WO2022156567A1 - 信息传输方法、装置、终端设备、网络设备及存储介质 - Google Patents

信息传输方法、装置、终端设备、网络设备及存储介质 Download PDF

Info

Publication number
WO2022156567A1
WO2022156567A1 PCT/CN2022/071456 CN2022071456W WO2022156567A1 WO 2022156567 A1 WO2022156567 A1 WO 2022156567A1 CN 2022071456 W CN2022071456 W CN 2022071456W WO 2022156567 A1 WO2022156567 A1 WO 2022156567A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
uci
mapping
dmrs
size
Prior art date
Application number
PCT/CN2022/071456
Other languages
English (en)
French (fr)
Inventor
高雪娟
司倩倩
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022156567A1 publication Critical patent/WO2022156567A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an information transmission method, an apparatus, a terminal device, a network device, and a storage medium.
  • the physical uplink shared channel PUSCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Control Channel
  • the so-called repeated transmission that is, the same transport block TB (Transport Block) information, is repeatedly transmitted in multiple transmission opportunities, and each transmission opportunity is a separate PUSCH/Physical Downlink Shared Channel PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the TB carried is the same TB information, and the TB is individually encoded based on the resources corresponding to each transmission opportunity.
  • multi-slot TB transmission a mode of transmitting one TB through PUSCH in multiple time slots (referred to as multi-slot TB transmission) is supported.
  • PUCCH Physical Uplink Control Channel
  • UCI Uplink Control Information
  • Embodiments of the present application provide an information transmission method, apparatus, terminal device, network device, and storage medium, to solve the problem that the prior art cannot enable UCI to be multiplexed and transmitted on the PUSCH carrying multiple time slots TB.
  • an embodiment of the present application provides an information transmission method, which is applied to a terminal device, including:
  • the uplink control information UCI on the PUCCH is transferred to the target PUSCH for transmission; wherein, the target PUSCH is the PUSCH colliding with the PUCCH or all the PUSCHs corresponding to the same TB in the time slot where the PUSCH colliding with the PUCCH is located.
  • the UCI on the PUCCH is transferred to the target PUSCH for transmission, the UCI is mapped to the target PUSCH according to a predetermined mapping rule.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • mapping rule 1 when mapping is performed in the symbol set, at least one of the following mapping methods is included:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS (DeModulation Reference Signal), and map the UCI to consecutive symbols;
  • DMRS DeModulation Reference Signal
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping mode 2 For mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping mode 4 it includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • mapping mode 4 it includes: uniform distribution mode and/or front distribution mode;
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/(X1+X2) does not exceed the size of the resource carrying UCI on one of the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of UCI, and the mapping resources of UCI are stored in the uniformly distributed over symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI.
  • the symbols constitute A2 symbols, if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the A1+A2 symbols, then the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed The total resource size of the UCI carried on the symbols, then determine the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • mapping rule 2 or the mapping rule 3 before mapping is performed according to the mapping mode 1, the mapping mode 2, the mapping mode 3, and the mapping mode 4 in each symbol set ,Also includes:
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes one of the following processing methods:
  • Processing method 1 Divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the size of the UCI mapping resource corresponding to each symbol set based on the corresponding UCI information in each symbol set;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • UCI information when UCI information is grouped, it is uniformly grouped, or grouped according to a proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the total symbol set is the same as that of the PUCCH.
  • the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the The total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in an order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • the waveform when an orthogonal frequency division multiplexing OFDM (Orthogonal Frequency Division Multiplexing) waveform is used, it is a symbol that does not carry a DMRS and a DMRS symbol that can be used to carry a resource unit RE (Resource Element) of the TB.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the UCI is at least one of HARQ-ACK (HARQ-ACK, Hybrid Automatic Repeat request-ACKnowledgment), channel state information CSI (Channel State Information), and scheduling request SR (Scheduling Request).
  • HARQ-ACK Hybrid Automatic Repeat request-ACKnowledgment
  • CSI Channel State Information
  • scheduling request SR Service Request
  • the embodiments of the present application also provide an information transmission method, which is applied to a network device, including:
  • the uplink control information UCI is received in the target PUSCH; wherein, the target PUSCH is in conflict with the PUCCH PUSCH or all PUSCHs corresponding to the same TB in the time slot where the PUSCH that collides with the PUCCH is located.
  • the receiving uplink control information UCI in the target PUSCH includes:
  • the uplink control information UCI mapped according to the predetermined mapping rule is received in the target PUSCH.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • mapping rule 1 when mapping is performed in the symbol set, at least one of the following mapping methods is included:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS, and map the UCI to consecutive symbols;
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping mode 2 For mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping mode 4 it includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • mapping mode 4 it includes: uniform distribution mode and/or front distribution mode;
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/ (X1+X2) does not exceed the resource size of the UCI bearing on one symbol on the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of UCI, and the mapping resources of UCI are stored in the uniformly distributed over symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI.
  • the symbols constitute A2 symbols, if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the A1+A2 symbols, then the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed The total resource size of the UCI carried on the symbols, then determine the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • mapping rule 2 or the mapping rule 3 before mapping is performed according to the mapping mode 1, the mapping mode 2, the mapping mode 3, and the mapping mode 4 in each symbol set ,Also includes:
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes the following processing methods:
  • Processing method 1 Divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the size of the UCI mapping resource corresponding to each symbol set based on the corresponding UCI information in each symbol set;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • UCI information when UCI information is grouped, it is uniformly grouped, or grouped according to a proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the total symbol set is the same as that of the PUCCH.
  • the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the The total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in an order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • the waveform when the orthogonal frequency division multiplexing OFDM waveform is used, for the symbols that do not carry DMRS and the DMRS symbols that can be used to carry the TB resource unit RE, the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the UCI is at least one of HARQ-ACK, CSI, and SR.
  • an embodiment of the present application further provides an information transmission apparatus, which is applied to a terminal device, including:
  • a sending module configured to transfer the uplink control information UCI on the PUCCH to the target PUSCH for sending when the physical uplink shared channel PUSCH carrying the multi-slot transport block TB and the physical uplink control channel PUCCH have a conflict in the time domain; wherein , the target PUSCH is the PUSCH that collides with the PUCCH or all the PUSCHs corresponding to the same TB in the time slot where the PUSCH that collides with the PUCCH is located.
  • the UCI on the PUCCH is transferred to the target PUSCH for transmission, the UCI is mapped to the target PUSCH according to a predetermined mapping rule.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • mapping rule 1 when mapping is performed in the symbol set, at least one of the following mapping methods is included:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS (DeModulation Reference Signal), and map the UCI to consecutive symbols;
  • DMRS DeModulation Reference Signal
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping mode 2 For mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping mode 4 it includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • mapping mode 4 it includes: uniform distribution mode and/or front distribution mode;
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/(X1+X2) does not exceed the size of the resource carrying UCI on one of the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of UCI, and the mapping resource of UCI is uniformly distributed over symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI. symbols constitute A2 symbols.
  • the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed The total resource size of the UCI carried on the symbols, then determine the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • mapping rule 2 or the mapping rule 3 before mapping is performed according to the mapping mode 1, the mapping mode 2, the mapping mode 3, and the mapping mode 4 in each symbol set ,Also includes:
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes one of the following processing methods:
  • Processing method 1 Divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the size of the UCI mapping resource corresponding to each symbol set based on the corresponding UCI information in each symbol set;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • UCI information when UCI information is grouped, it is uniformly grouped, or grouped according to a proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the total symbol set is the same as that of the PUCCH.
  • the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the The total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in an order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • the waveform when an orthogonal frequency division multiplexing OFDM (Orthogonal Frequency Division Multiplexing) waveform is used, it is a symbol that does not carry a DMRS and a DMRS symbol that can be used to carry a resource unit RE (Resource Element) of the TB.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the UCI is at least one of HARQ-ACK (HARQ-ACK, Hybrid Automatic Repeat request-ACKnowledgment), channel state information CSI (Channel State Information), and scheduling request SR (Scheduling Request).
  • HARQ-ACK Hybrid Automatic Repeat request-ACKnowledgment
  • CSI Channel State Information
  • scheduling request SR Service Request
  • the embodiments of the present application further provide an information transmission apparatus, which is applied to network equipment, including:
  • the receiving module is used to receive the uplink control information UCI in the target PUSCH when the physical uplink shared channel PUSCH carrying the multi-slot transport block TB and the physical uplink control channel PUCCH conflict in the time domain;
  • the PUSCH in conflict with the PUCCH or all the PUSCHs of the same TB in the time slot where the PUSCH in conflict with the PUCCH is located.
  • the receiving uplink control information UCI in the target PUSCH includes:
  • the uplink control information UCI mapped according to the predetermined mapping rule is received in the target PUSCH.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols contained in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • mapping rule 1 when mapping is performed in the symbol set, at least one of the following mapping methods is included:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS, and map the UCI to consecutive symbols;
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping mode 2 For mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping mode 4 it includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • mapping mode 4 it includes: uniform distribution mode and/or front distribution mode;
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/(X1+X2) does not exceed the size of the resource carrying UCI on one of the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of UCI, and the mapping resource of UCI is uniformly distributed over symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI.
  • the symbols constitute A2 symbols, if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the A1+A2 symbols, then the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed
  • the total resource size of the UCI carried on the symbols is determined by determining the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • mapping rule 2 or the mapping rule 3 before mapping is performed according to the mapping mode 1, the mapping mode 2, the mapping mode 3, and the mapping mode 4 in each symbol set ,Also includes:
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes the following processing methods:
  • Processing method 1 Divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the size of the UCI mapping resource corresponding to each symbol set based on the corresponding UCI information in each symbol set;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • UCI information when UCI information is grouped, it is uniformly grouped, or grouped according to a proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the total symbol set is the same as that of the PUCCH.
  • the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the The total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in an order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • the waveform when the orthogonal frequency division multiplexing OFDM waveform is used, for the symbols that do not carry DMRS and the DMRS symbols that can be used to carry the TB resource unit RE, the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the UCI is at least one of HARQ-ACK, CSI, and SR.
  • an embodiment of the present application further provides a terminal device, including a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements the following steps when executing the computer program :
  • the uplink control information UCI on the PUCCH is transferred to the target PUSCH for transmission; wherein, the target PUSCH is the PUSCH colliding with the PUCCH or all the PUSCHs corresponding to the same TB in the time slot where the PUSCH colliding with the PUCCH is located.
  • the UCI on the PUCCH is transferred to the target PUSCH for transmission, the UCI is mapped to the target PUSCH according to a predetermined mapping rule.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • mapping rule 1 when mapping is performed in the symbol set, at least one of the following mapping methods is included:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS (DeModulation Reference Signal), and map the UCI to consecutive symbols;
  • DMRS DeModulation Reference Signal
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping mode 2 For mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping mode 4 it includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • mapping mode 4 it includes: uniform distribution mode and/or front distribution mode;
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/(X1+X2) does not exceed the size of the resource carrying UCI on one of the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of UCI, and the mapping resource of UCI is uniformly distributed over symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI.
  • the symbols constitute A2 symbols, if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the A1+A2 symbols, then the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed The total resource size of the UCI carried on the symbols, then determine the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • mapping rule 2 or the mapping rule 3 before mapping is performed according to the mapping mode 1, the mapping mode 2, the mapping mode 3, and the mapping mode 4 in each symbol set ,Also includes:
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes one of the following processing methods:
  • Processing method 1 Divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the size of the UCI mapping resource corresponding to each symbol set in each symbol set based on the corresponding UCI information;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • UCI information when UCI information is grouped, it is uniformly grouped, or grouped according to a proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the total symbol set is the same as that of the PUCCH.
  • the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the The total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in an order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • Orthogonal Frequency Division Multiplexing (OFDM) waveform
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the UCI is at least one of HARQ-ACK (HARQ-ACK, Hybrid Automatic Repeat request-ACKnowledgment), channel state information CSI (Channel State Information), and scheduling request SR (Scheduling Request).
  • HARQ-ACK Hybrid Automatic Repeat request-ACKnowledgment
  • CSI Channel State Information
  • scheduling request SR Service Request
  • an embodiment of the present application further provides a network device, including a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements the following steps when executing the computer program :
  • the uplink control information UCI is received in the target PUSCH; wherein, the target PUSCH is in conflict with the PUCCH PUSCH or all PUSCHs corresponding to the same TB in the time slot where the PUSCH colliding with the PUCCH is located.
  • the receiving uplink control information UCI in the target PUSCH includes:
  • the uplink control information UCI mapped according to the predetermined mapping rule is received in the target PUSCH.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • mapping rule 1 when mapping is performed in the symbol set, at least one of the following mapping methods is included:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS, and map the UCI to consecutive symbols;
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping mode 2 For mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping mode 4 it includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • mapping mode 4 it includes: uniform distribution mode and/or front distribution mode;
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/(X1+X2) does not exceed the size of the resource carrying UCI on one of the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of UCI, and the mapping resources of UCI are stored in the uniformly distributed over symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI. symbols constitute A2 symbols.
  • the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed The total resource size of the UCI carried on the symbols, then determine the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • mapping rule 2 or the mapping rule 3 before mapping is performed according to the mapping mode 1, the mapping mode 2, the mapping mode 3, and the mapping mode 4 in each symbol set ,Also includes:
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes the following processing methods:
  • Processing method 1 Divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the size of the UCI mapping resource corresponding to each symbol set based on the corresponding UCI information in each symbol set;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • UCI information when UCI information is grouped, it is uniformly grouped, or grouped according to a proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the total symbol set is the same as that of the PUCCH.
  • the proportion is obtained according to the proportion of each symbol set in the total symbol set, and the The total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in an order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • the waveform when the orthogonal frequency division multiplexing OFDM waveform is used, for the symbols that do not carry DMRS and the DMRS symbols that can be used to carry the TB resource unit RE, the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the UCI is at least one of HARQ-ACK, CSI, and SR.
  • an embodiment of the present application further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is configured to cause the processor to execute the first The steps of the information transmission method described in the aspect or the second aspect.
  • the uplink control information UCI on the PUCCH is transferred to the target PUSCH for transmission, so that the UCI is normally transmitted on the PUSCH carrying the multi-slot TB, avoiding UCI discarding, and improving the transmission performance of the system.
  • Fig. 1 is the schematic diagram of PUSCH repeated transmission
  • 2 is a schematic diagram of another PUSCH repeated transmission
  • 3 is a schematic diagram of UCI performing discrete mapping in frequency domain within the transmission bandwidth of PUSCH;
  • Fig. 4 is the comparative schematic diagram of multi-slot TB transmission and repeated transmission
  • FIG. 5 is a flowchart of steps applied to a terminal device provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of steps applied to a network device provided by an embodiment of the present application.
  • FIG. 7 is one of the schematic diagrams of UCI mapping provided by an embodiment of the present application.
  • FIG. 8 is the second schematic diagram of UCI mapping provided by the embodiment of the present application.
  • FIG. 9 is the third schematic diagram of UCI mapping provided by an embodiment of the present application.
  • FIG. 10 is the fourth schematic diagram of UCI mapping provided by the embodiment of the present application.
  • FIG. 11 is the fifth schematic diagram of UCI mapping provided by the embodiment of the present application.
  • FIG. 12 is the sixth schematic diagram of UCI mapping provided by the embodiment of the present application.
  • FIG. 13 is the seventh schematic diagram of UCI mapping provided by the embodiment of the present application.
  • FIG. 14 is the eighth schematic diagram of UCI mapping provided by the embodiment of the present application.
  • FIG. 15 is the ninth schematic diagram of UCI mapping provided by the embodiment of the present application.
  • FIG. 16 is a tenth schematic diagram of UCI mapping provided by an embodiment of the present application.
  • FIG. 17 is an eleventh schematic diagram of UCI mapping provided by an embodiment of the present application.
  • FIG. 18 is the twelfth schematic diagram of UCI mapping provided by an embodiment of the present application.
  • FIG. 19 is the thirteenth schematic diagram of UCI mapping provided by the embodiment of the present application.
  • FIG. 20 is a fourteenth schematic diagram of UCI mapping provided by an embodiment of the present application.
  • FIG. 21 is a fifteenth schematic diagram of UCI mapping provided by an embodiment of the present application.
  • FIG. 22 is a sixteenth schematic diagram of UCI mapping provided by an embodiment of the present application.
  • Figure 23 is a block diagram of a module of an information transmission device applied to a terminal device provided by an embodiment of the present application.
  • 24 is a block diagram of a module of an information transmission apparatus applied to a network device provided by an embodiment of the present application;
  • FIG. 25 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the PUSCH supports only one repeated transmission mode in R15, that is, the repeated transmission based on time slots.
  • high-level signaling such as pusch-AggregationFactor
  • pre-configures the number of repeated transmissions also known as the Aggregation factor, represented by N for simplicity
  • N repeated transmissions indicate that the PUSCH occupies N time slots for transmission, and in each time slot
  • the same TB information is transmitted on the same PUSCH resource.
  • the time domain position of the PUSCH transmission in this time slot is determined according to the same starting symbol and number of symbols.
  • the set of symbols determined according to the starting symbol and the number of symbols in one of the time slots contains The downlink symbols configured by high-level signaling (such as tdd-UL-DL-ConfigurationCommon, ortdd-UL-DL-ConfigurationDedicated) are determined to be unavailable, and PUSCH is not transmitted in this time slot, but a repeated transmission is still recorded. That is, if the set of symbols determined in N1 time slots among the N time slots is unavailable, there are actually only N-N1 repeated transmissions. In R16, PUSCH expands the repeated transmission in the above R15 to a certain extent.
  • high-level signaling such as tdd-UL-DL-ConfigurationCommon, ortdd-UL-DL-ConfigurationDedicated
  • the repetition times can also be expressed by adding a column of information in the TDRA table (configured through repetitionNumber-r16).
  • Downlink Control information DCI (Downlink Control Information) (the DCI that schedules PUSCH or the physical downlink control channel PDCCH (Physical Downlink Control Channel) is called UL grant.
  • DCI and PDCCH can be considered equivalent in describing scheduling and information indication.
  • DCI is the specific transmission of PDCCH.
  • PDCCH is the channel that carries DCI
  • TDRA Time Domain Resource Allocation
  • SLIV Start and length indicator value
  • K2 scheduling timing
  • repetition type B that is, according to the start symbol indicated in the PDCCH (or DCI) of the scheduled PUSCH, the number of transmission symbols determines the transmission opportunity (instant domain resource, specifically the symbol set) of each repetition, and repeats the transmission.
  • the number of times can be obtained in a manner similar to repetition type A; the time domain resources of the first repetition PUSCH are directly determined according to the start symbol and the number of symbols indicated by the DCI, and the time domain resources of subsequent repetitions are in the order after the first repetition ok.
  • each transmission opportunity corresponds to the same number of symbols, and the starting point is the first symbol after the previous repetition. In this way, N consecutive repetition transmission opportunities are obtained, each of which becomes a nominal repetition (Nominal repetition).
  • each Actual repetition contains only symbols that can be used for uplink transmission, such as uplink symbols or Flexible symbols.
  • Multiple repetition PUSCHs can be in the same time slot or distributed in different time slots. Specifically as shown in Figure 1.
  • the DMRS mapping rule therein determines the DMRS symbol position according to the mapping method in a PUSCH in the prior art.
  • the terminal For the PUSCH that uses repetition Type-B for repeated transmission, the terminal multiplexes the UCI carried by the PUCCH on the real (actual) PUSCH with the number of the first symbols overlapping with the PUCCH greater than 1 for transmission.
