on the target OFDM symbol
  • the first carrier set includes The first carrier and the second carrier
  • the first carrier and the second carrier are two carriers configured in a frame structure with opposite communication directions on the target OFDM symbol.
  • the scheduling information may include high-layer signaling configuration information and DCI dynamic scheduling information, and the high-layer signaling configuration information includes system information or RRC signaling configuration information.
  • the network device performs channel transmission of the reference carrier on the target OFDM symbol, and correspondingly, the terminal device performs channel transmission of the reference carrier on the target OFDM symbol.
  • the reference carrier is determined according to the scheduling information, and is one of the carriers in the first carrier set that have channel transmission on the target OFDM symbol.
  • the terminal device may determine a reference carrier in the first carrier set according to the scheduling information.
  • the reference carrier is one of the carriers on the target OFDM symbol in the first carrier set, which specifically includes the following meanings: First, it is assumed that there is a carrier in the first carrier set on the target OFDM symbol. Channel transmission, and Other carriers do not have channel transmission on the target OFDM symbol, then the reference carrier is the carrier with channel transmission; second, assuming that there are multiple carriers in the first carrier set that have channel transmission on the target OFDM symbol, then the reference carrier is these carriers that have channel transmission. Among the carriers transmitted by the channel, the carrier with the smallest carrier ID.
  • the reference carrier only consider whether there is channel transmission in the carrier and the size of the carrier ID. If possible, assuming that the communication direction of the carrier with channel transmission at the same time on the target OFDM symbol is the same, the reference carrier can also be the two carriers at the same time, that is, the target OFDM symbol can simultaneously carry out the two transmissions of the same carrier channel transmission.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or there is an uplink channel transmission on the target symbol; And/or the communication direction being downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or there is downlink channel transmission on the target symbol.
  • the reference carrier is first carrier.
  • the first carrier and the second carrier are two carriers with opposite communication directions on the target OFDM symbol.
  • the two carriers have channel transmission on the target OFDM symbol
  • the first carrier is on the target OFDM symbol.
  • DCI-scheduled or triggered channel transmission (or may be called dynamically scheduled transmission)
  • channel transmission configured for system information or RRC signaling by the second carrier on the target OFDM symbol (or may be called semi-persistently scheduled transmission/configuration transmission)
  • the communication resources are prioritized to satisfy the dynamically scheduled transmission, that is, the first carrier is determined as the reference carrier.
  • the first set of carriers includes a first subset of carriers and a second subset of carriers
  • the reference carrier is one of the carriers in the first set of carriers that have channel transmission on the target OFDM symbol, including: when When the carriers on the first carrier subset have channel transmissions scheduled or triggered by downlink control information DCI on the target OFDM symbols, and the carriers on the second carrier subset have system information or channel transmission configured by RRC signaling on the target OFDM symbols , the reference carrier is the carrier with the smallest carrier ID in the first carrier subset.
  • the first set of carriers includes a first subset of carriers and a second subset of carriers, wherein the first subset of carriers is a carrier with DCI scheduled or triggered channel transmission on the target OFDM symbol, and the second subset of carriers
  • the set is the carrier transmitted on the channel configured by system information or RRC signaling on the target OFDM symbol
  • the carrier in the first carrier subset may be one or more
  • the carrier in the second carrier subset may also be one or more
  • the carrier with the smallest carrier ID is determined as the reference carrier, and the transmission of the reference carrier is performed on the target OFDM symbol, which can solve the problem of DCI scheduling or triggering Direction conflict between multiple channel transfers.
  • the method further includes: determining that the DCI corresponding to the transmission B and the transmission A satisfies the first relationship, wherein the transmission A is the channel transmission of the first carrier on the target OFDM symbol, and transmission B is the channel transmission of the second carrier on the target OFDM symbol.
  • the first relationship may include: the distance between the start moment of the first symbol of transmission B and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or the target The distance between the start moment of the first symbol of the OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to the transmission A is greater than or equal to the second preset duration.
  • calculation formula of the first preset duration or the second preset duration may be:
  • T 1 ⁇ *T proc,2 +d 1 (1)
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1, for example, it can be 0.25 or 0.5
  • d 1 takes a value of several OFDM symbol lengths, for example, 0 , 1 or 2 OFDM symbol length.
  • T proc,2 is the minimum processing time from receiving the DCI to sending the PUSCH scheduled by the DCI, corresponding to FIG. 7 , T proc,2 is t3-t2.
  • the terminal device After determining the reference carrier, the terminal device performs channel transmission on the target OFDM symbol according to the priority rules of the existing reference carrier and other carrier channel transmission, including sending uplink data and/or signaling to the network device on the target OFDM symbol, or Receive downlink data and/or signaling sent by the network device on the target OFDM symbol.
  • the network device After determining the reference carrier, the network device performs channel transmission on the target OFDM symbol according to the priority rules of channel transmission between the existing reference carrier and other carriers, including receiving uplink data sent by the terminal device on the target OFDM symbol and/or Signaling, or downlink data and/or signaling sent to the terminal device on the target OFDM symbol.
  • the determined reference carrier is a carrier with channel transmission, so that when the channel transmission is performed on the target OFDM symbol according to the priority principle of the reference carrier, the time Domain resources are preferentially allocated to carriers that currently have transmission needs, rather than waiting for transmissions that have not yet arrived, which improves the utilization of transmission resources and reduces waiting delays.
  • FIG. 10 is a communication device 400 provided in an embodiment of the present application, which may be used to execute the methods and specific embodiments performed by the terminal devices in FIGS. 5 to 8 above.
  • the apparatus 400 includes a transceiver module 401 .
  • the transceiver module 401 is configured to receive scheduling information on at least one carrier of the first carrier and the second carrier on the target OFDM symbol of the Orthogonal Frequency Division Multiplexing technology, and the communication directions of the first carrier and the second carrier on the target OFDM symbol are opposite,
  • the communication direction includes uplink and downlink;
  • the transceiver module 401 is also used to perform channel transmission of the target carrier on the target OFDM symbol, the target carrier is determined according to the scheduling information, and one of the carriers in the first carrier and the second carrier has channel transmission on the target OFDM symbol .
  • the scheduling information is TDD frame structure configuration information of the first carrier and/or the second carrier, or is downlink control information DCI of the first carrier and/or the second carrier.
  • the TDD frame structure configuration information is indicated by the network device through RRC signaling.
  • the first carrier and the second carrier are two carriers in one frequency band.
  • one frequency band corresponds to one radio frequency filter.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or there is an uplink channel transmission on the target OFDM symbol and/or the communication direction being downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or there is downlink channel transmission on the target symbol.
  • the target carrier is one of the first carrier and the second carrier with channel transmission, including: if one of the first carrier and the second carrier has channel transmission, and the other carrier has no channel transmission,
  • the target carrier is a carrier that has a channel for transmission.
  • the first carrier has channel transmission in the target OFDM symbol, the target carrier is the first carrier, the channel transmission of the first carrier is downlink channel transmission, and the downlink channel transmission includes at least one of the following: synchronization signal/broadcast channel block SSB, The physical downlink control channel PDCCH, the physical downlink shared channel PDSCH or the channel state information-reference signal CSI-RS; or, the first carrier has a channel transmission on the target OFDM symbol, the target carrier is the first carrier, and the channel transmission of the first carrier is Uplink channel transmission, where the uplink channel transmission includes at least one of the following: physical uplink shared channel PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH or uplink sounding reference signal SRS.
  • the uplink channel transmission includes at least one of the following: physical uplink shared channel PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH or uplink sounding reference signal SRS.
  • the target carrier is one of the first carrier and the second carrier with channel transmission, including: if both the first carrier and the second carrier have channel transmission on the target OFDM symbol, and the first carrier includes Channel transmission scheduled or triggered by downlink control information DCI, channel transmission including system information or RRC signaling configuration in the second carrier, and the target carrier is the first carrier.
  • the uplink channel transmission includes at least one of the following: PUSCH, PUCCH carrying the automatic repeat request-acknowledgment response HARQ-ACK of the dynamically scheduled PDSCH, PUCCH carrying aperiodic channel state information A-CSI, aperiodic SRS, PRACH;
  • the downlink channel transmission includes at least one of the following:
  • PDSCH aperiodic CSI-RS.
  • the downlink channel transmission when the channel transmission configured by system information or RRC signaling is downlink transmission, includes at least one of the following: PDCCH, semi-persistent scheduling SPS PDSCH, periodic or semi-persistent channel state information-reference signal CSI-RS, SSB; when the channel transmission configured by system information or RRC signaling is uplink transmission, the downlink channel transmission includes one or more of the following: PUSCH, PUCCH carrying the configuration of HARQ-ACK of SPS PDSCH, carrying the PUCCH of scheduling request SR, carrying PUCCH with periodic CSI or semi-persistent CSI, periodic or semi-persistent SRS, PRACH.
  • the apparatus 400 further includes a processing module 402, configured to: determine that the DCI corresponding to the transmission B and the transmission A satisfy the first relationship, where the transmission A is the channel transmission of the first carrier on the target OFDM symbol, and the transmission B is Channel transmission of the second carrier on the target OFDM symbol.
  • a processing module 402 configured to: determine that the DCI corresponding to the transmission B and the transmission A satisfy the first relationship, where the transmission A is the channel transmission of the first carrier on the target OFDM symbol, and the transmission B is Channel transmission of the second carrier on the target OFDM symbol.
  • the first relationship includes: the distance between the start moment of the first symbol of transmission B and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or The distance between the start moment of the first symbol of the target OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the second preset duration.
  • the calculation method of the first preset duration or the second preset duration is:
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1
  • d 1 takes the value of 0, 1 or 2 OFDM symbol lengths
  • T proc,2 is the terminal device The minimum processing time from receiving DCI to sending the PUSCH scheduled by the DCI.
  • the communication apparatus 400 may be used to execute the method and specific embodiments executed by the terminal device in FIG. 9 above. in,
  • the transceiver module 401 is configured to receive scheduling information of at least one carrier in the first carrier set on the target OFDM symbol, the first carrier set includes the first carrier and the second carrier, and the first carrier and the second carrier are on the target OFDM symbol
  • the communication direction is opposite, and the communication direction includes uplink and downlink;
  • the transceiver module 401 is further configured to perform channel transmission of a reference carrier on the target OFDM symbol.
  • the reference carrier is determined according to the scheduling signal, and is one of the carriers in the first carrier set that have channel transmission on the target OFDM symbol.
  • the TDD frame structure is indicated by the network device through RRC signaling.
  • the first carrier and the second carrier are two carriers in one frequency band.
  • one frequency band corresponds to one radio frequency filter.
  • all carriers in the first carrier set are located in a same frequency band.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or there is an uplink channel transmission on the target symbol; And/or the communication direction being downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or there is downlink channel transmission on the target symbol.
  • the reference carrier is one of the carriers in the first set of carriers with channel transmission on the target OFDM symbol, including: the reference carrier is in the first set of carriers, with channel transmission on the target OFDM symbol, and the carrier ID Smallest carrier.
  • the reference carrier is one of the carriers with channel transmission on the target OFDM symbol in the first carrier set, including: when the first carrier has downlink control information DCI scheduling or triggered channel transmission on the target OFDM symbol, When the second carrier transmits system information or a channel configured by RRC signaling on the target OFDM symbol, the reference carrier is the first carrier.
  • the first carrier set includes a first carrier subset and a second carrier subset
  • the reference carrier is one of the carriers in the first carrier set that have channel transmission on the target OFDM symbol, including: When the carriers on the first carrier subset have channel transmission of downlink control information DCI scheduling or triggering on the target OFDM symbol, the carriers on the second carrier subset have channel transmission of system information or RRC signaling configuration on the target OFDM symbol
  • the reference carrier is the carrier with the smallest carrier ID in the first carrier subset.
  • the processing module 402 of the apparatus 400 is configured to: determine that the DCIs corresponding to the transmission B and the transmission A satisfy the first relationship, where the transmission A is the channel transmission of the first carrier on the target OFDM symbol, and the transmission B is the second The channel transmission of the carrier on the target OFDM symbol.
  • the first relationship includes: the distance between the start moment of the first symbol of transmission B and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or The distance between the start moment of the first symbol of the target OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the second preset duration.
  • the calculation method of the first preset duration or the second preset duration is:
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1
  • d 1 takes the value of 0, 1 or 2 OFDM symbol lengths
  • T proc,2 is the terminal device The minimum processing time from receiving DCI to sending the PUSCH scheduled by the DCI.
  • processing module 402 may be a central processing unit (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • the transceiver module 401 may be an interface circuit or a transceiver. Used to receive or send data or instructions from other electronic devices. For example, in the above process, the scheduling information of at least one carrier in the first carrier set on the target OFDM symbol is received, and the channel transmission of the target carrier is performed on the target OFDM symbol.
  • the communication device 400 may further include a storage module (not shown in the figure), which may be used to store data and/or signaling, and the storage module may be coupled with the transceiver module 401 and the processing module 402 .
  • the processing module 402 may be configured to read data and/or signaling in the storage module, so that the process of determining that the DCI corresponding to transmission B and transmission A satisfy the first relationship in the foregoing method embodiment is executed.
  • FIG. 11 is a communication device 500 provided by an embodiment of the present application, which can be used to execute the methods and specific embodiments performed by the network devices in FIGS. 5 to 8 above.
  • the apparatus 500 includes a transceiver module 501 .
  • the transceiver module 501 is configured to send scheduling information on at least one carrier of the first carrier and the second carrier on the target OFDM symbol of the orthogonal frequency division multiplexing technology, and the communication direction of the first carrier and the second carrier on the target OFDM symbol is opposite,
  • the communication direction includes uplink and downlink;
  • the transceiver module 501 is also used to perform channel transmission of the target carrier on the target OFDM symbol, the target carrier is determined according to the scheduling information, and one of the carriers in the first carrier and the second carrier has channel transmission on the target OFDM symbol .
  • the scheduling information is TDD frame structure configuration information of the first carrier and/or the second carrier, or is downlink control information DCI of the first carrier and/or the second carrier.
  • the TDD frame structure configuration information is indicated by the network device through RRC signaling.