  • the resources of PUSCH (including single-slot and repeated transmission) and multi-slot PUCCH (that is, configured with repeated transmission) of the same physical layer priority collide, the PUSCH channel is discarded in the conflicting time slot, and only PUCCH is transmitted.
  • resources of PUCCH and PUSCH with different physical layer priorities collide the channel with lower priority is discarded, and only the channel with higher priority is transmitted.
  • both HARQ-ACK and CSI carried by PUCCH can be transmitted through PUSCH.
  • PUSCH is a PUSCH that only carries semi-persistent channel state information SP-CSI (Semi-persistent CSI)
  • SP-CSI semi-persistent channel state information
  • the HARQ-ACK When the number of HARQ-ACK bits is not greater than 2, the HARQ-ACK is punctured and transmitted on the PUSCH (that is, the TB is always coded based on the PUSCH resources without HARQ-ACK, and the corresponding position is
  • HARQ-ACK performs rate-matching transmission on PUSCH (that is, when TB or CSI on PUSCH is encoded, the PUSCH is used for HARQ- The resources for ACK transmission are removed, and coding is performed based on the remaining resources on the PUSCH). TBs on CSI and PUSCH are always rate matched for transmission.
  • Both HARQ-ACK and CSI are mapped on all layers corresponding to the TB on the PUSCH for transmission.
  • HARQ-ACK is mapped from the first non-DMRS symbol after the first DMRS on the PUSCH.
  • some resources are reserved.
  • the HARQ-ACK bits are 0, 1, and 2, the HARQ-ACK resource reservation is always performed according to 2 bits. If the actual HARQ-ACK is 1 bit, it is mapped on a part of the reserved resources.
  • CSI is mapped from the first non-DMRS symbol on PUSCH.
  • CSI part 1 When the information bits of HARQ-ACK are less than 2, there are reserved resources for HARQ-ACK on PUSCH, CSI part 1 will not be mapped on the reserved resources, and CSI part 2 and TB can be mapped on reserved resources; if the information bits of HARQ-ACK are greater than 2, then CSI part 1, CSI part 2 and TB will not be mapped on HARQ-ACK resources.
  • the UCI performs discrete mapping in the frequency domain within the transmission bandwidth of the PUSCH in the order of the frequency domain first and then the time sequence.
  • the primary carrier group MCG Master (primary) Cell Group
  • the secondary carrier group SCG Secondary Cell Group
  • a carrier group such as supporting PUCCH transmission on SCG
  • each PUCCH group is a carrier group.
  • the coverage enhancement (Coverage enhancement) is proposed because the complex environment or the interference at the edge of the cell may affect the coverage of the signal or channel transmission.
  • a terminal (RedCap terminal) with reduced complexity is proposed. Due to the reduction of the degree and hardware indicators, such as reducing the bandwidth and antenna, etc., the transmission performance is degraded, and certain coverage enhancements are also required to make up for the degraded transmission performance.
  • multi-slot TB transmission As shown in Figure 4, for a terminal that needs to perform coverage enhancement, the prior art is researching a TB processing over multiple slots (TB processing over multiple slots) method, hereinafter referred to as multi-slot TB transmission.
  • the transmission of a multi-slot TB on PUSCH is different from the PUSCH repeated transmission in the prior art.
  • each time slot is a repeated transmission of the same TB. That is, the coding of each TB is performed based on the PUSCH resources in one time slot, and then repeated transmission in each time slot, and each time slot is an independent PUSCH transmission.
  • a TB is coded based on the total PUSCH resources in multiple time slots, that is, the TB is jointly coded based on multiple time slots, rather than the independent coding method in each time slot.
  • a TB is transmitted in multiple PUSCHs in multiple slots, and these PUSCHs each carry a part of the encoded TB", or it can be understood as "a TB is transmitted in a PUSCH, but the length of the PUSCH is across multiple slots".
  • Figure 4 gives an example of a comparison of repetition type A and TB transmission across slots, where TBS is both the transport block size (TB Size).
  • an embodiment of the present application provides an information transmission method.
  • the PUCCH is transmitted.
  • the uplink control information UCI is transferred to the target PUSCH for transmission, so that the UCI is normally transmitted on the PUSCH carrying the multi-slot TB, avoiding UCI discarding, and improving the transmission performance of the system.
  • the technical solutions provided in the embodiments of the present application may be applicable to various systems, especially 5G systems.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • general packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • long term evolution long term evolution
  • LTE LTE
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present application.
  • the terminal device and other network devices eg, core network device and access network device (ie, base station)
  • the terminal device is also regarded as a kind of network device.
  • the network device involved in the embodiments of the present application may be a base station, and the base station may include a plurality of cells that provide services for terminals, or may be a CU (Central Unit, centralized control unit) or a DU (Distributed Unit, distributed unit).
  • the network device may also be called an access point, or may be a device in the access network that communicates with wireless terminal devices through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present application may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present application.
  • a network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • a flowchart of steps of an information transmission method applied to a terminal device provided by an embodiment of the present application, the method includes the following steps:
  • Step 101 When there is a conflict in the time domain between the physical uplink shared channel PUSCH carrying the multi-slot transport block TB and the physical uplink control channel PUCCH, transfer the uplink control information UCI on the PUCCH to the target PUSCH for transmission;
  • the target PUSCH is a PUSCH colliding with the PUCCH or all PUSCHs corresponding to the same TB in the time slot where the PUSCH colliding with the PUCCH is located.
  • the uplink control information UCI on the PUCCH is transferred to the target PUSCH for transmission, wherein , the target PUSCH is the PUSCH that collides with the PUCCH or all the PUSCHs corresponding to the same TB in the time slot where the PUSCH that collides with the PUCCH is located.
  • the target PUSCH is the PUSCH that collides with the PUCCH or all the PUSCHs corresponding to the same TB in the time slot where the PUSCH that collides with the PUCCH is located.
  • a PUSCH carrying a multi-slot TB is called a PUSCH in multiple slots, it means that some symbols of this PUSCH in a certain slot collide with the PUCCH, and the UCI will be transferred to multiple slots.
  • the transmitted PUSCH is transmitted; if the PUSCH carrying the multi-slot TB is called an independent PUSCH in each timeslot, the PUSCH in conflict here is an independent PUSCH without involving other PUSCHs.
  • the information transmission method provided by the embodiment of the present application transfers the uplink control information UCI on the PUCCH to the target PUSCH when there is a conflict in the time domain between the physical uplink shared channel PUSCH carrying the multi-slot transport block TB and the physical uplink control channel PUCCH
  • the UCI on the PUCCH can be transferred to the target PUSCH for transmission, so as to avoid UCI discarding and improve the transmission performance of the system.
  • the uplink control information UCI on the PUCCH is transferred to the target PUSCH for transmission, the UCI is mapped to the target PUSCH according to a predetermined mapping rule.
  • the UCI of the PUCCH is mapped to the target PUSCH according to a predetermined mapping rule.
  • the predetermined mapping rules include:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • the mapping of the UCI to the target PUSCH includes three rules.
  • the first mapping rule is centralized mapping, and the symbols contained in the PUSCH conflicting with the PUCCH are used as a symbol set, and are mapped in the symbol set;
  • Each PUSCH with conflicting PUCCHs is regarded as an independent individual, and the symbols contained in each PUSCH are regarded as a symbol set, and are mapped in each symbol set;
  • the symbols corresponding to the PUSCH in conflict are divided into multiple groups, and the symbols corresponding to the PUSCH transmitted in the same time slot (the time slot obtained by dividing the SCS of the PUSCH) are regarded as a group to form a symbol set. Mapping in the collection.
  • the UCI is at least one of HARQ-ACK, CSI, and SR.
  • the UCI is at least one of HARQ-ACK, CSI, and SR; the same or different mapping rules can be selected for different UCI types, which are not specifically limited here.
  • HARQ-ACK HARQ-ACK, Hybrid Automatic Repeat request-ACKnowledgment
  • AN HARQ-ACK
  • mapping rule 1 For one of the mapping rule 1, the mapping rule 2, and the mapping rule 3, when performing mapping in the symbol set, the following mappings are included At least one of the ways:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS, and map the UCI to consecutive symbols;
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping in the symbol set includes four mapping modes, which are:
  • Mapping method 1 Start mapping from the first symbol that can be used to transmit UCI, and map UCI to consecutive symbols (the specific resource occupied by UCI is pre-calculated, and all the resources occupied by UCI can be mapped, and the same will follow. explanation, not repeat them). It should be noted that this method is preferentially applicable to channel state information CSI, and may also be applicable to AN, which is not specifically limited here.
  • Mapping mode 2 Start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS, and map the UCI to consecutive symbols. If there is no DMRS in a PUSCH (a PUSCH divided by an unavailable symbol, a slot boundary, etc.), the mapping is performed based on an assumed DMRS position, where the assumed DMRS position can be the first symbol, or the same as the previous one. The relative position of the DMRS in a PUSCH containing DMRS or the next PUSCH containing DMRS is the same (for example, the DMRS position in the previous PUSCH is the third symbol in the symbols contained in this PUSCH, then the assumed DMRS in this PUSCH is located in this PUSCH. The 3rd symbol among the symbols contained in the PUSCH). It should be noted that this method is preferentially applicable to AN, and may also be applicable to CSI, which is not specifically limited here.
  • Mapping mode 3 Start mapping from a predefined symbol, and map the UCI to consecutive symbols.
  • Mapping mode 4 Mapping around each DMRS symbol, and determining one of the symbols before and after the DMRS in the symbol set or the symbols of the adjacent DMRS that can be used for UCI transmission (ie, the discrete Fourier transform-based spread-spectrum orthogonal frequency division multiplexing).
  • symbols that are not DMRS symbols are symbols that can be used for UCI transmission.
  • OFDM in addition to symbols that are not used for DMRS transmission, if there are symbols used for DMRS transmission, they can be used for TB.
  • the transmitted RE, the symbol used for DMRS transmission can also be used as the symbol used to carry UCI transmission) as the mapping symbol of UCI.
  • the DMRS symbols are divided into N groups, the DMRS symbols in each group are adjacent, and the DMRS symbols in different groups are not adjacent, and these UCI mapping symbols can be distributed as evenly as possible around each group of DMRS, that is, each The number of UCI mapping symbols around a group of DMRSs does not differ by more than 1 symbol.
  • the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group; or these UCIs
  • the mapped symbols are preferentially distributed on the symbols available for UCI transmission around the top DMRS group.
  • mapping mode 2 For the mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping method 2 if there is no DMRS in a PUSCH (a PUSCH divided by an unavailable symbol, a time slot boundary, etc.), the mapping is performed based on an assumed DMRS position.
  • the assumed DMRS position can be the first symbol, or the same relative position as the DMRS in the previous PUSCH containing DMRS or the next PUSCH containing DMRS (for example, the DMRS position in the previous PUSCH is the symbol contained in this PUSCH
  • the 3rd symbol in the PUSCH, the DMRS assumed in this PUSCH is located in the 3rd symbol in the symbols contained in this PUSCH). It should be noted that this method is preferentially applicable to AN, and may also be applicable to CSI, which is not specifically limited here.
  • mapping mode 4 includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • the DMRS symbols can be divided into N groups, the DMRS symbols in each group are adjacent, and the DMRS symbols in different groups are not adjacent, and the mapped symbols of these UCIs can be as uniform as possible Distributed around each group of DMRS, that is, the number of UCI mapping symbols around each group of DMRS differs by no more than 1 symbol.
  • the mapped symbols of the UCI; or the mapped symbols of these UCIs are preferentially distributed on the symbols available for UCI transmission around the front DMRS group.
  • the mapping mode 4 includes: a uniform distribution mode and/or a forward distribution mode
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/(X1+X2) does not exceed the size of the resource carrying UCI on one of the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of UCI, and the mapping resource of UCI is uniformly distributed over symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI.
  • the symbols constitute A2 symbols, if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the A1+A2 symbols, then the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed The total resource size of the UCI carried on the symbols, then determine the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • one method (uniform distribution between each group of DMRS): first determine the symbol closest to each group of DMRS (that is, each 1 before and after each group of DMRS symbols is 1). symbols, in which there may be no symbols before or after the DMRS group, only the side with symbols is counted) X1 symbols that can be used for UCI transmission, if the size of the UCI mapping resources does not exceed the total resources of the UCI bearing on the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping resources are mapped to the X1 symbols.
  • the resources are evenly distributed on the X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and so on, until the size of the mapping resources that satisfy the UCI does not exceed
  • mapping mode 4 When the mapping mode 4 is distributed in the front, starting from the first group of DMRS symbols (the DMRS with the earliest time), take the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols ( A1 may be less than or equal to 2, because there may be no symbols before the DMRS, or there may be no symbols after the DMRS), if the size of the UCI mapping resource does not exceed the total resource size of the UCI carried on the A1 symbols, then determine the A1 symbols are used as UCI mapping symbols, otherwise, the nearest adjacent symbols before and after a group of DMRS that can be used to carry UCI are taken to form A2 symbols, if the size of UCI mapping resources does not exceed the A1+ The A2 symbols carry the total resource size of UCI, then the A1+A2 symbols are determined as the mapping symbols of UCI, and so on, until the size of the mapping resources that satisfy UCI does not exceed all the determined resources for carrying UCI.
  • A1 may be less than
  • the total resource size on the symbol when the above operations are performed on the last group of DMRS symbols, the size of the mapped resources that still cannot satisfy the UCI does not exceed the determined total resource size on all symbols used to carry UCI, then from Starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI, if the size of the UCI mapping resource does not exceed The total resource size of the UCI carried on the symbols, then determine the symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and so on, until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • the mapping in determining the multiple symbols carrying UCI in the mapping mode 4, the mapping can be performed in the order of frequency domain first and then time sequence, or it can be mapped in the order of time domain first and then frequency domain.
  • the mapping mode 4 when the mapping mode 4 is uniform distribution, it is more suitable for the UCI mapping in the time domain and then the frequency domain; when the mapping mode 4 is in the front distribution, it is more suitable for the UCI mapping in the frequency domain and then the time domain.
  • mapping rule 1 for the mapping rule 2 or the mapping rule 3, in each symbol set, the mapping method 1, the mapping method 2, and the mapping method 3 are used. Before performing the mapping with the mapping method 4, it also includes:
  • the method further includes: determining The size of the UCI mapping resource corresponding to each symbol set; specifically: the original UCI information can be divided into multiple groups, each group corresponds to a symbol set, and each symbol set is determined based on the corresponding UCI information. The size of the mapping resource of the UCI corresponding to the symbol set.
  • the UCI information it is also possible to take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set, Thus, the mapping resource size of the UCI corresponding to each symbol set is obtained.
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes the following processing methods:
  • Processing method 1 Divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the size of the UCI mapping resource corresponding to each symbol set based on the corresponding UCI information in each symbol set;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • the size of the UCI mapping resource corresponding to each symbol set may be determined through two processing methods.
  • the first processing method is: divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the UCI mapping resource size corresponding to each symbol set based on the corresponding UCI information in each symbol set.
  • grouping UCI information it can be uniformly grouped (if it is not an integer multiple, a certain group or groups contain more information), or grouped according to the proportion; the proportion can be based on the proportion of each symbol set in the total symbol set.
  • the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the second processing method is: taking the UCI information as a whole, determining the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and dividing the total UCI mapping resource size into multiple groups, each group corresponding to A symbol set, so as to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • grouping the mapping resource size corresponding to the total UCI it can be grouped uniformly (a group or groups contain more information when it is not an integer multiple), or grouped according to the proportion; the proportion can be based on each symbol set
  • the ratio in the total symbol set is obtained, where the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the UCI information when grouping UCI information, is grouped uniformly, or grouped according to the proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set , the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the ratio may be obtained according to the ratio of each symbol set in the total symbol set, where the total symbol set is a symbol set formed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the groups are uniformly grouped, or grouped according to the proportion;
  • the ratio in the symbol set is obtained, and the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping resource size corresponding to the total UCI when grouping the mapping resource size corresponding to the total UCI, it can be grouped uniformly (if it is not an integer multiple, a certain group or groups contain more information), or The groups are grouped according to the proportion; the proportion can be obtained according to the proportion of each symbol set in the total symbol set, and the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in the order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping may be performed in an order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • the waveform when the orthogonal frequency division multiplexing OFDM waveform is used, for the symbols that do not carry DMRS and the DMRS symbols that can be used to carry the TB resource unit RE, the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS, or are determined according to the waveform: when an OFDM waveform is used, symbols that do not bear DMRS and there are resources that can be used to bear TB
  • the DMRS symbol of the unit RE (Resource Element) that is, the DMRS on this DMRS symbol is mapped to some REs at intervals, and the remaining REs can be used for TB transmission, so the remaining REs can also be considered to transmit UCI
  • DFT-s -In the case of OFDM waveform it is a symbol that does not carry DMRS.
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the implementation is performed according to the embodiment of the present application.
  • the implementation of the embodiment if not implemented according to the embodiment of the present application, means that simultaneous transmission of PUCCH and PUSCH between different carrier groups is supported.
  • the carrier group is specifically: for example, when a secondary carrier component (SCC) is configured to transmit PUCCH, the primary and secondary PUCCH groups are respectively one carrier group; for example, in a dual-connection scenario, when a secondary cell group (SCC) is configured When secondary cell group, SCG), the master cell group (master cell group, MCG) and SCG are respectively a carrier group.
  • SCC secondary carrier component
  • the resources overlap in the time domain that is, the time domain resources of the PUCCH overlap with the time domain resources of the PUSCH, and the PUCCH and the PUSCH may be on the same or different carriers.
  • the symbol interval between the channels is smaller than a predetermined threshold, which may be specifically: the end symbol of the first channel (earlier) and the end symbol of the second channel (later).
  • a predetermined threshold which may be specifically: the end symbol of the first channel (earlier) and the end symbol of the second channel (later).
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the PUSCH carrying the multi-slot TB is specifically: one TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots. It is transmitted through the corresponding PUSCH.
  • a flowchart of steps of an information transmission method applied to a network device provided by an embodiment of the present application, the method includes the following steps:
  • Step 201 When there is a conflict in the time domain between the physical uplink shared channel PUSCH carrying the multi-slot transport block TB and the physical uplink control channel PUCCH, the uplink control information UCI is received in the target PUSCH; A PUSCH with a conflicting PUCCH or all PUSCHs corresponding to the same TB in the time slot where the PUSCH with a conflicting PUCCH is located.
  • the uplink control information UCI is received in the target PUSCH, wherein , the target PUSCH is the PUSCH that collides with the PUCCH or all the PUSCHs corresponding to the same TB in the time slot where the PUSCH that collides with the PUCCH is located.
  • the target PUSCH is the PUSCH that collides with the PUCCH or all the PUSCHs corresponding to the same TB in the time slot where the PUSCH that collides with the PUCCH is located.
  • a PUSCH carrying a multi-slot TB is called a PUSCH in multiple slots, it means that some symbols of this PUSCH in a certain slot collide with the PUCCH, and the UCI will be transferred to multiple slots.
  • the transmitted PUSCH is transmitted; if the PUSCH carrying the multi-slot TB is called an independent PUSCH in each timeslot, the PUSCH in conflict here is an independent PUSCH without involving other PUSCHs.
  • the information transmission method provided by the embodiment of the present application transfers the uplink control information UCI on the PUCCH to the target PUSCH when there is a conflict in the time domain between the physical uplink shared channel PUSCH carrying the multi-slot transport block TB and the physical uplink control channel PUCCH Therefore, UCI is normally transmitted on the PUSCH carrying multi-slot TB, avoiding UCI discarding, and improving the transmission performance of the system.