  • the first carrier and the second carrier are two carriers in one frequency band.
  • one frequency band corresponds to one radio frequency filter.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or there is an uplink channel transmission on the target symbol; And/or the communication direction being downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or there is downlink channel transmission on the target symbol.
  • the target carrier is one of the first carrier and the second carrier with channel transmission, including: if one of the first carrier and the second carrier has channel transmission, and the other carrier has no channel transmission,
  • the target carrier is a carrier that has a channel for transmission.
  • the target carrier is the first carrier
  • the channel transmission of the first carrier is downlink channel transmission
  • the downlink channel transmission includes at least one of the following: synchronization signal/broadcast channel block SSB , the physical downlink control channel PDCCH, the physical downlink shared channel PDSCH or the channel state information-reference signal CSI-RS; or, the first carrier has a channel transmission on the target OFDM symbol, the target carrier is the first carrier, and the channel transmission of the first carrier
  • the uplink channel transmission includes at least one of the following: physical uplink shared channel PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH or uplink sounding reference signal SRS.
  • the target carrier is one of the first carrier and the second carrier with channel transmission, including: if both the first carrier and the second carrier have channel transmission on the target OFDM symbol, and the first carrier includes Channel transmission scheduled or triggered by downlink control information DCI, channel transmission including system information or RRC signaling configuration in the second carrier, and the target carrier is the first carrier.
  • the uplink channel transmission includes at least one of the following: PUSCH, PUCCH carrying the automatic repeat request-acknowledgment response HARQ-ACK of the dynamically scheduled PDSCH, PUCCH carrying aperiodic channel state information A-CSI, aperiodic SRS, PRACH;
  • the downlink channel transmission includes at least one of the following: PDSCH, aperiodic CSI- RS.
  • the downlink channel transmission when the channel transmission configured by system information or RRC signaling is downlink transmission, includes at least one of the following: PDCCH, semi-persistent scheduling SPS PDSCH, periodic or semi-persistent channel state information-reference signal CSI-RS, SSB; when the channel transmission configured by system information or RRC signaling is uplink transmission, the downlink channel transmission includes one or more of the following: PUSCH, PUCCH carrying the configuration of HARQ-ACK of SPS PDSCH, carrying the PUCCH of scheduling request SR, carrying PUCCH with periodic CSI or semi-persistent CSI, periodic or semi-persistent SRS, PRACH.
  • the apparatus 500 includes a processing module 502, configured to: determine that the DCIs corresponding to the transmission B and the transmission A satisfy the first relationship, where the transmission A is the channel transmission of the first carrier on the target OFDM symbol, and the transmission B is the channel transmission of the first carrier on the target OFDM symbol. Channel transmission of two carriers on target OFDM symbols.
  • the first relationship includes: the distance between the start moment of the first symbol of transmission B and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or The distance between the start moment of the first symbol of the target OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the second preset duration.
  • the calculation method of the first preset duration or the second preset duration is:
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1
  • d 1 takes the value of 0, 1 or 2 OFDM symbol lengths
  • T proc,2 is the terminal device The minimum processing time from receiving DCI to sending the PUSCH scheduled by the DCI.
  • the communication apparatus 500 may be used to execute the method and specific embodiments executed by the network device in FIG. 9 above. in,
  • the transceiver module 501 is configured to send the scheduling information of at least one carrier in the first carrier set on the target OFDM symbol, the first carrier set includes the first carrier and the second carrier, and the first carrier and the second carrier
  • the communication direction of the two carriers is opposite on the target OFDM symbol, and the communication direction includes uplink and downlink;
  • the transceiver module 501 is further configured to perform channel transmission of a reference carrier on the target OFDM symbol, where the reference carrier is determined according to scheduling information, and one of the carriers in the first carrier set that has channel transmission on the target OFDM symbol.
  • the TDD frame structure is indicated by the network device through RRC signaling.
  • the first carrier and the second carrier are two carriers in one frequency band.
  • one frequency band corresponds to one radio frequency filter.
  • all carriers in the first carrier set are located in a same frequency band.
  • the communication direction being uplink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is an uplink symbol on the target OFDM symbol, or there is an uplink symbol on the target OFDM symbol Uplink channel transmission; and/or the communication direction being downlink includes: the first TDD frame structure configuration of the first carrier or the second TDD frame structure configuration of the second carrier is a downlink symbol on the target OFDM symbol, or there is a downlink symbol on the target symbol channel transmission.
  • the reference carrier is one of the carriers in the first set of carriers with channel transmission on the target OFDM symbol, including: the reference carrier is in the first set of carriers, with channel transmission on the target OFDM symbol, and the carrier ID Smallest carrier.
  • the reference carrier is one of the carriers with channel transmission on the target OFDM symbol in the first carrier set, including: when the first carrier has downlink control information DCI scheduling or triggered channel transmission on the target OFDM symbol, When the second carrier transmits system information or a channel configured by RRC signaling on the target OFDM symbol, the reference carrier is the first carrier.
  • the first carrier set includes a first carrier subset and a second carrier subset
  • the reference carrier is one of the carriers in the first carrier set that have channel transmission on the target OFDM symbol, including: When the carriers on the first carrier subset have channel transmission of downlink control information DCI scheduling or triggering on the target OFDM symbol, the carriers on the second carrier subset have channel transmission of system information or RRC signaling configuration on the target OFDM symbol
  • the reference carrier is the carrier with the smallest carrier ID in the first carrier subset.
  • the processing module 502 of the apparatus 500 is configured to: determine that the DCIs corresponding to the transmission B and the transmission A satisfy the first relationship, where the transmission A is the channel transmission of the first carrier on the target OFDM symbol, and the transmission B is the second The channel transmission of the carrier on the target OFDM symbol.
  • the first relationship includes: the distance between the start moment of the first symbol of transmission B and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the first preset duration; or The distance between the start moment of the first symbol of the target OFDM symbol and the end moment of the last symbol of the PDCCH where the DCI corresponding to transmission A is located is greater than or equal to the second preset duration.
  • the calculation method of the first preset duration or the second preset duration is:
  • T 1 is the first preset duration or the second preset duration
  • is a preset coefficient less than or equal to 1
  • d 1 takes the value of 0, 1 or 2 OFDM symbol lengths
  • T proc,2 is the terminal device The minimum processing time from receiving DCI to sending the PUSCH scheduled by the DCI.
  • the transceiver module 501 may be an interface circuit or a transceiver. Used to receive or send data or instructions from other electronic devices. For example, it is used to send the scheduling information of at least one of the first carrier and the second carrier on the target OFDM symbol, perform channel transmission of the target carrier on the target OFDM symbol, and the like.
  • processing module 502 may be a central processing unit (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • the communication device 500 may further include a storage module (not shown in the figure), which may be used to store data and/or signaling, and the storage module may be coupled with the transceiver module 501 and the processing module 502 .