  • the embodiment of the present application provides a transmission method when a PUCCH collides with a PUSCH carrying a multi-slot TB.
  • the UCI can ensure that the UCI can be used on the PUSCH carrying the multi-slot TB. on normal transmission, avoid
  • UCI is discarded to improve the transmission performance of the system.
  • the uplink control information UCI on the PUCCH is transferred to the target PUSCH for transmission, the UCI is mapped to the target PUSCH according to a predetermined mapping rule.
  • mapping rule 1 take the symbols included in the PUSCH colliding with the PUCCH as a set of symbols, and perform mapping in the symbol set
  • mapping rule 2 make the symbols colliding with the PUCCH
  • Each PUSCH of the PUSCH is regarded as an independent individual, and the symbols contained in each PUSCH are regarded as a symbol set, and are mapped in each of the symbol sets
  • Mapping rule 3 The symbols corresponding to the PUSCH conflicting with the PUCCH are divided into For multiple groups, the symbols corresponding to the PUSCH transmitted in the same time slot are taken as a group to form a symbol set, and mapping is performed in each of the symbol sets.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • the mapping of the UCI to the target PUSCH includes three rules.
  • the first mapping rule is centralized mapping, and the symbols contained in the PUSCH conflicting with the PUCCH are used as a symbol set, and are mapped in the symbol set;
  • Each PUSCH with conflicting PUCCHs is regarded as an independent individual, and the symbols contained in each PUSCH are regarded as a symbol set, and are mapped in each symbol set;
  • the symbols corresponding to the PUSCH in conflict are divided into multiple groups, and the symbols corresponding to the PUSCH transmitted in the same time slot (the time slot obtained by dividing the SCS of the PUSCH) are regarded as a group to form a symbol set. Mapping in the collection.
  • mapping rule 1 For one of the mapping rule 1, the mapping rule 2, and the mapping rule 3, when performing mapping in the symbol set, the following mappings are included At least one of the ways:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS, and map the UCI to consecutive symbols;
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping in the symbol set includes four mapping modes, which are:
  • Mapping method 1 Start mapping from the first symbol that can be used to transmit UCI, and map UCI to consecutive symbols (the specific resource occupied by UCI is pre-calculated, and all the resources occupied by UCI can be mapped, and the same will follow. explanation, not repeat them). It should be noted that this method is preferentially applicable to channel state information CSI, and may also be applicable to AN, which is not specifically limited here.
  • Mapping mode 2 Start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS, and map the UCI to consecutive symbols. If there is no DMRS in a PUSCH (a PUSCH divided by an unavailable symbol, a slot boundary, etc.), the mapping is performed based on an assumed DMRS position, where the assumed DMRS position can be the first symbol, or the same as the previous one. The relative position of the DMRS in a PUSCH containing DMRS or the next PUSCH containing DMRS is the same (for example, the DMRS position in the previous PUSCH is the third symbol in the symbols contained in this PUSCH, then the assumed DMRS in this PUSCH is located in this PUSCH. The 3rd symbol among the symbols contained in the PUSCH). It should be noted that this method is preferentially applicable to AN, and may also be applicable to CSI, which is not specifically limited here.
  • Mapping mode 3 Start mapping from a predefined symbol, and map the UCI to consecutive symbols.
  • Mapping mode 4 Mapping around each DMRS symbol, and determining one of the symbols before and after the DMRS in the symbol set or the symbols of the adjacent DMRS that can be used for UCI transmission (ie, the discrete Fourier transform-based spread-spectrum orthogonal frequency division multiplexing).
  • symbols that are not DMRS symbols are symbols that can be used for UCI transmission.
  • OFDM in addition to symbols that are not used for DMRS transmission, if there are symbols used for DMRS transmission, they can be used for TB.
  • the transmitted RE, the symbol used for DMRS transmission can also be used as the symbol used to carry UCI transmission) as the mapping symbol of UCI.
  • the DMRS symbols are divided into N groups, the DMRS symbols in each group are adjacent, and the DMRS symbols in different groups are not adjacent, and these UCI mapping symbols can be distributed as evenly as possible around each group of DMRS, that is, each The number of UCI mapping symbols around a group of DMRSs does not differ by more than 1 symbol.
  • the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group; or these UCIs
  • the mapped symbols are preferentially distributed on the symbols available for UCI transmission around the top DMRS group.
  • mapping mode 2 For the mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping method 2 if there is no DMRS in a PUSCH (a PUSCH divided by an unavailable symbol, a time slot boundary, etc.), the mapping is performed based on an assumed DMRS position.
  • the assumed DMRS position can be the first symbol, or the same relative position as the DMRS in the previous PUSCH containing DMRS or the next PUSCH containing DMRS (for example, the DMRS position in the previous PUSCH is the symbol contained in this PUSCH
  • the 3rd symbol in the PUSCH, the DMRS assumed in this PUSCH is located in the 3rd symbol in the symbols contained in this PUSCH). It should be noted that this method is preferentially applicable to AN, and may also be applicable to CSI, which is not specifically limited here.
  • mapping mode 4 includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • the DMRS symbols can be divided into N groups, the DMRS symbols in each group are adjacent, and the DMRS symbols in different groups are not adjacent, and the mapped symbols of these UCIs can be as uniform as possible Distributed around each group of DMRS, that is, the number of UCI mapping symbols around each group of DMRS differs by no more than 1 symbol.
  • the mapped symbols of the UCI; or the mapped symbols of these UCIs are preferentially distributed on the symbols available for UCI transmission around the front DMRS group.
  • the mapping mode 4 includes: a uniform distribution mode and/or a forward distribution mode
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/(X1+X2) does not exceed the size of the resource carrying UCI on one of the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of UCI, and the mapping resource of UCI is uniformly distributed over symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI.
  • the symbols constitute A2 symbols, if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the A1+A2 symbols, then the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed The total resource size of the UCI carried on the symbols, then determine the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • one method (uniform distribution between each group of DMRS): first determine the symbol closest to each group of DMRS (that is, each 1 before and after each group of DMRS symbols is 1). symbols, in which there may be no symbols before or after the DMRS group, only the side with symbols is counted) X1 symbols that can be used for UCI transmission, if the size of the UCI mapping resources does not exceed the total resources of the UCI bearing on the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping resources are mapped to the X1 symbols.
  • the resources are evenly distributed on the X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and so on, until the size of the mapping resources that satisfies the UCI does not exceed the number of symbols used to carry the UCI
  • the A1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols that can be used for UCI transmission are further determined.
  • the size of the UCI mapping resource does not exceed the size of the resource carrying UCI on one symbol on the X1+X2 symbols, the X1+X2 symbols are used as the UCI mapping symbol, and the UCI mapping resource is in the X1+ Evenly distributed over X2 symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and so on until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of UCI, and the mapping resources of UCI are stored in the uniformly distributed over the symbols.
  • mapping mode 4 When the mapping mode 4 is distributed in the front, starting from the first group of DMRS symbols (the DMRS with the earliest time), take the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols ( A1 may be less than or equal to 2, because there may be no symbols before the DMRS, or there may be no symbols after the DMRS), if the size of the UCI mapping resource does not exceed the total resource size of the UCI carried on the A1 symbols, then determine the A1 symbols are used as UCI mapping symbols, otherwise, the nearest adjacent symbols before and after a group of DMRS that can be used to carry UCI are taken to form A2 symbols, if the size of UCI mapping resources does not exceed the A1+ The A2 symbols carry the total resource size of UCI, then the A1+A2 symbols are determined as the mapping symbols of UCI, and so on, until the size of the mapping resources that satisfy UCI does not exceed all the determined resources for carrying UCI.
  • A1 may be less than
  • the total resource size on the symbol when the above operations are performed on the last group of DMRS symbols, the size of the mapped resources that still cannot satisfy the UCI does not exceed the determined total resource size on all symbols used to carry UCI, then from Starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI, if the size of the UCI mapping resource does not exceed The total resource size of the UCI carried on the symbols, then determine the symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and so on, until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • the mapping may be performed in the order of the frequency domain and then the time sequence, or in the order of the time domain and then the frequency domain.
  • the mapping mode 4 is uniform distribution, it is more suitable for the UCI mapping in the time domain and then the frequency domain; when the mapping mode 4 is in the front distribution, it is more suitable for the UCI mapping in the frequency domain and then the time domain.
  • mapping rule 1 for the mapping rule 2 or the mapping rule 3, in each symbol set, the mapping method 1, the mapping method 2, and the mapping method 3 are used. Before performing the mapping with the mapping method 4, it also includes:
  • the method further includes: determining The size of the UCI mapping resource corresponding to each symbol set; specifically: the original UCI information can be divided into multiple groups, each group corresponds to a symbol set, and each symbol set is determined based on the corresponding UCI information. The size of the mapping resource of the UCI corresponding to the symbol set.
  • the UCI information it is also possible to take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set, Thus, the mapping resource size of the UCI corresponding to each symbol set is obtained.
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes the following processing methods:
  • Processing method 1 The UCI information is divided into multiple groups, each group corresponds to a symbol set, and the mapping resource size of the UCI corresponding to each symbol set is determined in each symbol set based on the corresponding UCI information;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • the size of the UCI mapping resource corresponding to each symbol set may be determined through two processing methods.
  • the first processing method is: dividing the UCI information into multiple groups, each group corresponding to a symbol set, and determining the size of the UCI mapping resource corresponding to each symbol set based on the corresponding UCI information in each symbol set.
  • grouping UCI information it can be uniformly grouped (if it is not an integer multiple, a certain group or groups contain more information), or grouped according to the proportion; the proportion can be based on the proportion of each symbol set in the total symbol set.
  • the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the second processing method is: taking the UCI information as a whole, determining the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and dividing the total UCI mapping resource size into multiple groups, each group corresponding to A symbol set, so as to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • grouping the mapping resource size corresponding to the total UCI it can be grouped uniformly (a group or groups contain more information when it is not an integer multiple), or grouped according to the proportion; the proportion can be based on each symbol set
  • the ratio in the total symbol set is obtained, where the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the UCI information when grouping UCI information, is grouped uniformly, or grouped according to the proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set , the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the ratio may be obtained according to the ratio of each symbol set in the total symbol set, where the total symbol set is a symbol set formed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the groups are uniformly grouped, or grouped according to the proportion;
  • the ratio in the symbol set is obtained, and the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping resource size corresponding to the total UCI when grouping the mapping resource size corresponding to the total UCI, it can be grouped uniformly (if it is not an integer multiple, a certain group or groups contain more information), or The groups are grouped according to the proportion; the proportion can be obtained according to the proportion of each symbol set in the total symbol set, and the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in the order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping may be performed in an order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • the waveform when the orthogonal frequency division multiplexing OFDM waveform is used, for the symbols that do not carry DMRS and the DMRS symbols that can be used to carry the TB resource unit RE, the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS, or are determined according to the waveform: when an OFDM waveform is used, symbols that do not bear DMRS and there are resources that can be used to bear TB
  • the DMRS symbol of the unit RE (Resource Element) that is, the DMRS on this DMRS symbol is mapped to some REs at intervals, and the remaining REs can be used for TB transmission, so the remaining REs can also be considered to transmit UCI
  • DFT-s -In the case of OFDM waveform it is a symbol that does not carry DMRS.
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the implementation is performed according to the embodiment of the present application.
  • the implementation of the embodiment if not implemented according to the embodiment of the present application, means that simultaneous transmission of PUCCH and PUSCH between different carrier groups is supported.
  • the carrier group is specifically: for example, when a secondary carrier component (SCC) is configured to transmit PUCCH, the primary and secondary PUCCH groups are respectively one carrier group; for example, in a dual-connection scenario, when a secondary cell group (SCC) is configured When secondary cell group, SCG), the master cell group (master cell group, MCG) and SCG are respectively a carrier group.
  • SCC secondary carrier component
  • the resources overlap in the time domain that is, the time domain resources of the PUCCH overlap with the time domain resources of the PUSCH, and the PUCCH and the PUSCH may be on the same or different carriers.
  • the symbol interval between the channels is smaller than a predetermined threshold, which may be specifically: the end symbol of the first channel (earlier) and the end symbol of the second channel (later).
  • a predetermined threshold which may be specifically: the end symbol of the first channel (earlier) and the end symbol of the second channel (later).
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the PUSCH carrying the multi-slot TB is specifically: one TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots. It is transmitted through the corresponding PUSCH.
  • the UCI is at least one of HARQ-ACK, CSI, and SR.
  • the UCI is at least one of HARQ-ACK, CSI, and SR; the same or different mapping rules can be selected for different UCI types, which are not specifically limited here.
  • PUCCH and PUSCH have the same SCS, and one TB is transmitted through PUSCH in two slots, where this TB is based on the total number of symbols corresponding to PUSCH in the two slots as shown in Figure 7-14 Encoding (specifically, the total number of resources available for TB transmission or the total number of REs in the total number of symbols, and the modulation mode corresponding to MCS to determine the number of encoded bits), how to determine the PUSCH in each slot
  • the number of occupied symbols does not belong to the protection scope of this application (refer to other inventions or prior art), this application assumes that the transmission symbols corresponding to the PUSCH in the two time slots are known; in time slot n, there is a PUCCH1 carrying HARQ -
  • the ACK sequence 1 overlaps with the PUSCH carrying the multi-slot TB in the time domain, then it is determined that the HARQ-ACK sequence 1 carried on the PUCCH1 is transferred to the PUSCH in the time slot 1 for transmission.
  • the mapping method 1 of the mapping rule 1 When the mapping method 1 of the mapping rule 1 is adopted: the symbols corresponding to the multiple PUSCHs overlapping with the PUCCH1 in the time slot n are regarded as a whole set, and the UCI starts with the first symbol and starts with the frequency domain and then the time domain. Mode mapping; the symbols corresponding to 1 PUSCH overlapping with PUCCH2 in time slot n+1 are regarded as a whole set, and UCI starts from the first symbol and is mapped in the frequency domain and then the time domain; as shown in Figure 7 shown;
  • the symbols corresponding to the multiple PUSCHs overlapping with the PUCCH1 in the time slot n are regarded as a whole set, and the UCI starts with the first symbol after the first DMRS symbol.
  • Mapping is performed in the frequency domain and then the time domain; the symbols corresponding to 1 PUSCH overlapping with PUCCH2 in slot n+1 are regarded as a whole set, and the UCI starts with the first symbol after the first DMRS symbol.
  • mapping rule 1 Given any starting symbol, such as the first symbol, the mapping method is as shown in Figure 7; or the first symbol after the first DMRS that can be used for UCI transmission, Then the mapping method is shown in Figure 8; other given starting symbol positions are not excluded, the mapping method is similar, only affects the starting symbol of the mapping, and will not be repeated;
  • the symbols corresponding to the multiple PUSCHs overlapping with the PUCCH1 in the time slot n are taken as a whole set, and the UCI is mapped on the symbols around the DMRS symbols; the time slot n+1
  • the symbols corresponding to the 1 PUSCH overlapping with PUCCH2 are regarded as a whole set, and the UCI is mapped on the symbols around the DMRS symbols; when the mapping method of the time domain first and the frequency domain is adopted, as shown in Figure 9 (in all Uniform distribution on UCI symbols) or as described in Figure 10 (even distribution between each group of DMRSs, where the UCI resources mapped on the symbols used to transmit UCI around the DMRS are different, first determine the nearest symbols on both sides of the DMRS to see if the resources are If the UCI requirement is sufficient, if it is still not enough, then determine the symbol of the next adjacent DMRS (a symbol separated from the DMRS symbol by 1 symbol) as the mapping symbol of UCI.
  • mapping rule 2 When mapping rule 2 is adopted, the HARQ-ACK on the PUCCH in slot n is evenly distributed in each PUSCH overlapping with the PUCCH, and the other PUCCH2 in slot n+1 is only matched with the PUCCH in slot n+1. If a PUSCH overlaps, it is only mapped to this PUSCH; for example, the specific mapping combination method maps the mapping method 1 of the rule 1, as shown in Figure 14, for example, when the specific mapping combination method maps the mapping method 4 of the rule 1, as shown in the figure As shown in 9-13 (combined with other methods, it only affects the symbol position of UCI mapped on each PUSCH. For example, in combination with the mapping method 2 of mapping rule 1, the starting position becomes the first symbol after the DMRS of each PUSCH) ;
  • mapping rule 3 When using the method mapping rule 3, the two PUSCHs in the time slot n are taken as a whole, and the situation of the time slot n+1 is consistent with the mapping rule 2; for example, the specific mapping is combined with the mapping method 1 of the mapping rule 1, as shown in Figure 7
  • mapping method 4 of specific mapping rule 1 As shown in Figure 3-13 (combined with other methods, it only affects the symbol position of UCI mapped on each PUSCH, such as mapping method 2 of combination method mapping rule 1, The starting position becomes the first symbol after the DMRS of each PUSCH);
  • PUCCH and PUSCH have different SCSs, for example, the SCS of PUCCH is smaller, then a PUCCH transmitted in one PUCCH time slot may overlap with the PUSCH transmitted in multiple PUSCH time slots in the time domain; Assume that a TB is transmitted through PUSCH in 4 slots, where the TB is coded based on the total number of symbols corresponding to the PUSCH in the 4 slots as shown in Figure 16 (the specific coding is to take the total number of symbols available for TB The total resources or the total number of REs transmitted, and the modulation mode corresponding to the MCS to determine the number of encoded bits), how to determine the number of symbols occupied by the PUSCH in each slot does not belong to the scope of protection of this application (you can refer to other invention or prior art), this application assumes that the transmission symbols corresponding to the PUSCH in the two time slots are known; in the PUCCH time slot n, there is a PUCCH1 carrying the HARQ-ACK sequence 1 and in the
  • the symbols corresponding to the multiple PUSCHs overlapping with the PUCCH1 in the PUSCH time slots 2n and 2n+1 are regarded as a whole set, and the UCI starts with the first symbol and starts with the first frequency.
  • Post-domain time domain mapping as shown in Figure 15;
  • mapping method 2 of the mapping rule 1 When the mapping method 2 of the mapping rule 1 is adopted: the symbols corresponding to the multiple PUSCHs overlapping with the PUCCH1 in the PUSCH time slots 2n and 2n+1 are regarded as a whole set, and the UCI uses the first symbol after the first DMRS symbol. The beginning of the symbol is mapped in the frequency domain and then the time domain; as shown in Figure 16;
  • mapping method 3 of the mapping rule 1 Given any starting symbol, such as the first symbol, the mapping method is as shown in Figure 15; or the first symbol after the first DMRS that can be used for UCI transmission, then The mapping method is shown in Figure 16; other given starting symbol positions are not excluded, the mapping method is similar, only affects the starting symbol of the mapping, and will not be repeated;
  • the symbols corresponding to the multiple PUSCHs overlapping with the PUCCH1 in the PUSCH time slots 2n and 2n+1 are taken as a whole set, and the UCI is mapped on the symbols around the DMRS symbols;
  • the mapping method in the time domain and then the frequency domain it can be shown in Figure 17 (evenly distributed on all UCI symbols, because the assumed total transmission UCI symbols in this embodiment is 5 symbols, one of which is not in the frequency domain.
  • the domain is full, and there are at least 8 symbols of the nearest DMRS around the DMRS, so it will not be full even if it is distributed on 8 symbols, so it does not need to be mapped to the symbol of the next adjacent DMRS);
  • the mapping method in the post-time domain can be as shown in Figure 18 or as shown in Figure 19; in Figure 18, according to the order of the DMRS groups, the two nearest symbols on both sides of each group of DMRS are first selected for mapping. When the UCI resources cannot meet the mapping resources required by the UCI, then determine the two nearest symbols on both sides of the next group of DMRS as UCI mapping symbols, and so on.
  • the remaining resources are mapped to the symbols in the rear (near the DMRS), if it does not occupy one of the two symbols on both sides of the DMRS, it can be mapped to the symbol.
  • the first symbol adjacent to the DMRS (of course, it can also be agreed as the later symbol); in Figure 19, the nearest symbol on one side is selected for each group of DMRS (it can be the first symbol, that is, the most adjacent symbol in front of the DMRS).
  • the adjacent symbols can also be the later symbols, that is, the nearest symbols behind the DMRS) for mapping, and when the resources are insufficient, the mapping symbols of the UCI are further determined around the second group of DMRSs;
  • mapping rule 2 When mapping rule 2 is adopted, the HARQ-ACK on PUCCH1 is evenly distributed in each PUSCH in time slots 2n and 2n+1 overlapping with PUCCH; for example, the specific mapping is combined with mapping method 1 of mapping rule 1, as shown in Figure 20
  • mapping method 4 of the mapping rule 1 For example, when the specific mapping is combined with the mapping method 4 of the mapping rule 1, for example, as shown in Figure 21 (combined with other methods, it only affects the symbol position of the UCI mapped on each PUSCH, such as combining the mapping method 2 of the mapping rule 1, the starting position becomes the first symbol after the DMRS of each PUSCH);
  • mapping rule 3 When the mapping rule 3 is adopted, the two PUSCHs in the time slots 2n and 2n+1 are taken as a whole; for example, the specific mapping is combined with the mapping method 1 of the mapping rule 1, as shown in Figure 15, for example, the mapping method combined with the mapping rule 1 2, as shown in Figure 15, for example, combined with the mapping method 4 of the mapping rule 1, as shown in Figures 16-18 (combined with other methods, only the symbol position of the UCI mapped on each PUSCH is affected).
  • the PUSCH carrying the TB can also be regarded as a whole PUSCH in multiple time slots, which means that the corresponding PUSCH in time slot n and time slot n+1 in Embodiment 1
  • All symbols are used as symbols contained in a PUSCH that collides with PUCCH1.
  • all symbols corresponding to PUSCH in time slots 2n, 2n+1, 2n+2, and 2n+3 are used as a PUSCH conflicting with PUCCH1.
  • the specific mapping methods are similar to the above-mentioned mapping method 1 of mapping rule 1 to mapping method 4 of mapping rule 1, except that the above set of symbols can be replaced.
  • mapping rule 1 When executed, in the first embodiment, the symbols around the DMRS symbols in time slot n+1 also participate in UCI mapping, and in the second embodiment, the symbols around the DMRS symbols in time slots 2n+2 and 2n+3 It is also involved in UCI mapping, as shown in Figure 22;
  • both the terminal and the base station can determine which symbols the UCI is mapped to in the same way, the terminal side performs UCI mapping and transmission according to the mapping rules, and the base station side performs UCI mapping and transmission in the received PUSCH according to the mapping rules. to get UCI information on the symbol.
  • FIG. 24 it is a block diagram of an information transmission apparatus applied to a terminal device in an embodiment of the present application, and the apparatus includes:
  • the receiving module 11 is used to receive the uplink control information UCI in the target PUSCH when the physical uplink shared channel PUSCH carrying the multi-slot transport block TB and the physical uplink control channel PUCCH conflict in the time domain; wherein, the target PUSCH is The PUSCH colliding with the PUCCH or all PUSCHs corresponding to the same TB in the time slot where the PUSCH colliding with the PUCCH is located.
  • the uplink control information UCI on the PUCCH is transferred to the target PUSCH for transmission, the UCI is mapped to the target PUSCH according to a predetermined mapping rule.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • mapping rule 1 For one of the mapping rule 1, the mapping rule 2, and the mapping rule 3, when performing mapping in the symbol set, the following mappings are included At least one of the ways:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS, and map the UCI to consecutive symbols;
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping mode 2 For the mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping mode 4 includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • the mapping mode 4 includes: a uniform distribution mode and/or a forward distribution mode
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/(X1+X2) does not exceed the size of the resource carrying UCI on one of the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of UCI, and the mapping resources of UCI are stored in the uniformly distributed over symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI.
  • the symbols constitute A2 symbols, if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the A1+A2 symbols, then the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed The total resource size of the UCI carried on the symbols, then determine the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • mapping rule 1 for the mapping rule 2 or the mapping rule 3, in each symbol set, the mapping method 1, the mapping method 2, and the mapping method 3 are used. Before performing the mapping with the mapping method 4, it also includes:
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes the following processing methods:
  • Processing method 1 Divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the size of the UCI mapping resource corresponding to each symbol set based on the corresponding UCI information in each symbol set;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • the UCI information when grouping UCI information, is grouped uniformly, or grouped according to the proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set , the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the groups are uniformly grouped, or grouped according to the proportion;
  • the ratio in the symbol set is obtained, and the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in the order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • the waveform when the orthogonal frequency division multiplexing OFDM waveform is used, for the symbols that do not carry DMRS and the DMRS symbols that can be used to carry the TB resource unit RE, the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the UCI is at least one of HARQ-ACK, CSI, and SR.
  • this apparatus can implement all the method steps of the information transmission method embodiment applied to the terminal device and can achieve the same technical effect, which will not be repeated here.
  • FIG. 23 it is a module block diagram of an information transmission apparatus applied to a network device in an embodiment of the present application, and the apparatus includes:
  • the receiving module 21 is used to receive the uplink control information UCI in the target PUSCH when the physical uplink shared channel PUSCH carrying the multi-slot transport block TB and the physical uplink control channel PUCCH conflict in the time domain; wherein, the target PUSCH is The PUSCH colliding with the PUCCH or all PUSCHs corresponding to the same TB in the time slot where the PUSCH colliding with the PUCCH is located.
  • the receiving uplink control information UCI in the target PUSCH includes:
  • the uplink control information UCI mapped according to the predetermined mapping rule is received in the target PUSCH.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols contained in each PUSCH as a symbol set, and map in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • mapping rule 1 For one of the mapping rule 1, the mapping rule 2, and the mapping rule 3, when performing mapping in the symbol set, the following mappings are included At least one of the ways:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS, and map the UCI to consecutive symbols;
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping mode 2 For the mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping mode 4 includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • the mapping mode 4 includes: a uniform distribution mode and/or a forward distribution mode
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/(X1+X2) does not exceed the size of the resource carrying UCI on one of the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of the UCI, and the mapping resources of the UCI are evenly distributed on the symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI.
  • the symbols constitute A2 symbols, if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the A1+A2 symbols, then the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed The total resource size of the UCI carried on the symbols, then determine the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • mapping rule 1 for the mapping rule 2 or the mapping rule 3, in each symbol set, the mapping method 1, the mapping method 2, and the mapping method 3 are used. Before performing the mapping with the mapping method 4, it also includes:
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes the following processing methods:
  • Processing method 1 Divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the size of the UCI mapping resource corresponding to each symbol set based on the corresponding UCI information in each symbol set;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • the UCI information when grouping UCI information, is grouped uniformly, or grouped according to the proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set , the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the groups are uniformly grouped, or grouped according to the proportion;
  • the ratio in the symbol set is obtained, and the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in the order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • the waveform when the orthogonal frequency division multiplexing OFDM waveform is used, for the symbols that do not carry DMRS and the DMRS symbols that can be used to carry the TB resource unit RE, the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the UCI is at least one of HARQ-ACK, CSI, and SR.
  • this apparatus can implement all the method steps of the information transmission method embodiment applied to the terminal device and can achieve the same technical effect, which will not be repeated here.
  • FIG. 25 is a schematic structural diagram of a terminal device provided by an embodiment of the present application, including a memory 2420 , a transceiver 2400 , and a processor 2410 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 2410 and various circuits of memory represented by memory 2420 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 2400 may be a number of elements, including a transmitter and a receiver, that provide means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 2410 is responsible for managing the bus architecture and general processing, and the memory 2420 may store data used by the processor 2410 in performing operations.
  • the processor 2410 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the memory 2420 is used to store computer programs; the transceiver 2400 is used to send and receive data under the control of the processor; the processor 2410 is used to read the computer programs in the memory and perform the following operations:
  • the uplink control information UCI is received in the target PUSCH; wherein, the target PUSCH is in conflict with the PUCCH PUSCH or all PUSCHs corresponding to the same TB in the time slot where the PUSCH colliding with the PUCCH is located.
  • the uplink control information UCI on the PUCCH is transferred to the target PUSCH for transmission, the UCI is mapped to the target PUSCH according to a predetermined mapping rule.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • mapping rule 1 For one of the mapping rule 1, the mapping rule 2, and the mapping rule 3, when performing mapping in the symbol set, the following mappings are included At least one of the ways:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS, and map the UCI to consecutive symbols;
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping mode 2 For the mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping mode 4 includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • the mapping mode 4 includes: a uniform distribution mode and/or a forward distribution mode
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/(X1+X2) does not exceed the size of the resource carrying UCI on one of the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of UCI, and the mapping resource of UCI is uniformly distributed over symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI.
  • the symbols constitute A2 symbols, if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the A1+A2 symbols, then the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed The total resource size of the UCI carried on the symbols, then determine the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • mapping rule 1 for the mapping rule 2 or the mapping rule 3, in each symbol set, the mapping method 1, the mapping method 2, and the mapping method 3 are used. Before performing the mapping with the mapping method 4, it also includes:
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes the following processing methods:
  • Processing method 1 Divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the size of the UCI mapping resource corresponding to each symbol set based on the corresponding UCI information in each symbol set;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • the UCI information when grouping UCI information, is grouped uniformly, or grouped according to the proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set , the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the groups are uniformly grouped, or grouped according to the proportion;
  • the ratio in the symbol set is obtained, and the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in the order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • the waveform when the orthogonal frequency division multiplexing OFDM waveform is used, for the symbols that do not carry DMRS and the DMRS symbols that can be used to carry the TB resource unit RE, the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the UCI is at least one of HARQ-ACK, CSI, and SR.
  • the terminal device provided in the embodiments of the present application can implement all the method steps of the information transmission method embodiment applied to the terminal device and achieve the same technical effect, which is not repeated here.
  • FIG. 26 is one of the structural diagrams of a network device provided by an embodiment of the present application, including a memory 2520 , a transceiver 2500 , and a processor 2510 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 2510 and various circuits of memory represented by memory 2520 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 2500 may be multiple elements, ie, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 2510 is responsible for managing the bus architecture and general processing, and the memory 2520 may store data used by the processor 2510 in performing operations.
  • the processor 2510 can be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the memory 2520 is used to store computer programs; the transceiver 2500 is used to send and receive data under the control of the processor; the processor 2510 is used to read the computer programs in the memory and perform the following operations:
  • the uplink control information UCI is received in the target PUSCH; wherein, the target PUSCH is in conflict with the PUCCH PUSCH or all PUSCHs corresponding to the same TB in the time slot where the PUSCH colliding with the PUCCH is located.
  • the receiving uplink control information UCI in the target PUSCH includes:
  • the uplink control information UCI mapped according to the predetermined mapping rule is received in the target PUSCH.
  • the predetermined mapping rule includes at least one of the following:
  • Mapping rule 1 take the symbols included in the PUSCH conflicting with the PUCCH as a symbol set, and perform mapping in the symbol set;
  • Mapping rule 2 take each PUSCH that collides with the PUCCH as an independent individual, take the symbols included in each PUSCH as a symbol set, and perform mapping in each of the symbol sets;
  • Mapping rule 3 Divide the symbols corresponding to the PUSCH conflicting with the PUCCH into multiple groups, and use the symbols corresponding to the PUSCH transmitted in the same time slot as a group to form a symbol set, in each of the symbol sets. to map.
  • mapping rule 1 For one of the mapping rule 1, the mapping rule 2, and the mapping rule 3, when performing mapping in the symbol set, the following mappings are included At least one of the ways:
  • Mapping mode 1 start mapping from the first symbol that can be used to transmit UCI, and map the UCI to consecutive symbols;
  • Mapping mode 2 start mapping from the first symbol that can be used to transmit UCI after the first demodulation reference signal DMRS, and map the UCI to consecutive symbols;
  • Mapping mode 3 start mapping from a predefined symbol, and map the UCI to a continuous symbol
  • Mapping mode 4 map around each DMRS symbol, and determine one of the symbols before and after the DMRS in the symbol set or a symbol of the adjacent DMRS that can be used for the UCI transmission as the mapped symbol of the UCI.
  • mapping mode 2 For the mapping mode 2:
  • the mapping is performed based on the assumed DMRS position; wherein, the assumed DMRS position is the first symbol, or the DMRS in the previous PUSCH containing DMRS or the DMRS in the next PUSCH containing DMRS The relative position of the same symbol.
  • mapping mode 4 includes:
  • N is greater than Integer of 0; when the number of UCI mapping symbols around different groups of DMRSs is different, there are more UCI mapping symbols around the front DMRS group, or the UCI mapping symbols are preferentially distributed around the available DMRS groups. on symbols transmitted by UCI.
  • the mapping mode 4 includes: a uniform distribution mode and/or a forward distribution mode
  • the uniform distribution mode includes mode A and/or mode B;
  • the method A includes: firstly determining X1 symbols that are nearest to the symbols of each group of DMRS that can be used for UCI transmission, and if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the X1 symbols, the X1 symbols are used for UCI transmission.
  • the symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are closest to the X1 symbols that can be used for UCI transmission are further determined.
  • the X1+X2 symbols are used as the UCI mapping symbols, and the remaining resources after the UCI mapping resources are mapped to the X1 symbols are in the X2 Evenly distributed over the symbols, otherwise, determine the X3 symbols that are nearest to the X2 symbols that can be used for UCI transmission, and process by analogy, until the size of the mapping resource that satisfies the UCI does not exceed The total resource size on the symbols used to carry UCI, the mapping resources of UCI are fully mapped After symbols, the remaining resources are evenly distributed on the final Xj symbols;
  • the method B includes: firstly determining X1 symbols that are nearest to each group of DMRS symbols that can be used for UCI transmission, if the size of the 1/X1 UCI mapping resource does not exceed the resource bearing UCI on one of the X1 symbols size, the X1 symbols are used as the UCI mapping symbols, and the UCI mapping resources are evenly distributed on the X1 symbols; otherwise, the X2 symbols that are nearest to the X1 symbols can be used for UCI transmission.
  • the size of the UCI mapping resource of 1/(X1+X2) does not exceed the size of the resource carrying UCI on one of the X1+X2 symbols, and the X1+X2 symbols are used as the UCI mapping symbols, and the UCI mapping
  • the resources are evenly distributed on the X1+X2 symbols, otherwise, determine the X3 symbols that are closest to the X2 symbols that can be used for UCI transmission, and process by analogy until the The size of the UCI's mapped resources does not exceed One of the symbols carries the resource size of the UCI, and the mapping resources of the UCI are evenly distributed on the symbols;
  • the front distribution method includes: starting from the first group of DMRS symbols, taking the nearest adjacent symbols before and after the group of DMRS symbols that can be used to carry UCI to form A1 symbols.
  • the size does not exceed the total resource size of the UCI bearing on the A1 symbols, then the A1 symbols are determined as the mapping symbols of the UCI, otherwise, the nearest neighbors before and after the next group of DMRS can be used to bear the UCI.
  • the symbols constitute A2 symbols, if the size of the UCI mapping resource does not exceed the total resource size of the UCI bearing on the A1+A2 symbols, then the A1+A2 symbols are determined as the UCI mapping symbols, and the analogy is processed, Until the size of the mapping resource that satisfies the UCI does not exceed the determined total resource size on all symbols used to carry the UCI; after the above operations are performed on the last group of DMRS symbols, the size of the mapping resource that cannot satisfy the UCI is still not satisfied.
  • the total resource size on all symbols used to carry UCI has been determined, starting from the first group of DMRS, take the nearest B1 symbols before and after the A1 symbols corresponding to the group of DMRS symbols that can be used to carry UCI , if the size of the UCI mapped resource does not exceed The total resource size of the UCI carried on the symbols, then determine the The symbols are used as the mapping symbols of UCI, otherwise, B2 symbols are further obtained for the next group of DMRS, and the analogy is processed until the size of the mapping resources that satisfy the UCI does not exceed the determined total resources on all symbols used to carry UCI size.
  • mapping rule 1 for the mapping rule 2 or the mapping rule 3, in each symbol set, the mapping method 1, the mapping method 2, and the mapping method 3 are used. Before performing the mapping with the mapping method 4, it also includes:
  • the determining the size of the UCI mapping resource corresponding to each symbol set includes the following processing methods:
  • Processing method 1 Divide the UCI information into multiple groups, each group corresponds to a symbol set, and determine the size of the UCI mapping resource corresponding to each symbol set based on the corresponding UCI information in each symbol set;
  • Processing method 2 Take the UCI information as a whole, determine the total UCI mapping resource size based on the symbols contained in all PUSCH overlapping with the PUCCH, and divide the total UCI mapping resource size into multiple groups, each group corresponding to a symbol set , to obtain the mapping resource size of the UCI corresponding to each symbol set.
  • the UCI information when grouping UCI information, is grouped uniformly, or grouped according to the proportion; the proportion is obtained according to the proportion of each symbol set in the total symbol set , the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • the groups are uniformly grouped, or grouped according to the proportion;
  • the ratio in the symbol set is obtained, and the total symbol set is a symbol set composed of symbols corresponding to the PUSCH in which the PUCCH collides.
  • mapping symbols are determined, on each symbol, continuous mapping or discrete mapping is performed in the order from low frequency to high frequency or from high frequency to low frequency in the frequency domain.
  • the symbols that can be used for UCI transmission include: symbols that do not bear DMRS;
  • the waveform when the orthogonal frequency division multiplexing OFDM waveform is used, for the symbols that do not carry DMRS and the DMRS symbols that can be used to carry the TB resource unit RE, the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the spread spectrum orthogonal frequency division based on discrete Fourier transform is used.
  • the conflict includes:
  • the symbol interval between channels is smaller than a predetermined threshold.
  • the PUSCH carrying the multi-slot TB is:
  • One TB is encoded based on the total number of symbols corresponding to the PUSCH in the multiple time slots, and the obtained encoded information is scattered in the multiple time slots and transmitted through the corresponding PUSCH.
  • the UCI is at least one of HARQ-ACK, CSI, and SR.
  • the network device provided in the embodiments of the present application can implement all the method steps of the information transmission method embodiment applied to the terminal device and achieve the same technical effect, which is not repeated here.