  • the processing module 502 may be configured to read data and/or signaling in the storage module, so that the network device in the foregoing method embodiments determines the target carrier or the reference carrier.
  • FIG. 12 shows a schematic diagram of a hardware structure of an electronic device in an embodiment of the present application.
  • the structures of the communication device 400 and the communication device 500 may refer to the structure shown in FIG. 12 .
  • the electronic device 800 includes: a memory 801 , a processor 802 , a communication interface 803 and a bus 804 . Wherein, the memory 801 , the processor 802 , and the communication interface 803 are connected to each other through a bus 804 .
  • the memory 801 may be a read-only memory (Read Only Memory, ROM), a static storage device, a dynamic storage device or a random access memory (Random Access Memory, RAM).
  • the memory 801 may store a program. When the program stored in the memory 801 is executed by the processor 802, the processor 802 and the communication interface 803 are used to execute various steps of the distributed rendering method of the embodiment of the present application.
  • the processor 802 may adopt a general-purpose CPU, a microprocessor, an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), a GPU, or one or more integrated circuits for executing related programs, so as to realize the communication device of the embodiment of the present application
  • ASIC Application Specific Integrated Circuit
  • ASIC Application Specific Integrated Circuit
  • GPU GPU
  • one or more integrated circuits for executing related programs so as to realize the communication device of the embodiment of the present application
  • the processor 802 may also be an integrated circuit chip with signal processing capability. During implementation, each step of the distributed rendering method of the present application may be completed by an integrated logic circuit of hardware in the processor 802 or instructions in the form of software.
  • the above-mentioned processor 802 can also be a general-purpose processor, a digital signal processor (Digital Signal Processing, DSP), an application-specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processing
  • ASIC application-specific integrated circuit
  • FPGA Field Programmable Gate Array
  • Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 801, and the processor 802 reads the information in the memory 801, and combines its hardware to complete the functions required to be performed by the modules included in the virtual reality video sending device 400 or the virtual reality video receiving device 500 of the embodiment of the present application, Or execute the virtual reality video transmission method of the method embodiment of the present application.
  • the communication interface 803 implements communication between the electronic device 800 and other devices or communication networks by using a transceiver device such as but not limited to a transceiver. For example, the determined segmentation target and/or candidate target bounding boxes may be obtained through the communication interface 803 .
  • the bus 804 may include a path for transferring information between various components of the electronic device 800 (eg, memory 801 , processor 802 , communication interface 803 ).
  • the electronic device 800 shown in FIG. 12 only shows a memory, a processor, and a communication interface, in the specific implementation process, those skilled in the art should understand that the electronic device 800 also includes necessary other devices. Meanwhile, according to specific needs, those skilled in the art should understand that the electronic device 800 may also include hardware devices for implementing other additional functions. In addition, those skilled in the art should understand that the electronic device 800 may also only include the components necessary to realize the embodiment of the present application, and does not necessarily include all the components shown in FIG. 12 .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • modules and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms.
  • a module described as a separate component may or may not be physically separated, and a component shown as a module may or may not be a physical module, that is, it may be located in one place, or may also be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输方法及装置,其中方法包括:网络设备发送通信方向相反的两个载波中至少一个载波在目标OFDM符号上的调度信息,终端设备根据该调度信息,在目标OFDM符号上进行目标载波的信道传输,目标载波为方向相反的两个载波中在目标OFDM符号上有信道传输的载波中的一个载波,网络设备在目标OFDM符号上和目标载波上进行信道传输。本申请实施例通过将时域资源分配给当前有传输调度的一个载波,提升了传输资源利用率,降低了等待时延。

Description

信号传输方法及装置
本申请要求于2021年07月14日提交中国专利局、申请号为202110797862.1、申请名称为“信号传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号传输方法及装置。
背景技术
5G通信系统致力于支持更高系统性能,将支持多种业务类型、不同部署场景和更宽的频谱范围。其中,多种业务类型包括增强移动宽带(enhanced Mobile Broadband,eMBB),海量机器类型通信(massive machine type communication,mMTC),超可靠低延迟通信(ultra-reliable and low latency communications,URLLC),多媒体广播多播业务(multimedia broadcast multicast service,MBMS)和定位业务等。不同部署场景包括室内热点indoor hotspot)、密集城区(dense urban)、郊区、城区宏覆盖(urban macro)及高铁场景等。更宽的频谱范围是指5G将支持高达100GHz的频谱范围,这既包括6吉赫(GHz)以下的低频部分,也包括6GHz以上最高到100GHz的高频部分。
传统宏站部署频带通常为频分双工(frequency division duplex,FDD)帧结构或时分双工(time division duplex,TDD)帧结构。对于TDD帧结构频带,由于需要等待全部的下行(或上行)时隙传输完成,才能进行上行(或下行)时隙的传输,这样会造成等待时延太长的问题。
为了解决上述问题,5G NR引入了自包含(self-contain)帧结构,将一个时隙划分为前n个为下行符号,中间s个灵活符号,后r个为上行符号。但是自包含帧结构存在的上下行切换开销大,数据传输的解调参考信号(demodulation reference signal,DMRS)开销大的问题。基于此,提出了一种互补帧结构设计方案,该方案的核心是在已有的帧结构为nD:mF:rU的频带的基础上,引入另一个帧结构为nU:mF:rD的频带形成互补。这样可以通过动态选择频带,可以保证无额外等待时延,同时,由于每个频带都是TDD帧结构,可以通过上行参考信号估计下行传输信道,提升频谱效率。
但是,当上述2个帧结构不同的频带位于一个频段内,终端设备往往不具备同时进行下行数据接收和上行数据发送的能力,无法灵活的切换频带和选择传输。
发明内容
本申请实施例提供了一种信号传输方法及装置,通过将时域资源分配给当前有传输调度的一个载波,满足终端在目标OFDM符号进行单向传输的需求,同时保证了时域资源用于当前传输而不用于等待,提升了传输资源利用率,降低了等待时延。
第一方面,提供一种信号传输方法,该方法包括:接收第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;在目标OFDM符号上进行目标载波的信道传输,目标载波为根据调度信息确定的,第一载波和第二载波中在目标OFDM符号上有信道传输的一个载波。
在本申请实施例中,通过获取目标OFDM符号上的调度信息确定在该目标OFDM符号上有信道传输的目标载波,使得目标OFDM符号上进行目标载波的信道传输时,一方面满足了只进行一个载波的单向传输的需求,另一方面将时域资源优先分配给了当前有传输需求的载波,而不用于等待还未到达的传输,提升了传输资源利用率,降低了等待时延。
在一个可能的示例中,所述调度信息为所述第一载波和/或所述第二载波的TDD帧结构配置信息,或者为所述第一载波和/或所述第二载波的下行控制信息DCI。
在一个可能的示例中,所述TDD帧结构配置信息是网络设备通过RRC信令指示的。
在一个可能的示例中,所述第一载波和所述第二载波是一个频段内的两个载波。可选地,所述一个频段对应一个射频滤波器。
在一个可能的示例中,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,目标OFDM符号上存在上行信道传输;和/或通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,目标符号上存在下行信道传输。
在一个可能的示例中,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波中有一个载波有信道传输,且另一个载波没有信道传输,目标载波为有信道传输的一个载波。
在一个可能的示例中,第一载波在目标OFDM符号有信道传输,目标载波为第一载波,第一载波的信道传输为下行信道传输,下行信道传输包括以下至少一项:同步信号/广播信道块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH或信道状态信息-参考信号CSI-RS;或者,第一载波在目标OFDM符号上有信道传输,目标载波为第一载波,第一载波的信道传输为上行信道传输,上行信道传输包括以下至少一项:物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH或上行探测参考信号SRS。
在一个可能的示例中,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波在目标OFDM符号上都有信道传输,且第一载波中包括下行控制信息DCI调度或触发的信道传输,第二载波中包括系统信息或RRC信令配置的信道传输,目标载波为第一载波。
本申请实施例中,在第一载波在目标OFDM符号上有DCI调度或触发的信道传输,第二载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输的情况下,在目标OFDM符号上进行第一载波的信道传输,可以使得网络设备能够临时调度终端设备的信道传输,提升信道传输配置的灵活性。
在一个可能的示例中,下行控制信息DCI调度或触发的信道传输为上行信道传输时,上行信道传输包括以下至少一项:PUSCH,承载动态调度的PDSCH的自动重传请求-确认应答HARQ-ACK的PUCCH,承载非周期性信道状态信息A-CSI的PUCCH,非周期SRS,PRACH;下行控制信息DCI调度或触发的信道传输为下行信道传输时,下行信道传输包括以下至少一项:PDSCH,非周期CSI-RS。
在一个可能的示例中,系统信息或RRC信令配置的信道传输为下行传输时,下行信道传输包括以下至少一项:PDCCH,半静态调度SPS PDSCH,周期或半持续信道状态信息-参考信号CSI-RS,SSB;系统信息或RRC信令配置的信道传输为上行传输时,下行信道传输包括以下一项或多项:PUSCH,承载SPS PDSCH的HARQ-ACK的配置的PUCCH,承载调度请求SR的PUCCH,承载周期CSI或半持续CSI的PUCCH,周期或半持续的SRS,PRACH。
在一个可能的示例中,第一载波和第二载波在目标OFDM符号上都有信道传输,方法还包括:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。
在一个可能的示例中,第一关系包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第二预设时长。
在本申请实施例中,第一载波在目标OFDM符号上的传输A对应的DCI和第二载波在目标OFDM符号上的传输B满足第一关系,保证终端设备可以在进行传输B之前获知传输A的调度信息,从而获知传输A的存在,从而终端设备能够及时丢弃传输B,避免发生信道冲突。
在一个可能的示例中,第一预设时长或第二预设时长的计算方法为:
T 1=α*T proc,2+d 1
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,d 1取值为0,1或2个OFDM符号长度,T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间。
第二方面,提供一种信号传输方法,该方法包括:发送第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;在目标OFDM符号上进行目标载波的信道传输,目标载波为根据调度信息确定的,第一载波和第二载波中在目标OFDM符号上有信道传输的载波中的一个载波。
在本申请实施例中,通过优先在目标OFDM符号对应的载波中,有信道传输需求的目标载波上进行信道传输,一方面满足了只进行一个载波的单向传输的需求,另一方面将时域资源优先分配给了当前有传输需求的载波,而不用于等待还未到达的传输,提升了传输资源利用率。
在一个可能的示例中,所述调度信息为所述第一载波和/或所述第二载波的TDD帧结构配置信息,或者为所述第一载波和/或所述第二载波的下行控制信息DCI。
在一个可能的示例中,所述TDD帧结构配置信息是网络设备通过RRC信令指示的。
在一个可能的示例中,所述第一载波和所述第二载波是一个频段内的两个载波。可选地,所述一个频段对应一个射频滤波器。
在一个可能的示例中,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,目标符号上存在上行信道传输;和/或通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,目标符号上存在下行信道传输。
在一个可能的示例中,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波中有一个载波有信道传输,且另一个载波没有信道传输,目标载波为有信道传输的一个载波。