  • an embodiment of the present application further provides a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to cause the processor to execute the processes described in the foregoing embodiments. Methods.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including, but not limited to, magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the steps of the above-mentioned information transmission method.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息传输方法、装置、终端设备、网络设备及存储介质,方法包括:当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将PUCCH上的上行控制信息UCI转移到目标PUSCH中发送;其中,目标PUSCH为与PUCCH存在冲突的PUSCH或为与PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的所有PUSCH(101)。本申请实施例在PUCCH与PUSCH发生冲突时,可以将PUCCH上的UCI转移到目标PUSCH中传输,避免UCI丢弃,提高系统的传输性能。

Description

信息传输方法、装置、终端设备、网络设备及存储介质
相关申请的交叉引用
本申请要求于2021年01月19日提交的申请号为2021100716308,发明名称为“信息传输方法、装置、终端设备、网络设备及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及通信技术领域,尤其涉及一种信息传输方法、装置、终端设备、网络设备及存储介质。
背景技术
目前在第五代新无线系统5G NR(5th generation New Radio)中,物理上行共享信道PUSCH(Physical Uplink Control Channel)支持重复传输。所谓重复传输,即同一个传输块TB(Transport Block)信息,在多个传输机会中进行重复性的传输,每一个传输机会中都是一个单独的PUSCH/物理下行共享信道PDSCH(Physical Downlink Shared Channel),承载的TB是同一个TB信息,TB基于每个传输机会对应的资源进行单独的编码。
现有技术中,为了提高传输性能或覆盖,支持一个TB在多个时隙中通过PUSCH传输的方式(简称多时隙TB传输),但对于多时隙TB在PUSCH中传输的情况,如果承载上行控制信息UCI的物理上行控制信道PUCCH(Physical Uplink Control Channel)与承载多时隙TB的PUSCH在一个或多个时隙中冲突时,目前还没有上行控制信息UCI(Uplink Control Information)在承载多个时隙TB的PUSCH上的复用传输方法。
发明内容
本申请实施例提供一种信息传输方法、装置、终端设备、网络设备及存储介质,用以解决现有技术无法使UCI在承载多个时隙TB的PUSCH上复用传输的问题。
为解决上述问题,具体的,本申请实施例提供了以下技术方案:
第一方面,本申请实施例提供一种信息传输方法,应用于终端设备,包括:
当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的所有PUSCH。
可选的,在将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送时,将所述UCI按照预定的映射规则映射至所述目标PUSCH上。
可选的,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
可选的,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS(DeModulation Reference Signal)之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
可选的,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
可选的,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
可选的,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资 源的大小不超过
Figure PCTCN2022071456-appb-000001
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000002
个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000003
Figure PCTCN2022071456-appb-000004
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000005
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000006
个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该 组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000007
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000008
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
可选的,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
可选的,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式中的一种:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
可选的,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
可选的,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM(Orthogonal Frequency Division Multiplexing)波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE(Resource Element)的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)波形时,为非承载DMRS的符号。
可选的,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
可选的,所述承载多时隙TB的PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
可选的,所述UCI为混合自动重传请求确认HARQ-ACK(HARQ-ACK,Hybrid Automatic Repeat request-ACKnowledgment)、信道状态信息CSI(Channel State Information)、调度请求SR(Scheduling Request)中的至少一种。
第二方面,本申请实施例还提供了一种信息传输方法,应用于网络设备,包括:
当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的所有PUSCH。
可选的,所述在目标PUSCH中接收上行控制信息UCI,包括:
在目标PUSCH中接收按照预定的映射规则映射的上行控制信息 UCI。
可选的,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
可选的,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
可选的,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
可选的,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
可选的,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000009
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000010
个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/ (X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000011
Figure PCTCN2022071456-appb-000012
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000013
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000014
个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000015
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000016
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
可选的,对于所述映射规则2或所述映射规则3,在每个符号集合中 按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
可选的,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
可选的,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
可选的,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
可选的,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
可选的,所述承载多时隙TB的PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
可选的,所述UCI为HARQ-ACK、CSI、SR中的至少一种。
第三方面,本申请实施例还提供了一种信息传输装置,应用于终端设备,包括:
发送模块,用于当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的所有PUSCH。
可选的,在将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送时,将所述UCI按照预定的映射规则映射至所述目标PUSCH上。
可选的,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
可选的,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述 UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS(DeModulation Reference Signal)之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
可选的,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
可选的,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
可选的,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近 X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000017
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000018
个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000019
Figure PCTCN2022071456-appb-000020
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000021
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000022
个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI 的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000023
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000024
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
可选的,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
可选的,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式中的一种:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
可选的,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获 得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
可选的,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM(Orthogonal Frequency Division Multiplexing)波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE(Resource Element)的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)波形时,为非承载DMRS的符号。
可选的,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
可选的,所述承载多时隙TB的PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
可选的,所述UCI为混合自动重传请求确认HARQ-ACK(HARQ-ACK,Hybrid Automatic Repeat request-ACKnowledgment)、信道状态信息CSI(Channel State Information)、调度请求SR(Scheduling Request)中的至少一种。
第四方面,本申请实施例还提供了一种信息传输装置,应用于网络设备,包括:
接收模块,用于当承载多时隙传输块TB的物理上行共享信道 PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个、TB的所有PUSCH。
可选的,所述在目标PUSCH中接收上行控制信息UCI,包括:
在目标PUSCH中接收按照预定的映射规则映射的上行控制信息UCI。
可选的,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
可选的,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
可选的,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
可选的,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
可选的,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000025
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000026
个符号之后,将剩余的资源在最后确定的Xj个符号 上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000027
Figure PCTCN2022071456-appb-000028
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000029
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000030
个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000031
个符号上承载UCI 的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000032
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
可选的,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
可选的,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
可选的,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
可选的,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
可选的,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
可选的,所述承载多时隙TB的PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
可选的,所述UCI为HARQ-ACK、CSI、SR中的至少一种。
第五方面,本申请实施例还提供了一种终端设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如下步骤:
当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的所有PUSCH。
可选的,在将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送时,将所述UCI按照预定的映射规则映射至所述目标PUSCH上。
可选的,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
可选的,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS(DeModulation Reference Signal)之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
可选的,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
可选的,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
可选的,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000033
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000034
个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000035
Figure PCTCN2022071456-appb-000036
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000037
个符号上的一个符号上承 载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000038
个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000039
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000040
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
可选的,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
可选的,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式中的一种:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别 在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
可选的,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
可选的,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM(Orthogonal Frequency Division Multiplexing)波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE(Resource Element)的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)波形时,为非承载DMRS的符号。
可选的,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
可选的,所述承载多时隙TB的PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的 编码信息分散在所述多个时隙中通过对应的PUSCH传输。
可选的,所述UCI为混合自动重传请求确认HARQ-ACK(HARQ-ACK,Hybrid Automatic Repeat request-ACKnowledgment)、信道状态信息CSI(Channel State Information)、调度请求SR(Scheduling Request)中的至少一种。
第六方面,本申请实施例还提供了一种网络设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如下步骤:
当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个、TB的所有PUSCH。
可选的,所述在目标PUSCH中接收上行控制信息UCI,包括:
在目标PUSCH中接收按照预定的映射规则映射的上行控制信息UCI。
可选的,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
可选的,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
可选的,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
可选的,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
可选的,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近 X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000041
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000042
个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000043
Figure PCTCN2022071456-appb-000044
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000045
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000046
个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI 的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000047
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000048
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
可选的,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
可选的,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
可选的,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获 得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
可选的,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
可选的,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
可选的,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
可选的,所述承载多时隙TB的PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
可选的,所述UCI为HARQ-ACK、CSI、SR中的至少一种。
第七方面,本申请实施例还提供了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述第一方面或第二方面所述的信息传输方法的步骤。
本申请实施例提供的信息传输方法、装置、终端设备、网络设备及存储介质,当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送,从而使得UCI在承载多时隙TB的PUSCH上正常传输,避免UCI丢弃,提高系统的传输性能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是PUSCH重复传输的示意图;
图2是另一种PUSCH重复传输的示意图;
图3是UCI在PUSCH的传输带宽内进行频域离散的映射的示意图;
图4是多时隙TB传输与重复传输的对比示意图;
图5是本申请实施例提供的应用于终端设备的步骤流程图;
图6是本申请实施例提供的应用于网络设备的步骤流程图;
图7是本申请实施例提供的UCI映射示意图之一;
图8是本申请实施例提供的UCI映射示意图之二;
图9是本申请实施例提供的UCI映射示意图之三;
图10是本申请实施例提供的UCI映射示意图之四;
图11是本申请实施例提供的UCI映射示意图之五;
图12是本申请实施例提供的UCI映射示意图之六;
图13是本申请实施例提供的UCI映射示意图之七;
图14是本申请实施例提供的UCI映射示意图之八;
图15是本申请实施例提供的UCI映射示意图之九;
图16是本申请实施例提供的UCI映射示意图之十;
图17是本申请实施例提供的UCI映射示意图之十一;
图18是本申请实施例提供的UCI映射示意图之十二;
图19是本申请实施例提供的UCI映射示意图之十三;
图20是本申请实施例提供的UCI映射示意图之十四;
图21是本申请实施例提供的UCI映射示意图之十五;
图22是本申请实施例提供的UCI映射示意图之十六;
图23是本申请实施例提供的应用于终端设备的信息传输装置的模块 框图;
图24是本申请实施例提供的应用于网络设备的信息传输装置的模块框图;
图25是本申请实施例提供的终端设备的结构示意图;
图26是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,现有技术中,如图1所示,PUSCH在R15中仅支持一种重复传输方式,即基于时隙的重复传输。具体的,高层信令(例如pusch-AggregationFactor)预先配置重复传输的次数(又称Aggregation factor,简单起见用N表示),N次重复传输,表示PUSCH占用N个时隙传输,每个时隙中在相同的PUSCH资源上传输相同的TB信息。每个时隙中都是按照相同的起始符号和符号个数确定这个时隙中的PUSCH传输的时域位置,如果其中一个时隙中根据起始符号和符号个数确定的符号集合中包含高层信令(例如tdd-UL-DL-ConfigurationCommon,ortdd-UL-DL-ConfigurationDedicated)配置的下行符号,则确定这个符号集合不可用,在这个时隙中不传输PUSCH,但还是记录一次重复传输,也就是如果出现了N个时隙中的N1个时隙中确定的符号集合不可用,则实际只有N-N1次重复传输。PUSCH在R16中将上述R15中的重复传输进行了一定的扩展,除了高层信令预先配置repetition次数之外,还可以通过在TDRA表格中增加一列信息表达repetition次数(通过repetitionNumber-r16配置),下行控制信息DCI(Downlink Control Information)(调度PUSCH的DCI或物理下行控制信道PDCCH(Physical Downlink Control Channel)称为UL grant,DCI和PDCCH在描述调度和信息指示上可以认为等价,DCI是 PDCCH传输具体使用的格式,PDCCH是承载DCI的信道)在动态调度一个PUSCH传输时,可以从时域资源分配TDRA(Time Domain Resource Allocation)表格中选择一个合适的repetition次数与时域资源的相关信息(如起始和长度指示值SLIV(Start and length indicator value)(起始符号和传输符号个数的信息)和K2(调度时序))一起指示给终端,从而实现动态改变重复传输次数,将这种重复传输称为repetition type A。此外,还支持repetition type B,就是根据调度PUSCH的PDCCH(或DCI)中指示的起始符号,传输符号个数确定每个repetition的传输机会(即时域资源,具体表现为符号集合),重复传输次数可以是类似repetition type A的方式得到的;第一个repetition PUSCH的时域资源直接根据DCI指示的起始符号和符号个数确定,后续的repetition的时域资源则在第一个repetition之后顺序的确定。具体的,每个传输机会对应相同的符号个数,起点就是前一个repetition之后的第一个符号,这样划分得到的N个连续的repetition传输机会,其中的每一个传输机会成为一个名义重复(Nominal repetition,即按照配置参数划分的repetition,但并不一定实际传输)。如果一个Nominal repetition对应的符号集合中包含了高层信令配置的DL符号或者SSB符号或不可用符号或跨越了时隙边界,则这个Nominal repetition会被分割为多个实际重复(Actual repetition,即实际传输的repetition),每个Actual repetition都仅包含可以用于上行传输的符号,比如上行符号或Flexible符号。多个repetition PUSCH可以在同一个时隙中,也可以分布在不同的时隙中。具体如图1所示。对于Nominal到Actual划分的过程中得到的传输长度(符号个数)比较短的actual repetition,例如1个符号的Actual repetition,除非调度信令配置的传输长度就是1符号,否则这样的actual repetition是不传输的。对于每个Actual repetition,其中的DMRS映射规则按照现有技术中一个PUSCH中的映射方式确定DMRS符号位置。
现有技术中,如图2所示,对于同一个终端,为了避免出现过大的功率峰均比PARR(Peak-to-Average Power Ratio),不支持PUCCH和 PUSCH的同时传输,因此PUCCH和PUSCH之间的时域资源重叠时,终端可以将UCI复用在PUSCH上传输,从而不需要传输PUCCH,或者基于物理层优先级选择更高优先级的信道传输,不传输低优先级的信道。当相同物理层优先级的PUSCH(包括单时隙和重复传输)和单时隙PUCCH(没有重复传输的)在一个或者多个时隙内存在冲突(所谓冲突,可能两者在时域资源上存在重叠,或者,对于高频传输,两个信道之间的时间间隔短于预定的时间间隔,从而不足够进行高频器件调整,后续同此解释)时,对于单时隙PUSCH或者使用repetition Type-A进行重复传输的PUSCH,终端将PUCCH承载的UCI复用在所有和PUCCH重叠的PUSCH上传输。对于使用repetition Type-B进行重复传输的PUSCH,终端将PUCCH承载的UCI复用在和PUCCH重叠的第一个符号个数大于1的真实(actual)PUSCH上传输。当相同物理层优先级的PUSCH(包括单时隙和重复传输)和多时隙PUCCH(即配了重复传输)的资源存在冲突时,在冲突的时隙中丢弃PUSCH信道,仅传输PUCCH。当不同物理层优先级的PUCCH和PUSCH的资源存在冲突时,丢弃优先级较低的信道,仅传输优先级较高的信道。目前PUCCH承载的HARQ-ACK和CSI都可以通过PUSCH进行传输,如果PUCCH上存在SR,则除非PUSCH为仅承载半持续信道状态信息SP-CSI(Semi-persistent CSI)的PUSCH,此时PUSCH被丢弃,否则,SR会被丢弃。当HARQ-ACK比特数不大于2时,HARQ-ACK在PUSCH上进行打孔传输(即是TB总是按照没有HARQ-ACK的情况基于PUSCH的资源进行编码,HARQ-ACK映射时,把相应位置上的数据打掉,即覆盖这些数据);当HARQ-ACK比特数大于2时,HARQ-ACK在PUSCH上进行速率匹配传输(即PUSCH上的TB或CSI编码时,将PUSCH上用于HARQ-ACK传输的资源去掉,基于PUSCH上的剩余资源进行编码)。CSI和PUSCH上的TB总是进行速率匹配传输。HARQ-ACK和CSI都映射在PUSCH上的TB对应的所有层上进行传输。HARQ-ACK从PUSCH上第一个DMRS之后的第一个非DMRS符号开始进行映射。当HARQ-ACK比特数不大于2时,预留一部分资源。当HARQ-ACK比特为 0,1,2时,总是按照2比特进行HARQ-ACK资源预留,如果实际的HARQ-ACK为1比特,则映射在预留资源中的一部分资源上。CSI从PUSCH上第一个非DMRS符号开始进行映射,当HARQ-ACK的信息比特小于2时,在PUSCH上存在HARQ-ACK的预留资源,CSI part 1不会映射在预留资源上,而CSI part 2和TB可以映射在预留资源上;如果HARQ-ACK的信息比特大于2,则CSI part 1、CSI part 2和TB都不会映射在HARQ-ACK资源上。UCI按照先频域后时序的顺序在PUSCH的传输带宽内进行频域离散的映射。对于某一种UCI类型,在一个OFDM符号上调制符号之间的间隔d按如下方式确定:如果该UCI剩余未映射的调制符号个数大于或者等于当前OFDM符号上可用的RE个数,则d=1;否则d=floor(当前OFDM符号上可用的RE个数/UCI剩余未映射的调制符号个数),floor为向下取整。如图3所示,其中,上述冲突是指在同一个载波组中的冲突,例如双链接中的主载波组MCG(Master(primary)Cell Group)和辅载波组SCG(Secondary Cell Group)各自为一个在载波组,例如支持PUCCH在SCG上传输时,会出现主PUCCH组(Primary PUCCH Group)和辅PUCCH组(Secondary PUCCH Group),每个PUCCH group为一个载波组。