在一个可能的示例中,第一载波上在目标OFDM符号有信道传输,目标载波为第一载波,第一载波的信道传输为下行信道传输,下行信道传输包括以下至少一项:同步信号/广播信道 块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH或信道状态信息-参考信号CSI-RS;或者,第一载波在目标OFDM符号上有信道传输,目标载波为第一载波,第一载波的信道传输为上行信道传输,上行信道传输包括以下至少一项:物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH或上行探测参考信号SRS。
在一个可能的示例中,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波在目标OFDM符号上都有信道传输,且第一载波中包括下行控制信息DCI调度或触发的信道传输,第二载波中包括系统信息或RRC信令配置的信道传输,目标载波为第一载波。
本申请实施例中,在第一载波在目标OFDM符号上有DCI调度或触发的信道传输,第二载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输的情况下,在目标OFDM符号上进行第一载波的信道传输,可以使得网络设备能够临时调度终端设备的信道传输,提升信道传输配置的灵活性。
在一个可能的示例中,下行控制信息DCI调度或触发的信道传输为上行信道传输时,上行信道传输包括以下至少一项:PUSCH,承载动态调度的PDSCH的自动重传请求-确认应答HARQ-ACK的PUCCH,承载非周期性信道状态信息A-CSI的PUCCH,非周期SRS,PRACH;下行控制信息DCI调度或触发的信道传输为下行信道传输时,下行信道传输包括以下至少一项:PDSCH,非周期CSI-RS。
在一个可能的示例中,系统信息或RRC信令配置的信道传输为下行传输时,下行信道传输包括以下至少一项:PDCCH,半静态调度SPS PDSCH,周期或半持续信道状态信息-参考信号CSI-RS,SSB;系统信息或RRC信令配置的信道传输为上行传输时,下行信道传输包括以下一项或多项:PUSCH,承载SPS PDSCH的HARQ-ACK的配置的PUCCH,承载调度请求SR的PUCCH,承载周期CSI或半持续CSI的PUCCH,周期或半持续的SRS,PRACH。
第三方面,提供一种信号传输方法,该方法包括:接收第一载波集合中至少一个载波在目标OFDM符号上的调度信息,第一载波集合中包括第一载波和第二载波,第一载波对应第一TDD帧结构配置,第二载波对应第二TDD帧结构配置,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;在目标OFDM符号上进行参考载波的信道传输,参考载波为根据调度信息确定的,第一载波集合中在目标OFDM符号上有信道传输的载波中的一个。
在本申请实施例中,通过重定义或补充定义参考载波的方式,使得确定的参考载波为有信道传输的载波,使得目标OFDM符号上根据参考载波优先原则进行信道传输时,能够将时域资源优先分配给当前有传输需求的载波,而不用于等待还未到达的传输,提升了传输资源利用率,降低了等待时延。
在一个可能的示例中,所述TDD帧结构是网络设备通过RRC信令指示的。
在一个可能的示例中,所述第一载波和所述第二载波是一个频段内的两个载波。可选地,所述一个频段对应一个射频滤波器。
在一个可能的示例中,所述第一载波集合中所有载波都位于一个相同频段内。
在一个可能的示例中,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,所述目标OFDM符号上存在上行信道传输;和/或所述通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,所述目标符号上存在下行信道传输。
在一个可能的示例中,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:参考载波为第一载波集合中,在目标OFDM符号上有信道传输,且载波ID最小的载波。
在一个可能的示例中,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波。
在一个可能的示例中,第一载波集合中包括第一载波子集和第二载波子集,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波子集上的载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波子集上的载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波子集中载波ID最小的载波。
在一个可能的示例中,在目标OFDM符号上进行参考载波的信道传输之前,方法还包括:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。
在一个可能的示例中,第一关系包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于等于第二预设时长。
在本申请实施例中,第一载波在目标OFDM符号上的传输A对应的DCI和第二载波在目标OFDM符号上的传输B满足第一关系,保证终端设备可以在进行传输B之前获知传输A的调度信息,从而获知传输A的存在,从而终端设备能够及时丢弃传输B,避免发生信道冲突。
在一个可能的示例中,第一预设时长或第二预设时长的计算方法为:
T 1=α*T proc,2+d 1
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,d 1取值为0,1或2个OFDM符号长度,T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间。
第四方面,提供一种信号传输方法,其特征在于,该方法包括:发送第一载波集合中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,第一载波集合中包括第一载波和第二载波,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;在目标OFDM符号上进行参考载波的信道传输,参考载波为根据调度信息确定的,第一载波集合中在目标OFDM符号上有信道传输的载波中的一个。
在本申请实施例中,通过重定义或补充定义参考载波的方式,使得确定的参考载波为有信道传输的载波,使得目标OFDM符号上根据参考载波优先原则进行信道传输时,能够将时域资源优先分配给当前有传输需求的载波,而不用于等待还未到达的传输,提升了传输资源利用率,降低了等待时延。
在一个可能的示例中,所述TDD帧结构是网络设备通过RRC信令指示的。
在一个可能的示例中,所述第一载波和所述第二载波是一个频段内的两个载波。可选地, 所述一个频段对应一个射频滤波器。
在一个可能的示例中,所述第一载波集合中所有载波都位于一个相同频段内。
在一个可能的示例中,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,所述目标OFDM符号上存在上行信道传输;和/或所述通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,所述目标符号上存在下行信道传输。
在一个可能的示例中,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:参考载波为第一载波集合中,在目标OFDM符号上有信道传输,且载波ID最小的载波。
在一个可能的示例中,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波。
在一个可能的示例中,第一载波集合中包括第一载波子集和第二载波子集,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波子集上的载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波子集上的载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波子集中载波ID最小的载波。
在一个可能的示例中,在目标OFDM符号上进行参考载波的信道传输之前,方法还包括:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。
在一个可能的示例中,第一关系包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于等于第二预设时长。
在本申请实施例中,第一载波在目标OFDM符号上的传输A对应的DCI和第二载波在目标OFDM符号上的传输B满足第一关系,保证终端设备可以在进行传输B之前获知传输A的调度信息,从而获知传输A的存在,从而终端设备能够及时丢弃传输B,避免发生信道冲突。
在一个可能的示例中,第一预设时长或第二预设时长的计算方法为:
T 1=α*T proc,2+d 1
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,d 1取值为0,1或2个OFDM符号长度,T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间。
第五方面,提供一种通信装置,该装置包括:收发模块,用于接收第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;收发模块,还用于在目标OFDM符号上进行目标载波的信道传输,目标载波为根据调度信息确定的,第一载波和第二载波中 在目标OFDM符号上有信道传输的载波中的一个载波。
在一个可能的示例中,调度信息为第一载波和/或第二载波的TDD帧结构配置信息,或者为第一载波和/或第二载波的下行控制信息DCI。
在一个可能的示例中,TDD帧结构配置信息是网络设备通过RRC信令指示的。
在一个可能的示例中,第一载波和第二载波是一个频段内的两个载波。可选地,一个频段对应一个射频滤波器。
在一个可能的示例中,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,目标OFDM符号上存在上行信道传输;和/或通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,目标符号上存在下行信道传输。
在一个可能的示例中,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波中有一个载波有信道传输,且另一个载波没有信道传输,目标载波为有信道传输的一个载波。
在一个可能的示例中,第一载波在目标OFDM符号有信道传输,目标载波为第一载波,第一载波的信道传输为下行信道传输,下行信道传输包括以下至少一项:同步信号/广播信道块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH或信道状态信息-参考信号CSI-RS;或者,第一载波在目标OFDM符号上有信道传输,目标载波为第一载波,第一载波的信道传输为上行信道传输,上行信道传输包括以下至少一项:物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH或上行探测参考信号SRS。
在一个可能的示例中,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波在目标OFDM符号上都有信道传输,且第一载波中包括下行控制信息DCI调度或触发的信道传输,第二载波中包括系统信息或RRC信令配置的信道传输,目标载波为第一载波。
在一个可能的示例中,下行控制信息DCI调度或触发的信道传输为上行信道传输时,上行信道传输包括以下至少一项:PUSCH,承载动态调度的PDSCH的自动重传请求-确认应答HARQ-ACK的PUCCH,承载非周期性信道状态信息A-CSI的PUCCH,非周期SRS,PRACH;下行控制信息DCI调度或触发的信道传输为下行信道传输时,下行信道传输包括以下至少一项:PDSCH,非周期CSI-RS。
在一个可能的示例中,系统信息或RRC信令配置的信道传输为下行传输时,下行信道传输包括以下至少一项:PDCCH,半静态调度SPS PDSCH,周期或半持续信道状态信息-参考信号CSI-RS,SSB;系统信息或RRC信令配置的信道传输为上行传输时,下行信道传输包括以下一项或多项:PUSCH,承载SPS PDSCH的HARQ-ACK的配置的PUCCH,承载调度请求SR的PUCCH,承载周期CSI或半持续CSI的PUCCH,周期或半持续的SRS,PRACH。
在一个可能的示例中,该装置还包括处理模块,用于:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。
在一个可能的示例中,第一关系包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第二预设时长。
在一个可能的示例中,第一预设时长或第二预设时长的计算方法为:
T 1=α*T proc,2+d 1
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,d 1取值为0,1或2个OFDM符号长度,T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间。
第六方面,提供一种信号传输装置,该装置包括:收发模块,用于发送第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;收发模块,还用于在目标OFDM符号上进行目标载波的信道传输,目标载波为根据调度信息确定的,第一载波和第二载波中在目标OFDM符号上有信道传输的载波中的一个载波。
在一个可能的示例中,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,目标符号上存在上行信道传输;和/或通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,目标符号上存在下行信道传输。
在一个可能的示例中,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波中有一个载波有信道传输,且另一个载波没有信道传输,目标载波为有信道传输的一个载波。
在一个可能的示例中,第一载波上在目标OFDM符号有信道传输,目标载波为第一载波,第一载波的信道传输为下行信道传输,下行信道传输包括以下至少一项:同步信号/广播信道块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH或信道状态信息-参考信号CSI-RS;或者,第一载波在目标OFDM符号上有信道传输,目标载波为第一载波,第一载波的信道传输为上行信道传输,上行信道传输包括以下至少一项:物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH或上行探测参考信号SRS。
在一个可能的示例中,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波在目标OFDM符号上都有信道传输,且第一载波中包括下行控制信息DCI调度或触发的信道传输,第二载波中包括系统信息或RRC信令配置的信道传输,目标载波为第一载波。
在一个可能的示例中,下行控制信息DCI调度或触发的信道传输为上行信道传输时,上行信道传输包括以下至少一项:PUSCH,承载动态调度的PDSCH的自动重传请求-确认应答HARQ-ACK的PUCCH,承载非周期性信道状态信息A-CSI的PUCCH,非周期SRS,PRACH;下行控制信息DCI调度或触发的信道传输为下行信道传输时,下行信道传输包括以下至少一项:PDSCH,非周期CSI-RS。
在一个可能的示例中,系统信息或RRC信令配置的信道传输为下行传输时,下行信道传输包括以下至少一项:PDCCH,半静态调度SPS PDSCH,周期或半持续信道状态信息-参考信号CSI-RS,SSB;系统信息或RRC信令配置的信道传输为上行传输时,下行信道传输包括以下一项或多项:PUSCH,承载SPS PDSCH的HARQ-ACK的配置的PUCCH,承载调度请求SR的PUCCH,承载周期CSI或半持续CSI的PUCCH,周期或半持续的SRS,PRACH。
在一个可能的示例中,该装置还包括处理模块,用于:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第 二载波在目标OFDM符号上的信道传输。
在一个可能的示例中,第一关系包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第二预设时长。
在一个可能的示例中,第一预设时长或第二预设时长的计算方法为:
T 1=α*T proc,2+d 1
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,d 1取值为0,1或2个OFDM符号长度,T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间。
第七方面,提供一种信号传输装置,该装置包括:收发模块,用于接收第一载波集合中至少一个载波在目标OFDM符号上的调度信息,第一载波集合中包括第一载波和第二载波,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;收发模块,还用于在目标OFDM符号上进行参考载波的信道传输,参考载波为根据调度信确定的,第一载波集合中在目标OFDM符号上有信道传输的载波中的一个。
在一个可能的示例中,TDD帧结构是网络设备通过RRC信令指示的。
在一个可能的示例中,第一载波和第二载波是一个频段内的两个载波。可选地,一个频段对应一个射频滤波器。
在一个可能的示例中,第一载波集合中所有载波都位于一个相同频段内。
在一个可能的示例中,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,所述目标OFDM符号上存在上行信道传输;和/或所述通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,所述目标符号上存在下行信道传输。
在一个可能的示例中,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:参考载波为第一载波集合中,在目标OFDM符号上有信道传输,且载波ID最小的载波。
在一个可能的示例中,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波。
在一个可能的示例中,第一载波集合中包括第一载波子集和第二载波子集,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波子集上的载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波子集上的载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波子集中载波ID最小的载波。
在一个可能的示例中,该装置还包括处理模块,用于:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。
在一个可能的示例中,第一关系包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于等于第二预设时长。
在一个可能的示例中,第一预设时长或第二预设时长的计算方法为:
T 1=α*T proc,2+d 1
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,d 1取值为0,1或2个OFDM符号长度,T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间。
第八方面,提供一种信号传输装置,该装置包括:收发模块,用于发送第一载波集合中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,第一载波集合中包括第一载波和第二载波,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;收发模块,还用于在目标OFDM符号上进行参考载波的信道传输,参考载波为根据调度信息确定的,第一载波集合中在目标OFDM符号上有信道传输的载波中的一个。
在一个可能的示例中,TDD帧结构是网络设备通过RRC信令指示的。
在一个可能的示例中,第一载波和第二载波是一个频段内的两个载波。可选地,一个频段对应一个射频滤波器。
在一个可能的示例中,第一载波集合中所有载波都位于一个相同频段内。
在一个可能的示例中,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,目标OFDM符号上存在上行信道传输;和/或通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,目标符号上存在下行信道传输。
在一个可能的示例中,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:参考载波为第一载波集合中,在目标OFDM符号上有信道传输,且载波ID最小的载波。
在一个可能的示例中,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波。
在一个可能的示例中,第一载波集合中包括第一载波子集和第二载波子集,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波子集上的载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波子集上的载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波子集中载波ID最小的载波。
在一个可能的示例中,该装置还包括处理模块,用于:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。
在一个可能的示例中,第一关系包括:传输B的第一个符号的起始时刻与传输A所对应 的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于等于第二预设时长。
在一个可能的示例中,第一预设时长或第二预设时长的计算方法为:
T 1=α*T proc,2+d 1
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,d 1取值为0,1或2个OFDM符号长度,T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间。
第九方面,本申请实施例提供一种通信装置,该装置包括通信接口和至少一个处理器,该通信接口用于该装置与其它设备进行通信,例如接收第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。至少一个处理器用于调用一组程序、指令或数据,执行上述第一方面或第二方面描述的方法。该装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。存储器与至少一个处理器耦合,该至少一个处理器执行该存储器中存储的、指令或数据时,可以实现上述第一方面或第二方面描述的方法。
第十方面,本申请实施例中还提供一种通信装置,该通信装置包括通信接口和至少一个处理器,该通信接口用于该装置与其他设备进行通信,例如接收第一载波集合中至少一个载波在目标OFDM符号上的调度信息。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为终端设备。至少一个处理器用于调用一组程序、指令或数据,执行上述第三方面或第四方面描述的方法。该装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。存储器与至少一个处理器耦合,该至少一个处理器执行该存储器中存储的、指令或数据时,可以实现上述第三方面或第四方面描述的方法。
第十一方面,本申请实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行如第一方面或第一方面中任一种可能的实现方式中的方法,或使得计算机执行如第二方面或第二方面中任一种可能的实现方式中的方法,或使得计算机执行如第三方面或第三方面中任一种可能的实现方式中的方法,或使得计算机执行如第四方面或第四方面中任一种可能的实现方式中的方法。
第十二方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面中任一种可能的实现方式中的方法,或用于实现上述第二方面或第二方面中任一种可能的实现方式中的方法,或用于实现上述第三方面或第三方面中任一种可能的实现方式中的方法,或用于实现上述第四方面或第四方面中任一种可能的实现方式中的方法,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在一个可能的示例中,该芯片系统还包括收发器。
第十三方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行如第一方面或第一方面中任一种可能的实现方式中的方法,或使得计算机执行如第二方面或第二方面中任一种可能的实现方式中的方法,或使得计算机执行如第三方面或第三方面中任一种可能的实现方式中的方法,或使得计算机执行如第四方面或第四方面中任一种可能的实现方式中的方法。
第十四方面,本申请实施例中还提供一种通信系统,该通信系统可以包括第五方面和第六方面提供的信号传输装置,或者该通信系统可以包括第七方面和第八方面提供的通信传输装置。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的一种通信系统结构示意图;
图2为本申请实施例提供的一种通信系统中的信息交互过程示意图;
图3为本申请实施例提供的一种自包含帧结构的示意图;
图4为本申请实施例提供的一种互补帧结构示意图;
图5为本申请实施例提供的一种信号传输方法流程图;
图6为本申请实施例提供的一种目标OFDM符号上的通信方向示意图;
图7为本申请实施例提供的一种传输A和传输B的第一关系示意图;
图8为本申请实施例提供的另一种传输A和传输B的第一关系示意图;
图9为本申请实施例中提出一种信号传输方法流程图;
图10为本申请实施例提供的一种通信装置结构框图;
图11为本申请实施例提供的一种通信装置结构框图;
图12为本申请实施例提供的一种电子装置的结构示意图。
具体实施方式
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,而是可选地还包括没有列出的步骤或模块,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或模块。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
首先对本申请实施例的应用场景进行介绍。
本申请实施例可以适用于长期演进(long term evolution,LTE)系统,物联网(internet of things,IoT)系统;也可以适用于其他无线通信系统,例如全球移动通信系统(global system for mobile communication,GSM),移动通信系统(universal mobile telecommunications system,UMTS),码分多址接入(code division multiple access,CDMA)系统,以及新空口(new radio,NR)系统等。
本发明实施例中涉及终端设备,也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device, D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。本发明实施例中涉及网络设备,也可以称为无线接入网设备,网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
上述终端设备与网络设备的系统结构可参阅图1,图1为本申请实施例提供的一种通信系统结构示意图,如图1所示,该系统中包括1个网络设备101和6个终端设备,6个终端设备分别为终端设备102、终端设备103、终端设备104、终端设备105、终端设备106以及终端设备107等。在图1所示的示例中,是以终端设备102为交通工具,终端设备103为智能空调,终端设备104为智能加油机,终端设备105为手机,终端设备106为智能茶杯,终端设备107为打印机进行举例说明的。
进一步地,该系统中的网络设备和终端设备可以进行如图2中的信息交互,图2为本申请实施例提供的一种通信系统中的信息交互过程示意图,网络设备给终端设备发送至少2个载波的配置信息;网络设备向终端设备发送指示信息,用于配置所述至少2个载波中一个或多个载波上的周期性配置传输,或激活半持续性传输,或调度/触发动态传输;终端设备对于每个正交频分复用技术(orthogonal frequency division multiplexing,OFDM)符号,从至少2个载波中确定传输载波、传输方向和传输行为,其中传输行为是指在这些载波上发送或接收对应的传输;终端设备根据确定结果,在选择的载波上进行对应的发送或接收。
以下对本申请实施例中涉及的专业词汇进行介绍。
NR技术中频谱使用分为多个级别,最上层的是频段(band),下面依次是成员载波(component carrier,CC)、带宽部分(bandwidth part,BWP)、子带(subband,SB)、资源块(resource block,RB)和子载波(subcarrier,SC),详细介绍如下。
频段Band:频段是指由国际电信联盟(International Telecommunication Union,ITU)统一制定的针对频率范围的规定,一般是nxx来命名。例如,band n78对应3.3G~3.8G总共500MHz频段,规定只能是TDD制式。
成员载波CC:CC是运营商部署频带的基本单位。一般来说,1个频带内包含多个CC,1个CC对应频域上一段频谱位置,包括起始位置和带宽,例如带宽为100MHz、80MHz、40MHz、20MHz、10MHz、5MHz等,并且两侧一般包含保护带(guard Band)。需要注意的是,目前 LTE和NR中,帧结构的配置都是以CC为单位的,也就是说,不考虑动态TDD帧结构,1个CC中的TDD帧结构是固定的,不同CC的TDD帧结构可以不同。
带宽部分BWP:小区总带宽的一部分称作BWP,即一个CC包含多个BWP,在频域上对应CC上的一段频谱位置。BWP的起始位置是相对CC的起始位置而言的,带宽表示一般是资源块(resource block,RB)数目。1个BWP具有1个子载波间隔(subcarrier spacing,SCS),也就是说,SCS的配置是以BWP为单位的。
子带subband:一个BWP包含多个RB,一般会超出信道的相干带宽宽度,因此真实数据调度、传输和信道测量的时候一般引入一个子带的概念,1个子带包含1个或多个RB,例如在信道测量的时候,往往假设1个子带上的信道相同,在调度的时候,也可以假设1个子带上的预编码矩阵相同。
资源块RB和子载波SC:1个RB包含12个连续子载波SC,1个SC是LTE和NR系统最小的频域单位,可以承载1个调制符号。
另外,NR协议中一个小区Cell会关联1个下行载波和1个上行载波,但是对于TDD系统,下行载波和上行载波共用一个TDD帧结构配置,因此下文中载波和小区在不引起歧义下可以互用。
本申请实施例中涉及TDD帧结构配置,以下对NR中帧结构配置方法进行介绍。
NR时域结构:NR中时域传输资源的单位是帧(Frame)、子帧(subframe)、时隙(slot)和OFDM符号(symbol),帧的长度固定是10ms(毫秒),子帧的长度固定是1ms,时隙与符号的长度与子载波间隔相关,1个时隙包括14个符号(正常循环前缀)或12个符号(扩展循环前缀)。假设子载波间隔是SCS=2 μ×15kHz,则1个子帧subframe包含2 μ个时隙Slot,其中μ是SCS索引(index),取值为0,1,2,3。
TDD帧结构:NR中TDD帧结构的基础是传输方向,最小确定单位是OFDM符号。对于TDD频带,一个符号上的传输方向可以是下行(标记为D或DL),上行(标记为U或UL),或者灵活(标记为F)(又可称为特殊,标记为S),灵活符号表示这个符号上可以进行下行传输,也可以进行上行传输,或者用于上下行切换。具体到帧结构的表示,一般是以时隙/符号为单位的,例如aD:bF:cU表示一个TDD的上下行切换周期是a+b+c个时隙,前a个时隙是下行时隙,中间b个时隙是灵活时隙,最后c个时隙为上行时隙,对于灵活时隙,可以表示为xD:yF:zU,表示该时隙中前x个符号是下行,中间y个是灵活,最后z个是上行。
小区级TDD帧结构配置:可通过高层信令tdd-UL-DL-ConfigurationCommon来指示,该信令承载在系统消息或者小区特定配置信息中,会包含1个子载波间隔SCS和1个样式(Pattern)。其中样式用于指示周期,上行,下行以及灵活时隙的个数等。
UE级TDD帧结构配置:通过高层信令tdd-UL-DL-ConfigurationDedicated来指示,这个信令是对上述tdd-UL-DL-ConfigurationCommon指示帧结构的补充。假设tdd-UL-DL-ConfigurationCommon指示的帧结构周期包括N个时隙,tdd-UL-DL-ConfigurationDedicated会包含一组TDD-UL-DL-SlotConfig,每个TDD-UL-DL-SlotConfig用于配置上述N个时隙中一个时隙的帧结构,可以指示时隙中符号为上行或下行。需要注意的是,tdd-UL-DL-ConfigurationDedicated只能改写tdd-UL-DL-ConfigurationCommon中指示为灵活符号的属性。
DCI动态指示TDD帧结构:UE可以被配置去检测一个DCI格式(format),该DCI格式可以用于指示1组CC上的TDD帧结构,例如,DCI format 2_0,包括指示1组CC中每个CC上的时 隙格式组合、参考子载波间隔索引μ ref、以及每个CC在DCI中的比特位置等信息,每个时隙内帧结构对应1个时隙格式指示符(slot format indicator,SFI)取值,SFI具有多个取值,每个取值对应一种帧结构。
上述小区级TDD帧结构配置和UE级TDD帧结构配置是通过高层参数,如RRC信令,指示的,是半静态配置的,其中RRC信令包含初始接入时的系统信息和接入后的RRC信令。
根据前述描述可知,在网络设备和终端设备的通信过程中,TDD帧结构频带存在等待时延太长的问题。5G NR引入的自包含帧结构,可表示为nD:mF:rU,含义为一个时隙包含n个下行(downlink,D)OFDM符号,m个灵活(flexible,F)符号,以及r个上行(uplink,U)符号。如图3所示,为本申请实施例提供的一种自包含帧结构的示意图,以n=6,m=2,r=6为例进行说明,一个自包含时隙Slot#n中有6个下行OFDM符号,2个灵活OFDM符号和6个上行OFDM符号。显然,自包含帧结构具有非常小的上下行切换周期,不会造成太大等待时延。但是这种帧结构实现复杂度大,包括引入非常小的调度粒度和非常高的调度规格,其次,引入了非常大的上下行切换开销,最后,由于传输粒度很小,数据传输的DMRS开销也非常大。
为了解决这个问题,提出了一种互补帧结构,请参阅图4,图4为本申请实施例提供的一种互补帧结构示意图,如图4所示,该方案的核心是在已有的帧结构为nD:mF:rU的频带的基础上,引入另一个帧结构为nU:mF:rD的频带,形成互补。这样,在任何时刻都有下行资源和上行资源,通过动态选择频带,可以保证无额外等待时延,同时,由于每个频带都是TDD帧结构,可以通过上行参考信号估计下行传输信道,提升频谱效率。
上述帧结构配置可以应用到载波聚合(carrier aggregation,CA)场景,即CA场景下支持2个载波CC配置成不同甚至互补的帧结构。但是CA场景中UE是需要同时支持在2个CC上传输的,即UE具备2套收发链路和处理单元,分别对应2个CC。但是,引入互补TDD帧结构的目的是为了支持更低时延,UE只需要在2个频带上切换即可保证低时延,不需要2套收发链路和处理单元。并且2套收发链路和处理单元会带来处理器件和资源的浪费。
基于此,终端需要实现在一套收发链路和处理单元上支持多个CC上的传输。但是,当上述两个帧结构不同的频带位于一个频段内,终端设备往往不具备同时进行下行数据接收和上行数据发送的能力,因此需要规定终端设备的发送和接收行为,以支持更灵活的频带切换和传输选择,更好支持5G通信系统中URLLC等业务的低时延特性。
请参阅图5,图5为本申请实施例提供的一种信号传输方法流程图,如图5所示,该方法包括如下步骤:
201、网络设备发送第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,相应的,终端设备接收第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息。
具体的,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行。
本申请实施例中,第一载波和第二载波用于表征两个不同的频域资源,即第一载波对应第一频域资源,第二载波对应第二频域资源。这2个载波可以属于同一个频段,也可以属于不同频段。可选地,第一频域资源和第二频域资源是2个BWP,且属于1个相同载波;可选地,第一频域资源和第二频域资源是2个子带,且属于1个相同BWP。本申请实施例中,以第一频域资源和第二频域资源是2个载波为例进行阐述,即第一频域资源为第一载波,第二频域资源为第二载波。可以推测的是,第一频域资源和第二频域资源也可以通过第一BWP 和第二BWP,或者第一子带和第二子带等其他频域资源来描述,本申请实施例不做限定。
可选地,所述TDD帧结构是半静态配置的TDD帧结构。可选地,所述TDD帧结构是半静态和动态联合指示的帧结构。
第一载波和第二载波为网络设备和终端设备能够通信的载波,其中,第一载波和第二载波的调度信息为用于分配第一载波和第二载波的通信资源的信息。本申请实施例中,调度信息可以包括用于配置第一载波和第二载波的帧结构的系统信息或RRC信令配置(半静态配置的TDD帧结构),也可以包括用于指示第一载波和第二载波的帧结构的动态信令(半静态和动态联合指示TDD帧结构),还可以包括第一载波上传输A和/或第二载波上传输B的动态指示信令或高层配置信令。终端设备可以根据配置好的帧结构向网络设备发送上行数据和/或信令,网络设备也可以根据配置好的帧结构向终端设备发送下行数据和/或信令。或者,调度信息还可以包括网络设备动态发送的DCI,例如DCI format 2_0,终端设备根据检测到的DCI,动态修改第一载波或第二载波上的时隙格式。第一载波或第二载波上的传输如果是动态指示信令调度或触发的,则称为动态调度或触发的传输,例如是DCI调度或触发的传输,第一载波或第二载波上的传输如果是高层配置信令配置的传输,则称为半静态调度传输或配置传输。
根据调度信息可以确定第一载波和第二载波在目标OFDM符号上的通信方向。在调度信息为第一载波和第二载波的TDD帧结构配置的情况下,第一载波对应第一TDD帧结构配置,第二载波对应第二TDD帧结构配置,TDD帧结构配置表示对应的载波在特定频域上时分复用地传输,同时帧结构配置还可以包括如前所述的,该载波的SCS,周期,样式等信息。该载波的样式进一步包括载波在OFDM符号上为上行符号或下行符号,用于指示载波的通信方向。
或者,在调度信息包括动态发送的DCI的情况下,可以根据DCI指示的信道传输在TDD帧结构配置的基础上进一步指示第一载波和/或第二载波的通信方向,例如针对OFDM符号上为灵活符号的情况,该灵活符号上的通信方向与DCI指示的信道传输方向相同。
第一载波和第二载波在目标OFDM符号上通信方向相反包括两方面的含义,具体如图6所示,图6为本申请实施例提供的一种目标OFDM符号上的通信方向示意图,第一层含义为:在目标OFDM符号上的第一TDD帧结构配置是上行符号,在目标OFDM符号上的第二TDD帧结构配置的是下行符号。例如对于目标OFDM符号1来说,第一载波(载波#1)的第一TDD帧结构配置的通信方向为上行(U),第二载波(载波#2)的第二TDD帧结构配置的通信方向为下行(D),两者通信方向相反。或者可以为第二层含义:在目标OFDM符号上的第一TDD帧结构配置的是灵活符号,在目标OFDM符号上的第二TDD帧结构配置也是灵活符号,但两个载波在目标OFDM符号上的实际信道传输方向相反。例如对于目标OFDM符号2来说,第一TDD帧结构配置和第二TDD帧结构配置的通信方向都为灵活(F),但是在实际的信道传输时,第一载波在目标OFDM符号2上有上行信道传输,第二载波在目标OFDM符号2上有下行信道传输,因此第一TDD帧结构配置和第二TDD帧结构配置也在目标OFDM符号2上通信方向相反。类似地,也可以是在目标OFDM符号上的第一TDD帧结构配置是上行符号,第二TDD帧结构配置是灵活符号但是第二载波在目标OFDM符号上有下行信道传输;或者,在目标OFDM符号上的第一TDD帧结构配置是灵活符号且第二载波在目标OFDM符号上有上行信道传输,第二TDD帧结构配置是下行符号。
其中,目标OFDM符号可以是一个OFDM符号,也可以是多个OFDM符号。如图6中所示,目标OFDM符号可以是图示中两个载波对应的6个时域符号,即在接收到第一载波和第二载波中至少一个载波在该6个时域符号上的调度信息时,触发确定该6个时域符号上的 信道传输。或者目标OFDM符号也可以是如图6中所示的6个时域符号中的第一个符号,即在确定有一个OFDM符号上产生传输方向冲突的情况下,则触发确定该目标OFDM符号上的信道传输,剩余5个OFDM符号可以延续第一OFDM符号的传输,直到一次完整的调度传输完成。