对于目前的R17定位方法,因为复杂的环境或小区边缘的干扰,可能影响信号或信道传输的覆盖范围,因此提出了覆盖增强(Coverage enhancement)。此外,为了降低新无线NR(New RAT)终端的成本和体积,更好的适用于可穿戴设备等方面的需求,提出了降低复杂度的终端(RedCap终端),对这类终端,可能因为复杂度和硬件指标的降低,例如降低带宽和天线等,导致传输性能下降,也需要进行一定的覆盖增强来弥补传输性能下降。
如图4所示,对于需要进行覆盖增强的终端,现有技术正在研究跨多个时隙(slot)处理TB(TB processing over multiple slots)方法,后续简称多时隙TB传输。多时隙TB在PUSCH上的传输不同于现有技术中的PUSCH重复传输,重复传输中,PUSCH虽然也可以占用多个时隙传输,但每个时隙中是对同一个TB的重复性传输,即每个TB的编码是基 于一个时隙中的PUSCH资源进行的,然后在每个时隙中重复传输,每个时隙中的是一个独立的PUSCH传输。而时隙TB处理方法中,一个TB是基于多个时隙中的PUSCH总资源进行编码的,也就是TB是基于多个时隙进行联合编码的,而不是每个时隙中的独立编码方式;可以理解为“一个TB在多个slot中的多个PUSCH中传输,这些PUSCH各承载了编码后的TB的一部分”,也可以理解为“一个TB在一个PUSCH中传输,但该PUSCH的长度跨过了多个slot”。图4给了重复类型A和跨时隙TB传输对比的一个例子,其中TBS既传输块大小(TB Size)。通过多时隙TB传输,可以降低编码码率,增大编码的码长,从而提高了编码性能,并等效地增强了覆盖。然而,对于多时隙TB在PUSCH中传输的情况,如果出现了PUCCH与PUSCH的冲突,目前还没有明确的解决方案。为解决该问题,本申请实施例提供了一种信息传输方法,该方法当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送,从而使得UCI在承载多时隙TB的PUSCH上正常传输,避免UCI丢弃,提高系统的传输性能。
下面将通过具体实施例对本申请提供的信息传输方法、装置、终端设备、网络设备及存储介质进行详细解释和说明。
需要说明的是,在下述描述内容中,由于方法和装置是基于同一申请构思的,方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
此外,需要说明的是,本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工 (time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。由于终端设备与其它网络设备(例如核心网设备、接入网设备(即基站))一起构成一个可支持通信的网络,在本申请中,终端设备也视为一种网络设备。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个 为终端提供服务的小区,也可以是CU(Central Unit,集中控制单元)或者DU(Distributed Unit,分布式单元)。根据具体应用场合不同,网络设备又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
此外,应理解,本申请实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任 意适合的方式结合在一个或多个实施例中。
下面对本申请进行具体说明。
如图5所示,为本申请实施例提供的应用于终端设备的信息传输方法的步骤流程图,该方法包括如下步骤:
步骤101:当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的所有PUSCH。
在本步骤中,对于承载多时隙传输块TB的物理上行共享信道PUSCH,当与物理上行控制信道PUCCH在时域上存在冲突时,将PUCCH上的上行控制信息UCI转移到目标PUSCH中传输,其中,目标PUSCH为与PUCCH存在冲突的PUSCH或为与PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的所有PUSCH。例如,如果承载多时隙TB的PUSCH在多个时隙中称为一个PUSCH,则意味着这个PUSCH在某个时隙中的部分符号与PUCCH存在冲突,则UCI会转移到在多个时隙中传输的这一个PUSCH上传输;如果承载多时隙TB的PUSCH在每个时隙中称为独立的PUSCH,则这里存在冲突的PUSCH就是某个独立的PUSCH而不涉及其他PUSCH。
本申请实施例提供的信息传输方法当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送,本申请实施例在PUCCH与PUSCH发生冲突时,可以将PUCCH上的UCI转移到目标PUSCH中传输,避免UCI丢弃,提高系统的传输性能。
基于上述实施例的内容,在本实施例中,在将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送时,将所述UCI按照预定的映射规则映射至所述目标PUSCH上。
在本实施例中,需要说明的是,当承载多时隙传输块TB的PUSCH与 PUCCH在时域上存在冲突时,将PUCCH的UCI按照预定的映射规则映射至目标PUSCH上。所述预定的映射规则包括:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
基于上述实施例的内容,在本实施例中,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
在本实施例中,需要说明的是,UCI在目标PUSCH上的映射包括三种规则。可选的,第一种映射规则为集中映射,将与PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在符号集合中进行映射;第二种映射规则为基于PUSCH的分散映射,将与PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个符号集合中进行映射;第三种映射规则为基于时隙的分散映射,将与PUCCH存在冲突的PUSCH对应的符号分为多组,在同一个时隙(以PUSCH的SCS划分得到的时隙)中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每 个所述符号集合中进行映射。
基于上述实施例的内容,在本实施例中,所述UCI为HARQ-ACK、CSI、SR中的至少一种。
在本实施例中,需要说明的是,所述UCI为HARQ-ACK、CSI、SR中的至少一种;不同的UCI类型可以选择上述相同或者不同的映射规则,此处不作具体限制。其中,混合自动重传请求确认HARQ-ACK(HARQ-ACK,Hybrid Automatic Repeat request-ACKnowledgment)是对ACK和NACK反馈信息的统称,后续的HARQ-ACK简称AN。
基于上述实施例的内容,在本实施例中,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
在本实施例中,需要说明的是,对于UCI在目标PUSCH上的三种映射规则,在符号集合中进行映射时包括四种映射方式,分别为:
映射方式1:从第一个可用于传输UCI的符号开始映射,将UCI映射到连续的符号上(具体UCI占用多少资源是预先计算好的,映射完UCI占用的所有资源即可,后续同此解释,不再赘述)。需要说明的是,该方式优先适用于信道状态信息CSI,也可以适用于AN,此处不作具体限制。
映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将UCI映射到连续的符号上。如果某一个PUSCH(因 为不可用符号、时隙边界等分割出的一个PUSCH)中不存在DMRS,则基于假定的一个DMRS位置进行映射,其中假定的DMRS位置可以是第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同(例如前一个PUSCH中的DMRS位置这个PUSCH所包含的符号中的第3个符号,则这个PUSCH中假定的DMRS位于这个PUSCH所包含的符号中的第3个符号)。需要说明的是,该方式优先适用于AN,也可以适用于CSI,此处不作具体限制。
映射方式3:从预先定义的一个符号开始映射,将UCI映射到连续的符号上。
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于UCI传输的符号(即基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM时,不是DMRS符号的符号就是可用于UCI传输的符号,正交频分复用OFDM时,除了不用于DMRS传输的符号,用于DMRS传输的符号上如果存在可以用于TB传输的RE,则用于DMRS传输的符号也可以作为用于承载UCI传输的符号)作为UCI的映射符号。具体的,将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,这些UCI的映射符号可以是尽可能均匀的分布在每组DMRS周围,即每组DMRS周围的UCI的映射符号的个数相差不超过1个符号,在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号;或者这些UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
基于上述实施例的内容,在本实施例中,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
在本实施例中,需要说明的是,对于映射方式2,如果某一个PUSCH(因为不可用符号、时隙边界等分割出的一个PUSCH)中不存在DMRS,则基于 假定的一个DMRS位置进行映射,其中假定的DMRS位置可以是第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同(例如前一个PUSCH中的DMRS位置这个PUSCH所包含的符号中的第3个符号,则这个PUSCH中假定的DMRS位于这个PUSCH所包含的符号中的第3个符号)。需要说明的是,该方式优先适用于AN,也可以适用于CSI,此处不作具体限制。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
在本实施例中,对于映射方式4,可以将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,这些UCI的映射符号可以是尽可能均匀的分布在每组DMRS周围,即每组DMRS周围的UCI的映射符号的个数相差不超过1个符号,在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号;或者这些UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将 UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000049
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000050
个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000051
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000052
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000053
个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的 大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000054
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000055
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
在本实施例中,当映射方式4为均匀分布时,一种方式(在每组DMRS之间均匀分布):先确定最邻近每组DMRS的符号(即每组DMRS符号前和后的各1符号,其中DMRS组的前面或后面可能没有符号,则只算有符号的一侧)的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,以此类推,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000056
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000057
个符号之后,将剩余的资源在最后确定的X j个符号上均匀分布;另一种方式(在每个承载UCI的符号上均匀分布):先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述A1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2) 的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,以此类推,直到满足
Figure PCTCN2022071456-appb-000058
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000059
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000060
个符号上均匀分布。
当映射方式4为靠前分布时,从第1组DMRS符号(时间最早的DMRS)开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号(A1可能小于等于2,因为DMRS前面可能没有符号了,或者DMRS的后面可能没有符号了),如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,以此类推,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000061
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000062
Figure PCTCN2022071456-appb-000063
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,以此类推,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
需要说明的是,映射方式4在确定承载UCI的多个符号上,可以按照先 频域后时序的顺序映射,也可以按照先时域后频域的顺序映射。其中,当映射方式4为均匀分布时比较适用于UCI先时域后频域的映射;当映射方式4为靠前分布时比较适用于UCI先频域后时域的映射。
基于上述实施例的内容,在本实施例中,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
在本实施例中,需要说明的是,对于映射规则2或映射规则3,在每个符号集合中按照映射方式1、映射方式2、映射方式3和映射方式4进行映射之前,还包括:确定每个符号集合对应的UCI的映射资源的大小;具体的:可以是将原始的UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小。还可以是将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,从而得到每个符号集合对应的UCI的映射资源大小。
基于上述实施例的内容,在本实施例中,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
在本实施例中,需要说明的是,可以通过两种处理方式确定每个符号集合对应的UCI的映射资源的大小。第一种处理方式为:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每 个符号集合对应的UCI的映射资源大小。其中,在对UCI信息分组时,可以均匀分组(不是整数倍时某一组或几组包含更多一些信息),或者按照比例分组;所述比例可以根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。第二种处理方式为:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,从而得到每个符号集合对应的UCI的映射资源大小。其中,在对总的UCI对应的映射资源大小分组时,可以均匀分组(不是整数倍时某一组或几组包含更多一些信息),或者按照比例分组;所述比例可以根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
在本实施例中,需要说明的是,对于处理方式1,在对UCI信息分组时,可以均匀分组(不是整数倍时某一组或几组包含更多一些信息),或者按照比例分组;所述比例可以根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
在本实施例中,需要说明的是,对于处理方式2,对总的UCI对应的映射资源大小分组时,可以均匀分组(不是整数倍时某一组或几组包含更多一些信息),或者按照比例分组;所述比例可以根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
在本实施例中,需要说明的是,在确定了映射符号之后,在每个符号上,可以按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
基于上述实施例的内容,在本实施例中,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
在本实施例中,需要说明的是,可用于UCI传输的符号包括:非承载DMRS的符号,或者根据波形来确定:采用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE(Resource Element)的DMRS符号(即这个DMRS符号上DMRS是间隔映射到部分RE上的,剩余的RE可以用于TB传输,则剩余的RE被认为也可以传输UCI),采用DFT-s-OFDM波形时,为非承载DMRS的符号。
基于上述实施例的内容,在本实施例中,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
在本实施例中,需要说明的是,当PUCCH和PUSCH属于同一个载波组时,如果出现冲突,按照本申请实施例方式执行,如果不属于同一个载波组中,可以按照或不按照本申请实施例执行,如果不按照本申请实施例执行,意味着支持不同载波组之间的PUCCH和PUSCH同时传输。其中,载波组具体为:例如,当配置了辅载波(secondary carrier component,SCC)传输PUCCH时,主、辅PUCCH组分别为一个载波组;又例如在双连接场景,当配置了辅小区组(secondary cell group,SCG)时,主小区组(master cell group,MCG) 和SCG分别为一个载波组。
在本实施例中,需要说明的是,资源在时域上存在重叠即PUCCH的时域资源与PUSCH的时域资源存在重叠,其中PUCCH和PUSCH可以在相同或者不同载波上。
在本实施例中,需要说明的是,所述信道之间的符号间隔小于预定的门限,具体可以是:即第一个信道(比较早的)的结束符号和第二个信道(比较晚的)的起始符号之间的时间间隔小于预定的门限,这是为了覆盖高频传输情况中,两个信道一个是高频一个是低频的时候,即使时域上不重叠,也需要时域上保持一定的时间间隔用来调整射频器件,因此这种的处理等同于时域重叠。
基于上述实施例的内容,在本实施例中,所述承载多时隙TB的PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
在本实施例中,需要说明的是,承载多时隙TB的PUSCH具体为:一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
如图6所示,为本申请实施例提供的应用于网络设备的信息传输方法的步骤流程图,该方法包括如下步骤:
步骤201:当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的所有PUSCH。
在本步骤中,需要说明的是,对于承载多时隙传输块TB的物理上行共享信道PUSCH,当与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI,其中,目标PUSCH为与PUCCH存在冲突的PUSCH或为与PUCCH存在冲突的PUSCH所在时隙中的对应同一个 TB的所有PUSCH。例如,如果承载多时隙TB的PUSCH在多个时隙中称为一个PUSCH,则意味着这个PUSCH在某个时隙中的部分符号与PUCCH存在冲突,则UCI会转移到在多个时隙中传输的这一个PUSCH上传输;如果承载多时隙TB的PUSCH在每个时隙中称为独立的PUSCH,则这里存在冲突的PUSCH就是某个独立的PUSCH而不涉及其他PUSCH。
本申请实施例提供的信息传输方法当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送,从而使得UCI在承载多时隙TB的PUSCH上正常传输,避免UCI丢弃,提高系统的传输性能。
本申请实施例给出了一种PUCCH与承载多时隙TB的PUSCH冲突时的传输方法,通过合理的UCI承载多时隙TB的PUSCH上的映射规则的设计,保证UCI可以在承载多时隙TB的PUSCH上正常传输,避免
UCI丢弃,提高系统的传输性能。
基于上述实施例的内容,在本实施例中,在将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送时,将所述UCI按照预定的映射规则映射至所述目标PUSCH上。
在本实施例中,需要说明的是,当承载多时隙传输块TB的PUSCH与PUCCH在时域上存在冲突时,将PUCCH的UCI按照预定的映射规则映射至目标PUSCH上。所述预定的映射规则包括:映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
基于上述实施例的内容,在本实施例中,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
在本实施例中,需要说明的是,UCI在目标PUSCH上的映射包括三种规则。可选的,第一种映射规则为集中映射,将与PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在符号集合中进行映射;第二种映射规则为基于PUSCH的分散映射,将与PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个符号集合中进行映射;第三种映射规则为基于时隙的分散映射,将与PUCCH存在冲突的PUSCH对应的符号分为多组,在同一个时隙(以PUSCH的SCS划分得到的时隙)中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
基于上述实施例的内容,在本实施例中,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射 符号。
在本实施例中,需要说明的是,对于UCI在目标PUSCH上的三种映射规则,在符号集合中进行映射时包括四种映射方式,分别为:
映射方式1:从第一个可用于传输UCI的符号开始映射,将UCI映射到连续的符号上(具体UCI占用多少资源是预先计算好的,映射完UCI占用的所有资源即可,后续同此解释,不再赘述)。需要说明的是,该方式优先适用于信道状态信息CSI,也可以适用于AN,此处不作具体限制。
映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将UCI映射到连续的符号上。如果某一个PUSCH(因为不可用符号、时隙边界等分割出的一个PUSCH)中不存在DMRS,则基于假定的一个DMRS位置进行映射,其中假定的DMRS位置可以是第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同(例如前一个PUSCH中的DMRS位置这个PUSCH所包含的符号中的第3个符号,则这个PUSCH中假定的DMRS位于这个PUSCH所包含的符号中的第3个符号)。需要说明的是,该方式优先适用于AN,也可以适用于CSI,此处不作具体限制。
映射方式3:从预先定义的一个符号开始映射,将UCI映射到连续的符号上。
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于UCI传输的符号(即基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM时,不是DMRS符号的符号就是可用于UCI传输的符号,正交频分复用OFDM时,除了不用于DMRS传输的符号,用于DMRS传输的符号上如果存在可以用于TB传输的RE,则用于DMRS传输的符号也可以作为用于承载UCI传输的符号)作为UCI的映射符号。具体的,将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,这些UCI的映射符号可以是尽可能均匀的分布在每组DMRS周围,即每组DMRS周围的UCI的映射符号的个数相差不超过1个符号,在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组 周围存在更多的UCI的映射符号;或者这些UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
基于上述实施例的内容,在本实施例中,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
在本实施例中,需要说明的是,对于映射方式2,如果某一个PUSCH(因为不可用符号、时隙边界等分割出的一个PUSCH)中不存在DMRS,则基于假定的一个DMRS位置进行映射,其中假定的DMRS位置可以是第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同(例如前一个PUSCH中的DMRS位置这个PUSCH所包含的符号中的第3个符号,则这个PUSCH中假定的DMRS位于这个PUSCH所包含的符号中的第3个符号)。需要说明的是,该方式优先适用于AN,也可以适用于CSI,此处不作具体限制。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
在本实施例中,对于映射方式4,可以将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,这些UCI的映射符号可以是尽可能均匀的分布在每组DMRS周围,即每组DMRS周围的UCI的映射符号的个数相差不超过1个符号,在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号;或者这些UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000064
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000065
个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000066
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000067
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000068
个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS 符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000069
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000070
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
在本实施例中,当映射方式4为均匀分布时,一种方式(在每组DMRS之间均匀分布):先确定最邻近每组DMRS的符号(即每组DMRS符号前和后的各1符号,其中DMRS组的前面或后面可能没有符号,则只算有符号的一侧)的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个 可用于UCI传输的符号,以此类推,直到满足UCI的映射资源的大小不超过个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;另一种方式(在每个承载UCI的符号上均匀分布):先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述A1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,以此类推,直到满足
Figure PCTCN2022071456-appb-000071
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000072
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000073
个符号上均匀分布。
当映射方式4为靠前分布时,从第1组DMRS符号(时间最早的DMRS)开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号(A1可能小于等于2,因为DMRS前面可能没有符号了,或者DMRS的后面可能没有符号了),如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,以此类推,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所 有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000074
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000075
Figure PCTCN2022071456-appb-000076
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,以此类推,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
需要说明的是,映射方式4在确定承载UCI的多个符号上,可以按照先频域后时序的顺序映射,也可以按照先时域后频域的顺序映射。其中,当映射方式4为均匀分布时比较适用于UCI先时域后频域的映射;当映射方式4为靠前分布时比较适用于UCI先频域后时域的映射。
基于上述实施例的内容,在本实施例中,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
在本实施例中,需要说明的是,对于映射规则2或映射规则3,在每个符号集合中按照映射方式1、映射方式2、映射方式3和映射方式4进行映射之前,还包括:确定每个符号集合对应的UCI的映射资源的大小;具体的:可以是将原始的UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小。还可以是将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,从而得到每个符号集合对应的UCI的映射资源大小。
基于上述实施例的内容,在本实施例中,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源 大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
在本实施例中,需要说明的是,可以通过两种处理方式确定每个符号集合对应的UCI的映射资源的大小。第一种处理方式为:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小。其中,在对UCI信息分组时,可以均匀分组(不是整数倍时某一组或几组包含更多一些信息),或者按照比例分组;所述比例可以根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。第二种处理方式为:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,从而得到每个符号集合对应的UCI的映射资源大小。其中,在对总的UCI对应的映射资源大小分组时,可以均匀分组(不是整数倍时某一组或几组包含更多一些信息),或者按照比例分组;所述比例可以根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
在本实施例中,需要说明的是,对于处理方式1,在对UCI信息分组时,可以均匀分组(不是整数倍时某一组或几组包含更多一些信息),或者按照比例分组;所述比例可以根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,对于处理方式2,在对总的UCI 对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
在本实施例中,需要说明的是,对于处理方式2,对总的UCI对应的映射资源大小分组时,可以均匀分组(不是整数倍时某一组或几组包含更多一些信息),或者按照比例分组;所述比例可以根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
在本实施例中,需要说明的是,在确定了映射符号之后,在每个符号上,可以按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
基于上述实施例的内容,在本实施例中,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
在本实施例中,需要说明的是,可用于UCI传输的符号包括:非承载DMRS的符号,或者根据波形来确定:采用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE(Resource Element)的DMRS符号(即这个DMRS符号上DMRS是间隔映射到部分RE上的,剩余的RE可以用于TB传输,则剩余的RE被认为也可以传输UCI),采用DFT-s-OFDM波形时,为非承载DMRS的符号。
基于上述实施例的内容,在本实施例中,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中, 信道之间的符号间隔小于预定的门限。
在本实施例中,需要说明的是,当PUCCH和PUSCH属于同一个载波组时,如果出现冲突,按照本申请实施例方式执行,如果不属于同一个载波组中,可以按照或不按照本申请实施例执行,如果不按照本申请实施例执行,意味着支持不同载波组之间的PUCCH和PUSCH同时传输。其中,载波组具体为:例如,当配置了辅载波(secondary carrier component,SCC)传输PUCCH时,主、辅PUCCH组分别为一个载波组;又例如在双连接场景,当配置了辅小区组(secondary cell group,SCG)时,主小区组(master cell group,MCG)和SCG分别为一个载波组。
在本实施例中,需要说明的是,资源在时域上存在重叠即PUCCH的时域资源与PUSCH的时域资源存在重叠,其中PUCCH和PUSCH可以在相同或者不同载波上。
在本实施例中,需要说明的是,所述信道之间的符号间隔小于预定的门限,具体可以是:即第一个信道(比较早的)的结束符号和第二个信道(比较晚的)的起始符号之间的时间间隔小于预定的门限,这是为了覆盖高频传输情况中,两个信道一个是高频一个是低频的时候,即使时域上不重叠,也需要时域上保持一定的时间间隔用来调整射频器件,因此这种的处理等同于时域重叠。
基于上述实施例的内容,在本实施例中,所述承载多时隙TB的PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
在本实施例中,需要说明的是,承载多时隙TB的PUSCH具体为:一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
基于上述实施例的内容,在本实施例中,所述UCI为HARQ-ACK、CSI、SR中的至少一种。
在本实施例中,需要说明的是,所述UCI为HARQ-ACK、CSI、SR中的 至少一种;不同的UCI类型可以选择上述相同或者不同的映射规则,此处不作具体限制。
下面通过具体实施例对本申请进行具体说明。
第一实施例:
在本实施例中,PUCCH和PUSCH具有相同的SCS,一个TB在2个slot中通过PUSCH传输,其中,这个TB是基于如图7-14中所示的2个slot中的PUSCH对应总符号数进行编码的(具体编码时取总符号数中可用于TB传输的总资源或总RE个数,以及MCS对应的调制方式来确定编码后的比特数的),其中如何确定每个slot中的PUSCH占用的符号数不属于本申请的保护范围(可以参考其他发明或现有技术),本申请假定已知了2个时隙中PUSCH对应的传输符号;在时隙n中,存在一个PUCCH1承载HARQ-ACK序列1与承载多时隙TB的PUSCH在时域上存在重叠,则确定PUCCH1上承载的HARQ-ACK序列1转移到时隙1中的与PUSCH上传输,此处以图中连续符号构成的一个PUSCH作为一个独立的PUSCH为例,则时隙n中存在2个PUSCH,时隙n+1中存在一个PUSCH;
在采用映射规则1的映射方式1时:将时隙n中与PUCCH1重叠的多个PUSCH对应的符号作为一个整体集合,UCI在其中以第一个符号起始开始以先频域后时域的方式映射;将时隙n+1中与PUCCH2重叠的1个PUSCH对应的符号作为一个整体集合,UCI在其中以第一个符号起始开始以先频域后时域的方式映射;如图7所示;
在采用方式映射规则1的映射方式2时:将时隙n中与PUCCH1重叠的多个PUSCH对应的符号作为一个整体集合,UCI在其中以第一个DMRS符号之后的第一个符号起始开始以先频域后时域的方式映射;将时隙n+1中与PUCCH2重叠的1个PUSCH对应的符号作为一个整体集合,UCI在其中以第一个DMRS符号之后的第一个符号起始开始以先频域后时域的方式映射,如图8所示;
在采用方式映射规则1的映射方式3时:给定任何一个起始符号,例如第一个符号,则映射方式如图7;或第一个DMRS之后的第一个可用于UCI 传输的符号,则映射方式如图8;不排除其他的给定起始符号位置,映射方式类似,仅影响映射的起始符号,不再赘述;
在采用方式映射规则1的映射方式4时:将时隙n中与PUCCH1重叠的多个PUSCH对应的符号作为一个整体集合,UCI在其中在DMRS符号周围的符号上映射;将时隙n+1中与PUCCH2重叠的1个PUSCH对应的符号作为一个整体集合,UCI在其中在DMRS符号周围的符号上映射;在采用先时域后频域的映射方式时,可以如图9所示(在所有UCI符号上均匀分布)或图10所述(在每组DMRS之间均匀分布,其中DMRS周围的用于传输UCI的符号上映射的UCI资源大小不同,先确定DMRS两侧最近的符号看资源是否够UCI需求,如果还是不够,再确定次临近DMRS的符号(与DMRS符号间隔1个符号的符号)作为UCI的映射符号,其中对于去掉DMRS最邻近的符号上的UCI传输资源之后剩余的映射资源,可以在DMRS两侧次临近的2个符号上均匀映射,如图10所示,也可以集中在DMRS一侧次临近的1个符号上映射,例如靠前的符号,或靠后的符号如图11所示);在采用先频域后时域的映射方式时,可以如图12所示或图13所示(其中图12中没有映射满UCI的符号也可以是在DMRS组前面的次临近符号,图中以DMRS后面的次临近符号为例,图13则是将去掉DMRS最邻近的承载UCI符号上的资源之后剩余的映射资源均匀分布在第一组DMRS前后的两个次临近符号上,而没有对第二组DMRS的次临近符号分配剩余的映射资源);
在采用映射规则2时,时隙n中的PUCCH上的HARQ-ACK均匀分布在与PUCCH重叠的每个PUSCH中,时隙n+1中的另一个PUCCH2,仅与时隙n+1中的一个PUSCH重叠,则只映射到这一个PUSCH上;例如具体映射结合方式映射规则1的映射方式1,则如图14所示,例如具体映射结合方式映射规则1的映射方式4时,则如图9-13所示(结合其他方式仅影响UCI在每个PUSCH上映射的符号位置,比如结合方式映射规则1的映射方式2,起始位置变成每个PUSCH的DMRS之后的第一个符号);
在采用方式映射规则3时,时隙n中的两个PUSCH作为一个整体,时隙n+1的情况则与映射规则2一致;例如具体映射结合映射规则1的映射方 式1,则如图7所示,例如结合具体映射规则1的映射方式4,则如图3-13所示(结合其他方式仅影响UCI在每个PUSCH上映射的符号位置,比如结合方式映射规则1的映射方式2,起始位置变成每个PUSCH的DMRS之后的第一个符号);
第二实施例:
在本实施例中,PUCCH和PUSCH具有不同的SCS,例如PUCCH的SCS更小,则一个PUCCH时隙中传输的一个PUCCH可能会与多个PUSCH时隙中传输的PUSCH在时域上存在重叠;假设一个TB在4个slot中通过PUSCH传输,其中,这个TB是基于如图16所示的4个slot中的PUSCH对应总符号数进行编码的(具体编码时是取总符号数中可用于TB传输的总资源或总RE个数,以及MCS对应的调制方式来确定编码后的比特数的),其中如何确定每个slot中的PUSCH占用的符号数不属于本申请的保护范围(可以参考其他发明或现有技术),本申请假定已知了2个时隙中PUSCH对应的传输符号;在PUCCH时隙n中,存在一个PUCCH1承载HARQ-ACK序列1与在PUSCH时隙2n和2n+1中传输的承载多时隙TB的PUSCH在时域上存在重叠,则确定PUCCH1上承载的HARQ-ACK序列1转移到PUSCH时隙2n和2n+1中的与PUCCH重叠的PUSCH上传输,此处以一个PUSCH时隙中的一个PUSCH作为一个PUSCH为例(而不是将4个slot中的所有PUSCH传输占用的符号看成一个整体的PUSCH);则:
在采用映射规则1的映射方式1时:将PUSCH时隙2n和2n+1中与PUCCH1重叠的多个PUSCH对应的符号作为一个整体集合,UCI在其中以第一个符号起始开始以先频域后时域的方式映射;如图15所示;
在采用映射规则1的映射方式2时:将PUSCH时隙2n和2n+1中与PUCCH1重叠的多个PUSCH对应的符号作为一个整体集合,UCI在其中以第一个DMRS符号之后的第一个符号起始开始以先频域后时域的方式映射;如图16所示;
在采用映射规则1的映射方式3时:给定任何一个起始符号,例如第一个符号,则映射方式如图15;或第一个DMRS之后的第一个可用于UCI传 输的符号,则映射方式如图16;不排除其他的给定起始符号位置,映射方式类似,仅影响映射的起始符号,不再赘述;
在采用映射规则1的映射方式4时:将PUSCH时隙2n和2n+1中与PUCCH1重叠的多个PUSCH对应的符号作为一个整体集合,UCI在其中在DMRS符号周围的符号上映射;在采用先时域后频域的映射方式时,可以如图17所示(在所有UCI符号上均匀分布,因为本实施例中假设的总计传输UCI的符号为5个符号,其中有一个符号没有在频域上占满,而DMRS周围至少存在最邻近DMRS的8个符号,所以分布在8个符号上都不会占满,则并不需要映射到次临近DMRS的符号上);在采用先频域后时域的映射方式时,可以如图18所示或图19所示;其中,图18是按照DMRS组的顺序,先选择每组DMRS两侧最邻近的2个符号进行映射,这些符号上的UCI资源不能满足UCI需要的映射资源时,再确定下一组DMRS两侧最邻近的2个符号作为UCI映射符号,以此类推,如果占不满DMRS两侧的2个符号,则可以选择先占满靠前(DMRS前面临近的)的符号,剩余的资源映射到靠后(DMRS后面临近的)的符号,如果占不满DMRS两侧的2个符号中的1个符号,则可以是映射到该DMRS临近的靠前符号(当然也可以约定为靠后的符号);图19中,则是对每组DMRS先选择一侧最邻近的1个符号(可以是靠前的符号,即DMRS前面最邻近的符号,也可以是靠后的符号,即DMRS后面最邻近的符号)进行映射,资源不足时,进一步到第二组DMRS周围确定UCI的映射符号;
在采用映射规则2时,PUCCH1上的HARQ-ACK均匀分布在与PUCCH重叠的时隙2n和2n+1中每个PUSCH中;例如具体映射结合映射规则1的映射方式1,则如图20所示,例如具体映射结合映射规则1的映射方式4时,则例如如图21(结合其他方式仅影响UCI在每个PUSCH上映射的符号位置,比如结合映射规则1的映射方式2,起始位置变成每个PUSCH的DMRS之后的第一个符号);
在采用映射规则3时,时隙2n和2n+1中的两个PUSCH作为一个整体;例如具体映射结合映射规则1的映射方式1,则如图15所示,例如结合映射 规则1的映射方式2,则如图15所示,例如结合映射规则1的映射方式4,则如图16-18所示(结合其他方式仅影响UCI在每个PUSCH上映射的符号位置)。
需要说明的是,上述第二实施例中,如果在时隙n+1中还存在一个PUCCH2,与时隙2n+1和/或2n+2中的PUSCH存在重叠,则处理方式同上类,似不再赘述。
上述第一实施例和第二实施例中,承载TB的PUSCH在多个时隙中也可以作为整体的一个PUSCH,则意味着实施例1中时隙n和时隙n+1中对应PUSCH的所有符号都作为与PUCCH1存在冲突的一个PUSCH所包含的符号,第二实施例中时隙2n、2n+1、2n+2、2n+3中对应PUSCH的所有符号都作为与PUCCH1存在冲突的一个PUSCH所包含的符号,则具体的映射方式类似上述方式映射规则1的映射方式1~映射规则1的映射方式4,只不过替换上面的符号集合即可,例如在按照映射规则1的映射方式4执行时,在第一实施例中,时隙n+1中的DMRS符号周围的符号也是参与UCI映射的,第二实施例中,时隙2n+2和2n+3中的DMRS符号周围的符号也是参与UCI映射的,如图22所示;
上述实施例中,终端和基站都可以按照相同的方式确定UCI映射到哪些符号上,终端侧按照映射规则进行UCI映射和传输,基站侧则是在接收到的PUSCH中,按照映射规则,从对应的符号上获取UCI信息。
此外,如图24所示,为本申请实施例中应用于终端设备的信息传输装置的模块框图,该装置包括:
接收模块11,用于当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个、TB的所有PUSCH。
基于上述实施例的内容,在本实施例中,在将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送时,将所述UCI按照预定的映射规则 映射至所述目标PUSCH上。
基于上述实施例的内容,在本实施例中,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
基于上述实施例的内容,在本实施例中,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
基于上述实施例的内容,在本实施例中,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000077
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000078
个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述 X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000079
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000080
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000081
个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000082
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000083
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
基于上述实施例的内容,在本实施例中,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
基于上述实施例的内容,在本实施例中,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
基于上述实施例的内容,在本实施例中,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
基于上述实施例的内容,在本实施例中,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
基于上述实施例的内容,在本实施例中,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
基于上述实施例的内容,在本实施例中,所述承载多时隙TB的PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
基于上述实施例的内容,在本实施例中,所述UCI为HARQ-ACK、CSI、SR中的至少一种。
在此需要说明的是,本装置能够实现应用于终端设备的信息传输方法实施例的所有方法步骤并能够达到相同的技术效果,在此不再进行赘述。
此外,如图23所示,为本申请实施例中应用于网络设备的信息传输装置的模块框图,该装置包括:
接收模块21,用于当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个、TB的所有PUSCH。
基于上述实施例的内容,在本实施例中,所述在目标PUSCH中接收上行控制信息UCI,包括:
在目标PUSCH中接收按照预定的映射规则映射的上行控制信息UCI。
基于上述实施例的内容,在本实施例中,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号 集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
基于上述实施例的内容,在本实施例中,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
基于上述实施例的内容,在本实施例中,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符 号上。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000084
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000085
个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000086
Figure PCTCN2022071456-appb-000087
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000088
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000089
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000090
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
基于上述实施例的内容,在本实施例中,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
基于上述实施例的内容,在本实施例中,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
基于上述实施例的内容,在本实施例中,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
基于上述实施例的内容,在本实施例中,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
基于上述实施例的内容,在本实施例中,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
基于上述实施例的内容,在本实施例中,所述承载多时隙TB的 PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
基于上述实施例的内容,在本实施例中,所述UCI为HARQ-ACK、CSI、SR中的至少一种。
在此需要说明的是,本装置能够实现应用于终端设备的信息传输方法实施例的所有方法步骤并能够达到相同的技术效果,在此不再进行赘述。
图25是本申请实施例提供的终端设备的结构示意图之一,包括存储器2420,收发机2400,处理器2410。
其中,在图25中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2410代表的一个或多个处理器和存储器2420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2400可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器2410负责管理总线架构和通常的处理,存储器2420可以存储处理器2410在执行操作时所使用的数据。
处理器2410可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
存储器2420,用于存储计算机程序;收发机2400,用于在所述处理器的控制下收发数据;处理器2410,用于读取所述存储器中的计算机程序并执行以下操作:
当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI; 其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个、TB的所有PUSCH。
基于上述实施例的内容,在本实施例中,在将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送时,将所述UCI按照预定的映射规则映射至所述目标PUSCH上。
基于上述实施例的内容,在本实施例中,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
基于上述实施例的内容,在本实施例中,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
基于上述实施例的内容,在本实施例中,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000091
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000092
个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个 符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000093
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000094
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
Figure PCTCN2022071456-appb-000095
个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000096
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000097
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
基于上述实施例的内容,在本实施例中,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
基于上述实施例的内容,在本实施例中,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
基于上述实施例的内容,在本实施例中,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
基于上述实施例的内容,在本实施例中,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用 基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
基于上述实施例的内容,在本实施例中,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
基于上述实施例的内容,在本实施例中,所述承载多时隙TB的PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
基于上述实施例的内容,在本实施例中,所述UCI为HARQ-ACK、CSI、SR中的至少一种。
在此需要说明的是,本申请实施例提供的终端设备能够实现应用于终端设备的信息传输方法实施例的所有方法步骤并能够达到相同的技术效果,在此不再进行赘述。
图26是本申请实施例提供的网络设备的结构图之一,包括存储器2520,收发机2500,处理器2510。
其中,在图26中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2510代表的一个或多个处理器和存储器2520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2500可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器2510负责管理总线架构和通常的处理,存储器2520可以存储处理器2510在执行操作时所使用的数据。
处理器2510可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex  Programmable Logic Device,CPLD),处理器也可以采用多核架构。
存储器2520,用于存储计算机程序;收发机2500,用于在所述处理器的控制下收发数据;处理器2510,用于读取所述存储器中的计算机程序并执行以下操作:
当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个、TB的所有PUSCH。
基于上述实施例的内容,在本实施例中,所述在目标PUSCH中接收上行控制信息UCI,包括:
在目标PUSCH中接收按照预定的映射规则映射的上行控制信息UCI。
基于上述实施例的内容,在本实施例中,所述预定的映射规则包括下述中的至少一项:
映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
基于上述实施例的内容,在本实施例中,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
基于上述实施例的内容,在本实施例中,对于映射方式2:
如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:
将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
基于上述实施例的内容,在本实施例中,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
其中,所述均匀分布方式包括方式A和/或方式B;
所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小 不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000098
个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
Figure PCTCN2022071456-appb-000099
个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
Figure PCTCN2022071456-appb-000100
Figure PCTCN2022071456-appb-000101
的UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000102
个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述个符号上均匀分布;
其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推 处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
Figure PCTCN2022071456-appb-000103
个符号上承载UCI的总资源大小,则确定所述
Figure PCTCN2022071456-appb-000104
个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
基于上述实施例的内容,在本实施例中,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
确定每个符号集合对应的UCI的映射资源的大小。
基于上述实施例的内容,在本实施例中,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
基于上述实施例的内容,在本实施例中,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突 的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
基于上述实施例的内容,在本实施例中,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
基于上述实施例的内容,在本实施例中,所述可用于UCI传输的符号包括:非承载DMRS的符号;
或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
基于上述实施例的内容,在本实施例中,所述冲突包括:
在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
基于上述实施例的内容,在本实施例中,所述承载多时隙TB的PUSCH为:
一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
基于上述实施例的内容,在本实施例中,所述UCI为HARQ-ACK、CSI、SR中的至少一种。
在此需要说明的是,本申请实施例提供的网络设备能够实现应用于终端设备的信息传输方法实施例的所有方法步骤并能够达到相同的技术效果,在此不再进行赘述。
另一方面,本申请实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述实施例中所述的方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
由上述实施例可见,处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述信息传输方法的步骤。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用 于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (91)

  1. 一种信息传输方法,其特征在于,应用于终端设备,包括:
    当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的所有PUSCH。
  2. 根据权利要求1所述的信息传输方法,其特征在于,在将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送时,将所述UCI按照预定的映射规则映射至所述目标PUSCH上。
  3. 根据权利要求2所述的信息传输方法,其特征在于,所述预定的映射规则包括下述中的至少一项:
    映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
    映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
    映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
  4. 根据权利要求3所述的信息传输方法,其特征在于,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
    映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到 连续的符号上;
    映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
  5. 根据权利要求4所述的信息传输方法,其特征在于,对于映射方式2:
    如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
  6. 根据权利要求4所述的信息传输方法,其特征在于,对于所述映射方式4,包括:
    将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
  7. 根据权利要求6所述的信息传输方法,其特征在于,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
    其中,所述均匀分布方式包括方式A和/或方式B;
    所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后 剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100001
    个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
    Figure PCTCN2022071456-appb-100002
    个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
    所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
    Figure PCTCN2022071456-appb-100003
    Figure PCTCN2022071456-appb-100004
    的UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100005
    个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
    Figure PCTCN2022071456-appb-100006
    个符号上均匀分布;
    其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述 操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100007
    个符号上承载UCI的总资源大小,则确定所述
    Figure PCTCN2022071456-appb-100008
    个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
  8. 根据权利要求4~7中任一项所述的信息传输方法,其特征在于,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
    确定每个符号集合对应的UCI的映射资源的大小。
  9. 根据权利要求8所述的信息传输方法,其特征在于,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式中的一种:
    处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
    处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
  10. 根据权利要求9所述的信息传输方法,其特征在于,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是 与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
  11. 根据权利要求9所述的信息传输方法,其特征在于,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
  12. 根据权利要求3~7任一项所述的信息传输方法,其特征在于,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
  13. 根据权利要求4~7任一项所述的信息传输方法,其特征在于,所述可用于UCI传输的符号包括:非承载DMRS的符号;
    或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
  14. 根据权利要求1~7任一项所述的信息传输方法,其特征在于,所述冲突包括:
    在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
  15. 根据权利要求1~7任一项所述的信息传输方法,其特征在于,所述承载多时隙TB的PUSCH为:
    一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
  16. 一种信息传输方法,其特征在于,应用于网络设备,包括:
    当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的 所有PUSCH。
  17. 根据权利要求16所述的信息传输方法,其特征在于,所述在目标PUSCH中接收上行控制信息UCI,包括:
    在目标PUSCH中接收按照预定的映射规则映射的上行控制信息UCI。
  18. 根据权利要求17所述的信息传输方法,其特征在于,所述预定的映射规则包括下述中的至少一项:
    映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
    映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
    映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
  19. 根据权利要求18所述的信息传输方法,其特征在于,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
    映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
    映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
  20. 根据权利要求19所述的信息传输方法,其特征在于,对于映射 方式2:
    如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
  21. 根据权利要求19所述的信息传输方法,其特征在于,对于所述映射方式4,包括:
    将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
  22. 根据权利要求21所述的信息传输方法,其特征在于,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
    其中,所述均匀分布方式包括方式A和/或方式B;
    所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100009
    个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
    Figure PCTCN2022071456-appb-100010
    个符号之后,将剩余的资源在最后确定的Xj个符号 上均匀分布;
    所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
    Figure PCTCN2022071456-appb-100011
    Figure PCTCN2022071456-appb-100012
    的UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100013
    个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
    Figure PCTCN2022071456-appb-100014
    个符号上均匀分布;
    其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100015
    个符号上承载UCI 的总资源大小,则确定所述