可能的情况下,第一载波和第二载波为SCS相同的载波,这样可以保证第一载波和第二载波时隙上的OFDM符号时长相同,进而保证第一载波和第二载波能够在同一个目标OFDM符号上传输方向相反。
202、网络设备在目标OFDM符号上进行目标载波上的信道传输,相应的,终端设备在目标OFDM符号上进行目标载波的信道传输。
具体的,目标载波为根据调度信息确定的,且目标载波为第一载波和第二载波中在目标OFDM符号上有信道传输的载波中的一个载波。
以下对目标载波根据调度信息确定的方式做详细介绍。
方式一:第一载波和第二载波中有一个载波有信道传输,且另一个载波没有信道传输,目标载波为有信道传输的一个载波。
假设第一载波和第二载波中,第一载波在目标OFDM符号上有信道传输,而第二载波在目标OFDM符号上没有信道传输,则确定第一载波为目标载波。
其中,第一载波上的信道传输可以为下行信道传输,下行信道传输包括以下至少一项:同步信号/广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH Block,SSB)、物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH),或信道状态信息-参考信号(channel state information-reference signal,CSI-RS)等。
或者,第一载波的信道传输可以为上行信道传输,上行信道传输包括以下至少一项:物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)、物理随机接入信道(physical random access channel,PRACH),或上行探测参考信号(sounding reference signal,SRS)等。
方式二:第一载波和第二载波在目标OFDM符号上都有信道传输,且第一载波中包括下行控制信息DCI调度或触发的信道传输,第二载波中包括系统信息或RRC信令配置的信道传输,目标载波为第一载波。
DCI调度或触发的信道传输,也可以称为动态调度传输,即可如前述描述的,由网络设备动态发送DCI,例如DCI format 2_0,终端设备检测DCI,并根据DCI动态修改载波上的时隙格式,例如时隙上的时域符号由F修改为U等,表示终端设备将在帧结构配置为灵活传输的符号上进行上行信道传输。或者,DCI format 0_1,终端设备检测DCI,并根据DCI确定在目标符号上需要进目标符号上进行该PUSCH传输。通常情况下,DCI调度或触发的信道传输为单次传输,即每次DCI调度对应一次信道传输。
系统信息或无线资源控制(radio resource control,RRC)信令配置的信道传输,例如可以为系统信息或RRC信令配置的SSB、PRACH,或者其他信道传输。其中系统信息可以通过主系统信息块(MasterInformationBlock,MIB)和系统信息块1(SystemInformationBlock1,SIB1)传输。前述描述的通过tdd-UL-DL-ConfigurationCommon或tdd-UL-DL-ConfigurationDedicated配置TDD帧结构,其中指示的下行符号、上行符号、或灵活符号可以分别表示为Semi-D,Semi-U和Semi-F,而在Semi-F符号可进一步通过RRC信令配置下行传输或上行传输,对应符号为RRC-D或RRC-U。通常情况下,系统信息或RRC信令配置的信道传输为多次传输, 即每个系统信息配置或RRC信令配置可用于同样配置参数的多次信道传输。又例如,在连接态周,网络设备通过RRC信令给终端设备配置一个免授权PUSCH传输,指示每个一个周期都在对应的时频位置发送PUSCH,所述免授权PUSCH即为一种配置传输。通常情况下,系统信息或RRC信令配置信道传输为周期性传输。
第一载波上的DCI调度或触发的信道传输可以为上行信道传输,具体可包括以下至少一项:DCI调度的PUSCH,承载动态调度的PDSCH的自动重传请求-确认应答(hybrid automatic repeat request-acknowledgement,HARQ-ACK)的PUCCH,承载非周期性信道状态信息(aperiodic-channel state report,A-CSI)的PUCCH,非周期探测参考信号(sounding reference signal,SRS),或PRACH等。在这种情况下,第二载波上有RRC信令配置的下行信道传输(与第一载波的通信方向相反),具体可以为RRC信令配置的PDSCH或CSI-RS等。
第一载波上的DCI调度或触发的信道传输可以为下行信道传输,下行信道传输包括以下至少一项:PDSCH或CSI-RS等。这种情况下,第二载波上有系统信息或RRC信令配置的上行信道传输(与第一载波的通信方向相反),具体可以为以下至少一项:PUSCH,承载SPS PDSCH的HARQ-ACK的配置的PUCCH,承载调度请求SR的PUCCH,承载周期CSI或半持续CSI的PUCCH,周期或半持续的SRS,或PRACH等。
由于高层信令(系统信息或RRC信令)配置的信道传输为预先配置的信道传输,而DCI动态调度的信道传输可能是临时生成的信道传输,用于足某些特殊要求或临时事务,因此后者的优先级可能更高。在第二载波中为高层信令配置的信道传输,第一载波中为DCI动态调度的信道传输的情况下,确定第一载波为目标载波。
上述传输过程换一种说法,可以表述为:网络设备在目标OFDM符号上不进行除目标载波之外的其他载波的信道传输,相应地,终端设备在目标OFDM符号上也不进行除目标载波之外的其他载波的信道传输。
具体地,假设根据方式一确定第一载波为目标载波,而第二载波不为目标载波,则网络设备在目标OFDM符号上不进行第二载波的信道传输。同样的,第二载波的信道传输可以为下行信道传输,下行信道传输包括以下至少一项:SSB、PDCCH、PDSCH,或CSI-RS等。
或者,第二载波的信道传输可以为上行信道传输,上行信道传输包括以下至少一项:PUSCH、PUCCH、PRACH,或SRS等。
假设根据方式二确定第一载波为目标载波,而第二载波不为目标载波,则网络设备在目标OFDM符号上不进行第二载波的信道传输。第二载波为系统信息或RRC信令配置的上行信道传输或下行信道传输(与第一载波的通信方向相反),具体如前描述。
在可能的情况下,在目标OFDM符号上进行目标载波的信道传输之前,该方法还包括:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。
其中,第一关系可以包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于等于第二预设时长。
具体地,请参阅图7,图7为本申请实施例提供的一种传输A和传输B的第一关系示意图,如图7所示,传输A所对应的DCI所在的PDCCH的最后一个符号的结束时刻为t1,传输B的第一个符号的起始时刻为t2,t2-t1=T1≤第一预设时长。其中第一预设时长的计算公式可以为:
T 1=α*T proc,2+d 1   (1)
其中T 1为第一预设时长,α为预设的小于或等于1的系数,例如可以为0.25或0.5,d 1取值为若干个OFDM符号长度,例如为0个,1个或2个OFDM符号长度。T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间,对应到图7中,T proc,2为t3-t2。这样可以保证终端设备可以在进行传输B之前获知传输A的调度信息,从而获知传输A的存在,从而终端设备能够及时丢弃传输B,避免发生信道冲突。
或者请参阅图8,图8为本申请实施例提供的另一种传输A和传输B的第一关系示意图,如图8所述,传输A所对应的DCI所在的PDCCH的最后一个符号的结束时刻为r1,目标OFDM符号的第一符号的起始时刻为r2,r2-r1=T2≤第二预设时长。其中第二预设时长的计算公式也可以为公式(1)。需要说明的是,假设目标OFDM符号为多个符号,则r2为目标OFDM符号中第一个符号的起始时刻,假设目标OFDM符号为一个符号,则r2为该一个目标OFDM符号的起始时刻。上述过程可以保证终端设备可以在进行传输B之前获知传输A的调度信息,从而获知传输A的存在,从而终端设备能够及时丢弃传输B,避免发生信道冲突。
可能的情况下,相比于第一载波和第二载波位于同一个频段,当第一载波和第二载波位于不同频段时,第一预设时长或第二预设时长更短,这是因为终端设备在不同频段内可以配置2套不同的收发链路,因此第一载波和第二载波上的传输可以提前准备。由于第一预设时长或第二预设时长更短,网络设备调度传输A的灵活性更高。
上述两种情况中包括了只有一个载波有信道传输的情况下,以及有两种不同类型的信道传输(DCI动态调度的信道传输,和系统信息或RRC信令配置的信道传输)的情况下如何确定目标载波的方式。对于两个载波中包含相同类型的信道传输的情况,可以根据其他信道优先级或信号优先级的方式确定目标载波,本申请实施例中不做限定。
需要说明的是,上述信道传输都是高层信令配置或DCI调度的潜在传输。对于下行传输来说,其对应的时频资源上,网络设备可能会给终端设备(UE)发送下行传输,UE需要在这个时频资源上尝试接收该下行传输。例如,RRC信令配置的潜在PDCCH传输,网络设备在该PDCCH时频资源上可能给UE发送PDCCH,承载DCI,UE需要在该PDCCH时频资源上进行PDCCH检测;又例如,PDSCH包含RRC信令配置的半持续调度(Semi-persistent Scheduling,SPS)PDSCH传输和DCI动态调度的PDSCH传输,对于SPS PDSCH,网络设备可能在该SPS PDSCH时频资源给UE发送PDSCH传输,终端设备需要尝试接收该SPS PDSCH。
同样的,对于上行传输来说,其对应的时频资源上,UE可能会给网络设备发送上行传输,网络设备需要在这个时频资源上尝试接收该上行传输。例如,PUSCH传输包含RRC信令配置的配置授权(Configured grant,CG)PUSCH和DCI动态调度的PUSCH,对于这些PUSCH传输,UE可能在这些位置发送上行传输,也可能由于一些原因不发送上行传输,例如当高层没有下发数据块时,物理层不会在对应的时频资源上进行上行传输。
而上述终端设备在获取到第一载波和第二载波中至少一个载波在目标OFDM符号上的调度信息后,根据调度信息确定的目标载波,是包含有效信道传输的载波中的一个载波,其中有效信道传输是指,在该载波中,除了有高层信令配置或DCI动态调度的传输外,网络设备或终端设备还实际进行了信道传输。
因此,在可选情况下,根据调度信息确定目标载波可以是在网络设备或终端设备发送数 据/信号或接收数据/信号之前进行的,即将进行的数据/信号传输将占用目标OFDM符号的情况下,确定该目标OFDM符号是否将被其他载波占用,以及是否能被自身数据和/或信号传输所在的载波占用等。
在确定目标载波后,终端设备在目标OFDM符号上进行目标载波上的信道传输,即在目标OFDM符号上按照目标载波的通信方向传输目标载波上的数据和/或信号。如果目标载波上的信道传输为上行信道传输,则终端设备在目标载波上向网络设备发送数据和/或信号,网络设备在目标载波上接收上述数据和/或信号;如果目标载波上的信道传输为下行信道传输,则网络设备在目标载波上发送数据和/或信号,终端设备在目标载波上接收网络设备发送的数据和/或信号。
可见,在本申请实施例中,通过接收目标OFDM符号上的调度信息确定在该目标OFDM符号上有信道传输的目标载波,使得目标OFDM符号上进行目标载波的信道传输时,一方面满足了只进行一个载波的单向传输的需求,另一方面将时域资源优先分配给了当前有传输需求的载波,而不用于等待还未到达的传输,提升了传输资源利用率,降低了等待时延。
现有技术中,在载波聚合(Carrier Aggregation,CA)场景中,针对为UE配置了多个载波(Component Carrier,CC)的情况,如果这些CC的TDD帧结构不同,例如,在某些符号上CC#1是下行,CC#2是上行,则由于UE不支持分别在2个CC上同时进行发送和接收,对UE的半双工行为规定中包括如下规定:
参考载波(reference carrier)优先原则。由于TDD系统中一个CC对应一个小区,因此参考载波也可以理解为参考小区(Ref.Cell),对于每个OFDM符号,从UE被配置的一组CC中确定1个参考载波,除参考载波之外的载波叫做其他载波(other carrier),同样可以理解为其他小区(other cells)。对于不同符号,Ref.Cell可以不同。对于一个符号,Ref.Cell在这个符号上被指示为Semi-D,或Semi-U,或Semi-F且有配置的传输(即RRC-D或RRC-U),并且是满足这些条件的Cell中Cell ID最小的Cell。
上述名词中,只通过tdd-UL-DL-ConfigurationCommon或tdd-UL-DL-ConfigurationDedicated指示的下行符号、上行符号、或灵活符号被称为:半静态下行符号(Semi-D)/半静态上行符号(Semi-U)/半静态灵活符号(Semi-F),在Semi-F符号上通过RRC信令配置了下行传输或上行传输,则对应符号为RRC-D或RRC-U。通过DCI动态调度的下行传输或上行传输被标记为Dynamic-D/Dynamic-U。
现有的冲突解决规则中存在一些缺陷,例如冲突规则灵活性低,没有考虑URLLC传输和eMBB传输具有不同的紧急性和优先级,对URLLC应用不太友好。
基于此,请参阅图9,图9为本申请实施例中提出一种信号传输方法流程图,如图9所示,该方法包括如下步骤:
301、网络设备发送第一载波集合中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,相应地,终端设备接收第一载波集合中至少一个载波在目标OFDM符号上的调度信息。
具体地,第一载波集合中包括第一载波和第二载波,第一载波对应第一TDD帧结构配置,第二载波对应第二TDD帧结构配置,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行。
本申请实施例中,第一载波集合用于表征一个频域资源的集合,可被称为第一频域资源集合,第一载波集合中的多个载波用于表征一个频域资源集合中包括多个频域资源。在多个 频域资源为多个载波的情况下,多个载波可以属于一个频段,也可以属于多个频段;可选地,频域资源可以是BWP,所述第一频域资源集合包含多个BWP,且所述多个BWP可以属于一个载波,也可以属于多个载波;可选地,所述频域资源是子带,所述第一频域资源集合包含多个子带,且所述多个子带可以属于一个BWP,也可以属于多个BWP。不失一般性,下文以频域资源为载波为例进行阐述,即第一频域资源集合为第一载波集合,第一频域资源为第一载波,第二频域资源为第二载波。可以推测的是,第一频域资源集合可以通过第一BWP集合,第一频域资源和第二频域资源可以通过第一BWP和第二BWP来描述,或者第一频域资源集合可以通过第一子带集合,第一频域资源和第二频域资源可以通过第一子带和第二子带等其他频域资源来描述,本申请实施例不做限定。
可选地,所述TDD帧结构是半静态配置的TDD帧结构。可选地,所述TDD帧结构是半静态和动态联合指示的帧结构。
与前述图5~图8对应的实施例的描述相同,本申请实施例中,网络设备向终端设备发送第一载波集合中至少一个载波在目标OFDM符号上的调度信息,第一载波集合中包括第一载波和第二载波,且第一载波和第二载波为帧结构配置在目标OFDM符号上通信方向相反的两个载波。其中调度信息可以包括高层信令配置信息和DCI动态调度信息,高层信令配置信息包括系统信息或RRC信令配置的信息。
302、网络设备在目标OFDM符号上进行参考载波的信道传输,相应地,终端设备在目标OFDM符号上进行参考载波的信道传输。
具体地,参考载波为根据调度信息确定的,第一载波集合中在目标OFDM符号上有信道传输的载波中的一个。
终端设备获取到第一载波集合中至少一个载波的调度信息后,可以根据调度信息确定第一载波集合中的参考载波。其中参考载波为第一载波集合中在目标OFDM符号上有信道传输的载波中的一个,具体包括如下含义:第一,假设第一载波集合中有一个载波在目标OFDM符号上有信道传输,且其他载波在目标OFDM符号上没有信道传输,则参考载波为该有信道传输的载波;第二,假设第一载波集合中有多个载波在目标OFDM符号上有信道传输,则参考载波为这些有信道传输的载波中,载波ID最小的一个载波。这两种确定参考载波的方式,只考虑载波中是否有信道传输,以及载波ID的大小。可能的情况下,假设同时有信道传输的载波在目标OFDM符号上的通信方向相同,则参考载波也可以同时为该两个载波,即目标OFDM符号上可以同时进行该两个传输相同的载波的信道传输。
可选的,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,目标符号上存在上行信道传输;和/或通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,目标符号上存在下行信道传输。
通信方向的描述可参照图5~图8中的相关描述,在此不再赘述。
可选情况下,当第一载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波。
第一载波和第二载波为在目标OFDM符号上通信方向相反的两个载波,在这两个载波在目标OFDM符号上都有信道传输的情况下,假设第一载波在目标OFDM符号上的为DCI调度或触发的信道传输(或者可称为动态调度的传输),第二载波在目标OFDM符号上的为系统信息或RRC信令配置的信道传输(或者可称为半静态调度的传输/配置传输),由于动态调 度的传输通常更紧急或优先级更高,则通信资源优先满足动态调度的传输,即确定第一载波为参考载波。
在一个可能的示例中,第一载波集合包括第一载波子集和第二载波子集,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波子集上的载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波子集上的载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波子集中载波ID最小的载波。
在一些情况下,第一载波集合中包括第一载波子集和第二载波子集,其中第一载波子集为在目标OFDM符号上有DCI调度或触发的信道传输的载波,第二载波子集为在目标OFDM符号上有系统信息或RRC信令配置的信道传输的载波,第一载波子集中的载波可以为一个或多个,第二载波子集中的载波也可以为一个或多个,在第一载波子集中的载波为多个的情况下,其中载波ID最小的一个载波被确定为参考载波,在目标OFDM符号上进行该参考载波的传输,这样可以解决同为DCI调度或触发的多个信道传输之间的通向方向冲突。
在可能的情况下,确定第一载波为参考载波,且在目标OFDM符号上进行参考载波的传输之前,该方法还包括:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。这样可以保证终端设备可以在进行传输B之前获知传输A的调度信息,从而获知传输A的存在,从而终端设备能够及时丢弃传输B,避免发生信道冲突。
其中,第一关系可以包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于等于第二预设时长。
其中第一预设时长或第二预设时长的计算公式可以为:
T 1=α*T proc,2+d 1   (1)
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,例如可以为0.25或0.5,d 1取值为若干个OFDM符号长度,例如为0个,1个或2个OFDM符号长度。T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间,对应到图7中,T proc,2为t3-t2。
关于第一载波在目标OFDM符号上的传输A和第二载波在目标OFDM符号上的传输B,以及传输B和传输A所对应的DCI满足第一关系的相关描述可以参阅图5~图8对应的描述,本申请实施例不再赘述。
在确定参考载波后,终端设备根据现有参考载波与其他载波信道传输的优先级规则在目标OFDM符号上进行信道传输,包括在目标OFDM符号上向网络设备发送上行数据和/或信令,或者在目标OFDM符号上接收网络设备发送的下行数据和/或信令。
同样的,在确定参考载波后,网络设备根据现有参考载波与其他载波信道传输的优先级规则在目标OFDM符号上进行信道传输,包括在目标OFDM符号上接收终端设备发送的上行数据和/或信令,或者在目标OFDM符号上向终端设备发送的下行数据和/或信令。
可见,在本申请实施例中,通过重定义或补充定义参考载波的方式,使得确定的参考载波为有信道传输的载波,使得目标OFDM符号上根据参考载波优先原则进行信道传输时,能 够将时域资源优先分配给当前有传输需求的载波,而不用于等待还未到达的传输,提升了传输资源利用率,降低了等待时延。
图10为本申请实施例提供的一种通信装置400,其可以用于执行上述图5~图8的终端设备执行的方法和具体实施例。在一种可能的实现方式中,如图10所示,该装置400包括收发模块401。