    Figure PCTCN2022071456-appb-100016
    个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
  23. 根据权利要求19~22中任一项所述的信息传输方法,其特征在于,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
    确定每个符号集合对应的UCI的映射资源的大小。
  24. 根据权利要求23所述的信息传输方法,其特征在于,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
    处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
    处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
  25. 根据权利要求24所述的信息传输方法,其特征在于,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
  26. 根据权利要求24所述的信息传输方法,其特征在于,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
  27. 根据权利要求18~22任一项所述的信息传输方法,其特征在于,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
  28. 根据权利要求19~22任一所述的信息传输方法,其特征在于,所述可用于UCI传输的符号包括:非承载DMRS的符号;
    或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
  29. 根据权利要求16~22任一项所述的信息传输方法,其特征在于,所述冲突包括:
    在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
  30. 根据权利要求16~22任一项所述的信息传输方法,其特征在于,所述承载多时隙TB的PUSCH为:
    一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
  31. 一种信息传输装置,应用于终端设备,包括:
    发送模块,用于当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的所有PUSCH。
  32. 根据权利要求31所述的信息传输装置,其特征在于,在将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送时,将所述UCI按照预定的映射规则映射至所述目标PUSCH上。
  33. 根据权利要求32所述的信息传输装置,其特征在于,所述预定的映射规则包括下述中的至少一项:
    映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
    映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
    映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
  34. 根据权利要求33所述的信息传输装置,其特征在于,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
    映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
    映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
  35. 根据权利要求34所述的信息传输装置,其特征在于,对于映射方式2:
    如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
  36. 根据权利要求34所述的信息传输装置,其特征在于,对于所述映射方式4,包括:
    将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
  37. 根据权利要求36所述的信息传输装置,其特征在于,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
    其中,所述均匀分布方式包括方式A和/或方式B;
    所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
    所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号, 将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足1/()的UCI的映射资源的大小不超过个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述个符号上均匀分布;
    其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过B1+个符号上承载UCI的总资源大小,则确定所述B1+个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
  38. 根据权利要求34~37中任一项所述的信息传输装置,其特征在于,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
    确定每个符号集合对应的UCI的映射资源的大小。
  39. 根据权利要求38所述的信息传输装置,其特征在于,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式中的一 种:
    处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
    处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
  40. 根据权利要求39所述的信息传输装置,其特征在于,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
  41. 根据权利要求39所述的信息传输装置,其特征在于,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
  42. 根据权利要求33~37任一项所述的信息传输装置,其特征在于,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
  43. 根据权利要求34~37任一项所述的信息传输装置,其特征在于,所述可用于UCI传输的符号包括:非承载DMRS的符号;
    或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
  44. 根据权利要求31~37任一项所述的信息传输装置,其特征在于,所述冲突包括:
    在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
  45. 根据权利要求31~37任一项所述的信息传输装置,其特征在于,所述承载多时隙TB的PUSCH为:
    一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
  46. 一种信息传输装置,应用于网络设备,包括:
    接收模块,用于当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个、TB的所有PUSCH。
  47. 根据权利要求46所述的信息传输装置,其特征在于,所述在目标PUSCH中接收上行控制信息UCI,包括:
    在目标PUSCH中接收按照预定的映射规则映射的上行控制信息UCI。
  48. 根据权利要求47所述的信息传输装置,其特征在于,所述预定的映射规则包括下述中的至少一项:
    映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
    映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
    映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
  49. 根据权利要求48所述的信息传输装置,其特征在于,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集 合中进行映射时,包括下述映射方式中的至少一种:
    映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
    映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
  50. 根据权利要求49所述的信息传输装置,其特征在于,对于映射方式2:
    如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
  51. 根据权利要求49所述的信息传输装置,其特征在于,对于所述映射方式4,包括:
    将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
  52. 根据权利要求51所述的信息传输装置,其特征在于,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
    其中,所述均匀分布方式包括方式A和/或方式B;
    所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于 UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100017
    个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
    Figure PCTCN2022071456-appb-100018
    个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
    所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/
    (X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
    Figure PCTCN2022071456-appb-100019
    Figure PCTCN2022071456-appb-100020
    的UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100021
    个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
    Figure PCTCN2022071456-appb-100022
    个符号上均匀分布;
    其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的 总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100023
    个符号上承载UCI的总资源大小,则确定所述
    Figure PCTCN2022071456-appb-100024
    个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
  53. 根据权利要求49~52中任一项所述的信息传输装置,其特征在于,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
    确定每个符号集合对应的UCI的映射资源的大小。
  54. 根据权利要求53所述的信息传输装置,其特征在于,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
    处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
    处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映 射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
  55. 根据权利要求54所述的信息传输装置,其特征在于,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
  56. 根据权利要求54所述的信息传输装置,其特征在于,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
  57. 根据权利要求48~52任一项所述的信息传输装置,其特征在于,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
  58. 根据权利要求49~52任一所述的信息传输装置,其特征在于,所述可用于UCI传输的符号包括:非承载DMRS的符号;
    或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
  59. 根据权利要求46~52任一项所述的信息传输装置,其特征在于,所述冲突包括:
    在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
  60. 根据权利要求46~52任一项所述的信息传输装置,其特征在于,所述承载多时隙TB的PUSCH为:
    一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
  61. 一种终端设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如下步骤:
    当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个TB的所有PUSCH。
  62. 根据权利要求61所述的终端设备,其特征在于,在将所述PUCCH上的上行控制信息UCI转移到目标PUSCH中发送时,将所述UCI按照预定的映射规则映射至所述目标PUSCH上。
  63. 根据权利要求62所述的终端设备,其特征在于,所述预定的映射规则包括下述中的至少一项:
    映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
    映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
    映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
  64. 根据权利要求63所述的终端设备,其特征在于,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
    映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
    映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
  65. 根据权利要求64所述的终端设备,其特征在于,对于映射方式2:
    如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
  66. 根据权利要求64所述的终端设备,其特征在于,对于所述映射方式4,包括:
    将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
  67. 根据权利要求66所述的终端设备,其特征在于,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
    其中,所述均匀分布方式包括方式A和/或方式B;
    所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号 作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
    所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足1/()的UCI的映射资源的大小不超过个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述个符号上均匀分布;
    其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该 组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过B1+个符号上承载UCI的总资源大小,则确定所述B1+个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
  68. 根据权利要求64~67中任一项所述的终端设备,其特征在于,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
    确定每个符号集合对应的UCI的映射资源的大小。
  69. 根据权利要求68所述的终端设备,其特征在于,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式中的一种:
    处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
    处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
  70. 根据权利要求69所述的终端设备,其特征在于,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
  71. 根据权利要求69所述的终端设备,其特征在于,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集 合。
  72. 根据权利要求63~67任一项所述的终端设备,其特征在于,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
  73. 根据权利要求64~67任一项所述的终端设备,其特征在于,所述可用于UCI传输的符号包括:非承载DMRS的符号;
    或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
  74. 根据权利要求61~67任一项所述的终端设备,其特征在于,所述冲突包括:
    在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
  75. 根据权利要求61~67任一项所述的终端设备,其特征在于,所述承载多时隙TB的PUSCH为:
    一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
  76. 一种网络设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如下步骤:
    当承载多时隙传输块TB的物理上行共享信道PUSCH与物理上行控制信道PUCCH在时域上存在冲突时,在目标PUSCH中接收上行控制信息UCI;其中,所述目标PUSCH为与所述PUCCH存在冲突的PUSCH或为与所述PUCCH存在冲突的PUSCH所在时隙中的对应同一个、TB的所有PUSCH。
  77. 根据权利要求76所述的网络设备,其特征在于,所述在目标PUSCH中接收上行控制信息UCI,包括:
    在目标PUSCH中接收按照预定的映射规则映射的上行控制信息UCI。
  78. 根据权利要求77所述的网络设备,其特征在于,所述预定的映射规则包括下述中的至少一项:
    映射规则1:将与所述PUCCH存在冲突的PUSCH所包含的符号作为一个符号集合,在所述符号集合中进行映射;
    映射规则2:将与所述PUCCH存在冲突的每个PUSCH作为独立的个体,将每个PUSCH所包含的符号作为一个符号集合,在每个所述符号集合中进行映射;
    映射规则3:将与所述PUCCH存在冲突的PUSCH对应的符号分为多组,将同一个时隙中传输的PUSCH对应的符号作为一组,构成一个符号集合,在每个所述符号集合中进行映射。
  79. 根据权利要求78所述的网络设备,其特征在于,对于所述映射规则1、所述映射规则2和所述映射规则3中的一种,在所述符号集合中进行映射时,包括下述映射方式中的至少一种:
    映射方式1:从第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式2:从第一个解调用参考信号DMRS之后的第一个可用于传输UCI的符号开始映射,将所述UCI映射到连续的符号上;
    映射方式3:从预先定义的一个符号开始映射,将所述UCI映射到连续的符号上;
    映射方式4:在每个DMRS符号周围映射,确定所述符号集合中的DMRS前和后的一个或临近DMRS的可用于所述UCI传输的符号作为UCI的映射符号。
  80. 根据权利要求79所述的网络设备,其特征在于,对于映射方式2:
    如果某一个PUSCH中不存在DMRS,则基于假定的DMRS位置进行映射;其中,所述假定的DMRS位置为第一个符号,或者与前一个包 含DMRS的PUSCH或后一个包含DMRS的PUSCH中的DMRS的相对位置相同的符号。
  81. 根据权利要求79所述的网络设备,其特征在于,对于所述映射方式4,包括:
    将DMRS符号分为N组,每组中的DMRS符号相邻,不同组中的DMRS符号不相邻,每组DMRS周围的UCI的映射符号的个数相差值低于预设值;N为大于0的整数;在不同组DMRS周围的UCI的映射符号数不同时,靠前的DMRS组周围存在更多的UCI的映射符号,或者,UCI的映射符号优先分布在靠前的DMRS组周围的可用于UCI传输的符号上。
  82. 根据权利要求81所述的网络设备,其特征在于,对于所述映射方式4,包括:均匀分布方式和/或靠前分布方式;
    其中,所述均匀分布方式包括方式A和/或方式B;
    所述方式A包括:先确定最邻近每组DMRS的符号的X1个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1个符号上承载UCI的总资源大小,则将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果UCI的映射资源的大小不超过X1+X2个符号上承载UCI的总资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源映射满所述X1个符号上之后剩余的资源在所述X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100025
    个用于承载UCI的符号上的总资源大小,将UCI的映射资源映射满
    Figure PCTCN2022071456-appb-100026
    个符号之后,将剩余的资源在最后确定的Xj个符号上均匀分布;
    所述方式B包括:先确定最邻近每组DMRS的符号的X1个可用于 UCI传输的符号,如果1/X1的UCI的映射资源的大小不超过X1个符号上的一个符号上承载UCI的资源大小,将所述X1个符号作为UCI的映射符号,将UCI的映射资源在所述X1个符号上均匀分布;否则,则进一步确定最邻近X1个符号的X2个可用于UCI传输的符号,如果1/(X1+X2)的UCI的映射资源的大小不超过X1+X2个符号上的一个符号上承载UCI的资源大小,将所述X1+X2个符号作为UCI的映射符号,将UCI的映射资源在所述X1+X2个符号上均匀分布,否则,确定最邻近X2个符号的X3个可用于UCI传输的符号,并类推处理,直到满足
    Figure PCTCN2022071456-appb-100027
    Figure PCTCN2022071456-appb-100028
    的UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100029
    个符号上的一个符号上承载UCI的资源大小,将UCI的映射资源在所述
    Figure PCTCN2022071456-appb-100030
    个符号上均匀分布;
    其中,所述靠前分布方式包括:从第1组DMRS符号开始,取该组DMRS符号前和后的最邻近的可用于承载UCI的各1个符号构成A1个符号,如果UCI的映射资源的大小不超过所述A1个符号上承载UCI的总资源大小,则确定所述A1个符号作为UCI的映射符号,否则,取下一组DMRS前和后的最邻近的可用于承载UCI的各1个符号构成A2个符号,如果UCI的映射资源的大小不超过所述A1+A2个符号上承载UCI的总资源大小,则确定所述A1+A2个符号作为UCI的映射符号,并类推处理,直到满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小;当对最后一组DMRS符号执行完上述操作之后,还是不能满足UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小,则从第一组DMRS开始,取该组DMRS符号对应的A1个符号前和后最邻近的可用于承载UCI的B1个符号,如果UCI的映射资源的大小不超过
    Figure PCTCN2022071456-appb-100031
    个符号上承载UCI的总资源大小,则确定所述
    Figure PCTCN2022071456-appb-100032
    个符号作为UCI的映射符号,否则,进一步对下一组DMRS获得B2个符号,并类推处理,直到满足 UCI的映射资源的大小不超过已经确定出的用于承载UCI的所有符号上的总资源大小。
  83. 根据权利要求79~82中任一项所述的网络设备,其特征在于,对于所述映射规则2或所述映射规则3,在每个符号集合中按照所述映射方式1、所述映射方式2、所述映射方式3和所述映射方式4进行映射之前,还包括:
    确定每个符号集合对应的UCI的映射资源的大小。
  84. 根据权利要求83所述的网络设备,其特征在于,所述确定每个符号集合对应的UCI的映射资源的大小,包括下述处理方式:
    处理方式1:将UCI信息分为多组,每组对应一个符号集合,分别在每个符号集合中基于对应的UCI信息确定每个符号集合对应的UCI的映射资源大小;
    处理方式2:将UCI信息作为一个整体,基于与PUCCH重叠的所有PUSCH所包含的符号确定总的UCI的映射资源大小,将总的UCI的映射资源大小分为多组,每组对应一个符号集合,得到每个符号集合对应的UCI的映射资源大小。
  85. 根据权利要求84所述的网络设备,其特征在于,对于处理方式1,在对UCI信息分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
  86. 根据权利要求84所述的网络设备,其特征在于,对于处理方式2,在对总的UCI对应的映射资源大小分组时,均匀分组,或者按照比例分组;所述比例为根据每个符号集合在总符号集合中的比例获得,所述总符号集合是与PUCCH存在冲突的PUSCH对应的符号构成的符号集合。
  87. 根据权利要求78~82任一项所述的网络设备,其特征在于,在确定映射符号之后,在每个符号上,按照频域上从低频到高频或者从高频到低频的顺序连续映射或者离散映射。
  88. 根据权利要求79~82任一所述的网络设备,其特征在于,所述可用于UCI传输的符号包括:非承载DMRS的符号;
    或者,根据波形来确定:采用正交频分复用OFDM波形时,为非承载DMRS的符号以及存在可用于承载TB的资源单元RE的DMRS符号,采用基于离散傅立叶变换的扩频正交频分复用DFT-s-OFDM波形时,为非承载DMRS的符号。
  89. 根据权利要求76~82任一项所述的网络设备,其特征在于,所述冲突包括:
    在同一个载波组中,资源在时域上存在重叠;或者,在同一个载波组中,信道之间的符号间隔小于预定的门限。
  90. 根据权利要求76~82任一项所述的网络设备,其特征在于,所述承载多时隙TB的PUSCH为:
    一个TB基于多个时隙中PUSCH对应的总符号数进行编码,得到的编码信息分散在所述多个时隙中通过对应的PUSCH传输。
  91. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1至15任一项所述的信息传输方法的步骤,或执行如权利要求16至30任一项所述的信息传输方法的步骤。
PCT/CN2022/071456 2021-01-19 2022-01-11 信息传输方法、装置、终端设备、网络设备及存储介质 WO2022156567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110071630.8A CN114826516B (zh) 2021-01-19 2021-01-19 信息传输方法、装置、终端设备、网络设备及存储介质
CN202110071630.8 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022156567A1 true WO2022156567A1 (zh) 2022-07-28

Family

ID=82525229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071456 WO2022156567A1 (zh) 2021-01-19 2022-01-11 信息传输方法、装置、终端设备、网络设备及存储介质

Country Status (2)

Country Link
CN (1) CN114826516B (zh)
WO (1) WO2022156567A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972286A (zh) * 2018-09-28 2020-04-07 电信科学技术研究院有限公司 一种上行控制信息uci的传输方法、用户终端及基站
US20200313793A1 (en) * 2019-03-25 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining a duration of a repetition of a transport block
CN111756506A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 传输上行信息的方法和通信装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299976B (zh) * 2018-03-21 2022-04-08 大唐移动通信设备有限公司 一种信息传输方法、接收方法、终端及网络设备
JP7309335B2 (ja) * 2018-09-19 2023-07-18 シャープ株式会社 端末装置、基地局装置、および、通信方法
US11516819B2 (en) * 2019-05-15 2022-11-29 Qualcomm Incorporated Uplink channel collision resolution for conditional media access control (MAC) layer based prioritization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972286A (zh) * 2018-09-28 2020-04-07 电信科学技术研究院有限公司 一种上行控制信息uci的传输方法、用户终端及基站
US20200313793A1 (en) * 2019-03-25 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining a duration of a repetition of a transport block
CN111756506A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 传输上行信息的方法和通信装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on PUSCH TB processing over multiple slots", 3GPP DRAFT; R1-2100458, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970380 *
WILUS INC.: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2105878, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052011767 *
ZTE CORPORATION: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2100096, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970801 *

Also Published As

Publication number Publication date
CN114826516A (zh) 2022-07-29
CN114826516B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
CN106851744A (zh) 无线通信的方法和装置
AU2019429754A1 (en) User equipment and system performing transmission and reception operations
WO2016000368A1 (zh) 上行控制信道的配置和发送方法、装置及基站和用户设备
JP7027440B2 (ja) アップリンク伝送方法、装置、端末装置、アクセスネットワーク装置及びシステム
WO2021043111A1 (zh) 数据传输方法及装置
US20220295452A1 (en) Electronic device and method for physical uplink control channel (pucch) resource configuration
US20200045733A1 (en) Uplink Scheduling For NR-U
WO2022042048A1 (zh) 一种通信方法与装置
WO2022078204A1 (zh) Pucch重复传输次数的确定方法、终端及基站
CN113037455B (zh) 发送和接收信息的方法及装置
US9397813B2 (en) Extending the control channel region of a communications system in backwards compatible manner
WO2022218223A1 (zh) 载波切换的传输处理方法及装置
WO2022237611A1 (zh) 一种信息确认方法、装置及通信设备
WO2022156567A1 (zh) 信息传输方法、装置、终端设备、网络设备及存储介质
WO2020143840A1 (zh) 一种确定传输块大小的方法及装置
WO2023134572A1 (zh) 上行传输方法、终端设备和网络设备
WO2023134661A1 (zh) Uci传输方法、终端、网络设备、装置及存储介质
EP4319013A1 (en) Multiplexing transmission method and apparatus, and storage medium
WO2022156548A1 (zh) 一种uci复用传输方法、装置及存储介质
WO2024032535A1 (zh) 一种传输块大小确定方法及装置
WO2022078285A1 (zh) 上行传输方法及装置
WO2023284485A1 (zh) 信号传输方法及装置
WO2022206351A1 (zh) 一种上行信道的传输方法及装置
WO2022206347A1 (zh) 一种uci在pusch上传输的方法、终端及设备
WO2022218076A1 (zh) 一种pucch传输方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742046

Country of ref document: EP

Kind code of ref document: A1