收发模块401,用于接收第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;
收发模块401,还用于在目标OFDM符号上进行目标载波的信道传输,目标载波为根据调度信息确定的,第一载波和第二载波中在目标OFDM符号上有信道传输的载波中的一个载波。
可选地,调度信息为第一载波和/或第二载波的TDD帧结构配置信息,或者为第一载波和/或第二载波的下行控制信息DCI。
可选地,TDD帧结构配置信息是网络设备通过RRC信令指示的。
可选地,第一载波和第二载波是一个频段内的两个载波。可选地,一个频段对应一个射频滤波器。
可选地,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,目标OFDM符号上存在上行信道传输;和/或通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,目标符号上存在下行信道传输。
可选地,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波中有一个载波有信道传输,且另一个载波没有信道传输,目标载波为有信道传输的一个载波。
可选地,第一载波在目标OFDM符号有信道传输,目标载波为第一载波,第一载波的信道传输为下行信道传输,下行信道传输包括以下至少一项:同步信号/广播信道块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH或信道状态信息-参考信号CSI-RS;或者,第一载波在目标OFDM符号上有信道传输,目标载波为第一载波,第一载波的信道传输为上行信道传输,上行信道传输包括以下至少一项:物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH或上行探测参考信号SRS。
可选地,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波在目标OFDM符号上都有信道传输,且第一载波中包括下行控制信息DCI调度或触发的信道传输,第二载波中包括系统信息或RRC信令配置的信道传输,目标载波为第一载波。
可选地,下行控制信息DCI调度或触发的信道传输为上行信道传输时,上行信道传输包括以下至少一项:PUSCH,承载动态调度的PDSCH的自动重传请求-确认应答HARQ-ACK的PUCCH,承载非周期性信道状态信息A-CSI的PUCCH,非周期SRS,PRACH;下行控制信息DCI调度或触发的信道传输为下行信道传输时,下行信道传输包括以下至少一项:
PDSCH,非周期CSI-RS。
可选地,系统信息或RRC信令配置的信道传输为下行传输时,下行信道传输包括以下至少一项:PDCCH,半静态调度SPS PDSCH,周期或半持续信道状态信息-参考信号CSI-RS, SSB;系统信息或RRC信令配置的信道传输为上行传输时,下行信道传输包括以下一项或多项:PUSCH,承载SPS PDSCH的HARQ-ACK的配置的PUCCH,承载调度请求SR的PUCCH,承载周期CSI或半持续CSI的PUCCH,周期或半持续的SRS,PRACH。
可选地,该装置400还包括处理模块402,用于:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。
可选地,第一关系包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第二预设时长。
可选地,第一预设时长或第二预设时长的计算方法为:
T 1=α*T proc,2+d 1
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,d 1取值为0,1或2个OFDM符号长度,T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间。
或者通信装置400可以用于执行上述图9的终端设备执行的方法和具体实施例。其中,
收发模块401,用于接收第一载波集合中至少一个载波在目标OFDM符号上的调度信息,第一载波集合中包括第一载波和第二载波,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;
收发模块401,还用于在目标OFDM符号上进行参考载波的信道传输,参考载波为根据调度信确定的,第一载波集合中在目标OFDM符号上有信道传输的载波中的一个。
可选地,TDD帧结构是网络设备通过RRC信令指示的。
可选地,第一载波和第二载波是一个频段内的两个载波。可选地,一个频段对应一个射频滤波器。
可选地,第一载波集合中所有载波都位于一个相同频段内。
可选地,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,目标符号上存在上行信道传输;和/或通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,目标符号上存在下行信道传输。
可选地,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:参考载波为第一载波集合中,在目标OFDM符号上有信道传输,且载波ID最小的载波。
可选地,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波。
在一个可能的示例中,第一载波集合中包括第一载波子集和第二载波子集,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波子集上的载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波子集上 的载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波子集中载波ID最小的载波。
可选地,该装置400的处理模块402用于:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。
可选地,第一关系包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于等于第二预设时长。
在一个可能的示例中,第一预设时长或第二预设时长的计算方法为:
T 1=α*T proc,2+d 1
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,d 1取值为0,1或2个OFDM符号长度,T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间。
可选的,上述处理模块402可以是中央处理器(Central Processing Unit,CPU)。
可选的,收发模块401可以是接口电路或者收发器。用于从其他电子装置接收或发送数据或指令。例如上述过程中接收第一载波集合中至少一个载波在目标OFDM符号上的调度信息,在目标OFDM符号上进行目标载波的信道传输等。
可选的,通信装置400还可以包括存储模块(图中未示出),该存储模块可以用于存储数据和/或信令,存储模块可以和收发模块401和处理模块402耦合。例如,处理模块402可以用于读取存储模块中的数据和/或信令,使得前述方法实施例中的确定传输B和传输A所对应的DCI满足第一关系的过程被执行。
图11为本申请实施例提供的一种通信装置500,其可以用于执行上述图5~图8的网络设备执行的方法和具体实施例。在一种可能的实现方式中,如图11所示,该装置500包括收发模块501。
收发模块501,用于发送第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;
收发模块501,还用于在目标OFDM符号上进行目标载波的信道传输,目标载波为根据调度信息确定的,第一载波和第二载波中在目标OFDM符号上有信道传输的载波中的一个载波。
可选地,调度信息为第一载波和/或第二载波的TDD帧结构配置信息,或者为第一载波和/或第二载波的下行控制信息DCI。
可选地,TDD帧结构配置信息是网络设备通过RRC信令指示的。
可选地,第一载波和第二载波是一个频段内的两个载波。可选地,一个频段对应一个射频滤波器。
可选地,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,目标符号上存在上行信道传输;和/或 通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,目标符号上存在下行信道传输。
可选地,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波中有一个载波有信道传输,且另一个载波没有信道传输,目标载波为有信道传输的一个载波。
可选地,第一载波上在目标OFDM符号有信道传输,目标载波为第一载波,第一载波的信道传输为下行信道传输,下行信道传输包括以下至少一项:同步信号/广播信道块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH或信道状态信息-参考信号CSI-RS;或者,第一载波在目标OFDM符号上有信道传输,目标载波为第一载波,第一载波的信道传输为上行信道传输,上行信道传输包括以下至少一项:物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH或上行探测参考信号SRS。
可选地,目标载波为第一载波和第二载波中有信道传输的载波中的一个,包括:若第一载波和第二载波在目标OFDM符号上都有信道传输,且第一载波中包括下行控制信息DCI调度或触发的信道传输,第二载波中包括系统信息或RRC信令配置的信道传输,目标载波为第一载波。
可选地,下行控制信息DCI调度或触发的信道传输为上行信道传输时,上行信道传输包括以下至少一项:PUSCH,承载动态调度的PDSCH的自动重传请求-确认应答HARQ-ACK的PUCCH,承载非周期性信道状态信息A-CSI的PUCCH,非周期SRS,PRACH;下行控制信息DCI调度或触发的信道传输为下行信道传输时,下行信道传输包括以下至少一项:PDSCH,非周期CSI-RS。
可选地,系统信息或RRC信令配置的信道传输为下行传输时,下行信道传输包括以下至少一项:PDCCH,半静态调度SPS PDSCH,周期或半持续信道状态信息-参考信号CSI-RS,SSB;系统信息或RRC信令配置的信道传输为上行传输时,下行信道传输包括以下一项或多项:PUSCH,承载SPS PDSCH的HARQ-ACK的配置的PUCCH,承载调度请求SR的PUCCH,承载周期CSI或半持续CSI的PUCCH,周期或半持续的SRS,PRACH。
可选地,该装置500包括处理模块502,用于:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。
可选地,第一关系包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于等于第二预设时长。
在一个可能的示例中,第一预设时长或第二预设时长的计算方法为:
T 1=α*T proc,2+d 1
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,d 1取值为0,1或2个OFDM符号长度,T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间。
或者通信装置500可以用于执行上述图9的网络设备执行的方法和具体实施例。其中,
收发模块501,用于发送第一载波集合中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,第一载波集合中包括第一载波和第二载波,第一载波和第二载波在目标OFDM符号上通信方向相反,通信方向包括上行和下行;
收发模块501,还用于在目标OFDM符号上执行参考载波的信道传输,参考载波为根据调度信息确定的,第一载波集合中在目标OFDM符号上有信道传输的载波中的一个。
在一个可能的示例中,TDD帧结构是网络设备通过RRC信令指示的。
在一个可能的示例中,第一载波和第二载波是一个频段内的两个载波。可选地,一个频段对应一个射频滤波器。
在一个可能的示例中,第一载波集合中所有载波都位于一个相同频段内。
在一个可能的示例中,通信方向为上行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是上行符号,或者,目标OFDM符号上存在上行信道传输;和/或通信方向为下行包括:第一载波的第一TDD帧结构配置或第二载波的第二TDD帧结构配置在目标OFDM符号上是下行符号,或者,目标符号上存在下行信道传输。
可选地,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:参考载波为第一载波集合中,在目标OFDM符号上有信道传输,且载波ID最小的载波。
可选地,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波。
在一个可能的示例中,第一载波集合中包括第一载波子集和第二载波子集,参考载波为第一载波集合中,在目标OFDM符号上有信道传输的载波中的一个,包括:当第一载波子集上的载波在目标OFDM符号上有下行控制信息DCI调度或触发的信道传输,第二载波子集上的载波在目标OFDM符号上有系统信息或RRC信令配置的信道传输时,参考载波为第一载波子集中载波ID最小的载波。
可选地,该装置500的处理模块502用于:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为第一载波在目标OFDM符号上的信道传输,传输B为第二载波在目标OFDM符号上的信道传输。
可选地,第一关系包括:传输B的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者目标OFDM符号的第一个符号的起始时刻与传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于等于第二预设时长。
在一个可能的示例中,第一预设时长或第二预设时长的计算方法为:
T 1=α*T proc,2+d 1
其中T 1为第一预设时长或第二预设时长,α为预设的小于或等于1的系数,d 1取值为0,1或2个OFDM符号长度,T proc,2为终端设备接收DCI到发送该DCI调度的PUSCH的最小处理时间。
可选的,上述收发模块501可以是接口电路或者收发器。用于从其他电子装置接收或发送数据或指令。例如用于发送第一载波和第二载波中至少一个载波在目标OFDM符号上的调 度信息,在目标OFDM符号上进行目标载波的信道传输等。
可选的,上述处理模块502可以是中央处理器(Central Processing Unit,CPU)。
可选的,通信装置500还可以包括存储模块(图中未示出),该存储模块可以用于存储数据和/或信令,存储模块可以和收发模块501以及处理模块502耦合。例如,处理模块502可以用于读取存储模块中的数据和/或信令,使得前述方法实施例中的网络设备确定目标载波或参考载波。
如图12所示,图12示出了本申请实施例中的一种电子装置的硬件结构示意图。通信装置400和通信装置500的结构可以参考图12所示的结构。电子装置800包括:存储器801、处理器802、通信接口803和总线804。其中,存储器801、处理器802、通信接口803通过总线804实现彼此之间的通信连接。
存储器801可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器801可以存储程序,当存储器801中存储的程序被处理器802执行时,处理器802和通信接口803用于执行本申请实施例的分布式渲染方法的各个步骤。
处理器802可以采用通用的CPU,微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),GPU或者一个或多个集成电路,用于执行相关程序,以实现本申请实施例的通信装置400中的收发模块401和处理模块402所需执行的功能,或实现通信装置500中的收发模块501和处理模块502所需执行的功能,或者执行本申请方法实施例的信号传输方法。
处理器802还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的分布式渲染方法的各个步骤可以通过处理器802中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器802还可以是通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器801,处理器802读取存储器801中的信息,结合其硬件完成本申请实施例的虚拟现实视频发送装置400或虚拟现实视频接收装置500中包括的模块所需执行的功能,或者执行本申请方法实施例的虚拟现实视频传输方法。
通信接口803使用例如但不限于收发器一类的收发装置,来实现电子装置800与其他设备或通信网络之间的通信。例如,可以通过通信接口803获取确定的分割目标和/或候选目标边界框。总线804可包括在电子装置800各个部件(例如,存储器801、处理器802、通信接口803)之间传送信息的通路。
应注意,尽管图12所示的电子装置800仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,电子装置800还包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,电子装置800还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,电子装置800也可仅仅包括 实现本申请实施例所必须的器件,而不必包括图12中所示的全部器件。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (39)

  1. 一种信号传输方法,其特征在于,所述方法包括:
    接收第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,所述第一载波和所述第二载波在所述目标OFDM符号上通信方向相反,所述通信方向包括上行和下行;
    在所述目标OFDM符号上进行目标载波上的信道传输,所述目标载波为所述第一载波和所述第二载波中在目标OFDM符号上有信道传输的载波中的一个载波。
  2. 根据权利要求1所述的方法,其特征在于,所述通信方向为上行包括:
    所述第一载波的第一TDD帧结构配置或所述第二载波的第二TDD帧结构配置在所述目标OFDM符号上是上行符号,或者,所述目标OFDM符号上存在上行信道传输;和/或
    所述通信方向为下行包括:所述第一载波的第一TDD帧结构配置或所述第二载波的第二TDD帧结构配置在所述目标OFDM符号上是下行符号,或者,所述目标符号上存在下行信道传输。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标载波为所述第一载波和所述第二载波中有信道传输的载波中的一个,包括:若所述第一载波和所述第二载波中有一个载波有信道传输,且另一个载波没有信道传输,所述目标载波为所述有信道传输的一个载波。
  4. 根据权利要求3所述的方法,其特征在于,所述第一载波在目标OFDM符号有信道传输,所述目标载波为所述第一载波,所述第一载波的信道传输为下行信道传输,所述下行信道传输包括以下至少一项:同步信号/广播信道块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH或信道状态信息-参考信号CSI-RS;或者,
    所述第一载波在目标OFDM符号上有信道传输,所述目标载波为所述第一载波,所述第一载波的信道传输为上行信道传输,所述上行信道传输包括以下至少一项:物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH或上行探测参考信号SRS。
  5. 根据权利要求1或2所述的方法,其特征在于,所述目标载波为所述第一载波和所述第二载波中有信道传输的载波中的一个,包括:若所述第一载波和所述第二载波在目标OFDM符号上都有信道传输,且所述第一载波中包括下行控制信息DCI调度或触发的信道传输,所述第二载波中包括系统信息或RRC信令配置的信道传输,所述目标载波为所述第一载波。
  6. 根据权利要求5所述的方法,其特征在于,所述下行控制信息DCI调度或触发的信道传输为上行信道传输时,所述上行信道传输包括以下至少一项:
    PUSCH,承载动态调度的PDSCH的自动重传请求-确认应答HARQ-ACK的PUCCH,承载非周期性信道状态信息A-CSI的PUCCH,非周期SRS,PRACH;
    所述下行控制信息DCI调度或触发的信道传输为下行信道传输时,所述下行信道传输包括以下至少一项:PDSCH,非周期CSI-RS。
  7. 根据权利要求5或6所述的方法,其特征在于,所述系统信息或RRC信令配置的信道传输为下行传输时,所述下行信道传输包括以下至少一项:PDCCH,半静态调度SPS PDSCH,周期或半持续信道状态信息-参考信号CSI-RS,SSB;
    所述系统信息或RRC信令配置的信道传输为上行传输时,所述上行信道传输包括以下一项或多项:PUSCH,承载SPS PDSCH的HARQ-ACK的配置的PUCCH,承载调度请求SR的PUCCH,承载周期CSI或半持续CSI的PUCCH,周期或半持续的SRS,PRACH。
  8. 根据权利要求5所述的方法,其特征在于,所述第一载波和所述第二载波在目标OFDM 符号上都有信道传输,所述方法还包括:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为所述第一载波在所述目标OFDM符号上的信道传输,所述传输B为所述第二载波在所述目标OFDM符号上的信道传输。
  9. 根据权利要求8所述的方法,其特征在于,所述第一关系包括:
    所述传输B的第一个符号的起始时刻与所述传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者
    所述目标OFDM符号的第一个符号的起始时刻与所述传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第二预设时长。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述第一载波和所述第二载波属于一个频段。
  11. 一种信号传输方法,其特征在于,所述方法包括:
    发送第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,所述第一载波和所述第二载波在所述目标OFDM符号上通信方向相反,所述通信方向包括上行和下行;
    在所述目标OFDM符号上进行目标载波的信道传输,所述目标载波为所述第一载波和所述第二载波中在目标OFDM符号上有信道传输的载波中的一个载波。
  12. 根据权利要求11所述的方法,其特征在于,所述通信方向为上行包括:
    所述第一载波的第一TDD帧结构配置或所述第二载波的第二TDD帧结构配置在所述目标OFDM符号上是上行符号,或者,所述目标符号上存在上行信道传输;和/或
    所述通信方向为下行包括:所述第一载波的第一TDD帧结构配置或所述第二载波的第二TDD帧结构配置在所述目标OFDM符号上是下行符号,或者,所述目标符号上存在下行信道传输。
  13. 根据权利要求11或12所述的方法,其特征在于,所述目标载波为所述第一载波和所述第二载波中有信道传输的载波中的一个,包括:若所述第一载波和所述第二载波中有一个载波有信道传输,且另一个载波没有信道传输,所述目标载波为所述有信道传输的一个载波。
  14. 根据权利要求11或12所述的方法,其特征在于,所述目标载波为所述第一载波和所述第二载波中有信道传输的载波中的一个,包括:若所述第一载波和所述第二载波在目标OFDM符号上都有信道传输,且所述第一载波中包括下行控制信息DCI调度或触发的信道传输,所述第二载波中包括系统信息或RRC信令配置的信道传输,所述目标载波为所述第一载波。
  15. 根据权利要求14所述的方法,其特征在于,所述第一载波和所述第二载波在目标OFDM符号上都有信道传输,传输B和传输A所对应的DCI满足第一关系,其中传输A为所述第一载波在所述目标OFDM符号上的信道传输,所述传输B为所述第二载波在所述目标OFDM符号上的信道传输。
  16. 根据权利要求15所述的方法,其特征在于,所述第一关系包括:
    所述传输B的第一个符号的起始时刻与所述传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者
    所述目标OFDM符号的第一个符号的起始时刻与所述传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第二预设时长。
  17. 根据权利要求11至16任一所述的方法,其特征在于,所述第一载波和所述第二载波属于一个频段。
  18. 一种通信装置,其特征在于,所述装置包括:
    收发模块,用于接收第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,所述第一载波和所述第二载波在所述目标OFDM符号上通信方向相反,所述通信方向包括上行和下行;
    所述收发模块,还用于在所述目标OFDM符号上进行目标载波的信道传输,所述目标载波为根据所述调度信息确定的,所述第一载波和所述第二载波中在目标OFDM符号上有信道传输的载波中的一个载波。
  19. 根据权利要求18所述的装置,其特征在于,所述通信方向为上行包括:
    所述第一载波的第一TDD帧结构配置或所述第二载波的第二TDD帧结构配置在所述目标OFDM符号上是上行符号,或者,所述目标OFDM符号上存在上行信道传输;和/或
    所述通信方向为下行包括:所述第一载波的第一TDD帧结构配置或所述第二载波的第二TDD帧结构配置在所述目标OFDM符号上是下行符号,或者,所述目标符号上存在下行信道传输。
  20. 根据权利要求18或19所述的装置,其特征在于,所述目标载波为所述第一载波和所述第二载波中有信道传输的载波中的一个,包括:若所述第一载波和所述第二载波中有一个载波有信道传输,且另一个载波没有信道传输,所述目标载波为所述有信道传输的一个载波。
  21. 根据权利要求18所述的装置,其特征在于,所述第一载波在目标OFDM符号有信道传输,所述目标载波为所述第一载波,所述第一载波的信道传输为下行信道传输,所述下行信道传输包括以下至少一项:同步信号/广播信道块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH或信道状态信息-参考信号CSI-RS;或者,
    所述第一载波在目标OFDM符号上有信道传输,所述目标载波为所述第一载波,所述第一载波的信道传输为上行信道传输,所述上行信道传输包括以下至少一项:物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH或上行探测参考信号SRS。
  22. 根据权利要求18或19所述的装置,其特征在于,所述目标载波为所述第一载波和所述第二载波中有信道传输的载波中的一个,包括:若所述第一载波和所述第二载波在目标OFDM符号上都有信道传输,且所述第一载波中包括下行控制信息DCI调度或触发的信道传输,所述第二载波中包括系统信息或RRC信令配置的信道传输,所述目标载波为所述第一载波。
  23. 根据权利要求22所述的装置,其特征在于,所述下行控制信息DCI调度或触发的信道传输为上行信道传输时,所述上行信道传输包括以下至少一项:
    PUSCH,承载动态调度的PDSCH的自动重传请求-确认应答HARQ-ACK的PUCCH,承载非周期性信道状态信息A-CSI的PUCCH,非周期SRS,PRACH;
    所述下行控制信息DCI调度或触发的信道传输为下行信道传输时,所述下行信道传输包括以下至少一项:PDSCH,CSI-RS。
  24. 根据权利要求22或23所述的装置,其特征在于,所述系统信息或RRC信令配置的信道传输为下行传输时,所述下行信道传输包括以下至少一项:PDCCH,半静态调度SPS PDSCH,信道状态信息-参考信号CSI-RS,SSB;
    所述系统信息或RRC信令配置的信道传输为上行传输时,所述下行信道传输包括以下一项或多项:PUSCH,承载SPS PDSCH的HARQ-ACK的配置的PUCCH,承载调度请求SR的PUCCH,承载周期CSI或半持续CSI的PUCCH,周期或半持续的SRS,PRACH。
  25. 根据权利要求22所述的装置,其特征在于,所述装置还包括处理模块,用于:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为所述第一载波在所述目标OFDM符号上的信道传输,所述传输B为所述第二载波在所述目标OFDM符号上的信道传输。
  26. 根据权利要求25所述的装置,其特征在于,所述第一关系包括:
    所述传输B的第一个符号的起始时刻与所述传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第一预设时长;或者
    所述目标OFDM符号的第一个符号的起始时刻与所述传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第二预设时长。
  27. 根据权利要求18至26任一所述的装置,其特征在于,所述第一载波和所述第二载波属于一个频段。
  28. 一种信号传输装置,其特征在于,所述装置包括:
    收发模块,用于发送第一载波和第二载波中至少一个载波在目标正交频分复用技术OFDM符号上的调度信息,所述第一载波和所述第二载波在所述目标OFDM符号上通信方向相反,所述通信方向包括上行和下行;
    所述收发模块,还用于在所述目标OFDM符号上进行目标载波的信道传输,所述目标载波为根据所述调度信息确定的,所述第一载波和所述第二载波中在目标OFDM符号上有信道传输的载波中的一个载波。
  29. 根据权利要求28所述的装置,其特征在于,所述通信方向为上行包括:
    所述第一载波的第一TDD帧结构配置或所述第二载波的第二TDD帧结构配置在所述目标OFDM符号上是上行符号,或者,所述目标符号上存在上行信道传输;和/或
    所述通信方向为下行包括:所述第一载波的第一TDD帧结构配置或所述第二载波的第二TDD帧结构配置在所述目标OFDM符号上是下行符号,或者,所述目标符号上存在下行信道传输。
  30. 根据权利要求28或29所述的装置,其特征在于,所述目标载波为所述第一载波和所述第二载波中有信道传输的载波中的一个,包括:若所述第一载波和所述第二载波中有一个载波有信道传输,且另一个载波没有信道传输,所述目标载波为所述有信道传输的一个载波。
  31. 根据权利要求28或29所述的装置,其特征在于,所述目标载波为所述第一载波和所述第二载波中有信道传输的载波中的一个,包括:若所述第一载波和所述第二载波在目标OFDM符号上都有信道传输,且所述第一载波中包括下行控制信息DCI调度或触发的信道传输,所述第二载波中包括系统信息或RRC信令配置的信道传输,所述目标载波为所述第一载波。
  32. 根据权利要求31所述的装置,其特征在于,所述装置还包括处理模块,用于:确定传输B和传输A所对应的DCI满足第一关系,其中传输A为所述第一载波在所述目标OFDM符号上的信道传输,所述传输B为所述第二载波在所述目标OFDM符号上的信道传输。
  33. 根据权利要求32所述的装置,其特征在于,所述第一关系包括:
    所述传输B的第一个符号的起始时刻与所述传输A所对应的DCI所在PDCCH的最后一 个符号的结束时刻之间的距离大于或等于第一预设时长;或者
    所述目标OFDM符号的第一个符号的起始时刻与所述传输A所对应的DCI所在PDCCH的最后一个符号的结束时刻之间的距离大于或等于第二预设时长。
  34. 根据权利要求28至33任一所述的装置,其特征在于,所述第一载波和所述第二载波属于一个频段。
  35. 一种通信装置,其特征在于,所述通信装置包括至少一个处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述至少一个处理器的信号发送给所述通信装置之外的其它通信装置,所述至少一个处理器通过逻辑电路或执行代码指令用于实现如权利要求1至10中任一项所述方法,或使得所述电子装置执行如权利要求11至17任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令被运行时,实现如权利要求1至10中任一项所述的方法或权利要求11至17任一项所述的方法。
  37. 一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至10中任一项所述的方法,或使得计算机执行权利要求11至17中任一项所述的方法。
  38. 一种芯片系统,所述芯片系统包括处理器,还可以包括存储器,用于实现权利要求1至10中任一项所述的方法,或用于实现权利要求11至17中任一项所述的方法。
  39. 一种通信系统,所述通信系统包括权利要求18-27中任一项所述的装置,和/或包括权利要求28-24中任一项所述的装置。
PCT/CN2022/099642 2021-07-14 2022-06-17 信号传输方法及装置 WO2023284485A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22841125.2A EP4354997A1 (en) 2021-07-14 2022-06-17 Signal transmission method and apparatus
US18/411,215 US20240155581A1 (en) 2021-07-14 2024-01-12 Signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110797862.1 2021-07-14
CN202110797862.1A CN115623598A (zh) 2021-07-14 2021-07-14 信号传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/411,215 Continuation US20240155581A1 (en) 2021-07-14 2024-01-12 Signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2023284485A1 true WO2023284485A1 (zh) 2023-01-19

Family

ID=84855737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099642 WO2023284485A1 (zh) 2021-07-14 2022-06-17 信号传输方法及装置

Country Status (4)

Country Link
US (1) US20240155581A1 (zh)
EP (1) EP4354997A1 (zh)
CN (1) CN115623598A (zh)
WO (1) WO2023284485A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811486A (zh) * 2011-05-30 2012-12-05 中国移动通信集团公司 一种载波调度方法、装置及相关设备
US20180077644A1 (en) * 2016-09-10 2018-03-15 Ofinno Technologies, Llc Deactivation timer management and cross carrier scheduling in a wireless device and wireless network
CN110249677A (zh) * 2017-02-02 2019-09-17 高通股份有限公司 新无线系统中的半双工操作
US20190363843A1 (en) * 2018-05-27 2019-11-28 Brian Gordaychik Next generation radio technologies
CN110831217A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种数据调度方法及装置
CN112713976A (zh) * 2019-10-25 2021-04-27 北京三星通信技术研究有限公司 用于ue的信号传输方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811486A (zh) * 2011-05-30 2012-12-05 中国移动通信集团公司 一种载波调度方法、装置及相关设备
US20180077644A1 (en) * 2016-09-10 2018-03-15 Ofinno Technologies, Llc Deactivation timer management and cross carrier scheduling in a wireless device and wireless network
CN110249677A (zh) * 2017-02-02 2019-09-17 高通股份有限公司 新无线系统中的半双工操作
US20190363843A1 (en) * 2018-05-27 2019-11-28 Brian Gordaychik Next generation radio technologies
CN110831217A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种数据调度方法及装置
CN112713976A (zh) * 2019-10-25 2021-04-27 北京三星通信技术研究有限公司 用于ue的信号传输方法及装置

Also Published As

Publication number Publication date
CN115623598A (zh) 2023-01-17
US20240155581A1 (en) 2024-05-09
EP4354997A1 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
JP7374221B2 (ja) 通信方法および装置
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
CN110225547B (zh) 一种调度请求发送、接收方法、终端及网络侧设备
CN106954277B (zh) 一种调度请求处理方法和装置
US20210160852A1 (en) Resource configuration method and terminal device
EP3833129A1 (en) Method for transmitting configuration information and terminal device
WO2020025042A1 (zh) 资源配置的方法和终端设备
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
WO2021062918A1 (zh) 一种资源的动态指示方法及装置
EP3840500A1 (en) Method and device for determining and configuring scheduling request resource, and storage medium
US20200045733A1 (en) Uplink Scheduling For NR-U
KR20220050157A (ko) 리소스 다중화 방법 및 장치
CN110830189B (zh) 一种通信方法及装置
CN113037455B (zh) 发送和接收信息的方法及装置
EP3716705A1 (en) Method for determining transmission resources, terminal device and network device
WO2022156567A1 (zh) 信息传输方法、装置、终端设备、网络设备及存储介质
WO2023284485A1 (zh) 信号传输方法及装置
WO2024067617A1 (zh) 资源配置的方法及装置
CN115315930B (zh) 保护间隔的确定方法、设备及存储介质
WO2024067184A1 (zh) 一种通信方法及装置
WO2024093878A1 (zh) 一种通信方法及装置
US20240155698A1 (en) Communication method and apparatus
WO2023201749A1 (en) Method and device for solving pucch transmission and determining pucch slot
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2023011372A1 (zh) 数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022841125

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022841125

Country of ref document: EP

Effective date: 20240109

NENP Non-entry into the national phase

Ref country code: DE